
Integration of a new VCGen in
ESC/Java2

Claudia Brauchli

Master Project Report

Software Component Technology Group
Department of Computer Science

ETH Zurich

http://sct.inf.ethz.ch/

September 2007

Supervised by:
Hermann Lehner
Prof. Dr. Peter Müller

Software Component Technology Group

http://sct.inf.ethz.ch/

2

.

Abstract

“The earlier errors are found, the less costly they are to fix!”1 Code consumers make
high demands on software applications. By providing a certificate associated with a
program, the code producers can guarantee the properties the consumer demands on.

The project team of MOBIUS is developing techniques to verify security and func-
tional properties of Java programs in order to generate certificates. Based on ESC/-
Java2, an already existing static checker, the new environment of MOBIUS produce
proof obligations of difficult security properties that have to be discharged manually,
using Coq.

In order to achieve this, we integrate a new direct Verification Condition generator
(VCGen) into ESC/Java2. This master thesis covers the work needed to integrate
this VCGen. We developed the translations of code specifications into first order
logic terms. Code specifications, to specify the functional behavior of a particular
program, are annotations written in Java Modeling Language (JML). We have defined
and implemented the translation of most of the JML level 0 annotations into first order
logic terms.

1Preamble of article [1].

3

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Aims of this Thesis . 7
1.3 Acronyms . 7
1.4 Tools and Languages . 8

2 Preliminaries 9
2.1 ESC/Java2 . 9

2.1.1 JML . 11
2.1.2 AST . 15
2.1.3 Using ESC/Java2 . 16
2.1.4 JavaFE . 19

2.2 Sorted Logic . 20
2.3 Pre- and Poststate . 21
2.4 Heap . 21
2.5 Coq . 22

3 Integration of a new VCGen 23
3.1 General Concept . 24

3.1.1 Example of a Translation . 24
3.2 Translation Features . 25

3.2.1 Property Object . 25
3.2.2 Lookup Table . 27
3.2.3 Annotation Table . 28
3.2.4 Visible States . 29
3.2.5 Dependences of Fields in Type Specification 29

3.3 Definition of FOL Terms . 30
3.3.1 Numerical Operations . 30
3.3.2 Boolean Expressions . 31
3.3.3 Predicates . 32
3.3.4 Special Notations . 33

3.4 JML Statements . 35
3.4.1 Assert, Assume, Set . 36
3.4.2 Maintaining . 36
3.4.3 Example of JML Statements . 37

3.5 Method Specifications . 39
3.5.1 Requires . 39

4

Contents 5

3.5.2 Ensures . 41
3.5.3 Signals only . 43
3.5.4 Signals . 45
3.5.5 Assignable . 46

3.6 JML Modifiers . 49
3.6.1 Ghost . 49
3.6.2 Helper . 50

3.7 Quantifiers . 50
3.7.1 Forall . 51
3.7.2 Exists . 52

3.8 JML Expressions . 53
3.8.1 Result . 53
3.8.2 Fresh . 54
3.8.3 Old . 55
3.8.4 Typeof . 56
3.8.5 Type . 57

3.9 Type Specifications . 58
3.9.1 Initially . 58
3.9.2 History Constraint . 59
3.9.3 Example of History Constraint 60

3.10 Invariant . 61
3.10.1 Object Invariant . 61
3.10.2 Invariant Term for Precondition Φ 62
3.10.3 Invariant Term for Postcondition Ψ 64
3.10.4 Type Collector . 65

3.11 JML Subset Checker . 70
3.11.1 Example of Subset Checker . 70

3.12 Summary of Translations . 71

4 Conclusion and Future Work 72
4.1 Conclusion . 72
4.2 Future Work . 72

4.2.1 Implementation of missing JML level 0 Translations 72
4.2.2 Assignable Semantics . 72
4.2.3 Different Frontend/Backend . 73
4.2.4 Acknowledgements . 73

A Translation Example of most JML Level 0 Features 75

B JML Predicate Syntax 82

C Expression Syntax 84

1 Introduction

Code consumers expect some properties, such as type and memory safety, which has
to be satisfied during code execution. For that reason, code producers provide a
certificate that indicates these properties of their code. A certificate of simple program
properties can be done automatically from source code. In the case of advanced security
properties, there are additional techniques necessary in order to produce certificates.
Based on these facts, the project MOBIUS (Mobility, Ubiquity, and Security) [2]
was founded by a consortium of sixteen partners and is coordinated by INRIA [3].
The MOBIUS project has started in September 2005 and lasts for 48 months. One
of the partners is the Software Component Technology Group [4] at the Swiss Federal
Institute of Technology Zurich [5] where this master thesis is written.

The project’s goal is to develop modular logical techniques for the verification of
security and functional properties of Java programs. A new environment will be de-
veloped that supports these techniques for program verification on source and byte
code level. This environment will be based on ESC/Java2 [6], an already existing
static checker. Specifications are added to the code as annotations to express pre- and
postconditions, invariants, and other properties. These annotations will be written in
a standard annotation language, JML [7].

The aims of the group at the Swiss Federal Institute of Technology Zurich are the
creation of techniques and tools for the development of provably correct object-oriented
software components.
This master thesis covers the integration of a new direct Verification Condition gen-
erator (VCGen) into ESC/Java2 on source code level. The new VCGen is related to
the already existing VCGen on byte level [8] and generates Verification Conditions
(VCs) for a manual theorem prover (e.g. Coq [9]). The old VCGen requires Guarded
Commands (GCs) as input data in order to generate VCs for an automatic theorem
prover (e.g. Simplify [10]). We disclaim the intermediate language of GCs and reuse
the data structure given by the Java frontend (JavaFE) of ESC/Java2. This keeps the
proving mechanism as simple as possible regarding the proof will be done by hand.

1.1 Motivation

The project goal is to use the manual theorem prover Coq. As it is a manual tool,
the generated Verification Conditions (VCs) have to be human readable as much as
possible. We disclaim any intermediate language as Guarded Commands (GCs) to
keep the VCs more related to the verifying Java source code. Thus, the new VCGen is
also called “direct VCGen”, since we avoid any intermediate language. Using a sorted
logic, we keep the Java types of fields and variables until the generation of VCs.

6

1.2 Aims of this Thesis 7

It already exists a VCGen on byte code level. The project goal is to integrate a similar
VCGen on source code level.

1.2 Aims of this Thesis

1. Define the transformation of JML level 0 to first-order logic.

2. Implement four lookup functions to get information about the pre-, post-, and
exceptional postconditions of a method, and about the local assertions inside a
method.

3. Design and implement a Java and JML subset checker, which can be turned on
and off.

4. Design and implement static analysis that checks which object can be changed
within a method (for invariant checking).

5. Supporting history constraints.

Possible extensions are:

• Verifying some simple example codes in Coq

• Support ownership structure to check invariants

1.3 Acronyms

Table 1.1 contains a list of acronyms that are frequently used in this thesis.

AST Abstract Syntax Tree
ESC Extended Static Checking
FE Front End
FOL First-Order Logic
GCs Guarded Commands
JavaFE Java Front End
JML Java Modeling Language
PVE Program Verification Tool
VCGen Verification Condition Generator
VCs Verification Conditions

Table 1.1: Table with acronyms

8 1 Introduction

1.4 Tools and Languages

The following tools and languages are used:

Java: Object-oriented high-level programming language developed by
. Sun Microsystems [11]
JRE: Java Runtime Environment [12] 1.42 (for ESC/Java2)
JRE: Java Runtime Environment [12] 1.50 (for MOBIUS)
ESC/Java2: Tool to prove correctness of specifications at compile time [6]
Simplify: Automatically theorem prover [10]
Coq: Manual theorem prover [9]

2 Preliminaries

This chapter gives an overview of the verification environment ESC/Java2 and its
usage. The first section 2.1 covers the operation steps in ESC/Java2. A Java source
code under verification gets parsed by the JavaFE and gets transmitted to an Abstract
Syntax Tree (AST), which is explained in section 2.1.2. In section 2.2, we give a brief
introduction to sorted logic that we use for the translation of JML to FOL terms. Pre-
and poststates in section 2.3 are relevant for the heap handling, described in section
2.4. The last section 2.5 describes the manual prover Coq, which is used in this project.

2.1 ESC/Java2

ESC/Java2 is a programming tool to check program specifications. It detects, at
compile time, common programming errors that are not ordinarily detected until run
time, and sometimes not even then. Common run time errors are division by zero, null
dereference errors, array bound errors and type cast errors.
ESC/Java2 is an extension of ESC/Java1 and supports more of JML features. ESC
is the acronym for Extended Static Checking. The tool extends conventional static
checkers by catching more errors than they do and it is static because the program
does not have to run in order to get checked. ESC/Java2 computes VCs from a JML
annotated Java program. VCs are made up of a set of logical formulas. Later on, these
generated VCs are proven by a theorem prover, currently Coq.

Figure 2.1 illustrates the operation of ESC/Java2 step by step. During these op-
eration steps, the Java code under verification gets converted into three other data
structures as listed below:

JML annotated Java code: This is the main Java program under verification using
ESC/Java2. It is a plain Java code including JML features for specifying the
code.

AST: An AST represents a logical tree structure. It expresses the content of a given
document in form of nodes and leaves. An AST is the result of parsing Java
codes by JavaFE. Using the JavaFE of ESC/Java2, JML annotated Java codes
can be parsed as well.

GCs: Guarded Commands are imperative and intermediate representations of the orig-
inal annotated Java code. GCs are tailored towards verification. They consist of
some simple instructions. We mainly have assertions, assumptions and program
flow instructions.

1Developed by the Compaq Systems Research Center, today HP.

9

10 2 Preliminaries

VCs: VCs are conditions that have to be met in order to verify a program. Each
method holds one weakest precondition, which is calculated from the given GCs.
A VC describes the weakest precondition under the assumption that the class
predicate is satisfied. A theorem prover (e.g. Simplify) tries to proof these VCs.

Figure 2.1: Operation flow of ESC/Java2

There are three operations within ESC/Java2 to generate the individual data structure.
A brief introduction to each operation is given below:

JavaFE: The input of JavaFE is a JML annotated Java code, written by the user.
JavaFE parses the code and transforms it into an AST. The output of JavaFE
and ESC/Java2 is a full structured AST containing JML annotations.

Translator: The translator takes the AST and generates GCs.

VCGen: VCGen uses a weakest precondition calculus. VCGen takes GCs as input and
generates VCs. The VCGen used in ESC/Java2 generates VCs in unsorted logic.

Simplify: Simplify is an automatically theorem prover. It tries to proof the gener-
ated VCs in unsorted logic. If it finds a counter example, which violates these
assumptions, an error message is returned.

2.1 ESC/Java2 11

2.1.1 JML

JML is a language to specify the functional behavior of Java classes and methods.
Thus, the quality of the Java source code will be increased. The Java programmer
can express the design decision of the program by adding JML features to the Java
code. Run time exceptions can be caught by using JML specifications as for example
pre-, postconditions, and invariants. These JML features appear as comments and are
ignored by Java compilers. Only the ESC/Java2 tool makes use of them. A one line
JML feature starts with the prefix “//@”, which is appended with a JML annotation:

//@ <JML-annotation>;

For several JML annotation lines, one can use “/*@“ to begin and “@*/” to end the
annotation lines. The following example shows two methods. The first method could
throw a DivideByZeroException, whereas the second method prevents this excep-
tion by using a JML feature to avoid that exception case:

public void doSomethingBad(int val) {
int test = 100 / val;
}

//@ requires val != 0;
public void doSomethingGood(int val) {

int test = 100 / val;
}

To avoid a DivideByZeroException, the second method uses the requires JML
feature. It limits the range of the input values by allowing values not equal to zero.
Thus, the second method never will throw a DivideByZeroException.

JML annotations are subdivided into several levels. The next section provides the
reader with a tutorial to JML level 0 and to the upper level. More information about
JML is described in [13].

JML Level 0

JML level 0 constitutes the heart of JML. JML features in this level are fundamental
to all usages of JML and should be covered in all tools. This thesis covers the trans-
lation of the most JML level 0 annotations. These annotations are categorized into
same specification types. We give a short explanation to each category and each level
0 feature and refer to [14] for full explanation. The syntax of all JML features is given
in appendix B. This master thesis does not cover the design and implementation of
all JML level 0 features. See comments in brackets at the end of each explanation
whether or not it is covered.

12 2 Preliminaries

JML modifiers:
A class, interface, method, or a class field may be modified using one of the JML
modifiers.

• Model fields are abstractions of concrete fields. They are only present for specifi-
cation purposes and are not available for use in Java code outside of annotations.
Model fields hold the value of the concrete fields they abstract of, using the JML
feature represent. (Not covered)

• Ghost fields and variables are similar to model fields. They are also present for
purposes of specification only, but they are not abstractions of concrete fields.
Ghost variables are statement annotations and interspersed to Java statements.
The value of ghost fields and variables are directly determined by their initial-
izations or by using the JML feature set. (Ghost variables are covered)

• Instance modifiers express that the corresponding fields are not static. They
are mostly used for ghost fields in interfaces. (Not covered)

• Spec_public is a way to change the visibility of a feature for Java and JML
purposes (e.g. public, protected and private). Spec public declares any field as
public for JML purposes without any regards to the Java visibility. (Not covered)

• Spec_protected is similar to spec_public, but it declares any class field as
protected for JML purposes. (Not covered)

• Nullable is a way to allow null references. By default, declarations, whose types
are reference types, are implicitly declared as non null references. Using the
JML feature nullable, one can explicitly allow declaration without yet being
instantiated. (Not covered)

• Non_null declares a value or reference not to be null. (Not covered)

• Helper modifiers state that the invariant, initially, and history constraint
are not relevant to the private method or constructor, which is modified with
this JML feature. The next example demonstrates the usage of the helper JML
feature on a private method: (Covered)

private /*@ helper */ void doSomething() {..}

Type specifications: The following type specification features must hold within the
whole class or interface definition. They are relevant to an object type.

