
Master’s Thesis

Improving Cee
and

Ownership-Based Verification

Christoph Studer

Chair of Programming Methodology
Department of Computer Science

ETH Zurich

http://pm.inf.ethz.ch/

April 2009

Supervised by
Prof. Dr. Peter Müller
Arsenii Rudich
Joseph N. Ruskiewicz

Chair of Programming Methodology

http://pm.inf.ethz.ch/

Abstract

Spec# is a verification system that allows programmers to statically verify
object-oriented programs. Cee was developed as Jürg Billeter’s master’s thesis
project to help programmers better understand Spec# verification failures. It
generates counterexample programs that exhibit failing execution traces and are
debuggable using the well-known debugger user interface.

In this thesis, we enhanced Cee by contributing method side effect capturing,
generation of runtime checks for frame conditions, and improved handling of
method calls in contracts. Furthermore, our work enables integration of Cee
with Visual Studio and other IDEs.

As a separate effort, we designed and analyzed heap models for ownership-
based verification with the aim to improve verification performance. We evalu-
ated these models within the Spec# system and consider none of them valid
replacements for the current heap model. We discuss our findings in this report
for future reference.

Acknowledgments
I would like to thank Prof. Dr. Peter Müller for the agreeable collaboration
throughout my master’s thesis. During part II of this thesis Arsenii Rudich
supervised my work, while Joseph N. Ruskiewicz oversaw part I. Thank you for
numerous hours of discussions, valuable inputs, and advice.

Furthermore, I would like to thank Yves Alter and Thomas Lenherr for their
feedback on this report.

Contents

I Improving Cee 1

1 Introduction 3

2 Background 5
2.1 The Spec# Programming System 5
2.2 Frame Conditions . 6
2.3 Boogie . 7
2.4 Z3 and Counterexamples . 11
2.5 Cee - Counterexample Executor 12

3 Maintaining Object States 15
3.1 Object Initialization . 15
3.2 Object Updates . 18

4 Runtime Checks for Frame Conditions 23
4.1 Addressing Heap Locations . 23
4.2 Adding Runtime Checks . 24
4.3 Example . 25
4.4 Limitations . 26

5 Method Calls in Contracts 29
5.1 Function Tagging . 29
5.2 Example . 30
5.3 Implementation . 31
5.4 Limitations . 33

6 Other Improvements to Cee 35
6.1 Counterexample Selection . 35
6.2 Visual Studio Integration . 36
6.3 Integration with the e TextEditor 36
6.4 Runtime Checks . 37
6.5 Debugging Options . 37

7 Future Work 39
7.1 Object Registry . 39
7.2 Improving Side Effect Capturing 40
7.3 Improving Runtime Checks for Frame Conditions 40
7.4 Improving Function Tagging . 41
7.5 Understanding Verifiable Programs 41

v

CONTENTS

8 Conclusions 43

II Multiple Heaps for Ownership-Based Verification 45

9 Introduction 47

10 Background 49
10.1 Spec# and Boogie . 49
10.2 Current Heap Model . 49
10.3 Ownership Type System . 50
10.4 Problem . 53

11 Investigated Heap Models 55
11.1 Model: Peer Heaps . 56
11.2 Model: Paths . 60
11.3 Model: Heap Variables . 62

12 Conclusions 67
12.1 General Problems . 67
12.2 Future Work . 67

III Appendices 71

A Cee Usage 73
A.1 Usage . 73
A.2 Options . 73

B Visual Studio Integration 75
B.1 Cee AddIn . 75

C Text Case Definitions 77
C.1 Example 1: Frame Condition Violation 77
C.2 Example 2: Side Effect Capturing 78

vi

Part I

Improving Cee

1

Chapter 1

Introduction

Although formal verification techniques have been available to program design-
ers for more than 25 years, it was not until 5 years ago that it became feasible
to use for programmers in modern object-oriented systems. Spec# effectively
closed the gap between the abstract program specification and its implemen-
tation by allowing programmers to write them alongside each other and in the
same language.

By employing Spec#, programmers can statically verify critical parts of their
systems and guarantee correct functioning for all executions. However, if the
verification fails, it is often not obvious to programmers where they made a
mistake and how it can be corrected. The mistake might be located in the
implementation or, leading to more subtle errors, in the specification.

The counterexample executor Cee was developed as Jürg Billeter’s master’s
thesis project in order to help programmers better understand Spec# verifica-
tion failures. From a counterexample, which is part of the Spec# verification
output, it generates a debuggable program that exhibits one particular execu-
tion trace leading to the verification failure. By being able to inspect variables
and control execution through the well-known debugger user interface, program-
mers can compare the failing execution to their expectations. They can thereby
better understand the verification failure and find mistakes more easily. This
thesis improves Cee by adding new functionality and removing limitations of
existing features.

In this report, we first give an overview of the Spec# programming system
and the general functioning of Cee. In chapter 3 we describe how Cee main-
tains object states throughout counterexample execution, what limitations we
encountered and how we removed them. Chapter 4 presents the support of run-
time checks for frame conditions we contributed to Cee, while chapter 5 shows
a technique that improves Cee’s handling of method calls in program specifica-
tions. A collection of smaller enhancements to Cee can be found in chapter 6,
and finally, this part of the report is closed by an outlook at possible future
work in chapter 7 and the conclusions in chapter 8.

3

Chapter 2

Background

2.1 The Spec# Programming System
Spec#[4] is a programming system for developing and statically verifying pro-
grams. It is developed at Microsoft Research with contributions from various
universities and individuals. Spec# allows developers to formally verify whether
a program is correct with respect to some specification. It largely consists of
the following components:

1. Spec# programming language

2. Spec# compiler

3. Boogie static verifier

Figure 2.1 illustrates the compilation and verification process in the Spec#
programming system described in the following:

The system takes Spec# programs (1) as input. The Spec# language is a
super-set of C# extending the syntax with keywords and constructs for spec-
ifications, sometimes called contracts. For example, pre- and postconditions
can be specified for a method using the requires and the ensures keyword,
respectively. Refer to listing 2.1 for a simple Spec# program.

Input programs are compiled into .NET CIL assemblies by the Spec# com-
piler (2). In addition to the compiled program statements, the compiler inserts
runtime checks for specifications and also encodes them using special instruc-
tions. The output assemblies can be read and executed by any standard .NET
virtual machine. Runtime checks guarantee that a particular execution adheres
to the specification.

Furthermore, the static verifier Boogie (3) provides the developer with the
possibility to statically prove that all executions are correct with respect to the
specification.

For the example program in listing 2.1, verification with Spec# yields:

Error : Method Vector . Inve r t () , u n s a t i s f i e d po s t cond i t i on :
y == −o ld (y)

This is because the statement on line 10 wrongly assigns -x to y. After
correcting it to y = -y the program is successfully verified.

5

CHAPTER 2. BACKGROUND

Figure 2.1: The Spec# programming system.

1 public class Vector
2 {
3 public int x , y ;
4
5 public void Inve r t ()
6 ensures x == −old (x) ;
7 ensures y == −old (y) ;
8 {
9 x = −x ;
10 y = −x ;
11 }
12 }

Listing 2.1: Example Spec# program.

2.2 Frame Conditions

Frame conditions define which parts of the object graph a method is allowed to
modify. By default, methods in Spec# are only allowed to modify fields on the
this object, but a programmer can specify a list of modifiable object fields for
each method using the modifies keyword.

For verification of object-oriented programs, frame conditions are an essential
technique to permit reasoning about the state of the heap after a method call.
The verifier can assume the object graph regions outside the specified modifies
clause to be unchanged after a call, while regions mentioned by the modifies
clause might have changed arbitrarily or as specified by postconditions.

Note that frame conditions only cover observable modifications. Objects
instantiated within the method are not observable from the outside and can
hence be modified without reference in the modifies clause.

Spec# verifies that methods do not violate their frame conditions, neither
directly in their body nor by calling methods with weaker frame conditions.

6

CHAPTER 2. BACKGROUND

Pure Methods

Methods without observable side effects are called pure. In Spec#, only calls to
pure methods are allowed from within contracts, so that determining whether
a certain contract holds does not change program state. The absence of side
effects allows pure methods to be modeled as mathematical functions[7], which
facilitates reasoning about pure methods.

2.3 Boogie

Boogie[3] is the central part in the Spec# programming system as it translates
Spec# programs into abstract mathematical programs and is therefore respon-
sible for all employed abstractions and mathematical models.

The Spec# input program is first translated into BoogiePL[2], the internal
representation of Boogie for abstract programs. After several rounds of ab-
stractions, a formula representing all possible program executions is fed into a
theorem prover and checked for validity. The program adheres to the specifica-
tion if and only if the formula is valid.

Boogie supports different theorem prover back-ends, but best performance
is currently achieved using Z3[5], which is developed as a separate project at
Microsoft Research.

Consider the example program in listing 2.1. The remainder of this section
describes how this program is first translated into BoogiePL, then iteratively
processed and transformed into a formula that can be fed into Z3.

Program Translation into BoogiePL

Each method declaration and program instruction is individually translated into
a corresponding BoogiePL declaration or instruction, respectively. The resulting
initial BoogiePL program therefore closely resembles the input program.

We now present the translations of the Spec# constructs that are most
important for the main part of this thesis. Note that some of the translations
have been simplified in order to improve readability.

Heap

BoogiePL does not have a built-in concept of a heap. Instead, Boogie translates
all heap accesses1 in the Spec# program into operations on a 2-dimensional
array called $Heap. For instance, the Spec# field access

this . x ;

where this is of type Vector, is translated into the BoogiePL commands:

assert t h i s != null ;
$Heap [th i s , Vector . x] ;

1Heap accesses include field and array element accesses.

7

CHAPTER 2. BACKGROUND

Similarly, a Spec# field write

this . x = 5 ;

is translated into the BoogiePL commands:

assert t h i s != null ;
$Heap [th i s , Vector . x] := 5 ;

The assert commands model the runtime behavior of a .NET virtual ma-
chine when a field access is performed on a null reference.

Method Declaration and Definition

For each method in the Spec# program, Boogie creates a procedure in Boo-
giePL that encodes the signature including contracts. The frame condition is
translated into an additional postcondition that relates pre-state and post-state
heaps. The two heaps are glued together such that all locations are unchanged,
except for locations mentioned in the modifies clause.

The following shows and excerpt of the procedure generated for the Invert
method:

procedure Vector . Inve r t (t h i s : ref) ;
. . .
// user−dec l a r ed po s t c ond i t i on s
ensures $Heap [th i s , Vector . x] == 0 − old ($Heap [th i s ,

Vector . x]) ;
ensures $Heap [th i s , Vector . y] == 0 − old ($Heap [th i s ,

Vector . y]) ;

Procedures are used by Boogie for look-up of the method signature and
contracts when the corresponding method itself is verified or when it is called
from a different method.

The actual implementation of each method (if available) is translated into an
implementation in BoogiePL. The following is an excerpt of the implementation
for the Invert method:

1 implementation Vector . Inve r t (t h i s : ref)
2 {
3 var s t a c k0 i : int ;
4
5 . . .
6 // −−−−− l oad f i e l d −−−−−
7 assert t h i s != null ;
8 s t a c k0 i := $Heap [th i s , Vector . x] ;
9 // −−−−− unary opera tor −−−−−
10 s t a ck0 i := 0 − s t a c k0 i ;
11 // −−−−− s t o r e f i e l d −−−−−
12 assert t h i s != null ;
13 $Heap [th i s , Vector . x] := s t a ck0 i ;
14 . . .
15
16 }

8

CHAPTER 2. BACKGROUND

The excerpt above shows the translated field load, negation, and field store
on line 9 in the source Spec# program. Intermediate values for sub-expressions
are assigned to the variable stack0i.

Method Call

How a Spec# method call is translated into BoogiePL depends on the location
of the call. Method calls that are located within regular C# statements are
translated into call commands in BoogiePL. Suppose the assignment x = -x
on line 9 of the example Spec# program was replaced by x = -GetX(), where
GetX is a method that simply returns x. The following would be the BoogiePL
translation for the GetX call:

// −−−−− c a l l −−−−−
assert t h i s != null ;
ca l l s t a c k0 i := Vector .GetX(t h i s) ;

If a method call is located within a contract, however, it is translated into a
mathematical function expression. This is necessary as contracts are preserved
as Boolean expressions in BoogiePL, which cannot contain method calls. Calls
from within contracts can be modeled as function expressions because the called
methods are required to be pure.

