
Kangoo API for Web-based Applications

Cristian Garcia

Master Project Report

Software Component Technology Group
Department of Computer Science

ETH Zurich

http://sct.inf.ethz.ch/

WS 2006/07

Supervised by:
Dominik Grolimund
Prof. Dr. Peter Müller

Software Component Technology Group

http://sct.inf.ethz.ch/

2

Abstract

Kangoo is a global distributed system for the Internet. The goal of this master thesis project was to
develop a Kangoo web API, which will allow third party developers to create web applications that
interact with the Kangoo distributed storage system. The Kangoo web API interacts with Kangoo
and returns metadata contained in the Kangoo metadata server. It also provides several search
functionalities working with the Kangoo search server. A Java library specifically developed for
Java client applications facilitate the development of such applications. A sample web application
was created to demonstrate the various functionalities provided by the Kangoo web API. JML
contracts were used inside the Kangoo web API to assert its correctness.

3

4

Contents

1 Introduction 7

2 Kangoo 9
2.1 Introduction . 9
2.2 Architecture . 9

3 Related Work 11
3.1 Industry Examples . 11
3.2 Communication Protocols . 11

4 API Architecture 13
4.1 Introduction . 13
4.2 Communication Protocol . 14

4.2.1 REST . 14
4.2.2 Application Server . 15

4.3 The API and Kangoo . 15

5 Developer Authentication 17
5.1 Introduction . 17
5.2 API Key Database . 17
5.3 API Key Applications . 18

6 API 19
6.1 Introduction . 19
6.2 API Schema . 19
6.3 Request Handling . 20
6.4 Response Creation . 20
6.5 Error Handling . 21

7 JML 23

8 API Sample Application 25
8.1 Introduction . 25
8.2 Layout and User Interaction . 26
8.3 Request Handling Process . 28

9 API Java Wrapper 31
9.1 Introduction . 31
9.2 Structure . 31
9.3 Error Handling . 32

5

6 CONTENTS

10 Conclusions 33
10.1 Achievements . 33
10.2 Future Work . 33
10.3 Personal Opinion . 34

A API Documentation 35
A.1 Introduction . 35
A.2 Java Example . 35
A.3 API Methods . 36

A.3.1 Archives . 36
A.3.2 Comments . 37
A.3.3 Favorites . 38
A.3.4 Groups . 39
A.3.5 Items . 40
A.3.6 Tags . 51
A.3.7 Test . 55
A.3.8 Thumbnail . 56
A.3.9 Users . 56

Chapter 1

Introduction

The goal of this master thesis was to develop an API for web-based applications for the Kangoo
distributed storage system. The idea behind the creation of such an API is to offer third party
developers the opportunity to create web applications able to interact with Kangoo (see figure 1.2).
Using this API third party developer will also be able to combine data contained in Kangoo with
other data retrieved using other industry APIs including the Google Map API. Once this web
application will be created, Kangoo users will be able to access their data from anywhere through
the Internet using a simple browser. At the moment they can access data stored in Kangoo only
using the Kangoo client application. This is a big restriction for the spreading of Kangoo, because
Kangoo users must use their private workstation or install the client application to show to his
friends the photos of their last holiday.

Kangoo
API

Kangoo Client
Application

Web application

Kangoo Client
Application

Kangoo Client
Application

Web application

Web application

User

User

Figure 1.1: The Kangoo API provides access to data contained in Kangoo. Third party web
applications can use it to interact with Kangoo.

To reach our goal I developed the public API, which provides the ability to browse and search
for files in the public Kangoo area. This API is able to interact with the centralized Kangoo search
server, offering to the web application developer several types of search. The API is also able to
interact with the centralized Kangoo metadata server returning details and information about the
desired file. Using the public API, developers can implement really interesting application using
the metadata returned.

7

8 1 Introduction

In the future, the private API will be developed. This API will interact with the Kangoo grid
storage system, the core of Kangoo, providing to the web applications the possibility of accessing
the data contained in the Kangoo private area and downloading the content.

Web API Kangoo

Third Party
Web

Applications
or Mashups

JML JML

Sample Web
Application

Ja
va

Ap
pl

ica
tio

ns

W
ra

pp
er

Figure 1.2: Four components composing the master thesis core part: Web API, JML contracts,
sample web application and Java wrapper.

In this report I will describe the five core tasks composing the master thesis and discuss design
and implementation used to complete them. The main task was the development of the Kangoo
API. For the second task, I introduced JML contracts in the API to assert the implementation
correctness. The third and respective fourth tasks were the development of a sample application,
which demonstrates the API functionalities and the development of a Java wrapper, which is a
Java library for normal Java applications. The last task composing the core parts of the master
thesis was to write an API documentation to better support developers interested in using the
Kangoo API.

Chapter 2

Kangoo

2.1 Introduction

Kangoo is a global, distributed storage system for the Internet [6]. It harnesses the idle disk space
and bandwidth of participating computer to provide its users with a free, unlimited, personal
online storage. Kangoo users can securely store private files online, share files with other friends,
search and browse the Kangoo public area for files that other Kangoo users have published. Using
Kangoo people could create groups composed by users sharing common interests.

2.2 Architecture

The main Kangoo components are:

- Grid storage system built on top of the user computers

- Search server

- Metadata server

The grid storage system is the main building block of Kangoo and is used to store files over the
distributed storage system. Both metadata and search server are centralized servers, mainly for
performances reasons, since it is important for a search server to return the desired information
in the shortest time.

The grid storage is the base of Kangoo. It is used to store and download the files from the
distributed storage system.

The search server contains index for public files published in Kangoo. It provides several
search functionalities. Users can ask it for the most popular files (called top files), recently intro-
duced files or for so-called pearls. Pearls are newly inserted files that gained quickly an important
reputation. However, they are too young to be inserted in the top files list but probably with some
time they will enter in this list. The search server also provides the ability to search for related
tags and special search functions for Kangoo users and groups. Users can also ask for top archives
to retrieve the top files for a specific time period.

9

10 2 Kangoo

The metadata server contains encrypted metadata associated to all files contained in Kangoo.
Metadata are encrypted to protect them from illegal accesses. The metadata server contains
classical information such file name, description, tags and date. It is also able to provide, for
example, image file thumbnails and small image previews. For all file types it returns statistical
information like the number of views for a specific file or the number of users that have marked a
file as their favorite.

Chapter 3

Related Work

3.1 Industry Examples

Already several other online storage services provide an API for the development of web appli-
cations. Probably the most famous is Flickr. Flickr, a service provided by Yahoo!, is a web
application for the purpose of storing and sharing photos online. It provides the ability to create
online communities and to share photos with their members. Flickr provides both a public API as
well as a private API [3]. With these APIs it offers all the core functionalities required to browse,
search, upload and download images, as well as the opportunity to retrieve details and information
about a photo including associated tags and comments. The Flickr API has been developed using
several types of communication protocols; in fact it offers an XML-RPC, SOAP and REST API
interface. The responses are all in XML format.

Yahoo! also offers for all its other services APIs for web-based applications [2]. For example
both Web Search Services and Maps provide APIs based on REST communication protocol. But
Yahoo! is not the only online service provider that offers API for web application. eBay provides
an API based on SOAP and REST communication protocol. Google provides APIs for its online
services [1]. Two of them are Google Calendar, which has an API based on REST, and the Search
Service which is now based on AJAX to replace their previous SOAP API.

3.2 Communication Protocols

As already seen in section 3.1 there are three major communication protocols used by APIs de-
signed for web-based applications: XML-RPC, SOAP and REST. In the following sections I will
introduce these three protocols providing a short description and their main advantages and dis-
advantages.

XML-RPC

XML-RPC is a remote procedure call based on XML that uses HTTP as transport [8]. The main
advantage of XML is its human readability but this is at the expense of a lengthy syntax. Using
HTTP it works fine with the firewalls.

SOAP

Simple Object Access Protocol (SOAP) is a protocol for exchanging XML messages normally based
on HTTP and is the successor of XML-RPC [12]. It provides also a Web Services Description
Language (WSDL) as well the Universal Description, Discovery, and Integration (UDDI). As for
XML-RPC it provides lengthy syntax and it exchanges human readable messages. Advantage of
SOAP as for XML-PRC is the good work with firewalls since it is based on HTTP.

11

12 3 Related Work

REST

Roy Fielding introduced the concept of Representational State Transfer (REST) in his dissertation
[5] on 2000. In reality REST is not a communication protocol but an architecture style for net-
worked systems. Basic principles of REST include: subdivions of the functionalities in resources
that are uniquely addressable and the use of a communication protocol that must be based on
client/server paradigm, stateless, cacheable and layered. HTTP is mainly used as the commu-
nication protocol. The main advantages of REST are a small response time and server loading
using caching system. Another advantage is better server scalability since it is stateless. Main
disadvantages are the lack of REST library and clear examples of REST usage.

Chapter 4

API Architecture

4.1 Introduction

There are three main challenges for the design of the API. The first challenge is the communication
with third party web applications: choose the communication protocol and implement the API
according to it. Second challenge is the interaction with Kangoo components: how to access the
data contained in Kangoo and how to work with the Kangoo servers. The third and last challenge
comes from our desire to have complete control over the API usage. We want to be able to control
who is using the API and how he uses it. The design used to solve this last challenge will be
described in section 5.

