
A FORMAL SEMANTICS FOR VIPER
MASTER’S THESIS PROJECT DESCRIPTION

JUNE 2016, ETH ZURICH, SWITZERLAND

Student: Cyrill Gössi

cgoessi@student.ethz.ch

Supervisor: Dr. Alexander J. Summers

alexander.summers@inf.ethz.ch

1. BACKGROUND

The Verification Infrastructure for Permission-based Rea-
soning (Viper) [1] is a suite of tools developed by the Chair
of Programming Methodology research group at ETH Zurich.
Viper includes an intermediate language (IL) which is based
on a flexible permission model allowing for simple encod-
ings of permission-based reasoning techniques. The infras-
tructure is targeted by multiple front-end tools such as Chal-
ice [3]. Verification problems are encoded into Viper IL and
the infrastructure ultimately verifies the problem by means
of symbolic execution or usage of verification condition gen-
eration. The result of the verification is then propagated
back to the front-end.

As of today, the Viper IL lacks a formal semantics. Hence,
encodings of front-end languages into Viper IL cannot for-
mally be reasoned about and ultimately the result of the ver-
ification cannot be rigorously argued to be sound.

The aim of this master’s thesis is the development of
a formal semantics for the Viper IL and thereby laying a
foundation for a more rigorous treatment of the verification
process.

2. MAIN TASKS

Various features of the Viper IL have already been exten-
sively studied and even have been given a formal seman-
tics (with the treatment of recursive predicates by Summers
and Drossopoulou [2] as an example) but no semantics for
the IL as a whole exists. Developing such a semantics for
the whole IL is the main task of this thesis. In order for
the project to be considered successful, the following points
were defined to be the core tasks:

• Development of a formal semantics for the following
set of Viper features: permissions including fractional-
permission-related constructs and quantified permis-
sions, magic wands, pure expressions (including func-
tions), predicates and control flow (including methods
and loops).

• As the Viper semantics should be such that encod-
ings of front-end-languages into Viper can, with rel-
ative ease, be proven sound, the following proof-of-
concept has to be developed: first, a set of core fea-
tures of Chalice has to be defined and a semantics has
to be developed for it. This set then has to be encoded
into Viper and the encoding has to be proven sound.

3. EXTENSIONS

The core tasks defined above allow for the following set of
natural extensions.

• Extension of the formal semantics for Viper to also
include forperm quantification, domains, paired as-
sertions and labelled old-expressions as well as find-
ing a model of triggers for quantifiers.

• Extension of the formal semantics for Chalice to in-
clude all of Chalice.

• Mechanization of the formal semantics. Possible tools
of choice are the proof-assistants Coq [4] and
Isabelle/HOL [5].

• Mechanization of the encoding of Chalice into Viper.

4. REFERENCES

[1] P. Müller, M. Schwerhoff, and A. J. Summers. Viper:
A verification infrastructure for permission-based rea-
soning. In B. Jobstmann and K. R. M. Leino, editors,
VMCAI, volume 9583 of LNCS, pages 4162. Springer-
Verlag, 2016.

[2] A. Summers and S. Drossopoulou. A formal seman-
tics for isorecursive and equirecursive state abstrac-
tions. In ECOOP, volume 7920 of LNCS, pages 129-
153. Springer, 2013.



[3] K. R. M. Leino, P. Müller, and J. Smans. Verification
of concurrent programs with Chalice. In A. Aldini, G.
Barthe, and R. Gorrieri, editors, Foundations of Secu-
rity Analysis and Design V, volume 5705 of LNCS,
pages 195222. Springer, 2009.

[4] G. Huet, G. Kahn, C. Paulin-Mohring, The Coq Proof
Assistant: a tutorial, Technical Report 204, INRIA-
Rocquencourt, 1997.

[5] T. Nipkow, L. C. Paulson, and M. Wenzel. Is-
abelle/HOL A Proof Assistant for Higher-Order Logic,
volume 2283 of LNCS. Springer, 2002.


