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Abstract

Chalice is a program veri ier for concurrent programs that has built-in support for
advanced constructs often found in multi-threaded programs, such as asynchronous
method calls, channels andmonitor locks. But even though it features a sophisticated
deadlock prevention mechanism, it only proves partial correctness, that is, it will ac-
cept programs that block forever.

In this thesis, we present a veri ication technique introduced by [BM14] that aims
to show that either all threads in a program terminate or run forever. In other words,
to show that no thread blocks forever. We have implemented the part of it that deals
with termination on the Viper veri ication infrastructure. Since Silver, the interme-
diate language used in Viper, is not expressive enough for that endeavour, we have
designed and implemented a handful of extensions to Silver that have the potential to
be useful beyond the application of this thesis.
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1 Introduction

Multi-threaded programs typically need some form of synchronization. Mutual exclusion
locks, condition queues, plain old semaphores but also waiting for a message or signal to
arrive are all commonly used synchronization mechanisms. One thing they have in com-
mon is that they force a thread towait until a certain condition is ful illed by other threads
(lock released, message sent). Whilewaiting, a thread cannotmake progress. We call such
a thread blocked. It needs other threads to unblock it by releasing a lock they were hold-
ing onto or by sending on the correct channel. Trouble follows when a thread that is sup-
posed to unlock another is itself blocked. Worst case, when two or more threads form a
blocked-by ring, we are in a deadlock situation where none of the threads will ever make
progress.
Approaches to avoid the starvation of any one thread in a terminating program have been
around for some years [Kob06, LMS09] where we ensure that thread scheduling is fair
and no the program does not contain deadlock cycles. Unfortunately, this doesn’t apply to
many programs found in the real world because they don’t necessarily terminate. Server
processes or interactive applications as a whole typically only terminate based on outside
input. Sometimes also just parts of an otherwise terminating program, such as threads
dedicate to logging or sending database queries, operate in a perpetual fashion. When
such a non-terminating thread blocks another thread, it could potentially postpone the
unblocking operation inde initely. A logging thread, for instance, could hold a lock to the
log ile handle until it receives a signal to terminate. If anyother thread tries to acquire that
lock, that other threadmight never be able to proceed, even with completely fair schedul-
ing. Since existing tools assume that all threads terminate, they are unable to detect this
scenario as an error.
What we would like is a way to verify that, although parts of a program potentially don’t
terminate, at least no thread remains blocked forever in a system with fair scheduling.
In other words, we want each thread in a program must either terminate (without being
blocked forever) or run forever. We call this property inite blocking, a term introduced by
[BM14]. The same paper also introduces a veri ication technique for inite blockingwhere
each operation that potentially blocks another thread comeswith an obligation to unblock
that thread. For instance, when a thread acquires a lock, it simultaneously obtains an
obligation to release that lockwithin a inite amount of time. While obligations are present
in a thread, that thread can no longer call methods or enter loops that don’t promise to
terminate. Or at least not unless it can show that the obligations will be ful illed within
the allotted time frame.
The authors of [BM14] provide an encoding of their veri ication technique for the Boogie
veri ier [BDJ 06]. In this Master’s thesis we present an encoding of their technique for
the Viper veri ication infrastructure [JKM 14]. Where necessary, we have extended Viper
with constructs thatmakeour encodingpossible but aredesigned tobeuseful and sensible
additions beyond just verifying inite blocking.
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Outline We start in section 2 with an introduction to the Viper veri ication infrastruc-
ture and the research programming language Chalice that we extend to support obliga-
tions. Section 3 continues with a more detailed presentation of the veri ication scheme
in [BM14] and its informal semantics. In section 4, we trace the design process that led
us to the inal set of extensions to Viper that we present in section 5. We describe our
encoding of the modular veri ication of inite blocking using our extensions in section 10.
In section 7 we evaluate our translation with a handful of programs and conclude in sec-
tion 8.

2 Background

In this sectionwe irst give an overviewover the Viper veri ication infrastructure and then
quickly present Chalice, a research programming language that will serve as our “source”
language.

2.1 Viper

The Viper veri ication infrastructure is a set of tools for static program veri ication using
permission-based veri ication techniques [JKM 14]. It is centred around its own inter-
mediate language “Silver”. As a relatively high-level veri ication language, Silver comes
with built-in ideas of a memory heap and permissions. To have a heap as a native concept
means that tools operating on Silver programs have considerably more freedom in how
they model their execution.
There are currently two veri ier backends for Silver. One, “Carbon”, is based on veri ication
condition generation (VCG) that emits code for the Boogie program veri ier [BDJ 06]. The
other, “Silicon”, based on symbolic execution. Both backends ultimately use the Z3 SMT
solver [dMB08].

2.1.1 Silver

Silver is an intermediate language intended for program veri ication. It is designed to be
as simple as possible while still supporting high-level concepts such as a heap and per-
missions typically absent from veri ication languages. For example, even though Silver is
designedwith object-oriented “source” languages inmind, it doesn’t differentiate between
different types of objects (that’s the domainof the source language’s type checker). Indeed
one doesn’t specify classes in Silver, justmethods and ields. Similarly, methods don’t have
an implicit this parameter. It’s up to the frontend to include it if necessary.
One thing that differentiates Silver from many other veri ication languages, is its permis-
sion system. In order to access a heap location in Silver, the current thread needs to have
permission to access that location. Permission is initially acquired when the object is cre-
ated but subsequently needs to be explicitly passed frommethod to method, from thread
to thread and from loop iteration to loop iteration. Permission can also be split up and dis-
tributed acrossmultiple threads, but a fractional permission only grants reading access to
memory locations. A thread requires full permission to modify a heap location.
Let’s go through the very small example in listing 1. It contains two top-level de initions:
the object ield a of type Int on line 1 and themethod validate starting on the next line.
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Listing 1: Simple Silver program that makes sure the ield a is non-negative.
1 field a:Int
2 method validate(x:Ref) returns(valid:Bool)
3 requires x != null && acc(x.a, write)
4 ensures acc(x.a, write) && x.a >= 0
5 ensures valid ==> x.a == old(x.a)
6 {
7 if(x.a < 0){
8 valid := false;
9 x.a := 0;

10 } else {
11 valid := true;
12 }
13 }

The method has one input parameter x and one output parameter valid. The value x
is of type Ref to represent a reference to an object on the heap. References don’t have a
more speci ic type. Thus, as far as Silver is concerned, the object pointed to by x may or
may not have a ield called a. Lines 3 through 5 contain the method’s speci ication as pre-
and postconditions. Silver is intended to be veri ied modularly on a per-method level,
that is, each method should be veri ied on its own without considering other method’s
implementations.
Preconditions in Silver don’t just make assertions about the program state at the point
where a method is called, they also describe the set of memory locations that a method
will need to access during it’s execution. On line 3, our method speci ied that it requires
acc(x.a, write), that is, it requires read-write access to the ield a on object x. Write

access is highest level of access you can have to amemory location. It is thus often referred
to as a full access permission.
To prevent data races, there is never more than one full access permission to a location
in the entire system. This means that if a method has write access to a heap location, it
can be sure that no other thread can write or even observe that location at that time. If a
thread only has a fraction of the full permission, we call this read access. That thread can
be sure that, while it holds this fraction, no thread canwrite to the heap location. Although
not obligatory,method’s typicallywant to return the permissions they received onmethod
entry back to their caller at the end. This happens via the speci ication of ensures acc(
x.a, write) on line 4.
In the example in listing 2, we have a program fragment that might have been generated
by a frontend that wishes to verify a programming language with explicit memory man-
agement. It de ines amethod free that takes an object and access to the object’s ields (in
our case just acc(x.f, write)) and drops them. In the mainmethod, we create a new
object with one ield, a. After a bit of use, we call free on line 9. To the veri ier x.a is as
good as non-existent when the call returns, as we have lost all permission to it. When we
then try to call the validate method from before, the Silver veri ier will complain will
report the following error
The precondition of method validate might not hold. There might be

insufficient permission to access x.a. (program.sil,11:3)
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Listing 2: Silver example that encodes a programwith exhibits a “use-after-free” problem
caught by the veri ier.

1 method free(x: Ref)
2 requires x != null && acc(x.a, write)
3 { /* free memory */ }
4

5 method main(){
6 var x : Ref
7 x := new(a)
8 x.a := -6
9 free(x)

10 var b: Bool
11 b := validate(x)
12 }

To understand what exactly is going on here, we need to look at the method call to free
on line 9 in more detail. When wewant to verify a method call, we irst need to make sure
we satisfy its precondtion. Then the actual call “happens” but sincewe are verifying Silver
programs modularly on a method-by-method basis, the only thing we can rely on, is the
method’s postcondition. Thus, you’d typically get to assume that postcondition, once you
have shown that you satisfy the precondition. This would look as follows:
assert x != null && acc(x.a, write) // precondition of free

// call ”happens” here
assume true // postcondition of free (it’s empty)

But this is not quite correct, since the assert statement in Silver, as in most other lan-
guages, does not modify the program’s state. Silver has a separate pair of statements for
just this purpose: inhale andexhale. Whenused insteadof assume andassert, respec-
tively, the veri ier treats accessibility assertions (acc(x.a, write)) as an instruction to
transfer the corresponding amount of permission into or out of the current method. Our
call to free thus translates to
exhale x != null && acc(x.a, write)
inhale true

So when the veri ier comes across the exhale statement, it irst asserts that x = null!,
then checks that we currently have at least write permission to x.a before it subtracts
one write from our current permission to x.a. That just happens to be all permission
we had to that memory location so from now on it might as well no longer exists, as far
as we are concerned. After all if we don’t have any permission to it, it is possible that
some other thread has write access to it and could thus be changing it constantly. Once
we reach the call to validate on line 11, we no longer have enough permission to satisfy
acc(x.f, write) in that method’s precondition.
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2.1.2 Silicon

Silicon is one of two veri ier backends for Silver. We implement the veri ication of our ex-
tensions to Silver as part of Silicon. While we could alternatively have implemented them
in Carbon, the authors of [BM14] already present an encoding for Boogie, the same pro-
gram veri ier that Carbon uses. It is much more interesting to implement the extensions
in a veri ier that is not also using VCG.
Silicon is an adaptation of an earlier symbolic execution based veri ier for Chalice [Sch11].
The way Silicon works is very different from VCG-based veri iers. The latter essentially
encode entire methods into big logical formulas that they then pass to a theorem prover
(Z3 in the case of Carbon). These formulas, in particular, also contain a representation of
the various states of the program’s heap.
Silicon, on the other hand, maintains both the local variable store, mapping from local
variable names to symbolic terms, and the symbolic heap itself. Silicon represents the
heap as a set of “heap chunks” [Sch11]. A heap chunk for a ield is a quadruple

𝑟.𝑓 ↦ 𝑡#𝑝

where

𝑟 ∶ symbolic term, represents an object reference
𝑓 ∶ ield identi ier
𝑡 ∶ symbolic term, represents value of the ield
𝑝 ∶ symbolic term, represents amount of permission

As an example, when Silicon is confronted with the following snippet of Silver:
1 x := new()
2 inhale acc(x.a, write)
3 exhale acc(x.a, write/2)

On the irst line, we allocate a new object. Silicon invents a new object identi ier for it, say
“𝑥 ”, and stores the assignment to the local variable x in its local variable store 𝛾:

𝛾 = [𝑥 ↦ 𝑥 ]

On the next line, we inhale an access permission. Silicon turns the accessibility assertion
into a heap chunk (𝑥 .𝑓 ↦ 𝑡 #write) using a fresh term symbol 𝑡 . This chunk is then
merged into Silicon’s heap ℎ, which now looks like this:

ℎ = [𝑥 .𝑓 ↦ 𝑡 #write]

Whenwe reach line 3, Silicon can directly look up the chunk for x_1.f in its heap because
the receiver and ield match literally. Silicon then needs to check whether we currently
hold enough permission to perform the exhale. This, however, it cannot do on its own, so it
asks the theorem proverwhether (write/2 < write) holds. If that checkwas successful,
it replaces the chunk for 𝑥 .𝑓 with the following chunk

𝑥.𝑓 ↦ 𝑡 # (write− write/2)

In general Silicon never passes its symbolic heap representation to the theoremprover. All
the prover ever sees of the heap, are the symbolic object identi iers generated by Silicon.
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To give the prover enough information to reason about the assertions passed to it, Silicon
maintains a list of “path conditions” that the prover gets to assume. Path conditions are
facts that Silicon learned along the execution path: logical formulas in the precondition of
the method, or postconditions of called methods for instance.
One situation that Silicon needs to handlewith particular care, iswhenmultiple otherwise
distinct terms are aliases for the one object. To compute the total amount of permission
for ields on that object, Silicon will have to perform a compression of the heap. It has no
other choice than to go through all chunks for the ield in question pairwise and ask the
prover if their receivers are the same. If so, it replaces the pair of chunks by a new chunk
with the summed up permission amount.

2.2 Chalice

Chalice [LMS09] is a research programming language created speci ically to study the ver-
i ication of concurrent programs. While there was a compiler for Chalice at one point, it is
primarily intended for veri ication. Chalice was the irst language to be veri ied via Silver
[Kla12]. In a sense, Silver is a lower level, more distilled version of Chalice, rather than a
higher level alternative to, say, Boogie.

2.2.1 Fork-Join

Chalicehas some features that arenot present in Silver. Oneof them is anotation for calling
methods asynchronously. In the example program in listing 3we have a mainmethod that
spawns two worker threads. These threads operate on shared data in the form of x.f.
With the accessibility predicate acc(x.f, 10) on line 5, we specify that an invocation of
themethodwork requires ten percent of a full permission. Themethodwork can therefore
only read from x.f, but not write to it.
The fork statements create a new thread that executes the speci ied method. They don’t
block until that thread has inished work, however. Instead, they return a token that one
can later use towait for, tojoin that thread. A token is a irst-class value that can be stored
in local variables, returned frommethods andpassed as arguments. It cannot, however, be
joinedmultiple times. This is because, as in our example, joined threads returnpermission
to whoever joins their token. If it were somehow possible to join a thread multiple times,
the returned permission would be duplicated.

