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1. Introduction

Weak memory models are important models for real-world hardware behaviour. Unfortu-
nately, they provide little consistency guarantees, which makes reasoning about concur-
rent programs running under them very hard. To tackle this challenge, program logics
like relaxed separation logic [1] and fenced separation logic [2] have emerged. They em-
ploy abstract concepts such as ownership of memory locations and access permissions
to handle the difficulties inherent to weak memory models. However, verifying programs
based on these logics still requires a lot of manual effort, since their tool support is so far
very limited.
This thesis provides a front-end to the Viper verification infrastructure to automate verifi-
cation of weak memory programs. We developed a small input language that contains the
essential operations to access memory present in the rules of the logics. It also includes
an assertion language, very similar in notation to the assertions used in the presentation
of the logic, that is used to supply user annotations in a few places. Programs in this input
language are translated into the Viper intermediate verification language based on an en-
coding developed in the Programming Methodology Group at ETH Zurich [3]. Carbon, an
existing backend verifier for Viper using verification condition generation, is used to verify
the resulting Viper program.
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2. Background

2.1. Relaxed Separation Logics

Relaxed Separation Logic (in short RSL) [1] is a program logic for reasoning about concur-
rent programs under the C11 memory model. It builds upon concurrent separation logic
(CSL) [4] and introduces proof rules for the different atomic memory accesses from C11.
These rules allow ownership of non-atomic locations to be transferred between threads
upon specific accesses of an atomic location. This enables RSL to ensure race-freedom
even in the presence of rather involved and daring concurrent access patterns.
The RSL proof rules for relaxed accesses, which have very weak guarantees on their own,
allow no ownership transfer. To improve the usefulness of relaxed accesses, which are
often less costly and therefore desirable, one needs to additionally use memory fences.
Fenced separation logic (FSL) [2] introduces rules for fences as well as accompanying
rules for relaxed accesses. There is also an extension of FSL, named FSL++ [5] that
deals with compare and swap accesses in the presence of memory fences and the corre-
sponding stronger rules for relaxed accesses.
The tool built for this thesis implements the encoding detailed in [3] which uses RSL rules
for nonatomic and release/acquire accesses and FSL/FSL++ rules where fences and re-
laxed accesses are involved. We will therefore briefly summarize these rules in the follow-
ing subsections. This is mostly meant to familiarize the reader with how these rules can
be used, for a thorough reasoning about their correctness please refer to the respective
papers mentioned above.
It is assumed that any memory location is either accessed solely through atomic or solely
through non-atomic accesses. For atomic locations, there is also a distinction between
locations that are only read using a read access and locations that are only read inside of
a read-modify-write access.

2.1.1. Non-Atomic Accesses

There are no synchronisation guarantees for non-atomic accesses, therefore the logic
needs to ensure that there are no races on non-atomic locations. To do this, the right to
access a location is represented by an assertion of the form hl

k7→ e. We call this assertion
hl points to e and regard it as a resource that can be passed around to model a changing
ownership of the location in question. It expresses both the access right to the location
and the fact that the location has been initialized and holds the value of e. If instead of an
expression an underscore appears on the right hand side, it denotes the access right and
the fact that the location has been initialized without specifying the value that is currently
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held. The superscript k is the fraction of the access permission that is held. If k is 1,
there is exclusive access, anything between 0 and 1 is shared access and 0 would be no
access. We assume k > 0 from here on.
The rule for allocating a non-atomic location introduces the first RSL specific predicate,
Uninit. It represents full access to the location inside and the information that it has not
yet been initialized.

` {true}l := allocNA(){Uninit(l)}

For a write, one needs full access, regardless of value or initialization status and after-
wards the value will be stored according to what was written.

` {l 17→ or Uninit(l)}[l]NA := e{l 17→ e}

To be able to read from the location we need some fraction of an access permission to it.
We learn that the local variable we assign to contains afterwards the value that was stored
in the location.

` {l k7→ e}x := [l]NA{x = e ∗ l
k7→ e}

Here we encounter for the first time the separating conjunction ∗ from basic separation
logic. It is a conjunction that additionally expresses that the current heap can be split into
two disjoint1 heaps which each make one of the conjuncts true. Therefore, l

17→ e ∗ l
17→ e

would be equivalent to false, even if l
17→ e was true, as l can’t be part of both disjoint

heaps.

2.1.2. Release/Acquire Atomics

When an atomic location is allocated, we associate with it a location invariant Q. Concep-
tually, a location invariant is a function from values to assertions, but we represent it as an
assertion parametrized by the special variable v. The location invariant associated with
an atomic location expresses what ownership can be gained from reading a certain value
from the location and correspondingly must be given up when writing it.

` {true}l := allocAR(Q){Rel(l,Q) ∗ Acq(l,Q)}

In the rule for Acq-Rel allocation, we encounter two new RSL predicates, the release
predicate and the acquire predicate. The release predicate represents the right to write a
value to the location (while giving up the ownership specified in the location invariant for
the value written). Similarly, the acquire predicate allows reading a value from the location
and gaining the location invariant for that value. An important difference is that the release
predicate can be freely duplicated, while the acquire one can only be split into disjoint

1Disjoint in the presence of fractional permissions does not mean that a location can only appear in
one conjunct. If it appears in multiple conjuncts however, the fractional permissions must add up
to at most one and the values must be compatible.
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parts to prevent multiple readers from unsoundly gaining overlapping ownership from the
same write.

Rel(l,Q)⇔ Rel(l,Q) ∗ Rel(l,Q)
Acq(l,Q1 ∗ Q2)⇔ Acq(l,Q1) ∗ Acq(l,Q2)

For a release write to a location, we consequently need its release predicate and whatever
the location invariant specifies for the value we want to write. We give up the location
invariant, but retain the release predicate and gain another predicate Init, which represents
the information that the location is initialized.

` {Q[e/v] ∗ Rel(l,Q)}[l]Rel := e{Init(l) ∗ Rel(l,Q)}

This is freely duplicable as well, as it does not by itself allow any ownership to be gained.

Init(l)⇔ Init(l) ∗ Init(l)

For an acquire read, we need to know that the location has been initialized and we need to
have the proper acquire predicate. We can then gain ownership from the location invariant
according to the value we read. To make sure that we cannot gain the same ownership
again from the same write, the acquire predicate that remains has a modified location
invariant, which gives nothing for reading the value again.

` {Init(l) ∗ Acq(l,Q)}x := [l]Acq{Q[x/v] ∗ Acq(l,v 6= x⇒ Q)}

2.1.3. Fences and Relaxed Accesses

In order to transfer ownership away through a relaxed write, there needs to be a release
fence before the write and the locations whose ownership is to be transferred may not be
accessed in between the fence and the write. To ensure this, FSL introduces the modality
4 (up) that protects an assertion between the fence and the write. A release fence simply
puts an assertion under the modality.

` {A}fenceRel{4A}

A relaxed write works very much like a release write, except that it requires the location
invariant to be under the modality to be able to give it away.

` {(4Q[e/v]) ∗ Rel(l,Q)}[l]Rlx := e{Init(l) ∗ Rel(l,Q)}

Similarly, a relaxed read can only gain ownership upon a following acquire fence. This is
modelled by introducing a second modality 5 (down), allowing the relaxed read to gain
the location invariant under this modality.

` {Init(l) ∗ Acq(l,Q)}x := [l]Acq{(5Q[x/v]) ∗ Acq(l,v 6= x⇒ Q)}

The modality needs to be removed to be able to use the gained information in any way,
which is the task of the following acquire fence.

` {5A}fenceAcq{A}
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2.1.4. Compare and Swap

To be able to use a location in CAS accesses, it needs to be allocated as a RMW location.
This allocation is very similar to release-acquire allocation, only instead of the acquire
predicate a RMW-acquire predicate is gained.

` {true}l := allocRMW(Q){Rel(l,Q) ∗ RMWAcq(l,Q)}

This works just like the acquire predicate, but there is one major difference. In contrast to
the acquire predicate, the RMW-acquire predicate can be duplicated. This does not allow
different threads to gain overlapping ownership by reading from the same write, since in
a read-modify-write access the value read will atomically be overwritten again. This also
means there is no need to track previously read values by changing the invariant in the
predicate after a read as we did for acquire reads. If the same value is read again, there
has always been some other write that wrote it back and correspondingly gave up the
necessary ownership.