Berkeley
DB

API key
check

Kangoo
Application

Search
Server

Metadata
Server

Internet

API

Thrid party
applicationUser

Internet

REST
Communication protocol

Metadata

Grid Storage
System

Figure 4.1: The API architecture. The API is based on REST using HTTP as communication
protocol. Interaction with the Kangoo components goes through the Kangoo application instance.
Berkeley database is used to store API keys and allows us to control the API usage.

13

14 4 API Architecture

4.2 Communication Protocol

4.2.1 REST

The Kangoo API is based on the Representational State Transfer (REST) architecture. REST is
not a communication protocol but an architectural style of networked systems. The idea behind
REST is that each online service is based on resources and each resource is mapped to a specific
URL. This architecture is already used in several APIs as described in chapter 3.

HTTP GET Requst

XML response

APIWeb application

Figure 4.2: API communication based on REST using HTTP. Method invocation submitted through
an HTTP GET request. Response based on XML data.

REST uses HTTP as the communication protocol. API invocations are based on simple HTTP
GET requests to the desired API method URL (see figure 4.2). Parameters for the method invo-
cation are passed either as URL parameters (for example http://www.kangoo.com/API/items/
getDetails?elementKey=2 to request more details on a file) or directly in a URL path (for example
http://www.kangoo.com/API/thumbnail/kangoo/cristian/favorites/kangoo.jpg to request
the thumbnail of an image file). Since parameters are passed in the URL, all of them are strings
and they must be parsed by the API method to the correct type format. The main disadvantage
of using REST is the care that the developer should take to correctly encode the string parameters
in UTF-8 format.

API method responses are based on XML data format (see figure 4.2). I chose XML since
web applications are the target applications for the API, and XML can be easily transformed into
HMTL using the Extensible Stylesheet Language Transformation (XSLT). Moreover XML is plat-
form independent and human readable. These advantages coupled with the REST architecture,
allow a developer to test API method invocation using a simple browser. A developer can see the
XML response directly in the browser by using the method URL with the desired parameter as
Internet address.

The REST architecture based on HTTP requests could also take advantage of the application
server caching system. Methods that always return the same response for a specific request could
use the cache system, reducing the response time and interaction with the Kangoo system. An
example of such a method is the one responsible for providing the thumbnail and the preview for
the image files. Since the thumbnail, as well as the preview of an image never changes, the first
time a request for an image is submitted to the API, the application server can cache the API
method answer. Cached data can be used for successive method calls for the same image. This
can be interesting for example for top files which are requested frequently by different users.

REST will also be useful for the private API. The file browsing of the private data will look
clearer and simpler. Since the browsing through user’s folders will result in API requests based
on the Kangoo folder paths, the path could be used and passed as parameter directly in the URL
as described above.

XML-RPC and SOAP have also been considered as possible communication protocols for the
API. They both have a good documentation, and several libraries are provided by Apache, for
example. But in the case of SOAP, it results in a complexity overhead. Some main SOAP features

4.3 The API and Kangoo 15

like the Web Services Description Language (WSDL) and the Universal Description, Discovery,
and Integration (UDDI) are not useful and would not be integrated in the API. It also introduces
an overhead complexity in the response format. The XML response would be longer and we will
not take advantage of the information contained in the extra data introduced by SOAP.

XML-RPC would be a valuable alternative to REST. Its biggest problem, as for SOAP, is the
length and complexity of the XML response. Here follow two examples of XML-RPC and REST
responses.

<?xml version="1.0"?>
<methodResponse>
<fault>
<value>
<struct>
<member>
<name>faultCode</name>
<value><int>4</int></value>

</member>
<member>
<name>faultString</name>
<value><string>Too many parameters.</string></value>

</member>
</struct>

</value>
</fault>

</methodResponse>

<?xml version="1.0"?>
<response>
<fault>
<faultCode>4</faultCode>
<faultString>Too many parameters.</faultString>

</fault>
</response>

As we can see the first response returned by XML-RPC is longer and more complex to be
transformed using XSLT. Since the variable names could not be accessed directly. The second
response returned by REST is shorter and the variable can be easily accessed since they are
represented by elements with the variable name. In addition to the simpler XML format, we opt
for REST looking also at the development of the private API and seeing in it a more clear way to
browse private user files.

4.2.2 Application Server

We decide to implement the API methods using the javax.servlet.http.HTTPServlet class [15].
Each method has been implemented in a separate servlet. This design gives us a better control
over the API and allows us to disable an API method by simply modifying the configuration file
of the application servlet. Servlets run on the Apache Tomcat 5.5 application server [14].

4.3 The API and Kangoo

At the moment the API is able to interact with metadata and search servers. No file is down-
loaded from Kangoo distributed storage, the API returns only metadata contained in the Kangoo

16 4 API Architecture

Kangoo
Application

Search
Server

Metadata
Server

API

Metadata

Grid Storage
System

Figure 4.3: API schema. Interaction with the Kangoo components goes through the Kangoo appli-
cation. The API returns only metadata contained in Kangoo.

metadata server.

The API interacts with the Kangoo components using the Kangoo application created during
the starting phase of Tomcat (see figure 4.3). This decision has been taken to be able to decrypt
the metadata, but also looking at the future extension of the API into the private area of Kangoo.
In fact data contained in the private area is encrypted and fragmented before being saved in the
distributed storage. So to download a file from the distributed storage we first have to retrieve all
the pieces necessary to recreate the file. Once the file is composed, we need to decrypt it. These
two processes are already handled by the Kangoo application. Moreover there are also restrictions
based on the access rights that the Kangoo application already automatically handles.

Chapter 5

Developer Authentication

5.1 Introduction

To better control the API usage we introduced API keys. API keys are alphanumeric codes that
each method invocation must provide as parameter, otherwise the request will not be handled by
the API. The web application developer must request API keys providing personal information
like name and email address. He also must provide a motivation with a description of the intended
API usage. The Kangoo team must agree to the API key request to allow the developer to use the
web API. Using the API key passed at each API method invocation we could monitor the API
usage: if a mishandling usage is noticed, for example an excessive number of API invocations in a
restricted time period, the API key could temporarily be disabled.

5.2 API Key Database

To store the API keys a database has been implemented using the Berkeley Database (see fig-
ure 4.3) that stores key/data pairs as byte array. Berkeley DB [4] is a simple and fast database
system that works directly with Java objects, and it matches perfectly our requirements to manage
the API key database. It is also used by Google for similar purposes.

A database entry could be either active or inactive. This design gives us the possibility to
deactivate an entry without deleting it, keeping in the database all the information about the
developer that requested it. For example, if we notice the mishandling usage of the API from a
developer, we have the opportunity deactivate it and, if it is the case, to reactivate it later once
the situation has been clarified.

The API key database provides front- and backend services (see figure 5.1). The frontend
service provides a read-only access to the database entries and is used by the API servlets to check
the validity of the API key passed to the method invocation. It implements methods to check
API key validity, to get data for a specific API key and to get the entry set of the data contained
in the database. The backend database service provides read/write access to the database. This
second service is used by the API key applications (described in section 5.3) and provides methods
to check if a specific API key is contained in the database and to automatically create a unique
API key entry returning the string representing the key value. It also provides methods to update
data entries and to delete, activate and deactivate a key from the database.

17

18 5 Developer Authentication

API Key
DB

FrontendBackend

KangooServletsAPI Key
Applications

Figure 5.1: Database structure. Front- and backend services.

5.3 API Key Applications

API key applications are divided into two families. The first family contains only a single appli-
cation providing a web page that is used by the web application developer to request the API
key. The second family is composed by the API key manager applications. Two applications
are contained in this second family: the first one is a web service that lists the API key entries
contained in the database, and the second one is the updater web application that could be used
by the Kangoo team to modify the data contained by a database entry.

The application of the first family composed by an online form is public and accessible from
the Internet. Developers can use it to request their key. Once the request is submitted, providing
all the mandatory information, the application introduces an inactive entry in the database and
sends a notification through email to the Kangoo team. The email contains a link to activate or
delete the entry from the database. After having evaluated the request, the Kangoo team could
use the link to proceed according to his decision.

The second family of API key applications is protected through the Tomcat authentication
system by restricting the access only to users inside the Kangoo team. To access these two pages,
composing the second group of applications, a valid username and password must be provided.
Through this protection system the pages can be published in the Internet and accessed by the
Kangoo team from any location. The manager application returns a table containing all the entries
of the databases providing all the information associated with the key. The Updater application
outputs a form that allows Kangoo team to update the entry information associated with a key
and activate/deactivate it.

Chapter 6

API

6.1 Introduction

As already introduced in section 4.2, each API method has been implemented in separate servlet
based on the javax.servlet.http.HTTPServlet class. Several methods have been developed [7] to
provide the best search functionalities and returning all the possible information contained in the
metadata server.

Through the API it is possible to get the list of top score, pearl and recent files. API provides
also several functionalities for tags associated to items contained in Kangoo. We can get the list
of most popular tags or ask, providing a tag text, for related tags. We can also request the list of
tags and comments associated to a specific item. For each item it is also possible get all details,
like file name or owner username, and statistics, like number of views or number of Kangoo users
that had marked it as one of their favorite items.

In a first phase we started developing in the API the methods provided by the first version of
the search server. During this phase we implemented the standard search, top, pearls and recent
methods. On a second phase we introduced new functionalities looking at other industry APIs
evaluated during a preliminary project phase. This phase gave us the most ideas for the API
methods; we introduced for example the related tags and top score archives functionalities. On
a third phase, started during the development of the first version of the sample application, we
introduced new API methods to improve the demo application functionalities. We implemented
for example the getDetails method to be able to more quickly request statistics information and
details about a specific item.

