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Abstract

The Verification Infrastructure for Permission-based Reasoning (Viper) [1]
is a suite of tools developed by the Chair of Programming Methodology
research group at ETH Zurich1. Viper includes an intermediate language
which is based on a flexible permission model and aims to allow for simple
encodings of permission-based reasoning techniques implemented in front-
end tools such as Chalice [2]. As of today, the intermediate language of
Viper lacks a formal semantics. Thus, encodings of front-end languages into
Viper cannot formally be reasoned about and the verification of a program
encoded into Viper cannot rigorously be argued to be sound with respect to
the semantics of the front-end tool language.

This thesis presents the first formal semantics for a chosen subset of Viper.
Moreover, an encoding J K of a subset of Chalice into Viper is defined and
proven sound: if an encoded Chalice program JpK verifies with respect to the
semantics of Viper then p verifies with respect to the semantics of Chalice.

1pm.inf.ethz.ch/research/viper.html. Last accessed: November 24, 2016
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Chapter 1

Introduction

Separation logic [3][4] and implicit dynamic frames [5] are popular permis-
sion logics used for the specification and verification of concurrent programs.
Automated front-end verifiers, such as the permission logic based Chalice
[2], translate a program together with its specification into an intermediate
language, such as Boogie [6] or Why [7], where it ultimately is encoded as a
logical formula and then solved by a theorem prover, such as Z3 [8]. Boogie
or Why, however, have no direct support for permissions and the transla-
tion of a permission logic based front-end into one of these intermediate
languages is involved.

The Verification Infrastructure for Permission-based Reasoning (Viper) [1],
developed by the Chair of Programming Methodology research group at
ETH Zurich1, contains an intermediate language, also called Viper, which
supports many high-level programming language features, such as method-
calls and loops, and is based on a flexible permission model. As such, it
allows for simple encodings of permission-based reasoning techniques and
is targeted by multiple front-end tools such as Chalice.

To mathematically reason about the encoding of a front-end language into
the Viper intermediate language requires the languages involved to have
a formal semantics. As of today, Viper has no formal semantics. Thus,
any encoding into Viper cannot be mathematically reasoned about and any
verification in Viper cannot be proven sound with respect to the semantics
of the front-end language.

This thesis presents the first formal semantics for a substantial subset of
Viper. With this, it lays the foundation for a more rigorous treatment of the
verification process within the Viper infrastructure. Moreover, an encoding
of a subset of Chalice into Viper is defined and proven sound. This sound-
ness proof demonstrates that whenever a Chalice program is translated into

1pm.inf.ethz.ch/research/viper.html. Last accessed: November 24, 2016

1



Viper and the translated program verifies within Viper, then the original
Chalice program verifies with respect to the semantics of Chalice.

The structure of this thesis is as follows: chapter 2 presents the abstract syn-
tax of the chosen subset of Viper and presents the first formal semantics for
Viper on this subset. Chapter 3 presents the abstract syntax of a chosen Chal-
ice subset as well as an extension of a pre-existing semantics for Chalice first
defined in [9]. Chapter 4 defines an encoding of the chosen Chalice subset
into Viper and chapter 5 proves this encoding to be sound with respect to
the formally defined semantics of Viper and Chalice.
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2.1. Syntax

2.1 Syntax

This section presents an abstract syntax of a substantial subset of the Viper
intermediate language [1], short Viper, and it is this subset for which the
subsequent section 2.2 will define a semantics for. The concrete syntax of
Viper programs is given in appendix C. Where a concrete syntax is con-
cerned with defining which strings of characters constitute a valid program,
an abstract syntax abstracts away details related to parsing and lexing of
character strings and focuses on representing the syntactic core domains of
a program. The core domains relevant to present a semantics for Viper are
expressions, assertions, statements, functions, methods and predicates.

These domains are presented using an Extended-Backus-Naur Form (EBNF)-
like notation where a vertical bar ”|” (as in ”a | b”) represents a choice (be-
tween a and b) and an overline (as in ”xi”) represents a finite repetition of
elements (”x1, ..., xn”).

Definition 2.1 (Syntactic domain of expressions) The syntactic domain of ex-
pressions is denoted by E and has metavariable e associated. The domain of
expressions is defined as follows.

E := null | b | n | x | x.f | - e | e + e | e / e | ¬ e | e = e | fun(e) |
unfolding acc(p(e)) in e | perm(x.f) | perm(p(e)) | old(e) |
old[l](e) | applying a −∗ a in e

Above, b is the metavariable ranging over the syntactic domain of booleans
B and n ranges over numerals N. Furthermore, x identifies a variable and is
the metavariable associated with the syntactic domain of variable identifiers
Var. Similarly, f, fun, p and l are associated with the domains F, Fun, P and
Label and identify fields, functions, predicates and labels. At last, a is associated
with the domain of assertions A, which is defined below.