RMWAcq(l,Q)⇔ RMWAcq(l,Q) ∗ RMWAcq(l,Q)

To attempt a compare and swap, we need to know that the location is initialized, we need
to be allowed to write to it and we need to be allowed to read from it in a RMW way. A
CAS access is of the form x := CASrmwm(l, e, e′). It can either succeed, meaning we read
the value e we expected from the location l and write the new value e′ or fail, in which
case we read some value different from e and do not write anything. The failing case is
quite simple, no ownership is transferred and we retain exactly what we had before. In the
successful case, conceptually we first gain a location invariant from the value read, just
like for any other atomic read. After that we give up the location invariant for the value
written, like in an atomic write. If the readmode rm or writemode wm is a relaxed access
mode, the corresponding modality appears in the rule. Now it might be that the invariants
gained from the read and given away by the write actually overlap. In the presence of
modalities it would be useful if this overlapping portion (which we will call T ) would not be
transferred at all, since the modalities might make it impossible to transfer it away without
a fence. We then only gain the remaining part of the location invariant (A) from the read
and only need to give up the rest of the location invariant for the write (P ). These actually
transferred parts A and P are then the only ones interacting with the modalities2.

x /∈ FV (P )
x /∈ FV (e)
Q[e/v] |= A ∗ T

P ∗ T |= Q[e′/v]

P ′ ≡

P if wm ∈ {Rel, SC}
4P otherwise

A′ ≡

A if rm ∈ {Acq, SC}
5A otherwise

`
{

Init(l) ∗ Rel(l,Q) ∗
RMWAcq(l,Q) ∗ P ′

}
x := CASrmwm(l, e, e′)

{
(x = e ? A′ : P ′) ∗ Init(l) ∗
Rel(l,Q) ∗ RMWAcq(l,Q)

}
2The unified rule for all access mode combinations presented here is taken from [3], which adapted

the rules from [5]. The notation of the access modes is adapted to be more in line with the input
language presented in chapter 3.
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2.2. Viper

The verification infrastructure Viper presented in [6] was developed in the Programming
Methodology Group at ETH Zurich. It includes powerful concepts for permission based
reasoning that are at the heart of the encoding realized in our tool. We will present some
of the most important and heavily used concepts of the intermediate language in the
following.

2.2.1. Objects, Fields and Permissions

Viper does not have classes, instead fields are declared for the whole program. Every
object in the program has all of these fields. References to objects can be stored in
variables of the built-in type Ref. To control access to the program heap Viper uses
permissions. A location may only be accessed if the necessary permission is held at the
program point of the access. Permissions can be specified and transferred, for example
through method pre- and postconditions, using accessibility predicates. The access to
a field f of a reference x would be denoted by acc(x.f ). This simple form represents
full access to the location, allowing writes to it. It is also possible to specify fractional
permissions, like acc(x.f , 1/2), that only permit reads from the location. Instead of a
concrete permission amount it is also possible to use a wildcard permission amount as in
acc(x.f , wildcard). This represents an arbitrary small fractional permission that can
always be split into multiple wildcard permissions if necessary. We will use this splitting
property in the encoding of the duplicable RSL predicates seen in section 2.1. It is also
possible to refer to the permission amount held at a point in the program using perm(x.f ).
Permission amounts can be stored in variables of the built-in type Perm. It is possible to
use them inside accessibility predicates and even to perform comparisons and arithmetic
operations on them.

2.2.2. Inhales and Exhales

Apart from method pre- and postconditions, information and permissions can be trans-
ferred at arbitrary program points using Viper’s inhale and exhale statements. An inhale
allows the verifier to assume all assertions contained in it and to use the permissions in-
side from this program point on. Conversely, an exhale obligates the verifier to assert that
all assertions in it hold and the permissions inside are available at this point. They are
then given up and are no longer available from this point onward.

2.2.3. Predicates

Viper allows the definition of predicates which can be held at a program point and trans-
ferred, similarly to permissions. They can have arguments and an optional body containing
an assertion. It is also possible to specify fractional access to a predicate instance.
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2.2.4. Old Expressions and Labels

In method postconditions, it is sometimes useful to refer to the old value of an expression
from before the method was executed. To facilitate this, Viper has old expressions, written
as old(e). This concept can be used in a more flexible way in combination with Viper’s
labels. These give a name l to a program point which can then be used in a labelled old
expression such as old[l](e). The old expression then refers to the value of the expression
at the point of the label.

2.2.5. Quantified Permissions

Viper supports quantified permissions, allowing specifications such as

forall r: Ref :: (r in refSet) ==> acc(r.val)

where refSet is a variable of type Set[Ref]. The expression above then denotes
permission to the val fields of all references in this set.
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3. Input Language

We designed the input language of the tool using the language from the examples in the
original RSL paper [1] as a base. There are some differences, however, most notably the
treatment of parallelism and local variables as well as the statement-based approach. For
the full syntax, see Figure 3.1.

hl, x, x′ are identifiers for a Heap Location and Local Variables resp.
tk is an identifier used as a fork token
m is an identifier used as a method name

i, i′ are integers
op ∈ {+, ∗,−}, cop ∈ {==, !=, <=, >=, <, >}

rm ∈ {Acq,Rlx,SC,NA}, wm ∈ {Rel,Rlx,SC,NA}, am ∈ {RMW,AR}
e, e′ ∈ Aexp ::= x | Int | (e op e′) | (b ? e : e′)

| x := [hl]rm | [hl]wm := e | x := CAS(hl, e, e′)rmwm

b, b′ ∈ Bexp ::= not b | (b or b′) | (b and b′) | (e cop e′)
s, s′ ∈ Stm ::= x := e | var x | skip | [Stm; ]+ | if b then {s} else {s′}

| while b invariant A {s} | while b {s}
| hl := alloc() | hl := alloc(A)am

| tk := fork(m, e, . . . , e′) | x := join(tk)
| x := [hl]rm | [hl]wm := e | x := CAS(hl, e, e′)rmwm

| FenceAcq | FenceRel(A)
Method ::= method m(x, . . . , x′) pre A post A′ {s}

Program ::= [Method]+

a, a′ ∈ AssertExp ::= ∗hl | Int | True | False | x | (a op a′)
| not a | (a or a′) | (a and a′) | (a cop a′)

A, A′ ∈ Assert ::= acc(hl) | a | (A && A′) | (a => A) | (a ? A : A′)
| Rel(hl, A) | Acq(hl, A) | Acq(hl, A[i := emp, . . . , i′ := emp])
| RMWAcq(hl, A) | Init(hl) | Uninit(hl) | Up(A) | Down(A)

Figure 3.1.: Syntax of the input language
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3.1. Values, Variables and Heap Locations

For simplicity, all values are integers and all local variables therefore implicitly have type
integer. A local variable needs to be declared inside the method it is used in, but there
is no further scoping available. It does not matter where inside the method it is declared.
This is again partly for simplicity, but also due to the fact that the Viper language does not
natively support scoping.
Heap locations also only store integer values and are treated differently from local vari-
ables in a number of ways. The most important difference is that a heap location is globally
available if it is allocated anywhere. We do not model references as local information that
needs to be passed around between methods through arguments of reference types. Any
heap location that is allocated somewhere in the program is available using the corre-
sponding identifier anywhere in the program. This makes examples look more similar to
the ones from [1] (where parallelism happens seamlessly inside the code) and simplifies
the implementation of methods. Access rights to the heap location on the other hand are
only available locally after allocation. They need to be explicitly given to another method
via its precondition. The allocation site of a heap location determines whether it is an
atomic location and if it is, whether it will be accessed using acquire reads or RMW state-
ments. Accessing a heap location in a manner that doesn’t match with this information,
for example doing a non-atomic write on an atomic heap location, is an error and the tool
will reject the program.

3.2. Programs and Methods

A program in the input language consists of a sequence of methods. These can have a
sequence of formal arguments that are implicitly of type integer and available inside the
method body as a local variable.
Method names have to be unique throughout the program. A method has a pre- and a
postcondition, given as an Assert. These are mostly used to specify access rights to
heap locations using RSL style predicates that the method should have, but they can
also talk about the formal arguments and the result of the method. Each method has an
implicitly declared Result variable and the value this variable has at the end of the body
is the return value of the method. If it has a meaningful value, this should be described
in the postcondition, as in the actual verification only the postcondition of a method is
learned after its execution. The return value is assumed to be an arbitrary integer if the
postcondition doesn’t give any better information about it.

3.3. Fork and Join

To model parallelism, there are fork and join statements, where the fork statement takes
a method name and a number of actual arguments corresponding to the formal argu-
ments of the method. The fork statement has to contain a unique string token, written
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as tk := fork(...). While this looks a lot like assignment to a local variable, it is fun-
damentally different. The token need not be declared in any way and cannot be reused
(apart from the intended use in a corresponding join statement, of course). When forking
a method, access rights to heap locations required by its precondition need to be available
in the enclosing method and are given away upon forking it.
The join statement x := join(tk) takes a token and assigns the return value of the
method that was forked on the token to a local variable. The method in which the join
happens gains all information and access rights available from the postcondition of the
joined method. In fact, this is the only information gained, so the return value should be
described by the method postcondition if it is meaningful.
Forking is the only way to execute a method from another one, as normal method calls
were not needed in any example, but they could most likely be added with little additional
work.

