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1 Motivation

A program has secure information flow if it does not leak any information about secret
values like passwords or encryption keys in its output values. Non-interference is a program
property which is closely related: Put simply, if all input and output variables of a given
program are classified as either high (secret) or low (public), non-interference means that
the values of the low outputs are not influenced by the high inputs, i.e., if the program is
run multiple times with the same low inputs (but possibly different high inputs), the low
outputs will be the same.

Information flow security is a hyperproperty, that is, it relates two executions of the same
program. To prove such hyperproperties, we can build a product program that simulates
two interleaved runs of the original program. We can then express the hyperproperty as a
trace property of the product program, and verify it using off-the-shelf verifiers.

As part of the VerifiedSCION1 project, such a technique for verifying secure information
flow has been developed and implemented in [2], using the Viper [3] infrastructure. The
method described in [2] allows one to specify hyperproperties in procedures specification
(thus, it can reason about calls modularly), supports declassification (the programmer can
explicitly allow some information to be leaked) and is termination- and time-sensitive (the
analysis can prove that no information is leaked via the termination or non-termination, or
the execution time of the program).

However, as is generally the case with deductive verification, this technique requires that
specifications have to be added to the program in the form of pre- and postconditions as well
as loop invariants, stating for example that certain inputs can be assumed to be low or high.
Adding these specifications can mean a significant overhead for the programmer. Therefore,
this thesis aims to develop a framework to automatically infer such specifications, in order
to prove information flow security with less or even without programmer input.

Static analyses for secure information flow already exist, but they have limitations. The
following function illustrates such a limitation:

1http://www.pm.inf.ethz.ch/research/verifiedscion.html
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method f(public , secret: Int) returns (res: Int) {

// secret is high , public and res are low

res := public + secret;

res := res - secret;

}

A simple static analysis that keeps track of which variables have been “tainted” by the
high input variables (i.e., can potentially contain information about them) will fail to prove
that no information about secret is leaked by res. However, if we use a more complex,
relational analysis on the (simplified) product program fxf shown below, we will be able to
prove secure information flow.

method fxf(public1 , public2 , secret1 , secret2: Int) returns (res1 , res2: Int)

{

res1 := public1 + secret1

res2 := public2 + secret2

res1 := res1 - secret1

res2 := res2 - secret2

}

To prove that no secret information is leaked, we need to prove that the output variables
res1 and res2 will be equal if the low input variables public1 and public2 are equal. Using
a relational abstract domain capable of expressing relationships between three variables, we
can infer that just before the method returns, res1 = public1 + secret1 − secret1 =
public1, and similarly for res2. From this information, we can automatically infer what
we wanted to prove, namely public1 = public2 ⇒ res1 = res2. However, such a simple
relational analysis on product programs is also limited, and will for example not be able to
prove that the following method does not leak any secret information:

method g(public: Int) returns (res: Int) {

// both public and res are low

if (public >= 0) { res := 1 }

else { res := 2 }

}

It is obvious that g’s information flow is secure, since it does not have any high input variable.
The (modular) product program of g is shown below. a1 and a2 are so-called activation
variables: they allow to reason modularly about a program with many methods. Concretely,
if the parameter ai is false, then the method has not been called in the i-th (simulated)
call, and the method should not have any effect on the variables of the i-th call.

method gxg(a1, a2: Bool , public1 , public2: Int) returns (res1 , res2: Int) {

var t1 := a1 && public1 >= 0

var t2 := a2 && public2 >= 0

var f1 := a1 && public1 < 0

var f2 := a2 && public2 < 0

if (t1) { res1 := 1 }

if (t2) { res2 := 1 }

if (f1) { res1 := 2 }

if (f2) { res2 := 2 }

}

If the relational analysis from above is applied to the product program gxg, we will learn
that 1 ≤ res1, res2 ≤ 2 before the method returns. The static analysis will not learn any
information about the relation between public1, public2 and res1, res2, and thus cannot
infer that public1 = public2 ⇒ res1 = res2. We hope that by using (variations or
combinations of) standard analyses on modular product programs we can be more precise
or more general than existing information flow analyses such as the ones presented above.
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Sample2 (Static Analyzer of Multiple Programming LanguageEs) is a generic static analyzer
based on abstract interpretation [1] developed by the Chair of Programming Methodology.
Abstract Interpretation provides mathematical guarantees about the state of program vari-
ables at any program point, and therefore is a suitable instrument to infer the desired
specifications. Sample allows one to specify custom abstract domain and transformers.

2 Core Goals

• Apply static analysis with various abstract domains on programs found in the literature
and their product programs. The goal of this step is to get a better understanding
of the limitations of existing abstract domains and to find characteristics of product
programs that could be exploited later in the project.

• Develop a static analysis that infers information flow properties. This includes explor-
ing, combining, creating or possibly adapting existing abstract interpretation domains
to solve problems found during the first phase of the project.

• Implement the static analysis in Sample by extending its semantic analysis component
(abstract domain and transformers).

• Implement the inference in Sample. In this step we will use the result of the static
analysis to infer secure information flow specifications about the program by extending
the contract inference and the property checker parts of Sample.

• Test the implementation by inferring and verifying contracts for a number of examples
in the Viper language from the literature. We also want to compare the precision and
performance of our analysis with state-of-the-art tools, for example JOANA.3

3 Extension Goals

• Extend the static analysis to handle concurrent programs.

• Extend the static analysis to include more complex language constructs (e.g., arrays).

• Extend the static analysis to make it timing- or termination-sensitive.

• Extend the static analysis to other hyperproperties (e.g., determinism)

2http://www.pm.inf.ethz.ch/research/sample.html
3JOANA (Java Object-sensitive ANAlysis) is an information flow control framework for Java developed

at the Karlsruhe Institute of Technology: https://pp.ipd.kit.edu/projects/joana/
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