GetX is such a pure method that can be used in a contract. Suppose the
first postcondition x == -old(x) on line 6 in the Spec# program was replaced
by GetX() == -old(GetX()). The BoogiePL translation of this contract would
then be:

ensures #Vector .GetX($Heap , t h i s) == 0 − old(#Vector .GetX
($Heap , t h i s)) ;

Boogie would also declare an uninterpreted function2 in BoogiePL:

function #Vector .GetX(heap , ref) returns (int) ;

Only one uninterpreted function per pure method is created and is used for
all calls from contracts. The postcondition of the method is encoded using an
axiom which states that the return value is equal to this.x:

axiom (f o ra l l $h : heap , t h i s : ref : :
#Vector .GetX($h , o) == $h [th i s , Vector . x])

By applying this axiom to the modified postcondition, one can see that it
is in fact equivalent to the original postcondition, the translation of which was
shown above.

Translation from BoogiePL to a Formula

Having translated the Spec# program into BoogiePL, Boogie then verifies im-
plementation by implementation. Z3 takes a mathematical formula as input,
which means that further abstraction is required.

2An uninterpreted function is a functions with a name and type, but no actual function
definition.

9

CHAPTER 2. BACKGROUND

Amongst others, the following transformations are applied to the BoogiePL
program before it can be fed into Z3:

1. Preconditions of the verified implementation are added as assumptions at
the beginning, postconditions as assertions at the end.

2. Calls are replaced by contracts of the called procedure. Preconditions
become assertions, postconditions become assumptions.

3. Commands are translated into passive commands.

Transformations (1) inject the contracts of the implementation under verifica-
tion. When Boogie replaces method calls by their contracts during transforma-
tion (2) the precondition of the called method is asserted followed by a havoc3
of the heap. Then, the postcondition of the method is assumed. As the frame
condition is encoded in the postcondition, side effects are properly reflected on
the heap.

Transformation (3) primarily transforms all assignments into assumptions.
In order to keep the process mathematically correct, fresh variables have to be
introduced when assuming new facts on them. This essentially translates the
program into single static assignment (SSA) form and the introduced variable
versions are called incarnations. Incarnations for the original variable $var are
named $var@0, $var@1, and so on.

Consider the Invert implementation from before. The following excerpt
shows how the implementation uses assume and assert statements only after
having applied the 3 transformations explained above:

1 implementation Vector . Inve r t (t h i s : ref)
2 {
3 var stack0i@0 : int , s tacki@1 : int ;
4 var $Heap : heap , $Heap@0 : heap ;
5
6 . . .
7 // −−−−− l oad f i e l d −−−−−
8 assert t h i s != null ;
9 assume stack0i@0 == $Heap [th i s , Vector . x] ;
10 // −−−−− unary opera tor −−−−−
11 assume stack0i@1 == 0 − stack0i@0 ;
12 // −−−−− s t o r e f i e l d −−−−−
13 assert t h i s != null ;
14 assume $Heap@0 == $Heap [th i s , Vector . x := stack0i@1] ;
15 . . .
16
17 }

Note the expression on the right hand side on line 14. This is syntactic sugar
for a universal quantification glueing $Heap@0 and $Heap together by leaving
all entries intact except for the entry [this, Vector.x], on which a new value
stack0i@1 is assumed.

The resulting implementation in SSA form is translated into a mathematical
formula and fed into Z3, which then tries to prove its validity.

3Havocing a variable removes all assumptions on it.

10

CHAPTER 2. BACKGROUND

2.4 Z3 and Counterexamples
When a formula is checked for validity but found invalid, an unsatisfying as-
signment can be presented as proof. Z3 is able to produce such an unsatisfying
assignment, called a counterexample. If the command line option /printModel
is given to Boogie, it prints the respective Z3 counterexample along each verifi-
cation failure.

Z3 was optimized for program verification. It delivers high performance as
a back-end to Spec# and is able to provide partial models, that is counterex-
amples only containing relevant information about program execution up to a
violated contract. Important theories such as integer arithmetics, uninterpreted
functions, and quantifiers are directly supported in Z3.

Partitions
The abstraction for any value in the counterexample is called partition. Each
partition represents an identity of an element in the universe of the counterex-
ample. Elements can be anything that requires definition, for example BoogiePL
variables, types, type fields, object instances, and so on. These elements all stem
from variables and values in the input formula.

Counterexamples contain mappings from elements to their partition values.
If two elements map to the same partition, they are in fact equal.

Consider the following excerpt from the counterexample of the example pro-
gram in listing 2.1:

∗0 : True
∗1 : Fa l se
. . .
∗6 : −1 { stack0i@0 }
. . .

∗11 : System . Object
. . .
∗43 : Vector . x
∗45 : Vector . y
∗47 : Vector
. . .
∗58 : 0
. . .
∗82 : $Heap@0
. . .

The left-hand-side denotes the partition while the right-hand-side lists ele-
ments that were assigned that partition. Partition 0 and 1 are used for Boolean
values. Partition 6 maps to the integer literal -1 as well as to the BoogiePL
variable $stack0i@0, which means that $stack0i@0 is equal to -1. Partitions
11, 43, 45, and 47 map to types and type fields.

Function Interpretations
Similarly to the fact that counterexamples contain actual values for variables
in the input formula, uninterpreted functions are assigned function interpreta-

11

CHAPTER 2. BACKGROUND

tions. For each function in BoogiePL, the counterexample contains a list of
interpretations which assign results to function expressions with actual input
parameters.

For example, for the pure function GetX introduced in the previous sec-
tion 2.3 the counterexample contains the following interpretation:

#Vector .GetX($Heap , t h i s) = 0

This means that the function expression in the postcondition was assigned
a result of 0 by Z3. Note that the arguments and the function results are given
as partition values. They are shown as resolved elements here for improved
readability.

Heap Contents

In section 2.3 we explained how heap accesses are translated into accesses on a
2-dimensional array called $Heap in BoogiePL. As part of a further abstraction
step, these array accesses are replaced by select2 function expressions. For
example, the field read this.x on line 9 of the example program in listing 2.1
is transformed into the following function expression:

s e l e c t 2 ($Heap , th i s , Vector . x)

Heap contents in the counterexample can therefore be found in the list of
select2 function interpretations:

s e l e c t 2 ($Heap , th i s , Vector . x) = −1
s e l e c t 2 ($Heap@0 , th i s , Vector . x) = 1
. . .
s e l e c t 2 ($Heap , th i s , Vector . y) = 0
s e l e c t 2 ($Heap@1 , th i s , Vector . y) = −1

Using these interpretations, object field values can be extracted for all heap
incarnations.

2.5 Cee - Counterexample Executor

The counterexample executor Cee[1] was developed as Jürg Billeter’s master’s
thesis project at the Chair of Programming Methodology, ETH Zurich. It is a
tool that helps programmers better understand Spec# verification failures. Cee
allows programmers to debug a method execution that exhibits a verification
failure using the familiar debugger user interface. Variables can be inspected
and the program execution can be controlled similar to a runtime error in a test
case.

Consider the diagram in figure 2.2. Given a verification failure, Cee reads
the original method from the assembly produced by the Spec# compiler. It
then triggers and intercepts the verification process in order to obtain a coun-
terexample with information about a failing method execution. Cee uses this
information to rewrite the original program such that it can be run to reproduce
the verification failure.

Rewritings performed on the original method include:

12

CHAPTER 2. BACKGROUND

Figure 2.2: The counterexample executor Cee.

• Initializing parameters including this

• Replacing method calls with calls to mock methods that behave as speci-
fied in the counterexample

• Rewriting loops to match the counterexample trace

• Adding runtime checks at the location of the verification failure

By applying these rewritings, Cee effectively provides the method with the initial
state and interface behaviors necessary to reproduce the verification failure.

Cee then outputs the rewritten program as a .NET assembly that calls the
method when executed. Attaching a debugger allows the inspection of variables
and control of program execution, since debugging information is preserved
throughout the rewrite.

Consider the Spec# program in listing 2.2. Verification yields an assert viola-
tion on line 8, because the return value of Decrement(10) is 9, and consequently
x != 8. Giving this program and the verification failure to Cee results in the
counterexample program in listing 2.34. Note how each call to a method was
replaced by a mock method call that behaves identically to the called method,
even if there is no implementation available. The rewritten method Foo can be
debugged and exhibits the assert violation at the appropriate location.

While Cee was already a useful tool prior to this thesis, it suffered from
limitations that constricted the set of reproducible counterexamples. The goal
of this part of the thesis was to eliminate some of these limitations, and the
achievements of this undertaking are presented in the following chapters.

4A simplified version is shown here for improved readability.

13

CHAPTER 2. BACKGROUND

1 public abstract class CeeExample
2 {
3 public void Foo ()
4 {
5 i f (Decrement (5) == 4)
6 {
7 int x = Decrement (10) ;
8 assert x == 8 ;
9 }
10 }
11
12 public abstract int Decrement (int input)
13 ensures r e s u l t == input − 1 ;
14 }

Listing 2.2: Spec# program with assert violation on line 8.

1 public abstract class CeeExample
2 {
3 public void Foo ()
4 {
5 i f (DecrementCee975 (this , 5) == 4)
6 {
7 int x = DecrementCee1026 (this , 10) ;
8 i f (x == 8)
9 {
10 throw new ContractException ("Unable to reproduce

v e r i f i c a t i o n f a i l u r e ") ;
11 }
12 throw new AssertExcept ion ("Asse r t i on ’ x == 8 ’

v i o l a t ed from method ’CeeExample . Foo ’ ") ;
13 }
14 }
15
16 private stat ic int DecrementCee1026 (CeeExample s e l f ,

int input)
17 {
18 return 9 ;
19 }
20
21 private stat ic int DecrementCee975 (CeeExample s e l f , int

input)
22 {
23 return 4 ;
24 }
25 }

Listing 2.3: Cee output for the assert violation in listing 2.2.

14

Chapter 3

Maintaining Object States

Cee needs to ensure that runtime states of objects reflect the counterexample,
which means that object states must be correctly initialized and kept up-to-date
during counterexample execution.

When calling a method with side effects, parts of the heap may change de-
pending on the frame condition and postcondition. Prior to this thesis, Cee
did not establish correct object states after method calls, and hence, side ef-
fects were lost. Generated counterexample programs where flawed for programs
where the further execution depends on side effects of a method call.

We addressed this issue and added side effect capturing to Cee. During
development of side effect capturing, we discovered and fixed some flaws and
missing functionality in Cee’s object initialization.

This chapter describes the implementation of object initialization and ob-
ject updating, limitations we found and fixed as part of this thesis, as well as
remaining limitations related to object state maintenance.

3.1 Object Initialization
Objects are created by Cee whenever they enter the method under verification.
There are four interface points where this can happen:

1. Input parameters of the method under verification

2. Return values of called methods

3. Explicit constructor calls

4. As part of recursive initialization of object fields

By controlling these four interface points, Cee guarantees that new objects the
program deals with resemble the information gathered from the counterexample.

A flaw in Cee when handling case (3) caused it to initialize the resulting
objects incorrectly in the following case: When the result of an explicit con-
structor was assigned to a local variable that was previously assigned another
object instance, Cee wrongly initialized the new object with values from the
previous instance. By regarding an explicit constructor call as a regular method
call with side effects and employing the newly added capturing of side effects

15

CHAPTER 3. MAINTAINING OBJECT STATES

presented in the next section we were able to fix this. Case (3) will hence be
discussed in section 3.2.

Object Types

In order to find initial values of object fields, Cee needs to determine the par-
tition of the object. For cases (1) and (2) we can reconstruct the names of the
unique BoogiePL identifier of the resulting object: (1) A parameter with name
p in Spec# is named p$in in BoogiePL. (2) Return values of method calls are
assigned to specially named variables in BoogiePL that we can reconstruct by
using the unique ID of the Boogie method call. Therefore, in cases (1) and (2),
we can perform a simple look-up by identifier in the counterexample to retrieve
the partition of the object to initialize. As these identifiers are for one-time use
we do not have to care about different incarnations and can simply resolve the
plain identifier.

