Task-specific views in Envision

Research in Computer Science Project

Cyril Steimer
csteimer@student.ethz.ch

Supervisors: Dimitar Asenov, Prof. Dr. Peter Miiller
Chair of Programming Methodology
ETH Ziirich

September 22, 2015

Contents

1.

2.

Introduction
Related Work

Task-views concept for Envision
3.1. Taskview
3.2. Switching between views . .
3.3. Populating views
3.4. Arrangement of items . . .
3.5. Different information types
3.6. Sharing of views

Implementation

4.1. Changes to Envision
4.2. Extensions to Envision . . .
4.3. Issues and limitations . . .

Discussion

5.1. Discussion of tools
5.1.1. Tasks
5.1.2. Working set
5.1.3. Information

5.2. Summary of discussion . . .

Future Work and Conclusion
6.1. Future Work
6.2. Conclusion

A.1. New commands
A.2. New shortcuts.

. Appendix: New commands and shortcuts

13
13
13
15

17
17
17
18
18
19

20
20
20

1. Introduction

Envision [1] is a visual programming tool, where a program’s structure is presented using
a combination of text and graphical objects. Most of today’s mainstream programming
interfaces work on purely textual and file based editors, often making quick navigation or
comprehension of programs cumbersome. By using graphical constructs and arranging
the entire program on a two-dimensional plane, Envision aims to achieve the facilitation
of both quick navigation and comprehension of programs.

A drawback when using Envision is the lack of being able to adapt the content on
screen to a task being worked on by the user. There is only one visualization mode,
where the entire project is being displayed on screen. We will call this the architecture
view. Within this project, we create so-called task views, which allow both the content
which is visualized and its arrangement to be adapted to the task being solved. For
example, when debugging a method, one is typically interested in seeing the method
itself, its callees and its callers grouped together to efficiently analyze the method itself
and call paths leading towards or from it.

Generally, we want an efficient method of visualizing the working set of a task to the
user. This is important for keeping a developer focused on a task and in the flow. Using
the existing architecture view, especially for large projects, it is easy to get lost in parts
of the program which are unimportant to the task at hand. Furthermore, apart from
the collection of items in the working set being important, also their arrangement needs
to be considered as well as the additional information which is available. Research has
also shown that depending on the task, different visualizations can be beneficial [9].

We use related work for adapting the content on screen to the task at hand as inspiration
for our solution, with section 2 containing a discussion of this. In section 3 we present
our design concepts which were originally created and compare them to the final design
explaining the reasons for the existing differences. Section 4 highlights certain aspects
of the implementation itself, and in section 5 we compare our solution to other, existing
tools, highlighting the differences and discussing the perceived benefits and drawbacks
of the task views. Lastly, section 6 provides an outlook to future work which can be
done to extend or improve the presented solution, finishing with a conclusion on what
was achieved.

2. Related Work

Code Bubbles

Code Bubbles [2] uses bubbles to arrange the necessary items for a task on screen.
A bubble is a resizable rectangle with a border, which can contain code, but also other
things, such as simple notes. They offer the programmer a high degree of freedom, as the
bubbles can be arranged in any way. Later research [5] has however shown that too much
arrangement flexibility can negatively influence navigational performance. By offering a
large 2D plane to arrange the bubbles on, a high amount of space is offered and different
tasks can be split by laying out their necessary content on different sections of that plane.

Patchworks

The Patchworks code editor [5] takes a different approach from code bubbles by specif-
ically limiting the amount of freedom given to the programmer. While different code
fragments are displayed on the screen at once, the number of such fragments is limited
to six, arranged in a three-by-two grid. This grid can be scrolled both to the left and
the right on an essentially limitless one-dimensional ribbon, allowing many code frag-
ments to be open, but not appearing on screen. The results presented in the paper show
that while this limits programmer freedom, it makes navigation less error-prone and re-
duces the time spent rearranging the content on screen when compared to Code Bubbles.

Code Canvas

Code Canvas [3] follows a similar approach to Envision, where the entire project is dis-
played on a 2D-plane. To vary the information which is shown on screen and make it
more flexible for the user, code canvas uses a layer system where different information
layers can be turned on or off. In contrast to those tools however, it does not have a
strong notion of a working set, as the entire project is displayed on the plane at all times.
Therefore, while its layered information concept can be used to easily switch between
the information shown on screen, it suffers from similar problems as Envision.

Stacksplorer and Blaze

One of the most important pieces of information in programming is the call graph of
a method, for which Blaze [8] and Stacksplorer [6] are two tools for visualizing it. As
exploring the call graph of a method is an important part of many tasks, we consider
efficient exploration an important part of our work. The benefits and drawbacks of
these two tools are analyzed in [7]. In Blaze, one possible path through the entire call
stack is shown with ways to switch between paths, while Stacksplorer instead shows the
immediate neighborhood of a method.