• Invariants have to hold in every visible state of the type. They are implicitly
included in all pre-, post-, and exceptional postconditions. (Covered)

• Represents clauses can be used to assign the value of a concrete field to a model
field. (Not covered)

2.1 ESC/Java2 13

• Initially features can be used to state the behavior of each concrete subtype
after its instantiating. Initially predicates are applied to post- and exceptional
postconditions of all non-helper constructors. (Covered)

• Type feature denotes the type of the holding reference or primitive type. (Cov-
ered)

Method specifications: The behavior of any method can be described by using
method specifications.

• Requires annotations represent the precondition of a method or constructor.
Any precondition must hold at the beginning of the routine execution. (Covered)

• Ensures annotations represent the postcondition of a method or constructor.
Any postcondition must hold when the routine terminates without throwing any
exception. (Covered)

• Signals annotations specify the exceptional postconditions. The property of the
signals clause has to hold when the method or constructor execution terminates
abruptly by throwing a given exception. The predicate P of the signals clause
in the next example has to hold if an exception of type E is thrown: (Covered)
//@ signals (E e) P;

• Signals_only annotations declare all exceptions that may be thrown by a rou-
tine. (Covered)

• Assignable JML features contain a list of object references that are assignable
during the execution of the method’s or constructor’s body. All other objects
have to remain unchanged.(Covered)

Statements: JML statements are interspersed with Java statements in the body of
any method or constructor.

• Assert statements require the given predicate to hold at the given point in
the program execution. JML has to check that the specified predicate is true.
(Covered)

• Assume statements specify that the given predicate holds. Static analysis tools
do not need to check if the predicate holds. The assume statement expresses
that the given predicate is assumed to hold. (Covered)

• Set statements are used to assign values to ghost variables or to ghost fields.
(Covered)

• Maintaining is a loop invariant. It has to hold before and after each loop
iteration. (Covered)

14 2 Preliminaries

Predicates: Some JML annotations can be extended by using JML predicates.

• Result predicate refers to return value of non-void methods. It can only be used
in ensure clause. (Covered)

• Old predicate refers to values of the given expression in the prestate of a method
or constructor. (Covered)

• Fresh predicate assert that the objects in the holding list will be freshly allocated
in the body of that routine declaring this JML feature. They are declared but
not allocated in the prestate. (Covered)

• Typeof features return the most-specific dynamic type of the given expressions.
(Covered)

Quantors: JML offers the usage of the known logical quantors in any JML feature.

• Forall is the universal quantifier. It ranges over all potential values of the
declared variable. The range predicate is given between the semicolons “;“. The
next quantified expression demonstrates the usage of the universal quantifier.
This predicate requires a given integer array “a” to hold values different to the
integer value of two. We range the scope to the first ten entries of the array.
(Covered)

(\forall int i; i <= 10; a[i] != 2)

• Exists is the existential quantifier. It has the same syntax as the universal
quantifier. (Covered)

Operands:

• < , > , <=, >= ; ==, != (Covered)

• <==> , <=!=> (Not covered)

• <==, ==> (==>: Covered)

• \max, \min, \product, \sum, \num of (Not covered)

Upper levels

To complete the JML overview, we give a brief introduction to the upper JML levels.
From the bottom-up there exist level 1, level 2, level 3, level C, and level X features.
They are more exotic features and not implemented by many tools.

Pure: This JML modifier can be applied to methods. Such a method does not modify
any field location and thus, it is without any side-effects. A pure method has
the same meaning as the JML annotation “//@ assignable \nothing”. Pure
denoted methods can be used themselves in JML invariant features since they
result in the same in every execution. (Not covered)

2.1 ESC/Java2 15

History constraints: History constraints are related to invariants and con-
strain the way in which values may change in the program executions. History
constraints, simply named as constraints, typically use the JML feature old.
The example below shows a constraint JML feature of an integer “c” that can
only be increased in the whole lifetime of the object declaring it. (Covered)

//@ constraint c >= \old(c);

2.1.2 AST

An AST is a logical tree structure consisting of nodes and leaves. The JavaFE gen-
erates an AST by parsing an entire Java code. Figure 2.2 shows the meta model of
the AST syntax used in ESC/Java2. Due to lack of space, we only display the most
important nodes.

Figure 2.2: Meta model of AST syntax in ESC/Java2

The following listing gives a brief explanation on the most relevant nodes for our usage:

CompilationUnit: There exists exactly one compilation unit for each verifying pro-
gram. It acts as the root of the generated AST tree and contains a list of type
specification as well as other elements as for example class declarations.

16 2 Preliminaries

GenericValDecl: Any variable declaration (either local or field variables) is represented
as a generic variable declaration node.

ModifierPragma: Every modification of a routine, field or variable, is represented as
a modifier annotation.

VarInit: Initializing a variable is done in a VarInit node.

Stmt: The body of a routine consists of statements, represented as Stmt nodes. A lo-
cal variable declaration LocalVarDecl is represented as a statement node VarDe-
clStmt.

RoutineDecl: A routine declaration is either a method or a constructor declaration.
It contains method specifications as ModifierPragma nodes and the routine’s
body, containing Java and JML statements.

TypeDecl: TypeDecl node represents a new declared type or interface.

To scan such an AST, we use the visitor design patterns. ESC/Java2 provides interfaces
to implement visitors.

Example of an AST

We demonstrate the generation of an AST in the following example. JavaFE generates
the AST of the Java code as illustrated in figure 2.3:

Figure 2.3: Java code and generated AST

2.1.3 Using ESC/Java2

ESC/Java2 tries to find common runtime exceptions at compile time by doing a static
analysis of the Java source code. This section demonstrates the usage of JML anno-
tations by running ESC/Java2.
One common runtime exception is the division by zero. ESC/Java2 detects these kinds
of runtime errors and warns the programmer. The following example shows a class
with one constructor and one method.

2.1 ESC/Java2 17

1 public class A {
2 int count;
3 boolean[] boolArray;
4
5 public A(int num) {
6 this.count = num;
7 boolArray = new boolean[num];
8 for (int i = 0; i < boolArray.length; i++){boolArray[i]=true;}
9 }

10
11 public void foo(int x) {
12 this.count = this.count / x;
13 }
14 }

The constructor initializes the array boolArray by setting the entire array to true.
Calling the method “foo()” with an input integer value x, the method divides the count
value by the value of x. ESC/Java2 is a modular checker. It checks each routine sep-
arately.
A routine either passes the proof checker, or the occurred warning will be printed out
with the specific line number. Running ESC/Java2 on the Java class “A”, the following
warnings are printed out:

A.java 7: Warning: Possible attempt to allocate array of negative length (NegSize)
. boolArray = new boolean[num];
. ↑

A.java 12: Warning: Possible division by zero (ZeroDiv)
. this.count = this.count / x;
. ↑

The first warning occurs because the constructor could be called with a negative input
value. To prevent this possible runtime exception, we have to provide input values
greater than zero:

//@ requires num > 0;

The second possible exception can be caught by restrict the possible input value. We
allow only input values not equal to 0. We state this behavior by using the following
JML annotation:

//@ requires x != 0;

Both JML annotations represent a precondition for each routine. ESC/Java2 assumes
that preconditions holds on entry.

18 2 Preliminaries

The next example shows the same Java class but extended with the JML annotations
on line 5 and 12 to avoid the given warnings:

1 public class A {
2 int count;
3 boolean[] boolArray;
4
5 //@ requires num > 0;
6 public A(int num) {
7 this.count = num;
8 boolArray = new boolean[num];
9 for (int i = 0; i < boolArray.length; i++){boolArray[i]=true;}

10 }
11
12 //@ requires x != 0;
13 public void foo(int x) {
14 this.count = this.count / x;
15 }
16 }

The following output will be printed out after running the new JML annotated Java
code:

A: A(int) . . . passed

A: foo(int) . . . passed

The A.java example passes without any warnings after adding two JML requirement
annotations.

Behind the scene:
To accomplish this modular checking, an AST of the Java code will be generated.
This AST includes nodes for classes, routines, and nodes for JML annotations. Figure
2.4 shows the AST of the Java class “A” with JML annotations. The two Modi-
fierPragma nodes represent the preconditions of the constructor and of the “foo()”
method.

2.1 ESC/Java2 19

Figure 2.4: Fragment of the AST that JavaFE generates of the Java code of class “A”.

2.1.4 JavaFE

The frontend of ESC/Java2 consists of two parts. The first one is the Java Frontend
(JavaFE), which parses a Java code and checks the contained types. The second part
is ESC/Java, which extends the JavaFE in order to use JML annotations and to do
more complex static checks. The frontend of ESC/Java2 operates in three phases as
illustrated in figure 2.5:

• Lexer: Translating symbols to known tokens

• Parser: Creating an AST

• Typechecking: Syntactically and semantically type checking

JML annotations are treated as proper nodes, called Pragmas. JavaFE combined
with ESC/Java2 generates an AST containing these pragmas.

20 2 Preliminaries

Figure 2.5: ESC/Java2 and JavaFE as Java frontend.

2.2 Sorted Logic

Sorts are abbreviations for a collection of universe types. One fundamental objective
of this project is to obtain Java types of a Java code until the proving mechanism,
independent of any translation. Hence, we must do the translation for every JML
annotation dependent on its type. FOL terms are based on sorts instead of Java
types. ESC/Java2 offers a method to convert Java types to sorts. Table 2.1 shows
a small insight of the mapping defined in ESC/Java2 between the most useful Java
types and sorts.

Java Type Sort As String
BOOLEANTYPE sortBool bool
DOUBLETYPE sortReal real
FLOATTYPE
BYTETYPE
SHORTTYPE
INTTYPE sortInt int
CHAR
LONG
BIGINT
TYPESIG
TYPENAME sortRef ref
TYPECODE
NULLTYPE
ANY sortAny any
Value sortValue value

Table 2.1: Mapping from Java types to sorts

For more flexibility of generating FOL terms, we use some more sorts as represented
in table 2.2.

2.3 Pre- and Poststate 21

Sort As String Represents
sortPred PRED A predicate
sortAny any Any possible sort
sortValue value A value
sortMap map The type of heap

Table 2.2: Additionally sorts

What is the difference between sortBool and sortPred?
Both sortBool and sortPred represent a boolean type. Every predicate2 is defined
as sort sortPred whereas every boolean literal (actually true and false) is defined as
sort sortBool. There are operations that either results in sortBool or sortPred,
depending on the operands sort.

2.3 Pre- and Poststate

The state before a constructor’s or method’s execution is called prestate. After exe-
cuting a routine, the state is called poststate. Thus, every constructor and method has
one pre- and one poststate. The most JML features either have to hold in a routine’s
prestate, poststate, or even both. We use a precondition Φ term to state what must
hold in the prestate of a routine. The behavior of the poststate is represented by the
normal postcondition Ψ and the exceptional postcondition Ψe.

2.4 Heap

The heap is an area of the main memory. It is used as free storage for dynamic memory
allocation in a computer program during runtime. It is always accessible and thus, it
represents all allocated objects at the point of access. There are three main functions
applying on a heap:

select: selecting a variable on the heap

store: storing a variable on the heap

loc: representing the location of a variable within the heap

As explained in section 2.3, there are two different states in one routine. Because we
need access to the prestate and the current state during the execution of a routine,
there are given two different heaps:

pre heap: A copy of the current heap representing the heap in the routine’s prestate.
This heap is only valid for one routine’s execution.

2See section 3.3.3 for more details about predicates.

22 2 Preliminaries

heap: The current heap, valid for the entire execution of the program, contains all
values for each program point.

Figure 2.6 shows a method and the two heaps associated with it. The pre heap holds
values of fields in the prestate whereas the common heap holds values of fields of the
entire execution of the routine’s body.

Figure 2.6: Pre heap and heap during a method’s execution

We have always access to both heaps during the execution of this method. After and
before the execution of any method the pre heap is not available anymore.

2.5 Coq

Coq is a manual theorem proofing system of INRIA. One can define functions, predi-
cates and theorems as VCs to check them by Coq. But Coq does not check all VCs at
one time, but step by step. Even Coq is a manual theorem prover, it evaluates specifi-
cations efficiently. Already proofed theorems can be reused. The MOBIUS project is
using Coq as the theorem prover in order to generate certificates of advanced security
properties.

3 Integration of a new VCGen

This chapter describes the integration of a new direct VCGen in order to generate VCs
in sorted logic.

Figure 3.1 illustrates the operation flow with the new VCGen on the right hand
side. We avoid GCs to keep the generated VCs more related to the origin Java source
code. We first give an overview of the new VCGen and the general concept in the
first section in 3.1. Section 3.2 describes the required translation features in order to
define the syntax of FOL terms in section 3.3. Sections from 3.4 to 3.9.2 describe the
translation of the most JML level 0 annotations1 into FOL terms in detail. We use
the Extended Backus-Naur form (EBNF) to describe the syntax of a JML annotation.
The bold JML annotations within the EBNF syntax will be translated into FOL terms.
All other annotations belong to future work, as described in section 4.2.

Figure 3.1: ESC/Java2 and the new integrated VCGen

1See section 2.1.1 that describes which JML annotations are covered in this thesis.

23

24 3 Integration of a new VCGen

3.1 General Concept

For the integration of our new VCGen, we use a new translation mechanism to avoid
the intermediate language represented as GCs. The new VCGen is developed by
the project team at INRIA. The project team at ETH Zurich is responsible for the
translation of JML annotations to FOL terms in sorted logic. Our new translation
operation takes place after generating the AST as illustrated on the right hand side
of figure 3.1. Afterwards, there is a new independent operation flow to generate VCs
in sorted logic. The main function of this translation is to scan the AST for JML
annotations which than get translated into FOL terms in sorted logic, depending on
the kind of JML annotation. For routine’s pre- post-, and exceptional postconditions
as well as object’s invariants, initially, and constraint, we use a lookup table to
store their FOL terms. In the case of JML statements within the body of a routine,
ESC/Java2 has the ability to decorate the next Java statement with the translated
FOL term. Every term that decorates a Java statement, has to hold in order to
execute the Java statement decorated with. After handling all JML nodes, we delete
these nodes of the AST to gain a JML free AST.

In this master thesis, we use ξ(e) to denote the translated FOL term of the corre-
sponding JML annotation e.

