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Abstract

Gobra is an automated, modular verifier for Go programs. Gobra is based on
the Viper verification infrastructure. Gobra encodes annotated Go programs
into Viper programs that are then automatically verified. In this thesis, we
implement the parsing and type-checking of Go generics in Gobra and
evaluate our solution. Further, we improve the current implementation of
type modifiers in Gobra. Type modifiers are additional type information,
which Gobra attaches to types for the purpose of verification.
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Chapter 1

Introduction

Gobra [1] is an automated, modular verifier for Go programs. Gobra is based
on the Viper verification infrastructure. Gobra encodes annotated Go programs
into Viper programs that are then automatically verified. Gobra is used in the
VerifiedSCION [2] and Centre for Cyber Trust [3] projects to verify correctness and
security properties of substantial codebases.

With the introduction of Go 1.18, generics where added the the Go language.
The main goal of this thesis is to support the parsing and type-checking of these
generics in Gobra. We aim to design an efficient solution that does not significantly
increase the parse and type-check time of programs without generics.

Gobra extends Go’s type system by attaching additional modifiers to every type,
capturing information relevant for verification. These modifiers are called type
modifiers. As a second goal of this thesis, we improve the existing implemen-
tation of type modifiers in Gobra. We design a solution that makes adding new
type modifiers easier. To achieve this, we unify the currently implemented type
modifiers.

In Chapter 2, we discuss the abilities of generics in Go. Furthermore, we explain
how we implemented the parsing and type-checking of generics in Gobra and
discuss the implementation challenges we encountered. In Chapter 3, we dis-
cuss how type modifiers are currently implemented and how we improved their
architecture. In Chapter 4, we discuss the performance and expressiveness of our
generics implementation. In Chapter 5, we give a conclusion and give ideas for
future work.
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Chapter 2

Generics

2.1 Go Generics

Go supports two kinds of generics, generic types and generic functions. They
allow functions and types to be parameterized by type parameters. The set of
types with which a type parameter can be instantiated is constrained by type
constraints. In this section, we discuss Go’s generic types and functions and Go’s
type constraints.

2.1.1 Generic Types

Generic types are types that are parameterized with type parameters. An example
of a generic type is shown in Fig. 2.1. In the example, T is a type parameter of the
type List. In the body of the struct definition, this type parameter T is used like
every other type. The meaning of any is explained later.

To use generic types in the program, all type parameters must be instantiated.
See for instance Line 6 of the example. The type List[int] is an instance of
the generic type List, where the type parameter T has been instantiated with the
concrete type int.

1 type List[T any] struct {
2 next *List[T]
3 val T
4 }

5 func main() {
6 var list = List[int]{next: nil , val: 10}
7 }

Figure 2.1: A generic type
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4 2. Generics

1 func equal[T comparable ](a T, b T) bool {
2 return a == b
3 }

4 func main() {
5 var x = equal[int](1, 2)
6 var y = equal(1, 2)
7 }

Figure 2.2: A generic function

2.1.2 Generic Functions

Generic functions are functions that are parameterized with type parameters. The
type parameters can then be used in the function signature and function body, just
like for generic types. An example of a generic function is shown in Fig. 2.2. In the
example, we define a generic function equals , which compares two comparable
objects a and b of the same type.

Similar to generic types, the type parameters of a generic function are instantiated
when the function is called. However, in contrast to generic types, the type param-
eters of generic functions do not always have to be provided by the programmer.
Go’s compiler employs heuristics to infer type parameter instantiations at compile
time. Such a case is shown at Line 6 of the example. Here, Go uses the type
information of the call arguments 1 and 2 to infer that the type parameter T is
instantiated with int. If the heuristics fail, Go’s compiler reports an error message,
and the programmer must instantiate the type parameters manually. An example
of an explicit type instantiation is shown at Line 5 of the example.

2.1.3 Type Constraints

As mentioned before, Go enables programmers to impose restrictions on the set
of types with which a type parameter can be instantiated. More concretely, every
type parameter is provided with a type constraint. Each type that can be used to
instantiate the type parameter according to the type constraint is said to satisfy
the type constraint.

Type constraints are listed after a type parameter definition. In the examples of
Fig. 2.1 and Fig. 2.2, the type parameter T is constrained with the type constraints
any and comparable respectively.

The constraint any is satisfied by every type. The constraint comparable is a
special built-in type constraint. It is satisfied by types that support the equality ==

and inequality != operators.

The other type constraints are: union type constraints, interface type constraints,
and embedding type constraints. A union type constraint T t1|t2|...| tn is
satisfied by a type T if T satisfies at least one of the constraints t1 to tn. An
interface type constraint is satisfied by types that implement the provided inter-



2.2. Extending the Parser 5

1 functionDecl: FUNC IDENTIFIER (signature block ?);

Figure 2.3: Gobra’s parser rules for function declarations

face. For instance, the type constraint T interface{ f(int) int} requires
T to implement a method with signature f(int) int. The embedding type
constraint is satisfied by a type that embeds the specified embedding type. For
a detailed discussion of embedding types, we refer readers to the Go language
specification [4].

2.2 Extending the Parser

To introduce Go generics to Gobra, we had to modify Gobra’s parser. The overall
architecture stayed the same, but some parts had to be adjusted and extended.

2.2.1 Previous Parser Architecture

Gobra uses a parser generator called ANTLR [5]. This parser generator takes as
input a formal specification of a language in the form of a lexer and a grammar
and outputs the Java code of the resulting parser. This generated parser builds
parse abstract syntax trees (ASTs) from Gobra input programs. ANTLR also
automatically generates tree walkers that programmers use to visit and transform
ASTs. Gobra uses these tree walkers to translate the parse AST of a Gobra
program to its preliminary AST representation. In summary, to extend Gobra’s
parser, we had to define three things, namely, the lexer, the grammar, and the
parse AST translator.