3. Task-views concept for Envision

We created several design concepts for different parts of the system. In this section,
we look at these concepts in detail, comparing them to each other and explaining our
decision behind using or not using a concept.

3.1. Task view

Initially, we discuss what a task view is. A task view is essentially a collection of different
information items, whereby such an information item can be something as simple as a
code fragment or also further information as described later in this section. Whenever a
programmer needs to perform some specific task, they can then create a new task view
and populate it with the information items which are necessary for that task, which is
essentially the working set of the programmer.

Often, a programmer will also want to have multiple views at the same time. There
are different examples for when multiple views could be needed: The programmer could
be interrupted from their current task and switch to something else for a while, or sim-
ply reach some sort of barrier within their task, where they want to work on something
different without forgetting their other task. However, we believe the number of task
views simultaneously open still to be low, as concentrating on many different tasks is

difficult.

We decided that each task view should have its own isolated space. Therefore there
is no connection between different task views. This approach seemed the best to us as
it would allow the programmer to have a clear distinction between their different tasks.

3.2. Switching between views

As it was clear to us that each task view would be in its own separate space, there needs
to be an efficient way of switching between them.

Tab-based approach

One approach is inspired by existing traditional IDEs such as Eclipse or Visual Studio.
There, open files are arranged in tabs between which the user can switch. Therefore, the
first concept was to use a tab-based approach for switching between the views. There
are certainly some benefits to such a solution. For one, it is well-known as it is widely
used in other applications, which would make it feel familiar to users as they have very
likely used at least one tool using such an approach. Furthermore, it would allow for a
persistent indication of the existing views, which makes it easier for the user to have an
overview of the current views.

However, we also expect the number of views which are open simultaneously to be
small, as usually only a limited amount of tasks is being worked on at once. Therefore,

we decided to use another solution which makes use of this assumption.

Pie cursor inspired menu

This concept is inspired by the PieCursor [4] approach. There, instead of having a nor-
mal mouse cursor, the user has a circular pie cursor separated into wedges, where each
wedge represents an action that can be performed. This means that only little mouse
movement is required to select an action. An additional benefit lies in the stable spatial
position of each wedge, this allows users to rely on their spatial memory to perform
actions without even needing to look at the wedges of the cursor.

We modified this solution based on two main considerations:

e We want to have a sufficient indication of the represented view in the menu, such
as the name. Therefore, we found a circular cursor to be impractical as its space
usage is not as efficient.

e Another goal is to make the selection menu more keyboard friendly. Our menu
can not only be controlled by the mouse, but is also fully usable with a keyboard.
This means that for one, navigation between different menu entries using the ar-
row keys is supported, and each menu entry has its own keyboard shortcut for
switching to the view it represents. This is inspired by computer strategy games
such as StarCraft or Age of Empires, where there are for example such hotkeys for
switching between groups of units.

The selection menu consists of a three-by-three grid of the views, where slots which are
still empty are displayed differently from ones that represent a view. By renaming such
an empty slot, a new view with that name will be created. When pressing the buttons
to open the menu, it is automatically opened in a position centered around the mouse
cursor, also allowing efficient mouse interaction. Figure 1 shows a screenshot of the
selection menu.

We believe that this approach is more keyboard friendly than using a tab-based inter-

i
BrojectViews : Empty slot i : Empty slot ;
S , TTTTTmemTTT \SIIIIIIIIIIIL
i Empty slot: JOEREr i Empty slot
1 | Him============ 1 1
more { Empty slot i Empty slot ;

Figure 1: The menu used to switch between views. The orange highlighted entries
correspond to already existing views, while the white ones are still empty.
The currently selected entry is highlighted in blue.

face. Furthermore, for users who prefer using their mouse, it still requires very limited
mouse movement as the menu is centered around the cursor. Spatial memory can also

improve performance of the user when switching tasks. They might even make it a
habit to put the views into certain positions on the menu grid, connecting the different
positions on the grid to their different task views. However, one negative point of the
implementation is that we now miss a persistent visual indication of the existing views.

3.3. Populating views

It is important for the user to have simple and intuitive ways of populating the task
views. For this, we look at two dimensions of such tools: First we look at context-aware
and context-unaware methods of adding content. Then we contrast batch inserts against
inserting a single item.

Context-aware vs. context-unaware

We look at two ways of adding content to the view. For one, we can do it in a context-
aware manner: The user supplies some sort of context, based on which the content to
add to the view is chosen. On the other hand, in a context-unaware way, no context is
supplied to the system, Therefore the content to add is chosen from the entire project.

In Envision, we use context menus. These can be opened by selecting an item on screen
and either pressing the ESC button on the keyboard or right-clicking on an item. To add
content in a context-unaware manner follows the same process - however the selected
item does not make a difference to the content which is added.