2.2.2 Monitor Locks

Chalice also as built-in mechanisms for modelling synchronization via monitor locks. Un-
like the built-in lock statements in Java and C#, which just serve as a means to ensure
mutual exclusion, monitor locks in Chalice are typically associated with amonitor invari-
ant. The idea is that some time after an object is initialized a thread can give the object
into the care of a central monitor. This monitor requires the thread to prove that it satis-
ies themonitor invariant and transfer all necessary permission to themonitor. From that
point on, other threads can acquire a lock on the object. Once they have the lock, they
immediately get the permissions “stored” in the monitor invariant. The lock on an object
can only be released when the monitor invariant can be established.
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Listing 3: Chalice example of forking and joining threads.
1 method work(x: Obj, n: int) returns(s: int)
2 requires x != null && acc(x.f, 10) && n >= 0
3 ensures acc(x.f, 10) && s == n*x.f
4 {
5 var i := 0; s := 0;
6 while(i != n)
7 invariant acc(x.f, 10) && s == x.f*i
8 {
9 s := s + x.f;

10 i := i + 1;
11 }
12 }
13

14 method main(){
15 var s1: int; var s2: int;
16 var x: Obj := new Obj { f := 5 };
17 fork t1 := work(x, 3);
18 fork t2 := work(x, 2);
19 // do other work
20 join s2 := t2; join s1 := t1;
21 assert s2 == 2*5 && s1 == 3*5;
22 x.f := 0;
23 }

Listing 4: Chalice example with a monitor invariant. Deadlock avoidance omitted.
1 class Obj {
2 var f: int;
3 var g: int;
4 invariant acc(f) && acc(g) && g == -f;
5

6 method main() {
7 var x := new Obj { f := 5 , g := -5 };
8 share x;
9 fork inc(x);

10 fork inc(x);
11 }
12

13 method inc(x: Obj)
14 requires x != null
15 {
16 acquire x;
17 x.f := x.f + 1;
18 x.g := x.g - 1;
19 release x;
20 }
21 }
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We provide an example of howmonitor invariants can be used in listing 4. There, the two
ields on the Obj classmust ful il the condition (g == -f)while no thread holds the lock.
We spawn two threads that bothmanipulate the memory locations x.f, x.g, something
that wouldn’t be possible using just the permission mechanism. Here, when we execute
line 16, we receive the contents of themonitor invariant, which includes full access to both
x.f and x.g. While we are holding the lock, it is ine to break themonitor invariant, since
no other thread will be able to acquire the lock at the same time and observe us. On line
19, however, when we want to release the lock again, Chalice will ensure that the mon-
itor invariant holds and that the access permissions are transferred back to the monitor
invariant.

2.2.3 Predicates

Method pre- and postconditions can become pretty large and are often very similar for
methods of the same class. Chalice offers a way to abstract away a set of conditions and
permissions in a predicate. A thread can fold a predicate and receive an access permis-
sion to the predicate in exchange for satisfying the predicate’s condition and giving away
the permissionsmentioned in the predicate’s de inition. The opposite operation, unfold,
exchanges the permission to the predicate with the predicate’s de inition. In the example
in listing 5 we have a predicate called valid that encapsulates the same condition as the
monitor invariant in the previous example. Before we call the method inc2, we need to
fold the predicate on line 19. The body of inc2 looks very similar to the previous exam-
ple.
One very important difference between predicates and monitor invariants, is that while
the contents of the predicate are folded away, they still under the control of the thread
that holds the predicate’s permission. Once a lock is released, another thread could have
immediately snatched it up and modi ied the object’s state. With predicates, we can still
reason about the state of the object by “temporarily unfolding” the predicate in pre-,
postconditions and assertions.

2.2.4 Channels

To allow users to model programs with message passing, Chalice offers channels over
which one can send and receivemessages. Listing 6 de ines a channel type Chanwhich
carries messages that consist of one object of type Obj. A message could consist of more
than one value, just likemethod return values. The channel de inition also features a chan-
nel invariant. This invariant about the message must be satis ied when you send that
message and can be assumed when the message is received. Permissions mentioned in
the channel invariant will be transferred away together with the message during a send
operation and will be delivered during a receive operation.
Naturally, a receive operation can only succeed if some thread actually sent a message
on the channel. Therefore, Chalice requires that you have “channel credit” when you try
to receive messages. We denote this using the credit(ch, _) annotations on lines 14
and 20. Note how we send the object y across the channel twice. This is absolutely ine,
since each message only requires ten percent worth of access permission to the f ield of
the message object.
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Listing 5: Chalice program with predicates.
1 class Obj {
2 var f: int;
3 var g: int;
4 predicate valid {
5 acc(f) && acc(g) && g == -f
6 }
7 method inc2()
8 requires acc(valid)
9 ensures acc(valid)

10 && unfolding valid in f == old(unfolding valid in f) + 1
11 {
12 unfold valid;
13 f := f + 1;
14 g := g - 1;
15 fold valid;
16 }
17 method main(){
18 var x : Obj := new Obj { f := 5, g := -5 };
19 fold x.valid;
20 call x.inc2();
21 assert unfolding x.valid in x.f == 6;
22 }
23 }

2.2.5 Deadlock Prevention

One language element omitted from listings 4 and 6 is Chalice’s deadlock preventionmech-
anism [LMS10, LMS09]. The basic idea is that we establish a “locking order” where each
object that you can wait on via acquire or receive has a lock level. When a thread tried
to acquire a lockwith lock level 𝜇, it can only do so, if this lock level is above the lock levels
of all other objects it holds a lock to. Thus, if create two objects as follows:
var x : Obj := new Obj;
share x;
var y : Obj := new Obj;
share y above x;

we can only ever lock x before y. We can of course lock y directly, but the deadlock pre-
vention mechanism will not allow us to then also lock x.
acquire y;
acquire x; // error: target of the acquire might not be above waitlevel.

2.2.6 Chalice2Silver

Chalice is a program veri ier in and of itself. It generates a Boogie program has the Boogie
veri ier verify it. At the same time, we have a tool that uses Chalice’s parser to read Chalice
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Listing 6: Chalice program using channels. Deadlock avoidance omitted.
1 channel Chan(x: Obj) where x != null && acc(x.f, 10);
2 class Obj {
3 var f: int;
4 method main(){
5 var ch := new Chan;
6 var x: Obj := new Obj { f := 3 };
7 send ch(x);
8 var y := new Obj { f := 5 };
9 send ch(y); send ch(y);

10 fork tk := counter(ch,3);
11 var s: int; join s := tk;
12 }
13 method counter(ch: Chan, n: int) returns (s: int)
14 requires ch != null && n > 0 && credit(ch, n)
15 {
16 s := 0;
17 var i: int := 0;
18 while(i != n)
19 invariant ch != null && i >=0 && i <= n && credit(ch, n-i)
20 invariant rd(ch.mu) && waitlevel << ch.mu;
21 {
22 var x: Obj;
23 receive x := ch;
24 s := s + x.f;
25 i := i + 1;
26 }
27 }
28 }
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Listing 7: Chalice program that demonstrates the transfer of credits
1 channel C(x:int);
2

3 class A {
4 method main()
5 {
6 var c := new C above waitlevel;
7 assert waitlevel << c.mu
8

9 fork msg(c);
10 fork log(c);
11 }
12

13 method msg(c:C)
14 requires c != null && credit(c,-1)
15 {
16 send c(1); // settle debt
17 }
18

19 method log(c:C)
20 requires c != null && credit(c)
21 requires rd(c.mu) && waitlevel << c.mu
22 {
23 receive x := c;
24 }
25 }

programs but instead translate them into Silver for veri ication by either Silicon or Car-
bon. This tool, rather predictably, is called “Chalice2Silver”. As part of this thesis, we have
extended that tool to provide a proof-of-concept implementation of [BM14]’s veri ication
technique for inite blocking.

3 Modular Veri ication of Finite Blocking

In this section we present the scheme for verifying inite blocking in non-terminating
programs that we set out to implement on the viper veri ication infrastructure. It was
introduced by [BM14], in which the authors describe an encoding for the Boogie veri-
ier [BDJ 06].
In certain versions of Chalice [LMS10], a thread can only receive messages on a Channel
if the veri ier can show that the thread has “credit” on that channel. A thread can obtain
credits to a channel when it promises to send a message on that channel. Credits can also
be transferred via method calls. This way, a thread can promise to send a message and
hand that credit to other threads to use. Listing 7 shows an example of this. Were you to
remove the send statement on line 16, the veri ierwould fail, informing you that amethod
must not leak “debt”.
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Listing 8: Chalice program that promises to send a messsage but never does. Partially
correct and accepted by Chalice
method msg(c:C)
requires c != null && credit(c,-1)

{
var x := 5;
while(x == 0) invariant credit(c,-1) { }
send c(1); // never reached

}

The authors of [BM14] have generalized the idea of “debt” to includemore constructs that
could cause another thread to block. Whenever a thread gets into a statewhere it prevents
other threads from making progress, it will get an “obligation” to eventually allow these
other threads to proceed. When a thread acquires a monitor lock on an object, for in-
stance, it simultaneously gets an obligation to release that lock. The veri ication scheme
also includes termination of methods, loops and entire threads in that samemodel: meth-
ods can promise to their callers that they terminate, receiving an obligation to terminate
for themselves.
To ensure that a thread that promises termination actually terminates and that obligations
to unblock other threads are not postponed inde initely, each obligation is associatedwith
a lifetime expression that acts as a termination measure. Together, in the author’s words,
this “[…] guarantees inite blocking for programs with a inite number of threads and fair
scheduling, that is, each thread in a veri ied program either terminates eventually or runs
forever, but no thread is blocked forever.” [BM14]
The fact that this veri ication scheme does not assume that the program terminates is very
important becausemost veri iers, including that version of Chalice, only prove partial cor-
rectness. If we for instance change the msgmethod to the one shown in listing 8, the origi-
nal Chalice will happily accept the program even though the send statement can never be
reached in any execution of the program.
Chalice still accepts the program, even though msg will never actually send the message.
Demanding, on the other hand, that every single loop and recursive method call is an-
notated with a termination measure excludes many programs that regularly occur in the
real world: interactive applications or servers – programs that only terminate based on
external input.

3.1 Obligations

For the scope of this thesis, we are interested in three kinds of obligations: termination,
lock release, sending of messages. We will explain the meaning of their common lifetime
parameter t in section 3.4.

Send (sends(c,n,t)) The obligation to send n messages on a channel c within the
speci ied lifetime t. Send obligations are the most liberal of the three. They accumulate
(obligation to sendmultiple messages) and they can be negative (“credit”). You can trans-

15



Listing 9: Chalice method that releases a lock.
method main(x:Obj)
requires x != null && releases(x, 1)

{
release x;

}

fer them between threads or return them from a method for as long as their lifetime per-
mits it.

Release (sends(r,t)) The obligation to release a monitor lock on an object r within
the speci ied lifetime t. Because the locks they model are not re-entrant, you cannot ac-
quire the lock a second time if this obligation is already present. Also, it doesn’t make
sense to have a “release-credit”, i.e. you cannot release a lock that you don’t hold.

Termination (terminates(t)) The obligation for a loop or recursive call chain to ter-
minate within the speci ied lifetime t. This is the most restrictive obligation of the three:
it cannot be transferred to other threads or returned from a method, nor can you have
“termination-credit” or accumulate stacks of termination obligation.