In case (4), Cee is recursively initializing a reference type field as part of
another object’s initialization. As the field to initialize was read from the coun-
terexample, the partition value is readily available.

Now that the partition of the object to initialize is known, Cee can scan the
heap information in the counterexample. Cee searches for select2(h,o,f)=v
function interpretations where o equals the partition determined for the object
to initialize. It then finds for each field f the entry with the first available heap
incarnation. This entry contains the initial value partition v of the object field
o.f. Cee has now a mapping from fields o.f to value partitions v that it can
use to initialize the fields of object o.

Initialization of these fields are performed in a parameter-less mock type
created by Cee. Prior to this thesis, Cee was limited to create only one mock
type per actual type T. The same mock constructor was called for all instances of
this type, and hence some instances where initialized with incorrect field values.

We fixed this flaw as part of this thesis. For each object initialization of type
T, Cee creates a new subclass with the name T with a unique number of spaces
appended1 containing a parameter-less constructor and default implementations
for possible abstract or unimplemented methods.

The mapping from fields o.f to value partitions v is turned into a list of
assignment statements inside the constructor. If f is of a custom object type,
array type or string, object initialization is performed recursively for that field,
leading to case (4) described above. If f is a basic type, for instance Int32 or
bool, it is directly assigned a literal with the correct value.

Arrays and Strings

Arrays and strings require separate treatment as they are specially encoded in
Boogie.

The length of an array is recorded using the $Length(arr)=len function. We
extract this information from the counterexample to initialize an array object
of correct length.

Prior to this thesis, Cee did not initialize the array elements of the instan-
tiated array. We added support for array element initialization to Cee. First,

1T␣+ is used so that object instances look as if they were of type T in a debugger.

16

CHAPTER 3. MAINTAINING OBJECT STATES

1 public class VectorCa lcu la tor
2 {
3 public Vector ! Add(Vector ! a , Vector ! b)
4 {
5 int x = a . x + b . x ;
6 int y = a . y + b . y ;
7 return CreateVector (x , y) ;
8 }
9
10 public Vector ! CreateVector (int x , int y)
11 requires x >= 0 && y >= 0 ;
12 ensures r e s u l t . x == x && r e s u l t . y == y ;
13 {
14 return new Vector (x , y) ;
15 }
16 }

Listing 3.1: Example Spec# program illustrating object initialization.

the partition of the pseudo field $elements, which represents all elements in the
array, is extracted from the heap. Then, Cee scans the function interpretations
of RefArrayGet($elements,index)=v or IntArrayGet($elements,index)=v
for element values, depending on the type of the array. Array elements are then
recursively initialized and stored into the array.

For strings, only the length is preserved using the $StringLength(str)=v
function in Boogie. When initializing a string, Cee scans $StringLength(str)
interpretations for an entry with the string to construct and then initializes a
string with the extracted length. Because the actual content of strings is not
encoded in Boogie, Cee initializes dummy strings containing only "a" characters.

Example

Consider the example Spec# program in listing 3.1. Verification of the Add
method using Boogie yields a failure, as we cannot guarantee that x >= 0 &&
y >= 0 holds true on line 7, and hence the precondition of CreateVector might
be violated. When executing the counterexample using Cee, the two input
parameters a and b require initialization. We are in case (1) described above
and therefore Cee inspects the select2 interpretations for information about
a$in and b$in. The relevant interpretations found in the Z3 counterexample
are:

s e l e c t 2 ($Heap , a$in , Vector . x) = −1
s e l e c t 2 ($Heap , b$in , Vector . x) = 0
s e l e c t 2 ($Heap , a$in , Vector . y) = 0
s e l e c t 2 ($Heap , b$in , Vector . y) = −1

17

CHAPTER 3. MAINTAINING OBJECT STATES

Using this information, Cee is able to generate constructors for the mock
types of a and b. The following listing shows the mock type created for a,
where the fields are properly initialized in the constructor2:

public class Vector_ : Vector
{

public Vector_ ()
{

base . x = −1;
base . y = 0 ;

}
}

Consequently, when running the generated counterexample program, the
debugger shows the two vectors a and b properly initialized with values (-1,0)
and (0,-1), respectively:

3.2 Object Updates

There are two cases where fields of objects can change during execution of a
method: Fields are updated explicitly in the function body by assigning new
values or fields are updated due to side effects of a called method. As Cee leaves
intact field assignment instructions from the original program, no extra work is
required to cover these updates. Method calls, however, are replaced by calls to
mock methods and therefore Cee needs to ensure they exhibit the side effects
defined in the counterexample.

Constructors with field initialization can be regarded as special cases of
regular methods with side effects. We therefore discuss case (3) of the previous
section about object initialization here, together with regular methods calls,
under the term “method calls with side effects”.

Side effect capturing was added as part of this thesis, and in the following
we describe the functioning of this feature as well as its limitations.

Side Effects and Frame Conditions

Method side effects are closely related to frame conditions, as Spec# guarantees
that no method modifies observable heap locations that are not specified in its

2“_” characters in the class name represent space characters.

18

CHAPTER 3. MAINTAINING OBJECT STATES

frame condition. Hence any side effect must adhere to the frame condition spec-
ified by the programmer. As frame conditions are encoded as postconditions,
possible side effects are properly reflected on the heap after a method call.

Side Effect Capturing

In order to capture side effects of method calls, the appropriate post-state heap
incarnations have to be determined. Since there is no mapping associating heap
incarnations with locations in the program, we developed a technique that allows
Cee to determine the valid heap incarnation after method calls.

We achieve this by modifying the Boogie translation of the input program.
After each method call with possible side effects, that is after each call com-
mand in the BoogiePL program, Cee inserts a heap update to a dummy field
called $ceeLastCalledMethod with the ID of the method call as the new value.
These field updates are reflected in the counterexample as function interpreta-
tions of select2. Cee is then able to look up the valid heap incarnation after
a certain method call by filtering select2 interpretations for
$ceeLastCalledMethod entries with a value equal to the method’s ID. As the
dummy heap update introduces a new heap incarnation, the preceding incarna-
tion contains the method call’s potential side effects.

Cee scans the determined heap incarnation for field updates on objects that
can be addressed from the counterexample program. Only objects where the
partition and their C# expression in the counterexample program are both
known can be considered for side effects. This is not the case for all objects, as
Cee does not keep track of created object instances. By inspecting the param-
eters of the CallCmd Boogie node, however, Cee is able to infer their partition
in the counterexample and the C# expression is readily available from the read
assembly. In addition to the parameters, Cee knows how to address the this
object and its partition can be easily extracted from the counterexample, too.
Therefore, Cee is able to reflect side effects on the current this object and on
parameters passed to the called method3. Fields of these objects are updated
using object initialization as described in the previous section from within the
mock methods or the mock constructors, respectively.

Heap Simplification

In some cases, the counterexample contains the same value for object fields in
consecutive heap incarnations. In order to prevent Cee from doing unnecessary
field updates, we first simplify the select2 interpretations to only represent
new field values. Interpretations in consequent heaps in select2 with equal
values for a certain field can simply be removed.

We do this by scanning the select2 interpretations by increasing heap in-
carnations, during which we store the last seen value for each object field o.f.
When encountering an interpretation with a new value for o.f, we update the
last seen value accordingly and keep the interpretation. If the value is equal
to the last seen value, however, we remove the interpretation and continue the
scan. After this procedure has been applied to the counterexample, the select2
interpretations contain heap updates only.

3For simplicity, we only implemented updates on the this object and on the first parameter,
which corresponds to the method call target.

19

CHAPTER 3. MAINTAINING OBJECT STATES

1 public class Vector
2 {
3 public int x , y ;
4
5 public void Add(Vector ! other)
6 requires other . x > 0 ;
7 requires other . y > 0 ;
8 ensures y > 0 && x > 0 ;
9 {
10 Add(other . x , other . y) ;
11 }
12
13 public void Add(int x , int y)
14 ensures this . x == old (this . x) + x ;
15 ensures this . y == old (this . y) + y ;
16 {
17 this . x += x ;
18 this . y += y ;
19 }
20 }

Listing 3.2: Example Spec# program illustrating method side effects.

Example
Similarly to the example in the previous section, we illustrate method updates
with a vector addition example in listing 3.2. This time, the addition is di-
rectly performed on a vector. Verification with Boogie returns a failure for the
Add(Vector!) method, as it cannot guarantee that y > 0 && x > 0 holds true
in its post-state. The actual update of the fields x and y is performed in the
method call of Add(int,int) on line 10, and therefore capturing the side effects
of that call is crucial for generating the counterexample program.

The first step is to extract the correct heap incarnation valid after the method
call. The following is an excerpt of the generated BoogiePL program:

1 // −−−−− c a l l −−−−−
2 assert t h i s != null ;
3 ca l l Vector . Add$System . Int32$System . Int32 (th i s , s tack0 i ,

s t a c k1 i) ;
4 $Heap [cee , $ceeLastCalledMethod] := 5407 ;

Note the dummy update inserted by Cee on line 5, which is reflected in the
select2 interpretations of the counterexample:

s e l e c t 2 ($Heap@1 , cee , $ceeLastCalledMethod) = 5407

20

CHAPTER 3. MAINTAINING OBJECT STATES

Now that the heap incarnation valid after the dummy field update is known
to be $Heap@1, the side effects can be extracted from the preceding incarnation
$Heap@0:

s e l e c t 2 ($Heap@0 , th i s , Vector . y) = 0
. . .
s e l e c t 2 ($Heap@0 , th i s , Vector . x) = 1

Cee is able to deduce the side effects of the method, which are updates of
this.x to 1 and this.y to 0. These field updates are then included in the
corresponding mock method in the counterexample program:

private stat ic void AddCee5412 (Vector s e l f , int x , int y ,
Vector c a l l e r)

{
i f (s e l f == null)
{

throw new Nul lReferenceExcept ion () ;
}
c a l l e r . y = 0 ;
c a l l e r . x = 1 ;

}

Limitations
As discussed above, this technique of capturing method side effects only works
for objects we can address in C#, which are currently the called method’s
parameters as well as the this object. For other objects, Cee is able to extract
side effects from the counterexample, but reflecting them using field updates is
impossible since these objects cannot be addressed.

We think that capturing side effects on parameters and this is sufficient for
the most common cases. It is trivial, however, to find verification failures that
cannot be correctly reproduced due to this limitation. Consider, for example,
the following Spec# program:

1 public abstract class UpdateLimitation
2 {
3 public UpdateLimitation ! next ;
4 public int x ;
5
6 public void Foo ()
7 requires next . x == 0 ;
8 {
9 Update () ;
10 assert next . x == 0 ;
11 }
12
13 public abstract void UpdateNextX ()
14 modifies next . x ;
15 ensures next . x == 1 ;
16 }

21

CHAPTER 3. MAINTAINING OBJECT STATES

The method Update has a side effect that does not directly affect this, but
this.next. When reading the side effect from the counterexample, Cee cannot
address the corresponding object. The update of this.next.x to 1 is not
captured and the assert failure on line 9 cannot be reproduced, as the value of
this.next.x remains 0 in the counterexample program.

Section 7.2 presents an idea that could enable the capturing of side effects
on arbitrary heap locations.

22

Chapter 4

Runtime Checks for Frame
Conditions

To our knowledge, there is currently no programming system that supports
runtime checks for frame conditions. This is because generic runtime checks
essentially require taking a snapshot of the heap at a method’s pre-state and
comparing it to the heap contents at the end of the method. Potential modi-
fications are then matched against the method’s frame condition specification.
If a heap modification is not legitimate according to the frame condition, an
exception is thrown.

This procedure is impractical for various reasons: Access to the heap as
a whole is usually not granted to programs. Therefore, snapshotting at the
beginning of the method requires recursive cloning of all reachable objects, an
operation that is too resource intensive for complex systems. Finding differences
between object graphs and matching them against specified frame conditions is
also too costly to perform in large systems.

However, we were able to extend Cee with the capability to generate run-
time checks for frame condition violations by exploiting information from the
counterexample. When building a counterexample program in Cee, we have
to consider only one particular instance of a frame condition violation. This
situation is different from generating generic runtime checks, since the Z3 coun-
terexample contains information about the exact heap location of the violation.