3.1.1 Example of a Translation

We demonstrate the handling and the translation of a JML statement on a simple
example. The next Java code shows the method“foo()” that contains three statements.
JavaFE and ESC/Java2 generates the AST as partly illustrated in figure 3.2 on the
left hand side. The body of the ”foo()“ method consists of two Java and one JML
statement, an assume clause.

public int foo(){
x = y + z;
...
//@ assume x = y + z;
return x;
}

We decorate the next Java statement (the return statement) with the local annotation,
currently assume ξ(e). This local annotation has to hold before executing the Java
statement decorated with it. Every JML clause gets deleted from the AST after its
handling. The modified AST of the method ”foo()“ is partly illustrated on the right
hand side in figure 3.2.

During the complete translation, we have to consider different situations. For example,
what happens if there is no last AST node. The handling of such statement annotations
is explained in detail in 3.4.

3.2 Translation Features 25

Figure 3.2: Illustration of the AST before and after translating the local annotation

3.2 Translation Features

This section explains the features that are used for the translation operation. The
list below gives a brief introduction to each feature. The next sections describe these
features in more details. In addition, sections 3.2.4 defines the visible states of a routine
and section 3.2.5 defines the dependences of fields in type specifications.

• Property object: Contains flags, different data structures, and other values to
aid the handling of JML annotations.

• Lookup table: Contains all specification information of a routine (method and
constructor), namely the precondition Φ, postcondition Ψ, and exceptional post-
condition Ψe. Class specification as object invariants and history constraints
are also available for each class declaration.

• Annotation table: Contains local annotations of a particular Java statement.
These local annotations, represented as individual objects, characterize the state
before the execution of that particular Java statement.

3.2.1 Property Object

The property object contains any values to enable modular translations of JML an-
notations. That property object is always passed as an argument to the next method
call in the visitor class. Therefore, we can state any behavior that is relevant for the
underlying visitor’s methods. The property object is of type Java.util.properties
and stores pairs of values. There are no duplicates of keys, whereas the value of same
keys gets overridden. The most important ones, including their type and default values
in brackets, are introduced in the next list.

26 3 Integration of a new VCGen

• interesting:bool (false): If the node is a JML feature and thus, of our interest

• assignableSet: (empty): The set containing all modifiable fields of a method

• nothing:bool (false): If the assignable feature holds the “nothing“ keyword

• quantifier:bool (false): If the local variable belongs to a quantified expression

• quantVars: (empty): The set of all variables belonging to a quantified expres-
sion

• isHelper:bool (false): If the routine is a helper routine

• fresh:bool (false): To collect all field variables of the fresh feature

• freshSet: (empty): The set containing all fields that are allocated but not yet
initialized

• pred:bool (false): Whether the FOL term has to be of sort sortPred

• old:bool (false): If the value of the field is the same as in the prestate

• dsc:bool (false): If the subset checking tag was set by the user in a command
line

• doSubsetChecking:bool (false): Same as dsc, but in full written words

• subsetCheckingSet: (empty): To check if a set only accesses the own fields

• visibleTypeSet: (empty): To collect all modifiable types in the body of a
method

We demonstrate the usage of one common property. During the translation, we of-
ten meet the act of collecting object fields into a set. To state this intention, we set
a certain boolean property before we visit all object fields. Afterwards, we set the
boolean property back to its default value. The next example shows the collecting
part of object fields a, b, and c of the fresh feature in the translation part of fresh
annotation object “x”:

//@ fresh a, b, c;

1 prop.put(”fresh”, Boolean.TRUE);
2 visitASTNode(x, prop);
3 prop.put(”fresh”, Boolean.FALSE);

This code snippet is situated in the method of visiting a fresh feature. Before we visit
the stored object list (second line), we set the “fresh” value to true. On the third line,
we set the value of “fresh” again to false.

3.2 Translation Features 27

1 if prop.get(”fresh”)) {
2 final QuantVariableRef qref = Expression.rvar(fieldAccess.decl);
3 HashSet<Term> freshSet = (HashSet) prop.get(”freshSet”);
4 freshSet .add(qref);
5 prop.put(”freshSet”, freshSet);
6 }

During the visit of an object field, we check if it is an object field of the fresh set. In
that case, we add the variable as a quantified variable reference into the existing set
“freshSet”. We have access to this set during the whole program execution. It will be
reused in the method of handling fresh annotations. Than, we generate a FOL term
to express that all objects in the “freshSet” are newly allocated in the routine’s body.

3.2.2 Lookup Table

The lookup table for routine annotations contains all specification information that is
available for that routine. It contains the precondition Φ, the normal postcondition Ψ,
and several exceptional postconditions Ψe(t), whereas all exceptional postconditions
have same exception object t. The VCGen only has to deal with the FOL terms
in the lookup table and not with the large number of JML annotations. On the
implementation level, we use hash maps for each condition. Hash maps have the
advantage to have fast access to any entry and do not store duplicates. Any entry
consists of a key (the routines declaration), and a value (the FOL term). The entries
can be read, written and extended at any time. These hash maps are accessable
through a static Lookup class:

• Preconditions Φ: <RoutineDecl, Term>

• Postconditions Ψ: <RoutineDecl, Post>

• Exceptional Postconditions Ψe(t): <RoutineDecl, Post>

Ψ and Ψe(t) contain values of a new data type Post. This data type additionally
contains a variable that is associated with the FOL term. For Ψ, we store the return
type of the routine, and for Ψe(t), we use a new generated variable to represent the
thrown exception.

Routine annotations are influenced by various JML annotations such as requires,
ensures, and signals clauses as well as invariant, assignable, and initially
clauses. Table 3.1 summarizes the mentioned influences for Φ, Ψ, and Ψe.

28 3 Integration of a new VCGen

Precondition Φ Postcondition Ψ Exceptional Postcondition Ψe
requires ensures signals
invariant initially signals_only

assignable initially
constraint assignable
invariant constraint

invariant

Table 3.1: Routine conditions and their influencing JML features

The lookup table also contains information about the object invariant and con-
straint predicates. Even they have influences on Φ, Ψ, and Ψe, as seen in table
3.1, there exist a separate lookup table for the mentioned type specifications. On
implementation level there exist two hash maps with the following syntax:

• Invariants: <ClassDecl, Term>

• Constraints: <ClassDecl, Term>

Instead of conjoining the translated predicates to each routine annotation, we only
conjoin a term that refers to the invariant and constraint term in the lookup table.
See section 3.10 for more details about the handling of invariant annotations.

In the following, we use the notation Lookup.<condition>.<declName> to rep-
resent the FOL term of a specific condition of a routine or a class, represented by its
name. To represent the FOL term of the invariant of a class named “TestClass”, for
instance, we use:

Lookup.invariant.TestClass

3.2.3 Annotation Table

Similar to the lookup table, we use an annotation table to decorate any Java statement
with zero or more local annotations. These local annotations characterize the state
before the execution of that Java statement. A local annotation is either a JML’s
assume, assert, set, ghost variable, or a loop invariant statement. On the imple-
mentation level, we have one hash map containing Java statements as a key with a
set of local annotations represented as annotation objects. We use annotation objects
to denote the type of a JML statement. There are four different object types to rep-
resent each JML statement. Every instantiated object contains a field that yields the
translated FOL term. The next listing explains each object type and its represented
JML statement:

• Assert: Represents assert ξ(e). It has to be proven to hold.

• Assume: Represents assume ξ(e). It is assumed to hold.

3.2 Translation Features 29

• Set: Represents set ξ(e) and ghost ξ(e)2.

• Maintaining: Represents maintaining ξ(e). It has to hold before and after each
loop iteration. The Java statement decorated with must be a loop statement.

3.2.4 Visible States

Visible states are the pre- and poststates of routines unless they are marked as helper
routines. Any private routine augmented by the helper modifier is independet of type
specifications and can violate them. Figure 3.3 shows all visible states located in a
non-helper method. A visible state exists if the control is:

• at the beginning and end of each non-helper method

• at the end of each non-helper constructor

• at method or constructor invocations in the body of any non-helper routine

Figure 3.3: Visible states in a method

3.2.5 Dependences of Fields in Type Specification

We restrict the expressiveness of invariant, initially and constraint specifica-
tions, since their predicates are only allowed to depend on predestinated fields. See
[15] for more details about invariant field dependences on superclass fields. A field
is predestinated if it is defined in the class that declares these type specification men-
tioned above. We check the admissibility by a subset check3 during the translation
process. This subset check can be turned on and off by a command line entry.

2See chapter 3.6.1 for more details about ghost variables.
3See section 3.11 for more details about the subset check.

30 3 Integration of a new VCGen

3.3 Definition of FOL Terms

First Order Logic (FOL) is a system to express a relation between arguments like
numbers and variables. The validity of a FOL term is provable.

A FOL term consists of:

• Predicates

• Functions

• Constants

• Variables

• Logical operators: not, and, or, conditional, biconditional

• Quantifiers: ∀,∃

• Equality symbol: =

Predicates express any relation between one and several variables. In our project,
predicates are simply specification expressions. See appendix C for the complete syntax
of specification expressions. Expressions can be linked with particular operators. We
distinguish between numerical and boolean operators. Two numerical operands and a
numerical operator result again in a numerical expression. Using a boolean operator
instead of the numerical one, the result expression will be a boolean expression.

3.3.1 Numerical Operations

bool−expr ::= num−expr relation num−expr | ...
relation ::= == | != | < | <= | > | >=
num−expr ::= num−expr [num−op num−expr] | number
num−op ::= + | − | ∗ | / | % | ++ | −− | ...
number ::= N | R | Q | ...

This syntax of numerical operations is an insight only and thus, it is not completet. See
appendix C for the complete syntax of numerical expressions. The operator between to
numerical operands is either a relation or a numerical operator. Numerical operators
are translated as numerical functions, whereas relation operators act as numerical
predicates. The next two subsections describe the translations of numerical operators
and numerical predicates into FOL terms:

Numerical Functions

The prefix of every numerical function term is either “%int-fn” or “%real-fn”, de-
pending on the sort of the operands. Each numerical operator is represented as an
own string. The string of a multiplication function, for example, would be “funMul”.

3.3 Definition of FOL Terms 31

The syntax of every numerical function is:

prefix op−string (operand1, operand2):sort

The translation of “2 * (1+3)” would result in the following term:

%int-fn funMUL(2, %int-fn funADD(1,3)):int

The sort of such a term is either sortInt or sortReal, depending on the sorts of the
operands. If one of the operands is defined as sort sortReal, the other operand get
converted into sortReal as well, unless it is already defined as sort sortReal. Addi-
tionaly, each translation does a type check and throws an exception if the operands
have wrong sorts.

Numerical Predicates

A relation operator between two numerical operands is called numerical predicate.
The sort of such a predicate is either sortBool or sortPred. The syntax of the
translated term is similar to the syntax of numerical function terms. The prefix is
either “%int-pred” or “%real-pred” depending on the sorts of the operands. The
numerical predicates are represented as a string expressing the numerical predicate
operation. Any term of a numerical predicate operation has the following syntax:

prefix op−string (operand1, operand2):sort

The translation of “2 < 4” would result in the following term:

%int-pred predLT(2, 4):PRED

We discuss the difference between sortBool and sortPred after section 3.3.2.

3.3.2 Boolean Expressions

bool−expr ::= bool−expr bool−op bool−expr | ...
bool−op ::= ’|’ | & | ’||’ | && | == | !=

Any boolean expression4 can either be of sortBool or sortPred. We normally deal
with sortPred except for one special case that is described after this section. The
operation is directly written as a prefix followed by its operands. For example the ex-
pression “true && true” will be translated into the following term, if we wish a result
term of sortPred.

%and(%isTrue(true):PRED, %isTrue(true):PRED):PRED

4See appendix C for complete syntax of boolean expressions.

32 3 Integration of a new VCGen

The same example, but translated into a sortBool term, is:

%bool-fn boolAnd(true, false):bool

When do we select sortBool and when sortPred?
There is one operation that only exists for operands both of sort sortBool. We are
talking about the equality operation. There is no equalitiy operation between two
operands, if at least one is defined as sortPred. In that case, we use the imply op-
eration to keep the same meaning. Both operands have to be of sortPred. There is
a method available to convert from sortBool into sortPred. In fact, if we have an
equality operation between two operands, we try to keep both operands of sortBool
to use the “real” equality operator. We state this behavior by setting a flag within
the property object to gain two operands of sortBool. Thus, before each logical op-
eration, we check that flag to result the operation in the preferred sort. It is just a
preferred sort, not a directive, because not every operation can result in a expression
of sortBool. Independently of that, we always check the sorts and throw an exception
if two terms do not fit for a particular operation.

3.3.3 Predicates

predicate ::= spec−expression
spec−expression ::= expression

Predicates are simple specification expressions. A predicate in ESC/Java2 always
yields a term of sort sortPred, thus, a predicate can be verified at any time. The
complete syntax of an expression is given in appendix C. ESC/Java2 already contains
a large amount of defined predicates. We extend the list with new predicates:

• isAssignCompat

isAssignCompat(heap:sortMap, object:sortValue, type:sortType):sortPred

This predicate denotes whether or not the type of a given object is of same type or
a subtype of a given type on the same heap. This subtype relation is also known as
“\type(object) <: Type”. By calling“isAssignCompat(heap, o, t)”, we get the following
term:

%assignCompat(?heap:map, ?#o:ref, ?#t:type):PRED

• isAlive

isAlive(heap:sortRef, target:sortRef):sortPred

This predicate yields a term expressing if a given object is at least allocated on a given
heap. The object does not yet have been instantiated. By calling ”isAlive(heap, t)“,
we get the following term:

%isAlive(?heap:map, ?#t:ref):PRED

3.3 Definition of FOL Terms 33

• inv

inv(heap:sortMap, object:sortRef, type:sortType):sortPred

This predicate expresses that the invariant of the given object of a given type should
hold in a given heap. An object has to preserve the own object invariants and also
the invariants of all instantiated objects in all visible states. The ”inv“ predicate will
be used to refer to other object invariants. See chapter 3.10.2 and 3.10.3 for more
details. By calling “inv(heap, o, t)”, we get:

%inv(?heap:map, ?#o:ref, ?#t:type):PRED

• isFieldOf

isFieldOf(heap:sortMap ,target:sortRef, field:sortAny):sortPred

This predicate is used to state that a field is of a particular object in given heap. By
calling “isFieldOf(heap, t, f)”, we get:

%isFieldOf(?heap:map, ?#t:ref, ?#f:any):PRED

3.3.4 Special Notations

We use special notations to simplify the semantics of the translations. Special nota-
tions have their own meanings, which are described in this chapter.