We decided to use the following approach: In the context menu, different methods
of adding content are suggested. For example, if the context is a method, we might
want to add all its callees to the view. Furthermore, commands can be entered in the
context menu. We decided to use such a command - similar to the ”quick open” feature
in mainstream IDEs - to add content to the view in a context-unaware way, where the
user supplies the full name of an item to add. We also decided to support abbreviations
to the full name, to make it easier to use. For example, a method called helloWorld
could be matched by any of the following searches: hello, World or even llo Wo.

Batch vs. single item insertions

Independent of whether we are aware of the context when adding content, we can add
one or multiple items at once. In a batch insertion, many items are added to the view
in one step, while using single item insertions adds only one item to the view in any one
step.

In our concept, we decided to use single item insertions for our context-unaware method
of adding content. We think that this is more intuitive to the user. On the other hand,
using context-aware methods it’s often more intuitive to insert multiple items at once -
for example when adding the callees of a method. Therefore, we decided to use batch
insertions in the context-aware methods we aim to support.

Figure 2 shows ways of adding content both context-aware and unaware. The context-

unaware menu can be invoked from anywhere.

add Generid

B Unrld
add Helloworld.Generic l
‘ .dd node Helloworld.Generic to the view
% lladd Helloworld.Generic.Foo l
.dd node HelloWorld.Generic.foo to the view
Sddsuperclasses add Helloworld.Generic.bar l
\dd the base classes of the current class to the '-;ie'-_a,-'l \dd node Helloworld.Generic.bar to the view
SddsubClacses add Helloworld.Generic.foobar
lndd the sub classes of the current class to the view || [Add node Helloworld.Generic.foobar to the view

showlinfo
Display information on the node IUnary of type Class

Figure 2: The left figure shows a context aware menu which appears when
right-clicking on an item, specifically for a Class node here. The right figure
shows the context unaware way of adding content, showing the suggestions.

3.4. Arrangement of items

An important part of the user experience is also how the items are arranged within the
view. While a system such as Code Bubbles [2] allows the user full freedom in arranging
their content, Patchworks [5] has shown that too much freedom can negatively influence
the time taken to navigate to certain parts of the working set. The approach presented
in our concept is inspired by Patchworks, while offering more flexibility in the number
of items available on screen and their initial placement by using a flexible grid. The
flexibility offered means that we do not set a fixed limit on the size of the grid which
is visible. On the other hand, we avoid manual placement of bubbles as in Code Bubbles.

For one, we did not want to be as restrictive as Patchworks. The number of items
visible on the screen at once should not be limited, but depend on both the zoom level
and the size of each respective item. Patchworks does not have a zooming feature, there-
fore the number of items on screen can never change. We also decided not to use a grid
with equally sized elements, as that would make displaying large and small elements at
the same time inefficient.

The grid we use is essentially a list of columns. Each column of the grid has a fixed
width, given by the widest element in that specific column. Within each column, items
are then simply arranged one after another. Every item’s height in the grid is given only
by the height of the item itself (and not for example the highest item in a row).

This leaves us with one main issue: It is difficult to arrange items to the left or the
right of an existing item, as the position of the rows is not fixed. For this, in our concept
we introduce what we call ” Adaptive Spacing”: We can insert empty items into the
grid, where their height automatically adapts to a certain piece of content around them.
Furthermore, we can insert empty columns into the grid. These two functions allow us
to for example display the callees of a method at the same height as the method itself.

Figure 3 shows an example of a few items arranged in a grid as explained above.

Helloworld

Super name This is an Iterative implementation of a Factorial function
[h"id

int result « 1

if

G IDIEE) | rese -
result <= i :
<g] result
- J

87 X
unary((intx}’%*: X+‘) @,@ binary
binary((intx inky) <5 x+y) H—,
noreturn({intx)%someop(x)) & X
~ i0F INoReturn

Figure 3: An example of the grid arrangement. Note that there is a spacing item,
which ensures that the method unary is displayed at the same height as its
caller, method test. The lines between the grid columns are to indicate the

width of each column. Note that they are not drawn in Envision. We can see
the width of a column being defined by its widest element.

When arranging content within the grid, we do not give complete freedom to the user.
When using the context-unaware method of adding content to the view, we allow spec-
ifying the initial location of the new item within the grid, with the exact position then
being automatically computed by the system. With the context-aware methods, we sim-
ply place the new items relatively to the existing item. We believe that this compromise
for one gives the user a high enough amount of freedom, while still keeping them from
spending time on unnecessarily rearranging content.

3.5. Different information types

In a task view, information can be displayed in different ways. For one, just as in En-
vision’s original architecture view, we can visualize any AST node. In order to show
only the necessary information to the user, we also wanted to ensure that nodes can be
visualized using different levels of detail, for example showing only the public interface
of a method and hide its body. This would allow the user to concentrate on what is

really important, and also reduce the amount of space needed by such a visualization,
which allows displaying more content on screen at once.