The lexer defines how an input program is translated into tokens. Defining the
lexer is straightforward and not discussed in this thesis.

The grammar defines how a stream of tokens is translated into a parse AST. The
grammar is specified by a set of rules in ANTLR. Rules are written in an EBNF like
language. Rules may contain nested rules and tokens defined in the lexer. Fig. 2.3
shows an example of a rule definition. This example shows the rule matching
function declarations. In this rule, FUNC and IDENTIFIER are tokens, which
are defined in the lexer. Essentially, FUNC corresponds to the string “func” and
IDENTIFIER is any alphanumeric string starting with a letter. The expressions
signature and block are other nested rules that define how function signatures
and blocks are parsed, respectively. The block is modified by a ? operator, which
means that block must match 0 or 1 time. An example of some Go code that
matches this rule is shown in Fig. 2.4.

As already mentioned, the parse tree translator translates the AST constructed
by the parser from the input program into a preliminary AST representation. This
AST representation is used by Gobra to iterate over the structure of the parsed
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1 func add(x int , y int) { }

Figure 2.4: A simple Go function

program and to perform, for example, type-checking. The parse tree translator is
also straightforward and is not further discussed.

2.2.2 Extension

To implement Go generics in Gobra, we modified the grammar and the parse tree
translator. There were no changes made to the lexer. The parse tree translator
changes are trivial and thus, are not discussed.

Modifying the grammar of Gobra to support Go generics was straightforward. The
Go specification already defines the syntax of the Go language in a variant of
EBNF. To implement Go generics, we translated most of the EBNF production
rules of the Go specification directly to grammar rules in ANTLR. However, we
had to adjust some production rules to avoid ambiguities in the parser.

Concretely, we made the following changes to the grammar:

(1) We added new rules that match definitions of type parameters and their
constraints (e.g. [T any , V int | bool]).

(2) We modified function declaration and type definition rules such that functions
and types can have type parameter definitions
(e.g. func foo[T any ]() {}).

(3) We added and modified rules such that type parameters of generic functions
and types can be instantiated (e.g. foo[int , bool ](3) and Bar[int]).

In the following three subsections, the different changes are discussed in more
detail.

Type Parameter Definitions

To facilitate the matching of type parameter definitions, we added the set of rules
shown in Fig. 2.5. We translated these rules directly from the Go specifications
without any modifications. As seen before, type parameters are declared with an
identifier plus a type constraint (e.g. T any). Such a type parameter declaration is
captured in the rule at Line 3 of the example. The rule matches a list of identifiers
with the nested rule identifierList followed by the typeConstraint rule,
which matches a type constraint. Notice that in Line 3, we did not use the
IDENTIFIER token to match the name of the type parameter, but instead used
the rule identifierList to match a whole list of identifiers. Multiple type
parameters with the same type constraint may be listed together (e.g. T, V any).
Hence, identifierList matches a comma separated list of IDENTIFIER .
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1 typeParameters: L_BRACKET typeParamList R_BRACKET;

2 typeParamList: typeParamDecl (COMMA typeParamDecl )*;

3 typeParamDecl: identifierList typeConstraint;

Figure 2.5: Type parameter definition rules (simplified)

1 functionDecl: FUNC IDENTIFIER typeParameters? (signature block ?);

Figure 2.6: Modified function declaration rule

Alternatively, multiple type parameters may also be declared after another (e.g.
T any , V comparable). This is captured in the rule at Line 2 of Fig. 2.5, which
matches lists of one or more parameter declarations joined with a comma. Finally,
the rule at Line 1 of the example wraps the whole type parameter list with square
brackets (“[” and “]”). The rules defining type constraints are omitted since the
rules are straightforward.

Generic Functions and Generic Types

To be able to add type parameter definitions to functions, we changed the existing
grammar rule that matches function declarations. Concretely, we added the
typeParameters rule from Fig. 2.5, discussed in the previous section, to the
functionDecl rule shown in Fig. 2.6. Notice that the nested typeParameters

rule is modified with ?, which matches the nested rule 0 or 1 time. We modified
the type definition rule analogously to support generic types as well.

Type Parameter Instantiations

To be able to instantiate type parameters of functions and types, we modified the
grammar rules concerning operands and expressions.

First, we translated the Go syntax specification into an ANTLR grammar spec-
ification, yielding the set of rules shown in Fig. 2.7. Notice that these rules
distinguish between index and typeArgs . The rule index only matches one
expression, which is meant to capture index expressions (e.g. array indexes).
Conversely, the rule typeArgs matches a list of types, which is meant to capture
type instantiations (e.g. foo[int , bool]).

The set of rules in Fig. 2.7 leads to ambiguities when parsing certain expressions.
Consider the expression base[i]. This expression may be parsed as a type
parameter instantiation of the type base with type argument i. The corresponding
parse tree is the tree (a) shown in Fig. 2.8. Conversely, this expression may also
be parsed as expression index (e.g. array indexing) of expression base with index
i. The corresponding parse tree is the tree (b) shown in Fig. 2.8.
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1 primaryExpr: operand | primaryExpr index | ...

2 operand: literal | operandName typeArgs? | ...

3 index: L_BRACKET expression R_BRACKET

4 typeArgs: L_BRACKET typeList R_BRACKET

Figure 2.7: Grammar translated from the Go specification (simplified)

a. primaryExpr

operand

operandName typeArgs

’[’ typeList

type

typeName

’i’

’]’

b. primaryExpr

primaryExpr

operand

operandName

’base’

index

’[’ expression

primaryExpr

operand

operandName

’i’

’]’

Figure 2.8: Ambiguity of the expression base[i]

1 primaryExpr: operand | primaryExpr index | ...