Having the counterexample available, we are able to generate runtime checks
for a frame condition violation, observing only the heap location necessary to
reproduce the verification failure. The remainder of this chapter discusses how
heap locations reported by Z3 are translated into corresponding C# expressions,
and how runtime checks are generated and inserted into the method under
verification.

4.1 Addressing Heap Locations

From the counterexample, we get a BoogiePL identifier and an object field that
specify a heap location which is different in the pre- and post-states of the
method under verification. If we want to observe that heap location from our
generated counterexample program, it has to be translated into a C# expression

23

CHAPTER 4. RUNTIME CHECKS FOR FRAME CONDITIONS

that is valid at the beginning of the method where we observe the pre-state. The
identifier reported in the counterexample might however be invalid or uninitial-
ized at the beginning of the method or it might have no corresponding expression
in the original Spec# program at all.

In order to be able to construct a valid C# expression, it is important to un-
derstand the following fundamental property about frame condition violations:
Frame condition violations can only occur if the heap modification is observable
from the caller. The only common handles into the heap, shared by both the
caller and the callee, are the parameters (possibly including this). Therefore,
frame condition violations can only occur at locations that are reachable via the
method’s parameters.

Given this property, we know that any heap location reported as frame
condition is reachable by a series of field or array element accesses, starting
at some parameter. As the counterexample contains information about object
fields and array elements, Cee can perform a depth-first search starting with
the partition of the reported identifier. It then traverses object field and array
element information in the counterexample to recursively trace the modified
heap location to a parameter. If an identifier can be successfully traced to a
parameter, the yielded trace can then be translated into a C# expression valid
at the beginning of the method.

4.2 Adding Runtime Checks

In order to be able to compare pre- and post-states of the heap location reported
in the counterexample, Cee needs to store the initial value at the beginning of
the method, then compare it to the current value immediately before returning
from the method.

By constructing a C# expression as explained in the previous section, the
modified object can be addressed. It is stored into a local variable called
$ceeFrameConditionObject at the beginning of the method. Then, the pre-
state is preserved as follows: If the modified object is an array, a shallow clone is
created and stored into a local variable called $ceeFrameConditionOldValues,
otherwise the value of the modified field reported by the counterexample is
stored into a local variable called $ceeFrameConditionOldValue.

At the end of the method, that is before each Return node in the AST, the
runtime check is inserted. In the case of a regular object, the current value of
the modified field of $ceeFrameConditionObject is compared to the preserved
value in $ceeFrameConditionOldValue. In the case of an array object, a loop
is inserted that compares every element in $ceeFrameConditionOldValues to
its current value accessed through $ceeFrameConditionObject.
A Microsoft.Contracts.ModifiesException is thrown upon differences in
pre- and post-states, containing a human readable description of the modified
heap location1.

24

CHAPTER 4. RUNTIME CHECKS FOR FRAME CONDITIONS

1 public class VectorCa lcu la tor
2 {
3 public void InvertNext (Vector ! vec to r)
4 {
5 Vector ! l o c a l = vec to r . next ;
6 l o c a l . x = − l o c a l . x ;
7 l o c a l . y = − l o c a l . y ;
8 }
9 }
10
11 public class Vector
12 {
13 [Peer]
14 public Vector ! next ;
15 public int x , y ;
16 }

Listing 4.1: Example Spec# program with a frame condition violation.

4.3 Example

Consider the example Spec# program in listing 4.1. Verification with Boogie
yields a frame condition violation of method InvertNext. The default frame
condition of this method encompasses all fields of the this object and hence
modifications on fields of the vector.next object are disallowed. For frame
condition violations, extended information is returned by Z3 that describes the
heap location of the modification:

1 Error : Method VectorCa lcu lator . InvertNext (Vector ! vec to r)
, u n s a t i s f i e d frame cond i t i on

2 . . .
3 (i n t e r n a l s t a t e dump) : $ f == Vector . y
4 (i n t e r n a l s t a t e dump) : $o == loca l@0
5 (i n t e r n a l s t a t e dump) : $o . $ f == −1

From the internal state dump on line 3 and 4 Cee can extract the field and the
object violating the frame condition. In order to construct the runtime check,
the BoogiePL identifier local@0 needs to be translated into a C# expression.
Cee follows field accesses and array element accesses as described above. The
following is the relevant select2 interpretation that allows Cee to deduce that
local@0 can be addressed in the counterexample program using vector.next:

s e l e c t 2 ($Heap , vector$ in , Vector . next) = loca l@0

Given this expression and the field extracted from the state dump, Cee gen-
erates the necessary runtime checks reproducing the frame condition violation.
Listing 4.2 shows the rewritten InvertNext method in the generated counterex-
ample program.

1For instance “this.refArray[0].x” or “param1.x.y”.

25

CHAPTER 4. RUNTIME CHECKS FOR FRAME CONDITIONS

1 public void InvertNext (Vector modopt (NonNullType) vec to r)
2 {
3 // . . .
4 Vector $ceeFrameConditionObject = vecto r . next ;
5 int $ceeFrameConditionOldValue =

$ceeFrameConditionObject . y ;
6 Vector l o c a l = vec tor . next ;
7 l o c a l . x = − l o c a l . x ;
8 l o c a l . y = − l o c a l . y ;
9 i f ($ceeFrameConditionOldValue !=

$ceeFrameConditionObject . y)
10 {
11 throw new Modi f i e sExcept ion ("Modi f i e s c l au s e "
12 + " v i o l a t e d from method"
13 + " ’ VectorCa lcu la tor . InvertNext (. . . Vector) ’ . "
14 + " Value o f ’ vec to r . next . y ’ d i f f e r s in " +
15 + " pre− and post−s t a t e . ") ;
16 }
17 throw new ContractException ("Unable to reproduce " +
18 + " v e r i f i c a t i o n f a i l u r e ") ;
19 }

Listing 4.2: Rewritten method generated by Cee for listing 4.1.

4.4 Limitations

Under some circumstances, the reported heap location violating the frame con-
dition has an object identifier that does not occur in any other parts of the
counterexample. In other cases, only the modified field without the object is
reported. Cee is currently unable to generate frame conditions without an exact
heap location and stops with an error message.

An example of a case where the object of the frame condition violation is
unknown is shown in the following:

public abstract class FcLimitat ion
{

public int x ;
public FcLimitat ion ! b ;

public void Foo ()
modifies x ;

{
Update () ;

}

public abstract void Update ()
modifies b . x ;
ensures b . x == 5 ;

}

26

CHAPTER 4. RUNTIME CHECKS FOR FRAME CONDITIONS

Even though it seems clear that the call to Update modifies this.b, which
violates the frame condition of Foo, the counterexample does not provide Cee
with the object that was modified:

Error : Method FcLimitat ion . Foo () , u n s a t i s f i e d frame
cond i t i on

. . .
(i n t e r n a l s t a t e dump) : $ f == FcLimitat ion . x
(i n t e r n a l s t a t e dump) : $o . $ f == 5

In contrast to the example presented in the previous section, $o cannot be
extracted from the internal state dump. Note that this limitation is not related
to the use of abstract classes or methods. The same counterexample is produced
after changing Update to a concrete method.

Cee is currently unable to generate frame condition runtime checks for this
example. In section 7.3, we discuss how counterexamples without valid heap
locations could be handled.

27

Chapter 5

Method Calls in Contracts

As seen in section 2.3, method calls outside of contracts are translated into
call commands in BoogiePL. These call commands provide enough context
to be uniquely associated with originating method calls in the input program
as well as with return values in the counterexample. By exploiting these unique
mappings, extraction of return values can be performed using simple identifier
look-ups in the counterexample.

Extracting return values for calls within contracts is more complex. Since
these calls are translated into function expressions, no call commands are gen-
erated. In order to extract return values from the counterexample, the corre-
sponding function interpretation must be found without having similar context
available as provided by call commands. Hence, more complex techniques than
an identifier look-up are required.

Prior to this thesis, Cee employed static parameter matching in order to find
the corresponding function interpretation. Parameters in the Spec# method call
were statically evaluated to actual values and the function interpretations where
searched for entries with matching parameters.

This technique did not work in many cases, since static evaluation of param-
eters requires explicit support for each type of expression. For example, Cee was
able to statically determine the value of integer additions such as 5 + 5, while
divisions such as 10 / 2 were not supported. When unsupported expressions
were used in parameters, Cee was unable to find the corresponding function
interpretation and extract the return value.

While we could have added support for more expression types to the static
parameter evaluator of Cee, we chose an entirely different approach that scales
better and furthermore allows to map method calls uniquely to their corre-
sponding interpretations. The following sections describe this technique we call
function tagging and discuss how it works and its limitations.

5.1 Function Tagging

In order to be able to identify which function interpretation in the counterex-
ample corresponds to a certain method call from a Spec# contract, function
expressions are tagged by a unique identifier (UID) assigned to its originating
Spec# method call.

29

CHAPTER 5. METHOD CALLS IN CONTRACTS

1 public abstract class Test
2 {
3 public void Foo (int i)
4 requires IsEven (i) ;
5 {
6 assert IsEven (ReturnInput (i)) ;
7 assert IsEven (ReturnInput (i) + 1) ;
8 }
9
10 [Pure]
11 public abstract bool IsEven (int input)
12 ensures r e s u l t == (input % 2 == 0) ;
13
14 [Pure]
15 public abstract int ReturnInput (int input)
16 ensures r e s u l t == input ;
17 }

Listing 5.1: Spec# program which requires function tagging.

A new wrapper function is declared in BoogiePL for each pure method that
is called from a contract. The wrapper function introduces a new integer pa-
rameter for the UID tag and is tied to the original function using an axiom that
drops said parameter. This axiom guarantees that the semantics remains the
same, as the wrapper function just passes through all parameters to the original
function and all axioms about this original function remain in effect.

By passing the UID to the wrapper function, Cee is later on able to identify
the function interpretation in the counterexample corresponding to a certain
contract method call. It can simply search the interpretations for the entry
where the last parameter is equal to the method call UID and extract the return
value.

5.2 Example

Consider the Spec# program in listing 5.1. When verifying method Foo, Boogie
reports a possible assertion violation on line 7, as ReturnInput(i)+1 is odd.
In order to generate the counterexample program, Cee has to create a runtime
check for the failed assertion and extract the return value of the IsEven call
from the counterexample. Without method tagging, Cee was unable to find
the corresponding interpretation, as the value of ReturnInput(i)+1 cannot be
statically determined.

With function tagging, however, the counterexample contains the following
tagged function interpretations:

tagged#Test . IsEven$. . . ($Heap , th i s ,−2 ,−1889192024)=@true
tagged#Test . IsEven$. . . ($Heap , th i s ,−2 ,−1732590203)=@true
tagged#Test . IsEven$. . . ($Heap , th i s ,−1 ,−1732524654)=∗88

30

CHAPTER 5. METHOD CALLS IN CONTRACTS

We can see that there are three separate interpretations, two of which eval-
uating to true and one without explicit value (partition 88 with no element),
in which case false can be assumed. The two first interpretations are for the
contract method call in the requires clause of Foo and for the first assertion on
line 6. The third interpretation corresponds to the call in the failing assertion
on line 7. This interpretation originates from the translated assertion statement
in BoogiePL:

// −−−−− s e r i a l i z e d Asser tStatement −−−−−
assert tagged#Test . IsEven$System . Int32 ($Heap , th i s ,

tagged#Test . ReturnInput . . . + 1 , −1732524654) ;

Knowing the UID of the method call on line 7, -1732524654, Cee is able to
correctly look up the third interpretation with a value of false. This falsifies the
assertion, such that the verification failure is correctly reproduced.

5.3 Implementation

Tagging in Boogie
Tagging has been implemented by patching Boogie. When deserializing con-
tract expressions into C# expressions from the read Spec# program, UIDs are
assigned to the generated calls and stored into the ILOffset fields of their corre-
sponding AST call node. These ILOffsets are then turned into UID parameters
when translating the program into BoogiePL.