Note that Viper knows many more unary operators and binary operators
applicable to expressions besides the once listed above. However, the opera-
tors listed above suffice to subsequently demonstrate the semantics of Viper.
The full list of operators available in Viper can be found in appendix C.

Definition 2.2 (Syntactic domain of assertions) The syntactic domain of asser-
tions is denoted by A and has metavariable a associated. The domain of
assertions is defined as follows.

A := e | acc(x.f, q) | acc(p(e), q) | e → a | a && a | a −∗ a |
forall x : t :: e | exists x : t :: e | [a, a] | forperm[f] x :: a

Above, q is the metavariable ranging over the syntactic domain of permissions
Q and t ranges over the domain of types T.
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2.1. Syntax

Definition 2.3 (Syntactic domain of statements) The syntactic domain of state-
ments is denoted by S and has metavariable s associated. The domain of
statements is defined as follows.

S := ε | var x : t | x := new(f) | x := e | x.f := x | x := m(e) | label l |
assert a | assume a | inhale a | exhale a | fold acc(p(e), q) |
unfold acc(p(e), q) | apply a −∗ a | if e then s else s |
while e invariant a do s | s; s

Above, ε denotes the empty statement and m identifies a method and is the
metavariable associated with the syntactic domain of method identifiers
Meth.

Definition 2.4 (Syntactic domain of fields) The syntactic domain of fields is
denoted by Field and has metavariable field associated. The domain of fields
is defined as follows.

Field := field f : t

Definition 2.5 (Syntactic domain of domains) The syntactic domain of domains
is denoted by Dom and has metavariable dom associated. The domain of
domains is defined as follows.

Dom := domain dom[t] { function fun(x : t) : t axiom ax { a } }

Definition 2.6 (Syntactic domain of functions) The syntactic domain of func-
tions is denoted by Fun and has metavariable fun associated. The domain of
functions is defined as follows.

Fun := function fun(x : t) : t requires a ensures a { e }

Definition 2.7 (Syntactic domain of predicates) The syntactic domain of pred-
icates is denoted by P and has metavariable p associated. The domain of
predicates is defined as follows.

P := predicate p(x : t) { a }

Definition 2.8 (Syntactic domain of methods) The syntactic domain of methods
is denoted by Meth and has metavariable meth associated. The domain of
methods is defined as follows.

Meth := method m(x : t) returns (x : t) requires a ensures a { s }

Definition 2.9 (Syntactic domain of declarations) The syntactic domain of decla-
rations is denoted by Decl and has metavariable decl associated. The domain
of declarations is defined as follows.

Decl := dom | fun | p | meth
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2.2. Semantics

Definition 2.10 (Syntactic domain of Viper programs) The syntactic domain of
Viper programs is denoted by Prog and has metavariable prog associated. The
domain of Viper programs is defined as follows.

Prog := decl

2.2 Semantics

2.2.1 Preliminary

Unless otherwise specified, all functions defined in this preliminary are as-
sumed to be total.

Definition 2.11 (Semantic domain of Booleans) The semantic domain of
Booleans is denoted by B, has metavariable b associated and is identified
with the set of mathematical booleans. The domain of Booleans is given as:
B = { False, True }. Furthermore, a function mapping the syntactic true to
the semantic True and mapping the syntactic false to the semantic False is
assumed. The image of b under this function is subsequently denoted as Bb.

Definition 2.12 (Semantic domain of Integers) The semantic domain of Integers
is denoted by Z, has metavariable z associated and is identified with the
set of mathematical integers. A function mapping syntactic numerals n to
appropriate integers z is assumed. The image of n under this function is
subsequently denoted as Zn.

Definition 2.13 (Semantic domain of objects) Without explicit definition, an
infinite semantic domain of objects is assumed. The domain of objects is
denoted by O and has metavariable o associated. Parts of the subsequently
presented semantics require to obtain new objects which are unique with
respect to a given trace λ. For this, a function is assumed, which, given a
trace λ, computes the set of all objects used within λ. A call to this function
will be denoted as O(λ).

Definition 2.14 (Semantic domain of permissions) The semantic domain of per-
missions is denoted by Q, has metavariable q associated and is identified
with the set of non-negative mathematical rationals, i.e. q ≥ 0. Addition of
permissions, for example, is then given by the addition over mathematical
rationals. Furthermore, a function mapping syntactic permissions q to ap-
propriate permissions q is assumed. The image of q under this function is
subsequently denoted as Qq.