• isAssignable

isAssignable(field:sortAny, store-ref-list):sortPred

This notation is used to state whether or not a given field is assignable. It is assignable
if it is equal to a reference within the store-ref-list. The semantics of this notation
for a field:TestClass and a store-ref-list {x1:X, x2:X} is:

(field == x1) ∨ (field == x2)

And as a FOL term:

%or(
%anyEQ(

%valueToAny(
%dynLoc(?heap:map, ?#r1:ref, ?#field:any):ref

):any,
%valueToRef(

%dynLoc(?heap:map, ?this:ref, ?TestClass?x1FieldSignature:ref):ref
):ref

34 3 Integration of a new VCGen

):PRED,
%anyEQ(

%valueToAny(
%dynLoc(?heap:map, ?#r1:ref, ?#field:any):ref

):any,
%valueToRef(

%dynLoc(?heap:map, ?this:ref, ?TestClass?x2FieldSignature:ref):ref
):ref

):PRED
):PRED

• isVisibleIn

isVisibleIn(t:sortType, type-list:sortType):sortPred

This notation is used to find out if a given type is within a type-list. This list contains
all modifiable types of sort sortType of a routine which are relevant for the invariant
in the poststate. The semantics of this notation for a type t and a store-ref-list {T1,
T2} is:

(t == T1) ∨ (t == T2)

And as a FOL term:

\%or(
\%anyEQ(

?\#t:type,
?(ReferenceType (ClassType T1.className)):type

):PRED,
\%anyEQ(?\#t:type,

?(ReferenceType (ClassType T2.className)):type
):PRED)

:PRED

3.4 JML Statements 35

3.4 JML Statements

jml−annotation−statement ::= assert−statement
| assume−statement
| hence−by−statement
| set−statement
| refining−statement
| unreachable−statement
| debug−statement

JML statement clauses characterize any behavior before the execution of the next
Java statement in the body of a routine. Zero or more JML statements (also known
as local annotations) can be used to decorate a Java statement using the local anno-
tation table5. This table contains any Java statement associated with a set of local
annotations.

The following sequence shows the translation of all JML statements within the body
of a routine. The translation of the assume, assert and set annotations is given in
section 3.4.1, and the translation of the maintaining annotation in section 3.4.2.

1. Search for next JML statement.

2. Translate JML statement to a FOL term, ξ(e).

3. Generate a new annotation object (Assert, Assume, or Set, depending on the
JML statement) containing ξ(e).

4. Decorate next Java statement with this annotation. If there is no more Java
statement, insert a dummy ‘Java statement “skipStmt” as the very last Java
statement and decorate it.

5. Delete the JML statement node from the AST.

There are Java statements that may contain again JML statements. If we reach one of
these Java statements, actually loop statements, (WhileStmt, ForStmt, DoStmt,
BlockStmt, TryCatchStmt, and IfStmt), we execute step 1 to 5 again to handle
all JML statements.

The left hand side of figure 3.4 illustrates the usage of JML and Java statements in
a body of a method. After adding a local annotation to the table, we delete it from
the AST. The result of the Java code of figure 3.4 is shown on the right hand side.

5See section 3.2.2 for more details about the local annotation table.

36 3 Integration of a new VCGen

Figure 3.4: Same code, before and after translation

3.4.1 Assert, Assume, Set

assert−statement ::= assert predicate [: expression] ;

assume−statement ::= assume predicate [: expression] ;

set−statement ::= set assignment−expr ;

An assert annotation requires the given predicate to hold. It must be proven to hold
by the theorem prover. An assume annotation specifies that the given predicate is
assumed to hold. It acts as additional information and does not have to be proven.
A set annotation is used to assign any value to a ghost variable6. The assert and
assume annotations both have an optional expression that must be of type string.
That string expression is printed if the assertion fails. The current implementation
does not provide this kind of error message yet and is a topic for future work.

3.4.2 Maintaining

loop−invariant ::= maintaining−keyword predicate;
maintaining−keyword ::= maintaining
| maintaining reduntandly
| loop invariant
| loop invariant redundantly

Loop invariant annotations can only occur prior to a loop statement (WhileStmt,
ForStmt or DoStmt). They have to hold at the beginning and at the end of each loop
iteration. The next statement after a loop invariant annotation is either another
loop invariant or a loop statement. We conjoin all loop invariant translations and
conjoin them to the invariant of next loop statement. The annotation table contains
an association between loop statements and a FOL term, the loop invariant.

6For more details about ghost variables, see section 3.6.1

3.4 JML Statements 37

Note, that only loop statements can be decorated with loop invariants. The next
example shows two nested loop invariants. The translation of these loop state-
ments are conjoined to the invariant of the next loop statement.

int count, x;

//@ maintaining count > 0;
while (

//@ maintaining x != 0;
for (...){...}
...

}

Loop invariant of WhileStmt

%int−pred predGT(?count:int, 0):PRED

Loop invariant of ForStmt

%int−pred predNE(?x:int, 0):PRED

3.4.3 Example of JML Statements

We demonstrate the handling of JML statements on the following Java code. There
are three JML annotations that decorate the following Java statement.

1 public void foo() {
2 int count = 0;
3
4 //@ assume count == 0;
5 count++;
6 //@ assert count != 0;
7
8 //@ maintaining count > 0;
9 while (...) {

10 ...
11 }
12
13 }

38 3 Integration of a new VCGen

Java statement on line 5 is decorated with one assume object that contains ξ(e):

%int−pred predEQ(?count:int, 0):PRED

Java statement on line 9 is decorated with one assert object that contains ξ(e):

%not(%int−pred predEQ(?count:int, 0):PRED):PRED

Java statement on line 9 is decorated with one loop invariant object that contains
ξ(e):

%int−pred predGT(?count:int, 0):PRED

Remarkable: The Java statement on line 9 is decorated with one assert object and
its invariant is extended by the loop invariant.

3.5 Method Specifications 39

3.5 Method Specifications

method−spec ::= requires−clause
| diverges−clause
| assignable−clause
| captures−clause
| when−clause
| working−space−clause
| duration−clause
| ensures−clause
| signals−only−clause
| signals−clause

Method specifications allow to specify the behavior of a routine. In addition to pre-
and postcondition specifications, JML offers other method specifications, for example
the assignable clause. They must hold either in the pre- or poststate of a routine’s ex-
ecution, depending on the kind of method specification. The lookup table (see chapter
3.2.2) contains data structures for precondition Φ, postcondition Ψ, exceptional post-
conditions Ψe and for class invariants as well as for class history constraints.
Each routine corresponds to one entry in the lookup table for each method specifica-
tion. Our goal is to translate each method specification into a term and conjoin all of
them to the associated constraint.

3.5.1 Requires

requires−clause ::= requires−keyword pred−or−not ;
requires−keyword ::= requires

| pre
| requires redundantly
| pre redundantly

pred−or−not ::= predicate
| \not specified
| \same

Predicates of requires clauses, also known as preconditions, state the behavior be-
fore the routine’s invocation. Any requires predicate has to hold before the body of
the declaring routine can be executed. If the requires clause is omitted, ESC/Java2
generates a dummy requires clause with the boolean value true. Calling a method,
we have to be sure that the callee object type is a subtype of the class declaring that
method. For the translation of requires clauses, we distinguish between construc-
tors and methods, since there is no callee object instantiated yet during invoking a
constructor.

40 3 Integration of a new VCGen

Constructors

We do not check the type of the callee object, but we check if the requires predicate
“e” holds. To gain the translated term, we conjunction each requires translation.
This is represented by using the formula “

∧
(k) Ak”. It yields a term of all occurrences

of “A” connected by the operand “∧” as for example “A1 ∧ A2 ∧ A3 ∧ To the
constructor’s precondition Φ, we conjoin a term with the following sematics:∧

(i) requiresξ(ei)

In the case of an omitted clause, we conjoin a term with following semantics to the
constructor’s precondition Φ:

%isTrue(true)

Methods

The dynamic type of the callee object must be a subtype of the type declaring that
method. This assertion is expressed by using the predicate isAssignCompat(heap,
o, t)7 whereas the declaring class type is represented as “ClassType”. We conjoin this
assertion combined with the translated predicate ”e“ of all requires clauses to the
method’s precondition Φ. The semantics of that term is:

isAssignCompat(heap, this, ClassType) ∧
∧

(i) requiresξ(ei)

In the case of an omitted clause, we only conjoin the ”isAssignCompat“ term to the
precondition Φ:

isAssignCompat(heap, this, ClassType)

The next example shows one method with two requires clauses. The translated FOL
term for the method’s precondition is shown below the Java code:

1 public class Example {
2 boolean test;
3
4 //@ requires num > 0;
5 //@ requires test == true;
6 public void foo(int num) {...}
7
8 }

7See section 3.3.3 for more details about the predicate “isAssignCompat(heap, o, t)”.

3.5 Method Specifications 41

Lookup.precondition.foo

%and(
%and(

%assignCompat(
?heap:map,
?this:ref,
?(ReferenceType (ClassType BlackType.className)):type):PRED,

%int−pred predGT(
?num:int,
0

):PRED
):PRED,
%anyEQ(

%valueToBool(
%dynSelect(?heap:map, ?this:ref, ?Example?testFieldSignature:bool):value

):bool,
true

):PRED
):PRED

3.5.2 Ensures

ensures−clause ::= ensures−keyword pred−or−not ;
ensures−keyword ::= ensures
| post
| ensures redundantly
| post redundantly

Ensures clauses are used to specify what must hold after terminating a routine’s
execution without throwing any exception. The usage of the JML keyword old is
common for postconditions to refer to values in pre heap. An ensure clause requires
all requires clauses to hold. Thus, we include this requisition for each ensures
clause to the translated FOL term. We distinguish the generation of FOL terms
between constructors and methods, because we have to check the dynamic type of the
called objects in the case of method calls. We conjoin the translated FOL term to the
method’s postcondition Ψ and exceptional postcondition Ψ(e).

Constructors

For every ensures predicate we check if all requires predicates hold. Ensuresξ(e)
denotes the translation of the ensures predicate. The semantics of the translated
ensures clauses is:∧

(i) (
∧

(k) requiresξ(ek) → ensuresξ(ei))

42 3 Integration of a new VCGen

If the ensures clause is omitted, we generate the following term:

%isTrue(true):PRED

Methods

The generated FOL term of method’s ensures clauses is similar to that of construc-
tor’s. In addition, we check the dynamic type of the called object. The semantics of
that generated FOL term is:∧

(i)((isAssignCompat(heap, this, ClassType) ∧
∧

(k) requiresξ(ek))
. → ensuresξ(ei))

In the case of an omitted ensures clause, we generate the following term:

%isTrue(true):PRED

The next example shows the generation of a method’s postcondition term. Any method
argument used in an ensures predicate holds the value of its prestate. We denote this
by adding the prefix \pre 8 to the name of that argument.

1 public class Example {
2 boolean test;
3
4 //@ requires num > 0;
5 //@ ensures test == true;
6 public void foo(int num) {...}
7
8 }

%implies(
%and(

%assignCompat(?heap:map, ?this:ref, ?ClassType.className):type):PRED,
%int−pred predGT(?\pre num:int, 0):PRED

):PRED,
%anyEQ(

%valueToBool(
%dynSelect(?heap:map, ?this:ref, ?Example?testFieldSignature:bool):value

):bool,
true

):PRED
):PRED

8See section 3.8.3 for more details about the old clause and argument values in ensures clauses.

3.5 Method Specifications 43

On Implementation Level:
ESC/Java2 does not guarantee the existence of an ensures clause, since it does for
requires clause. If the ensures clause is omitted, we have to add manually an
ensures clause to the AST, that contains a predicate with boolean value true.

3.5.3 Signals only

signals−only−clause ::= signals−only−keyword [, reference−type] ;
| signals−only−keyword \nothing ;

signals−only−keyword ::= signals only
| signals only redundantly

Signals_only clauses, also known as exceptional postcondition, are used to specify
the behavior in an exceptional termination of the routine. The normal postconditions
may not hold at the exceptional termination of a routine, but the exceptional postcon-
ditions have to. There are two exceptional clauses: (1) signals_only clauses are used
to specify what type of exception might be thrown by the routine while (2) signals
clause must hold when a certain type of exception has been thrown. The signals
clause will be described in the next subsection.

The signals_only clause specifies what exceptions can be thrown by a method or con-
structor. All other exceptions may not be thrown. The method’s throw list achieves
the same task as the signals_only clause. They will be translated identically. One
either uses the signals_only clause or the methods throw list, since only one can be
evaluated. If both are used, the signals_only clause has higher priority. There can at
most be one signals_only clause, which may hold several exception reference types.
The translated signals_only clause gets conjoined to the method’s exceptional post-
conditions Ψe. We demonstrate the translation of the signal_only clause by using
the following example:

//@ signals only E1, E2, E3;

The corresponding method may only throw exceptions of type E1, E2, or E3. To
translate this behavior, we generate a term with the following meaning: “If the thrown
exception is a subtype of java.lang.Exception and the object that threw the exception is
subtype of type to whom the method belongs to, then the thrown exception must be a
subtype of the listed exception of the signal_only clause”.

The thrown exception is represented as the variable associated with the term of
the instantiated Post object9. We substitute all occurrences of that thrown exception
variable by the overall exception variable within the Post object. If the signals_only
clause is omitted, ESC/Java2 generates a new signals_only annotation with the
predicate keyword “nothing”. This denotes that no other exception may be thrown
except those in the routine’s thrown list.

9See section 3.2.2 for more details about Post objects.