6.2 API Schema

The servlets composing the Kangoo API are divided in two groups (see figure 6.1). The first one,
called APIServlet, is composed of servlets that interact only with the metadata server. This first
type of servlets extends only the abstract KangooServlet class. This abstract class implements all
common methods used by the API servlets. KangooServlet uses the DOM document to produce
the XML response. The second group, called SearchServlet, is composed of servlets that interact
both with the search and, as well as in the previous case, with the metadata server. Servlets
interacting with the search server must implement also the IFetcherListener interface to handle
the asynchronous response returned by the search server. Since the API could not provide an
asynchronous response, the SearchServlet waits on a Java object until the response from the
search server is returned and the results are fetched.

19

20 6 API

void outputXML(PrinterWriter out)
boolean checkAPIKey(String Key)

String servletName
KangooDocument Doc

KangooServlet
{abstract}

void init(ServletConfig config)
void doGet(HttpServletRequest _request,
 HttpServletResponse _response)

APIServlet

void additionalResultArrived(LinkAnswer answer)
void handleException(RemoteException e);
void handleConnectionProblem(IOException e);

<<interface>>
IFetcherListener<A extends Answer>

void init(ServletConfig config)
void doGet(HttpServletRequest _request,
 HttpServletResponse _response)
void additionalResultArrived(LinkAnswer answer)
void handleException(RemoteException e);
void handleConnectionProblem(IOException e);

SearchServlet

KangooDocument(String servletName)
Document getDocument()
void setDocument(Document doc)
void insertResponseStatus(int code, String description)
Element insertTextElement(String name, String text, Map attributes,
 Element parent)
Element insertElement(String name, Map attributes, Element parent)
Element insertAttributes(Element element, Map attributes)

org.w3c.dom.Document document
KangooDocument

Figure 6.1: Servlet UML schema.

6.3 Request Handling

The API request handling could be divided in four different phases. In the first one the API key
provided as parameter to the method invocation is checked and in case it is not correct a standard
error code is returned. Once a request passes the requirements of the first phase, the parameter
of the method invocation passed in the URL are parsed and transformed into the desired variable
type. If some mandatory parameter is failing or if it could not be correctly parsed, an error code
is returned. In case of absence or error of optional parameters, the default values, specified in the
API documentation, are used.

At this point we enter in the third phase. During this phase the interactions with the Kangoo
components are performed. If the method invoked must interact with the search server, we submit
the request to retrieve the item ids matching the search request and use them to get the desired
information from the metadata server. Otherwise we use the item id passed as parameter to do it.
All methods invoked during this phase have contracts specified using JML. On the fourth phase
the response will be processed and created.

6.4 Response Creation

To produce the XML response we use the Document Object Model (DOM) [11]. Using DOM we
have the opportunity to represent the response data as a tree composed by objects. To simplify
the document construction a KangooDocument class has been created (see figure 6.1). This class
implements useful methods to insert new XML tags and tag attributes inside the document hiding
the DOM complexity. It implements also other methods to create and insert the complete status
response information in the document response. It also manages the DOM document creation and
initialization.

To better support the web application developer who wants to use the Kangoo API, the API
documentation includes the response structure for each method [7]. Using this structure the
developer can parse and retrieve the desired information. Inside the documentation, there is also
an example showing a demo interaction with the API: how to submit an API invocation and how

6.5 Error Handling 21

to retrieve the response data.

6.5 Error Handling

All API errors are reported to the caller using the status element tag contained in all method re-
sponses. The status response is composed by an integer error code and an error description. The
API documentation lists all possible errors returned by each method invocation. Through this
way we also notify the user in case of invalid API key, missing or invalid mandatory parameters.
The 0 error code is returned in case of a correct method.

In addition, an email notification system has been developed to signal to the Kangoo team
severe failures of the API. Possible causes of such a failure are: the crash of the search server
resulting in no answer to the API requests, or the forced logout of the Kangoo application instance.
In both cases the failure will be notified per email to the Kangoo team that could investigate the
causes, solve the problem and restart the search server or the Tomcat application server to force
the API login. The API is also able to notice unexpected search server exceptions. Also in this
situation the Kangoo team is notified per email.

22 6 API

Chapter 7

JML

We introduced JML [9] contracts in all the components related to the API. At the moment JML
contracts are inserted in the code only as comments since the standard Java generic classes (as for
example Map and Set) are not supported by the current JML specification, and we are therefore
unable to compile the API code with JMLC. Generic classes are widely used in the search server
as well as in the API and in its related projects.

To solve this problem we considered two possible solutions. In the first one we could remove
the generics from the projects. The main advantage is the immediate support of JML in the API,
but losing all the advantages offered by the usage of generic classes. This first solution would have
also required a lot of changes not only in the web API project, but also in Kangoo projects used
by the API.

A second possible solution is to leave the JML contracts in the code as simple comments
without compiling the code with JMLC. The contracts will then be compiled once the JML spec-
ification will be updated to support the standard generic classes. This update will probably be
available in the next months. The main advantage of this solution is the possibility to continue
using the generics inside the API, taking advantage of their functionalities and avoid the require-
ment to introduce important changes in both Kangoo API project as well in some other Kangoo
projects used by the API. But until the JML specifications update the API will not be able to
use JML checks. We preferred the second solution, since the update will probably be available soon.

As already introduced in section 6.3, JML contracts have been implemented for all the inter-
nal API methods that are used after the initial parameter parsing. The current design has been
adopted to better support the API user, returning all the required information in case of wrong
parameters. The parameters passed in the URL are checked and parsed by a special class that is
responsible to report all severe errors. Postconditions are also stated for the methods responsible
to parse the parameters.

JML contracts have also been introduced in two other projects related to the API. The first
one is the project implementing the API key database, and the second one is the API’s Java client
wrapper project. In both projects contracts are specified in all classes and methods. Since they
are two standalone projects, we were able to better take advantage of JML usage.

Due to this problem we were not able to take advantage of the JML checks. They would be
really useful to solve dummy bugs that required some time to be debugged and detected. But
they have been already useful to think at better checks to introduce during the parameter parsing
phase.

23

24 7 JML

Chapter 8

API Sample Application

8.1 Introduction

To better demonstrate all the functionalities of the API a sample application has been developed.
As already done for the API methods, the sample application uses the javax.servlet.http.HTTPServlet
and runs on the Apache Tomcat application server.

Two versions of the sample application have been developed. The goal of the first sample
application was to provide a preliminary demonstration of the API usage. This first sample appli-
cation provides a simple graphic interface and allows specifying all the desired parameters for API
invocation through an initial page containing an HTML form. It allows us to improve the search
server functionalities. In fact it provides us some new ideas to improve the amount of information
retrievable from the API. For example, it suggest to us the implementation of the getRelated-
Tags method to provide extra details about a string search. To improve the sample application
functionalities, we introduce an EOF flag in search responses to use in the next/previous page
navigation.

During the last month of the master thesis, a second sample application has been developed.
This application has more elaborate graphics and could be used as the main Kangoo web appli-
cation. Four different web applications, each one developed in a separate servlet class, compose
the second version of the sample application: initial, archive, popular tags and preview page. The
first page is responsible to interact with the main functionalities of the search server. It is the
main and initial page of the sample application and displays the top, pearl and recent files, as well
as giving the possibility to search for files (see figure 8.2). As initial page it contains links to the
other components.

The archive application is responsible for the interaction with the archives contained in the
search server. It provides the lists of all archives according to the time scale selected by the user
using a calendar layout (see figure 8.4). The third application composing the demo provides the
list of all tags contained in Kangoo search server. The tags are shown with different character sizes
according to their score (see figure 8.5). The last component is responsible to output a preview
page for the selected file containing details like the file owner’s name, file path, views counter
and other statistical information (see figure 8.7). In case the file requested is an image, the web
application provides a small preview. Otherwise, only a standard Kangoo image is provided. In
the next sections I will discuss the layout and request handling of this sample application second
version.

25

26 8 API Sample Application

8.2 Layout and User Interaction

After the development of a first sample application we decided to create a new version with a
completely new layout that allows a better and more intuitive user interaction. In the first version
the user had to specify the application parameters mainly using the check boxes and pulldown
menu (see figure 8.1). The interaction with this configuration did not seem to be intuitive enough.
Moreover all requests to the sample application must pass through an initial page where an input
form is displayed and where the user has the possibility to specify his request.

Figure 8.1: The initial page of the first sample application. The user decides what to display using
check boxes and pull down menus.

The new application is based on a tabbed layout that uses HTML links to interact with the
user (see figure 8.2). With this new layout, user can modify his request directly from the response
page without going through the initial page. The layout provides two navigation menus that are
extended to three for the archive web application. The selected tab is displayed using different
colors to show the user his previous decisions. The upper navigation menu allows the user to
specify the file type desired for the current request while the lower menu allows the user to specify
the time period.

All the parameters needed by the application to execute the user’s request are passed directly
in the URL and are easily inserted in the HTML links contained in the pages. From any position
the user has the possibility to submit a search request using the search form displayed in the top
part of the page. Also the search request depends on the file type and time period selected using
the tabs.

The tabbed layout is used for all four web applications. In the initial page application the
user has the possibility to see a small preview with the first four items for each category: top,
pearls, recent items. He can get more items for the desired category by simply clicking on the
corresponding link (see figure 8.3). In the initial page, once it shows the list of items for the
selected category, the user can navigate and request the previous and next item page.