3.4. Assertion Language

The assertion language is a closed subset of the input language and used in two similar
but different ways.
For one, it is used to specify method pre- and postconditions and loop invariants. Here
the full set of assertions can and will be used.
The second use is inside atomic allocation and in Rel and Acq predicates. We will call
this use case a location invariant, as inside these constructs, there is always a specific
location - the one being allocated or the one specified in the predicate before the asser-
tion - that the assertion is associated with. The value of this location can be talked about
inside such an assertion by using the reserved identifier v. In a Rel predicate this repre-
sents the value that is being written to the location, in an Acq or RMWAcq it represents
the value read. Often a location invariant will be a conditional on this value, for example
((v == 0) ? True : (acc(a) && ( ∗a == 7))). This example says that if the value
read or written is 0, no information is gained or given up. If it is any other value, a write
has to give up access to the nonatomic location a and ensure that its value is 7. The
conjunction of acc(x) and ( ∗x == e) corresponds to a points-to assertion in RSL. In
fact, this example is the location invariant Q(x) used in Figure 8 [1], where it is written as
Q(x) def= if x = 0 then emp else a 7→ 7. Splitting the access right and information about
the value into two conjuncts is closer to the way this information is represented in the
Viper language after the translation and at the same time allows for a little more flexibility
in specifying the possible values.
Inside a location invariant only a subset of the assertion language is allowed. The RSL
predicates as well as the modalities cannot occur inside of them.
Assertions inside a FenceRel or explicitly under a modality would typically be a part of
a location invariant, as a release fence prepares the assertion to be given away via a
write to a location and modalities occur because of fences. If we wanted to use a relaxed
write to write 1 to the location with the example invariant we looked at above, we would
use FenceRel((acc(a) && ( ∗a == 7))) before the write. Therefore only assertions
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allowed in a location invariant should occur in these places, but as they are not location
invariants themselves, v is not available here. It is not needed either, since the assertion
would generally be a variant of a location invariant for a specific value of v.
The separating conjunction ∗ is written as &&. This is in-keeping with the implicit dynamic
frames style syntax used in the Viper language and avoids confusion with the multiplica-
tion operator.
An acquire predicate where some values have already been read can be explicitly ex-
pressed instead of the assertion being rewritten. For example, let’s assume we want to
express the acquire predicate for location a which has the location invariant we have seen
above and where the value 2 has already been read:

Acq(a, ((v == 0) ? True : (acc(a) && ( ∗a == 7)))[2 := emp])

This is useful, since it means that no syntactically different assertions will show up be-
cause of already read values. It is easy to detect that the assertion is the same as the
one used during allocation. The information about previously-read values can be encoded
separately.
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4. Tool Overview

Figure 4.1.: Tool Overview

The RSL frontend tool takes a program written in the input language described in chap-
ter 3 and tries to translate it into a Viper AST. The user has the choice of whether he wants
to verify the program or whether he wants a text representation of the resulting AST.
Internally, the tool consists of three main stages. First is the parser, which creates an
AST representing the program in the full input language. This AST is given to the Checker
stage, where it gets transformed to eliminate certain expressions and replace them with
statements and simpler expressions. We call this process the Desugaring. We will refer
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to the subset of the expression language that remains after the Desugaring as ”simple ex-
pressions”. Afterwards, certain checks are performed on the simplified AST, for example
to make sure that atomic locations are not used in non-atomic accesses. If problems are
encountered, these are reported to the user and no translation is attempted. On top of
this, the Checker collects additional information about the program, such as a mapping of
fork tokens to the methods that were forked on them.
This information together with the simplified AST is then given to the Translator stage, if
checking was successful. This stage starts creating the Viper AST, but there are also a few
checks that are performed in this stage. This is because they are easy to do using some
context that the translation needs to keep anyway, whereas the Checker would need to do
additional work. If the translation is completed successfully, the Viper AST is either given
to a Carbon Verifier instance for verification or a text representation is generated using
the pretty-printing functionality provided by Viper. In case of an unsuccessful verification,
the error messages from Carbon are displayed, together with the position and statement
in the original input language file in whose translation Carbon reports the problem. We
will examine the first two stages in the following subsections; for the details of the actual
translation see chapter 5. The tool itself is implemented in Scala.

4.1. Parser

The parser is implemented using Scala parser combinators[7]. Compared to a parser
generator framework, the resulting parser is not as efficient, but for the scale of examples
this tool is expected to be used on that is not really relevant. Their advantage is ease of
use and quite readable resulting code. The explanations on [8] proved particularly useful
in understanding the parser combinators. The specification of the parser can be found in
the appendix section A.1 on page 32.

4.2. Desugaring

The input language described in chapter 3 contains some expressions that could actually
be viewed more as statements in expression positions. To simplify the translation later
on, there is a simpler version of the input language that is used internally, with fewer
expressions. The first step of checking a given program is desugaring it from the richer
input language into the simpler one. The expressions that are eliminated in the desugaring
are the conditional expression and all kinds of memory accesses. It is then possible
to translate all remaining expressions directly into Viper expressions, whereas memory
accesses would always need to be translated into a sequence of statements.

4.2.1. Statements

To desugar the program, the AST is traversed recursively and a new AST containing only
simple expressions is built up. Whenever a statement containing an expression is encoun-
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tered, the expression is desugared into a statement and a simple expression. In place of
the old statement, a sequence statement containing the statement obtained from desug-
aring the expression and the old statement with the simple expression instead of the old
expression is inserted into the new AST. We minimize unnecessary nesting of sequence
statements by concatenating the inner sequences instead of wrapping sequence state-
ments inside each other. For general loops, the statement obtained from desugaring the
condition is also added to the end of the loop body. During the desugaring we also detect
certain kinds of loops that will receive special treatment in the translation. See subsection
4.2.3 for details.

4.2.2. Expressions

The interesting part of the desugaring is the desugaring of the expressions themselves,
so we will give a little more detail on that. It is performed in a recursive function desugar
that takes an expression and returns a statement and a simple expression.
For literals and local variables, a sequence statement containing an empty sequence is
returned together with the original expression. These unneeded statements nicely dis-
appear when enclosing sequence statements are built using the nesting avoidance men-
tioned earlier.
For arithmetic, boolean and comparison operations, desugar simply calls itself on the
children and returns the sequence of statements from the recursive calls together with a
new version of itself where the children are replaced by the simple expressions that were
returned for them.
In place of a conditional expression, a fresh local variable is declared and an if statement
mirroring the form of the expression is created. The statement returned for (b ? e : e′)
would look like:

var freshvar;
stmfromdesugaring(b);
if expfromdesugaring(b)
then {
stmfromdesugaring(e);
freshvar := expfromdesugaring(e);
} else {
stmfromdesugaring(e′);
freshvar := expfromdesugaring(e′);
}

The expression returned is then simply freshvar. The reason we remove conditional
expressions (despite the fact that the Viper language has conditional expressions), is that
the expressions in the branches might be non-simple. Statements from desugaring e and
e′ should be executed conditionally - simply putting them into the returned statement and
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returning a conditional expression again would not in general make sense. Memory ac-
cesses that occur in a branch should only happen if the branch is taken and they might
not even be allowed for a branch that is not taken.
The different expressions accessing memory are all fairly simple to desugar. They each
correspond to a statement that does the same memory access. This statement is re-
turned, preceded by statements from the desugaring of expressions that occur inside and
with all expressions replaced by the desugared simple expressions. The expression is
either the local target that was assigned in the memory access statement or in case of a
write access the desugared expression used as the RHS in the write.

4.2.3. Wait on Atomic Loops

Loops that just wait on an atomic access in a simple way can be encoded in a simpler form
than general loops. This has the additional advantage that no loop invariant needs to be
specified by the user for this encoding to work. Since the desugaring would transform the
loops into a more complicated form, it is convenient to detect them during this process.
Loops of the form

while (target := [loc]Acq/Rlx == simpleExp) {skip}

are replaced by a special WaitOnAtomicRead node. Similarly, loops of the form

while (target := CAS(loc, ov, nv)any ! = ov) {skip}

are replaced by a WaitOnCAS node if ov and nv are simple expressions.

4.3. Checks

After the desugaring is completed, the Checker first finds all allocation nodes and con-
structs a mapping of heap location names to their allocation site. This is used as a ref-
erence for what the intended usage mode of a heap location is in later checks. Heap
location nodes have two flags isAtomic and isRMW to record their intended usage mode.
In some places where heap locations occur, the parser cannot fully determine how to set
the flags, so in that case it will set them to the nonsensical combination !isAtomic and
isRMW. When such a heap location is encountered in a check, the Checker sets these
flags according to the allocation site it finds in the map. A similar mapping from method
names to the method nodes is built in the beginning of the following traversal, used for ex-
ample when checking a fork statement to make sure the method exists and the arguments
match. During the checking traversal, a map from fork tokens to the respective fork state-
ment nodes is also built, to be used when encountering a join statement. The method and
token maps are also given to the translator stage for further use. The properties checked
are the following:

• The identifier used in an allocation statement is only used in one.
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• The identifier used in an allocation statement is not one of the reserved ones (v and
Result)

• Different methods have different method names.

• Reserved identifiers Result and v are not used as formal arguments in a method.

• Heap locations that are used are allocated somewhere (they are in the heap location
- allocation site mapping).

• Inside atomic accesses and predicates over atomic locations the heap location used
was allocated as atomic and with the proper kind of access mode (RMW or Release-
Acquire).

• Inside non-atomic accesses and predicates over non-atomic locations the heap lo-
cation used was allocated as non-atomic.

• Local variables are not named Result or v in their declaration statement.

• Each fork token is only used in one fork statement.

• The method name in a fork statement is the name of a defined method (it is in the
method name - method mapping).

• Result is not used as an actual argument in a fork statement. This simplifies the
translation of join and is not really a limitation, as it is always possible to introduce
an auxiliary variable.

• The number of actual arguments supplied in a fork statement matches the number
of formal arguments of the forked method.

• The token used in a join statement is actually a token that a thread was forked on (it
is in the token - fork mapping).

• The RSL predicates (Rel, Acq, RMWAcq, Init, Uninit, Up, Down) are not nested
inside each other.

