
Modular Veriϐication of
Finite Blocking via Obligations

Problem Description

Christian Klauser
klauserc@student.ethz.ch

June 3, 2014

1 Background

Veriϐiers for Chalice, an experimental programming language designed for specifying and verifying
concurrent programs, today prevent certain cases of inϐinite blocking, for instance deadlocks with
monitors. It is still possible, though, to construct programs that might block indeϐinitely but pass ver-
iϐication today, especially when non-terminating threads are involved.
A promisingway to tackle this problem is the idea thatwhenever a thread could cause another to block
(e.g., by holding a lock) it get an obligation to allow other to continue at some point. Such obligations
would be checked per method in isolation and could in certain cases be passed between methods, a
bit like permissions in Chalice today.

2 Core

The goal of thisMater’s thesis is to devise away to implement checking of obligations for ϐinite blocking
in Silver, an intermediate language for permission-based reasoning, and then to deliver an implemen-
tation that serves as a proof of concept. This implementation spans Silver itself and Silicon, a veriϐier
for Silver that is based on symbolic execution.
At it’s core, the thesis involves

• coming up with a model of obligations in the intermediate language Silver
• implementing the necessary extensions to Silver in the Silicon veriϐier backend
• extending the existing lock-ordermechanism to become await-order that involves all operations
that can cause a thread to block, not just monitor-locks

• implementing a proof-of-concept extension to Chalice that uses the new obligation model to en-
sure ϐinite blocking for some constructs

1



3 Extensions

Depending on the progress of the main task, several extensions to the project are possible.
• Implement veriϐication of additional blocking operations. Re-entrant locks would be one exam-
ple.

• Implement veriϐication of other operations that beneϐit from coming with obligations. The obli-
gation to free memory after an allocation would be one example.

• Extendobligations to be able to use ranking domains other than integers tomeasure the ”amount
of obligation” a thread has on a resource.

• Investigate the relationship between obligations and permissions.
• Extend the proof-of-concept implementation of obligations in Chalice to include more of the ex-
isting blocking language constructs.

2