To ask for the top score archive application the user must click on the Top Archive link con-
tained in the main time period navigation menu. As said before, the archive application provides
a third navigation menu that allows the user to specify the top score archive time period. The
time period specified determines the calendar layout (see figure 8.4). Possible calendar styles are:
day of the month style, where the user can navigate using links through year and month and
for each year/month pair the corresponding days are shown; week of the year style, where user

8.2 Layout and User Interaction 27

Figure 8.2: The initial page of the sample application. The user has the possibility to specify his
decision by clicking on the navigation menus.

Figure 8.3: Images contained in the top list of the current month.

28 8 API Sample Application

Figure 8.4: The top score archive application with day of month application layout.

can navigate through the years selecting the link corresponding to the desired week; month of
the year style, same layout as for the week of the year style, where user can navigate through the
years, but in this case the user can select the desired month clicking on the corresponding link; and
the final year list style, where all the year archives contained in the search server database are listed.

On the most popular tag web application, the time period navigation menu is hidden since
the API method to retrieve the most popular tag list doesn’t support it. So on this page the user
can only select the desired file type (see figure 8.5). Also on the preview web application the time
period navigation menu is not displayed. The file type navigation menu is present but it contains
no links, it shows only the current file type. This layout is presented because the page is used only
to display details of the selected file. It displays statistical information, file details (like file name
and owner name) and the list of tags and comments associated with the file (see figure 8.7).

The layout of the sample application is created using XSLT. XSLT is also used to insert the
data contained in the XML responses retrieved from the search and metadata server. HTML code
uses also CSS. In CSS we specified the colors of the layout for the dynamically selected tabs. The
layout could be displayed in three different colors.

8.3 Request Handling Process

The request process can be divided in three phases (see figure 8.6): parameter collection and
Kangoo API methods invocation; API responses parsing, error checking and responses collection
in single DOM document; and XSLT transformation of the created DOM document.

API method invocations are based on the parameters passed in the web application URL. They
are set dynamically in the HTML links contained in the page returned by the web application using
the XSLT. The links are created using the user’s previous choices. Using the parameters passed
in the request the corresponding API methods will be invoked. No parameters are mandatory; in
case of absence of a parameter the default value is used. Eventual IOExceptions thrown by the
connection with the Kangoo API will result in an error message to the user that is displayed using
a HTML error page.

8.3 Request Handling Process 29

Figure 8.5: The list of the most popular tags for the other document file types.

Figure 8.6: Preview page provides details about the file, statistical information and list all the tags
and comments associated with the file.

30 8 API Sample Application

HTTP
request

?type=images&time=month

API
invocations

XML

API XML
responses

XML

single XML
document
creation

HTML

XSLT
transformation

Figure 8.7: Sample application request handling.

The goal of the second phase is the creation of a single DOM document that will be transformed
in the third phase to produce the final HTML page. To produce it we first parse all the API re-
sponses into separate DOM documents. We check the responses to verify possible API error codes
that will result, if they are considered severe failure (for example search server unavailability), in
an HTML error page. During these checks, no notification is returned to the Kangoo team since
for such severe failures already the API will send an email to the team. After the error checks the
DOM documents are inserted in a single one that is returned to be transformed.

During the third phase the API response information is displayed through an XSLT trans-
formation. Using XSLT we can easily transform XML data into the HTML format. And since
XSLT has a good efficiency we do not remove any unused data returned by the API methods
DOM response, but simply leave it in the DOM document and filtered using XSLT. The pages are
outputted according to the layout described in section 8.2.

Chapter 9

API Java Wrapper

9.1 Introduction

The Kangoo API has been developed for web applications and works using XML based communi-
cation protocol. XML data is not so comfortable to use in normal Java applications. To facilitate
the implementation of Java client applications that interact with the public Kangoo API we de-
veloped a Java wrapper. The Java wrapper is a Java library that hides the API communication
and the API response parsing, and it allows interacting with the API using Java objects. API
method invocation is hidden behind a simple local method invocation and the API responses are
contained in Java objects.

9.2 Structure

APIKangoo
Interfaces Transport

Response

REST/SOAP
XML-RPC

XML wrapper
internal format

XML
Format depending

on the communication
protocol used

Figure 9.1: Wrapper/API communication.

The Java wrapper has been designed to handle future extension in the Kangoo API’s commu-
nication protocols. New communication protocols can be added by simply implementing a pair of
Transport/Response classes. Transport class is used by the Kangoo wrapper interfaces to commu-
nicate with the API (see figure 9.1). Each API interaction goes through the Transport get method
that returns an API response contained in a class that extends the abstract Response class. get
method takes as parameter the URL path to invoke the desired API method and a map containing
the API method’s parameter pairs (name/value). Using this information, it submits the request
to the API according to the communication protocol it implements. In the REST case it encodes
the parameters according to the UTF-8 format directly in the URL path and submits the HTTP
GET request.

The goal of the communication protocol response class is to extract from the communication
protocol dependent XML API response the data and transform it in the wrapper internal XML

31

32 9 API Java Wrapper

format. The Kangoo interfaces can request the response in the wrapper internal XML format
invoking the getPayload method. Using this format they are able to parse the returned data and
use it to create the Java objects returned as response.

API methods are implemented in several Kangoo interfaces, one for each package contained in
the API: archives, comments, favorites, groups, items, tags, tests, and users. Each interface pro-
vides all methods implemented in the corresponding API package. Interfaces invoke API methods
using a transport object and could be requested using the central Kangoo class. The Kangoo class
is used to create the interfaces with the desired transport protocol.

9.3 Error Handling

The Java wrapper error handling is based on exceptions. The wrapper could throw two types
of exceptions. The first possible exception, IOException, is used to notify the caller in case of
communication problems with the API. In such a case, the IOException thrown by the HTTP
connection is forwarded to the wrapper caller.

A second type of exception thrown by methods contained in the Kangoo interfaces is of type
KangooException. They are thrown automatically each time an API response contains an error
code with value different from 0. The KangooException is composed by the error code and its
description.

Chapter 10

Conclusions

10.1 Achievements

In this report I have shown the approaches taken to develop the public Kangoo API and the other
two related projects. During the master thesis project, I completely achieved four of the five core
parts defined in the master thesis description. The only incomplete part is the specification of
contracts using JML, since I was not able to compile the projects due to the problem encountered
using the Java standard generic classes.

I implemented a well designed API that can be extended in the future to also access data
contained in the Kangoo private area. To demonstrate the API functionalities I implemented a
sample application that could be used as the official Kangoo web application. It provides all the
Kangoo search server functionalities and access to the details about files contained in the public
Kangoo area. A Java wrapper has also been developed to allow the implementation of Java client
applications able to interact with Kangoo.

As introduced above the only partially failed project core part is the integration of JML con-
tracts in the projects composing the master thesis. As already stated in chapter 7 JML contracts
are present on the code but only as simple Java comments. We will be able to compile the projects
with JMLC once the new version of JML’s specification will be published.

Due to the time lost trying to solve JML compilation problems I was not able to start working
on the API extension to provide access to the user’s private data contained in Kangoo. Once
taken the decision to leave JML contracts as simple Java contracts the remaining time was not
enough to introduce the important changes on Kangoo projects required to be able to work with
the private Kangoo area. I decided so to concentrate my efforts on the development of a new
sample application that provides a more intuitive user interaction.

10.2 Future Work

The main future step is the development of the private Kangoo API. The main aspects of this
enhancement are the interaction with Kangoo grid storage system and user authentication mech-
anism (between user and sample application, sample application/third party application and the
web API and finally also between web API and Kangoo storage system). These aspects have been
marginally studied and possible implementation have been already discussed with the supervisor.

Surely the API will be modified according to the evolution of Kangoo. The collection of API
methods could be enhanced with Kangoo search server functionalities. Also the amount of infor-
mation returned by the API methods could be enhanced if new ones will be introduced in the

33

34 10 Conclusions

Kangoo metadata server. Returned information could for example be personalized according to
the file type. It will be interesting to be able to provide a frame as video thumbnail or preview, or
to associate to a music file information like title, author and distribution year. Also geographical
data could be associated to files contained in Kangoo and returned with new API methods.

It will also be interesting to utilize the Kangoo web API for the development of mashup web
applications. Mashup web applications are hybrid applications, which combine content from more
than one source using their public APIs. A possible example of an API, which could be combined
with Kangoo API, is the Google Map API. Using it, it will be possible to allow users to browse
image files according to their geographical position using maps.

Once the Kangoo private API is implemented, the sample application could then be updated.
This will also probably result in layout changes. Once published a first Kangoo beta version,
it will also be interesting to publish the Kangoo API to get some interesting feedback from the
developers that will use it. It will also be possible to detect unknown bugs.

10.3 Personal Opinion

This master gave me the opportunity to work on a really interesting project based on networked
system and to deepen my knowledge in web applications, Java, servlets, XSLT, HTML, REST and
of course JML. This has also been the first time I worked on a big real-world project. I get the
chance to see how a big project is structured, how different components composing such a project
interact and how new components could be implemented reusing existing parts.

During this mater thesis Kangoo was under a continuous evolution. Always new functionalities
have been introduced and so always new methods could be implemented in the API. This parallel
evolution of Kangoo gave me also the chance to provide inputs for possible enhancements of Kan-
goo that can be reused also in the API. I could also work on the design of online GUI development
that result to be really interesting.