• v is only used inside location invariants.

Additionally, the following checks are performed by the translator stage, but we also list
them here for an easier overview:

• Local variables that are used were declared before, either explicitly or by being a
formal argument of the enclosing method.

• Location invariants contain no local variable accesses, as they would not make
sense in a different method.
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5. Translation

The Translator stage gets the simple AST that the Checker created, along with the Thread-
Tokens and MethodDecls maps. It builds up a Viper AST according to the encoding de-
tailed in [3]. We will explain important parts of the encoding as we go, but for more in-depth
reasoning on why the encoding works please refer to the cited paper. The first thing the
Translator does even before starting to build the new AST is finding all location invariants
that appear in the program and assigning them a numbering. This will be used to model
the RSL predicates that contain location invariants. The numbering is done by a simple
recursive function that traverses the AST and pattern matches on a trait ContainsInv that
is used to mark all nodes that contain a location invariant. These are allocation statements
and the Rel/Acq/RMWAcq assert nodes. The invariant is then assigned one number for
the whole invariant (used in the encoding of Rel later) and a set of numbers for all imme-
diate conjuncts, which is useful for supporting the splitting of Acq we have seen in section
2.1.2. If the invariant or some of its conjuncts have already been encountered before, no
new number is assigned for these parts.
The actual translation is done in four methods that recursively call each other: trans-
lateMethod, translateStm, translateExp and translateAssert. translateMethod re-
turns a Viper method, translateStm returns a Viper statement and the other two return a
Viper expression. Here we really use that the AST was desugared before, because other-
wise not all input language expressions could be translated into Viper expressions.
Heap locations are modelled by references with fields val, init, rel and acq, so these
fields are added to the Viper program node that is the root of the resulting AST. The val
field is of type Int and used to model the value stored for non-atomic locations. For
atomic locations, the value is not actually modelled, wherever it would be relevant it is as-
sumed to be an arbitrary integer because some other thread might have written to it. The
init field is of type Bool and represents whether a location has been initialized. For
non-atomic locations we use the value of the init field to encode the initialization status.
In contrast, the initialization of an atomic location is represented by a wildcard permission
to the init field and not its value. The rel and acq fields are only used for atomic
locations. The rel field is of type Int and is used to store the number we assigned to
the location invariant the heap location was allocated with. The acq field is a Bool and
is true for release-acquire locations and false for RMW-acquire locations.
We also add the uninterpreted predicate

predicate AcqConjunct(l: Ref, idx: Int)

and the uninterpreted function

function valsRead(l: Ref, i: Int): Set[Int]
requires AcqConjunct(l, i)
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to the program, which will be used to model the acquire predicates from RSL later on.
To be able to model a variable getting an arbitrary value, the methods havocedInt,
havocedBool, havocedRefSet and havocedIntSet are added to the program.
These are very simple methods that don’t take any arguments and just have one formal
return variable of the respective type they are supposed to produce havoced values for. On
top of these, we iteratively call translateMethod on all the methods of the input program
and add the resulting Viper methods to the sequence of methods in the root of the new
AST.

5.1. Methods

Local variable declarations are represented in Viper by a sequence of LocalVarDecl
nodes that is held directly in the method node. Since the local declarations in the in-
put language can occur somewhere in the body, translateMethod initializes a global map
currentLocals to an empty map and the translation of the body will add the needed vari-
ables to it. It maps variable names to Viper types, since heap locations allocated in the
method will also be represented by a local variable in Viper. Similarly, heap locations that
are allocated in a different method but accessed in the one being translated need to be
collected and added to the formal arguments of the Viper method. For this a global set of
strings currentNeededVars is initialized to an empty set. After the translation of the body,
pre- and postconditions it contains the names of all heap locations needed in the current
method. For every name that is not also in currentLocals a declaration is then added
to the formal arguments of the Viper method. On top of that, the formal arguments of
the input method and the Result variable are put in a global set currentFormals. This
makes it easy to check if a local variable used has been declared by checking that it is in
currentLocals or currentFormals.
The precondition of the Viper method is simply the precondition of the input language
method, translated using translateAssert. The postcondition would be the translated
postcondition of the input language method as well, but because post conditions may
mention heap locations that were allocated inside the body and these are local variables
to Viper this does not work as easily. Instead, we put the translated postcondition in an
exhale and attach it to the end of the method body. After that we add another exhale
statement

exhale (forperm [val] NonLeakingCheckVar :: false)

that basically checks that no permission is left over, to make sure that no method is leaking
permission. The body of the input method is given to translateStm for translation.

5.2. Statements

The translateStm method relies a lot on helper functions that mimic the macros that have
been previously used for hand-encoding examples. Macros are not actually present at
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the AST level in Viper, otherwise we would have generated macros as well to improve the
readability of the program after the translation. We will not always mention when part of the
translation is done by using such a helper method, only when it seems of special interest
because the same helper is used frequently. The translateStm method pattern matches
on the different possible statement nodes. We will examine the different statements in the
following subsections.

5.2.1. Local Variables and Sequential Control Flow

A local declaration does not actually show up in the body of a Viper method, so we return
an empty sequence statement for these. To reflect that the local has been declared, we in-
stead add its name and the type Int to the currentLocals map explained in the previous
section. For a local assignment statement, we correspondingly check that the variable is
contained in currentLocals or alternatively in currentFormals. If it is in currentLocals,
we also make sure that the type of it is Int, otherwise it would be a heap location allo-
cated in the method and not actually a local variable of the input language. The same
check is also made in all the other statements that assign to a local variable, like atomic
reads and joins. We will omit mentioning it there, since it works in exactly the same way.
The local assignment is then translated into a Viper LocalVarAssign using translateExp
to translate the right hand side.
The skip statement of the input language is simply translated into an empty sequence
statement. For a sequence statement, we map translateStm over the contained se-
quence and return a Viper sequence statement containing the resulting sequence of Viper
statements. We initially tried avoiding unnecessary nesting here as well, like we did during
desugaring, for example to get rid of the empty sequence statements generated by local
declarations and skips. This proved problematic however, when including comments that
help the readability of the pretty-printed representation of the translation result. These are
usually stored in the enclosing sequence statement for statements that get translated into
more than one Viper statement, so the comments might be lost if we simply removed se-
quence statements. In contrast to the desugaring, where every simple expression encoun-
tered would actually generate an unnecessary empty sequence statement, here these are
few and other nesting corresponds to desirable grouping of logically related statements.
We therefore forgo any nesting avoidance in the translation of sequence statements.
If and while statements are structurally very similar to the corresponding Viper statements.
Their conditions are given to translateExp, the body of the while as well as the branches
of the if are translated by a recursive call to translateStm and the invariant of the while
is translated by translateAssert. The respective Viper statement is then assembled from
the results. While statements without invariant from the input language don’t receive any
special treatment, they are parsed as a normal while statement with a true literal as the
invariant. The special cases of while statements waiting on an atomic access that were
detected during desugaring will be treated in the subsections that explain the atomic ac-
cesses.
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5.2.2. Fork/Join

We encode a fork conceptually by simply exhaling the precondition of the forked method
with the formal arguments replaced by the actual arguments. To enable the join to ac-
cess the values of the actual arguments at this point, we insert a label generated from the
fork token before the exhale. Since we checked that fork tokens are unique and the join
statement contains the token as well, we do not need to keep track of these labels, the
join can simply generate it in the same way. We find the declaration of the forked method
using the MethDecls map generated by the Checker and look up the precondition we
need to exhale. We want to use translateAssert to translate the precondition, but trans-
lateAssert includes checks to make sure local variables it encounters are declared in the
current method. The formal arguments of the forked method are not declared in the cur-
rent method, but they might be mentioned in the precondition. Since we will replace them
afterwards, we do not want translateAssert to complain about them, so we use a flag re-
placementToHappen to disable the checks here. Since we know that the forked method
exists in the program, the precondition will be translated with proper checking when the
forked method itself is translated, thus we can be sure not to miss any problem by omitting
the checks when forking. We then use the replace functionality implemented for Viper
nodes to replace occurences of the formal arguments by the translations of the corre-
sponding actual arguments. To translate the actual arguments, translateExp is used.
To model a join, we havoc the local variable that the result is assigned to and then inhale
the information from the postcondition of the joined method. Here we need to replace
the formal arguments of the method by the values of the actual arguments at the point the
method was forked. For this we use labelled old expressions with the label generated from
the fork token and the translation of the actual arguments of the fork inside. After that, we
need to replace occurrences of Result in the postcondition by the local variable we con-
ceptually assign the return value to. We disallowed using Result as an actual argument
in a fork to prevent erroneously replacing it inside an actual argument here. Doing the
replacement of the result variable first (eliminating this danger) would have introduced an-
other possible naming clash. If the variable we replaced the result with happened to have
the same name as a formal argument of the forked method, we might accidentally replace
it afterwards with an actual argument, which would be a problem. Therefore disallowing
the use of Result inside actual arguments seemed to be an easy and not overly restric-
tive way of avoiding the problem. To find the forked method and the actual arguments
we use the ThreadTokens map and to find the formal arguments and the postcondition
of the method again the MethodDecls map. The postcondition is translated before the
replacement using translateAssert and the replacementToHappen flag just like in the
fork case. Havocing the local variable is achieved by a method call to the havocedInt
method described in the beginning of this chapter. Inhaling information about the value of
the variable after the havoc allows the verifier to assume that the value the variable got
from the havoc must have been some value that is compatible with this new information.
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5.2.3. Non-atomic Locations and Accesses