Definition 2.15 (Semantic domain of errors) An error is an assumed seman-
tic value used to indicate an erroneous operation. The semantic domain
of errors is denoted by X, has metavariable x associated and is defined as
follows: X = { xdiv, xnull, xass, xperm, xinf, xwand }. The semantic values of X
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2.2. Semantics

indicate the following: xdiv indicates a division-by-zero, xnull indicates that
the receiver of a field-lookup was null, xass indicates an assertion not to hold,
xperm indicates that a permission related error occurred, xinf indicates an er-
ror related to an infinite unrolling of either a predicate or a function and
xwand indicates an error related to the usage of wands.

Definition 2.16 (Semantic domain of values) The semantic domain of values is
denoted by V and has metavariable v associated. V is the disjoint union
of the semantic domains of Integers, Booleans, objects, permissions and ad-
ditionally contains the special value null, i.e. V = B ∪ Z ∪ O ∪ Q ∪
{ null }. Furthermore, the function D : (V 7→ {B, Z, O ∪ {null}, Q }) ∪
(T 7→ {B, Z, O ∪ {null}, Q }) ∪ (F 7→ {B, Z, O ∪ {null}, Q }) is assumed.
D either maps semantic values v to the domain they originate from, de-
noted by Dv, maps syntactic types t to the corresponding semantic value
sub-domain, denoted by Dt, or maps syntactic field identifiers f to the se-
mantic value sub-domain corresponding to the type of f, denoted by Df.
Important example: DRef = O ∪ { null }.

Definition 2.17 (Semantic domain of predicate identifiers) An infinite semantic
domain of predicate identifiers is assumed, is denoted by P and has metavari-
able p associated. Identification of a syntactic predicate with a semantic
counterpart is involved as the identification depends on the input a predi-
cate is applied with: p(0) and p(1) should map to different semantic entities.
Thus, the following parametrised family of injective functions is assumed:
{Pn | n ∈ N } where Pn : (P×Vn) 7→ P. To continue the example, p(0) is
then identified with p = P1(p, Z0) and p(1) is identified with p1 = P1(p, Z1).

Definition 2.18 (Semantic domain of wand identifiers) An infinite semantic do-
main of wand identifiers is assumed, is denoted by W and has metavariable
w associated. Identification of wands is similar to the identification of pred-
icates and is based on extracting expressions from the wand to be identi-
fied and then evaluating these expressions to values. As an example, con-
sider the wand acc(x.f, 1/2) −∗ acc(x.f, 1/1) && acc(y.f, 1/3). If the value
of x is o and the value of y is o1, then the extracted tuple of values is
(o, Q1/2, o, Q1/1, o1, Q1/3). However, extracting tuples of values itself is not
sufficient to identify a wand as different wands can result in the same tu-
ple of values: acc(x.f, 1/2) && acc(x.f, 1/1) −∗ acc(y.f, 1/3) is a different
wand then the wand presented first but results in the same tuple of val-
ues. Thus, the identification of a wand also has to take the shape of the
wand into account. Moreover, the left-hand side and right-hand side of
a wand might contain ghost-expressions like folding and unfolding. To
identify a wand, only the ghost-expression free assertions nested inside the
left-hand side and right-hand side of the wand have to be considered dur-
ing the extraction of expression values. An injective shape function mapping
wands, based on their shapes, to unique identifiers in N is now assumed as
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2.2. Semantics

well as the following parametrised family of injective functions: {Wn | n ∈
N } where Wn : (N× Vn) 7→ W. A syntactic wand is then identified by
first computing its shape, extracting the ghost-expression free assertions
nested inside the left-hand side and right-hand side of the wand, extracting
the expressions from these ghost-expression free sub-assertions, evaluating
these expressions to values and then using the appropriate injective func-
tion from the family to get a value from W. As an example, consider the
two wands introduced before: acc(x.f, 1/2) −∗ acc(x.f, 1/1) && acc(y.f, 1/3)
and acc(x.f, 1/2) && acc(x.f, 1/1) −∗ acc(y.f, 1/3). Note that the left-hand
sides and right-hand sides of both wands are already ghost-expression free.
Then assume the shape function to compute the shape identifier 1 for the
first wand and the shape identifier 2 for the second wand. If the value
of x is o and the value of y is o1 then the two wands are identified with
W6(1, o, Q1/2, o, Q1/1, o1, Q1/3) and W6(2, o, Q1/2, o, Q1/1, o1, Q1/3). For a con-
cise description of the subsequent semantics, the function Wn is now as-
sumed as: Wn : A × Λ 7→ W ∪ X, where Λ is the domain of traces and
defined in 2.28. In a trace λ, the first wand defined above is then identi-
fied with Wn(acc(x.f, 1/2) −∗ acc(x.f, 1/1) && acc(y.f, 1/3), λ). Wn is thus as-
sumed to compute the shape of the given wand, extract the ghost-expression
free sub-assertions from the left-hand side and right-hand side, extract all
expressions from these ghost-expression free sub-assertions, evaluate these
expressions in the trace and then pick the appropriate injective function to
map the shape identifier together with the tuple of values into a semantic
wand identifier w or an error x in case any expression evaluation resulted in
an error.