In order to be able to pass this additional UID parameter, a new function
is introduced in BoogiePL as briefly mentioned in section 5.1. The following
excerpt shows the original function definition (line 2), the newly introduced
tagged function (line 3), and the glueing axiom (lines 6-9) for the IsEvenmethod
in listing 5.1:

1 function #Test . IsEven . . . (heap , ref , int) returns (
bool) ;

2 function tagged#Test . IsEven . . . (heap , ref , int , int)
returns (bool) ;

3 . . .
4 // tagged pure methods connect to untagged ve r s i on
5 axiom (f o ra l l $h : heap , o : ref , i nput$ in : int , t : int : :

{ . . . }
6 tagged#Test . IsEven . . . ($h , o , input$ in , t)
7 <==>
8 #Test . IsEven . . . ($h , o , input$ in)) ;

An example for a generated tagged BoogiePL call was presented in the pre-
vious section.

Extraction in Cee
Identically to Boogie, when Cee deserializes contract expressions into C# ex-
pressions, UIDs are assigned to the generated calls and stored into the ILOffset
fields of their corresponding AST call node. Cee uses the same component as

31

CHAPTER 5. METHOD CALLS IN CONTRACTS

Method call Line uidStr
IsEven(i) 4 Test.Foo(System.Int32).req.0.0
IsEven(...) 6 Test.Foo(System.Int32).body.47.0

ReturnInput(i) 6 Test.Foo(System.Int32).body.47.1
IsEven(...) 7 Test.Foo(System.Int32).body.96.0

ReturnInput(i) 7 Test.Foo(System.Int32).body.96.1

Table 5.1: Method UIDs for the program in listing 5.1.

Boogie to achieve this, enabling code sharing and making the system immune to
UID scheme changes. When replacing the contract call nodes with mock calls,
the UID is read from the ILOffset field and Cee determines the return value
by searching for the tagged function interpretation.

UID Scheme

Any UID scheme for contract method call tagging needs to satisfy two condi-
tions:

• Each contract method call needs to be assigned a unique ID

• The UID assignment algorithm needs to be deterministic such that the
calculation is repeatable

We implemented a UID scheme that works as follows:

1. For each contract, determine a unique base string:
base

2. For the n-th method call in the contract, calculate the unique method call
string:
uidStr = base.Append(“.”).Append(n)

3. Calculate the method’s integer UID:
uid = -1 * Math.Abs(uidStr.GetHashCode())

The base string uniquely identifies the contract within the program, while
uidStr and uid uniquely identify the contract method call. uid values are
chosen to be negative such that the misuse of the ILOffset field in the AST
call nodes is likely to lead to early errors should any part of the system rely on
these values to be real offsets.

Table 5.1 shows the uidStr values for the contract method calls in listing 5.1.
Consider the IsEven call on line 6. Its uidStr consists of the base string

Test.Foo(System.Int32).body.47, which uniquely identifies the first assert
statement in the body of the method, and the suffix .0, which identifies the call
uniquely within that expression. The ReturnInput call in the same contract
starts with the same base but has a different suffix of .1, and is consequently
assigned a different UID.

32

CHAPTER 5. METHOD CALLS IN CONTRACTS

5.4 Limitations
The presented function tagging technique only works when method calls are
executed at most once1. However, there are two cases when methods calls in
contracts can be executed multiple times:

1. Method calls in a forall expressions

2. Method calls in loop invariants

In case (1), the generated runtime check contains a loop that repeatedly calls
the method. If the parameter depends on a quantified variable, the actual re-
turn value might be different for some iterations. However, the counterexample
contains only one interpretation, namely the one for the failing iteration. Cee
wrongly picks that interpretation for all iterations and therefore always return
the same value, possibly yielding an incorrect runtime check.

(2) Method calls in loop invariants are cloned into two instances as Boogie
creates one check of the loop-invariant for the pre-loop state and one for the
post-loop state. Therefore, the counterexample will contain two interpretations
with the same UID. When Cee extracts the return values for the two corre-
sponding mock methods it will pick the same interpretation for both of them,
as it distinguishes interpretations solely by UID. This can potentially lead to
incorrect runtime checks, as one of the mock methods might return a value that
is inconsistent with the counterexample.

Possible solutions to these problems are discussed in section 7.4.

1Function tagging also works when methods are always called with the same parameters.

33

Chapter 6

Other Improvements to Cee

In addition to the major improvements and features discussed in previous chap-
ters, we contributed numerous minor enhancements to Cee. In this chapter
we present some of them and briefly explain their purpose, functioning, and
limitations.

6.1 Counterexample Selection
In many cases, an assembly contains more than one verification failure. Be-
fore this thesis, Cee executed the first counterexample in the first method of a
program.

We added command line options to Cee that allow selection of the coun-
terexample to execute.

Selection by Source Code Location
Using the --sourceLocation option, a source code location of the format
line:column can be passed to Cee. If the location corresponds to a verification
failure location, Cee executes the respective counterexample. The verification
failure location encompasses the Spec# AST node that contains the broken con-
tract. If the given source code location does not correspond to a verification
failure, Cee aborts and prints an error message.

This command line option was added such that we could integrate Cee with
IDEs. We can now offer a programmer to directly execute a certain verification
failure reported by Boogie from within IDEs.

Selection by Method Name
The --method option can be used in order to instruct Cee to execute a counterex-
ample in the method with the given full name. If there are multiple counterex-
amples in the specified method, Cee picks the first one by default. Optionally,
the n-th counterexample in the specified method can be executed by using the
--nThCounterexample option. Counterexamples are ordered by the verification
failure location in BoogiePL.

These options for selecting counterexamples were developed for facilitating
the creation of automatic test cases.

35

CHAPTER 6. OTHER IMPROVEMENTS TO CEE

6.2 Visual Studio Integration

Counterexample Execution

As part of this thesis, we developed a Visual Studio AddIn that allows the
execution of counterexamples from within the Visual Studio IDE.

When the Spec# plug-in for Visual Studio reports verification failures, the
user can right click into the editor at the location of such a failure (marked
by green squiggly lines) and choose “Run counterexample” from the context
menu. This starts Cee in the background, passes the source code location using
the --sourceLocation option and automatically attaches the Visual Studio
debugger. See appendix B.1 for a screenshot of the AddIn.

A new option --waitForDebugger has been added causing Cee to generate
a counterexample program that waits until a debugger has been attached before
calling Debugger.Break(). This prevents the system from showing a unneces-
sary debugging dialog box before the Visual Studio debugger attaches to the
counterexample program.

The Visual Studio AddIn greatly improves the development cycle of pro-
grammers, as they can now perform all development related activities within
one IDE.

Unfortunately, the AddIn still has some missing functionality. One major
missing piece is better integration with project properties. The AddIn compiles
the currently opened file separately, without compiling any other source files
in the project or linking referenced assemblies. This heavily limits the type of
programs which counterexamples can be executed from within Visual Studio.

Testing Framework

The existing testing framework based on make1 has been replaced by a testing
system that is integrated into Visual Studio. Additionally, a feature has been
added to the testing system that allows embedding of Cee command line options
and expected output directly into the Spec# test case files. See appendix C.2
for an example test case definition.

6.3 Integration with the e TextEditor

We created a Spec# bundle for the e TextEditor2 program. The bundle includes
a language syntax definition for Spec# as well as commands to build and verify
Spec# programs.

Additionally, commands have been created to generate and run counterex-
ample programs. These commands support the same Cee command line options
embedding as the testing framework presented in the previous section.

1Information about the GNU make software can be found on the Internet under
http://www.gnu.org/software/make/

2The e TextEditor is a TextMate clone for the Windows platform. More information can
be found on the Internet under http://www.e-texteditor.com/.

36

http://www.gnu.org/software/make/
http://www.e-texteditor.com/

CHAPTER 6. OTHER IMPROVEMENTS TO CEE

6.4 Runtime Checks
Prior to this thesis, Cee generated essentially the same runtime checks as the
Spec# compiler. We modified Cee to only emit runtime checks that are required
to reproduce the verification failure. The failing contract node is determined
from the counterexample, and all other contracts are stripped from the program.
This increases performance of both, counterexample program generation and ex-
ecution. Additionally, it facilitates reading and understanding of the generated
counterexample program for humans.

If the option --keepAllRuntimeChecks is given, Cee generates all runtime
checks.

6.5 Debugging Options
In order to facilitate debugging of the Cee program we added the following to
options: --debugCee causes Cee to break at the beginning of its execution and
--printBpl emits the Boogie program in BoogiePL, including all Cee rewritings,
to the specified file.

37

Chapter 7

Future Work

After having improved Cee as discussed in the previous chapters, there are still
some limitations that restrict the set of reproducible counterexamples. The first
three sections of this chapter discuss how some of these limitations in Cee could
be eliminated.

The fourth section presents an idea that enables Cee to broaden its scope,
which is currently restricted to unverifiable programs. It introduces a technique
that allows programmers to use Cee for understanding verifiable programs, too.

7.1 Object Registry

There is a major flaw in Cee that prevents a great number of counterexamples
from being executed correctly. Cee currently does not track object creations
and therefore, when the same object enters the method under verification at
different locations, multiple instances are initialized. Potential interface points
where objects (re-)enter the method under verification are listed in section 3.1.

Consider the following example Spec# program:

1 public abstract class Test
2 {
3 public int x ;
4
5 public void Foo (Test ! p)
6 requires p . x == 0 ;
7 {
8 p . x = 100 ;
9 Test ! q = ReturnInput (p) ;
10 assert q . x == 0 ;
11 }
12
13 public abstract Test ! ReturnInput (Test ! input)
14 ensures r e s u l t == input ;
15 }

The counterexample program generated by Cee initializes two instances for
the same object passed in as parameter p. First, an instance is created for the

39

CHAPTER 7. FUTURE WORK

input parameter p. The second instance is created in the mock method for
the return value of ReturnInput on line 9, even though the counterexample
correctly specifies the same partition as for the input parameter. Besides not
being reference-equal, these spurious instances are all initialized with the initial
field values for that object. In the example above, this means that after line 9,
q.x is 0 instead of 100, and consequently the runtime check for the assert state-
ment wrongly passes. Creating spurious instances clearly introduces deviations
from the counterexample and might prevent the counterexample program from
reproducing the verification failure.

Using a global object registry in the counterexample program could solve this
problem. Cee would create a central method in the counterexample program
that is exclusively responsible for creating new instances. This method would
keep an object registry of object instances, indexed by their partition. When an
instance of a certain partition is requested, it would check the registry and if an
entry for the partition is found, return the already created instance. Otherwise
it would initialize a new instance as described in section 3.1 and add it to the
registry. This would effectively solve the problem described above.

7.2 Improving Side Effect Capturing

Side effect capturing in Cee is currently limited to (immediate) fields of the
method call parameters. Cee requires a mapping from objects to C# expressions
in order to access and update modified objects, and for method call parameters
this mapping is readily available. The following shows how side effect capturing
on arbitrary heap locations could work.

As counterexamples contain observable side effects only, it would be suffi-
cient to obtain expressions for objects that are reachable from the method call’s
parameters through a series of field or array element accesses. The technique
employed by Cee to address heap locations for frame condition runtime checks,
which we presented in section 4.1, could be extended for this purpose. While it
is currently able to produce expressions rooted in the parameters of the method
under verification only, it could be adjusted to generate expressions rooted in an
arbitrary set of objects. By passing in the set of parameters of the method call
with side effects, anything reachable from these parameters can be addressed
and, consequently, updated.

Alternatively, the object registry presented in the previous section could be
used to address arbitrary heap locations. However, we think that the tech-
nique presented in this section could produce better readable expressions in the
counterexample program.

7.3 Improving Runtime Checks for Frame Con-
ditions

We suspect that in cases where the counterexample does not report an explicit
heap location violating the frame conditions, Z3 introduced identifiers for uni-
versal quantifications which cannot be easily connected to an element from the
input program. When inspecting such counterexamples, we found object iden-
tifiers such as $o.sk.4.0 and type fields such as $f.sk.4.1 that are related to

40

CHAPTER 7. FUTURE WORK

the frame condition violation. It might be possible to extract enough informa-
tion from the counterexample by scanning the select2 interpretations for these
elements in order to deduce the heap location violating the frame condition.

If the heap location cannot be deduced from the counterexample, falling back
to the naïve approach of frame condition runtime checks might be required. Op-
erations such as snapshotting and comparison of heaps could be implemented
on the basis of the object registry we introduced previously. Whether one can
implement feasible algorithms performing these operations remains to be ex-
plored.