To allocate a non-atomic heap location, we add its name to currentLocals with type Ref
to declare a local variable of reference type to represent it. We assign a new reference
to this variable by generating a Viper NewStmt. After that, we inhale the encoding of the
Uninit predicate. For this, a helper method taking the name of the location is used, that
will also be reused in translateAssert. Uninit(l) is encoded as:

acc(l.val) && acc(l.init) && !l.init

The first two conjuncts ensure that we have full access to the relevant fields for our new
non-atomic location. The last conjunct represents the fact that the location has not been
initialized yet. This whole expression is returned by the Uninit helper and inhaled in the
translation of the non-atomic allocation statement.
For a non-atomic write, we assign the translation of the right hand side (done by a call to
translateExp) to the val field of the location. Afterwards we assign true to the init
field to represent the fact that the location is now initialized. The necessary access rights
are all automatically checked by Viper upon a field access, so we do not need to explicitly
encode checking them. To make sure that the location will be available in the enclosing
method, we add its name to currentNeededVars.
For a non-atomic read, we also need to make sure the location we are reading from is
available, so we add it to currentNeededVars as well. To be able to read from a location,
we need to make sure that it was initialized, so we add an assertion ensuring that the
init field is true before assigning the value of the val field to the local variable that is
the target of the read. The access right to the fields will again be implicitly checked by the
verifier. Since both fields are only read, a fractional permission will suffice, corresponding
to the fractional points-to assertion we saw in the rule in section 2.1.1.

5.2.4. Atomic Locations and Accesses

Before explaining the translation of the statements dealing with atomic accesses, let us
look at the encoding of the RSL predicates we will need. Like Uninit, these are expres-
sions generated in helper functions, so we can use them in our translation. As we already
mentioned in the beginning, the initialization of an atomic location is represented by ac-
cess to the init field and not its value. To make the Init predicate duplicable however, it
is not represented by full access but rather by a wildcard permission amount to the init
field. A Rel(l,Q) is represented by a wildcard permission to the rel field of l and the in-
variant number ofQ stored in the rel field. This makes release predicates duplicable like
Init, but does not allow any release predicates to be given away with an invariant different
from the one the location is allocated with. For an Acq(l,Q) we want to be able to split the
invariant to allow different threads to gain different parts of it on a read. It is encoded as

acc(l.acq,wildcard) && l.acq == true
&& AcqConjunct(l, i) && valsRead(l, i) == Set[Int]()

where the last two conjuncts are added for every invariant number i that numbers one of
the immediate conjuncts of Q. The first two conjuncts come from the macro SomeAcq(l)
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and represent that this is an Acq for some invariant. The third conjunct is an instance of
the AcqConjunct predicate. These predicates represent the conjuncts of the invariant
in a flexible way. Since the SomeAcq part of the Acq is duplicable, it is possible to split an
Acq, for example giving part of it away in a fork, by giving the duplicable part and some of
the AcqConjunct predicates away. The last conjunct encodes previously read values of
an Acq. For a simple Acq it asserts that the set of already read values is empty. If we want
to represent an Acq where some values have been read, the set on the right hand side of
the comparison contains these values. A RMWAcq(l,Q) is very similar to an Acq. We do
not need to track previously read values, so we do not need the valsRead conjunct. The
value of l.acq is false to indicate that it is a RMWAcq. To make the whole RMWAcq
duplicable, we do not need full access to the AcqConjuncts but we use again a wildcard
permission instead. We end up with:

acc(l.acq,wildcard) && l.acq == false
&& acc(AcqConjunct(l, i),wildcard)

The last conjunct is repeated for all i numbering a conjunct of Q as before.
Translating an atomic allocation statement works exactly like in the non-atomic case, ex-
cept that instead of Uninit we inhale Rel and Acq or RWMAcq for the location and invariant
in the allocation statement. Note that we do not inhale any permission to the init field,
corresponding to the fact that the location is not yet initialized.
The access mode (Rel/Acq or Rlx) of an atomic access is represented in the atomic read
and write statements by a boolean flag synchronizes that is false for relaxed accesses.
The details of the modalities needed for relaxed accesses will be explained in the next
subsection, for now just assume that we have a way of putting a translated invariant under
a modality using the helper functions makeUp and makeDown that both take and return
a Viper expression.
To encode an atomic write [l]wm := e, we first generate an assertion ensuring we have
read access to l.rel. We then want to exhale the invariant associated with l. For this we
generate for each number i in our invariant numbering an if statement that checks whether
the value of l.rel is i and in that case exhales the translation of the invariant numbered
with i. In the translated invariant, the special variable v is replaced by the translation of e.
If the write is a relaxed one, the invariant is put under the up modality after this replace-
ment. Afterwards, we add a statement inhaling Init(l).
The translation of an atomic read statement x := [l]rm begins by introducing an auxil-
iary variable (called tmpSet in the following) of type Set[Int]. We make sure to pick
a name that is not used in the input program, but subsequent atomic reads will pick the
same name, so we add a call to havocedIntSet to havoc it as the first statement of
the translation. The next statement asserts Init(l) and SomeAcq(l) to make sure that the
location is initialized and an acquire predicate is available. Then x is havoced using a
call to havocedInt, expressing that an arbitrary integer might be read from l. We then
want to inhale whatever we can gain from reading the value and record that we have read
the value in valsRead. For this we generate the following code snippet for every i in
our invariant numbering, where replacedinv(i) is the translation of the invariant numbered
with i with v replaced by x. In case the read is relaxed, it is also placed under the down
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modality.

if (perm(AcqConjunct(l,i)) == 1 && !(x in valsRead(l,i))){
inhale replacedinv(i)
tmpSet := valsRead(l,i)
exhale AcqConjunct(l,i)
inhale AcqConjunct(l,i) && valsRead(l,i) == tmpSet union Set(x)

}

This ensures that for every acquire conjunct available at the point of the read, if we haven’t
read the same value before we inhale the part of the invariant this conjunct represents.
We also add the value that was read to the values valsRead returns for this location
and invariant number from here on, by essentially telling the verifier to assume that the
function valsRead returns the set it returned before unified with the value of x.
To encode a WaitOnAtomicRead loop

while (target := [loc]Acq/Rlx == e) {skip}

we observe that all iterations except the very first and the very last one cannot gain any
ownership. If the first iteration has read the value e, afterwards the acquire predicate
will be modified to not allow any further ownership to be gained from the same value.
Therefore we do not actually need a loop to model the behaviour of this loop. Instead, it is
encoded as one atomic read to model the first iteration, followed by:

if (target == e) {
atomicRead(loc,target) //another atomic read of the location
assume target != e

}

This models that if we ever entered the loop (the value read was e in the first iteration),
we will at some point break out of it by reading some value different from e. Only this last
read will affect the state of the program, so we skip all intermediate reads of value e.

5.2.5. Fences

The difficult part about encoding fences and relaxed accesses is the representation of
the up and down modalities. This is done by simulating three separate heaps (using a
Viper domain and axiomatised functions between the heaps, for details see [3]). We can
then conceptually talk about the reference of location l under the up modality by talking
about the reference of l in the up heap. The reference in the up heap corresponding to a
reference r in the normal heap is accessed by a call of the domain function up(r). The
modalities distribute over logical connectives and implications, so an invariant under a
modality can be expressed by replacing all the references in the original invariant by their
counterpart in the respective other heap. This replacement is what the helper methods
makeUp and makeDown do in our translations.
A FenceRel node contains the invariant that it is supposed to place under the modality.
For translating it, we simply exhale the translation of this invariant and inhale the same
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invariant after transforming it with makeUp.
The FenceAcq is more complicated, since it needs to find what is under the down modality
in the current state and remove the modality from all of it. This makes sense, since there is
no use for an invariant under a down modality without removing it, whereas in the release
case we don’t want to place additional information under the modality that should remain
free of it. To do this, we use an auxiliary variable of type Set[Ref]. The translation of
FenceAcq chooses a name not used by the input program for it, we will simply refer to it as
refSet here. The refSet is havoced by a call to havocedRefSet. Through inhales
of quantified permissions we make sure that exactly the references r for which we have
some permission to down(r).val are in the refSet. Then we inhale the same amount
of permission to r.val, equate the values in both heaps and exhale the permission we
held in the down heap.

refSet := havocedRefSet()
inhale (forall r: Ref :: (r in refSet)

==> heap(r) == 0 && (!is_ghost(r) && perm(down(r).val) > none))
inhale (forall r: Ref :: perm(down(r).val) > none && !is_ghost(r)

==> (r in refSet))
inhale (forall r: Ref :: (r in refSet)

==> acc(r.val, perm(down(r).val)))
inhale (forall r: Ref :: (r in refSet) ==> r.val == down(r).val)
exhale (forall r: Ref :: (r in refSet)

==> acc(down(r).val, perm(down(r).val)))

This is repeated for every field and (without the equation of values) also for every
AcqConjunct. After all this is done we have effectively moved the invariant from the
down heap to the normal heap.