2 operand: literal | operandName | ...

3 index: L_BRACKET expression (COMMA expression )* R_BRACKET;

Figure 2.9: Modified grammar (simplified)

Since the parser has no type information available, it cannot choose between the
two possible parse trees (a) and (b) in Fig. 2.8.

To eliminate this ambiguity in the parser, we modified the grammar such that
it does not distinguish between type parameter instantiations and expression
indexes. We deferred the disambiguation to the type-checker. Concretely, we
modified the grammar as follows:

(1) We removed the extra rule typeArgs from the operand, meant to capture
type parameter instantiations.

(2) We modified the index rule such that it can also capture type instantiations
and not only expression indexes.

The modified grammar is shown in Fig. 2.9. With this modified grammar, there is
only one possible parse tree for the expression base[i], which is equal to the
parse tree b. in Fig. 2.8.
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2.3 Extending the Type-checker

To facilitate the type checking of Go generics in Gobra, we modified the type-
checker. Again, the overall architecture of the type-checker stayed the same, but
some parts were adjusted and extended.

2.3.1 Previous Type-checker Architecture

In Gobra, the type-checker has two main tasks: (1) check if a program is well-
defined and (2) associate expressions, symbols, etc. with types. Specifically,
Gobra’s type-checker takes as input the AST of a program and outputs a type
information object if the program is well-defined. The type information object maps
certain nodes of the AST (e.g. expressions, symbols) to types. Otherwise, if
the program is not well-defined, the type-checker outputs a list of errors. In the
following sections, the term typing refers to both well-definedness checking and
type mapping together.

Gobra’s type-checker is split into different modules. The core modules are:

(1) the base typing module

(2) several specific typing modules (e.g. expression typing, statement typing)

(3) the ambiguity resolution module

(4) several property modules (e.g. assignability, type identity, addressability)

The base typing module defines how well-definedness of a program is checked.
Recall that the type-checker gets as input the AST of a program. The base typing
recursively iterates over the nodes of that AST to check well-definedness of the
program. Concretely, a node in the AST is well-defined if all of its children nodes
are well-defined and the node itself is well-defined. Depending on the type of
the node (e.g. expression node, type node, statement nodes) a different specific
typing module is used to check the well-definedness of that node.

Additionally, the specific typing modules are responsible for mapping specific types
of nodes to their type (e.g. the expression typing module maps expression nodes
to types).

The ambiguity resolution module is responsible for resolving ambiguous AST
nodes. This module is discussed further in Sec. 2.3.2.

Property modules define different properties (e.g. assignability, type identity, ad-
dressability). These properties may be defined on types and expressions. Proper-
ties are used by the specific typing modules, mostly to do well-definedness checks
(e.g. the assignability property is used to check whether a variable assignment is
well-defined).
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2.3.2 Extension

To facilitate the type-checking of Go generics in Gobra, we modified the ambiguity
resolution module, some specific typing modules, and some property modules.
Additionally, we introduced the notion of a type set, created a satisfiability property,
and implemented type parameter inference.

Ambiguity Resolution

Recall the discussion in Sec. 2.2.2 about the two interpretations of the expression
base[i]. The parser parses this expression as the same AST node regardless
of whether it is an expression index or a type parameter instantiation. However,
for the typing, the difference is relevant. For this reason, Gobra has the aforemen-
tioned ambiguity resolution module. The ambiguity resolution module resolves
ambiguous AST nodes to AST patterns. AST patterns give additional information
about the AST node. When typing a node, this ambiguity resolution is called
and depending on the resulting AST pattern, the node is typed differently. For
instance, ambiguity resolution is called when typing base[i1 , ..., in]. The
ambiguity resolution then determines whether the expression is a type parameter
instantiation or an expression index. Depending on whether the expression is a
type parameter instantiation or an expression index other well-definedness checks
are made.

Concretely, we extended the ambiguity resolution to handle type parameter in-
stantiations. Consider the expression base[i1 , ..., in]. To resolve this, the
ambiguity resolution first resolves the base node base. In case the AST pattern
of the base node is a function or a type name, the expression is a type parameter
instantiation. Otherwise, if n is 1 and i1 is a type, base[i1 , ..., in] is an
expression index. We implemented this logic in the ambiguity resolution.

Satisfying Type Constraints

The introduction of type parameters requires the notion of a type set. Informally,
the type set is the set of types a type parameter could be instantiated with. Type
sets are used to check whether type constraints are satisfied and also for checking
properties such as assignability. Formally, the type set of a type constraint is
defined as the set of all types that satisfy that type constraint.

Consider the type constraint int | bool. According to the definition of union
type constraints, this constraint is satisfied by the types int and bool. Hence,
the type set of this type constraint is {int, bool}.

Consider the type constraint interface { m() }. According to the definition of
the interface type constraint, this constraint is satisfied by all types that implement a
member m(). Hence, the type set of this type constraint is infinitely large, because
there can be infinitely many types that implement m(). This poses challenges on
the implementation because an infinite type set cannot be constructed at runtime
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To accommodate both finite and infinite type sets our implementation distinguishes
between two types of type sets. Bounded type sets are finite type sets that
contain a list of types. In contrast, the unbounded type set is an abstract type
set that represents a type set with an infinite number of types. Note that our
implementation of the type set does not exactly reflect the definition of the type set.
Conceptually, an infinite type set should contain infinitely many types. But in our
implementation we just treat all infinite type sets as the same abstract unbounded
type set.