7.4 Improving Function Tagging

As mentioned in section 5.4, there are two cases for which function tagging
results in potentially flawed counterexamples: forall expression and loop invari-
ants.

forall Expression

Fixing the issue with method calls in forall expressions could be tackled by
reducing the runtime check to the one failing iteration. Z3’s concept of providing
only the necessary information for an unsuccessful execution holds true in this
case, too. Hence, only one corresponding interpretation of a call in a forall
expression is present in the counterexample and this interpretation yields the
return value for the failing iteration. Cee can therefore unambiguously extract
the return value for each method call in the failing iteration.

Unfortunately, the extraction of return values might not be enough to set
up the runtime check for the failing iteration, as the expression within the
forall quantification might depend on quantified variables outside of method
calls1. This requires that the quantified variables are set up correctly. Whether
extracting the actual value of a quantified variable for the failing iteration is
possible remains to be explored. If quantified variables are passed to a method,
the corresponding interpretation could be inspected for their actual values.

Loop Invariant

Method calls in loop invariants result in two actual calls in the Boogie trans-
lation: One for the pre- and one for the post-loop invariant assertion. When
the call is cloned into these two calls, Boogie could assign new UIDs that dis-
tinguish the two instances. A similar scheme for UID generation as presented
in section 5.3 could be employed, distinguishing the two call instances with
.invpre and .invpost suffixes, for example.

7.5 Understanding Verifiable Programs

Cee is a tool that helps programmers better understand verification failures by
showing an execution of the program that leads to the contract violation. In

1For example forall { int i in (0:8); 2*i == ReturnInput(i) }.

41

CHAPTER 7. FUTURE WORK

the following, we present a technique that would broaden Cee’s scope and allow
its usage for understanding verifiable programs, too.

Even if programs come with contracts and are verifiable, programmers might
still have problems to understand their functioning. Control and data flow are
especially hard to understand in methods with excessive branching and looping.
By leveraging the execution generation facility of Cee backed by Spec#, we
can demonstrate to programmers how a certain statement in a program can be
reached:

Given the program statement to reach as an input2, Cee would insert an
assert false statement immediately after it. Verification using Boogie would
obviously return a failure at that location and Cee would then create the corre-
sponding counterexample program. Running this program in a debugger reveals
all input parameters, field values, and method call return values required to
reach the statement. In addition, stepping through the method until the state-
ment is reached helps understanding the behavior of control flow constructs.

2For example as source code location of the form line:column, such that users could pick
a program statement in a text editor.

42

Chapter 8

Conclusions

In this thesis, we have enhanced Cee by removing limitations of existing features
as well as adding new functionality.

We improved maintenance of object states by adding method side effect
capturing and improving object initialization. Furthermore, we developed a
technique to generate runtime checks for frame condition violations by exploiting
information from the counterexample. Generation of frame condition runtime
checks is a unique feature of Cee that, to our knowledge, was never implemented
before. In order to improve return value extraction for method calls from within
contracts, we devised a technique named function tagging, which we realized
in Cee. We also improved integration of Cee with Visual Studio in form of
an AddIn that allows execution of verification failures from within the Visual
Studio IDE and contributed smaller improvements to Cee such as the bundle
for the e TextEditor and new debugging options.

In the last chapter of this report, we presented ideas that could be applied
to remove some of the remaining limitations of Cee. A global object registry
could be employed to track object instances in the counterexample program
and thereby prevent redundant object instantiations. Additionally, the object
registry could be used to improve runtime checks for frame conditions. We also
showed how side effect capturing could be extended to arbitrary heap locations
by employing the heap addressing technique currently used for frame condi-
tion runtime checks. And finally, we presented a technique that can broaden
the scope of Cee. While Cee is currently restricted to reproducing verification
failures, this technique would allow the usage of Cee for gaining better under-
standing of verifiable programs, too.

We believe that our contributions greatly increased the usefulness of Cee, as a
larger set of verification failures can be successfully reproduced, and integration
with IDEs eases the usage of Cee as integral part of the development cycle. The
removal of some remaining limitations by implementing the presented ideas for
future work would furthermore improve Cee significantly.

43

Part II

Multiple Heaps for
Ownership-Based Verification

45

Chapter 9

Introduction

Originally, the topic of this master’s thesis was to improve the heap model for
ownership-based verification at the example of Spec#. The goal was to find
heap encodings which transfer structural information from the static ownership
annotations into the abstract model, such that ownership related proof obliga-
tions would be simpler to solve by the verifier.

None of the approaches that were developed as part of this research yielded
a heap model that is promising to improve verification performance. Therefore,
the idea was abandoned and “Improving Cee” became the new main topic of
this thesis.

This part of the thesis describes the developed heap models and encountered
problems in order to preserve this research for future reference.

47

Chapter 10

Background

10.1 Spec# and Boogie
Please refer to sections 2.1 and 2.3 in part I of this report for background
information on Spec# and Boogie.

10.2 Current Heap Model
When Boogie translates a Spec# program into BoogiePL for verification, heap
accesses have to be translated in a way that models the computer’s actual heap.
Every access into the heap in Spec# is either a field access on an object or an
element access on an array, where the latter can be regarded as a special case
of the former (details omitted). The current Boogie implementation models the
heap as 2-dimensional array, indexed by an object and a field.

For example, consider the Spec# program:

1 public class LinkedListElement
2 {
3 public LinkedListElement next ;
4
5 public void CopyNext (LinkedListElement ! from)
6 requires from . next != null ;
7 {
8 this . next = from . next ;
9 }
10 }

Boogie translates the field accesses on line 8 into:

tmp := $Heap [from$in , L inkedLis t . next] ;
$Heap [th i s , LinkedListElement . next] := tmp ;

Formalization
In order to be able to discuss new heap models, a mathematical formalization
of 2-dimensional array heaps is helpful.

49

CHAPTER 10. BACKGROUND

a

b dc

Figure 10.1: Ownership hierarchy where a owns b, c, and d.

Be NAME the set of class fields defined in a Spec# program and ADDR the
set of object addresses.

Then we can define HEAP as the set of heaps, which are modeled as 2-
dimensional arrays mapping an object address and a class field to an object
address. Reading from and writing to heaps are defined as follows:

ReadHeap : HEAP×ADDR×NAME→ ADDR
WriteHeap : HEAP×ADDR×NAME×ADDR→ HEAP

s.t. ∀h, h′ ∈ HEAP, o, v, o′ ∈ ADDR, f, f ′ ∈ NAME•
h′ = WriteHeap(h, o, f, v)⇒ (ReadHeap(h′, o, f) = v

∧((o′ 6= o) ∨ (f 6= f ′)⇒ ReadHeap(h, o, f) = ReadHeap(h′, o′, f ′))

The formula expresses that after applying WriteHeap(h, o, f, v) to a heap,
the stored value for o.f is v, and all other values stored in the heap remain
constant.

For the sake of brevity, we introduce the notations

h[o, f] :⇔ ReadHeap(h, o, f)

and

h[o, f] := v :⇔WriteHeap(h, o, f, v)

10.3 Ownership Type System

Ownership type systems provide the means to impose structure on an object
graph. Every object is owned by at most one other object, which leads to a tree
shaped ownership hierarchy.

10.3.1 Type System Rules

On top of a conventional type system, the following type modifiers are intro-
duced in ownership based systems. These modifiers denote the ownership rela-
tion between the object o of the current context and an object v.

50

CHAPTER 10. BACKGROUND

Figure 10.2: Type compatibility and introduction of ownership types. T → S:
Expression of type T can be assigned to target of type S.

rep T denotes a type of an object v with Type(v) = T and Owner(v) = o.

peer T denotes a type of an object v with Type(v) = T and Owner(v) =
Owner(o).

any T denotes a type of an object v which is not restricted in its location in
the ownership hierarchy, i.e. Owner(v) is unrestricted. any is sometimes
called read-only for reasons that should become apparent in the next sec-
tion.

See figure 10.1 for an illustration of how an ownership hierarchy could look like.
From the context of b objects c and d are peer, its 6 owned objects are rep and
the 2 objects owned by d are neither peer nor rep (but any). Note that in the
context of a, the 6 objects owned by b are not rep (but any) as they are not
directly owned by a.

In order to enforce the ownership type system, each conventional type T is
extruded into 3 types: any T replacing T , rep T , and peer T , with the type
compatibility hierarchy illustrated in figure 10.2. This means, for example, that
a variable of type rep Object can be assigned to a variable of type any Object,
but two variables of type rep Object and peer Object are incompatible.

10.3.2 Ownership Hierarchy and Method Side Effects

The ownership hierarchy is used in Spec# to restrict what parts of the object
graph might be changed by a method call and which objects remain unchanged.
The modification rules based on the ownership hierarchy can be summarized as
follows:

Within a method of an object o, the state (fields) of an object v can
be directly changed and methods with side effects can be called on
v iff either Owner(v) = o or Owner(v) = Owner(o).

51

CHAPTER 10. BACKGROUND

By restricting object state changes by this rule, side effects of methods of o are
confined within the (transitive) ownership cone of Owner(o). This object graph
structuring enables verification for object oriented programming as it allows
a verifier to assume stability in certain regions of the object graph (namely
everywhere outside the ownership cone of Owner(o)). To further narrow that
region of possible state changes, so called frame conditions can be specified for
each method. In Spec#, frame conditions are defined using modifies clauses,
which essentially list all heap locations (object fields) the method is allowed to
modify. The default modifies clause in Spec# lists all fields of the this object.

Note that Spec# has more such rules to enable, for example, object invariant
checking. These rules are not discussed here, as they are not relevant for the
further discussion.

10.3.3 Implementations
An ownership type system can be implemented using a static type system that
extrudes conventional types as explained in section 10.3.1 and checks type com-
patibility at compile time, or by dynamically proving the necessary proof obli-
gations over the ownership hierarchy and thereby off-loading the proving of type
system constraints to the verifier.

In Spec#, the ownership type modifiers rep and peer are represented by the
attributes Microsoft.Contracts.Rep and Microsoft.Contracts.Peer, respec-
tively. Types without annotations are treated as any. Ownership constraints
are proven dynamically during verification, and the modification rule mentioned
in the previous section 10.3.2 is translated into a complicated postcondition.

The ownership hierarchy is encoded in a special $ownerRef field pointing to
the owner of the object. This field is only visible during verification, but custom
ownership constraints can be formalized by the programmer via the method
Microsoft.Contracts.AssertHelpers.OwnerIs(object,object!). For ex-
ample, in order to assert that the owner of object v is o, a programmer could
write the following line in Spec#:

assert Asser tHe lper s . OwnerIs (o , v) ;

This Spec# line would translate to the following BoogiePL code:

assert $Heap [v , $ownerRef] == o ;

52

CHAPTER 10. BACKGROUND

1 public class Geometry
2 {
3 [Peer] Rectangle r ;
4 [Rep] C i r c l e c ;
5
6 public void Bar ()
7 {
8 r = new [Rep] Rectangle (0 , 0 , 5 , 10) ;
9 c = new [Peer] C i r c l e (0 , 0 , 5) ;
10 assert c . r ad iu s == 5 ;
11 r . Trans late (5 , 5) ;
12 assert c . r ad iu s == 5 ;
13 }
14 }

Listing 10.1: Prototypical Spec# program.

10.4 Problem
As the current heap model does not take any ownership information into ac-
count, proof obligations related to the ownership hierarchy are generally com-
plex.

Consider the prototypical Spec# program in listing 10.1. In order to prove
that the assertion on line 12 holds, the verifier has to reason about the post-
state of the heap after calling r.Translate(...). Because the heap is simply a
2-dimensional array, the formalization of the side effects is a complex expression
involving universal quantification. The theorem prover then has to determine
whether c.radius is affected by this complex expression or not, a procedure
that is rather costly.

53

Chapter 11

Investigated Heap Models

Given that Spec# programs generate many complicated proof obligations re-
lated to the ownership hierarchy as explained in section 10.3.3, it looks like a
promising idea to model the heap in a way that resembles the static ownership
information of a program. Three such heap models were developed as part of
this thesis. They were developed and analyzed under the following considera-
tions:

1. The heap model must be sound and complete. This means that there can-
not be any contradictions within the model definition, and all operations
on heaps in Spec# must be expressible using the model.

2. The heap model must be realizable in Boogie PL, the input language of
Boogie.

3. The heap model must guarantee modularity, i.e. method implementations
must be verifiable separately, in their own context, without inspecting
implementations of other methods or modifying their specifications.