5.2.6. CAS

The idea of using multiple heaps introduced in the previous section is reused in the en-
coding of CAS to be able to find the overlapping part T of the gained and given up location
invariants. For this another heap temp is introduced and the location invariant gained from
the read is inhaled to the temp heap at first. The exhale corresponding to the write then
tries to exhale everything it can from the temp heap and only the parts of the location
invariant not available in the temp heap (corresponding to P ) from the normal heap. Af-
terwards, everything still in the temp heap corresponds to the actually gained part of the
invariant A and we move the temp heap to the normal heap (or the down heap if the read-
mode was relaxed) just like we moved the down heap to the normal heap in the FenceAcq
statement. Inhaling to the temp heap is done by replacing all references in the translated
invariant that is inhaled by their counterpart in the temp heap. For this we use a helper
function makeTemp that works just like makeUp and makeDown. The most complicated
part is the exhale that in a sense dynamically chooses where to exhale from. For this we
actually use a different function to translate the input language assertion instead of trans-
lateAssert that directly incorporates the encoding of this as well as the replacement of v.

24



An acc(a) is translated by this function to

let p == ((perm(temp(a).init) < write ? perm(temp(a).init) : write))
in acc(temp(a).init, p) && acc(up(a).init, write - p) &&
((p > none && write - p > none ==> temp(a).init == up(a).init) ==>
(old[CAS_0](perm(temp(a).init)) > none ? temp(a).init : up(a).init)))
&&(let p0 ==((perm(temp(a).val) < write ? perm(temp(a).val) : write))
in acc(temp(a).val, p0) && acc(up(a).val, write - p0) &&
((p0 > none && write - p0 > none ==> temp(a).val == up(a).val)
==> //subsequent conjuncts of the invariant

where fresh names for p and p0 are picked every time. The old[CAS_0] refers to a label
that is inserted after the inhale to the temp heap and given to the translation function as an
argument. If the write was not a relaxed write, everywhere up(a) is used here, a would
be used. To determine this, the translation function takes the synchronizes flag from the
write as an argument. This translation is actually a little more complicated than it would
need to be, that is in preparation for supporting fractional access notations in the input
language. As it is, our acc(a) denotes full permission, denoted by the write in the code
snippet. The usual translation of acc(a) is

acc(l.val) && acc(l.init) && l.init

as explained in section 5.4. We now want to take as much of the access permissions
from the temp heap as possible. For the init field, we assign the minimum of the per-
mission amount we need (write here, but might be something different if we supported
fractional permissions in the input language) and the permission amount available in the
temp heap to p. This amount we then take from the temp heap and the rest of what
we need (write - p here) from the normal/up heap in the second line. If we actually
took permission from both heaps, we want to make sure that the values match, otherwise
we would be in an odd state. This is checked in the implication in the third line. If the
values matched (or we only took permission from one heap so the implication became
trivially true) we can then just take the value in the temp heap if we had any permission
to it or the value in the normal/up heap otherwise. With all this, we have replaced the
acc(l.init) && l.init part of the usual encoding seen above.
The same pattern is repeated for the val field using p0 instead of p afterwards. Here
however, we do not access the value like we did for init. The actual access to the val
field will happen in one of the following conjuncts of the overall invariant. We therefore
need to put the rest of the invariant under the implication that the values of the val field
are consistent.
The biggest issue we faced in implementing this translation was getting everything that
appeared in conjuncts to the right of an acc into the implication. To achieve this, the
translation function takes an argument rightOfAnd of type Option[Assert] and the trans-
lation of acc will recursively call translate on rightOfAnd (if it is defined) and put the
result in the RHS of the implication. The translation of And and SeparatingConjunction
consequently recursively calls the translation function on the left child with the right child
(conjuncted with rightOfAnd if it was defined) given as rightOfAnd. The following nodes
are first translated and then wrapped in an And with rightOfAnd if rightOfAnd is defined.
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Other boolean and arithmetic operations as well as comparisons are directly translated
to the corresponding Viper expression using recursive calls to translate the children. v is
simply replaced by an expression that the translate function takes as an argument. ∗a is
translated, just like the access to a.init we saw above, as

(old[CAS_0](perm(temp(a).val)) > none ? temp(a).val : up(a).val)

where again up(a) is replaced by just a if the write was not relaxed. This conceptually
means that if we had any permission to the value in the temp heap after inhaling, we take
the value from the temp heap. Otherwise we take the value from the normal/up heap
depending on the write mode.
To model the WaitOnCAS loop, we use the fact that in the failing case no ownership
is transferred. Since the loop is simply waiting for a CAS to succeed, it is enough to
model it with one succeeding CAS. The previous iterations of the loop would not affect the
ownership we hold, as they would all be failing CAS operations.

5.3. Expressions

All simple expressions map directly to a Viper expression, so translateExp pattern matches
on the kind of expression it receives, calls itself recursively on the subexpressions and cre-
ates the respective Viper expression with the results of the recursive calls. The only case
in which something more happens is the case of a LocalVar node. Here there is addi-
tionally a check to make sure that the local variable has been declared. If the name of the
variable is not in currentLocals or currentFormals, a problem is reported.

5.4. Assertions

Just like for expressions, a lot of the AssertExp nodes map directly to a Viper expression.
The encoding of the RSL predicates was explained in section 5.2 as they were needed in
the translation of statements. In the translateAssert method the helper functions men-
tioned above are again used to generate their encoding. The locations mentioned in
them are also added to currentNeededVars to make sure they are available in the cur-
rent method. To translate the modalities, we translate the assertion they contain and use
makeUp and makeDown respectively to replace the references inside by their counter-
parts in the respective heap. The only interesting assertions to translate that still remain
are the separating conjunction, acc(l) and ∗l. Due to the way Viper’s conjunction works,
we can simply translate separating conjunctions into standard Viper conjunctions, which
is very convenient. As we have seen in chapter 3, a points-to assertion l

17→ e would be
expressed as acc(l) && ( ∗l == e) in our input language. Conceptually, our acc(l) is
the same as l

17→ in RSL. We therefore encode it as

acc(l.val) && acc(l.init) && l.init
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which gives us full access to the location’s val and init fields and ensures that the
location is initialized. Our ∗l can then simply be translated to l.val, allowing us to use it
inside of other assert expression like the equality comparison above.
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6. Evaluation

To evaluate the tool, we examined its behaviour on a number of examples. Some of these
are examples from the papers on RSL and FSL, others were handcrafted to exercise dif-
ferent parts of the encoding. Some of these fail checks at different stages of the checking
and translation process, some (expectedly) don’t verify. For those that do verify, we in-
clude a second version with some slightly tweaked postcondition that is expected to fail.
This ensures that the verification does not just reach some inconsistent state and would
accept any postcondition.

6.1. Examples

We will give a short description of the main features exercised for each example. The full
code of the examples in the input language is given in the appendix section A.2 on page
34.

Access without Owning This is a very simple example in which a non-atomic heap lo-
cation is allocated in one method and accessed in a second method. The second method
has no ownership of the location and consequently verification fails.

CASExample This is an example handcrafted to exercise different versions of the CAS
statement. It contains CAS with and without relaxed access modes, where the relaxed
case makes use of fences. It also includes both WaitOnCAS loops and a CAS that just
occurs inside an If. It also contains a slightly more complicated location invariant than
most of the other examples. The example verifies and there is a second version with a
wrong postcondition that does not verify.

Fork Join Result This is another handcrafted example. It exercises forking and joining
a method that takes multiple arguments and uses the Result variable to return a value.
It verifies and the version with a wrong postcondition does not verify.

FSL Figure 2 This example is our rendition of the program presented in Figure 2 of [2]. It
uses two atomic locations to signal different threads that access two non-atomic locations.
The accesses to the atomic locations are relaxed and fences are used for synchronization.
The program verifies and a tweaked version with a wrong postcondition does not.
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FSL Figure 2 Variant This example closely resembles the previous one. Instead of two
atomic locations only one atomic location is used. Its location invariant is split and the
parts are given to the different threads. This exercises our encoding of acquire conjuncts.
It verifies and the version with a wrong postcondition does not verify.

Nonatomic Sequential Simple Example This example only consists of one relevant
method. It exercises non-atomic allocation and writes as well as local variable assignment
and conditional expressions. It verifies and a variant with a wrong postcondition does not.

Release Write on Non-Atomic In this example, a non-atomic location al is allocated
and subsequently used in a release write operation. The checker correctly identifies the
problem and rejects the program. The problem description the checker gives is Problem
with Heap Location: Tried to use nonatomic heap location al in
atomic write operation.

RSL Figure 7 This example is a slightly modified version of the example presented
in Figure 7 of [1]. It consists of multiple methods implementing a lock. In the paper a
predicate J is used to model some arbitrary resource that is guarded by the lock. Since
our input language doesn’t give us any way to specify such a J, we instead use a non-
atomic heap location z allocated in an auxiliary method as this resource. The lock in our
example guards acc(z). This example verifies and a version where we add False to the
postcondition of the lock method does not verify.

RSL Figure 7 non-relaxed This is a variant of the previous example where the access
mode of the CAS used inside the lock method is AcqRel instead of AcqRlx. This version
also verifies and the corresponding version with the wrong postcondition does not verify.