As a consequence, checking whether a type satisfies a type constraint is not as
easy as just checking whether that type is contained in the type set of that type
constraint. Consider the aforementioned type constraint interface { m() }.
Suppose, we want to check whether a type t1 satisfies this type constraint. It does
not suffice to check only whether t1 is in the type set of interface { m() }

because the type set of interface { m() } is the unbounded type set and
thus always contains t1. We also need to check whether t1 implements a method
m(). In general, a type t1 satisfies a type constraint c1 if:

(1) t1 implements the member set of c1 and

(2) t1 is contained in the type set of c1

We implemented this logic in a new property called satisfiability.

Type Parameter Instantiation

Type parameter instantiations are a core mechanism of Go’s generics. In this
section, we discuss how type parameter instantiations exactly work and how
we solved them. Note that in this section, we only consider type parameter
instantiations where all type parameters are explicitly provided and are not inferred.
Inferring type parameters is discussed later in Sec. 2.3.2.

Recall from Sec. 2.1, that generic functions and generic types can be instanti-
ated by providing type arguments for the type parameters. Consider a function
func foo[T any , V Bar](x T) V {} where Bar is an interface. We instan-
tiate the generic function foo by providing the type argument as foo[int , Baz]

where Baz is a custom type.

In order to determine if the type parameter instantiation is well-defined, the type-
checker has to check two points. First, the type-checker checks that the number of
type arguments provided matches the number of defined type parameters. Second,
the type-checker checks for each pair of type argument and type parameter that
the type argument satisfies the type constraint of the type parameter.

In the example above, the type-checker checks that int satisfies any and Baz

satisfies Bar. In case the type parameter instantiation is well-defined, the type-
checker instantiates the generic type or function with the provided type argu-
ments. A generic type or function is instantiated by substituting type parame-
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1 func foo[T interface{ m(); n() }](x T) {
2 var y interface{ m() } = x // valid
3 }

Figure 2.10: Example of case (1)

ters with the corresponding type arguments. In the example, the initial type of
foo is func(T) V. Instantiating T with int and V with Baz results in the type
func(int) Baz.

Assignability

Assignability is an important property in Go. As the name suggests, a type t1 is
assignable to a type t2 if an expression of type t1 can be assigned to a location,
e.g. variable, parameter, etc., of type t2. This property is used in statements
such as variable declarations and assignments. For instance, in a declaration
var x int = y, it is checked that the type of y is assignable to the type of x,
which is int in this case.

To support type parameters, we had to extend the current implementation of
assignability in Gobra. Omitting some details, generics introduce three new cases,
that have to be handled differently, when deciding whether a type t1 is assignable
to type t2:

(1) t1 is a type parameter and t2 is a regular interface

(2) t2 is a type parameter

(3) t1 is a type parameter and t2 is not a a regular interface

First, we discuss the case (1). An example of this case is shown in Fig. 2.10.
Here, we have to check that the type of x, which is T, is assignable to the type
of y, which is interface { m() }. The example falls under case (1) since
y has a regular interface type and the type of x is a type parameter. Recall
from Sec. 2.1.3 that the interface type constraint interface { m(); n() }

requires that T has to implement the interface interface { m(); n() }. In
particular, T has to implement the methods m and n. To check whether or not
x is assignable to y, we check that interface{ m(); n() } implements
interface{ m() }. In the example, the type interface{ m(); n() }

implements interface{ m() } and hence, the assignment is valid. In general,
we check that t1 implements t2.

Next, we discuss the case (2). An example of this case is shown in Fig. 2.11. Here
we have to check that the type of 3, which is int, is assignable to type T. The
example falls under case (2) since T is a type parameter. Recall from Sec. 2.1.3
that the union type constraint int | bool requires that T has to satisfy int or
bool. In particular, this means that T is either int or bool. To check whether or
not 3 is assignable to T, we check whether 3 is assignable to both int and bool.
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1 func foo[T int | bool ]() {
2 var x T = 3 // invalid
3 }

Figure 2.11: Example of case (2)

1 func foo[T int | bool](x T) {
2 var y int = x // invalid
3 }

Figure 2.12: Example of case (3)

In the example, the type of 3 is not assignable to bool and hence the assignment
is invalid. In general, we check that:

∀si ∈ typeset(c2) : assignableTo(t1, si)

where c2 is the type constraint of t2, typeset(c2) is the set of all types that satisfy
c2, and assignableTo(t1, si) is a predicate that is true if and only if t1 is assignable
to si.

Lastly, we discuss case (3). An example of this case is shown in Fig. 2.12. Here
we have to check that the type of x, which is T, is assignable to the type of y,
which is int. The example falls under case (3) since T is a type parameter and
t2 is not a regular interface. Informally, we can say that T must be either int or
bool according to its type constraint. To check whether or not x is assignable to
y, we check whether both int and bool are assignable to int. In the example,
only int is assignable to int, but bool is not assignable to int and hence the
assignment is invalid. In general, we check that:

∀si ∈ typeset(c1) : assignableTo(si, t2)

where c1 is the type constraint of t1.

Type Parameter Inference

Recall from Sec. 2.1.2 that, in certain cases, Go is able to infer type parameter
instantiations of generic functions. For instance, a generic function
func foo[T any , V any](x T, y V) can be called as
foo[int](3, true). In this example, only the first type parameter T is instan-
tiated explicitly with type int. The second type parameter V is inferred to bool

from the function call.