3.2 Transfer of Obligations

Programmers need to explicitly annotate the methods and loops that carry obligations.
Similar to how credit was being speci ied in old versions of Chalice, obligations occur
mostly in the precondition of amethod. Amethod that promises to release a lock (listing 9)
mentions it in its precondition.
This may seem very strange at irst as, intuitively, the “promise to have released a lock”
sounds more like a postcondition, something that the method “ensures”. A better way to
look at the speci ication is to think of the releases expression as a “promise to take over
the obligation to release”. In that way, it works like an accessibility predicate (acc(x.f,p
)) in that it removes a thing (obligation) from the caller’s scope and adds it to the callee’s
scope.
From a usability perspective, speci ications like requires releases(x)will likely con-
fuse most newcomers. Internally, we have discussed this issue multiple times but so far
failed to come upwith a syntax that doesn’t lose expressiveness and can reasonably be im-
plemented. Candidates included extracting these obligation expressions from postcondi-
tions and inserting them into thepreconditionor tohave separate “guarantees-conditions”
that are then merged into the precondition. That obligation expressions can occur on
the right-hand-side of implications, makes it very dif icult to correctly extract obligation
expressions from a postcondition and would require the user to repeat the implications
when we use a separate kind of speci ication just for obligation expressions.
As somewhat of a special case, methods can mention obligations in their postcondition
to return them to their caller. A method could, for instance, acquire a lock and return the
obligation to release that lock to its caller.
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The amount of obligation a method stack frame holds can change when one of the follow-
ing happens

• receives obligation from caller
• gives away credit
• executes a statement that comes with obligations (e.g., acquiring a lock) or satis ies
obligations (e.g., releasing a lock)

• transfers obligation to a callee/forked thread
• receives corresponding credit

3.3 Leak check

One important corner-stoneof this veri ication scheme is tomake sure that threads cannot
just forget about obligations. Once a stack frame has acquired an obligation, it must get
rid of it using one of the ways just mentioned. To make sure this is the case, we need
to perform a leak check whenever a thread might stop or diverge. This means we will
certainly perform leak checks just before a method returns and at the end of every loop
iteration.
With method calls the situation is a bit more interesting. Technically, it would be correct
to perform a leak check before each method call, it might diverge after all. If we did this,
each callwould require the user to transferall obligations currently held to the callee, even
those that the callee never ful ills andwill just return unchanged. In addition to being very
cumbersome, that would heavily reduce the modularity of methods.
Fortunately, methods can promise that they terminate with the terminates obligation
and we can use that knowledge to our advantage. When we know that the callee termi-
nates, it is ine to keep some unsatis ied obligations in the caller’s stack frame while the
callee executes. We have the guarantee that it will eventually return, putting the caller
back in charge of the remaining obligations. With methods that do not promise to termi-
nate, we have no choice but to perform a leak check.
The situation with entering loops is very similar. If a loop promises to terminate, it is ine
to keep some unsatis ied obligations outside the loop. We are guaranteed to be back in
control of those “hidden” obligations within a inite amount of time.
Calling a method asynchronously (fork) does not involve a leak check as it doesn’t block
and thuswon’t preventus from ful illing the remainingobligations. Joining a forked thread,
however, requires special attention since that thread might not terminate. In this thesis
we do not allow programs to wait for threads that haven’t promised to terminate. One
could differentiate between threads that might diverge and ones that de initely won’t di-
verge. We would then mandate a leak check before joining one of the former sort.
We consider it illegal to call a method asynchronously if it potentially returns obligations
to its caller as we cannot guarantee that anyone would ever join on that thread (and thus
take over the returned obligations). Similarly, we do not allow obligations to be sent over
channels as we cannot guarantee that they will ever be received. It is, however, ine to
send credits (negative obligations) over channels or leak them.
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Listing 10: Termination obligations work behave like loop variants
var x := 0;
while(x < 5)

invariant terminates(5 - x)
{

x := x + 1;
}

3.4 Obligation Lifetime

To just check for leaked obligations is not enough, though. As it stands, we can just hide
the obligation in plain sight: keep it around but delay its ful ilment inde initely, like in
listing 8. To prevent this, obligations are associated with an expression that will serve as
a termination measure while that obligation is held. We call this the obligation’s lifetime
expression. At key points in the program we check that the values of these expressions
strictly decreases. To simplify things, we use natural numbers as the domain of lifetime
expressions. Theoretically, any well-founded-set can be used.
Note that thewaywecheck lifetimehere is adeparture fromthe schemeproposed in [BM14].
There, an obligation was associated with an integer “lifetime counter” that was decreased
at the beginning of every method and loop body.
When used in loop invariants, lifetime expressions behave much like loop variants. At the
end of the loop iteration, their value is compared to the value they had at the beginning
of the iteration. The lifetime check fails if the value at the end of the iteration is negative
(“outside of the well-founded-set”) or not strictly smaller than the value at the beginning
of the loop. Listing 10 shows a simple example of this.
To keep method call recursion in check, obligation expressions in preconditions are also
annotated with lifetime expressions. Every time the method calls another method, we
compare the value of the callee’s lifetime expression to the value of the caller’s lifetime
expression. Consider the example in igure 1. Here the method caller, which carries an
obligation with lifetime expression this.b, calls the method callee which guarantees
to release the lock within this.b - 1. As this.b >= 0 && this.b - 1 < this.b
holds, the call is legal.

2 method caller()
3 requires rd(this.b)
4 requires this.b > 1
5 && releases(this, this.b)
6 {
7 call callee();
8 }

10 var b : int;
11 method callee()
12 requires rd(this.b)
13 && releases(this, this.b-1)
14 {
15 release this;
16 }

Figure 1: Chalice+Obligations programwith a call that passes the lifetime check at the call
site.

In the previous example ( igure 1), referred to the state of the heap, albeit a frozen state
sinceweonly had read-permission onthis.b. Lifetime expressions can also be expressed
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Listing 11: A terminating recursive method in Chalice+Obligations that expresses it’s life-
time expression in terms of mutable heap state.

1 method fib() returns (y:int)
2 requires acc(this.n) && terminates(this.n)
3 ensures acc(this.n) && old(n) == n
4 {
5 if(n <= 2){
6 y := 1;
7 } else {
8 this.n := n-2; call y := fib();
9 this.n := n+1; call t := fib();

10 this.n := n+1; y := y + t;
11 }
12 }

in terms of mutable heap state. The example in listing 11 manipulates the heap in prepa-
ration for each recursive method call. For the call on line 8, for instance, we need to check
that the current value of this.n is smaller than the value of this.n at when we entered
the method on line 4.
You will note that the lifetime expression doesn’t exactly measure time since we can have
an arbitrary number of calls inside onemethod as long as the lifetime expressions of each
call is smaller than the caller’s lifetime expression at method entry. It is more like bound
on the depth of the remaining call stack. This bound also applies to terminating threads
forked off by this method. Otherwise, a method could spawn a terminating thread with
the same or longer lifetime and then immediately wait for it to terminate (fork directly
followed by join is essentially the same as a synchronous call).
While a method can only ful il a termination obligation by terminating, other obligations
can be ful illed earlier. In listing 12 the method m promises to release the monitor lock
on this with a maximum stack depth of 1. There is no lifetime check when we enter the
loop on line 5, just a leak check. In the loop invariant, we assign a different lifetime to
the release obligation (line 8). We don’t need to treat a loop like a new stack frame (the
number of nested loops is bounded by the length of the program source ile). It is thus
acceptable for the lifetime of an obligation in a loop to be larger than the lifetime of the
same obligation on the method’s precondition (the two are never compared). When the
loop reaches the iteration with this.b == 5, the monitor lock is released (line 13). At
the end of this iteration we have no obligations left and consequently there is no need to
perform a lifetime check. From this point on, the thread can diverge without breaking its
promise.

3.5 Unbounded obligations

There are some limited cases where obligations are not associated with a lifetime expres-
sion. In the original veri ication scheme [BM14], these were called fresh obligations and
had a special quasi-in inite value assigned to their lifetime counter ield. We call them
unbounded obligations in contrast to bounded obligations, which are associated with a
lifetime expression.
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Listing 12: A Chalice+Obligations example with a loop that does not terminate but ful ills
a release obligation half-way through

1 var b:int;
2 method m()
3 requires acc(this.b) && this.b > 17 && releases(this,1)
4 {
5 while(this.b > 2)
6 invariant acc(this.b)
7 invariant this.b > 4 ==> releases(this, this.b)
8 {
9 if(this.b > 4){

10 this.b := this.b - 1;
11 if(this.b == 4) {
12 release this;
13 }
14 }
15 }
16 }

Unboundedobligations originate fromstatements that increaseobligations for the current
thread. A lock statement (acquire x), for instance, adds an unbounded obligation to the
current stack frame. Like their bounded brethren, they must not be leaked, but they are
free to skip lifetime checks.
Consider the example in listing 13which implements a loop that waits for the shared con-
dition variable f to become non-zero. The method maintains its lock between loop itera-
tions andespecially between inding anon-zero value in the condition variable andexiting.
At the same time, it releases and re-acquired the lock on every loop iteration to give other
threads a chance to advance (and perhaps set the condition variable). Using just bounded
obligations, this method would fail to verify because when we compare the loop-lifetime
of the releases obligation, we have to assert that 1 < 1. Instead, the acquire this
statement adds an unbounded obligation to the loop frame, which is then allowed to skip
the lifetime check at the end of the loop iteration.
Unbounded obligations must only occur in “output positions” and generally represent
obligations that have been acquired during the execution of the current scope. They are
transparently converted to bounded obligations when they are transferred to a scope that
expects bounded obligations. A conversion in the other direction is highly illegal. If it
weren’t, we could convert back-and-forth between unbounded and bounded obligations
to switch associated lifetime expressions at will.
A method may have unbounded obligations in its postcondition. Those can only be sat-
is ied by the method with obligations that are actually unbounded. This is important to
allow users to build methods around acquire (and similar statements) that behave the
same in terms of obligations and their lifetimes. In the example in listing 13we have to do
just this because we might never release the lock if the condition is already non-zero on
entry.
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Listing 13: Chalice method that waits until the shared ield f is non-zero.
1 invariant acc(this.f);
2 method wait_for()
3 requires releases(this,1) && acc(this.f)
4 ensures releases(this,1) && acc(this.f)
5 {
6 while(this.f == 0)
7 invariant releases(this,1) && acc(this.f)
8 {
9 release this;

10 acquire this;
11 }
12 }

4 Designing Extensions to Silver

Some parts of the veri ication scheme presented in the previous section are extremely
dif icult if not outright impossible to implement using the existing viper intermediate lan-
guage “Silver”. A prime example is the leak check. For each kind of obligation 𝑘, we would
need to assert something like:

∀𝑟 ∶ Ref ∶∶ in-current-frame (𝑟) → obligation-amount-of (𝑟, 𝑘) ≤ 0

butwhile Silver does have a forall expression, it is not quitewhatweneed, because there
is noway to express in-current-frame (𝑟). The viper veri ication backend Silicon hands the
quanti iermore or less directly to the underlying SMT solver, which has no concept of heap
or frames within the heap.
Some sort of extension to Silver would be necessary to allow us to encode modular veri i-
cation of inite blocking in it.

4.1 Direct Encoding

One way to achieve our goal would have been to introduce support for obligations as a
“ irst-class” feature into Silver. We would have de ined an obligation predicate that looks
something like this:

obl (𝑟, 𝑘, 𝑛, 𝑡, 𝑏acc, 𝑏credit)

which represents an 𝑛 obligations of kind 𝑘 on object 𝑟 with lifetime 𝑡. Two additional
boolean parameters, 𝑏acc and 𝑏credit, determine whether this particular obligation is al-
lowed to accumulate or become negative, respectively. The translation in the frontend
would have been very straightforward and while we would have had to add a lot of new
logic to the veri ier backend, it also had full knowledge of obligations and could implement
them with primitives much more powerful than what silver offers.
Drawbacks are plenty, however. Every change to the inite-blocking veri ication scheme
would affect all layers down to all the veri ication backends. If wewanted to add deadlock-
prevention, a feature that is relatively orthogonal to obligations, we would have to touch
every tool that uses silver.
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4.2 Big Toolbox

Movingdown the abstraction ladder, at one pointwehad adesignwhere Silverwould treat
all obligations the same, but offer awide list of new expressions and statements to inspect
and manipulate them as necessary.
obl (𝑟, 𝑘, 𝑛, 𝑡)
leak-check (𝑘) an expression or statement that performs the leak check for obligations

of kind 𝑘
lifetime-check (𝑟, 𝑘) an expression that checks the lifetime on an obligation
obligation-amount (𝑟, 𝑘) an expression that represent the amount of 𝑘 obligation the

thread currently holds on object 𝑟
This design left the leak check and the lifetime check irmly in the hands of the veri ier
backend and while they are pretty well de ined, they did not have much promise for re-
use outside of verifying our obligations.
The requirements for the “obligation store” (the veri ier component that keeps track of
obligations) itself looked suspiciously like the ones for permissions: (1) a number that
can be incremented and decremented (2) ability to merge/cancel out contributions from
different sources and (3) check whether amount is at a certain level. But some semantics
of access permissions con lict with the semantics of obligations: (1) “zero permissions” is
the same as “not in the heap” (2) negative permission amounts are illegal (3) two objects
are distinct if permissions add up to more than full permission

4.3 Universal mechanisms

One element of the original veri ication scheme in [BM14] that was dif icult to implement
was theway it handled lifetimes. There a lifetimewas another counter thatwas decreased
on entry to a loop or method body. Deviating from that original scheme to comparing
lifetime expressions reduced the demands on the Silver extension considerably. As we
can implement the comparison between lifetime expressions entirely in the frontend, this
entire dimension falls away from the extension.
At this point a Silver extension primarily needs to provide us with ways to do obligation
bookkeeping and help with the leak check.

5 Final Extensions to Silver

In this section we present our extensions to Silver with their syntax, informal semantics
and a sketch of their implementation in the veri ier backend “Silicon”. We explain howwe
use these extensions to implement veri ication of inite blocking in section 10.

5.1 Token Fields

A token ield is a variation of an ordinary ield in Silver, but instead of tracking access
permissions in addition to their value, they track their “amount of tokens”. Unlike per-
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mission amounts, token amounts have no speci ic meaning in Silver. They are simply an
accounting mechanism offered to frontends.
The idea is to re-use as much of the existing permission bookkeeping machinery in to-
day’s Viper veri ication backends as possible. A “token amount” is therefore represented
as a permission amount on the Silver level. We use the full permission (called write in
Silver) to denote one token. If a token ield has two tokens, it reads 2*write; if it has a
negative token, it reads (-1)*write. Token amounts aren’t restricted to multiples of the
write permission, though we won’t be using that capability in this thesis. Veri ication
backends need to make sure they treat token ields with a zero or negative token amount
properly. Until very recently, Silicon immediately removed ields that have reached zero
permissions from the heap.
A token ield declaration looks very similar to an ordinary ield declaration:

token field ⟨id⟩ ∶ ⟨type⟩ ;

When a new object is created, the current thread does not automatically inhale one token
(a full write permission) for token ields like it does for ordinary ields. It is up to the
frontend to decide whether a particular token ield should start out empty, with a token
or perhaps even with a negative token amount.