44 3 Integration of a new VCGen

The syntax of the generated FOL term is:

isAssignCompat(heap, ex, java.lang.Exception)
. → (isAssignCompat(heap, this, ClassType) ∧

∧
(k) requiresξ(ek)

. → (
∨

(i) isAssignCompat(heap, ex, Ei)))

We demonstrate the translation of the signals_only clause on the following example:

1 public class A {
2
3 //@ signals only E1, E2;
4 public void foo() { ... }
5
6 }

Using “r” as the overall exception variable “ex” and the signals_only clause from
above, we gain the following FOL term:

%implies(
%assignCompat(

?heap:map,
?#r:ref,
?(ReferenceType (ClassType java.lang.ExceptionType.className)):type

):PRED,
%implies(

%assignCompat(
?heap:map,
?this:ref,
?(ReferenceType (ClassType A.className)):type

):PRED,
%or(

%or(
%isTrue(false):PRED,
%assignCompat(

?heap:map,
?#r:ref,
?(ReferenceType (ClassType E1.className)):type

):PRED
):PRED,
%assignCompat(

?heap:map,
?#r:ref,
?(ReferenceType (ClassType E2.className)):type

):PRED
):PRED

):PRED
):PRED

3.5 Method Specifications 45

Remark: Each signals_only clause contains a hidden “nothing” exception. This
means, that even we have some reference types, the generated FOL term also contains
the disjunction of “%isTrue(false):PRED”, that represents the “nothing” exception.

3.5.4 Signals

signals−clause ::= signals−keyword (reference−type [ident]) [pred−or−not] ;
signals−keyword ::= signals | signals redundantly

| exsures | exsures redundantly

A routine may augment its method specification by using one ore more signals clauses.
The signals exception type must be listed in either a corresponding signals_only
clauses or the routine’s throw list. The semantic of the translated FOL term of all
signals clauses is:∧

(i)(isAssignCompat(heap, ex, ExceptionType)
. → (isAssignCompat(heap, this, ClassType) ∧

∧
(k) requiresξ(ek))

. → signalsξ(exi))

We demonstrate the translation of a signals clause with the next example:

1 public class Example{
2 int count;
3
4 //@ signals only E1;
5 //@ signals (E ex) count == 3;
6 public void foo() { ... }
7
8 }

%implies(
%assignCompat(

?heap:map,
?#r:ref,
(ReferenceType (ClassType E1.className)):type

):PRED,
%implies(

%assignCompat(
?heap:map,
?this:ref,
?(ReferenceType (ClassType Example.className)):type

):PRED,
%int−pred predEQ(

%valueToInt(
%dynSelect(

?heap:map,
?this:ref,

46 3 Integration of a new VCGen

?Example?countFieldSignature:int
):value

): int,
3

):PRED
):PRED

):PRED

3.5.5 Assignable

assignable−clause ::= assignable−keyword store−ref−list ;
assignable−keyword ::= assignable | assignable redundantly

| modifiable | modifiable redundantly
| modifies | modifies redundantly

By using an assignable clause, one can limit the heap locations of objects, which
are assignable during the method’s or constructor’s execution. The assignable objects,
represented as heap locations, may have different values in the pre- and poststate. All
heap locations, that are not mentioned, have to keep the value of their prestate. The
generated FOL terms are conjoined to the method’s or constructor’s postcondition Ψ
and exceptional postcondition Ψe in order to verify this behavior after terminating the
execution. The assignable and the modifiable clause different in the fact that as-
signed and then re-established heap locations have to be mentioned in the assignable
clause but not in the modifiable clause. Thus, we check in every assign expression
whether or not that heap location is mentioned in the assignable clause. We simplify
this semantics by treating the assignable clause similar to the one for modifiable
clauses, which only checks the modified heap locations at the end of the routine’s
execution. The handling of the complete assignable syntax will be mentioned as a
future work in chapter 4.2. There are three different kinds for the store-ref-list:

\everything: All heap locations of the entire program are assignable.

\nothing: No heap location can be assignable. It is equal to a pure method.

store-ref-list: Denotes a set of assignable heap locations.

The translated FOL term expresses whether or not a location may be modified, using
an “assign” expression. Method or constructor parameters can never be listed in the
assignable clause. ESC/Java2 generates a dummy node “assignable \everything”, if
the assignable clause is omitted. There is a different translation for each case.

\everything: An assignable clause with the“everything”keyword has not to be trans-
lated into a FOL term. There is no need to handle any heap location with respect
to their assignability.

3.5 Method Specifications 47

\nothing: No heap location may be modified. Every heap location imperatively has to
keep the value of the prestate. We generate a term with the meaning of “Every
heap location of a particular object is either not allocated, or it has the same
value in the pre- as in the poststate”.

∀ target:ref, field:any (isFieldOf(heap, target, field)
. → (!isAlive(pre heap, target) ∨ isAssignable(\old(field), field)))

store-ref-list: The store-ref-lists contains one or more heap locations that can be
modified. If a heap location is allocated and not listed in the store-ref-list, its
value of the prestate is still the same as in the poststate. We generate a term
with the meaning of “Every field of a particular object, is either not allocated, or
if allocated, it is allowed to be assignable (in assignable list), or it has to keep
its value of the pre- in the poststate”. The syntax of the generated FOL term is:

∀ target:sortRef, field:sortAny (isFieldOf(heap, target, field)
. → (!isAlive(pre heap, target) ∨ isAssignable(field, ref-sort-list)
. ∨ isSame(\old(field), field)))

The next example contains each mentioned assignable annotation on line 8, 20 and
22. The translated FOL terms are shown below the example, except the translation
of the assignable clause using the “everything” keyword. In that case, no term will
be generated.

1 public class ATest {
2
3 int age;
4 BTest b;
5
6 //@ assignable age, b;
7 public ATest() { ... }
8
9 //@ assignable \nothing;

10 public void doSomething(){ ... }
11
12 //@ assignable \everything;
13 public void foo() {...}
14
15 }

48 3 Integration of a new VCGen

Lookup.postcondition.ATest

%forAll [#r6:ref, #x4:any]
%implies(

%isFieldOf(?heap:map, ?#r6:ref, ?#x4:any):PRED,
%or(

%or(
%not(%isAlive(?\pre heap:map, ?#r6:ref):PRED):PRED,
%or(

%anyEQ(
%valueToAny(%dynLoc(?heap:map, ?#r6:ref, ?#x4:any):ref):any,
%valueToRef(

%dynLoc(?heap:map, ?this:ref, ?ATest?bFieldSignature:ref):ref
):ref

):PRED,
%anyEQ(

%valueToAny(%dynLoc(?heap:map, ?#r6:ref, ?#x4:any):ref):any,
%valueToInt(

%dynLoc(?heap:map, ?this:ref, ?ATest?ageFieldSignature:int):ref
): int

):PRED
):PRED

):PRED,
%anyEQ(

%valueToAny(%dynSelect(?\pre heap:map, ?#r6:ref, ?#x4:any):value):any,
%valueToAny(%dynSelect(?heap:map, ?#r6:ref, ?#x4:any):value):any

):PRED
):PRED

):PRED

Lookup.postcondition.doSomething

%%forAll [#r1:ref, #x0:any]
%implies(

%isFieldOf(?heap:map, ?#r1:ref, ?#x0:any):PRED,
%or(

%not(%isAlive(?\pre heap:map, ?#r1:ref):PRED):PRED,
%anyEQ(

%valueToAny(
%dynSelect(?\pre heap:map, ?#r1:ref, ?#x0:any):value

):any,
%valueToAny(

%dynSelect(?heap:map, ?#r1:ref, ?#x0:any):value
):any

):PRED
):PRED

):PRED

3.6 JML Modifiers 49

3.6 JML Modifiers

JML modifiers are used to modify any class, interface, method, and constructor dec-
laration, as well as formal parameters and local variables.

jml−modifier ::= spec public | spec protected
| model
| ghost
| pure
| instance
| helper
| uninitialized
| spec java math | spec safe math | spec bigint math
| code java math | code safe math | code bigint math
| non null | nullable | nullable by default
| extract

3.6.1 Ghost

ghost ::= decl | decl var−set
set ::= var−set

The ghost JML modifier introduces a specification-only field or variable. A ghost field
or variable can only be used for specification purposes and is not visible outside any
JML feature. This thesis covers the translation of ghost variables, not of ghost fields.
The scope of a ghost variable is the body of the routine, where the variable is declared.
Such a ghost variable can be introduced by using either a ghost declaration decl and
a variable setting var-set, or just a ghost declaration. The set statement itself can
only be used if the ghost variable is already declared, ESC/Java2 returns an error
message otherwise. These two kinds of introducing a ghost variable are represented
in the next example.

1 //@ ghost int count1;
2 //@ set count1 = 8;
3
4 //@ ghost int count2 = 4;

Line 1 declares a new ghost variable called count1. This ghost variable is initialized
to an unspecific value. We have to assign a value to that ghost variable by using
the set JML feature. This is done on line 2. The 4th line declares and assigns the
integer value 4 to a newly introduced ghost variable count2. We can set new values
for both ghost by using another set statement. In section 3.4.1, we have introduced
a new data type Set for ghost annotations. Any object of type Set contains a field
“assignment” and a field “declaration”. We decorate the next Java statement with a
set object, holding both declaration and assignment expression.

50 3 Integration of a new VCGen

3.6.2 Helper

//∗@helper∗//

The JML feature helper is a modifier for private methods or constructors. Routines
declared as helpers do not depend on the type specification as invariant, initially
and constraint annotations. The next example shows the usage of the helper modi-
fier. The constructor and the first method are declared as helper routines. Their pre-,
post-, and exceptional postconditions are not augmented with the object invariant,
the initially, and the constraint predicates. The second constructor (line 9) and
the second method (line 11), on the other hand take care about the class specification.

1 public class Foo() {
2 int count;
3
4 //@ invariant count > 0;
5 //@ constraint \old(count) > count;
6 //@ initially count != 0;
7
8 private /∗@helper∗/ Foo() {...}
9 public Foo(int x) {}

10 private /∗@helper∗/ void doSomething() { ... }
11 public void doNewStuff() { ... }
12 }

3.7 Quantifiers

spec−quantified−expr ::= (quantifier quantified−var−decls ; [[predicate] ;]
spec−expression)

quantifier ::= \forall | \exists | \max | \min | \num of | \product | \sum

JML quantifiers can be used in every JML expression. A quantified expression is
defined by its unique name, a list of variable declarations, and a list of expression.
Every quantified expression is of type QuantifiedExpr. The scope of the declared
variables is the expression itself. To restrict the values of the declared variables, one
can use the optional predicate between the two semicolons. The following steps are
required before the translation of JML quantified expressions can be done:

1. Get the node tag of the QuantifiedExpr node (distinguish between forall and
exists).

2. Collect all variable declarations by storing them into the “quantVars” within the
object property.

3. Translate the contained expression.

The translation of the forall quantifier is given in section 3.7.1, and the one of the
exists quantifier in 3.7.2.

3.7 Quantifiers 51

3.7.1 Forall

The forall quantifier is the universal quantifier and restricts the values that satisfy
the specification. We first give an example of a JML precondition using a forall
quantified expression:

public class TestA{
int[] testArray = {1, 2, 3};

//@ requires (\ forall int i ; i < 3; testArray[i] < 4);
public TestA() {...}

}

We allocate an array called “testArray” in a class “TestA”. The array contains three
integer elements. For the method “foo()”, we require, that the array only holds values
less than 4. To express this behavior in the prestate of the method “foo()”, we use the
universal quantified expression in a requires clause. The translation of this quantified
expression is given below:

Lookup.precondition.TestA

%forAll [i:int]
%implies(

%int−pred predLT(?i:int, 3):PRED,
%int−pred predLT(

%valueToInt(
%arrSelect(

?heap:map,
%valueToRef(

%dynSelect(?heap:map, ?this:ref, ?TestA?testArrayFieldSignature:ref
):value

):ref,
?i :int):value

): int,
4

):PRED
):PRED

52 3 Integration of a new VCGen

3.7.2 Exists

The existential quantifier can be used to state the existence of at least one element.
This element is defined by the expression and the optional predicates, which has to be
fulfilled.

public class TestB{
int[] testArray = {1, 2, 3};

//@ requires (\ exists int i ; i < 3; arri [i] == 3);
public TestB() {...}
}

The existential quantified expression of the requires clause declares that there exists
at least one element equal to 3 in the array. The translated FOL term is given below:

Lookup.precondition.TestB

%exists [i :int]
%and(

%int−pred predLT(?i:int, 3):PRED,
%int−pred predEQ(

%valueToInt(
%arrSelect(

?heap:map,
%valueToRef(

%dynSelect(
?heap:map,
?this:ref,
?TestB?testArrayFieldSignature:ref

):value
):ref,
?i :int

):value
): int,
3

):PRED
):PRED

3.8 JML Expressions 53

3.8 JML Expressions

jml−primary ::= result−expression
| old−expression
| not−assigned−expression
| not−modified−expression
| only−accessed−expression
| only−assigned−expression
| only−called−expression
| only−captured−expression
| fresh−expression
| reach−expression
| duration−expression
| space−expression
| working−space−expression
| nonnullelements−expression
| informal−description
| typeof−expression
| elemtype−expression
| type−expression
| lockset−expression
| max−expression
| is− initialized−expression
| invariant−for−expression
| lblneg−expression
| lblpos−expression
| spec−quantified−expr

In JML annotations, it is not allowed to use one of the common Java operators such
as ++, - - and the assignment operators, because they would cause side effects. There
is a set of JML primary expressions that keeps Java side-effect free. In this section,
we define the translation of the result, old, fresh, typeof, and type expressions.

3.8.1 Result

The result expression refers to the value returned by a non-void method. It can only
be used in ensures, duration, and workingspace clauses. Therefore, we create a new
variable that refers to the evaluated result value at run time. The name of the new
variable consists of the unique string “\result:” connected with the sort of the return
value type, for example “\result:int”. The next example demonstrates the translation
of the result annotation:

//@ ensures \result < 8;
public int foo() {

return 3;
}

54 3 Integration of a new VCGen

Lookup.postcondition.foo

%int−pred predLT(?\result:int, 8):PRED

3.8.2 Fresh

fresh−expression ::= \fresh (spec−expression−list)

The fresh annotation states whether or not any object is allocated between the pre-
and poststate of any routine. Since this feature puts a condition on the poststate,
it can only be used in postconditions Ψ. The objects in the spec-expression-lists
are declared but not yet allocated before the method’s execution. The fresh feature
asserts that these objects were freshly allocated in the body of a routine. We generate
a term for every single object within the spec-expression-lists. The meaning of the
term is: “At the time of the method call, each listed object is already declared but not
yet allocated, and will be allocated in the poststate”. The term for a fresh annotation is:∧

(i) ((xi != null) ∧ !isAlive(pre heap, xi) ∧ isAlive(heap, xi))

(x != null) expresses that the object was declared before the method’s execution.