In the concept, we also wanted to add more visual items to show information:

e Relations. For many tasks, it is important to see relations between different parts
of the code, for example to visualize a relationship between a method and its callee.

e Documentation. We want to be able to show documentation on items, such as for
example a method’s header comment.

e Statistics. Many existing tools already support for example showing in how many
places a method is called. Visual Studio for example has a persistent indication
called CodeLens, while Eclipse shows it on request. We also want to be able to
show such information.

e Tool information. One might also be interested in seeing information from tools
displayed. For example, one could imagine that a code verifier could be executed
on a part of the code, and the output should then be somehow visualized.

e Notes. The user should be able to write their own comments which do not essen-
tially concern the code but rather the specific task into some special note node in
the task view. This would make it easier to write down thoughts about the task
and keep them stored together with the task. However, due to time constraints this
was not implemented. Extending task views with such a system should however
not present a real difficulty.

To visualize relations, we considered different approaches. One option was to use hy-
perlinks to show such relations, were they could be used to jump between parts of the
code. While this would be efficient to display arbitrarily many relations, we decided not
to use it as we believe it can get disorienting to the user when many context switches
happen upon selecting these links.

We decided to instead use arrows for displaying relations. This allows an intuitive
representation of relationships and also makes it easy to encode directionality. However,
it is more difficult to make them scale for items which are far away from each other, as
they can then occlude other content between the two items. However, we assume that
users are often interested in keeping related items close to each other, at least somewhat
mitigating that issue.

For documentation, statistics and tool information we decided to visualize them all
in the same way. Therefore, we decided to use just a single visual item in which we
could put all these types of information. Furthermore, we wanted to allow the user to
adapt the information shown in such a visual item at will, turning certain layers on or
off. These different information layers in our item are extendable at will. Essentially,
we show a host of different, not necessarily related, information on a given node. The

10

available layers can be extended anywhere, meaning that both existing and future plug-
ins for Envision can extend the functionality of that information item.

Figure 4 shows the different types of information that can be shown.

Lambda.LambdaTest.test E] Lambda.LambdaTest.unary E]
{Layer name) {Layer name)
Number of called methods: 3 E] Number of callers: 1
(Layer callees) (Layer usages)
$3 X
O IUnary

unary((lntx}*%-: X+1)

bina ry((inl:x inky)th<E] x+y)
noreturn((intxf&someop(x))

o - X
.I Hblnary IBinary'
$Ok x
O INoReturn

Figure 4: The different types of information that can be displayed. We have two
information items, showing different content for the two methods. We also
see arrows to indicate the connection between the method and its callees.

These arrows exist on layers, and arrows can be turned on or off by the user
in a by-layer basis.

3.6. Sharing of views

Lastly, we want to enable multiple people working on the same project to exchange their
task views. For this, we designed a simple JSON scheme with which we can persist a
task view’s content. As this JSON scheme does not need to keep track of actual AST
nodes, but only references the ones which are used in the task view, it’s rather simple,
such that any user with knowledge of JSON could correctly use this scheme by hand.
Using the persisted JSON files then enables users not only to reload their own task views
from disk, but also allows them to send their task views to other users, perhaps to get
some input from them if they are stuck on something. The only requirement for this
to work is that all users which want to use this JSON file also have the actual project
itself. An example JSON file for a small task view with two AST nodes and an arrow
between them can be seen on the next page.

11

"arrows": [

{
"layer": "callees",
"nodel": "{2323e58d-e864}",
"node2": "{009ebeel-4ab5}",
"parentlcol": 1,
"parentlrow": O,
"parent2col": 2,
"parent2row": 0O
3
1,
"disabledLayers": [
1,
"name": "viewName",
"nodes": [
{
"col": 1,
"purpose": -1,
"reference": "{2323e58d-e864}",
"row": O,
"type": "NODE"
1},
{
"col": 2,
"purpose": 1,
"reference": "{009eb5eel-4a55}",
"row": O,
"type": "NODE"
}
]

12

4. Implementation

In the implementation section, we take a rather high-level approach of discussing the
implementation. We do not show explicit details of the code, but rather explain the
methodologies used when implementing the task views. Some shortcomings also exist,
which are explained in this section.

4.1. Changes to Envision

As some parts of the task views touched existing concepts of Envision, some of the core
parts of the code had to be changed.

Enabling multiple views

It was not possible to have multiple views at the same time before. To enable this, the
Scene no longer directly has ownership of all the items it contains but rather of the
views themselves. These views themselves are also items and contain the nodes which
make up the view. To switch between views, the old view is simply hidden within the
scene and the new one shown. This meant also changes to further parts of Envision,
since nodes can no longer be added directly to the scene but must be added to the views
instead.