Implementation in Silicon

Silicon already differentiates between different kinds of heap chunks. One of them is the
“direct ield chunk”, a quadruple of the form

(𝑟, 𝑓) ↦ (𝑝, 𝑣) where 𝑟 ∶ object reference
𝑓 ∶ ield identi ier
𝑝 ∶ permission amount term
𝑣 ∶ ield value term

To support token ields, we introduce a new kind of chunk, the “direct token ield chunk”,
also represented by a quadruple

(𝑟, 𝑓) ↦ (𝑎, 𝑣) where 𝑎 ∶ token amount term

Wherepossibleweuseanalsonewly introducedabstraction, the “direct ield-like chunk”.
We need to pay particular attention to how we retrieve tokens from Silicon’s symbolic
heap. In the presence of aliasing, it can happen that multiple chunks in the symbolic heap
really contribute to the same “location” or in our case to the same “token register”. For
permissions, it is often enough to ind any one of the applicable chunks. If the veri ier only
needs to check if some positive permission amount is present, then just about any chunk
will do. In the case it’s not enough, say when a full permission is required, Silicon catches
the veri ication failure, compresses the heap and tries again.
When retrieving token ields, we always scan the entire symbolic heap for matching to-
kens. If we are not sure whether a chunk matches, we ask the prover to check whether
the receiver objects match. Should we ind more than one token, we trigger a heap com-
pression and look again. Since token amounts can be negative, it is absolutely vital that
we have seen every chunk that belongs to a token ield before we return it.
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5.2 Token Predicate

Token assertions are used to transfer “token amounts” between frames (stack frames, loop
bodies, threads). The amount of tokens transferred can be speci ied by a term of type
“permission amount”.

tok (⟨obj⟩ . ⟨token ield⟩ , ⟨token-amount⟩)

On the AST-level, token predicates have the same representation as accessibility predi-
cates (acc (⟨obj⟩ , ⟨ ield⟩ , ⟨perm-amount⟩)). Whether the ield is an ordinary ield or a
token ield differentiates between the two kinds of predicates. Frontends, including the
textual Silver representation (parser and pretty printer) choose between the keywords
tok and acc as necessary.
When inhaled and exhaled, token predicates behave mostly like their accessibility coun-
terparts. When a veri ication backend encounters a token predicate in an inhale state-
ment,
inhale tok(r.f,a)

it increases the token amount of the token ield f on object r by a. Unlike with access
permissions, a can also be negative, which of course causes the resulting token amount to
decrease accordingly. When encountered in an exhale statement
exhale tok(r.f,a)

it decreases r.f’s token amount by a. Again, a could be negative, which would cause the
token amount to increase instead. It is perfectly legal for token amounts to become nega-
tive.

Implementation in Silicon

We adapted the handling of ield access predicates that cover token ield during inhale
and exhale (called “produce” and “consume” in Silicon) to ensure the correct kind of ield
chunk gets integrated into the heap and to skip a check for a negative token amount during
exhale.
Unlike with accessibility predicates, there are no checks on the token amount when ex-
haling tokens, that is, you can start at zero tokens and and exhale a token, no questions
asked. This alsomeans that a statement like assert tok(r.f, 1)will never fail. Silicon
will perform an exhale and then drop themodi ied state and continue veri ication as if the
assertion hadn’t been there.

5.3 Token amount term

So farwe have only presented slight variations on existing Silvermechanisms. One feature
that we cannot live without is the ability to denote the current amount of tokens that the
thread holds for a token ield. Silver already has a permission amount term (perm(r.f))
but it’s semantics are not very well de ined and in particular it’s implementation in Silver
is unsuitable for our purposes.
Silicon uses two copies of the heap to perform an exhale. One is a read-only copy of the
heap from just before the exhale statement. It is used to evaluate terms. All changes to
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Listing 14: Silver program demonstrating behaviour of tokenamount(x.f)
token field f: Int;
method main(x:Ref)
requires x != null

{
inhale tok(x.f,2*write);
exhale tok(x.f,1*write)
&& tokenamount(x.f) == write
&& tok(x.f,1*write)
&& tokenamount(x.f) == none;

}

permissions in the heap it performs on a second copy. That way, it can handle statements
like
exhale acc(x.f, write) && x.f == 0

If Silicon tried to evaluate x.f == 0 against the same heap fromwhich it removed all ac-
cess permissions to x.f just before, it would come to the conclusion that the access to x.f
was illegal. As the existing perm(r.f) term, like all terms, looks up permission amounts
in the original unmodi ied copy of the heap, it cannot give us the “current” amount of to-
kens during the exhale.
While we could have co-opted the perm to implement our desired semantics when the
ield in question is a token ield, we decided to create an entirely new kind of term in this
case, because we wanted to preserve the semantics for perm even for tokens. One could
for instance want to use it to compare the token amount just before the exhale with the
current token amount. The proposed syntax is
tokenamount(r.f)

which is admittedly very token-speci ic but it’s not clear whether this term even makes
sense for permission amounts. With this term in place, we can successfully verify the
program fragment in listing 14

Implementation in Silicon

When Silicon evaluates a term during an inhale or exhale, we make a reference to the sec-
ond copy of the heap (the one that Silicon modi ies when it encounters an acc) available
to the evaluation routine via ambient data structures (the “context” parameter). As we
only ever read from this heap during the evaluation, this works just ine.
With the tokenamount expression, in particular, it’s very important that we report token
amounts accurately, because that’s how the frontend can check that the expected amount
of tokens is present. Asmentioned in the section about token ields, we speci ically handle
the case where the prover indsmultiple chunks on the heap and require a heap compres-
sion before we continue.
For ordinary permissions, Silicon tries to verify the method with just the amount of per-
mission it found in the irst matching chunk. If it works, ine, if it doesn’t, it compresses
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the heap and tries again. Theworst that can happen for permissions, is that Silicon fails to
verify the irst time around. In the case of tokens, if we tried the same, the method might
verify the irst time around but only because we haven’t seen the obligations hiding in
chunks other than the irst.

5.4 “forall references” Assertion

We need a way to evaluate an assertion for all objects in the heap but full universal quan-
ti ication over all possible heap references is not very friendly to SMT solvers, especially
when our Silver veri ier backends more or less maintain a list of all heap references that
have appeared to the current thread. We thus introduce a new expression that takes ad-
vantage of that knowledge:
forallrefs[f1,f2,...,fn] r :: e

This expression takes a list of ield identi iers (f1 through inlinesil!fn!), an identi ier for
the “quanti ied” variabler and a boolean expressionewhich is instantiated for each object
in the heap with (r being a reference to that object). The list of ields is used to limit the
quanti ication to objects that have at least one of those ields.
If this sounds a bit vague, that’s because currently the behaviour of this extension is pri-
marily dictated by its implementation in Silicon. Particularly interesting is the behaviour
of forallrefs when confronted with zero permissions/tokens to a ield. Up until very
recently, for example, Silicon immediately removed such chunks from its heap represen-
tation. For the moment a reasonable directive for implementing this extension would be
this: “The expression 𝑒 must be instantiated at least once for every object 𝑟 for which
the permission/token amount of at least one of the ields in the ield list ist positive. The
expression 𝑒 may or may not be instantiated for other objects.”
Listing 15demonstrates how theforallrefs is used. We check that there are nonegative
permission amounts for the token ield g and that all chunks for token ield f are non-
zero.

Listing 15: Sil program using forallrefs
token field f:Int; token field g:Int; token field h:Int;

method m() {
var x:Ref; var y:Ref; var z:Ref;
x := new(); y := new(); z := new()
inhale tok(x.f, write) && tok(y.f, write) && tok(z.f, write);
inhale tok(x.g, write) && tok(z.g, write);
inhale tok(y.h, write) && tok(z.h, write);

assert forallrefs[g] r :: tokenamount(r.g) >= none;
assert forallrefs[f] r :: tokenamount(r.f) != none;

}
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Implementation in Silicon

Silicon represents it’s heap as a collection of heap chunks.

(𝑥, 𝑓) ↦ (𝑝, 𝑣)

When we encounter a forallrefs expression in Silicon, we iterate over all chunks cur-
rently in the heap, select those that match our ield list and instantiate the forallrefs
-body using the object reference term 𝑥 as the value for the free variable 𝑟. Finally, we
assemble the resulting expression into one big conjunction. While this implementation
may cause Silicon to generate the same condition multiple times when an object matched
multiple ields on the ield list and has a heap chunk for each of those ields, it is still an
extremely convenient formulation for the prover because we are handing it a list of con-
ditions to check, that we know to be suf icient, instead of asking it to igure out whether
the quanti ied condition holds universally.
In pseudo-code, the implementation of forallrefs[F] r :: e looks something like
this:

𝜎 ∶ evaluation state
var 𝐶 ∶= True // the conjunction
for chunk ⟵ heap

if ( chunk.field ∈ 𝐹)
𝑡 ∶= eval 𝑒 with state 𝜎 [𝑟 ↦ chunk.receiver]
𝐶 ∶= 𝐶 ∧ 𝑡

As an optimization, we can remember each receiver term thatwe have emitted a condition
for and skip it, if it should occur multiple times. This will naturally only prevent duplicate
conditions for identical receiver terms but won’t help against aliased receivers.

5.5 Labelled old expressions

When we need to compare the current state to a particular previous state, the inal ex-
tension – the labelled old expression – comes in handy. Using it, the frontend can mark a
position in a method using a new statement – the “state label” – and then further down in
the method have the veri ier backend evaluate expressions as if they would occur at the
marked position. Syntactically, it looks as follows:

statelabel ⟨label⟩ ;old [⟨label⟩] (⟨expression⟩)

We have deliberately decided not to make labelled states a irst-class value that you could
store in variables or pass as arguments. We didn’t want to go down the rabbit hole of
tracking heaps stored in other heaps. Keeping state labels completely static also gives
backends considerable freedom on how to implement labelled old expressions.
Listing 16 for an example of labelled old expressions.
Naturally, it is illegal to labelmore than one point in a programwith the same state label or
to refer to a state label before control has reached that point. State labels de ined inside a
loop are not visible outside the loop. The body of a loop can, however, refer to state labels
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Listing 16: Silver program with labelled old expressions.
token field tk: Int
field f: Int
method main() {
var m: Ref
m := new (*)

m.f := 15
statelabel initial
m.f := 3
inhale acc(m.tk, write)

assert m.f == 3 && old[initial](m.f) == 15
assert tokenamount(m.tk) == write && old[initial](tokenamount(m.tk)) ==

none

exhale acc(m.f)
assert old[initial](m.f) == 15

}

that occur before that loop. And inally, when a labelled old expression refers to a state
label, this state label must be passed on all possible execution paths leading to that old
expression.

Implementation in Silicon

WhenSilicon encounters a state label, it stores a copyof the current heapand local variable
store in amap. This map is part of the veri ication context that is passed along all possible
execution paths. That way, the state label map effectively remains a separate data struc-
ture for each execution path explored by Silicon. If there is any execution path for which a
statelabel remains unde ined, Silicon has found a situation where an old expression is not
dominated by the corresponding state label in the control low graph and will report this
as an error.
Theoretically, we could allow the same state label to be de ined in different places for mu-
tually exclusive execution paths, like in the following example:
if(x > 3){
x := 5;
statelabel label

} else {
x := 7
statelabel label

}

Each execution path explored by Siliconwould only see one of these labels. Such programs
are rejected by the Silver type checker but, like many other illegal Silver programs, can
be constructed in-memory and passed directly to tools without passing through the type
checker.

28



Listing 17: Legal Silver program where the state label does not strictly dominate the old
expression.
method main(i:Int)
requires i > 5

{
var x : Int := 3
if(i > 2){
statelabel initial

}
x := 19
assert old[initial](x == 3)

}

Wedonot currently reject programswhere a statelabel is on all paths to anold expressions
that can occur at runtime but does not strictly dominate it in the control low graph, like
in listing 17. Again, it is unlikely that a frontend would ever accidentally generate such
a program. We might, however, still want to disallow such programs to simplify the old-
expression feature and make it easier to handle for other tools.
Storing a copyof the entire heapwhenweencounter a state label is not the only implemen-
tation strategy. Alternatively, a veri ier backend could analyse all old expressions that use
the label and evaluate the inner expressions it inds ahead of time. This almost certainly
saves a signi icant amount of memory and also potentially reduces the number of expres-
sions to evaluate if the same term occurs in multiple old expressions. It is, however, not
clear how such an implementation would deal with labelled old expressions in quanti ied
and forallrefs expressions.

6 Encoding Modular Veri ication of Finite Blocking

In this section we describe how we encode the veri ication of inite blocking (section 3)
into Silver using the extensions presented in the previous section. The source language
will be a variant of Chalice that uses obligations to ensure that no thread blocks another
thread for an unbounded amount of time.

6.1 Chalice-level obligations

On the level of Chalice, obligations are a bit more complex than on the level of Silver. Some
obligation assertions are associated with a lifetime expression. That expression will be
used to ensure that the obligation is met ‘in time’. Those obligations with a lifetime ex-
pression are the bounded obligations. Is the lifetime expression omitted, we have an un-
bounded obligation.
To encode the difference between unbounded and bounded obligations, we use two silver
token ields per obligation kind. One for bounded obligations and one for unbounded obli-
gations. The total of the token amounts in the two ields tells us howmuch obligation (or
credit) we have. The token amount in the bounded ield alone tells us whether we have
obligations that are “on a timer”.
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Chalice Silver ield

release monitor lock unbounded releases(𝑥) rel
bounded releases(𝑥, 𝑡) rel

sendmessages unbounded sends(𝑥, 𝑎) send
bounded sends(𝑥, 𝑎, 𝑡) send

termination* unbounded terminates term
bounded terminates(𝑡) term

where
𝑥 is an object reference term
𝑎 is an obligation amount (integer), can be positive, negative or zero
𝑡 is a lifetime expression, currently an integer
*There are no unbounded termination obligations. Amethod/loop either promises termi-
nation in its precondition/invariant or it doesn’t. Unbounded obligations are only useful
if they can be transferred to a surrounding context. However, for translation schemes
that are the same for all kinds of obligations, we won’t speci ically mention the absence of
term every time.
Additionally, the source language recognises adedicatedassertion for channel credits:

credit (𝑥, 𝑎)

Even though the credit assertion lacks a lifetime expression, it transfers−𝑎 obligations
to and from the bounded ield. It is not just syntactic sugar, though. The user can put
credit assertions in places where obligations are forbidden, but it cannot be used to
transfer obligations between frames.