!isAlive(pre heap, x) denotes that the object was not allocated before the method’s
execution.

isAlive(heap, x) expresses that the object is allocated after the method’s execution.

The following example shows two declared objects in a fresh annotation:

public class Example{

A a;
B b;

//@ ensures \fresh(a, b);
public Example(){

a = new A();
b = new B();
}

}

3.8 JML Expressions 55

The FOL term of the entire fresh clause is:

Lookup.postcondition.foo

%and(
%and(

%and(
%not(

refEQ(?Example?aFieldSignature:ref, null):PRED
):PRED,
%not(

isAlive(?\pre heap:map, ?Example?aFieldSignature:ref):PRED
):PRED

):PRED,
isAlive(?heap:map, ?Example?aFieldSignature:ref):PRED

):PRED,
%and(

%and(
%not(refEQ(?Example?bFieldSignature:ref, null):PRED):PRED,
%not(

isAlive(?\pre heap:map, ?Example?bFieldSignature:ref):PRED
):PRED

):PRED,
isAlive(?heap:map, ?Example?bFieldSignature:ref):PRED

):PRED
):PRED

3.8.3 Old

old−expression ::= \old (spec−expression [, ident])
| \pre (spec−expression)

The JML clause old refers to values of object fields before the routine’s execution. In
other words, the spec-expression list is evaluated in the method’s or constructor’s
prestate. To access any field location in the prestate, we use the pre heap, defined in
section 2.4, within the heap selection method:

Heap.select(pre heap, object, field);

This method is provided by the heap class. It returns a FOL term that yields the
dynamic heap selection. For instance, Heap.select(pre heap, this, count) generates the
following term, whereas this:A and count:int:

%dynSelect(?\pre heap:map, ?this:ref, ?A?countFieldSignature:int):value

56 3 Integration of a new VCGen

To state the usage of the old clause, we set a boolean flag within the property object
to true. The handling of an old clause requires four steps:

1. Upon reaching any old feature, set old-flag to true.

2. When visiting any variable, add prefix \pre to the variable name.

3. When visiting any field, use pre heap instead of heap for dynamic heap access,
if old flag is true.

4. When done visiting, reset old flag to false.

The old feature is not applicable to method’s and constructor’s parameters. These
parameters always refer to their values in prestate. We decorate the first Java state-
ment with set objects, each one representing a routine argument with its value of the
prestate and the name with prefix “pre ”10.

3.8.4 Typeof

typeof−expression ::= \typeof (spec−expression)

JML offers a feature to get the most-specific dynamic type of an expression’s value.
The typeof clause represents the type of the containing expression. ESC/Java2 dis-
tinguish between reference types and non reference types:

Reference Types: We use the function symbol typeof to refer to an object’s type in
a given heap. The translated FOL term has the following syntax:

typeof(heap:sortMap, var:sortRef):sortType

We demonstrate the usage of the typeof feature on two examples:

\typeof(this)

typeof(?heap:map, ?this:ref):type

\typeof(testClass)

typeof(
?heap:map,
%valueToRef(

%dynSelect(?heap:map, ?this:ref, ?TestClass?testClassFieldSignature):ref
):value

):ref
):type

10See section 3.6.1 for the handling of ghost variables.

3.8 JML Expressions 57

Non-Reference Types: All non-reference types are represented as a TypeExpr node
that contains a field holding the type of the spec-expression. To represent a
FOL term of a non reference type (e.g. integer, boolean), we generate a variable
holding the spec-expression type in the name. Any translated FOL term of a
non-reference typeof clause has the following syntax:

?<type-to-string>:type

The next examples show the usage of this annotation on a non-reference type,
namely on a boolean type:

\typeof(true)

?boolean:type

3.8.5 Type

type−expression ::= \type (type)

The type clause offers the ability to denote the type of a reference or primitive type.
We handle this translation in similar fashion as with the typeof clause applied to
non-reference types. We generate a new variable with the name of the given type.
The sort of that variable is sortType. We get the following syntax for type clause
translations:
?<type-to-string>:type

Using the type clause on a type called “MyNewTypeClass”, we get the following trans-
lated FOL term:

?MyNewTypeClass:type

58 3 Integration of a new VCGen

3.9 Type Specifications

jml−declaration ::= modifiers invariant
| modifiers history−constraint
| modifiers represents−decl
| modifiers initially−clause
| modifiers monitors−for−clause
| modifiers readable−if−clause
| modifiers writable−if−clause
| axiom−clause

JML offers a way to specify abstract data types, namely type specifications. They are
useful to state any behavior for the plain data structure, as for example, invariant
clauses have to hold in all visible states. Each instantiated object has to respect its
type specification.

3.9.1 Initially

initially−clause ::= initially predicate

Any initially clause states what must hold after instantiating an object of this spe-
cific type. Thus, all non-helper constructors have to preserve predicates of initially
clauses. In section 3.2.5, we currently restrict the expressiveness of invariant, con-
straint and also initially clauses. The predicates of an initially clause is only
allowed to depend on fields that are defined in the class that declares the initially
clause. The admissibility of initially clauses will be checked during the translation
process11. We conjoin a translated initially predicate to each non-helper construc-
tor’s postcondition Ψ and exceptional postcondition Ψe. The next example shows the
translation of a initially clause . The translated FOL term only gets conjoined to
the second constructor since it is the only non-helper constructor.

1 public class A {
2 int x;
3 int y;
4
5 //@ initially x > 0;
6 //@ initially y != 2;
7
8 private /∗@helper∗/ A() {...}
9

10 public A(int z) {...}
11
12 public void foo() {...}
13
14 }

11See section 3.11 for more details about subset checking.

3.9 Type Specifications 59

Lookup.postcondition.A (non-helper)

%and(
%int−pred predGT(

%valueToInt(
%dynSelect(

?heap:map,
?this:ref,
?A?xFieldSignature:int

):value
): int,
0

):PRED,
%not(

%int−pred predEQ(
%valueToInt(

%dynSelect(
?heap:map,
?this:ref,
?A?yFieldSignature:int

):value
): int,
2

):PRED
):PRED

):PRED

3.9.2 History Constraint

history−constraint ::= constraint−keyword predicate [for constrained−list] ;
constraint−keyword ::= constraint | constraint redundantly
constrained−list ::= method−name−list | \everything

The history constraint feature belongs to JML level 1. We will simply call them
constraints. Constraints are related to the object invariants. Similar to the be-
havior of invariants, to hold in all visible state, constraints act as relationships
between several visible states. It is a combination of each visible state and any visible
state later in the program’s execution. The JML feature old is usually used to con-
strain the way how values may change over the whole program execution. One can
optionally declare a list of methods (method-name-list). All listed methods have to
fulfill the constraint predicates. If there is no method listed in a constraint clause,
the default value “everything” will be used. In this case, all non-helper methods of
the enclosing class have to fulfill their predicates. This optional argument is not yet
available and will be referred as future work (see section 4.2). In the implementation
of this thesis, we use the keyword “everything” and thus, every non-helper method
consider the predicate of constraint clauses.

60 3 Integration of a new VCGen

Constraints do not have to hold in the poststate of constructors because they do not
have a prestate. Neither do they have to hold in destructors, because they do not have
a poststate. In the case of an exceptional termination of a method, the constraints
still have to hold for the current state. Thus, we conjoin the translated FOL term of
constraint predicates to postcondition Ψ and to exceptional postcondition Ψe. Since
constraints are related to invariants, we also do a subset check.

3.9.3 Example of History Constraint

The next example shows three routines of which only the last method has to fulfill the
predicate of the constraint clause. The predicate gets translated into a FOL term
and conjoined to that method’s postcondition.

public class A {

int count = 0;

//@ constraint \old(count) > count;

public A() {...}
private /∗@helper∗/ doSomething() {...}
public doNewStuff() {...}
}

Lookup.postcondition.doNewStuff

%int−pred predGT(
%valueToInt(

%dynSelect(?\pre heap:map, ?this:ref, ?A?countFieldSignature:int):value
): int,
%valueToInt(

%dynSelect(?heap:map, ?this:ref, ?A?countFieldSignature:int):value
): int

):PRED

3.10 Invariant 61

3.10 Invariant

invariant ::= invariant−keyword predicate ;
invariant−keyword ::= invariant | invariant redundantly

An invariant describes a behavior that must hold in every visible state of an object.
Object invariants specify the consistent states of objects. All object invariants
in the system are assumptions in a routine’s prestate and have to be proven in its
poststate. Thus, invariants get generally conjoined to precondition Φ, postcondition
Ψ, and exceptional postcondition Ψe. There are two exceptions: (1) constructors do
not have to preserve the own object invariants in their prestate and (2) helper
routines do not have to hold invariants, neither in their pre-, nor in their poststate.
To simplify the proof of all invariants in the poststate, we only prove invariants
of modified objects. Objects that are not modified, do not violate their invariants.
Therefore, we handle the proof of invariants in the poststate in a different way. We
use the predicate “inv(heap:map, obj:ref, t:type)”12 to denote to proof the invariant
of object x of type t. To translate invariant clauses, we meet three different cases
that we have to handle in different:

• Object Invariants: We store all object invariants in the lookup table.

• Preconditions: To express the preservation of the object invariant, and of all
generated object invariants, we generate a new predicate term and conjoin it
to the precondition of all non-helper methods.

• Postconditions: Postconditions state a similar case as for method’s precondi-
tions. However, only invariants of generated and modified objects are relevant.

The next three sections describe these three cases in more details.

3.10.1 Object Invariant

Object invariants have to hold in all visible states of the class that declares the
invariants. We restrict the expressiveness of invariant predicates, since they are
only allowed to depend on fields of the enclosing class. The admissibility of invariant
predicates is checked by a subset check. The subset check is an optional feature and
can be turned on and off by a command line entry. We discuss the subset check for
invariant, initially and constraint predicates in chapter 3.11. A subset check
either returns the boolean value true for a successful check or false otherwise. After a
successful subset check for invariant predicate, we conjoin the translated FOL term
of the predicate to the specific lookup table entry. We do not conjoin the ξ(e) to
any pre-, post-, or exceptional postcondition of a routine. We have introduced a new
predicate “inv(heap, object, type)” that refers to the invariant term in the lookup table
for a given object type.
The next example shows the translation of one invariant clause.
12See section 3.3.3 for more details about the predicate “inv”.

62 3 Integration of a new VCGen

1 public class A {
2 B b;
3 //@ invariant b != null;
4
5 }

Lookup.invariant.A

%not(
refEQ(

%valueToRef(
%dynSelect(?heap:map, ?this:ref, ?A?bFieldSignature:ref):value

):ref,
null

):PRED
):PRED

3.10.2 Invariant Term for Precondition Φ

A method has to guarantee the satisfaction of all object invariants in its prestate.
In this context, “all” refers to every allocated object of any type in the whole system.
To express this, we generate the following term:

∀ r:ref, t:type (isAssignCompat(heap, r, t) ∧ isAlive(heap, r)
. → inv(heap, r, t))

Conjoining this term to precondition Φ of all non-helper methods, we can rely on the
condition that all invariants have to hold in their prestate. The reader should pay
attention to the fact that the invariant predicate of the enclosing class does not get
conjoined to the method’s precondition.

The treatment of invariants in constructor prestates is analogous to that of meth-
ods, except that the class declaring the constructor is excluded in the generated term
since its invariant has not yet been established. Thus, we conjoin the following term
to a constructor’s precondition, in which the “this” construct denotes the object itself:

∀ r:ref, t:type (isAssignCompat(heap, r, t) ∧ isAlive(heap, r)
. ∧ (r != this) → inv(heap, r, t))

3.10 Invariant 63

The next example shows the usage of the explained terms in method’s and constructor’s
preconditions:

1 public class A {
2 int x;
3 //@ invariant x != null;
4
5 //@ requires true;
6 public A() {...}
7
8 //@ requires true;
9 public void foo() { ... }

10
11 }

Lookup.invariant.A

%not(
%int−pred predEQ(

%valueToInt(
%dynSelect(?heap:map, ?this:ref, ?A?xFieldSignature:int):value

): int,
0

):PRED
):PRED

Lookup.precondition.A

%and(
%isTrue(true):PRED,
%forAll [#r1:ref, #x0:type]
%implies(

%and(
%and(

%isAlive(?heap:map, ?#r1:ref):PRED,
%assignCompat(?heap:map, ?#r1:ref, ?#x0:type):PRED

):PRED,
%not(

refEQ(
?#r1:ref,
?this:ref

):PRED
):PRED

):PRED,
%inv(?heap:map, ?#r1:ref, ?#x0:type):PRED

):PRED
):PRED

64 3 Integration of a new VCGen

Lookup.precondition.foo
%and(

%assignCompat(
?heap:map,
?this:ref,
?(ReferenceType (ClassType A.className)):type):PRED,

%forAll [#r9:ref, #x6:type]
%implies(

%and(
%isAlive(?heap:map, ?#r9:ref):PRED,
%assignCompat(?heap:map, ?#r9:ref, ?#x6:type):PRED

):PRED,
%inv(?heap:map, ?#r9:ref, ?#x6:type):PRED

):PRED
):PRED

3.10.3 Invariant Term for Postcondition Ψ

Each routine has to satisfy the invariants of all objects in its poststate. As the
routine’s precondition already guarantees the invariant of all objects, we only have
to consider object that might have been modified. This is evaluated by using a static
analysis that makes an overestimation by collecting all types that can be assigned to.
Only invariants of modifiable objects could have been broken during the execution
of that routine. We generate the following term that we conjoin to each routine’s post-
and exceptional postconditions:

∀ r:ref, t:type (isAssignCompat(heap, r, t) ∧ isAlive(heap, r)
. ∧ isVisibleIn(t, store-ref-list) → inv(heap, x, t))

The special notation“isVisibleIn(t, store-ref-list)”13 compares the quantified object ref-
erence “r” with each type that can be modified during the execution of the routine.
We need a list of all modifiable objects in a method. The method for collecting all
modifiable objects will be described in more detail in section 3.10.4 (Type Collector).
The next example shows the usage of the explained term. Below the example, the
method’s postcondition consisting of the own postcondition and the newly generated
term is shown:

1 public class A {
2 B b = new B();
3 //@ invariant b != null;
4
5 //@ ensures true;
6 public void foo() { }
7
8 }

13See section 3.3.4 for more details about the “isVisibleIn” notation.