4. The heap model must show promising performance characteristics when
applied to certain types of programs, while the average case performance
should not be degraded.

Condition (4) is rather hard to measure and we will elaborate on it more when
discussing the actual models. Generally, we try to improve verification perfor-
mance of the prototypical program introduced in listing 10.1.

The following sections describe the three models Peer Heaps, Paths, and
Heap Variables. All of them have in common that they are based on the current
heap model, but also try to encode some of the ownership structure in order to
facilitate verification. This structure on the heap would then allow the verifier
to reason about disjoint heaps. In the case of the prototypical program in listing
10.1, the models try to provide the verifier with disjoint heaps for c and r, such
that the assertion would be trivial to prove, as the side effect of r could be
expressed by havocing a separate heap.

None of the investigated models actually proved to be feasible for Spec#.
Hence, each section will also present the problems found during the analysis of
the respective model.

55

CHAPTER 11. INVESTIGATED HEAP MODELS

Figure 11.1: Illustration of the descend function in the Peer Heaps model.

11.1 Model: Peer Heaps

The Peer Heaps model imposes a tree structure on heaps representing the own-
ership cones of the program. The goal is that the verification of the example
program in listing 10.1 profits from the segmentation of the heap into smaller
parts, such that the side effects of the method call can be described in simpler
terms by havocing the specific ownership cones of r.

In addition to the tree structure, some local perspective is added to the
model: A collection of peer objects of this is available and there is a function
that returns the heap for each peer object. Unfortunately, for some objects we
cannot deduce anything about their location in the ownership hierarchy and
therefore a global heap as in the current model is still required.

The idea was that assigning each ownership cone its own heap and the ad-
dition of a local perspective would simplify proofs for certain ownership related
proof obligations. The following subsections describe the formalization of this
model, how existing Spec# programs would be encoded, and why the idea be-
hind it is flawed.

11.1.1 Tree Structure

The heap tree is defined by the following function:

descend : HEAP×ADDR→ HEAP

descend(h, o) returns the sub-heap of o, given the parent heap h. For better
readability, we define:

ho := descend(h, o)

See figure 11.1 for an illustration of the descend function.

56

CHAPTER 11. INVESTIGATED HEAP MODELS

Figure 11.2: Illustration of the peerHeaps function in the Peer Heaps model.

Variable/Function Description
this ∈ ADDR The current object

thisHeap ∈ HEAP Contains this and transitively owned objects.
peers ⊆ ADDR Peer objects of this

peerHeaps : peers→ HEAP Mapping from peers to their heaps

Table 11.1: Context variables for the Peer Heaps model.

11.1.2 Local Context
As the ownership type system works relative to a current context, we introduce
the context variables in table 11.1 defining the basis for the recursive formaliza-
tion presented above. Note that this ∈ peers and thisHeap = peerHeaps(this).
See figure 11.2 for a graphical illustration of the peerHeaps function.

Spec# verifies each program method separately, and hence these context
variables are passed into methods using input parameters analogously to the
conventional this parameter.

11.1.3 Program Translation
In the following we show how heap related statements in Spec# are translated
into BoogiePL. The arrow symbol “ ” should be read as “roughly translates
to”, as more complex translations could be required in some cases.

57

CHAPTER 11. INVESTIGATED HEAP MODELS

Field Access

Each field access x.f is translated according to the following rules:

peer T x peerHeaps(x)[x, T.f]

rep T x thisHeapx[x, T.f]

any T x heap[x, T.f]

Method Call

x.m(...) assert P ′(A)
where havoc W
procedure T.m(A) assume Q′(A)

requires P (A)
ensures Q(A)

Reasoning about precondition P and postcondition Q has to be done in
the current context, they were written in the context of the called method,
however. P ′ and Q′ are obtained by first translating the expressions according
to the translation rules defined above, then applying the variable substitutions
listed in table 11.2.

Substitution
peer T x [x/this, peerHeaps(x)/thisHeap]

rep T x
[x/this, thisHeapx/thisHeap, Addrs(thisHeap)/peers,

Heaps(thisHeap)/peerHeaps]

any T x
[x/this, heap/thisHeap, peers′ ⊆ ADDR/peers,

peerHeaps′ ∈ HEAPS/peerHeaps]

Table 11.2: Context variable substitutions for procedure calls.

By adding pure and confined method modifiers, we can more precisely
describe what parts of the memory the procedure is allowed to read and write.
The pure modifier states that the procedure cannot perform any externally
visible changes to any heap. confined restricts a procedure to perform changes
only to thisHeap′, i.e. only change fields of the current object or (transitively)
owned objects. And finally, confinedpure means that the procedure only reads
from thisHeap′ and does not perform any externally visible changes to any
heap. See table 11.3 for the exact definitions of read set R and write set W
given a procedure modifier. From the write set W can be inferred which parts
of the tree heap structure have to be invalidated after a call of a method with the
respective modifier. The read set R defines which heap variables and functions
the method takes as arguments.

Synchronize Heaps

After applying the two translation rules above and after having desugared as-
signments into assumptions, each heap expression on a specific heap (i.e. involv-
ing peerHeaps or thisHeapy) in an assume statement needs to be replicated on

58

CHAPTER 11. INVESTIGATED HEAP MODELS

R W

No modifier {heap, thisHeap′, peers′,
peerHeaps′}

{heap, thisHeap′, peers′,
peerHeaps′}

pure
{heap, thisHeap′, peers′,

peerHeaps′} {}

confined {thisHeap′} {heap, thisHeap′, peers′,
peerHeaps′}

confined pure {thisHeap′} {}

Table 11.3: Procedure modifiers and their effect on R and W .

the global heap as well. This step is required in order to keep the model sound
and reflect the same information in the global heap as well as in the specific
heaps.

For example, the statement

assume peerHeaps (t h i s) [th i s , T. f] == 5 ;

needs to be rewritten to

assume heap [th i s , T. f] == 5 &&
peerHeaps (t h i s) [th i s , T. f] == 5 ;

because we might later on access the field T.f of this through an any refer-
ence.

11.1.4 Flaws

The Peer Heaps model unfortunately is not feasible in reality. It has some funda-
mental flaws making it impossible to build and use for the Spec# programming
system.

Keeping Heaps in Sync

Keeping heaps in sync is expensive: For each new fact on a rep or peer reference,
we have to assume that fact in both, the specific heap of that object and the
global heap. Imagine a program where the same object is referenced in one rep
and one any variable. Failing to assume a new fact on the global heap would
render the model unsound, as the field of the same object would have different
values depending on which reference we use to access it.

For each new fact on an any reference, it is even worse. As it is impossible to
statically determine the most specific heap for an any reference1, a complicated
BoogiePL expression involving universal quantifiers is required to keep the model
sound and reflecting the fact in the specific heaps.

Obligations involving quantifiers are generally slow to prove with theorem
provers, which means that keeping heaps in sync would most likely lead to a
great performance decrease during verification.

1If this was possible, we would always use the most specific heap only and would not have
to keep the global heap at all.

59

CHAPTER 11. INVESTIGATED HEAP MODELS

Improper Usage of Mathematical Functions

The model defined as above is not sound. Modeling peerHeaps as a mathe-
matical function is not correct because the return values for the same input
might change as the sub-heaps change over time. Fixing the model requires
replacing mathematical functions such as peerHeaps by 1-dimensional arrays,
the elements of which can change over time.

Failing to model these functions as arrays leads to contradictions as soon as
a heap changes twice, rendering the model unusable.

The Peer Heaps model was abandoned and not corrected because the heap
synchronization problem was already considered grave enough to prevent it from
being used as a successful model for verification purposes. Correctly modeling
peerHeaps and other functions would introduce even greater complexity such
that we felt it was not worth to investigate further in this direction.

11.2 Model: Paths

The Paths model was developed in order to remove the synchronization problems
from the heap model. Similarly to the previous model Peer Heaps, the heap is
split into smaller heaps that are structured in a tree. Each object and its heap
are addressed by a path describing their locations in the tree starting at the
root.

The advantage of this model is that we always know where fields of an
object are stored, namely in the heap with the path of that object. If the
path of an object is unknown, we simply do not make any assumptions and
leave it to the theorem prover to reason about it. Thereby it removes the need
to statically address a heap or perform expensive heap synchronization in the
program translation.

The remainder of this section presents the formalization of the model as well
as program translation rules. The last sub-section discusses why this model is
not a good candidate for replacing the current heap model.

11.2.1 Formalization
Be PATH the set of paths. The model introduces the following constants and
functions to build paths, determine whether one path is a prefix of another, and
address heaps:

Path : REF→ PATH Function mapping from objects to
their paths

Append : PATH× REF→ PATH Extends a path
IsPrefix : PATH× PATH→ B Whether path 1 is a prefix of (or equal

to) path 2
Heaps[PATH]→ HEAP Array mapping a path to the heap at

the respective position in the heap tree

The model defines axioms that describe properties of these functions. The
following is an excerpt that should illustrate the meaning of each function:

60

CHAPTER 11. INVESTIGATED HEAP MODELS

Figure 11.3: Illustration of the Path function in the Paths model.

Ax1 ∀p ∈ PATH, r ∈ REF •Append(p, r) 6= p
Ax2 ∀p ∈ PATH, r1 ∈ REF, r2 ∈ REF•

r1 6= r2⇒ Append(p, r1) 6= Append(p, r2)
Ax3 ∀p ∈ PATH • IsPrefix(p, p)
Ax4 ∀p1 ∈ PATH, p2 ∈ PATH, r ∈ REF•

IsPrefix(p1, p2)⇒ IsPrefix(p1, Append(p2, r))
Ax1 states that Append returns a path different from the path an element

is appended to. Ax2 states that appending different elements to the same path
yields different paths. Ax3 states that each path is a prefix of itself. Ax4 states
that if a path p1 is a prefix of another path p2, p2 can be extended and p1 will
still be a prefix.

See figure 11.3 for an illustration of the Path function.

11.2.2 Program Translation

Field Access

Each field access of the form x.f is translated according to the following rules:

peer T x Heaps[Path(this)][x, T.f]

rep T x Heaps[Append(Path(this), this)][x, T.f]

any T x Heaps[Path(x)][x, T.f]

61

CHAPTER 11. INVESTIGATED HEAP MODELS

Method Call

x.m(...) assert P ′(A)
where havoc W
procedure T.m(A) assume Q′(A)

requires P (A)
ensures Q(A)

We omit defining the read and write sets explicitly here. They are very
similar to the sets described for the Peer Heaps model. Havocing a certain
sub-tree rooted at path p can be expressed using the following statements:

havoc heaps′

∀p′ ∈ PATH • ¬IsPrefix(p, p′)⇒ heaps′[p′] = heaps[p′]

This states that heaps outside of the sub-tree rooted at p remain the same,
while we cannot assume anything about heaps within that sub-tree.

11.2.3 Flaws

Equivalence to Current Model

When regarding the Paths model from a distance one realizes that it is essen-
tially equivalent to the current heap model. While in the current model, the
owner is stored in a special $ownerRef field for each object, this information
would now be encoded in paths. While the theorem prover had to reason about
transitive ownership following a series of $ownerRef field accesses, it would now
do so by building and comparing paths. Using the Paths model, there would be
no performance gain for verifying ownership related proof obligations, and we
therefore abandoned this model.

Having recognized that encoding ownership information from a global per-
spective prevents us from helping the theorem prover with ownership related
proof obligations, we were led to build a model that goes into the other direc-
tion and tries to model the heap from a very local perspective.

11.3 Model: Heap Variables

The Heap Variables model is fundamentally different than the two models pre-
sented above in that it does not structure heaps in a tree. Instead, each variable
is assigned its own heap variable and all accesses to fields of that variable are
made through its heap. Note that a particular variable might have different
objects assigned during program execution. It is therefore necessary to (con-
ceptually) use a heap for each variable spanning all possibly assigned objects.

In order to keep the model sound when objects are accessed through different
variables, pairwise set relations between all heaps have to be statically deter-
mined. These relations are then used to perform heap synchronization when
necessary.