Correctly hiding overlays

Envision supports overlays, with which additional information can be displayed on the
screen. For example, the arrows shown between items in the task views are also a type
of overlay. Previously, since Envision allowed only one view, all overlays where visible by
default. This meant that when switching between views, the associated overlays would
still stay on the screen as they are independent from the views themselves. As associat-
ing each overlay explicitly with a view would have caused many changes, they are now
simply automatically hidden as soon as any of their associated items are also hidden on
screen. Therefore, as switching between views means hiding the items from the old view,
the associated overlays are also hidden.

Changing commands

Envision had a strong existing command utility, which also used the auto-complete con-
cept to offer a menu of possible actions to the user. In the task views, we often want
to add nodes using a context-aware approach, where the commands take no arguments
except for the context (which is already supplied by default). Therefore, we changed and
extended the commands to allow some commands to be displayed even if no text has
been entered to the command prompt - therefore essentially enabling right-click menus.

4.2. Extensions to Envision

Various extensions were made to Envision in course of the project. Here we list the main
extensions that had to be made.

13

Viewltem.

The views are separated by making each of them their own item (which we call ViewItem),
and adding them to the Scene as new top-level items. Each of these items then has its
own dynamic grid, where nodes can be added and removed at will. Furthermore, these
items also keep track of the arrows being displayed on screen. They are managed by a
ViewItemManager, which is added to the scene to offer an additional level of indirection
between the scene and the views themselves and keep the Scene class itself free from
clutter.

Extending commands

We had to slightly change Envision’s command system to enable some of the new com-
mands. We created new commands using default arguments, where arguments which
are left empty by the user are automatically filled in by the system. This also allows
commands with arguments to be shown in a right-click menu. Furthermore, many new
commands which are task view specific were introduced, such as the command to add
nodes based on their fully qualified name or the commands which add content to the
view based on their context. The new commands as well as the new shortcuts added to
Envision in the course of the project can be seen in the Appendix A.

InfoNode

An important part of the work on task views is the new InfoNode class. Such an
InfoNode can be applied to any existing AST node and displayed in a task view. The
InfoNode class keeps a register of existing methods which deliver information for nodes,
with a command to allow users to turn parts of the displayed information on or off.
This also allows the InfoNodeto be extended at will, as new information methods can
be registered from anywhere inside the code. As such, future projects can extend the
information available on nodes. For example, if such a project introduces a code verifier
for Envision, it could also easily register a method to display that information within an
InfoNode.

The InfoNode uses existing web technologies for its functionality. Using HTML allows
us to easily change the design of certain information layers or the entire node without
having to create new visualizations for it. On the other hand, using Javascript and link-
ing it to our original Qt C++ code allows adding further functionality to the InfoNode,
for example a mechanism of moving the screen to a callee of a method upon pressing a
”Jump To” button.

JSON support

To persist views and enabling sharing of them, the task views need to support storing
to and loading from JSON. The JSON scheme is quite simple, as storing AST nodes
requires only storing their reference. In the JSON, we need to store information on the
adapative spacing items, the AST nodes which are displayed, all the arrows which are
shown or hidden and the content shown in the InfoNodes. Everything else is already

14

handled by Envision’s existing functionality for persisting projects.

2D menu

To support easy and intuitive switching between views, a 2D menu which arranges the
available views in a 3-by-3 grid was introduced. This menu is extensible and could be
used for other purposes as well, as it allows arranging arbitrary menu items in a 2D grid.
Particularly, the 2D grid can be transformed to a simple 1D menu by setting either the
number of rows or columns to be one. Future work should be done to see whether this
menu can be integrated with the current auto-complete menu in Envision, such that the
two code bases can be unified.

4.3. Issues and limitations

Here, we list some of the known issues and limitations of our implementation.

JSON scheme

The store and load operations handling the JSON for persisting a task view are currently
quite limited. While they easily allow extensions to the InfoNode, new AST nodes or
also new arrow layers being added, the JSON scheme would require changes for anything
further. For example, adding notes nodes to the views as discussed in section 3 which
would not be persisted as part of the AST (and therefore couldn’t be simply referenced)
would require changes to both the save and load operations.

Limitations of arrows

Arrows can only be turned on or off in groups - single arrows cannot be toggled. Fur-
thermore, it is currently not possible to add arrows manually - the only way to show
arrows is to use the existing context-aware methods of adding content, such as adding all
callees of a method. Adding arrows between two existing items however is not possible.

Limitations of adaptive spacing

Similar to arrows, spacing items are only added when context-aware methods are used.
They cannot be added manually by the user. Furthermore, the spacing target of such
an item is always automatically defined on creation and cannot be changed manually.
As such it is not possible for the user to adapt the spacing to another item than is used
by the code which originally adds the spacing item.