3.10 Invariant 65

Lookup.invariant.A

%not(
refEQ(

%valueToRef(
%dynSelect(

?heap:map,
?this:ref,
?A?bFieldSignature:ref

):value
):ref,
null

):PRED
):PRED

Lookup.postcondition.foo

%and(
%isTrue(true):PRED,
%forAll [#r10:ref, #x7:type]
%implies(

%and(
%and(

%isAlive(?heap:map, ?#r10:ref):PRED,
%assignCompat(?heap:map, ?#r10:ref, ?#x7:type):PRED

):PRED,
%anyEQ(

?#x7:type,
?(ReferenceType (ClassType A.className)):type

):PRED
):PRED,
%inv(?heap:map, ?#r10:ref, ?#x7:type):PRED

):PRED
):PRED

3.10.4 Type Collector

We use a type collector to gain all modifiable object types within a routine. All
collected types are stored in a set data structure and are reused in the special notation
”isVisibleIn“14. This special notation compares each type of the set with the quantified
variable type in order to check the invariant of those collected types. Objects that
are not modified, do not violate their own invariants if they hold in the prestate
of a routine. Thus, we restrict the scope of possible objects and only demand the
invariants of modifiable objects in the poststate to be checked. To range this scope,
we collect all modifiable objects types within a routine. Our algorithm covers the
collection of all modifiable objects within a certain routine.
14See section 3.3.4 for more details about this special notation.

66 3 Integration of a new VCGen

For the collection part, we use a separate visitor to avoid any interference with the
common visitor as shown in figure 3.5.

Figure 3.5: Class diagram of visitors and translator class

Modifying an object takes place in a body of a routine that consists of several state-
ments. For this part, we ignore JML annotations and treat assignable expressions and
method invocations therefore. That’s the reason why we split up the algorithm and
use a new class as an independent visitor.
We first describe the algorithm to collect object types of assignable expressions and
later the handling of method invocations.

Assignable Expressions:

Now, we take a deeper look at the modification of an object. There is only one way to
modify an object, namely by using any assignable expression. Assignable expressions
are binary statement expressions and possess a left and a right part. The left part
consists of a target and a field as illustrated in figure 3.6.

Figure 3.6: A field access requires a target and a field

Our algorithm collects the type of the target object. There are nine different assign-
ment expressions (assign, asgmul, asgdiv, asgrem, asgadd, asgsub, asgrshift, asgurshift,
asgbitand). To state, that we need the type of the left part, we use a boolean flag,
called ”assign“, within the property object and assign the default value true. For the
right part, we assign the value false.
If we reach one of these assignable expression, we do the following steps:

1. Upon reaching assignable expression, set flag to true.

2. Visit the left part of the assignment.

3. When done, visiting left part, set flag to false.

4. Visit the right part of the assignment .

3.10 Invariant 67

These four steps lay the foundation for the collecting part. The algorithm visits both
sides, because there could be another assignable expression on the right side. The
main type collection happens during visiting field accesses. The algorithm checks if
the flag is equal to true. In that case, we are visiting the left part of an assignable
expression and we collect the typeof the field access type by storing it to the overall
type collection set. But anyway, we have to visit the target of a field access as well,
since there could be another assignable expression. This special case is demonstrated
in the next example:

(a.b1 = b2).count = 3;

There are two object modifications in this example. The field b of object a:A and the
field count of object a.b2:B get modified. Thus, the collection type set contains [A, B,
THIS] where ”THIS“ refers to the own object type. The own object type is added as
a default state since the own invariant has to be checked as well.

Method Invocations:

Consider a method call between a caller and a callee. The callee may again modify some
objects, and the caller also has to guarantee the satisfaction of those types invariants.
The assignable clause of a routine defines, which object might be modifiable within
that method. We add all object types of the assignable reference list of the callee
into the callers collection type set. As we have seen in chapter 3.5.5, there are three
different kinds of store-ref-lists in an assignable clause. We take a look at each one
of them, since they are treated separately:

1. \nothing: The callee does not modify any object and thus no invariant might
be violated. In this case, we add no object type to our type set.

2. \everything: Using the ”everything” keyword, which is in fact the default value
if omitted, we have to check the invariant of all allocated objects in the system.
In theory, we could break up the collection part at this point, but since this is
not possible, we state this behavior by setting a flag, called ”everything“, in the
property object. At the very last step, before we generate the term, we check
this flag. In that described case, we generate the following term:

∀ o:ref, t:type (isAlive(heap, o) ∧ isAssignCompat(heap, o, t)
. → inv(heap, o, t))

3. ref-loc: In this case, we just add all listed object types to our collecting type
set. All invariants within this type set get checked afterwards. The generating
FOL term looks like:

∀ o:ref, t:type (isAlive(heap, o) ∧ isAssignCompat(heap, o, t)
. ∧ isVisibleIn(o, set) → inv(heap, o, t))

68 3 Integration of a new VCGen

Example of Type Collection

public class Test{
A a;
B b;
C c;
D d;

//@ assignable a, b, c;
public void foo(){

a.count = 8;
doSomething();
}

//@ assignable d;
public void doSomething(){...}

}

This example demonstrates the collection and the translation of modified object types.
We consider the method ”foo()“ in the class ”Test“. Our goal is to generate an in-
variant term for the postcondition of that method. The special notation ”isVisibleIn“
collects all modifiable objects within the method ”foo()“ and all heap locations in the
assignable clauses of invoking methods. The own object type [Test] is added to the
assignable set as a default state, because the own object invariant has to hold in
all visible states of object ”foo()“.

Assignable Objects: The method ”foo()“ contains one assignable expression and thus,
one modifiable object type. We do not consider the assignable clause of the
”foo()“ method. Newly added type set is [A].

Method Invocations: By calling the method ”doSomething()“, we add the object types
of all heap locations within that assignable clause. Newly added type set is
[D].

After collecting all modifiable types within that method, we get the following set:
[Test, A, D]. The ”isVisibleIn(t, {Test, A, D})“ predicate looks like:

(t = Test) ∨ (t = A) ∨ (t = D)

The overall invariant term for the postcondition is:

Lookup.postcondition.foo

%forAll [#r:ref, #t:type]
%implies(

%and(
%and(

%isAlive(?heap:map, ?#r:ref):PRED,

3.10 Invariant 69

%assignCompat(?heap:map, ?#r:ref, ?#t:type):PRED
):PRED,
%or(

%or(
%anyEQ(?#t:type, ?(ReferenceType (ClassType Test.className)):type):PRED,
%anyEQ(?#t:type, ?(ReferenceType (ClassType A.className)):type):PRED

):PRED,
%anyEQ(?#t:type, ?(ReferenceType (ClassType D.className)):type):PRED

):PRED
):PRED,
%inv(?heap:map, ?#r:ref, ?#t:type):PRED

):PRED

70 3 Integration of a new VCGen

3.11 JML Subset Checker

//@ invariant <P>
//@ initially <P>
//@ constraints <P>

Predicates of type specifications as invariant, initially, and constraint can be
any kind of expression. We restrict the expressiveness of these predicates. See [15]
for more details about invariant field dependences on superclass fields. Predicates
of invariant, initially, or constraint clauses are only allowed to depend on fields
that are defined in the class that declares these specifications. The admissibility of
those clauses will be checked during the translation process. We provide a new option
to manually switch on and off. The options name is either doSubsetChecking or
the shortcut dsc. The subset checking method gets involved before the predicate gets
translated. By calling the subset checking method, we receive a boolean value whether
or not all field accesses follow our restriction. In the case of a failing subset check, we
inform the user by a message of a similar form as the following:
Subset checking: failed! The field ”count” is a field of class ”O”, and not as
expected of class ”A”!;
In this example, the invariant accesses a field “count” of an object of type “O”.
We do the check for every single type specification predicate. Thus, we collect and
store all field accesses of these predicates in a hash map in order to do the subset check.

Subset checking method
We have access to the own class declaration and to the collected field accesses of the
object invariant expression. By comparing the parent of every single field access
and the own class declaration, we find out whether or not the field access is allowed.
If there is a fault, ESC/Java2 prints out the explained messages above and return a
boolean value to express the failing of the check. In a successful check, we continue
the usual way as conjoining the translated FOL term to the type specification.

3.11.1 Example of Subset Checker

We do a subset check for the following type specification.

public class A {
B b;
int count = 0;

//@ invariant b.num > 4;
//@ initially count == 0;
//@ constraint count > 0;
}

public class B { int num;}

3.12 Summary of Translations 71

The generated output is:
Subset checking: failed! The field ”num” is a field of class ”B”, and not as
expected of class ”A”!;

3.12 Summary of Translations

In this chapter, we have explained the translation of most of JML level 0 features.
Table 3.2 illustrates the handling of the type and method specifications. There is
given a Java code example in appendix A and the translated FOL terms for each
constructor and method.

non-helper constructor helper constructor non-helper method helper method
Φ Ψ,Ψe Φ Ψ,Ψe Φ Ψ,Ψe Φ Ψ,Ψe

requires
√

×
√

×
√

×
√

×

ensures ×
√

×
√

×
√

×
√

signals ×
√

×
√

×
√

×
√

invariant ×
√

× ×
√ √

× ×

initially ×
√

× × × × × ×

constraint × × × × ×
√

× ×

assignable ×
√

× × ×
√

× ×

fresh ×
√

× × ×
√

× ×

Table 3.2: Handling of type and method specifications

4 Conclusion and Future Work

4.1 Conclusion

We have presented the translation of JML annotations into FOL terms. We first
defined and then implemented the translation that now works in Mobius PVE. The
translation operation supports most JML level 0 features, and in addition, history
constraints, a JML level 1 feature.

We did some simplifications to keep the translation modular and sound. One sim-
plification is applied to field accesses. We allow type specifications only to depend on
fields that are defined in the class declaring the specification.

Thus, we could keep the modularity. In order to be sound, we have to check the
admissibility of the type specifications, that can be turned on and off.

4.2 Future Work

4.2.1 Implementation of missing JML level 0 Translations

The current translation does not cover all JML level 0 annotations. There are still
some few annotations left, which are required for the full version of the MOBIUS
project. Section 2.1.1 discloses the missing annotations. Some JML annotations have
optional features. The constraint clauses provide an optional method to list, which
non-helper methods have to fulfill the constraint predicate. Assume and assert
annotations have an optional error message, that will be printed if the assertion fails.
Both optional features are not implemented yet.

4.2.2 Assignable Semantics

In this thesis we treat the semantics of assignable clauses in the same way as of modi-
fiable clauses. The semantics of a modifiable clause allows objects to be modifiable
within the body of the routine. Thus, assign and re-establish the old value to any
object field is allowed for objects mentioned in the modifiable clause. We check this
behavior not until the routine’s termination. The JML semantics of the assignable
clause however forces to check the assign permission before every particular assignable
execution. This semantics can be translated by decorating every field update by an
assert annotation. This annotation yields a term that checks if the assignable heap
location is mentioned in the assignable clause.

72

4.2 Future Work 73

4.2.3 Different Frontend/Backend

To scan a Java code related AST, we use a visitor pattern. If the Mobius PVE is using
a different JavaFE at any time, the visitor pattern needs only some few changes in
order to work with that new JavaFE. Even if the backend of ESC/Java2 will change
in future, there are only some few changes needed to work again.

4.2.4 Acknowledgements

I would like to thank my supervisor Hermann Lehner and Prof. Peter Müller and
all reviewers for helpful comments. Special thanks go to my family, who gave me
support during my whole studies at the ETH and made my dreams true. Thanks for
everything!

Bibliography
[1] Patrice Chalin. Early detection of jml specification errors using esc/java2. In SAVCBS ’06: Proceedings

of the 2006 conference on Specification and verification of component-based systems, pages 25–32,
New York, NY, USA, 2006. ACM Press.

[2] Mobius Consortium. Deliverable 6.1: Dissemination and training plan. Available online from http:
//mobius.inria.fr, March 2006.

[3] INRIA: http:///www.inria.fr.

[4] Software Component Technology Group of ETH Zurich: http://se.inf.ethz.ch.

[5] ETH Zurich: http://www.ethz.ch.

[6] A. Schubert and J. Chrz ↪aszcz. ESC/Java2 as a tool to ensure security in the source code of Java
applications. In Software Engineering Techniques: Design for Quality, IFIP, Warsaw, 2006. Springer-
Verlag.

[7] B. Jacobs and E. Poll. A logic for the Java Modeling Language JML. In H. Hussmann, editor, Fun-
damental Approaches to Software Engineering, volume 2029 of Lecture Notes in Computer Science,
pages 284–299. Springer-Verlag, 2001.

[8] Mobius Consortium. Deliverable 3.1: Bytecode specification language and program logic. Available
online from http://mobius.inria.fr, 2006.

[9] Coq development team. The Coq proof assistant reference manual V8.0. Technical Report 255, INRIA,
France, mars 2004. http://coq.inria.fr/doc/main.html.

[10] D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theorem prover for program checking. Journal of
the Association of Computing Machinery, 52(3):365–473, 2005.

[11] The Java Programming Language: http://java.sun.com/.

[12] The Java Runtime Environments: http://java.sun.com/j2se/desktopjava/jre/index.jsp.

[13] The Java Modeling Language: http://jmlspecs.org.

[14] G.T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. JML Reference Manual,
July 2005. In Progress. Department of Computer Science, Iowa State University. Available from http:
//www.jmlspecs.org.

[15] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered object structures.
Science of Computer Programming, 62:253–286, 2006.