After preliminary studies, I expected to be able to start developing the private API but unfor-
tunately a wrong estimation of possible problems leaves me no more time to work on it. This was
a little bit disappointing since, as already introduced in the previous section, it would be probably
really interesting to work on it.

Appendix A

API Documentation

A.1 Introduction

The Kangoo Web API is composed of a set of callable methods and it is based on REST com-
munication protocol. Method invocations are based on HTTP GET requests. The responses are
contained in XML formatted data. Each method is mapped to a specific URL.

The next section provides an example for calling API methods using Java. Explanations are
provided for how methods are invoked and how responses could be parsed in a DOM document.

Section 3 lists all methods implemented in the API. For each method, a small description is
provided explaining its functionality and its response data. Additionally, for each method, the
URL, arguments, responses and error codes are also listed.

A.2 Java Example

The following Java code explains how to invoke the test.echo method. Method arguments are
passed directly in the URL.

API invocation can be divided in two phases. In the first phase, a URL connection is estab-
lished with the method address. During the second phase, the response is parsed and inserted in
a DOM document.

Data contained in the response, as well as the parameter passed in the URL, are encoded using
UTF-8.

//
String urlString =
www.kangoo.com/api/test/echo?apiKey=0123456789abcdef&test_param=0";

try {
URL url = new URL(urlString);
URLConnection conn = url.openConnection();
conn.setDoOutput(true);
Document doc = parseResponse(conn);

} catch (Exception e) {
//

}

35

36 A API Documentation

//

protected Document parseResponse(URLConnection conn) throws IOException{
// create a dom doc using the returned response
Document doc = null;
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db;
try {
db = dbf.newDocumentBuilder();
doc = db.parse(conn.getInputStream());

} catch (Exception e) {
//...

}

return doc;
}

A.3 API Methods

A.3.1 Archives

getTopScoreArchives

Description
This method returns the lists of available Kangoo archives. The response is divided according
to the type. The archive information contained in the response could be used to invoke the
items.getTop method.

URL: /api/archives/getTopScoreArchives

Arguments
apiKey (required)
Your API application key
types (optional, default value 1111111)
Types parameter is the binary representation of the item types desired and has the format
groups|users|others|documents|musics|videos|images. To request items of type images and users
the value to use is 0100001.

Example Response

<response method="com.wuala.webapi.archives.getTopScoreArchives">
<archives count="18">
<images count="9">
<archive timePeriod="1" week="9" year="2007"/>
<archive timePeriod="1" week="8" year="2007"/>
<archive timePeriod="3" year="2007"/>
<archive day="21" month="2" timePeriod="0" year="2007"/>
<archive day="23" month="2" timePeriod="0" year="2007"/>
<archive day="25" month="2" timePeriod="0" year="2007"/>
<archive day="27" month="2" timePeriod="0" year="2007"/>
<archive day="20" month="2" timePeriod="0" year="2007"/>
<archive month="2" timePeriod="2" year="2007"/>

</images>
<videos count="9">

A.3 API Methods 37

<archive timePeriod="3" year="2007"/>
<archive month="2" timePeriod="2" year="2007"/>
<archive timePeriod="1" week="8" year="2007"/>
<archive timePeriod="1" week="9" year="2007"/>
<archive day="23" month="2" timePeriod="0" year="2007"/>
<archive day="21" month="2" timePeriod="0" year="2007"/>
<archive day="27" month="2" timePeriod="0" year="2007"/>
<archive day="25" month="2" timePeriod="0" year="2007"/>
<archive day="20" month="2" timePeriod="0" year="2007"/>

</videos>
</archives>
<status>

<id>0</id>
<description>Operation succesfull</description>

</status>
</response>

Error Codes
10 - API key is not active
11 - API key is not valid
100 - Kangoo API currently not available
101 - Search API currently not available
111111 - [DEBUG] Unexpected exception!!!

A.3.2 Comments

getItemList

Description This method returns the list of comments associated with the desired item. The re-
sponse is composed of a list of comment elements containing the text and information about the
creation time and author.

URL: /api/comments/getItemList

Arguments
apiKey (required)
Your API application key
elementKey (required)
Item element key
ownerKey (required)
Item owner key Example Response

<response method="com.kangoo.webapi.comments.getItemList">
<comments count="1" file="/Matthias Hobi/Pictures/allalinpass.JPG">

<comment author="Luzius" date="Wed Oct 18 01:31:47 CEST 2006">
Nette Aussicht, fast so schön wie in Graubünden. ;)
</comment>

</comments>
<status>

<id>0</id>
<description>Operation Succesfull</description>

</status>
</response>

38 A API Documentation

Error Codes
1 - Item not found
4 - Invalid arguments. [supplementary information]
10 - API key is not active
11 - API key is not valid
111111 - [DEBUG] Unexpected exception!!!

A.3.3 Favorites

getPublicList

Description
This method returns a list of the users favorite public items.

URL: /api/favorites/getPublicList

Arguments
apiKey (required)
Your API application key
username (required)
Name of user to fetch the favorites list for

Example Response

<response method="com.kangoo.webapi.favorites.getPublicList" username="Cristian">
<favorites count="3">
<favorite element_key="34_528_41" owner_key="34_528_12">
<name>design2.jpg</name>
<url>/kangoo/Cristian/test/design2.jpg</url>
<path>/Cristian/test/design2.jpg</path>
<owner_name>Cristian</owner_name>

</favorite>
<favorite element_key="662_11" owner_key="34_528_12">
<name>kangooprojects.pdf</name>
<url>/kangoo/Cristian/test/kangooprojects.pdf</url>
<path>/Cristian/test/kangooprojects.pdf</path>
<owner_name>Cristian</owner_name>

</favorite>
<favorite element_key="34_528_22" owner_key="34_528_12">
<name>xbox_optic.jpg</name>
<url>/kangoo/Cristian/test/xbox_optic.jpg</url>
<path>/Cristian/test/xbox_optic.jpg</path>
<owner_name>Cristian</owner_name>

</favorite>
</favorites>
<status>
<id>0</id>
<description>OperationSuccessfull</description>

</status>
</response>

Error Codes
2 - User not found
10 - API key is not active

A.3 API Methods 39

11 - API key is not valid
111111 - [DEBUG] Unexpected exception!!!

A.3.4 Groups

searchGroupName

Description
This method returns the list of groups matching the requested search. The relevance attribute
contains the item score for the requested search.

URL: /api/groups/searchGroupName

Arguments
apiKey (required)
Your API application key
groupName (required)
Group name to search for
like (optional, default: false)
Specify if also similar group names must be returned in the response. If set to false, only exact
matches are returned
groupNumber (optional, default 20)
Number of groups names returned in a page
lastGroupFetched (optional, default null)
Last group name fetched. Used to request next group names contained in the response. If not
passed response start from the first group name available.

Example Response

<response groupname="web" like="false" method="com.kangoo.webapi.groups.searchGroupName">
<results count="1" exec_time="16">
<groups count="1" estimated_count="1">
<group element_key="27_1_13" owner_key="27_1_13" relevance="1.79">
<name>Dominik Fan Club</name>
<path>/Dominik Fan Club</path>
<url>/kangoo/Dominik Fan Club</url>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik Fan Club</owner_name>

</user>
</users>

</results>
<status>
<id>0</id>
<description>Operation succesfull</description>

</status>
</response>

Error Codes
10 - API key is not active

40 A API Documentation

11 - API key is not valid
100 - Kangoo API currently not available
101 - Search API currently not available
111111 - [DEBUG] Unexpected exception!!!

A.3.5 Items

search

Description
This method returns the list of items matching the specified search. The response is divided ac-
cording to the type. The number of returned results for each type is specified by the perPage
argument. When the last items of a specific type are returned, the eof attribute flag is set to true
in the root element of the type. A global eof flag is set to true if no more results are available for
any of the types. If more pages are available the eof attribute is omitted.
For each item details and statistics are provided:
Details: file name, file URL, file path, owner name
Statistics: views (the number of users that download the item), favorites (number of users that
insert the item in their favorite lists), impressions (the number of times the item has been returned
in a search), inappropriates (the number of users signaling the item as inappropriate), trackbacks
(the number of links to the item)
The relevance attribute contains the item score for the requested search.