To implement this in Gobra, we modified the well-definedness check of type
parameter instantiation expressions. Whenever a generic function is instanti-
ated, the type-checker does the following: First, the type-checker checks whether
the instantiation expression is a direct sub-expression of a function call (e.g.
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foo[int](3, true)). In case it is not a direct sub-expression of a function call
(e.g. foo[int]), no type parameters can be inferred and thus all type parameters
must be explicitly provided. Otherwise, the type-checker proceeds by creating
a map from type parameters to the provided type argument types and defers
the well-definedness check to the outer function call well-definedness check. In
the example, this map is T -> int. In the well-definedness check of the func-
tion call, the type-checker attempts to infer rest of the type parameters that are
not already contained in the map. For this, the type-checker types all function
call arguments that have a type parameter type and adds the corresponding
type parameter and type pair to the map. In the example, the resulting map is
{T -> int , V -> bool}. Finally, the type-checker syntactically substitutes
every type parameter with its corresponding type mapping in the function type,
which yields a type t, and checks that the function is fully instantiated. To check
that the function is fully instantiated, the type-checker checks that all type parame-
ters declared by foo are not included in t anymore. Type parameters that are not
declared by foo are considered instantiated in t. In the example, the resulting
type t for foo is func (int , bool).



Chapter 3

Type Modifiers

Gobra internally uses a richer type system than Go. In particular, Gobra extends
Go types with type modifiers that capture further information about instances of a
type. In this chapter, we present a design to unify the treatment of type modifiers
and discuss how we applied the design to Gobra’s current type modifiers.

3.1 Previous Architecture

Currently, Gobra implements two different type modifiers, which are explained in
detail in the next two sections.

3.1.1 Shared and Exclusive

In this section, we discuss the owner modifier of Gobra. In Gobra, an expression
is either shared or exclusive. Expressions that are shared may be aliased. In
contrast, expressions that are exclusive are definitely not aliased. An example is
shown in Fig. 3.1. In the example, the variable x is exclusive. This means that x
must not be aliased. For instance, the expression &x would cause an error in the
type-checker. In Gobra, variables are exclusive by default. To explicitly declare
a variable as shared, the @ symbol is appended to the identifier name. In the
example, the variable y is explicitly declared shared. Hence, the variable y can be
aliased like in Line 4 of the example.

1 func foo() {
2 var x int = 16
3 var y@ int = 16

4 bar(&y)
5 }

Figure 3.1: Example of an exclusive and a shared variable
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1 func foo() {
2 ghost var x int = 16

3 var y int = 4
4 y = x // not allowed
5 }

Figure 3.2: Example of ghost code

Currently, the logic for owner modifiers is implemented in the addressability module
of Gobra’s type checker. The addressability module defines whether an expression
can be dereferenced.

3.1.2 Ghost and Actual

Gobra’s other modifier, the ghost modifier , captures whether a node in the
AST is part of the actual targeted program or was added solely for the purpose
of verification. AST nodes that are ghost do not belong to the actual program. In
contrast, nodes that are actual do belong to the actual program. This modifier
prevents that the the actual program execution and its state are influenced by
verification code.

An example is shown in Fig. 3.2. By default, code is classified as actual code.
In the example the function foo and the statement at Line 3 is actual code. In
contrast, x is explicitly marked as ghost, hence it is not part of the actual code.
This implies that x must not influence any actual code. Line 4 of the example
shows an assignment of y to x, which is not well-defined. An actual variable must
not be assigned to a ghost variable, because otherwise the actual variable would
be influenced by ghost code. The type-checker reports an error in this example.

To implement this separation of ghost and actual code, Gobra uses a ghost
classifier and a ghost well-definedness module. The ghost classifier module imple-
ments the mapping of program nodes to the modifiers ghost or actual. The ghost
well-definedness checks the well-definedness of expressions and statements in
terms of modifiers. Consider the statement y = x from the example in Fig. 3.2.
In the example, the ghost well-definedness checks that x is assignable to y in
terms of modifiers, i.e. that either y is ghost or both x and y are actual, which is
implemented in the ghost assignability module.

3.2 Solution

In Gobra’s previous architecture, both type modifiers were implemented in a
custom manor. In the future, further type modifiers are expected to be added to
Gobra. To make adding new type modifiers easier, we investigates techniques
to unify all type modifiers. A goal was to make type modifiers more maintainable
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≪interface≫
ModifierUnit

ctx: TypeInfo

isWellDefined(n: Node): Bool
getModifier(n: Node): Modifier
addressable(exp: Expression): Bool
assignableTo(right: Modifier, left: Modifier): Bool

OwnerModifierUnit GhostModifierUnit

Figure 3.3: General architecture of type modifiers

and uniform. In the next two sections, we first motivate the design choices of our
solution and then describe our changes to the architecture.

3.2.1 Design

As already mentioned, type modifiers are an extension of Go’s type system in
Gobra. In order to unify type modifiers, we first determined what all type modifiers
have in common. In general, all type modifiers have their own well-definedness,
modifier type mapping, and property logic. Furthermore, each modifier’s typing
only depends on the regular typing of Go and is independent of the typing of
other type modifiers. For example, to classify whether an expression is a ghost
expression is independent of whether the expression is shared or exclusive. Go’s
regular typing is sufficient.

With this insight, we decided to split the typing logic for each modifier in its own
unit. Each modifier unit then independently implements the well-definedness,
modifier type mapping and property logic of the corresponding modifier. All these
units implement a common interface which we will discuss in detail in the next
section.

3.2.2 Modifier Unit Interface

The ModifierUnit interface serves as the interface for the modifier typing logic.
A simplified class diagram is shown in Fig. 3.3. The concrete modifier unit of each
type modifier implements the ModifierUnit interface. The ModifierUnit in-
terface contains two core methods, namely isWellDefined and getModifier ,
and methods related to properties such as addressable and assignableTo .
Furthermore, each modifier unit has a reference to the normal Go typing informa-
tion stored in the ctx field.
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Well-Definedness

As already mentioned, each modifier type has its own well-definedness check. This
check is implemented in the isWellDefined method of each modifier unit. The
well-definedness check of each modifier unit assumes regular Go well-definedness.
Recall from section Sec. 2.3.1, that the regular Go well-definedness is checked
in the base typing module. We modified the base typing module, such that it
first checks Go well-definedness and then afterwards iterates over all modifier
units and uses their isWellDefined method to check the well-definedness of
the respective modifier. Because the well-definedness check of Go is done first,
modifier units are allowed to assume regular Go well-definedness.