6.2 Manual Speci ications

As a high level veri ication intermediate language, Silver hasmany concepts already built-
in. Method’s have pre- and postconditions that veri ier backends automatically inhale on
method entry and exhale at the end. The same for loop invariants. Unfortunately, there
are some situations where we need more control for our encoding. For some of these sit-
uations, Silver offers the “paired-assertion” construct, a pair of expressions [𝑒 , 𝑒 ]where
the 𝑒 is usedwhenever the paired-assertion is inhaled and 𝑒 is usedwhen the expression
is exhaled. However, our encoding has situation where two exhales of the same condition
in different contexts needs to be translated differently.
This leaves us no choice but to ignore Silver’s speci ication machinery and instead imple-
ment the veri ication of pre-, postconditions and invariantsmanually. This is certainly not
ideal, as the resulting Silver programs becomemuch bigger because speci ications are re-
peated multiple times. Figure 2 demonstrates this. At the same time it shows that Silver
is lexible enough to grant frontends this additional freedom, if necessary.
Wewill showhowwe implementmethodand loop translations in sections6.5 and6.5.

6.3 Assertions

There are a number of variations how we translate obligation assertions depending on
whether it occurs in an exhale or and inhale statement, whether we are at the end of
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1 field f:Int;
2 method automatic(x:Ref)
3 requires x != null
4 && acc(x.f,write)
5 ensures acc(x.f,write)
6 && x.f == 5
7 {
8 x.f := 0
9 while(x.f != 5)

10 invariant acc(x.f,write)
11 {
12 x.f := x.f + 1
13 }
14 }

1 field f:Int;
2 method manual(x:Ref)
3 requires true
4 ensures true
5 {
6 inhale x != null
7 && acc(x.f, write)
8 x.f := 0
9 exhale acc(x.f,write)

10 var b:Bool
11 while(b)
12 invariant true
13 {
14 inhale acc(x.f,write)
15 && x.f != 5
16 x.f := x.f + 1
17 exhale acc(x.f,write)
18 }
19 inhale acc(x.f,write)
20 && !(x.f != 5)
21 exhale acc(x.f,write)
22 && x.f == 5
23 }

Figure 2: A Silver method, once using Silver speci ication and once with “manually” im-
plemented speci ications.

loop iteration or not, etc. We irst present the general translation scheme for obligation-
speci ic assertion expressions and mention which parts of it apply when we refer to it
later.
To make the translation scheme a bit more readable we will be using the literals 0 and 1
to refer to zero and full permission amounts (none and write in Silver). Especially the
write literal looks very out-of-place when we are actually dealing with token amounts
that have nothing to do with heap access permissions.
Fundamentally, obligation assertions have a simple job: they need to add (on inhale) or
subtract (on exhale) the obligation amount in the assertion to or from the corresponding
token ield. If the assertion includes a lifetime expression, it applies to the bounded token
ield, if it doesn’t, to the unbounded one.
Combined, our choices to encode credit as negative obligations and to use two separate
token ields for bounded versus unbounded obligations have one drawback: the encoding
allows for both “boundedandunbounded credits”. While this undesireddegreeof freedom
doesn’t affect leak checks, it can cause lifetime checks to be ignored. Imagine you have
one “bounded credit” and one “unbounded obligation”. Summed up, you would have zero
obligations and zero credits at that point. Now inhale a bounded obligation. Naively you
would end upwith zero in the bounded ield and one unbounded obligation. This iswrong
as when summed up, we expect to have one bounded obligation and no credits.
To deal with this situation, we introduce a translation “macro” applyCredit which tallies
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up credits and obligations across bounded and unbounded ield pairs and subsequently
moves all remaining credit into the bounded ield. Thatway both leak- and lifetime checks
arrive at the correct conclusion when looking at the token ields.
We de ine applyCredit (𝑟, 𝑓) for an object reference 𝑟 and a ield pair 𝑓 as follows:

transfer (𝑟.𝑓, 𝑎) ∶= tok (𝑟.𝑓, 𝑎) if applied in an inhale statement
transfer (𝑟.𝑓, 𝑎) ∶= tok (𝑟.𝑓, (−1) ∗ 𝑎) if applied in an exhale statement

applyCredit (𝑟, 𝑓) ∶=
(tokenamount (𝑟.𝑓 ) < 0&& tokenamount (𝑟.𝑓 ) ! = 0) ⇒

transfer (𝑟.𝑓 , tokenamount (𝑟.𝑓 ))
&& transfer (𝑟.𝑓 , (−1) ∗ tokenamount (𝑟.𝑓 ))
&& (tokenamount (𝑟.𝑓 ) < 0 ⇒

transfer (𝑟, 𝑓 , tokenamount (𝑟.𝑓 ))
&& transfer (𝑟.𝑓 , (−1) ∗ tokenamount (𝑟.𝑓 ))
)

applyCredit (𝑟, 𝑓) irst applies all credit in the bounded ield to the unbounded ield, then
zeroes out the bounded ield. If afterwards, the unbounded ield has credit, i.e. we trans-
ferred too much, we perform the same operation in the opposite direction.

6.3.1 Exhale

To exhale assertions, we use the translation scheme 𝐸 presented in this section. We only
mention those cases that are important for obligations. All other cases behave like in the
normal Chalice2Silver translation.

𝐸 ⟦𝑎&& 𝑏⟧Ch ∶= 𝐸 ⟦𝑎⟧Ch && 𝐸 ⟦𝑏⟧Ch
𝐸 ⟦𝑎 ⇒ 𝑏⟧Ch ∶= ⟦𝑎⟧Ch ⇒ 𝐸 ⟦𝑏⟧Ch

For bounded obligations, we sometimes need to check whether they are still within their
lifetime. We will explain this lifetime check in section 6.8. For now, we use the following
placeholder:

𝑟 ∶ object reference to check
𝑓 ∶ kind of obligation to check the lifetime of
𝑡 ∶ lifetime expression to check
𝐸 ∶ scope to compare lifetime against
lifetimeCheck (𝑟, 𝑓, 𝑡, 𝐸)

Not all exhale statements will include a lifetime check. If no lifetime check is needed,
lifetimeCheck (𝑟, 𝑓, 𝑡, 𝐸) is simply true. What 𝐸 is, is determined at the point where the
exhale statement is issued.
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ReleaseObligations (releases(r,t) and releases(r) Whenwe ful il releases obli-
gations, we additionally check whether the user tried have the lock released multiple
times. We should have a total of zero tokens in rel and rel when exhale bounded release
obligation. We must sum up both token ields because by exhaling a bounded obligation,
you can also satisfy an unbounded obligation. The other way around when we exhale an
unbounded obligation, wemust only check the unbounded ield. If the current thread in-
stead had a bounded obligation, wewould be at negative one token in the unbounded ield
at that point and the check would fail as it should.

𝐸 ⟦releases (𝑟, 𝑡)⟧Ch ∶=
𝑟 ≠ null
&& lifetimeCheck (𝑟, rel, 𝑡, 𝐸)
&& tok ⟦𝑟⟧Ch.rel , 1
&& applyCredit ⟦𝑟⟧Ch, rel
&& tokenamount ⟦𝑟⟧Ch.rel + tokenamount ⟦𝑟⟧Ch.rel = 0

𝐸 ⟦releases (𝑟)⟧Ch ∶=
⟦𝑟⟧Ch ≠ null
&& tok ⟦𝑟⟧Ch.rel , 1
&& 0 = tokenamount ⟦𝑟⟧Ch.rel

Send Obligations (sends(r,a,t), sends(r,a) and credit(r,a)) For unbounded
sends obligations we make sure that the message amount is non-negative to prevent
“unbounded credit” from being exhaled. If you want a send credit, you need to exhale
a bounded send obligation with a negative number of messages. In our case, it is legal
to send channel credits over channels, but you cannot send obligations of any kind over
a channel (we have no guarantee that the message will ever be received). To solve this
problem, we declare obligation assertions in channel invariants illegal except for credit.
At the same time creditmust ensure that it is only ever used to transfer credit.

𝐸 ⟦sends (𝑟, 𝑎, 𝑡)⟧Ch ∶=
⟦𝑟⟧Ch ≠ null
&& lifetimeCheck (𝑟, send, 𝑡, 𝐸)
&& tok ⟦𝑟⟧Ch.send , ⟦𝑎⟧Ch
&& applyCredit ⟦𝑟⟧Ch, send

𝐸 ⟦credit (𝑟, 𝑎)⟧Ch ∶=
𝑟 ≠ null
&& ⟦𝑎⟧Ch ≥ 0
&& tok ⟦𝑟⟧Ch.send , (−1) ∗ ⟦𝑎⟧Ch
&& applyCredit ⟦𝑟⟧Ch, send
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𝐸 ⟦sends (𝑟, 𝑎)⟧Ch ∶=
⟦𝑟⟧Ch ≠ null
&& 0 ≤ ⟦𝑎⟧Ch
&& applyCredit ⟦𝑟⟧Ch, send
&& tok ⟦𝑟⟧Ch.send , ⟦𝑎⟧Ch

TerminationObligations (terminates(t)) As already discussed, termination obliga-
tions are always bounded and there is only one token ield we need to concern ourselves
about. Since every token ield needs to be attached to an object, we allocate a special
‘thread’ object in a local variable of eachmethod. We never pass this object to anymethod.
It’s just a named location on the heap to hold the term ield.

𝐸 ⟦terminates (𝑡)⟧Ch ∶=
&& lifetimeCheck (thread, term, 𝑡, 𝐸)
&& tok (thread.term , 1)

Even though the termination obligation is binary, unlike the release obligation, we do not
check whether the termination token amount is zero after the exhale. This is required
by our encoding of method calls and other constructs to detect whether the “callee” has
promised to terminate, even in scenarios where the caller has zero termination obliga-
tion.

6.3.2 Inhale

Inhaling obligations works in a similar way, but we don’t have lifetime checks and in the
case of releases obligations, we can skip applyCredit (⋅) as there is no such thing as un-
bounded credit to balance out. Again, all cases not mentioned belowwork like they did in
Chalice2Silver before.

𝐼 ⟦𝑎&& 𝑏⟧Ch ∶= 𝐼 ⟦𝑎⟧Ch && 𝐼 ⟦𝑏⟧Ch
𝐼 ⟦𝑎 ⇒ 𝑏⟧Ch ∶= ⟦𝑎⟧Ch ⇒ 𝐼 ⟦𝑏⟧Ch

Release Obligations

𝐼 ⟦releases (𝑟, 𝑡)⟧Ch ∶=
tok ⟦𝑟⟧Ch.rel , 1

𝐼 ⟦releases (𝑟)⟧Ch ∶=
tok ⟦𝑟⟧Ch.rel , 1
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Send Obligations

𝐼 ⟦sends (𝑟, 𝑎, 𝑡)⟧Ch ∶=
applyCredit ⟦𝑟⟧Ch, send
&& tok ⟦𝑟⟧Ch.send , ⟦𝑎⟧Ch

𝐼 ⟦credit (𝑟, 𝑎)⟧Ch ∶=
⟦𝑎⟧Ch ≥ 0
&& applyCredit ⟦𝑟⟧Ch, send
&& tok ⟦𝑟⟧Ch.send , ⟦𝑎⟧Ch

𝐼 ⟦sends (𝑟, 𝑎)⟧Ch ∶=
tok ⟦𝑟⟧Ch.send , ⟦𝑎⟧Ch
&& applyCredit ⟦𝑟⟧Ch, send

Termination Obligations

𝐼 ⟦terminates (𝑡)⟧Ch ∶=
tok (thread, term , 1)

6.4 Obligation-modifying Statements

Amethod can gain termination obligations only via its precondition or via loop invariants.
The only way to get rid of it, is to actually terminate. For the other obligations there are
dedicated statements that allow the user to fulil obligations or accept new ones.

6.4.1 Channel Statements

In Chalice we need to declare Channel types on the global level. A Channel declaration has
the form

channel 𝐶 (𝑎 ∶ 𝑡) where 𝑃 for 𝐶 ∶ channel name
𝑎 ∶ argument name
𝑡 ∶ argument type
𝑃 ∶ channel invariant

On the Silver level, a channel is represented by an ordinary object. We give this object the
two sends token ields. Token ields start out with zero tokens.

⟦var 𝑐 ∶= new 𝐶; ⟧Ch ↷
⟦𝑣⟧Ch ∶= new (send , send )
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Listing 18: Chalice program with channels.
1 channel Chan(msg:int) where msg > 0;
2 method main(){
3 var x:int; var ch : Chan := new Chan;
4 fork worker(ch);
5 receive x := ch; assert x > 0;
6 }
7 method worker(ch:Chan) requires ch != null && sends(ch,1,1) {
8 send ch(15);
9 }

Send Whenwe send amessage on channel 𝑐, we need to substitute themessage param-
eters in the channel invariant 𝑃with the message arguments 𝐴 found at the send-site. We
call this new invariant 𝑃’. For obligation assertions inside 𝑃’ we also need to make sure
that they only represent credits. It must not be possible to send obligations in messages
because we have no guarantee that these messages are ever received. We have ensured
this by only allowing credit, with its additional checks in channel invariants, and not the
more general sends.