URL: /api/items/search

Arguments
apiKey (required)
Your API application key
text (required)
Text to search for
page (optional, default: 1)
The page of results to return
perPage (optional, default: 20)
Number of items to return per page
types (optional, default value 1111111)
Types parameter is the binary representation of the item types desired and has the format
groups|users|others|documents|musics|videos|images. To request items of type images and users
the value to use is 0100001.
sortBy (optional, default: 0)
Order responses are returned. 0: sort by score, 1: sort by time

Example Response

<response method="com.kangoo.webapi.items.search" text="kangoo">
<results eof="true" count=8 exec_time=17 page=2>
<images eof="true" count=3 estimated_count="3">
<image element_key=34_528_41 owner_key=34_528_12 relevance="1.0">
<name>design2.jpg</name>
<url>/kangoo/Cristian/test/design2.jpg</url>
<path>/Cristian/test/design2.jpg</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>

A.3 API Methods 41

<trackbacks>0</trackbacks>
<owner_name>Cristian</owner_name>

</image>
<image element_key=34_528_22 owner_key=34_528_12 relevance="1.0">
<name>xbox_optic.jpg</name>
<url>/kangoo/Cristian/test/xbox_optic.jpg</url>
<path>/Cristian/test/xbox_optic.jpg</path>
<views>5</views>
<favorites>2</favorites>
<impressions>4</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Cristian</owner_name>

</image>
<image element_key=34_1924_272 owner_key=34_1362_2 relevance="1.0">
<name>P1000131.JPG</name>
<url>/kangoo/Dominik Egger/Pictures/greece/P1000131.JPG</url>
<path>/Dominik Egger/Pictures/greece/P1000131.JPG</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik Egger</owner_name>

</image>
</images>
<videos eof="true" count=2 estimated_count="2">
<video element_key=34_1924_434 owner_key=34_1362_2 relevance="1.0">
<name>Stuntcity.wmv</name>
<url>/kangoo/Dominik Egger/Video/Stuntcity.wmv</url>
<path>/Dominik Egger/Video/Stuntcity.wmv</path>
<views>2</views>
<favorites>1</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik Egger</owner_name>

</video>
<video element_key=34_68_446 owner_key=34_66_2 relevance="1.0">
<name>Küken-Song.mpg</name>
<url>/kangoo/Dominik/Public/Küken-Song.mpg</url>
<path>/Dominik/Public/Küken-Song.mpg</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik</owner_name>

</video>
</videos>
<musics eof="true" count=1 estimated_count="2">
<music elementKey=34_703_41 owner_key=34_66_2 relevance="1.0">
<name>01 - Playground love.mp3</name>
<url>/kangoo/Dominik/Public/01 - Playground love.mp3</url>

42 A API Documentation

<path>/Dominik/Public/01 - Playground love.mp3</path>
<views>7</views>
<favorites>3</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik</owner_name>

</music>
</musics>
<documents eof="true" count=1 estimated_count="1">
<document elementKey=34_662_11 owner_key=34_528_12 relevance="1.0">
<name>kangooprojects.pdf</name>
<url>/kangoo/Cristian/test/kangooprojects.pdf</url>
<path>/Cristian/test/kangooprojects.pdf</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Cristian</owner_name>

</document>
</documents>

</results>
<status>
<id>0</id>
<description>Operation Successfull</description>

</status>
</response>

Error Codes
4 - Invalid arguments. [supplementary information]
10 - API key is not active
11 - API key is not valid
100 - Kangoo API currently not available
101 - Search API currently not available
1000 - The requested page is empty
111111 - [DEBUG] Unexpected exception!!!

getTop

Description
This method returns the list of top items contained in Kangoo. If the year parameter is specified
and is bigger than 0, the API retrieves the data from the Kangoo archives (for archives request
timePeriod must be: timePeriod <= 3 timePeriod >= 0). Use archive.getTopArchiveList method
to get list of available archives.
The response is divided according to the type. The number of returned results for each type is
specified by the perPage argument. When the last items of a specific type are returned, the eof
attribute flag is set to true in the root element of the type. A global eof flag is set to true if no
more results are available for any of the types. If more pages are available the eof attribute is
omitted.
For each item details and statistics are provided:
Details: file name, file URL, file path, owner name
Statistics: views (the number of users that download the item), favorites (number of users that

A.3 API Methods 43

insert the item in their favorite lists), impressions (the number of times the item has been returned
in a search), inappropriates (the number of users signaling the item as inappropriate), trackbacks
(the number of links to the item)

URL: /api/items/getTop

Arguments
apiKey (required)
Your API application key
page (optional, default: 1)
The page of results to return
perPage (optional, default: 20)
Number of items to return per page
types (optional, default value 1111111)
Types parameter is the binary representation of the item types desired and has the format
groups|users|others|documents|musics|videos|images. To request items of type images and users
the value to use is 0100001.
timePeriod (optional, defaul: All Times (Year if archive request))
Specify the time period to use for the top request. Allowed values:
0 - Day, 1 - Week, 2 - Month, 3 - Year, 4 - All Times
If archive data is requested, allowed values are:
0 - Day, 1 - Week, 2 - Month, 3 - Year
year (optional)
Year of desired archive
month (optional)
Month of desired archive [1,12]
week (optional)
Week of desired archive [1,52]
day (optional)
Day of desired archive [1,31]

Example Response

<response method="com.kangoo.webapi.items.getTop">
<results eof="true" count=8 exec_time=17 page=2>
<images eof="true" count=3 estimated_count="100">
<image element_key=34_528_41 owner_key=34_528_12>
<name>design2.jpg</name>
<url>/kangoo/Cristian/test/design2.jpg</url>
<path>/Cristian/test/design2.jpg</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Cristian</owner_name>

</image>
<image element_key=34_528_22 owner_key=34_528_12>
<name>xbox_optic.jpg</name>
<url>/kangoo/Cristian/test/xbox_optic.jpg</url>
<path>/Cristian/test/xbox_optic.jpg</path>
<views>5</views>
<favorites>2</favorites>
<impressions>4</impressions>

44 A API Documentation

<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Cristian</owner_name>

</image>
<image element_key=34_1924_272 owner_key=34_1362_2>
<name>P1000131.JPG</name>
<url>/kangoo/Dominik Egger/Pictures/greece/P1000131.JPG</url>
<path>/Dominik Egger/Pictures/greece/P1000131.JPG</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik Egger</owner_name>

</image>
</images>
<videos eof="true" count=2 estimated_count="100">
<video element_key=34_1924_434 owner_key=34_1362_2>
<name>Stuntcity.wmv</name>
<url>/kangoo/Dominik Egger/Video/Stuntcity.wmv</url>
<path>/Dominik Egger/Video/Stuntcity.wmv</path>
<views>2</views>
<favorites>1</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik Egger</owner_name>

</video>
<video element_key=34_68_446 owner_key=34_66_2>
<name>Küken-Song.mpg</name>
<url>/kangoo/Dominik/Public/Küken-Song.mpg</url>
<path>/Dominik/Public/Küken-Song.mpg</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik</owner_name>

</video>
</videos>
<musics eof="true" count=1 estimated_count="100">
<music elementKey=34_703_41 owner_key=34_66_2>
<name>01 - Playground love.mp3</name>
<url>/kangoo/Dominik/Public/01 - Playground love.mp3</url>
<path>/Dominik/Public/01 - Playground love.mp3</path>
<views>7</views>
<favorites>3</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik</owner_name>

</music>
</musics>
<documents eof="true" count=1 estimated_count="100">

A.3 API Methods 45

<document elementKey=34_662_11 owner_key=34_528_12>
<name>kangooprojects.pdf</name>
<url>/kangoo/Cristian/test/kangooprojects.pdf</url>
<path>/Cristian/test/kangooprojects.pdf</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Cristian</owner_name>

</document>
</documents>

</results>
<status>
<id>0</id>
<description>Operation Successfull</description>

</status>
</response>

Error Codes
4 - Invalid arguments. [supplementary information]
10 - API key is not active
11 - API key is not valid
100 - Kangoo API currently not available
101 - Search API currently not available
1000 - The requested page is empty
111111 - [DEBUG] Unexpected exception!!!

getRecent

Description
This method returns the list of recently added items contained in Kangoo. The response is divided
according to the type. The number of returned results for each type is specified by the perPage
argument. When the last items of a specific type are returned, the eof attribute flag is set to true
in the root element of the type. A global eof flag is set to true if no more results are available for
any of the types. If more pages are available the eof attribute is omitted.
For each item details and statistics are provided:
Details: file name, file URL, file path, owner name
Statistics: views (the number of users that download the item), favorites (number of users that
insert the item in their favorite lists), impressions (the number of times the item has been returned
in a search), inappropriates (the number of users signaling the item as inappropriate), trackbacks
(the number of links to the item)

URL: /api/items/getRecent

Arguments
apiKey (required)
Your API application key
page (optional, default: 1)
The page of results to return
perPage (optional, default: 20)
Number of items to return per page
types (optional, default value 1111111)

46 A API Documentation

Types parameter is the binary representation of the item types desired and has the format
groups|users|others|documents|musics|videos|images. To request items of type images and users
the value to use is 0100001.