Type Mapping

For the type mapping from AST nodes to type modifiers, we added a new modifier
typing module. To get the list of modifiers for a node, the modifier typing module
iterates over all modifier units and uses their getModifier method to get the
respective type modifier.

Properties

Properties are not only defined on Go types and expressions, but can also be
defined on type modifiers and expressions.

Recall the discussion about the assignability property in Sec. 2.3.2. Just like
how assignability is defined on types, it is also defined on type modifiers. Hence,
type modifiers pose additional requirements for expressions to be assignable to
other expressions. As an example, consider assignability with ghost modifiers. As
mentioned in Sec. 3.1.2, ghost state is not allowed to influence actual program
state. Therefore, actual expressions must not be assigned to ghost expressions.
Hence, the assignableTo method of GhostModifierUnit returns false if and
only if right is ghost and left is actual. In general, to check assignability, the
type-checker checks Go assignability and additionally checks assignability for
each modifier unit using their assignableTo implementation.

Recall from Sec. 3.1.1, that addressability prevents that expressions with the owner
modifier exclusive are aliased. Hence, exclusive expressions are not addressable.
We moved this logic to the addressable implementation of the owner modifier
unit. The addressable method of the owner modifier unit returns true if and
only if the input expression has the modifier shared. Similar to assignability, to
check addressability, the type-checker checks Go addressability and additionally
checks addressability for each modifier unit with their respective addressable

implementation.
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3.3 Discussion

In this section, we discuss the advantages and disadvantages of the proposed
solution from before.

Our solution provides a strong separation of concerns. Each type modifier is
implemented in its own modifier unit. This reduces dependencies and enhances
transparency. In particular, it is easier to distinguish which typing logic originates
from Go and which typing logic originates from Gobra’s type modifiers.

Well-definedness of type modifiers is checked more easily with the new solution.
Recall that the base typing automatically checks well-definedness for each modifier
unit in the new solution.

With the new solution, properties are checked more easily and code duplica-
tion is reduced. Consider as an example the assignability property. Previ-
ously, Go assignability was checked in the Go well-definedness and modifier
assignability was checked in the well-definedness of the modifiers. This lead to
an overlap of code in the Go well-definedness and the modifier well-definedness.
Namely, code that distinguished different types of assignments. With the new
solution, Go assignability and modifier assignability are both checked in the Go
well-definedness, which uses the assignability interface of the modifier units to
automatically check assignability for every modifier.

One disadvantage of the solution is, that finding a suitable interface for all type
modifiers is not easy. Additionally, we might want to extend the interface with other
properties that need to be checked in new modifiers, to reduce the aforementioned
code duplication





Chapter 4

Evaluation

4.1 Performance

In the next two sections, we discuss the performance overhead of generics and
how type parameter instantiations and type parameter inference scale. All tests
have been conducted in WSL 2.0 on a Windows 10 machine with an i7-9700K
CPU @ 3.60GHz and 32GB of DDR4-3200 RAM.

4.1.1 Overhead of Generics

To evaluate the overhead of our generics implementation, we compared the
performance of the old Gobra version with the performance of our new generics
implementation on the same input programs that do not contain generics. For the
comparison, we evaluated the integration test suit of Gobra and the router of the
VerifiedSCION project.

Fig. 4.1 shows the mean run time of 10 iterations for each project before and after
generics where added. The times only include parsing and type-checking phases.
The difference in run time between the old version and the generics version was
0.63 seconds for the VerifiedSCION project and 0.17 seconds for the integration
test suit. The results indicate, that there is just a small overhead by our generics
implementation when running programs without generics.

To investigate the run time of the integration test suit further, we consider the

Project Old [s] New [s] Diff [s]

VerifiedSCION router 9.71 10.34 +0.63
Integration test suit 12.60 12.77 +0.17

Figure 4.1: Comparison of mean run times of parsing and type-checking the VerifiedSCION router
and the integration test suit of 10 iterations before and after adding generics to Gobra.
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Figure 4.2: Comparison of old mean run time with slowdown of 10 iterations for each program in
the integration test suit

slowdown (i.e. new mean run time divided by old mean run time) for each program
in the integration test suit. Fig. 4.2 and Fig. 4.3 compare the old mean run times
of the programs with their corresponding slowdown. The plot shows that the
overhead on fast programs is more extreme. There are some fast programs that
need twice the time with the new version. Conversely, there are fast programs
that experience up to 30% run time reduction. The reduction in run time may be
caused by inconsistencies in the computational load of the test machine. Slower
programs with an old mean run time greater than 30 tend to have a lower overhead
with the new version.

4.1.2 Scaling of Generics

To evaluate how our implementation of generics scales on type parameter in-
stantiations and type parameter inference, we carried out a variety of different
performance experiments.

Nesting Generic Structs

We investigated the influence of nesting generic structs on the run time perfor-
mance. We define the nesting factor to be the number of recursively nested
generic structs. Fig. 4.4 shows a nested struct with nesting factor 0 at Line 6 and
a nested struct with nesting factor 1 at Line 7.

Fig. 4.5 shows the mean run time (parsing and type-checking) from 10 runs of
nested generic structs with nesting factor 0 to 49. Increasing the nesting factor,
increases the run time rapidly. Intuitively, this is what we expect. The expressions
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Figure 4.3: Detail view of Fig. 4.2 from old mean run time 40 ms to 160 ms

1 type pair[A any , B any] {
2 a A;
3 b B;
4 }

5 func main() {
6 var p0 = pair[int , int]{0, 0}
7 var p1 = pair[int , pair[int , int]]{1, pair[int , int{0, 0}]}
8 }

Figure 4.4: Generic struct with nesting factor 0 and 1

grow quadratically with the nesting factor, which increases the computational work
of the type parameter instantiation.