No recognition of existing relationships

When adding all nodes which are in some kind of relationship with an existing node, it is
not checked whether these nodes perhaps already exist somewhere. For example, when
adding all the callees of a method and these already exist somewhere in the view, the
code does not realize this. While we often consider this not a limitation, but a design
decision in the sense that it allows us to position the callees at a good position relative
to the original method, it is a limitation in some cases. For example, one might imagine
that the command is accidentally executed twice by the user, and now all callees (and

15

their corresponding arrows) are displayed twice in the two columns next to the original
method. In such a case it would be better to recognize the existing relationship.

16

5. Discussion

In this section, we compare our solution to existing solutions which are also referenced
in section 2. In a first part, we discuss how the tools compare with each other, and then
summarize the discussion in a table.

5.1. Discussion of tools

To discuss the differences between our solution and four existing solutions, namely Code
Bubbles [2], Patchworks [5], Code Canvas [3] and a mainstream IDE, Eclipse, we split
the analysis of the differences into three parts: How can we support different tasks, how
do we visualize the working set and which kind of information can our task view contain?

5.1.1. Tasks

For one, we can support different tasks by giving control over the content to the user.
As in Code Bubbles, the user controls which and how many nodes they see on screen at
once. What differentiates us from all other tools is that we allow nodes to be visualized in
different ways. For example, a method can be displayed fully, including its body, or only
with its signature. Likewise, a class may be displayed using only its public signature.
Envision supports any type of visualization, this just being one example. This allows to
keep unimportant information away from the view and not obstruct the user. The user
has full control over how any node is visualized. Figure 5 shows a method visualized both
fully and with only its public signature. Code Canvas is similar to Envision’s architecture
view, in that it doesn’t support showing only a subset of the entire information. On
the other hand, Eclipse supports showing such a subset, however unlike more visual
programming tools, it does not support meaningful spatial arrangement of the content
or other flexible visualizations, like Envision.

| x
[intH{factorial int

int result « 1
iF
Elint T — Jixdlir=1 | result « -1
result < | '
<] result
~ v

Figure 5: A method visualized in two different ways.
When it comes to supporting different tasks at once, we chose an approach that differs

from both Code Bubbles and Patchworks. In both of them, it is possible to essentially
arrange content with gaps, creating logical borders between tasks. In Code Bubbles it is

17

also possible to explicitly name those regions, giving better recognition. In our solution
we explicitly keep the different task views separated, requiring an explicit switch. We
believe this to be a better solution in some regards. Our three-by-three grid in the
view selection menu furthermore offers stronger spatial meaning to the views, seeing as
both Code Bubbles and Patchworks arrange their partitions on a continuous 1D ribbon
(although Code Bubbles allows arranging content on a 2D space, their partitioning works
only in 1D, as any partition takes the entire height of the space).

Both vanilla Eclipse and Code Canvas do not support working on different tasks at once,
as there is not such a logical separation between content that is being used.

5.1.2. Working set

To visualize the working set, we use a grid layout. We can compare this to Patchworks,
which uses a static three-by-two grid, allowing six different code snippets being displayed
on screen at once. Our grid is much more flexible, allowing an arbitrary number of items
on the screen, depending on their size. Both Patchworks and our grid allows to add items
at different granularities, for example method or class. We believe that this additional
flexibility benefits the user, while still avoiding some of the rearrangement issues of Code
Bubbles. Eclipse uses a traditional file-based layout, while Code Canvas is similar to
Code Bubbles. However, as Code Canvas displays the entire project, it does not support
a working set which is a subset of the entire project.

Our grid approach is certainly more rigid than Code Bubbles’ visualization of a working
set, where anything can be placed at arbitrary positions. However, that can lead to
many bubbles being moved if a bubble is moved to the center, which can make spatial
recognition harder. Envision’s grid still occasionally moves items, however often the
relative ordering of connected items can be kept - also because of the adaptive spacing
items

5.1.3. Information

We are capable of showing more information types on screen than Patchworks. For one,
we have the InfoNode, which can display arbitrary information about some AST node.
Furthermore, we use arrows to visualize relationships. Both of these ways to display
additional information apart from the nodes themselves can be turned on or off by the
user, giving them full control. Due to its extensibility, the InfoNode might set us apart
from Code Bubbles in the future. However, at the current point the information it shows
is still rather basic and exists even more extensively in other tools as well. Code Canvas
has a strong layer system which allows to easily turn different information layers on
and off, while allowing many different types of information being displayed on screen.
Eclipse allows viewing the files themselves as well as further information in side panels,
for example the type hierarchy.