⟦send 𝑐 (𝐴) ; ⟧Ch ↷
assert ⟦𝑐⟧Ch! = null;
exhale tok ⟦𝑐⟧Ch.send , 1 && applyCredit ⟦𝑐⟧Ch, send ;
exhale 𝐸 ⟦𝑃’⟧Ch

Receive To receive amessage we declare a set 𝑉 of fresh local variables to represent the
elements of the receivedmessage. Thenwe create amodi ied invariant𝑃’with allmessage
parameters substituted by the corresponding fresh local variable from 𝑉. Only after we
have inhaled the channel invariant do we assign the message elements to the destination
variables 𝑋mentioned in the source program.

⟦receive 𝑋 ∶= 𝑐⟧Ch ↷
assert ⟦𝑐⟧Ch! = null;
assert

tokenamount ⟦𝑐⟧Ch.send + tokenamount ⟦𝑐⟧Ch.send ≤ (−1);
exhale tok ⟦𝑐⟧Ch, send , −1 ;
inhale 𝐼 (𝑃’)
⟦𝑋 ⟧Ch ∶= 𝑉

To illustrate this, we have included a small example program in listing 18 where a main
method creates a channel (line 3), forks a worker thread that promises to send a message
(line 7) and then waits for that message to arrive (line 5). When we apply our translation
scheme, we end up with a Silver program similar to that in listing 19. Some statements
have been simpli ied. The fork, for instance, is much more verbose, but for this example,
the only relevant line is the exhale of the precondition of the worker method. We have
also omitted applyCredit (⋅) and lifetimeCheck (⋅) because they wouldn’t apply anyway
(we have zero obligations across the entire heap).
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Listing 19: Simpli ied Silver translation of listing 18
1 token field sends_b: Int;
2 token field sends_u: Int;
3 method main(){
4 var x:Int; var Chan_msg: Int; var ch: Ref;
5 ch := new (sends_b, sends_u);
6 // fork worker is complicated but involves the following exhale
7 exhale ch != null
8 && (ch != null && tok(ch.sends_b, write));
9 assert ch != null;

10 assert (tokenamount(ch.sends_b) + tokenamount(ch.sends_u)) <= (-1)*write;
11 exhale tok(ch.sends_b, (-1)*write)
12 inhale Chan_msg > 0; // channel invariant
13 x := Chan_msg;
14 assert x > 0;
15 }

Exhaling the bounded send obligation on line 8 means we get a credit to receive on the
channel ch. With that we can pass the check for and exhale the channel credit on lines 10
and 11 in exchange for inhaling the channel invariant on lines 12 and 13.

6.4.2 Lock Statements

The user can de ine amonitor invariant 𝑃 for each Chalice class. Each of these invariants
is translated into a Silver predicate 𝑝 . We could insert the monitor invariant directly into
inhale and exhale statements at the lock and unlock sites. But if we use predicates, not just
does Silicon perform awell-formedness check on the predicate, it also handles parameter
substitution for us.

Acquire Thus, to acquire a lock, we irst check that all the prerequisites are met and
then give ourselves full permission to themonitor invariant predicate 𝑝 before we unfold
the predicate.

⟦acquire 𝑥⟧Ch ↷
assert ⟦𝑥⟧Ch! = null;
assert tokenamount ⟦𝑥⟧Ch.rel + tokenamount ⟦𝑥⟧Ch.rel == 0;
inhale tok ⟦𝑥⟧Ch.rel , 1 ;
inhale acc ⟦𝑥⟧Ch.𝑝 ;
unfold ⟦𝑥⟧Ch.𝑝
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Release The releaseworks similarly in thatwe irst checkwhether the prerequisites are
met and then fold the monitor invariant into the predicate that represents it.

⟦release 𝑥⟧Ch ↷
assert ⟦𝑥⟧Ch! = null;
assert tokenamount ⟦𝑥⟧Ch.rel + tokenamount ⟦𝑥⟧Ch.rel == 1;
exhale tok ⟦𝑥⟧Ch.rel && applyCredit ⟦𝑥⟧Ch, rel ;
fold ⟦𝑥⟧Ch.𝑝 ;
exhale acc ⟦𝑥⟧Ch.𝑝

Implicit Sharing In the original Chalice veri ier, every object would start out unshared,
that is it could not be locked by other threads. A method would irst have to share the
object. The share statement would check the monitor invariant and then transfer it and
all the permissions it entails to the monitor. The share statement would determine the
lock level of the object. That mechanism would incidentally also prevent programmers
from acquiring the lock before the object was shared.
Since we don’t have deadlock avoidance in our translation, users could construct objects
and immediately acquire locks on them, potentially getting both the access permissions
from the object creation and the ones stored in the monitor invariant. To prevent this, we
have decided to include an implicit share statment at the end of every object allocation.
This change is not compatible with some Chalice programs. See our evaluation section (7)
for details on the impact.

6.4.3 Method Call

Silver already comes with a built-in call statement. It automatically exhales the precon-
dition, allocates fresh values for the callee’s output parameters and inhales the postcon-
dition. Extremely convenient, but synchronous method calls are one of the most compli-
cated constructs to translate. Not just is this one of the points where we need to perform
a lifetime check, we also may or may not need to do a leak check.
Given a synchronous call statement for method𝑚 on object 𝑟 with arguments 𝐴 and re-
sult variables 𝑋

call 𝑋 ∶= 𝑟.𝑚 (𝐴 ) ;

we irst store the current obligation amount for terminates in a new local variable called
oldTerminates. We also allocate a series of local variables to capture the values of the call
arguments 𝐴 . This is to make sure that we can refer to those exact arguments after the
call, when some of the argument expressions might evaluate to a different value. We call
these captured arguments 𝐵 .
Once that’s done, we translate 𝑚’s precondition 𝑚pre with lifetime checks enabled (sec-
tion 6.8) and exhale it. The scope 𝐸 for the lifetime check is the current method, that is,
the lifetime expressions in the callee’s precondition are compared to the lifetime expres-
sions of the caller’s preconditions on method entry.
After that, we compare the new obligation amount for terminateswith the value we re-
memberd just before. If we have lost terminates obligation from the exhale, the method
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𝑚 has promised to terminate. This means that it’s legal to keep some obligations in the
current frame and consequently we can skip the leak check (section 6.7). This is why it
is important that the terminates obligation assertion does not prevent us from arriving
at negative obligation amounts. If a non-terminating method calls a terminating one, we
temporarily want to have negative one termination obligation so that we can observe that
the caller promises to terminate.
After the leak check, we need to restore our previous obligation amount for terminates.
We unfortunately cannot assign token amounts directly, only add or subtract tokens. In-
steadweexhale thedifferencebetween the current amount and theprevious amount.
Instead of letting the callee’s precondition manipulate our own terminates obligation
amount, we could also have rewritten it to apply these changes to a separate thread ob-
ject. Our approach has the advantage, that the leak check for terminates is automatically
performed correctly, that is, the leak check will cause a program to fail veri ication if the
caller has a termination obligation and the callee doesn’t “take it away” before the leak
check.
At this point, the call has “happened” and we can start to handle return values and the
method’s postcondition. Aswith receivingmessages, we allocate fresh variables𝑅 for all
output parameters and use them to substitute result variables in the postcondition𝑚post.
We implement old-expressions by replacing it with a labelled old expressions that points
to a state label placed just before the method call.

⟦call 𝑋 ∶= 𝑟.𝑚 (𝐴 )⟧Ch ↷
assert ⟦𝑟⟧Ch! = null;
var oldTerminates ∶ Perm ∶= tokenamount (thread.term ) ;
var 𝐵 ∶= 𝐴 ; (includes receiver 𝑟)
statelabel before-call;
assert ⟦𝑟⟧Ch! = null
exhale 𝐸 𝑚pre ; // (with lifetime check)
if (tokenamount (thread.term ) ≥ oldTerminates) {

leakcheck
}
exhale tokenamount (thread.term ) − oldTerminates;
//call “happens” here
var 𝑅 ;
inhale 𝐼 𝑚post ; // (using before-call for old)
𝑋 ∶= 𝑅
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6.4.4 Asynchronous Method Call

Unlike ordinarymethod calls, asynchronousmethod calls have no direct equivalent in Sil-
ver. They have to be implementedmanually even by the original Chalice2Silver translator.
Asynchronous calls, in general, look like this:
fork tk := r.m(a1, a2, ..., an);
// later, maybe even in another method/thread
join r1, r2, ..., rn := tk;

The tricky part is the join statement. It doesn’t necessarly have to be in the samemethod
that performed the fork. It could have been passed to a method or even another thread.
This means that whenwewant to inhale the forkedmethod’s postcondition when joining,
none of the original method arguments will be around. The same goes for the state used
to evaluate old expressions in. The only thing that you are guaranteed to have, is the ref-
erence to the join-token. Therefore, the entire postcondition must be expressed in terms
of that token.
The Chalice2Sil translator thus generates and assigns ields on the token for every argu-
ment and every old expression in the forked method’s postcondition. For the join state-
ment, it uses those ields in place of the actual arguments and old expressions.

Forking Theobligationsmodel imposes someadditional rules on asynchronousmethod
calls. First, it is illegal to fork a method that mentions obligations in its postcondition (the
credit assertion is allowed). We cannot be sure that a thread will ever be joined, thus
such obligations might never be ful illed. We implement this via a syntactic check on the
callee’s postcondition at each fork-site.
Second, a thread can only be joined if it promises to terminate. Thus when we create the
thread,we checkwhether it promises to terminate. If it does so,we assign a special ield on
the token (joinable) to true. Only if this ield is set can the thread be joined later.
Third, if the caller promises to terminate, any threads it forks must promise to terminate
as well. This might seem counter-intuitive at irst. After all, as long as the caller doesn’t
hand over obligations to the diverging thread, it is still in control. If we allow terminating
threads to fork non-terminating threads, something like the following can happen:
Thread A: terminates(1)
channel c;
fork B(c);
receive t:= c;
join t;

Thread B: sends(c, 1, 1)
fork t := D;
send c(t);

Thread D: terminates(2)

Here thread 𝐴 uses the diverging thread 𝐵 as a “trampoline” to spawn thread𝐷. Thread 𝐵
returns the join-token for𝐷 back to𝐴 via a channel. When𝐴 nowwaits for𝐷 to terminate,
it has effectively managed to call a method with a longer lifetime than itself. This is why
𝐵 needs to promise termination for the fork in 𝐴 to be legal. Once the termination obli-
gation is present, the lifetime check during the call makes sure that this scenario cannot
occur.
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To translate forking, we use a set of ields to capture arguments (𝐵 ) and old expressions
in thepostcondition (𝑂 ). Wealso remember theold terminationobligation amount in the
local variable oldTerminates. Instead of a leak check, we only check that the callee has not
left us with our termination obligation (if we had any in the irst place). We do, however,
perform a lifetime check for every obligation transferred to the new thread. The scope
𝐸 against which the lifetime expressions of the callee are compared, is the surrounding
method, just like with synchronous method calls.

⟦fork 𝑡 ∶= 𝑟.𝑚 (𝐴 )⟧Ch ↷
assert ⟦𝑟⟧Ch! = null;
var oldTerminates ∶ Perm ∶= tokenamount (thread.term ) ;
⟦𝑡⟧Ch ∶= new (joinable, 𝐵 , 𝑂 ) ;
𝑡.𝐵 ∶= 𝐴 ; (includes receiver 𝑟)
𝑡.𝑂 ∶= old expressions in𝑚post ;
exhale 𝐸 𝑚pre ; // (with lifetime check)
assert tokenamount (thread.term ) ≤ 0;
𝑡.joinable ∶= tokenamount (thread.term ) < oldTerminates;
exhale tokenamount (thread.term ) − oldTerminates;

Joining To join a thread, we irst need to make sure that the token is joinable. Then
we inhale the forked method’s postcondition using the generated ields on the token for
arguments and old expressions. Finally, we need to set the joinable ield to false, be-
cause a thread must only be joined once. If it were possible to join a thread multiple
times, one could inhale it’s postcondition multiple times, including any permissions it in-
cludes.

⟦join 𝑅 ∶= 𝑡⟧Ch ↷
assert 𝑡! = null;
assert 𝑡.joinable;
inhale 𝐼 𝑚post ; //using ields of 𝑡
𝑡.joinable ∶= false;

The joinable ield is special in that the Chalice Frontend does not allow the programmer
to assign to it in Chalice code. It can only be assigned through fork and join.

6.5 Methods

A method must set up the thread variable to hold terminates obligations, then inhale
the method’s precondition. This point is then marked using a statelabel called entry. The
methodbody andpostcondition followbeforewe ful il the termination obligation andper-
form the method’s leak check. Figure 3 contains the translation full scheme for method
bodies. The translation of leakcheck is presented in section 6.7
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method𝑚(𝑝) requires 𝐴pre; ensures 𝐴post { 𝑆 } Ch ↷
method𝑚(𝑝) requires true; ensures true {

var thread ∶= new (term ) ;
inhale 𝐼 𝐴pre ;
statelabel entry;
𝑆
exhale tok (thread, term ) ; // ful il thread termination
exhale 𝐸 𝐴post ;
leakcheck

}

Figure 3: Translation scheme for method bodies

Listing 20: Chalice program with a postcondition that is not self-framing.