Example Response

<response method="com.kangoo.webapi.items.getRecent">
<results eof="true" count=8 exec_time=17 page=2>
<images eof="true" count=3 estimated_count="100">
<image element_key=34_528_41 owner_key=34_528_12>
<name>design2.jpg</name>
<url>/kangoo/Cristian/test/design2.jpg</url>
<path>/Cristian/test/design2.jpg</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Cristian</owner_name>

</image>
<image element_key=34_528_22 owner_key=34_528_12>
<name>xbox_optic.jpg</name>
<url>/kangoo/Cristian/test/xbox_optic.jpg</url>
<path>/Cristian/test/xbox_optic.jpg</path>
<views>5</views>
<favorites>2</favorites>
<impressions>4</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Cristian</owner_name>

</image>
<image element_key=34_1924_272 owner_key=34_1362_2>
<name>P1000131.JPG</name>
<url>/kangoo/Dominik Egger/Pictures/greece/P1000131.JPG</url>
<path>/Dominik Egger/Pictures/greece/P1000131.JPG</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik Egger</owner_name>

</image>
</images>
<videos eof="true" count=2 estimated_count="100">
<video element_key=34_1924_434 owner_key=34_1362_2>
<name>Stuntcity.wmv</name>
<url>/kangoo/Dominik Egger/Video/Stuntcity.wmv</url>
<path>/Dominik Egger/Video/Stuntcity.wmv</path>
<views>2</views>
<favorites>1</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik Egger</owner_name>

A.3 API Methods 47

</video>
<video element_key=34_68_446 owner_key=34_66_2>
<name>Küken-Song.mpg</name>
<url>/kangoo/Dominik/Public/Küken-Song.mpg</url>
<path>/Dominik/Public/Küken-Song.mpg</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik</owner_name>

</video>
</videos>
<musics eof="true" count=1 estimated_count="100">
<music elementKey=34_703_41 owner_key=34_66_2>
<name>01 - Playground love.mp3</name>
<url>/kangoo/Dominik/Public/01 - Playground love.mp3</url>
<path>/Dominik/Public/01 - Playground love.mp3</path>
<views>7</views>
<favorites>3</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik</owner_name>

</music>
</musics>
<documents eof="true" count=1 estimated_count="100">
<document elementKey=34_662_11 owner_key=34_528_12>
<name>kangooprojects.pdf</name>
<url>/kangoo/Cristian/test/kangooprojects.pdf</url>
<path>/Cristian/test/kangooprojects.pdf</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Cristian</owner_name>

</document>
</documents>

</results>
<status>
<id>0</id>
<description>Operation Successfull</description>

</status>
</response>

Error Codes
4 - Invalid arguments. [supplementary information]
10 - API key is not active
11 - API key is not valid
100 - Kangoo API currently not available
101 - Search API currently not available
1000 - The requested page is empty
111111 - [DEBUG] Unexpected exception!!!

48 A API Documentation

getPearls

Description
This method returns the list of pearl items contained in Kangoo. Pearl items are recently added
items that have acquired a good reputation during their short life in Kangoo. Due to their young
age they still arent contained in the top item list, but probably in short time they will be inserted
in the top item list.
The response is divided according to the type. The number of returned results for each type is
specified by the perPage argument. When the last items of a specific type are returned, the eof
attribute flag is set to true in the root element of the type. A global eof flag is set to true if no
more results are available for any of the types. If more pages are available the eof attribute is
omitted.
For each item details and statistics are provided:
Details: file name, file URL, file path, owner name
Statistics: views (the number of users that download the item), favorites (number of users that
insert the item in their favorite lists), impressions (the number of times the item has been returned
in a search), inappropriates (the number of users signaling the item as inappropriate), trackbacks
(the number of links to the item)

URL: /api/items/getPearls

Arguments
apiKey (required)
Your API application key
page (optional, default: 1)
The page of results to return
perPage (optional, default: 20)
Number of items to return per page
types (optional, default value 1111111)
Types parameter is the binary representation of the item types desired and has the format
groups|users|others|documents|musics|videos|images. To request items of type images and users
the value to use is 0100001.

Example Response

<response method="com.kangoo.webapi.items.getPearls">
<results eof="true" count=8 exec_time=17 page=2>
<images eof="true" count=3 estimated_count="100">
<image element_key=34_528_41 owner_key=34_528_12>
<name>design2.jpg</name>
<url>/kangoo/Cristian/test/design2.jpg</url>
<path>/Cristian/test/design2.jpg</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Cristian</owner_name>

</image>
<image element_key=34_528_22 owner_key=34_528_12>
<name>xbox_optic.jpg</name>
<url>/kangoo/Cristian/test/xbox_optic.jpg</url>

A.3 API Methods 49

<path>/Cristian/test/xbox_optic.jpg</path>
<views>5</views>
<favorites>2</favorites>
<impressions>4</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Cristian</owner_name>

</image>
<image element_key=34_1924_272 owner_key=34_1362_2>
<name>P1000131.JPG</name>
<url>/kangoo/Dominik Egger/Pictures/greece/P1000131.JPG</url>
<path>/Dominik Egger/Pictures/greece/P1000131.JPG</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik Egger</owner_name>

</image>
</images>
<videos eof="true" count=2 estimated_count="100">
<video element_key=34_1924_434 owner_key=34_1362_2>
<name>Stuntcity.wmv</name>
<url>/kangoo/Dominik Egger/Video/Stuntcity.wmv</url>
<path>/Dominik Egger/Video/Stuntcity.wmv</path>
<views>2</views>
<favorites>1</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik Egger</owner_name>

</video>
<video element_key=34_68_446 owner_key=34_66_2>
<name>Küken-Song.mpg</name>
<url>/kangoo/Dominik/Public/Küken-Song.mpg</url>
<path>/Dominik/Public/Küken-Song.mpg</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik</owner_name>

</video>
</videos>
<musics eof="true" count=1 estimated_count="100">
<music elementKey=34_703_41 owner_key=34_66_2>
<name>01 - Playground love.mp3</name>
<url>/kangoo/Dominik/Public/01 - Playground love.mp3</url>
<path>/Dominik/Public/01 - Playground love.mp3</path>
<views>7</views>
<favorites>3</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>

50 A API Documentation

<owner_name>Dominik</owner_name>
</music>

</musics>
<documents eof="true" count=1 estimated_count="100">
<document elementKey=34_662_11 owner_key=34_528_12>
<name>kangooprojects.pdf</name>
<url>/kangoo/Cristian/test/kangooprojects.pdf</url>
<path>/Cristian/test/kangooprojects.pdf</path>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Cristian</owner_name>

</document>
</documents>

</results>
<status>
<id>0</id>
<description>Operation Successfull</description>

</status>
</response>

Error Codes
4 - Invalid arguments. [supplementary information]
10 - API key is not active
11 - API key is not valid
100 - Kangoo API currently not available
101 - Search API currently not available
1000 - The requested page is empty
111111 - [DEBUG] Unexpected exception!!!

getDetails

Description
This method returns details and statistics about the requested item. Data returned contains:
Details: file name, file URL, file path, owner name
Statistics: views (the number of users that download the item), favorites (number of users that
insert the item in their favorite lists), impressions (the number of times the item has been returned
in a search), inappropriates (the number of users signaling the item as inappropriate), trackbacks
(the number of links to the item)

URL: /api/items/getDetails

Arguments
apiKey (required)
Your API application key
elementKey (required)
Item element key
ownerKey (required)
Item owner key

Example Response

A.3 API Methods 51

<response method="com.kangoo.webapi.items.getDetails">
<details element_key="26_10107_11" owner_key="26_2459_13">
<name>MirrorWater.jpg</name>
<url>/kangoo/Dummy_blabla48/flickr/MirrorWater.jpg</url>
<path>/Dummy_blabla48/flickr/MirrorWater.jpg</path>
<views>857</views>
<favorites>0</favorites>
<impressions>56573</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dummy_blabla48</owner_name>

</details>
<status>
<id>0</id>
<description>Operation Succesfull</description>

</status>
</response>

Error Codes
1 - Item not found
4 - Invalid arguments. [supplementary information]
10 - API key is not active
11 - API key is not valid
111111 - [DEBUG] Unexpected exception!!!

A.3.6 Tags

getItemList

Description
This method returns all the tags associated with a specific item. For each tag the author name is
returned.

URL: /api/tags/getItemList

Arguments
apiKey (required)
Your API application key
elementKey (required)
Item element key
ownerKey (required)
Item owner key

Example Response

<response method="com.kangoo.webapi.tags.getItemList">
<item elementKey="2065_53_11" path="/Dummy_raphi/flickr/00020015.jpg" tags="4"

url="kangoo/Dummy_raphi/flickr/00020015.jpg" userKey="2065_1_11">
<tag author="Dummy_raphi">japan</tag>
<tag author="Dummy_raphi">lomo</tag>
<tag author="Dummy_raphi">okayama</tag>
<tag author="Dummy_raphi">top20favorites</tag>

</item>
<status>

52 A API Documentation

<id>0</id>
<description>Operation succesfull</description>

</status>
</response>

Error Codes
1 - Item not found
4 - Invalid arguments. [supplementary information]
10 - API key is not active
11 - API key is not valid
111111 - [DEBUG] Unexpected exception!!!

getMostPopular

Description
This method returns the list of all most popular tags associated to the desired item types is re-
turned. For each tag the corresponding score is returned. The response is divided according to
the type.

URL: /api/tags/getMostPopular

Arguments
apiKey (required)
Your API application key
types (optional, default value 1111111)
Types parameter is the binary representation of the item types desired and has the format
groups|users|others|documents|musics|videos|images. To request items of type images and users
the value to use is 0100001.

Example Response

<response method="com.kangoo.webapi.tags.getMostPopular">
<tags count="8" exec_time="19" max_score="3">
<images count="8" max_score="2">
<tag score="2">top20favorites</tag>
<tag score="2">sweet</tag>
<tag score="2">okayama</tag>
<tag score="2">new york</tag>
<tag score="1">abigfave</tag>
<tag score="1">MIT</tag>
<tag score="1">30secs</tag>
<tag score="1">ski</tag>

</images>
<videos count="1" max_score="3">
<tag score="3">california</tag>

</video>
<musics count="0" max_score="0"/>

</tags>
<status>
<id>0</id>
<description>Operation succesfull</description>

</status>
</response>

A.3 API Methods 53

Error Codes
10 - API key is not active
11 - API key is not valid
100 - Kangoo API currently not available
101 - Search API currently not available

getTagGeist

Description
This method returns the list of tags contained in Kangoo specifying the date when they have
been inserted. The response is divided according to the type. If year argument is specified and is
bigger than 0, the API retrieves the data for the specified past time period. Otherwise the method
returns tags considering today as the starting date.