18

Tool On screen | Off screen | Adding Infor- Visual- Granu-
content mation ization larity
Envision Single task | Other task | Add com- | Code, Flexible, Flexible
view views mand, meta- e.g. entire
context information, | code, public
menus relations interface
Code Part of 2D | Rest of 2D | Find, con- | Code, Fixed, al- | Flexible
Bub- canvas canvas text menus | meta- ways entire
bles [2] information, | code
relations,
notes
Patchworks| 3-by-2 grid | Ribbon of | Drag from | Code Fixed, al- | Flexible
[5] of snippets | snippets package ex- ways entire
plorer code
Code Part of | Hidden lay- | Make layers | Code, infor- | Fixed, al- | Full project
Canvas [3] | the entire | ers visible mation lay- | ways entire
project ers, notes code
Eclipse Tabs Tabs Context Code, Fixed, al- | File
menus, meta- ways entire
package information, | code
explorer relations

Table 1: The "On Screen” column describes what is displayed on screen, with the ” Off
Screen” column describing the things which are hidden. ” Adding content”
looks at the different possible ways of adding content to the view, while the
”Information” column highlights the different types of information that can be
presented.

5.2. Summary of discussion

To compare our task views to existing tools more objectively, we compare different di-
mensions of the functionality of these tools in table 1.

19

6. Future Work and Conclusion

6.1. Future Work

As we saw, the task views that are now implemented within Envision still have some
work for improvement, with some of the issues having been outlined, especially in making
the content that is visualized even more flexible. Furthermore, while some parts of the
task views are very flexible and extensible, they also haven’t reached their full potential
yet.

InfoNode

Certainly some steps could be taken into extending the information displayed in an
InfoNode, as well as possibly improving their design. Another point where they could
be extended is to clearly indicate which information values are actually applicable for
a specific node. Currently, each of the information methods is evaluated for any node,
which may return empty values. While this still allows them to be displayed correctly,
it can lead to confusion for the user: When turning such information values on or off,
many irrelevant values are also offered in the command’s auto-complete.

Arrows

The arrows themselves show glimpses of the information layer principle which is used in
Code Canvas. In future work, this could be extended and improved to a full information
layer system. These layers could then not only contain arrows but perhaps also other
information. This would however also need adaptations to the JSON scheme. Making
the JSON scheme itself more extensible is also a point which future work could address.
Especially with many items on screen which are connected by arrows, it is noticeable that
the arrows do not behave particularly smart. They use the shortest path to direct two
items, which can often lead through existing items, occluding possibly interesting parts
of them. Future work could address a more advanced way of drawing these arrows,
or possibly even finding a better way to represent relationships over larger distances
altogether.

6.2. Conclusion

By adding task views to Envision, we have managed to include many features already
available in other, similar systems. Particularly for large projects, being able to visualize
only parts of the project is very helpful to solve tasks or navigate existing code. Enabling
sharing of task views also allows multiple people to collaborate on solving a single task.
We have also managed to incorporate some new features into these views, which other
systems do not have.

When it comes to visualization, we have incorporated several new concepts compared
to existing tools. For one, we offer a grid-based, yet flexible solution for arrangement
of visualization items. Furthermore, items can be visualized in different ways and levels
of detail. Lastly, our extensible info node allow adding arbitrary information to the

20

view as well as future projects extending the information which can be shown in these
nodes. As such, we believe to have successfully combined a high degree of flexibility for
the visualization of items on screen, while still keeping the user from rearranging the
content on screen.

We have also come up with efficient ways of switching between different task views,
which combined with a clear separation of the views allows a user to efficiently work on
multiple tasks at once. Furthermore, arranging the available views in a grid on screen
improves spatial recognition for the user, as a view can not only be connected to its
name but also its position in the grid.

21

A. Appendix: New commands and shortcuts

This project introduced various new commands and shortcuts to Envision. The first
subsection lists all new commands including their possible parameters, effects and which
items they are applicable to. The second subsection then lists all the shortcuts which
were introduced, their effects and when they are available.

A.1. New commands

Command | newView name open
Effect Creates a new task view and possibly opens it
Context Applicable anywhere

Arguments | name - name of the new task view
open - use "open” to immediately open the new view (default =
don’t open)

Command | switch name

Effect Switches to an existing task view

Context Applicable anywhere

Arguments | name - name of the task view to switch to

Command | removeNode

Effect Removes the current node from the current task view

Context Applicable on any node contained in the current task view as a
top-level node
Arguments | -

Command | toggleLayer name

Effect Toggle the given arrow layer in the current task view

Context Applicable anywhere

Arguments | name - name of the arrow layer to toggle

Command | showInfo

Effect Add an InfoNode for the current node
Context Applicable on any node defining a symbol
Arguments | -

Command | toggleInfo name

Effect Toggle the given info layer on the current InfoNode
Context Applicable on any InfoNode