Well-Formedness Checks

Pre- and postconditions must be self-framing, that is theymust comewith all permissions
necessary to reason about the memory locations they mention. For instance the postcon-
dition in themethod in listing 20mentions x.f but does not contain acc(x.f). Nonethe-
less, the method will pass veri ication using our translation scheme, because access to
x.f will be available when the postcondition is exhaled at the end of the method. It was
granted as part of the precondition, after all. Any caller, on the other hand, will inhale
this postcondition with the statement about x.fwithout having permission to talk about
x.f.
Silicon automatically performs somewell-formedness checks for regularmethodpostcon-
ditions. To do this, it irst inhales the method’s precondition, then throws away the heap,
starts over with an empty one and inhales the postcondition. If the postcondition itself
doesn’t include enough permission, Silicon will notice.
Unfortunately, we don’t have enough control over the program state on the Silver level to
use the same trick. There is no way for us to “empty” the heap. What we can do, is just
inhale the method’s postcondition on its own, without the precondition. This is a much
stricter check, because the postcondition will have to repeat some facts that are already
included in the precondition.
While inconvenient, this is the same scenario as when someone inhales a postcondition
during a join of a token that has been passed from another thread. In that scenario, too,
the method that is inhaling the postcondition has not seen the guarantees that the pre-
condition provides.
When we perform our version of the well-formedness check, we don’t want to get in the
way of the actualmethod veri ication. Therefore, we create a separatemethod to hold that
inhale of the postcondition. To mimic the most restrictive scenario that a postcondition
will ever have to be inhaled in, we act as if our well-formedness-check method received a

42



join-token for the original method.

method𝑚(𝑝) requires 𝐴pre; ensures 𝐴post { 𝑆 } Ch ↷
method𝑚(𝑡 ∶ 𝑅𝑒𝑓)

requires 𝑡 ! = null && acc (𝑡.joinable, write) && 𝑡.joinable;
ensures true

{
inhale 𝐼 𝐴post ; // using ields from token 𝑡

}

This approach breaks a number of programs that use Chalice functions inside old expres-
sions because those appear as opaque ields to Silicon (see section 7).

6.6 Loops

For translation, a loop is a bit like combination between a method call and a method body
implementation. The exhaling of the loop’s invariant 𝐴 resembles that of a method call.
We remember the current amount of termination obligation, then exhale the invariant and
check afterwards whether the loop has promised to terminate. If not, we need to perform
a leak check.
Inside the loop,we inhale the loop’s invariantmark that point using a statelabel loopEntry
(each loop in a method gets its own). Then follows the body and an exhale of the loop in-
variant with lifetime checks relative to the state on entry to the loop (section 6.8). Finally,
we perform the loop’s leak check (section 6.7).
Note that we don’t manually ful il the termination obligation. We expect the user’s loop
to correctly pass the termination obligation from each loop iteration to the next. We also
do not revert the changes to the terminates obligation amount during the initial loop
invariant exhale but instead expect the program to arrive back at the same amount by the
end of the loop. Figure 4 contains the full translation scheme for loops.

6.7 Leak check

The leak check needs to make sure that, at the point where it is performed, no more obli-
gations, bounded or unbounded, are in the current frame. We use the forallrefs ex-
pression to have the veri ier expand our condition over all objects the current frame has
knowledge about. We use separate assert statements so that when one of them fails, the
user has an idea as to what kind of obligation they may have leaked.
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⟦while (𝑒) invariant 𝐴 { 𝑆 }⟧Ch ↷
var oldTerminates ∶ Perm ∶= tokenamount (thread.term ) ;
exhale 𝐸 (𝐴) ;
if (tokenamount (thread.term ) ≥ oldTerminates) {

leakcheck
}
var nondet ∶ Bool;
while (nondet ) {

inhale 𝐼 (𝐴)&& ⟦𝑒⟧Ch;
statelabel loopEntry ;
𝑆
exhale 𝐸 (𝐴) ; // with lifetime check using 𝐸 = loopEntry
leakcheck

}
inhale 𝐼 (𝐴) && ! ⟦𝑒⟧Ch
assert tokenamount (thread.term ) == oldTerminates

Figure 4: Translation scheme for loops

checkField (𝑓) ∶=
forallrefs[𝑓 , 𝑓 ] 𝑟 ∶ tokenamount (𝑟, 𝑓 ) + tokenamount (𝑟, 𝑓 ) ≤ 0

leakcheck ∶=
exhale checkField (rel)
exhale checkField (send)
exhale checkField (term)

6.8 Lifetime check

The purpose of the lifetime check is to ensure that a thread cannot hold on to an obliga-
tion for an unbounded amount of time. Lifetime checks happen when an obligation gets
transferred away to another frame. This could be a called method or the next loop itera-
tion.
A lifetime check is always a comparison between two states: the state at the entry into the
current frame and the state at the moment of transfer. It is also a comparison between
two lifetime expressions: the one from the precondition of the current frame and the one
from the precondition of the frame the obligation is being transferred to.
Where to place which comparisons is entirely based on the structure of the program.
When we encounter an obligation assertion while we translate for an exhale with life-
time checks enabled, we look formatching obligation assertions in the surrounding scope
and emit a comparison.
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Say we have the following very simple situation
method main(x:A) requires releases(x, T1)
statelabel entry;
...
call sub(x);

method sub(x:A) requires releases(x, T2)

Here we would assert T2 < old[entry](T1) just before we exhale the releases obli-
gation. Naturally, we can run into situations where we have multiple releases obligations
in the caller’s precondition for multiple objects as in the following example
method main(x:A, y:A, z:B) requires x != y && y != z && x != z

&& releases(x, T1) && releases(y, T2) && releases(z, T3)
&& terminates(T4)

statelabel E;
...
call sub(temp);

method sub(v:A) requires releases(v, T5) && terminates(T6)

Just from the structure of the program, we cannot decide which of the three input ref-
erences x, y or z will be passed to sub. We have to conservatively compare the callee’s
lifetime expression with all lifetime expressions found in the caller’s precondition. We
can exclude a pairing from the comparison just based on program structure if it concerns
(1) different kinds of obligations or (2) objects of incompatible Chalice types. Therefore
the last example would result in the following two lifetime checks:

① (temp == 𝑥 ⟹ 𝑇5 < old [𝐸] (𝑇1))
&& (temp == 𝑦 ⟹ 𝑇5 < old [𝐸] (𝑇2))

② (thread == thread ⟹ 𝑇6 < 𝑇4)

So even though lifetime checks technically require a quadratic number of object reference
comparisons in the worst case, in typical programs the separation by Chalice type will
hopefully cut down the number of comparisons to at most a handful per call.
Another situation to watch out for is when the obligation assertion in the caller’s precon-
dition is guarded by an implication. In that case, we cannot be sure if the caller’s lifetime
expression is well de ined. Consider the following example:
method main(x:A) requires C1 => releases(x, T1)
statelabel E;
...
call sub(x)

method sub(x:A) requires C2 => releases(x, T2)

Whenwe are translating the exhale of sub’s precondition, wewill come past C2 on theway
to releases(x, T2), so we don’t need to worry about that. However, we have to repeat
every implication left-hand side encounteredon theway to the caller’s lifetime expression.
Consequently the lifetime check for this example looks like this:

old [𝐸] (𝐶1)
⟹ (𝑡𝑒𝑚𝑝 == 𝑥)

⟹ 𝑇2 < old [𝐸] (𝑇1)
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Finally, we only want to perform a lifetime check for bounded obligations, that is for ob-
jects that have a positive token amount in the corresponding bounded ield. We also need
to ensure that the lifetime expression does not fall outside thewell-founded set. The check
from before would therefore be:

tokenamount (𝑡𝑒𝑚𝑝.rel ) > 0
⟹ 0 ≤ 𝑇2

&& (old [𝐸] (𝐶1)
⟹ (𝑡𝑒𝑚𝑝 == 𝑥)

⟹ 𝑇2 < old [𝐸] (𝑇1))

To implement this, we prepare set of lifetime constraints for each method precondition
and loop invariant. This set of constraints can be looked up via the statelabels assigned
to theses scopes: 𝐿(𝐸). Such a set consists of elements (𝑟, 𝜏, 𝑓, 𝑡, 𝐶) with a receiver ex-
pression 𝑟, a chalice type 𝜏, an obligation kind 𝑓, a lifetime expression 𝑡 and a sequence of
implication left-hand side expressions 𝐶. Armed with this the following block of pseudo
code which for some receiver expression 𝑟 , obligation kind 𝑓 , lifetime expression 𝑡 and
enclosing scope 𝐸 assembles lifetimeCheck (𝑟 , 𝑓 , 𝑡 , 𝐸)

procedure lifetimeCheck (𝑟 , 𝑓 , 𝑡 , 𝐸) ∶
var checks ∶= ⟦true⟧silver
var 𝜏 ∶= chalice-typeof (𝑟 )
for (𝑟 , 𝜏 , 𝑓 , 𝑡 , 𝐶) in 𝐿(𝐸) {
if (𝜏 = 𝜏 ∧ 𝑓 = 𝑓 ) {
var check ∶= ⟦𝑟 ⟧Ch == ⟦𝑟 ⟧Ch ⇒ ⟦𝑡 ⟧Ch < old [𝐸] ⟦𝑡 ⟧Ch silver
for 𝑐 in 𝐶 {

check ∶= old [𝐸] ⟦𝑐⟧Ch ⇒ check silver
}
checks ∶= ⟦checks && check⟧silver

}
}
tokenamount ⟦𝑟 ⟧Ch.𝑓 > 0 ⇒ 0 ≤ ⟦𝑡 ⟧Ch&& checks silver

The enclosing scope 𝐸 is “loopEntry ” of the loop for the lifetime check during the exhale
of that loop’s invariant at the end the loop’s body and “entry” for all other lifetime checks
(method calls).

6.9 Deviation from the original scheme

Our encoding of modular veri ication of inite blocking is not exactly what [BM14] pre-
sented. The primary difference is how we handle the lifetime of obligations.
The original veri ication technique would have assigned each obligation 𝑥.𝑓 an integer
“countdown timer”. Every time an obligation enters a scope (method body, loop body),
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the counters of all objects would be reduced by one. When exhaling an obligation, we
would then have checked whether the lifetime value of the obligation assertion it within
the remaining timeon theobligation. To implement the “tickingdown”part of this scheme,
we would have needed to implement something like this:
foreach x in Heap do {
x.f.lifetime := x.f.lifetime - 1;

}

A form of “foreach” over the entire heap. This would certainly have been more dif icult
to implement than forallrefs as it manipulates the heap. Our approach with stati-
cally emitted lifetime comparisons has the advantage that we don’t such a “foreach” state-
ment in the intermediate language. It should also be easier to adapt to more interesting
well-founded sets than integers since our lifetime values never need to be stored on the
heap.

7 Evaluation

In this section we evaluate our implementation of the veri ication technique for inite
blocking. To that end we have come up with a number of larger example programs to
verify using our extensions.

7.1 Parallel Binary Tree Processing

Listing21 showsanexample adapted fromChalice2SIL’s existing test suite (“TreeOfWorker
.chalice”). The idea is for the method work to recursively descend through the tree
and perform some work on the shared piece of data for each node. To take advantage
of multi-core systems, it spawns a separate thread for each of the two sub-trees of every
node.
Since we want to wait for the results of the computations on the sub-trees for each node,
the method workmust promise termination (otherwise, the spawned threads cannot be
joined). We are using the tree’s remaining maximum height as the termination measure.
Each node must be explicitly annotated with their height within the overall tree.
As in the original version of this example, we use the predicate valid to reason about
the properties of a correctly constructed binary tree. Using predicates is vital for recur-
sive data structures, because they can be formulated recursively. We extend the valid
predicate with a condition that makes sure that the node’s height annotations decrease
steadily as we move down the tree.
You will notice that we don’t use the this.height directly in the terminates assertion.
Because this.height is only accessiblewhile the valid predicate is unfolded, wewould
have had to write
requires unfolding terminates(this.height)

but our translation does not support this. Having the obligation expression inside an
unfolding expression complicates the encoding of lifetime checks. This limitation can
most likely be overcome if one were to also track which predicates were unfolded in the
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Listing 21: Parallel binary tree processing in Chalice.
1 class Node {
2 var l: Node; var r: Node; var height: int;
3

4 method work(data: Data, callHeight: int)
5 requires rd(data.f) && valid
6 requires unfolding valid in callHeight == this.height
7 requires terminates(callHeight)
8 ensures rd(data.f) && valid
9 {

10 var tkl: token<Node.work>
11 var tkr: token<Node.work>
12

13 unfold valid
14 if (l != null) { fork tkl := l.work(data, this.height-1) }
15 if (r != null) { fork tkr := r.work(data, this.height-1) }
16 /* .. perform work on this node (using the global data: data.f) */
17 if (l != null) { join tkl }
18 if (r != null) { join tkr }
19 fold valid
20 }
21

22 predicate valid {
23 acc(l) && acc(r) && acc(height,10) && height >= 0 &&
24 (l != null ==> l.valid && acc(l.height,10) && l.height == height - 1)

&&
25 (r != null ==> r.valid && acc(r.height,10) && r.height == height - 1)
26 }
27 }
28 class Data { var f: int; }

context of each lifetimeconstraint in themethod’s preconditionand repeat theunfolding
expressions in the lifetime check as necessary. A more detailed investigation will have to
determine whether such a scheme would be sound.