Using separate heaps per variable removes the necessity of a global heap as
well as disburdens the theorem prover from having to reason about (transitive)
ownership hierarchies. Instead, some ownership hierarchy analysis is performed

62

CHAPTER 11. INVESTIGATED HEAP MODELS

statically during program translation. The hope was that moving the ownership
hierarchy analysis from verification to program translation phase would result
in better verification performance.

This model has not been devised in full detail, meaning that this section
merely presents the general ideas behind it. The reasons why this model was
dropped are discussed ath the end of this section.

11.3.1 Program Translation

A separate local heap variable is created for each local variable with reference
type in the method under verification. Parameters are a special case of local
variables and consequently a heap variable per parameter is created and addi-
tionally expected to be passed to the method.

Consider the method Foo in the following Spec# program:

public class Test
{

public void Foo (Test o , int x)
{

Test p = new Test () ;
int y = 12 ;
// . . .

}
}

In the program translation phase, the signature of Foo will be modified
to require passing a heap for each reference type parameter, and a local heap
variable is created for each local reference type variable. The following pseudo
code should illustrate how heap variables are introduced:

procedure Test . Foo (Test th i s , Heap thisHeap , Test o , Heap
oHeap , int x)

{
var Test p , Heap pHeap ;
var int y ;
// . . .

}

All field accesses are then performed on the respective heap variable of the
field access receiver. Chained field accesses2 could either be performed on the
heap of the first field access or intermediary heaps could be introduced for each
subsequent field access.

11.3.2 Heap Relations

Possible relations we considered between a pair of heaps are:

• Equality
Two heaps are considered equal if the set of objects that are possibly ac-
cessed through them are determined to be equal. Heaps determined to be

2A Spec# expression such as this.o.f.x.

63

CHAPTER 11. INVESTIGATED HEAP MODELS

equal can be accessed through one shared heap variable. While coalescing
two heaps into one heap variable offers the advantage of removing the need
for heap synchronization, it also brings the disadvantage of forming bigger
heaps. Whether identifying two heaps as equal is advantageous depends
on the actual program and is generally hard to determine.

• Disjointness
Two heaps are disjoint if we can statically guarantee that no object is
accessed through both heaps. Disjointness of heaps is desirable as disjoint
heaps do not require to be synchronized.

• Overlap
If none of the two relations above, equality or disjointness, can be asserted,
it is possible that at least one object is accessed through both heap vari-
ables during program verification, and we therefore say that the heaps
overlap. Hence these heaps need to stay synchronized in order to guaran-
tee that information about each object is consistently reflected, regardless
of the heap it is accessed through.

It is important to note that equality of heaps should only be determined if the
two heaps share a lot of accesses on the same objects. If too many heaps are
coalesced into one heap variable, we eventually end up with the current model,
i.e. one global heap only.

11.3.3 Statically Determining Heap Relations

We considered two techniques that can be employed to statically determine the
relations equality, disjointness, and overlap between heaps.

Annotations

The first technique, annotations, requires the programmer to specify the rela-
tions manually:

Pairwise specifications such as EqualHeaps(o,p) (DisjointHeaps(o,p))
would indicate to the program translator that variables o and p should be ac-
cessed through equal (disjoint) heaps. If there is no annotation for reference
type variables o and p, the program translator would assume that the heaps for
o and p overlap.

Additionally, the program translator needs to guarantee that each method
call conforms to the annotations given by the programmer, i.e. that the relations
given for the actual parameters conform to the annotations of the called method.

It is the responsibility of the programmer, however, that the annotations are
sound and reflect all possible program executions. If, for example, two heaps
are annotated as being disjoint although an object might be accessed through
both of them, contradictions might be introduced at verification time.

As for some programs, the ownership type system already poses an unpleas-
ing burden to the programmer, we do not think that the additional burden
of annotating pairwise heap relations would be feasible for real world software
engineering.

64

CHAPTER 11. INVESTIGATED HEAP MODELS

Data Flow Analysis

By employing data flow analysis and exploiting the ownership type specifications
of a program, the equality, disjointness, and overlap relations can be deduced.

In the general case, data flow analyses are bound to be imprecise as they
usually work on a high abstraction level. In order to improve precision, specifi-
cations such as pre- and postconditions could be taken into account in addition
to the ownership type specifications.

Consider the following Spec# program:

public class Test
{

public int x ;

public void Foo (Test ! other)
requires other != this ;

{
other . x = 5 ;

}
}

A data flow analysis that takes preconditions into account could deduce that
the heap for this is disjoint from the heap of other.

Any automatic technique that deduces relations between heaps needs to be
pessimistic at determining disjointness. Marking two heaps as disjoint although
they are not disjoint in reality might introduce contradictions at verification time
and would thereby render the whole process unsound. For the equality relation,
the algorithm needs to weigh the advantage of removing heap synchronization
against the disadvantage of bigger heaps, as explained in section 11.3.2.

11.3.4 Flaws
Infeasibility of Static Analysis

We consider both techniques for statically determining relations between heaps
infeasible. Requiring the programmer to manually annotate relations for each
pair of heaps seems too big of a burden. Automatically performing data flow
analysis would most likely be too imprecise in the general case.

Disjointness Hard to Determine

As any automatic technique is required to be pessimistic regarding disjointness,
the result would be excessive heap synchronization (overlap) or degeneration of
the model towards the current model with just one global heap (equality).

65

Chapter 12

Conclusions

12.1 General Problems
We have seen that – independent of whether the static ownership information is
encoded from a global or from a local perspective – all the investigated models
exhibit major flaws that render them infeasible for real world usage in our
opinion.

The general problems encountered during analysis of the models can be
summarized as follows:

• When partitioning the heap into disjoint sub-heaps, not every heap access
can be statically resolved to the most specific heap. It is therefore nec-
essary to either carry along a global heap or to synchronize a number of
heap pairs. (Peer Heaps, Heap Variables)

• When trying to avoid heap synchronization, resolving heap access to the
most specific heap must be offloaded to the verifier, which basically yields
the current model. (Paths)

Statically modeling the heap resembling the ownership hierarchy would also
prevent support for ownership transfer, which might be added to Spec# in the
future.

12.2 Future Work
Given the experience with the analyzed heap models presented above, we do not
believe that a reasonably complex model resembling the ownership hierarchy
can be built for Spec#. It is well possible, however, that other static program
verifiers provide features that would enable the creation of such heap models.

Instead of focusing on the ownership hierarchy, future work for Spec# aiming
to increase performance of verification could be based on separation logic[6] or
similar techniques. That would imply the addition of a major new concept for
the programmer as well as for Spec#, however.

67

Bibliography

[1] Jürg Billeter. Counterexample execution. Master’s thesis, ETH Zurich, 2008.

[2] Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural
language for checking object-oriented programs. Technical report, Microsoft
Research, 2005.

[3] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-oriented
programs. In Formal Methods for Components and Objects: 4th Interna-
tional Symposium, FMCO 2005, volume 4111 of Lecture Notes in Computer
Science, pages 364–387. Springer, 2006.

[4] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Pro-
gramming System: An overview, 2004.

[5] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
In Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), 2008.

[6] John C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures, 2002.

[7] Ádám Darvas and K. Rustan M. Leino. Practical reasoning about invoca-
tions and implementations of pure methods. 2008.

69

Part III

Appendices

71

Appendix A

Cee Usage

A.1 Usage

Cee [−−debug|−−check|−−generate]
[−−expect EXCEPTION]
[−− sourceLocat ion LINE :COL]
[−−method METHOD_FULL_NAME]
[−−nThCounterexample N_TH_COUNTEREXAMPLE]
[−−keepAllRuntimeChecks]
[−−waitForDebugger]

[−−debugCee]
[−−pr intBpl BPL_PRINT_FILENAME]
[−−verbose]
[−−wait]
ASSEMBLY

A.2 Options

Option Description
--debug Start counterexample program in debug mode
--check Check counterexample output against --expect
--generate Generate counterexample program only
--expect EXCEPTION Exception counterexample is expected to throw
--sourceLocation L:C Counterexample selection by source code location
--method METHOD_NAME Counterexample selection by method’s full name
--nThCounterexample N Select n-th counterexample in specified method
--keepAllRuntimeChecks Generate all runtime checks
--waitForDebugger Generated program will wait for debugger to attach
--debugCee Pause at the beginning of the execution of Cee
--printBpl FILENAME Output generated Boogie program to specified file
--verbose Output more information to console
--wait Waits for key press before exiting Cee
ASSEMBLY Assembly containing the input Spec# program

73

Appendix B

Visual Studio Integration

B.1 Cee AddIn

Figure B.1: Screenshot of the “Run counterexample” command provided by the
Cee AddIn.

75

Appendix C

Text Case Definitions

C.1 Example 1: Frame Condition Violation

1 public class D
2 {
3 public int x ;
4 [Peer] public D! d ;
5 }
6
7 public class T
8 {
9 int x ;
10 [Peer] D! myobject ;
11
12 public void Foo ()
13 modifies this . x ;
14 {
15 expose (myobject)
16 {
17 myobject . d . x = 12 ;
18 }
19 }
20 }
21
22 // Checks whether we can handle frame cond i t i on

v i o l a t i o n s on f i e l d s a few l e v e l s deep from a root
23 // v a r i a b l e ’ t h i s ’ .
24
25 // cee−expec t : Microso f t . Contracts . Modi f i e sExcept ion :

Modi f i es c l au s e v i o l a t e d from method ’T. Foo ’ . Value o f
’ t h i s . myobject . d . x ’ d i f f e r s in pre− and post−s t a t e .

77

APPENDIX C. TEXT CASE DEFINITIONS

C.2 Example 2: Side Effect Capturing

1 namespace FieldUpdate
2 {
3 public abstract class TestClass
4 {
5 public int x ;
6
7 public void TestThisFieldUpdate ()
8 {
9 x = 4 ;
10 MethodWithSideEffect () ;
11 assert this . x == 4 ;
12 }
13
14 public void TestOtherFieldUpdate (TestClass ! other)
15 {
16 other . x = 4 ;
17 other . MethodWithSideEffect () ;
18 assert other . x == 4 ;
19 }
20
21 public abstract void MethodWithSideEffect ()
22 ensures this . x == 5 ;
23
24 }
25 }
26
27 // cee−arguments : −−method "Fie ldUpdate . TestClass .

TestThisFie ldUpdate "
28 // cee−expec t : Microso f t . Contracts . Asser tExcept ion :

Asser t ion ’ t h i s . x == 4 ’ v i o l a t e d from method ’
Fie ldUpdate . TestClass . TestThisFie ldUpdate ’

29
30 // cee−arguments : −−method "Fie ldUpdate . TestClass .

TestOtherFie ldUpdate (op t i ona l (Microso f t . Contracts .
NonNullType) Fie ldUpdate . TestClass) "

31 // cee−expec t : Microso f t . Contracts . Asser tExcept ion :
Asser t ion ’ o ther . x == 4 ’ v i o l a t e d from method ’
Fie ldUpdate . TestClass . TestOtherFie ldUpdate (op t i ona l (
Microso f t . Contracts . NonNullType) Fie ldUpdate . TestClass
) ’

78

	I Improving Cee
	Introduction
	Background
	The Spec# Programming System
	Frame Conditions
	Boogie
	Z3 and Counterexamples
	Cee - Counterexample Executor

	Maintaining Object States
	Object Initialization
	Object Updates

	Runtime Checks for Frame Conditions
	Addressing Heap Locations
	Adding Runtime Checks
	Example
	Limitations

	Method Calls in Contracts
	Function Tagging
	Example
	Implementation
	Limitations

	Other Improvements to Cee
	Counterexample Selection
	Visual Studio Integration
	Integration with the e TextEditor
	Runtime Checks
	Debugging Options

	Future Work
	Object Registry
	Improving Side Effect Capturing
	Improving Runtime Checks for Frame Conditions
	Improving Function Tagging
	Understanding Verifiable Programs

	Conclusions

	II Multiple Heaps for Ownership-Based Verification
	Introduction
	Background
	Spec# and Boogie
	Current Heap Model
	Ownership Type System
	Problem

	Investigated Heap Models
	Model: Peer Heaps
	Model: Paths
	Model: Heap Variables

	Conclusions
	General Problems
	Future Work

	III Appendices
	Cee Usage
	Usage
	Options

	Visual Studio Integration
	Cee AddIn

	Text Case Definitions
	Example 1: Frame Condition Violation
	Example 2: Side Effect Capturing