Arguments | name - name of the info layer to toggle

Command | saveView

Effect Save the current task view to disk
Context Applicable on any node with a manager
Arguments | -

22

Command | add name

Effect Add a node by name to the current task view

Context Applicable anywhere

Arguments | name - name of the node to add, supports using only part of the
name

Command | addNode name column row

Effect Add the current node to some task view at some position

Context Applicable on any node defining a METHOD or CONTAINER symbol

Arguments | name - name of the task view to add the node (default = current)
column - the column to add the node at (default = 0)
row - the row to add the node at (default = 0)

Command | addCallees

Effect Add the callees of the current method to the current task view

Context Applicable on any method

Arguments | -

Command | addCallers

Effect Add the callers of the current method to the current task view

Context Applicable on any method

Arguments | -

Command | addSuperClasses

Effect Add the super classes of the current class to the current task view

Context Applicable on any class

Arguments | -

Command | addSubClasses

Effect Add the sub classes of the current class to the current task view

Context Applicable on any class

Arguments | -

Command | inspectMethod

Effect Create a new task view to inspect the current method

Context Applicable on any method

Arguments | -

A.2. New shortcuts

Shortcut | CTRL + G

Effect Open the task view switching menu

Context | Applicable anywhere

Shortcut | CTRL + 1 to CTRL + 9

Effect Switch to the task view indexed by numbers one through nine
Context | Applicable anywhere

23

Shortcut | ARROW keys

Effect Navigate in the task view switching menu

Context | Applicable within the switching menu

Shortcut | ENTER

Effect Select the current entry in the task view switching menu or leave
renaming mode

Context | Applicable within the switching menu

Shortcut | F2

Effect Enter renaming mode in the task view switching menu

Context | Applicable within the switching menu

Shortcut | CTRL + I/J/K/L

Effect Moving to the top/left /bottom/right of a VViewItemNode

Context | Applicable within a VViewItemNode

Shortcut | ENTER

Effect Open a command prompt with the text "add”

Context | Applicable within a ViewItem (not including its children)

Shortcut | CTRL + F5

Effect Fully refresh an InfoNode

Context | Applicable within an InfoNode

24

References

1]

D. Asenov and P. Miiller. Envision: A fast and flexible visual code editor with
fluid interactions (overview). In Visual Languages and Human-Centric Computing
(VL/HCC), pages 9-12, 2014.

Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William Che-
ung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola,
Jr. Code bubbles: A working set-based interface for code understanding and main-
tenance. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, pages 2503-2512, New York, NY, USA, 2010. ACM.

Robert DeLine and Kael Rowan. Code canvas: Zooming towards better development
environments. In Proceedings of the International Conference on Software Engineer-
ing (New Ideas and Emerging Results). Association for Computing Machinery, Inc.,
May 2010.

George Fitzmaurice, Justin Matejka, Azam Khan, Michael Glueck, and Gordon
Kurtenbach. Piecursor: Merging pointing and command selection for rapid in-place
tool switching. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI 08, pages 1361-1370, New York, NY, USA, 2008. ACM.

Austin Z. Henley and Scott D. Fleming. The patchworks code editor: Toward faster
navigation with less code arranging and fewer navigation mistakes. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, pages
2511-2520, New York, NY, USA, 2014. ACM.

Thorsten Karrer, Jan-Peter Kramer, Jonathan Diehl, Bjorn Hartmann, and Jan
Borchers. Stacksplorer: Call graph navigation helps increasing code maintenance
efficiency. In Proceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology, UIST ’11, pages 217-224, New York, NY, USA, 2011.
ACM.

Jan-Peter Kramer, Thorsten Karrer, Joachim Kurz, Moritz Wittenhagen, and Jan
Borchers. How tools in ides shape developers’ navigation behavior. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, pages
3073-3082, New York, NY, USA, 2013. ACM.

Jan-Peter Kramer, Joachim Kurz, Thorsten Karrer, and Jan Borchers. Blaze: Sup-
porting two-phased call graph navigation in source code. In CHI ’12 Extended Ab-
stracts on Human Factors in Computing Systems, CHI EA ’12, pages 2195-2200,
New York, NY, USA, 2012. ACM.

Marian Petre. Why looking isn’t always seeing: Readership skills and graphical
programming. Commun. ACM, 38(6):33-44, June 1995.

25

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

| hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Tagk-spcc\f(ig views n Envison

Authored by (in block letters):

For papers written by groups the names of all authors are required.
Name(s): First name(s):

b’\‘&\W\ (e (/7‘ a\ \

With my signature | confirm that

—- | have committed none of the forms of plagiarism described in the ‘Citation etiguetie’ information
sheet.

- | have documented all methods, data and processes truthfully.
- | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

| am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

E\Are,v\c\'\v\%gvx ;119 09 .10AS c o

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