Chaining Generic Function Calls

We investigated the influence of chaining generic function calls on the run time
performance. We define the chaining factor to be the number of chained generic
functions. Fig. 4.6 shows chained generic function calls with chaining factor 2.

Fig. 4.7 shows the mean run time (parsing and type-checking) from 10 runs of
chained generic function calls with chaining factor 1 to 50. Increasing the chaining
factor increases the run time steadily. Intuitively, this is what we expect. The
number of functions and type parameters increases linearly with the chaining
factor, which increases the computational work of the type parameter instantiation.
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Figure 4.5: Performance of nested generic structs

1 func main() {
2 foo1[int ](42)
3 }

4 func foo1[T1 any](x T1) { foo2[T1](x) }

5 func foo2[T2 any](x T2) { var _ = x }

Figure 4.6: Chained generic function calls with chaining factor 2
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Figure 4.7: Performance of chained generic function calls
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1 func main() {
2 foo(1, 2, 3, 4)
3 }

4 func foo[T any](x1 T, x2 T, x3 int , x4 int) {}

Figure 4.8: Generic function with parameter size 4 and type parameter size 2
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Figure 4.9: Performance of increasing type parameter size with fixed parameter size 100

Increasing Type Parameter Ratio in Function Arguments

To investigate the performance of function arguments with type parameter types,
we first fix the number of parameters to a function, which we call the parameter
size. Then we increase the amount of arguments that have a type parameter type,
which we call the type parameter size. We restrict that all the function arguments
that have a type parameter type have the same type parameter type T. Fig. 4.8
shows a generic function with parameter size 4 and type parameter size 2.

Fig. 4.9 shows the mean run time (parsing and type-checking) from 10 runs of
generic functions with parameter size 100 and type parameter size 0 to 99. From
type parameter size 0 to about 10, we see a rapid decrease of the mean run time.
We suppose this is due to insufficient warm up. For parameter sizes greater than
10, the run time does not significantly increase. Intuitively, this makes sense. The
amount of function arguments and type parameters is fixed. The only quantity
that increases linearly with the type parameter size is the amount of function
arguments that have a type parameter type. The result suggests, that increasing
the amount of function arguments with a type parameter type does only lead to a
small overhead.
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1 func main() {
2 foo(1, 2, 3, 4)
3 }

4 func foo[T1 any , T2 any](x1 T1, x2 T2, x3 int , x4 int) {}

Figure 4.10: Generic function with parameter size 4 and type parameter size 2
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Figure 4.11: Performance of increasing inferred type parameters with fixed parameter size 100

Increasing Inferred Type Parameters

To study the performance of type parameter inference, we fix the size of function
parameters to a function and increase the ratio between function parameters that
have inferred type parameter types and function parameters that have concrete
types. We define the parameter size to be the fixed number of parameters to a
function and the type parameter size to be the number of parameters that have
a type parameter type. Fig. 4.10 shows a generic function with parameter size 4
and type parameter size 2. Note that this is similar to the previous experiment, but
with the difference that now the amount of type parameters of the function also
linearly grows with the type parameter size.

Fig. 4.11 shows the mean run time (parsing and type-checking) from 10 runs
of generic functions with parameter size 100 and type parameter size 0 to 99.
Increasing the type parameter size, increases the run time steadily, except for type
parameter size from 0 to around 40. We do not know what caused the irregularity
in run time at the beginning. Some of the irregularity may be explained with
insufficient warm up. The steady increase after type parameter size 40 is what we
expect because the number of inferred type parameters increases linearly with
the type parameter size.
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1 func main() {
2 foo(4, 3, 2, 1)
3 }

4 func foo[T1 any , T2 any](x4 int , x3 int , x2 T2 , x1 T1) {}

Figure 4.12: Generic function with parameter size 4 and type parameter size 2 (reversed)

0 20 40 60 80 100
5

10

15

20

25

30

Type parameter size

M
ea

n
ru

n
tim

e
[m

s]

Figure 4.13: Performance of increasing inferred type parameters with fixed parameter size 100
(reversed)

Increasing Inferred Type Parameters in reverse Order

This experiment is similar to the experiment from before. The difference is, that
now, type parameters are added in reverse order, beginning from the end. Fig. 4.12
shows a generic function with parameter size 4 and type parameter size 2.

Fig. 4.13 shows the mean run time (parsing and type-checking) from 10 runs of
generic functions with parameter size 100 and type parameter size 0 to 99. We
observe similar results to the previous experiment, except that the irregularity
already ends with type parameter size greater than 10.

4.2 Expressiveness

In this section, we discuss the capabilities and limitations of our generics imple-
mentation when compared to the full generics support of Go.

In general our implementation supports generic functions and generic types. Both
can be parameterized with type parameters, which have associated constraints.
We implemented the union type constraint, the interface type constraint, the em-
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1 func foo[T interface { interface { m() } }]() { }

2 type bar interface { m() }
3 func foo[T interface { bar }]() { }

Figure 4.14: Embedded interface type constraint inside of an interface type constraint

bedding type constraint, and the special type constraints any and comparable .
Furthermore, we implemented the properties assignability, comparability, imple-
ments, type identity, type merging, and underlying type. Additionally, we created
the satisfiability property. We also implemented simple type inference. In the
following sections we discuss some of the limitations of our implementation.