RSL Figure 8 This example is our version of Figure 8 from [1]. It is a simple message
passing idiom using release/acquire atomics. It also exercises the WaitOnAtomicRead
loop. The example verifies and a version with a wrong postcondition does not verify.

Signal two threads with one location This is very similar to the FSL Figure 2 Vari-
ant. The difference is that it uses release/acquire atomics instead of relaxed accesses
and fences. It therefore exercises the splitting of the Acq predicate in a slightly different
scenario. The example verifies and another version with a wrong postcondition does not.

Undeclared Local In this example a method tries to assign to a local variable readvar
without declaring it. The Translator correctly detects this and rejects the program. The
problem description given to the user is Tried to assign to Local Variable
readvar without declaring it.
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6.2. Timing

We compare the total time spent in the front-end (including parsing, checking and trans-
lation) with the time spent in the verifier. Table 6.2 gives the timings measured in one
example run. We can observe that the time spent in the frontend is typically much smaller
than the time needed for verification. We also see that the failing variants of the examples
do not systematically differ from the originals.

Example Frontend time [s] Verifier time [s]
Version correct wrong correct wrong
Access without owning - 1.772 - 10.41
CASExample 0.797 0.363 56.295 53.559
Fork Join Result 0.054 0.017 11.117 11.111
FSL Figure 2 0.521 0.271 14.849 17.071
FSL Figure 2 Variant 0.351 0.372 19.749 13.664
Nonatomic Seq. Simple Ex. 0.038 0.05 10.581 9.837
Rel Write on NA - 0.006 - -
RSL Figure 7 0.138 0.197 12.625 11.741
RSL Figure 7 non-relaxed 0.131 0.089 11.766 10.296
RSL Figure 8 0.089 0.075 11.407 10.229
Signal 2 threads 1 location 0.154 0.212 11.783 11.13
Undeclared Local - 0.047 - -

Table 6.1.: Example Runtimes

30



7. Conclusion and Future Work

We presented a prototype verifier for weak memory programs based on an encoding of
relaxed separation logics into Viper. We have seen a number of interesting examples that
can be succesfully verified using this newly implemented tool. Nonetheless, there are still
some examples that can’t be expressed in our input language. Extensions of the front-
end and input language to cover additional concepts are therefore an interesting topic for
future work.
One example of such an extension would be adding support for ghost locations, as intro-
duced in [5] and necessary for the running example of the paper. In this particular case,
a lot of groundwork has already been laid in the front-end. The main part missing is a
way for the user to specify ghost locations in the input language. The translation already
uses the encoding of the parallelHeaps domain with ghost locations presented in the ap-
pendix of [3]. Since there is no way to allocate ghost locations, we do not yet need to track
the ghost status of locations and consequently simply assume at the beginning of each
method that all locations given to it are real locations.
The assertions of the current input language include only the acc(x) assertion denoting
full access to the location x. It would be possible to add another assertion to denote frac-
tional access permissions to locations. As we have seen in section 5.2.6, for the CAS
we already have an encoding that is more general than necessary for the current input
language in order to be easy to reuse for fractional accesses. Therefore, actually adding
the assertion would not require a lot of conceptually new things.
A third possible addition to the input language would be the rewrite statement pre-
sented in the appendix of [3]. This statement allows the programmer to indicate entail-
ment between different invariants in Acq predicates. It can be used to split Acq predicates
in more flexible ways than the encoding using conjuncts supports on its own. Adding it
should be straight-forward, as it is just another statement that needs to be handled and
does not interact with the rest of the translation.
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A. Appendix

A.1. Parser Specification

readmode ::= Acq | Rlx | SC | NA
writemode ::= Rel | Rlx | SC | NA
allocmode ::= RMW | AR
Ident ::= a letter, followed by zero or more

letters or numbers
Aexp ::= Ident | Integer
| (Aexp + Aexp) | (Aexp * Aexp) | (Aexp - Aexp)
| (Bexp ? Aexp : Aexp)
| Ident := [Ident]_readmode
| [Ident]_writemode := Aexp
| Ident := CAS(Ident, Aexp, Aexp)_readmodewritemode
Bexp ::= not Bexp | (Bexp or Bexp) | (Bexp and Bexp)
| (Aexp == Aexp) | (Aexp <= Aexp) | (Aexp != Aexp)
| (Aexp < Aexp) | (Aexp >= Aexp) | (Aexp > Aexp)
Stm ::= Ident := Aexp | var Ident | skip | [Stm;]+
| if Bexp then {Stm} else {Stm}
| while Bexp invariant Assert {Stm}
| while Bexp {Stm}
| Ident := alloc()
| Ident := alloc(Assert)_allocmode
| Ident := fork(Ident [, Aexp]*)
| Ident := join(Ident)
| Ident := [Ident]_readmode
| [Ident]_writemode := Aexp
| Ident := CAS(Ident, Aexp, Aexp)_readmodewritemode
| FenceAcq | FenceRel(Assert)
Method ::= method Ident ([Ident][,Ident]*)

pre Assert post Assert {Stm}
Program ::= [Method]+
AssertExp ::= *Ident | Integer | True | False | Ident
| (AssertExp + AssertExp) | (AssertExp * AssertExp)
| (AssertExp - AssertExp) | not AssertExp
| (AssertExp or AssertExp) | (AssertExp and AssertExp)
| (AssertExp == AssertExp) | (AssertExp != AssertExp)
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| (AssertExp <= AssertExp) | (AssertExp >= AssertExp)
| (AssertExp < AssertExp) | (AssertExp > AssertExp)
Assert ::= acc(Ident) | AssertExp | (Assert && Assert)
| (AssertExp => Assert)
| (AssertExp ? Assert : Assert)
| Rel(Ident, Assert)
| Acq(Ident, Assert)
| Acq(Ident, Assert[Integer :=emp [, Integer := emp]*]
| RMWAcq(Ident, Assert)
| Init(Ident) | Uninit(Ident)
| Up(Assert) | Down(Assert)
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A.2. Input Examples

Access without Owning

method foo()
pre True
post True
{
var lo;
lo := 5;
al := alloc();
[al]_NA := lo;
lo := ((1 == 1) ? 6 : 7);
lo := ((1 != 1) ? 8 : 9);
}
method bar()
pre True
post True
{
var readvar;
readvar := [al]_NA;
}

CASExample

method outerscope()
pre True
post ((acc(a) && ((*a == 7) or (*a == 8))) && (Result >= 7))
{
a := alloc();
lock := alloc(((v == 0) ?

(acc(a) && ((*a == 7) or (*a == 8))) : True))_RMW;
[a]_NA := 7;
FenceRel((acc(a) && (*a == 7)));
[lock]_Rlx := 0;
t1 := fork(thread1);
t2 := fork(thread2);
var tmp;
tmp := join(t1);
Result := join(t2);
while(tmp := CAS(lock,0,1)_RlxRlx != 0){skip};
FenceAcq;
}

method thread1()
pre ((RMWAcq(lock,

((v == 0) ? (acc(a) && ((*a == 7) or (*a == 8))) : True))
&& Init(lock))
&& Rel(lock,

((v == 0) ? (acc(a) && ((*a == 7) or (*a == 8))) : True)))
post True
{
var tmp;
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if(tmp := CAS(lock,0,1)_AcqRel == 0)then{
[a]_NA := 8;
[lock]_Rel := 0;

} else {skip};
}

method thread2()
pre ((RMWAcq(lock,

((v == 0) ? (acc(a) && ((*a == 7) or (*a == 8))) : True))
&& Init(lock))
&& Rel(lock,

((v == 0) ? (acc(a) && ((*a == 7) or (*a == 8))) : True)))
post (Result >= 7)
{
var tmp;
while(tmp := CAS(lock,0,1)_AcqRel != 0){skip};
Result := [a]_NA;
[a]_NA := 7;
[lock]_Rel := 0;
}

Fork Join Result

method foo()
pre True
post (acc(al) && (*al == 5))
{
var lo;
var tmp;
lo := 2;
al := alloc();
[al]_NA := 3;
token := fork(bar,lo,tmp := [al]_NA);
lo := join(token);
[al]_NA := lo;
}

method bar(a,b) pre (a > 0) post ((Result == 5) && (a > 0)){
Result := 5;
}

FSL Figure 2

method outerscope()
pre True
post ((acc(a) && (*a == 43)) && (acc(b) && (*b == 8)))
{
a := alloc();
b := alloc();
x := alloc(((v==0) ? True : (acc(a) && (*a == 42))))_AR;
y := alloc(((v==0) ? True : (acc(b) && (*b == 7))))_AR;
[x]_Rlx := 0;
[y]_Rlx := 0;
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t1 := fork(left);
t2 := fork(right);
t3 := fork(middle);
var tmp;
tmp := join(t1);
tmp := join(t2);
tmp := join(t3);
}

method left()
pre (Acq(x,((v==0) ? True : (acc(a) && (*a == 42)))) && Init(x))
post (acc(a) && (*a == 43))
{
var tmp;
while(tmp := [x]_Rlx == 0){skip};
FenceAcq;
[a]_NA := (tmp := [a]_NA + 1);
}

method right()
pre (Acq(y,((v==0) ? True : (acc(b) && (*b == 7)))) && Init(y))
post (acc(b) && (*b == 8))
{
var tmp;
while(tmp := [y]_Rlx == 0){skip};
FenceAcq;
[b]_NA := (tmp := [b]_NA + 1);
}

method middle()
pre ((Uninit(a) && Uninit(b))