74

http://mobius.inria.fr
http://mobius.inria.fr
http:///www.inria.fr
http://se.inf.ethz.ch
http://www.ethz.ch
http://mobius.inria.fr
http://java.sun.com/
http://java.sun.com/j2se/desktopjava/jre/index.jsp
http://jmlspecs.org
http://www.jmlspecs.org
http://www.jmlspecs.org

A Translation Example of most JML
Level 0 Features

This appendix shows the translation of JML annotations: invariant, constraint,
initially, helper, requires, ensures and old.

public class One {
int count = 2;

//@ invariant count > 0;
//@ constraint \old(count) > count;
//@ initially count != 0;

//@ requires count > 0;
private /∗@helper∗/ One(){ }

//@ ensures count < 3;
public One(int e){ }

private /∗@helper∗/ void foo1() { }

//@ ensures \old(count) > count;
public void foo2() { }
}

Lookup.precondition.One (with /*@helper*/)

%int−pred predGT(
%valueToInt(

%dynSelect(?heap:map, ?this:ref, ?One?countFieldSignature:int):value
): int,
0

):PRED

75

76 A Translation Example of most JML Level 0 Features

Lookup.precondition.One (without /*@helper*/)

%and(
%isTrue(true):PRED,
%forAll [#r2:ref, #x0:type]
%implies(

%and(
%and(

%isAlive(?heap:map, ?#r2:ref):PRED,
%assignCompat(?heap:map, ?#r2:ref, ?#x0:type):PRED

):PRED,
%not(refEQ(?#r2:ref, ?this:ref):PRED):PRED

):PRED,
%inv(?heap:map, ?#r2:ref, ?#x0:type):PRED

):PRED
):PRED

Lookup.precondition.foo

%isTrue(true):PRED

Lookup.precondition.foo2

%and(
%isTrue(true):PRED,
%forAll [#r8:ref, #x7:type]
%implies(

%and(
%isAlive(?heap:map, ?#r8:ref):PRED,
%assignCompat(?heap:map, ?#r8:ref,?#x7:type):PRED

):PRED,
%inv(?#r8:ref, ?#x7:type):PRED

):PRED
):PRED

Lookup.postcondition.One (with /*@helper*/)

%isTrue(true):PRED

77

Lookup.postcondition.One (without /*@helper*/)

%and(
%and(

%int−pred predLT(
%valueToInt(

%dynSelect(?heap:map, ?this:ref, ?One?countFieldSignature:int):value
): int,
3

):PRED,
%forAll [#r3:ref, #x1:type]
%implies(

%and(
%and(

%isAlive(?heap:map, ?#r3:ref):PRED,
%assignCompat(?heap:map, ?#r3:ref, ?#x1:type):PRED

):PRED,
%anyEQ(

?#x1:type,
?(ReferenceType (ClassType One.className)):type

):PRED
):PRED,
%inv(?heap:map, ?#r3:ref, ?#x1:type):PRED

):PRED
):PRED,
%not(

%int−pred predEQ(
%valueToInt(

%dynSelect(?heap:map, ?this:ref, ?One?countFieldSignature:int):value
): int,
0

):PRED
):PRED

):PRED

Lookup.postcondition.foo

%isTrue(true):PRED

Lookup.postcondition.foo2

%and(
%and(

%implies(
%assignCompat(

?heap:map,
?this:ref,
?(ReferenceType (ClassType One.className)):type

):PRED,

78 A Translation Example of most JML Level 0 Features

%int−pred predGT(
%valueToInt(

%dynSelect(?\pre heap:map, ?this:ref, ?One?countFieldSignature:int):value
): int,
%valueToInt(

%dynSelect(?heap:map, ?this:ref, ?One?countFieldSignature:int):value
): int

):PRED
):PRED,
%forAll [#r8:ref, #x4:type]
%implies(

%and(
%and(

%isAlive(?heap:map, ?#r8:ref):PRED,
%assignCompat(?heap:map, ?#r8:ref, ?#x4:type):PRED

):PRED,
%anyEQ(

?#x4:type,
?(ReferenceType (ClassType OneType.className)):type

):PRED
):PRED,
%inv(?heap:map, ?#r8:ref, ?#x4:type):PRED

):PRED
):PRED,
%int−pred predGT(

%valueToInt(
%dynSelect(?\pre heap:map, ?this:ref, ?One?countFieldSignature:int):value

): int,
%valueToInt(

%dynSelect(?heap:map, ?this:ref, ?One?countFieldSignature:int):value
): int

):PRED
):PRED

Lookup.exceptionalpostconditions.One (with /*@helper*/)
%implies(

%assignCompat(
?heap:map,
?#r0:ref,
?(ReferenceType (ClassType java.lang.ExceptionType.className)):type

):PRED,
%implies(

%int−pred predGT(
%valueToInt(

%dynSelect(?\pre heap:map, ?this:ref, ?One?countFieldSignature:int):value
): int,
0

):PRED,

79

%isTrue(false):PRED
):PRED

):PRED

Lookup.exceptionalpostconditions.One (without /*@helper*/)

%and(
%and(

%implies(
%assignCompat(

?heap:map,
?this:ref,
?(ReferenceType (ClassType OneType.className)):type

):PRED,
%int−pred predGT(

%valueToInt(
%dynSelect(?\pre heap:map, ?this:ref, ?One?countFieldSignature:int):value

): int,
%valueToInt(

%dynSelect(?heap:map, ?this:ref, ?One?countFieldSignature:int):value
): int

):PRED
):PRED,
%forAll [#r8:ref, #x4:type]
%implies(

%and(
%and(

%isAlive(?heap:map, ?#r8:ref):PRED,
%assignCompat(?heap:map, ?#r8:ref, ?#x4:type):PRED

):PRED,
%anyEQ(

?#x4:type,
?(ReferenceType (ClassType OneType.className)):type

):PRED
):PRED,
%inv(?heap:map, ?#r8:ref, ?#x4:type):PRED

):PRED
):PRED,
%int−pred predGT(

%valueToInt(
%dynSelect(?\pre heap:map, ?this:ref, ?One?countFieldSignature:int):value

): int,
%valueToInt(

%dynSelect(?heap:map, ?this:ref, ?One?countFieldSignature:int):value
): int

):PRED
):PRED

80 A Translation Example of most JML Level 0 Features

Lookup.exceptionalpostconditions.foo1

%implies(
%assignCompat(

?heap:map,
?#r5:ref,
?(ReferenceType (ClassType java.lang.ExceptionType.className)):type

):PRED,
%isTrue(false):PRED

):PRED

Lookup.exceptionalpostconditions.foo2

%and(
%and(

%implies(
%assignCompat(

?heap:map,
?#r6:ref,
?(ReferenceType (ClassType java.lang.ExceptionType.className)):type

):PRED,
%implies(

%assignCompat(
?heap:map,
?this:ref,
?(ReferenceType (ClassType OneType.className)):type

):PRED,
%isTrue(false):PRED

):PRED
):PRED,
%forAll [#r9:ref, #x5:type]
%implies(

%and(
%and(

%isAlive(?heap:map, ?#r9:ref):PRED,
%assignCompat(?heap:map, ?#r9:ref, ?#x5:type):PRED

):PRED,
%anyEQ(

?#x5:type,
?(ReferenceType (ClassType OneType.className)):type

):PRED
):PRED,
%inv(?heap:map, ?#r9:ref, ?#x5:type):PRED

):PRED
):PRED,
%int−pred predGT(

%valueToInt(
%dynSelect(?\pre heap:map, ?this:ref, ?One?countFieldSignature:int):value

): int,

81

%valueToInt(
%dynSelect(?heap:map, ?this:ref, ?One?countFieldSignature:int):value

): int
):PRED

):PRED

B JML Predicate Syntax

jml−predicate−keyword ::= \TYPE
| \bigint | \bigint math | \duration
| \elemtype | \everything | \exists
| \forall | \fresh
| \into | \ invariant for | \ is initialized
| \java math | \lblneg | \lblpos
| \lockset | \max | \min
| \nonnullelements | \not assigned
| \not modified | \not specified
| \nothing | \nowarn | \nowarn op
| \num of | \old | \only accessed
| \only assigned | \only called
| \only captured | \pre
| \product | \reach | \real
| \result | \same | \safe math
| \space | \such that | \sum
| \typeof | \type | \warn op
| \warn | \working space
| jml−universe−pkeyword

jml−universe−pkeyword ::= \peer | \readonly | \rep
jml−keyword ::= abrupt behavior | abrupt behaviour

| accessible | accessible redundantly
| also | assert redundantly
| assignable | assignable redundantly
| assume | assume redundantly | axiom
| behavior | behaviour
| breaks | breaks redundantly
| callable | callable redundantly
| captures | captures redundantly
| choose | choose if
| code | code bigint math |
| code java math | code safe math
| constraint | constraint redundantly
| constructor | continues | continues redundantly
| decreases | decreases redundantly
| decreasing | decreasing redundantly
| diverges | diverges redundantly
| duration | duration redundantly
| ensures | ensures redundantly | example
| exceptional behavior | exceptional behaviour

82

83

| exceptional example
| exsures | exsures redundantly | extract
| field | forall
| for example | ghost
| helper | hence by | hence by redundantly
| implies that | in | in redundantly
| initializer | initially | instance
| invariant | invariant redundantly
| loop invariant | loop invariant redundantly
| maintaining | maintaining redundantly
| maps | maps redundantly
| measured by | measured by redundantly
| method | model | model program
| modifiable | modifiable redundantly
| modifies | modifies redundantly
| monitored | monitors for | non null
| normal behavior | normal behaviour
| normal example | nowarn
| nullable | nullable by default
| old | or
| post | post redundantly
| pre | pre redundantly
| pure | readable
| refine | refines | refining
| represents | represents redundantly
| requires | requires redundantly
| returns | returns redundantly
| set | signals | signals only
| signals only redundantly | signals redundantly
| spec bigint math | spec java math
| spec protected | spec public | spec safe math
| static initializer | uninitialized
| unreachable | weakly
| when | when redundantly
| working space | working space redundantly
| writable
| peer

| readonly
| rep

C Expression Syntax

Syntax of an expression:

expression ::= assignment−expr
assignment−expr ::= conditional−expr

[assignment−op assignment−expr]
assignment−op ::= = | += | −= | ∗= | /= | %= | >>=

| >>>= | <<= | &= | ‘|=’ | ˆ=
conditional−expr ::= equivalence−expr

[? conditional−expr : conditional−expr]
equivalence−expr ::= implies−expr

[equivalence−op implies−expr] ...
equivalence−op ::= <==> | <=!=>
implies−expr ::= logical−or−expr

[==> implies−non−backward−expr]
| logical−or−expr <== logical−or−expr

[<== logical−or−expr] ...
implies−non−backward−expr ::= logical−or−expr

[==> implies−non−backward−expr]
logical−or−expr ::= logical−and−expr [‘||’ logical−and−expr] ...
logical−and−expr ::= inclusive−or−expr [&& inclusive−or−expr] ...
inclusive−or−expr ::= exclusive−or−expr [‘|’ exclusive−or−expr] ...
exclusive−or−expr ::= and−expr [ˆ and−expr] ...
and−expr ::= equality−expr [& equality−expr] ...
equality−expr ::= relational−expr [== relational−expr] ...

| relational−expr [!= relational−expr] ...
relational−expr ::= shift−expr < shift−expr

| shift−expr > shift−expr
| shift−expr <= shift−expr
| shift−expr >= shift−expr
| shift−expr <: shift−expr
| shift−expr [instanceof type−spec]

shift−expr ::= additive−expr [shift−op additive−expr] ...
shift−op ::= << | >> | >>>
additive−expr ::= mult−expr [additive−op mult−expr] ...
additive−op ::= + | −
mult−expr ::= unary−expr [mult−op unary−expr] ...
mult−op ::= ∗ | / | %
unary−expr ::= (type−spec) unary−expr

| ++ unary−expr
| −− unary−expr
| + unary−expr

84

85

| − unary−expr
| unary−expr−not−plus−minus

unary−expr−not−plus−minus ::= ˜ unary−expr
| ! unary−expr
| (built−in−type) unary−expr
| (reference−type) unary−expr−not−plus−minus
| postfix−expr

postfix−expr ::= primary−expr [primary−suffix] ... [++]
| primary−expr [primary−suffix] ... [−−]
| built−in−type [‘[’ ‘]’] class

primary−suffix ::= . ident
| . this
| . class
| . new−expr
| . super ([expression−list])
| ([expression−list])
| ‘[’ expression ‘]’
| [‘[’ ‘]’] class

primary−expr ::= ident | new−expr
| constant | super | true
| false | this | null
| (expression)
| jml−primary

built−in−type ::= void | boolean | byte
| char | short | int
| long | float | double

constant ::= java− literal
new−expr ::= new type new−suffix
new−suffix ::= ([expression−list]) [class−block]

| array−decl [array− initializer]
| set−comprehension

array−decl ::= dim−exprs [dims]
dim−exprs ::= ‘[’ expression ‘]’ [‘[’ expression ‘]’] ...
array− initializer ::= { [initializer [, initializer] ... [,]] }
initializer ::= expression

| array− initializer

	Introduction
	Motivation
	Aims of this Thesis
	Acronyms
	Tools and Languages

	Preliminaries
	ESC/Java2
	JML
	AST
	Using ESC/Java2
	JavaFE

	Sorted Logic
	Pre- and Poststate
	Heap
	Coq

	Integration of a new VCGen
	General Concept
	Example of a Translation

	Translation Features
	Property Object
	Lookup Table
	Annotation Table
	Visible States
	Dependences of Fields in Type Specification

	Definition of FOL Terms
	Numerical Operations
	Boolean Expressions
	Predicates
	Special Notations

	JML Statements
	Assert, Assume, Set
	Maintaining
	Example of JML Statements

	Method Specifications
	Requires
	Ensures
	Signals_only
	Signals
	Assignable

	JML Modifiers
	Ghost
	Helper

	Quantifiers
	Forall
	Exists

	JML Expressions
	Result
	Fresh
	Old
	Typeof
	Type

	Type Specifications
	Initially
	History Constraint
	Example of History Constraint

	Invariant
	Object Invariant
	Invariant Term for Precondition
	Invariant Term for Postcondition
	Type Collector

	JML Subset Checker
	Example of Subset Checker

	Summary of Translations

	Conclusion and Future Work
	Conclusion
	Future Work
	Implementation of missing JML level 0 Translations
	Assignable Semantics
	Different Frontend/Backend
	Acknowledgements

	Translation Example of most JML Level 0 Features
	JML Predicate Syntax
	Expression Syntax