Embedded Unnamed Interface Type Constraints

In Go, it is possible to embed interfaces as shown in Line 1 of Fig. 4.14. In the
example, the interface type constraint embeds another interface type constraint
that has the member m(). The effect of this is, that the member set of the outer
interface includes the member set of the inner interface. The member set of the
inner interface includes the method m() and hence the member set of the outer
interface also includes m(). Essentially, this means that the resulting interface is
equal to the interface interface { m() }. In Gobra, it is currently not possible
to embed nameless interfaces. In the example, this means that Line 1 does
not work correctly and must be refactored to Lines 2 and 3, such that the inner
interface has a name. The limitation comes from the already existing member
set calculation logic of Gobra. In practice, this problem can be easily avoided by
always giving names to interfaces.

Type Constraints with Underlying Types

In Go, there is a notion of an underlying type. The formal definition of an underlying
type is provided in the Go language specification. Informally, an underlying type is
the underlying primitive type (e.g. int, bool, []int, etc. ) of a named type. For
instance, the underlying type of a type T1 with declaration type T1 int is int

and the underlying type of a type T2 with declaration type T2 []int is []int.

Underlying types may be used in embedded type constraints and are denoted
with “~”. For example, a type constraint interface { ~int } is satisfied by
all types that have an underlying type of int. In contrast, the type constraint
interface { int } is satisfied by all types that are int. Our generics imple-
mentation currently does not support type constraints with underlying types.
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1 func foo[T any](x T) {
2 bar[T](x)
3 }

4 func bar[T any](x T) { }

Figure 4.15: Erroneous program rejection

Limitations caused by the Type Parameter Inference

Recall from Sec. 2.3.2, that type parameters of generic function calls can some-
times be inferred. To determine, whether a function f is fully instantiated we check,
that all type parameters declared in f are not included in the resulting type of
the instantiation of f. This implementation leads to problems for some programs.
Consider the example program in Fig. 4.15. This program is a valid Go program.
Our implementation encounters the following problem: In the function foo, the
type parameter T is used to instantiate the type parameter T of the function bar.
The resulting type of bar[T] is func (T). Our implementation then throws an
error, because the resulting function type still contains a type parameter of bar,
namely T, and believes the function is not fully instantiated. The problem here, is
that the implementation cannot distinguish between the type parameter T of foo
and the type parameter T of bar.

One approach to solve this, is to extend the type information of functions to include
uninstantiated type parameters. For instance, the resulting type of bar[T] in the
example from before could be (func (T), []). Where the second element
[] is the list of uninstantiated type parameters of that function. Further, the type
of bar would then be (func (T), [T]). To check whether a function is fully
instantiated, the implementation would then check that the list of uninstantiated
type parameters in the resulting type of bar[T] is empty.
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Conclusion

In this thesis, we implemented parsing and type-checking a big part of Go’s
support for generics with a few limitations. The implementation included modifying
the parser and the type-checker. We introduced new concepts including generic
types, generic functions, type parameter instantiations, the notion of a type set
and the satisfies property.

Further, we unified existing implementations of an extension of Go’s type system.
We introduced a new interface, the modifier unit, which gives a standardized
access to every type modifier. Our unification provides a strong separation of con-
cerns, makes adding new type modifiers easier, and simplifies well-definedness.

The evaluation of our generics implementation indicates that there is only a
small performance overhead when parsing and type-checking programs without
generics. Additionally, we studied the performance of generics and type inference
of our implementation with a variety of different tests.

5.1 Future Work

Generally, there is a lot of future work for generics in Gobra.

As discussed, our implementation includes some limitations, such as underlying
types and embedded unnamed interface type constraints, which are not imple-
mented. These limitations could be addressed in future work. Additionally, the
type parameter inference could be improved such that it does not impose any
limitations on the programs anymore.

In this thesis, we addressed the implementation of the parser and type-checker
for generics. Further, the encoding of programs containing generics to Viper
programs has to be implemented to verify code containing generics.

Type parameter inference is an interesting topic for future work. The type parame-
ter inference of Go is limited and based on simple heuristics. Gobra could extend
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this type parameter inference with complex inference algorithms to make type
inference more powerful. A powerful type parameter inference would make writing
generic ghost code less verbose because more type parameter instantiations
could be inferred and thus omitted.



Bibliography

[1] “Gobra.” [Online]. Available: https://www.pm.inf.ethz.ch/research/gobra.html

[2] “Verified SCION.” [Online]. Available: https://www.pm.inf.ethz.ch/research/
verifiedscion.html

[3] “Centre for Cyber Trust.” [Online]. Available: https://www.pm.inf.ethz.ch/
research/cyber-trust.html

[4] “The Go Programming Language Specification,” Dec. 2022. [Online]. Available:
https://go.dev/ref/spec

[5] T. Parr, “ANTLR.” [Online]. Available: https://www.antlr.org/about.html

33

https://www.pm.inf.ethz.ch/research/gobra.html
https://www.pm.inf.ethz.ch/research/verifiedscion.html
https://www.pm.inf.ethz.ch/research/verifiedscion.html
https://www.pm.inf.ethz.ch/research/cyber-trust.html
https://www.pm.inf.ethz.ch/research/cyber-trust.html
https://go.dev/ref/spec
https://www.antlr.org/about.html



	Contents
	Introduction
	Generics
	Go Generics
	Generic Types
	Generic Functions
	Type Constraints

	Extending the Parser
	Previous Parser Architecture
	Extension

	Extending the Type-checker
	Previous Type-checker Architecture
	Extension


	Type Modifiers
	Previous Architecture
	Shared and Exclusive
	Ghost and Actual

	Solution
	Design
	Modifier Unit Interface

	Discussion

	Evaluation
	Performance
	Overhead of Generics
	Scaling of Generics

	Expressiveness

	Conclusion
	Future Work

	Bibliography