&& (Rel(x,((v==0) ? True : (acc(a) && (*a == 42))))
&& Rel(y,((v==0) ? True : (acc(b) && (*b == 7))))))

post ((Init(x) && Init(y))
&& (Rel(x,((v==0) ? True : (acc(a) && (*a == 42))))
&& Rel(y,((v==0) ? True : (acc(b) && (*b == 7))))))

{
[a]_NA := 42;
[b]_NA := 7;
FenceRel(((acc(a) && (*a == 42)) && (acc(b) && (*b == 7))));
[x]_Rlx := 1;
[y]_Rlx := 1;
}

FSL Figure 2 Variant

method outerscope()
pre True
post ((acc(a) && (*a == 43)) && (acc(b) && (*b == 8)))
{
a := alloc();
b := alloc();
x := alloc((((v==0) ? True : (acc(a) && (*a == 42)))
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&& ((v==0) ? True : (acc(b) && (*b == 7)))))_AR;
[x]_Rlx := 0;
t1 := fork(left);
t2 := fork(right);
t3 := fork(middle);
var tmp;
tmp := join(t1);
tmp := join(t2);
tmp := join(t3);
}

method left()
pre (Acq(x,((v==0) ? True : (acc(a) && (*a == 42)))) && Init(x))
post (acc(a) && (*a == 43))
{
var tmp;
while(tmp := [x]_Rlx == 0){skip};
FenceAcq;
[a]_NA := (tmp := [a]_NA + 1);
}

method right()
pre (Acq(x,((v==0) ? True : (acc(b) && (*b == 7)))) && Init(x))
post (acc(b) && (*b == 8))
{
var tmp;
while(tmp := [x]_Rlx == 0){skip};
FenceAcq;
[b]_NA := (tmp := [b]_NA + 1);
}

method middle()
pre ((Uninit(a) && Uninit(b))

&& Rel(x,(((v==0) ? True : (acc(a) && (*a == 42)))
&& ((v==0) ? True : (acc(b) && (*b == 7))))))

post (Init(x)
&& Rel(x,(((v==0) ? True : (acc(a) && (*a == 42)))

&& ((v==0) ? True : (acc(b) && (*b == 7))))))
{
[a]_NA := 42;
[b]_NA := 7;
FenceRel(((acc(a) && (*a == 42)) && (acc(b) && (*b == 7))));
[x]_Rlx := 1;
}

Nonatomic Sequential Simple Example

method foo()
pre True
post ((acc(al) && (*al == 5)) && (Result == 9))
{
var lo;
lo := 5;
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al := alloc();
[al]_NA := lo;
lo := ((1 == 1) ? 6 : 7);
lo := ((1 != 1) ? 8 : 9);
Result := lo;
}
method bar()
pre True
post True
{skip}

Release Write on Non-Atomic

method foo() pre True post True
{
var lo;
lo := 5;
al := alloc();
[al]_Rel := lo;
lo := ((1 == 1) ? 6 : 7);
lo := ((1 != 1) ? 8 : 9);
}
method bar()
pre True
post True
{skip}

RSL Figure 7

method new_lock()
pre acc(z)
post ((Rel(x,((v == 0) ? True : ((v == 1) ? acc(z) : False)))

&& RMWAcq(x,((v == 0) ? True : ((v == 1) ? acc(z) : False))))
&& Init(x))

{
x := alloc(((v == 0) ? True : ((v == 1) ? acc(z) : False)))_RMW;
[x]_Rel := 1;
}

method unlock()
pre (acc(z)

&& ((Rel(x,((v == 0) ? True : ((v == 1) ? acc(z) : False)))
&& RMWAcq(x,((v == 0) ? True : ((v == 1) ? acc(z) : False))))
&& Init(x)))

post ((Rel(x,((v == 0) ? True : ((v == 1) ? acc(z) : False)))
&& RMWAcq(x,((v == 0) ? True : ((v == 1) ? acc(z) : False))))
&& Init(x))

{
[x]_Rel := 1;
}

method lock()
pre ((Rel(x,((v == 0) ? True : ((v == 1) ? acc(z) : False)))
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&& RMWAcq(x,((v == 0) ? True : ((v == 1) ? acc(z) : False))))
&& Init(x))

post (acc(z)
&& ((Rel(x,((v == 0) ? True : ((v == 1) ? acc(z) : False)))
&& RMWAcq(x,((v == 0) ? True : ((v == 1) ? acc(z) : False))))
&& Init(x)))

{
var tmp;
while(tmp := CAS(x,1,0)_AcqRlx != 1){skip};
}

method allocationOfNonAtomic()
pre True
post acc(z)
{
z := alloc();
[z]_NA := 42;
}

RSL Figure 7 non-relaxed

method new_lock()
pre acc(z)
post ((Rel(x,((v == 0) ? True : ((v == 1) ? acc(z) : False)))

&& RMWAcq(x,((v == 0) ? True : ((v == 1) ? acc(z) : False))))
&& Init(x))

{
x := alloc(((v == 0) ? True : ((v == 1) ? acc(z) : False)))_RMW;
[x]_Rel := 1;
}

method unlock()
pre (acc(z)

&& ((Rel(x,((v == 0) ? True : ((v == 1) ? acc(z) : False)))
&& RMWAcq(x,((v == 0) ? True : ((v == 1) ? acc(z) : False))))
&& Init(x)))

post ((Rel(x,((v == 0) ? True : ((v == 1) ? acc(z) : False)))
&& RMWAcq(x,((v == 0) ? True : ((v == 1) ? acc(z) : False))))
&& Init(x))

{
[x]_Rel := 1;
}

method lock()
pre ((Rel(x,((v == 0) ? True : ((v == 1) ? acc(z) : False)))

&& RMWAcq(x,((v == 0) ? True : ((v == 1) ? acc(z) : False))))
&& Init(x))

post (acc(z)
&& ((Rel(x,((v == 0) ? True : ((v == 1) ? acc(z) : False)))
&& RMWAcq(x,((v == 0) ? True : ((v == 1) ? acc(z) : False))))
&& Init(x)))

{
var tmp;
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while(tmp := CAS(x,1,0)_AcqRel != 1){skip};
}

method allocationOfNonAtomic()
pre True
post acc(z)
{
z := alloc();
[z]_NA := 42;
}

RSL Figure 8

method outerscope()
pre True
post (acc(a) && (*a == 8))
{
a := alloc();
c := alloc(((v == 0)? True : (acc(a) && (*a == 7))))_AR;
[c]_Rlx := 0;
t1 := fork(thread1);
t2 := fork(thread2);
var tmp;
tmp := join(t1);
tmp := join(t2);
}

method thread1()
pre (Uninit(a) && Rel(c,((v == 0)? True : (acc(a) && (*a == 7)))))
post Rel(c,((v == 0)? True : (acc(a) && (*a == 7))))
{
[a]_NA := 7;
[c]_Rel := 1;
}

method thread2()
pre (Acq(c,((v == 0)? True : (acc(a) && (*a == 7)))) && Init(c))
post (acc(a) && (*a == 8))
{
var tmp;
while(tmp := [c]_Acq == 0){skip};
var b;
b := [a]_NA;
[a]_NA := (b + 1);
}

Signal two threads with one location

method outerscope()
pre True
post ((acc(a) && (*a == 43)) && (acc(b) && (*b == 8)))
{
a := alloc();
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b := alloc();
x := alloc((((v==0) ? True : (acc(a) && (*a == 42)))

&& ((v==0) ? True : (acc(b) && (*b == 7)))))_AR;
[x]_Rel := 0;
t1 := fork(left);
t2 := fork(right);
t3 := fork(middle);
var tmp;
tmp := join(t1);
tmp := join(t2);
tmp := join(t3);
}

method left()
pre (Acq(x,((v==0) ? True : (acc(a) && (*a == 42)))) && Init(x))
post (acc(a) && (*a == 43))
{
var tmp;
while(tmp := [x]_Acq == 0){skip};
[a]_NA := (tmp := [a]_NA + 1);
}

method right()
pre (Acq(x,((v==0) ? True : (acc(b) && (*b == 7)))) && Init(x))
post (acc(b) && (*b == 8))
{
var tmp;
while(tmp := [x]_Acq == 0){skip};
[b]_NA := (tmp := [b]_NA + 1);
}

method middle()
pre ((Uninit(a) && Uninit(b))

&& Rel(x,(((v==0) ? True : (acc(a) && (*a == 42)))
&& ((v==0) ? True : (acc(b) && (*b == 7))))))

post (Init(x)
&& Rel(x,(((v==0) ? True : (acc(a) && (*a == 42)))

&& ((v==0) ? True : (acc(b) && (*b == 7))))))
{
[a]_NA := 42;
[b]_NA := 7;
[x]_Rel := 1;
}

Undeclared Local

method foo()
pre True
post True
{
var lo;
lo := 5;
al := alloc();
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[al]_NA := lo;
lo := ((1 == 1) ? 6 : 7);
lo := ((1 != 1) ? 8 : 9);
}
method bar()
pre True
post True
{
readvar := [al]_NA
}
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