URL: /api/tags/getTagGeist

Arguments
apiKey (required)
Your API application key
types (optional, default value 1111111)
Types parameter is the binary representation of the item types desired and has the format
groups|users|others|documents|musics|videos|images. To request items of type images and users
the value to use is 0100001.
timePeriod (optional, defaul: Day)
Specify the time period to use for the top request.
0 - Day, 1 - Week, 2 - Month, 3 - Year
4 - All Times NOT ALLOWED!
year (optional)
Year of desired past period
month (optional)
Month of desired past period
week (optional)
Week of desired past period [1,52]
day (optional) Day of desired past period [1,31]

Example Response

<response method="com.kangoo.webapi.tags.getTagGeist">
<tags count="9" exec_time="19">
<images count="8">
<tag date="Tue Jan 02 14:06:28 CET 2007">montag</tag>
<tag date="Tue Jan 02 14:06:28 CET 2007">heute</tag>
<tag date="Mon Jan 01 15:20:54 CET 2007">sonne</tag>
<tag date="Mon Jan 01 15:20:54 CET 2007">kaffee</tag>
<tag date="Mon Jan 01 15:17:56 CET 2007">kaffee</tag>
<tag date="Wed Dec 27 10:54:26 CET 2006">casting</tag>
<tag date="Wed Dec 27 10:54:25 CET 2006">las vegas</tag>
<tag date="Wed Dec 27 10:54:25 CET 2006">national park</tag>

</images>
<videos count="1">
<tag date="Wed Dec 27 11:54:35 CET 2006">california</tag>

</video>
<musics count="0"/>

54 A API Documentation

</tags>
<status>
<id>0</id>
<description>Operation succesfull</description>

</status>
</response>

Error Codes
10 - API key is not active
11 - API key is not valid
100 - Kangoo API currently not available
101 - Search API currently not available
1000 - The requested page is empty
111111 - [DEBUG] Unexpected exception!!!

getRelatedTags

Description
This method returns the list of related tags with the associated score for the specified tag. The
response is divided according to the type. To pass multiple tags as input set the multipleTagsFlag
parameter to true and pass the multiple tags in the argument tag separated by a comma.

URL: /api/tags/getRelatedTags

Arguments
apiKey (required)
Your API application key
tag (required)
The tag to fetch related tags for. Single tag or comma separated tags if multipleTagsFlag is passed
as parameter (e.g usa,new york,ny)
types (optional, default value 1111111)
Types parameter is the binary representation of the item types desired and has the format
groups|users|others|documents|musics|videos|images. To request items of type images and users
the value to use is 0100001.
multipleTagsFlag (optional, default: false)
Passed to signal that tag parameter contains comma separated tags, e.g usa,new york,ny

Example Response

<response method="com.wuala.webapi.tags.getRelatedTags">
<tags count="5" exec_time="19" max_score="87">
<images count="5" max_score="87">
<tag score="87">california</tag>
<tag score="78">ca</tag>
<tag score="73">photoshop</tag>
<tag score="73">interestingness</tag>
<tag score="70">us</tag>

</images>
<videos count="0" max_score="0"/>

</tags>
<status>
<id>0</id>
<description>Operation succesfull</description>

</status>

A.3 API Methods 55

</response>

Error Codes
4 - Invalid arguments. [supplementary information]
10 - API key is not active
11 - API key is not valid
100 - Kangoo API currently not available
101 - Search API currently not available
111111 - [DEBUG] Unexpected exception!!!

A.3.7 Test

echo

Description
This method echoes the list of arguments passed.

URL: /api/test/echo

Arguments
apiKey (required)
Your API application key

Example Response

<response method="com.kangoo.webapi.test.Echo">
<results>
<apiKey>1234567890123456</apiKey>
<test>cristian</test>

</results>
<status>
<id>0</id>
<description>Operation succesfull</description>

</status>
</response>

Error Codes
10 - API key is not active
11 - API key is not

checkAPIKey

Description
This method returns the status of an API key through the response error code.

URL: /api/test/checkAPIKey

Arguments
apiKey (required)
Your API application key

Example Response

<response method="com.kangoo.webapi.test.checkAPIKey">

56 A API Documentation

<status>
<id>0</id>
<description>Operation succesfull</description>

</status>
</response>

Error Codes
10 - API key is not active
11 - API key is not

A.3.8 Thumbnail

thumbnailURL

Description
This method returns the preview in jpg format for image files. The desired image file is passed
directly as path in the URL. This method could be used as input for element img in HTML pages.

URL: /*

Arguments
The path is encoded directly in the URL request
Example: for file with path /Dominik/Public/Pictures/USA/DSC03895.JPG the URL is http://
www.kangoo.com/Dominik/Public/Pictures/USA/DSC03895.JPG?thumb=320
thumb (required)
Defines preview size. Allowed values: 96 and 320.

Response
This method returns the image in jpg format.

Error Codes
Error image returned to handle eventual errors (preview not found, thumbnail not found)

A.3.9 Users

getIcon

Description
This method returns the preview in jpg format of the icon associated with a user. It could be used
as input for element img in HTML pages.

URL: /api/users/getIcon

Arguments
username (required)
Username to fetch image for.
size (optional, default: 96)
Defines preview size. Allowed values: 96 and 320.

Response
This method returns the image of the icon associate to the user in jpg format.

Error Codes

A.3 API Methods 57

Standard image returned when desired preview not found.

searchUserName

Description
This method returns the list of users matching the requested search. The relevance attribute
contains the item score for the requested search.

URL: /api/users/searchUserName

Arguments
apiKey (required)
Your API application key
userName (required)
User name to search for
like (optional, default: false)
Specify if also similar user names must be returned. If set to true, only exact matches are returned
userNumber (optional, default 20)
Number of user names returned in a page
lastUserFetched (optional, default null)
Last username fetched. Used to request next usernames contained in the response. If not passed
response start from the first username available.

Example Response

<response like="true" method="com.kangoo.webapi.users.searchUserName" username="Dom">
<results count="1" exec_time="16">
<users count="1" estimated_count="1">
<user element_key="27_1_13" owner_key="27_1_13" relevance="1.79">
<name>Dominik</name>
<path>/Dominik</path>
<url>/kangoo/Dominik</url>
<views>1</views>
<favorites>0</favorites>
<impressions>0</impressions>
<inappropriates>0</inappropriates>
<trackbacks>0</trackbacks>
<owner_name>Dominik</owner_name>

</user>
</users>

</results>
<status>
<id>0</id>
<description>Operation succesfull</description>

</status>
</response>

Error Codes
10 - API key is not active
11 - API key is not valid
100 - Kangoo API currently not available
101 - Search API currently not available
111111 - [DEBUG] Unexpected exception!!!

58 A API Documentation

Bibliography

[1] Google APIs. http://code.google.com/apis/.

[2] Yahoo! APIs. http://developer.yahoo.com/.

[3] Flickr API Documentation. http://www.flickr.com/services/api/.

[4] Oracle Berkeley DB Java Edition. http://www.oracle.com/database/berkeley-db/je/index.html.

[5] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[6] Dominik Grolimund. Redundancy Management and Reliability in Kangoo, 2006. http://dcg.ethz.ch/theses.html.

[7] Dominik Grolimund and Cristian Garcia. Kangoo Web API Documentation, February 2007.

[8] XML-RPC Homepage. http://www.xmlrpc.com/.

[9] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David Cok, Peter Muller, Joseph Kiniry, and
Patrice Chalin. JML Reference Manual, August 2006.

[10] Luzius Meisser. File Abstraction, Transactions and Caching in Kangoo, 2006. http://dcg.ethz.ch/theses.html.

[11] Document Object Model. http://java.sun.com/j2se/1.5.0/docs/api/org/w3c/dom/package-summary.html.

[12] W3C Soap Recommendation. http://www.w3.org/tr/2003/rec-soap12-part0-20030624/.

[13] Stefan Schmid. Implementation of the Kangoo Distributed Hash Table, 2005. http://dcg.ethz.ch/theses.html.

[14] Apache Tomcat. http://tomcat.apache.org/.

[15] Jason Hunter with William Crawford. Java Servlet Programming. O’Really, first edition, 1998.

59

	1 Introduction
	2 Kangoo
	2.1 Introduction
	2.2 Architecture

	3 Related Work
	3.1 Industry Examples
	3.2 Communication Protocols

	4 API Architecture
	4.1 Introduction
	4.2 Communication Protocol
	4.2.1 REST
	4.2.2 Application Server

	4.3 The API and Kangoo

	5 Developer Authentication
	5.1 Introduction
	5.2 API Key Database
	5.3 API Key Applications

	6 API
	6.1 Introduction
	6.2 API Schema
	6.3 Request Handling
	6.4 Response Creation
	6.5 Error Handling

	7 JML
	8 API Sample Application
	8.1 Introduction
	8.2 Layout and User Interaction
	8.3 Request Handling Process

	9 API Java Wrapper
	9.1 Introduction
	9.2 Structure
	9.3 Error Handling

	10 Conclusions
	10.1 Achievements
	10.2 Future Work
	10.3 Personal Opinion

	A API Documentation
	A.1 Introduction
	A.2 Java Example
	A.3 API Methods
	A.3.1 Archives
	A.3.2 Comments
	A.3.3 Favorites
	A.3.4 Groups
	A.3.5 Items
	A.3.6 Tags
	A.3.7 Test
	A.3.8 Thumbnail
	A.3.9 Users