7.2 Producer-Consumer

Listing 22 contains a program that spawns two threads, a producer and a consumer. The
producer continuously sends messages and then lets some external process determine
whether to continue sending messages. Here, our external process is a fake random num-
ber generator. The consumer keeps processing messages and automatically shuts itself
down once no more messages are coming. The idea is that each message consists of two
parts: the data itself and a boolean lag that indicates whether at least one more message
will follow. If the lag is set, the message is also accompanied by a credit to received the
next message.
Unfortunately, this example will fail to verify. The veri ier will complain that the lifetime
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Listing 22: Producer-Consumer example in Chalice
1 class A {
2 method getRandomNumber() returns (x:int)
3 requires terminates(1) { x := 4; }
4

5 method producer(d:D) requires d != null && sends(d,1,1)
6 {
7 var abort := false;
8 while(!abort)
9 invariant (!abort) ==> sends(d,1,1) // one msg per iteration

10 {
11 var x : int; var data: Data;
12 call x := getRandomNumber();
13 if(x == 77){
14 abort := true;
15 send d(null,false); // signal end of message stream
16 } else {
17 data := new Data { f := x };
18 send d(data, true); // signal that more messages are to come
19 }
20 }
21 }
22 method consumer(d:D) requires d != null && credit(d,1)
23 {
24 var hasNext:bool := true;
25 while(hasNext)
26 invariant credit(d,ite(hasNext,1,0))
27 {
28 var data : Data;
29 receive data, hasNext := d;
30 }
31 }
32 }
33 class Data { var f: int }

constraint of the channel, sends(d,1,1), was violated. This makes sense and highlights
a shortcoming of our handling of credits. When we send a message with a promise that at
least one other message will follow, we effectively do
exhale sends(d, -1, _)

In our encoding credits always apply to the bounded token ield. Thus, when we send that
message and exhale the credit, we get a bounded obligation. Once we reach the lifetime
check, the system sees that we have a bounded send obligation and compares the lifetime
expressions. Theoriginal veri ication techniquedidnot have this incompleteness, because
of it encodes the lifetime check.
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Workaround

Listing 23: Workaround for producer from listing 22
1 class A {
2 method producer(d:D)
3 requires d != null && sends(d,1,1) // promise to send at least one
4 {
5 var dNext: D := d; var abort := false; var x : int;
6 while(!abort)
7 invariant dNext != null
8 invariant (!abort) ==> sends(dNext,1,1)
9 {

10 call x := getRandomNumber();
11 var newD: D := new D;
12 if(x == 77){
13 abort := true;
14 send dNext(newD,false); // signal end of message stream
15 } else {
16 send dNext(newD,true); // signal more messages are to come
17 }
18 dNext := newD;
19 }
20 }
21 }
22 channel D(c:D,b:bool) where c != null && credit(c,ite(b,1,0)) && this != c;

There is, however, a way around that problem in this particular instance: each time we
intend to send a credit, we instead send an entirely new channel with a credit (see list-
ing 23). When our lifetime mechanism tries to perform its check, it sees that the channel
object from the beginning of the loop invariant is different from the channel object at the
end of the iteration. The system is satis ied, that the obligation must be new.

7.3 Bi-Directional Channel

Theworkaround for the producer-consumer scenario doesn’t work in all cases. Listing 24
contains a programwhere one “data” channel (D) is used by a pair of threads to sendmes-
sages in both directions. Once a thread has sent amessage on the channel, it uses the same
channel to receive a message and then goes back to sending etc.
We irst tried to construct such an example using only a single channel. This is, however,
not possible using our obligationmodel. Sincewe cannot rely onmessages being received,
one can never send an obligation across a channel. Thus, one thread could never hand
the other thread the obligation to reply. We thus make use of two auxiliary channels over
whichwe receive our obligation. The idea is that each of the two threads performs a sort of
“long polling” on its dedicated auxiliary channel. The other thread, by convention,
Say thread𝐴 has just received amessage on the data channel (line 35) from thread𝐵. Over
the auxiliary channel it sends the credit for the message that it will send in the next loop
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Listing 24: Program that uses one channel in both directions.
1 method pingpong(d:D, tIn:T, tOut:T,initial:bool)
2 requires d != null && tIn != null && tOut != null && tIn != tOut;
3 requires sends(tOut,1,1) && credit(tIn,1)
4 requires sends(d,ite(initial,-1,1),1)
5 {
6 var numLeft:int; var sending:bool; var receiving:bool;
7 if(initial){ sending := false; receiving := true; }
8 else { sending := true; receiving := false; }
9 var tInNext:T := tIn; var dNext:D := d; var tOutNext: T := tOut;

10

11 while(receiving || sending)
12 invariant !(sending && receiving)
13 invariant dNext != null && tInNext != null && tOutNext != null
14 invariant tInNext != tOutNext
15 invariant credit(tInNext,ite(receiving||sending,1,0))
16 invariant sends(tOutNext, ite(receiving||sending,1,0),
17 ite(sending,2,1))
18 invariant sends(dNext,
19 ite(receiving,-1,0) + ite(sending,1,0), 1)
20 {
21 if(sending && !receiving){
22 sending := false;
23 send dNext(15);
24 receive tInNext, dNext, receiving := tInNext;
25 assume tInNext != tOutNext; // fails to verify without
26 if(!receiving){ // close channel
27 var newTOut:T := new T;
28 send tOutNext(newTOut,dNext,false);
29 tOutNext := newTOut;
30 }
31 } else if(receiving && !sending) {
32 receiving := false;
33 var x:int; call x := getRandomNumber();
34 sending := x == 77;
35 receive x := dNext;
36 dNext := new D;
37 var newTOut:T := new T;
38 send tOutNext(newTOut,dNext,sending);
39 tOutNext := newTOut;
40 }
41 }
42 }
43 channel T(t:T, d:D, hasNext:bool) where t != null && d != null
44 && credit(t,ite(hasNext,1,0)) && credit(d,ite(hasNext,1,0))
45 channel D(x:int);
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iteration to thread 𝐵. It is now in “sending” mode itself. In the next iteration it will send a
message to 𝐵 and then transitions into “receiving” mode. To do so, it needs to receive the
necessary credit on line 24. And so on. Note how the “receiving” thread must also send a
message on its auxiliary channel to signal the end of the exchange.
As with the ixed producer-consumer example in listing 23, we use the workaround to
create a fresh channel every timewe send a credit. This doesn’t work that well in this sce-
nario because the veri ier cannot be sure that tInNext = tOutNext!. If the veri ier needs
to allow for this possibility, then our translation will compare the lifetime constraints of
tInNext with those of tOutNext and fail. In the producer-consumer case, we were able
to state in the channel invariant that this = c! (c is the transferred channel). We can’t
do similar thing here because the channel invariant cannot talk about the callers entire
environment. The example in listing 24 thus only veri ies thanks to the manually added
assumption on line 25 along with the corresponding additional loop invariant.
assume tInNext != tOutNext

Unrelated to this problem, the example might also be dif icult to verify if we had deadlock
avoidance mechanisms in place because of how the three involved channels depend on
one another.

7.4 Well-Formedness Check

Listing 25: Well-Formedness check does not detect old(x).
1 class Test {
2 var x: int
3 var tk: token<Test.incX>
4 predicate V { acc(x) }
5

6 method incX()
7 requires V && terminates(1)
8 ensures V
9 {

10 unfold V
11 x := x + 1
12 fold V
13 }
14

15 method joinTk()
16 requires acc(tk) && tk != null && acc(tk.joinable) && tk.joinable
17 ensures V
18 ensures unfolding V in x == old(x) // ERROR: old(x) is not readable
19 {
20 join tk
21 assert V
22 }
23 }

While going through the existing test suite of Chalice,we cameacrossworkitem-10194.chalice.
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A slightly abbreviated version is included in listing 25. In the postcondition of themethod
joinTk, we have the following old expression
old(x)

When we perform our well-formedness check this old expression appears as an opaque
ield and thuswon’t get checked by Silicon. This is one indication that it might be better to
leavewell-formedness checks to the veri ier and use the propermechanisms for encoding
pre- and postconditions. Since we have no direct control over the program state (espe-
cially the heap) it is dif icult to emit well-formedness checks in exactly the same way that
Silicon can do it.

7.5 Alternating Conditions

The program in listing 26 is a particularly pathological program provided by our supervi-
sors. It contains a loop that tries to alternate between two loop invariants in the hope of
being able to trick our lifetime check. In one iteration, 𝑏 is set and the terminationmeasure
is 𝑥whereas the next iteration, with b = false, uses 𝑦 as its terminationmeasure.
We have had a number of ideas for lifetime checks that didn’t work when confronted with
this program. With the lifetime check as it exists now, the veri ier correctly reports that it
cannot satisfy the loop invariant due to the lifetime constraint on the termination obliga-
tion. The condition that catches the error looks something like this
tokenamount(thread.term_b) > none ==>
((y >= 0)
&& old[loop_entry](b) ==>
(old[loop_entry](thread) == thread) ==>
y < old[loop_entry](x)

In other words, since we are using the old value of 𝑏 to determine whether the lifetime
constraint of the precondition applies, we correctly compare the current y to old(x) in-
stead of old(y).

7.6 Existing Test Suite

As part of this thesis, we have contributed a collection of 261 test methods spread across
48 iles. Some of them are simpli ied simpli ied versions of others intended for debugging,
though. But we have also gone through the existing test suites of Chalice2Silver to see
which test cases were still working, which needed adaptation and why.
In many cases, we had to change the expected error messages because we are not using
ordinary pre- and postconditions. So an error message that said “postcondition.violated”
before, now reads “exhale.failed”. There were a handful of cases that we had to ignore.
Some because they used features that were not in scope for this work (backpointers are
one example), others because our changes broke them.
Of the broken test cases, wehad those that no longerworkedbecause ourwell-formedness
checks were inadequate. Mostly they failed to show that the postconditions in question
were valid, butwealso had caseswhere illegal postconditionwere silently accepted, like in
the example above. The other category of broken test cases have to dowith our decision to
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Listing 26: Chalice program that alternates between two loop invariants.
1 method main() {
2 var b : bool := true;
3 var x : int := 5; var y : int := 6;
4 while(true)
5 invariant b ==> terminates(x) && x == 5 && y == 6
6 invariant (!b) ==> terminates(y) && x == 5 && y == 6
7 {
8 if(b) { y := y - 1; x := x + 1; }
9 else { x := x - 1; y := y + 1; }

10 b := !b;
11

12 assert b ==> x == 5 && y == 6;
13 assert !b ==> y == 5 && x == 6;
14 }
15 }

implicitly share objects just after they are created. While the vastmajority of programs af-
fected by that change could be adapted, some were impossible change accordingly.
When we had to make changes that went beyond swapping out expected error messages,
we encountered one of two scenarios. One was the aforementioned implicit sharing on
object creation. To ix that, wewould use initializer expressions instead of assigning ields
one-by-one after the object was created. share statements needed to be removed as well.
The other scenario were cases where test cases attempted to join threads. The methods
that those threads were forked from of course didn’t have termination annotations. In
most cases, they trivially terminated and the annotation was quickly added. In some few
cases, the programs tried to join threads that were never going to terminate. There we
removed the join statements.
A summary of the results can be found in table 1. We have marked test cases that we
had to touch with keywords. Broken test cases are marked with BROKEN, changed ones
with MANUAL and ones where we only had to swap around error message with EXPECTA-
TIONS.

Original test iles 243

As is 185
Changed 40 Termination 24

Implicit Share 16
Broken 12 Well-Formedness 8

Implicit Share 4

Table 1: Statistics from survey of existing Chalice test suite
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8 Conclusion

In this thesis, we adapted the technique for modular veri ication of inite blocking pre-
sented in [BM14] to be implemented on top of the Viper veri ication infrastructure. We
designed sensible extensions to Viper’s intermediate language Silver that would not only
make our encoding of the technique possible but that would also be useful for users of
Silver. We have implemented those extensions in the symbolic execution based veri ier
backend Silicon and we have implemented parts of the encoding in Chalice2Silver: obli-
gation leak checks and lifetime checks. We have evaluated our implementation against a
series of examples and the existing test suites.

8.1 FutureWork

The original veri ication technique in [BM14] also includes a deadlock prevention. When
we designed our extensions, we laid the groundwork in the hope that we would be able
to also implement the deadlock pervention mechanism. The idea was to use the value of
token ields to store an object’s lock level and implement a levelBelow operator using the
newly introduced forallrefs pseudo-quanti ier.
Another extension that we had in mind, was to use a more general well-founded set for
our lifetime expressions, such as something inspired by Dafny [Lei10]. Since our lifetime
expressions never have to be stored in a variable or ield, one could implement a form of
“compile-time overloading” of the lifetime comparison operator (<) to allow the compar-
ison of tuples, sequences, sets etc.

8.2 RelatedWork

Some of the properties we are looking for with modular veri ication of inite blocking,
such as guaranteeing that lock release obligations cannot be leaked, can also be provided
by type systems with ownership types [CPN98]. In some systems with a concept of own-
ership, the lock can allocate a “handle” when it is acquired. The lockwill be releasedwhen
this handle leaves a scope and is no longer owned. Thehandle is not tied to the scope itwas
initially created in. Ownership of it can be transferred between methods. The systems-
oriented programming language Rust [Rus12] makes extensive use of this.
Chalice’s [LMS09, LMS10] own channel implementation comes remarkably close. It has
a concept of “channel debt” that can be passed around. With its working deadlock pre-
vention mechanism, it can detect many faulty programs that our system currently can-
not.
Dafny [Lei10] features a very sophisticated mechanism for specifying termination mea-
sures. It for instance supports using tuples and sequences in the termination measures,
which allow the system to verify termination formore complex scenarios, such as the Ack-
ermann function.
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Technische Hochschule Zürich, 2011, 2011.
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Listing 27: Chalice program that uses the workmethod from listing 21
1 class Program {
2 method main()
3 requires terminates(5) // make sure that work promises to terminate
4 {
5 var a : Node := new Node { l := null, r := null, height := 1 };
6 var c : Node := new Node { l := null, r := null, height := 0 };
7 var d : Node := new Node { l := null, r := null, height := 0 };
8 var b : Node := new Node { l := c, r := d, height := 1 };
9 var r : Node := new Node { l := a, r := b, height := 2 };

10

11 // validate tree bottom up
12 fold r.l.valid;
13 fold r.r.l.valid;
14 fold r.r.r.valid;
15 fold r.r.valid;
16 fold r.valid;
17

18 var data : Data := new Data { f := 15 };
19

20 call r.work(data, r.height);
21

22 data.f := 7; // make sure we got full access to f back
23

24 // make sure we have the valid predicate back
25 unfold r.valid;
26 if(r.l != null) { // we cannot be sure that work didn’t change the tree
27 unfold r.l.valid;
28 }
29 }
30 }
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