Definition 2.19 (Semantic domain of heaps) The semantic domain of heaps is
denoted by H and is a domain of functions mapping tuples of semantic ob-
jects o and syntactic field identifiers f to semantic values v. The metavariable
associated with the domain of heaps is h and hence h : O× F 7→ V.

Definition 2.20 (Semantic domain of stores) The semantic domain of stores is
denoted by Σ, has metavariable σ associated and is a domain of functions
mapping syntactic variable identifiers x to semantic values v. Hence, σ :
Var 7→ V.

Definition 2.21 (Semantic domain of field-permission masks) The semantic do-
main of field-permission masks is denoted by ΠF, has metavariable πF associ-
ated and is a domain of functions mapping tuples of semantic objects o and
syntactic field identifiers f to semantic permissions q. Hence, πF : O× F 7→
Q. Furthermore, the field-permission mask mapping all pairs of objects and
fields to 0 is denoted by ∅F. Addition of field-permission masks is defined as
follows: (πF + πF

1 )(o, f) = πF(o, f) + πF
1 (o, f). Equality of field-permission

masks is defined as follows: πF = πF
1 ⇔ ∀(o, f). πF(o, f) = πF

1 (o, f).
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2.2. Semantics

Definition 2.22 (Semantic domain of predicate-permission masks) The semantic
domain of predicate-permission masks is denoted by ΠP, has metavariable πP

associated and is a domain of functions mapping semantic predicate iden-
tifiers p to semantic permissions q. Hence, πP : P 7→ Q. Furthermore, the
predicate-permission mask mapping all semantic predicate identifiers to 0
is denoted by ∅P. Addition of predicate-permission masks is defined as
follows: (πP + πP

1 )(p) = πP(p) + πP
1 (p). Equality of predicate-permission

masks is defined as follows: πP = πP
1 ⇔ ∀p. πP(p) = πP

1 (p).

Definition 2.23 (Semantic domain of wand-permission masks) The semantic do-
main of wand-permission masks is denoted by ΠW, has metavariable πW as-
sociated and is a domain of functions mapping semantic wand identifiers
w to semantic permissions q. Hence, πW : W 7→ Q. Furthermore, the
wand-permission mask mapping all semantic wand identifiers to 0 is de-
noted by ∅W. Addition of wand-permission masks is defined as follows:
(πW + πW

1 )(w) = πW(w) + πW
1 (w). Equality of wand-permission masks is

defined as follows: πW = πW
1 ⇔ ∀w. πW(w) = πW

1 (w).

Definition 2.24 (Semantic domain of permission masks) The semantic domain
of permission masks is denoted by Π, has metavariable π associated and is a
domain of triples over the domains of field-permission masks ΠF, predicate-
permission masks ΠP and wand-permission masks ΠW. Hence, π =
(πF, πP, πW). Furthermore, the permission mask consisting of ∅F, ∅P and
∅W is denoted by π∅, i.e. π∅ = (∅F, ∅P, ∅W). Addition of permission
masks is defined as follows: (πF, πP, πW) + (πF

1 , πP
1 , πW

1 ) = (πF + πF
1 , πP +

πP
1 , πW + πW

1 ). Equality of permission masks is defined as follows:
(πF, πP, πW) = (πF

1 , πP
1 , πW

1 )⇔ πF = πF
1 ∧ πP = πP

1 ∧ πW = πW
1 .

Definition 2.25 (Heap equivalence on permission masks) The judgment of a
heap h and a heap h1 to be equal on permission mask π = (πF, πP, πW)

is expressed through predicate h
π≡ h1 and defined as follows: h

π≡ h1 ⇔
∀(o, f). πF(o, f) > 0⇒ h(o, f) = h1(o, f).

Definition 2.26 (Evaluation context) The evaluation strategy of the Viper se-
mantics on a sequence of statements s1; s2 is to evaluate s1 before s2. To
formally capture this strategy, the evaluation context C is introduced and de-
fined by the following production rule.

C := • | C; s

The result of plugging a statement s into context C is then given by the
following equations.

C[ε] =


ε if C ≡ •
s if C ≡ •; s
C1[ε]; s if C ≡ C1; s

9



2.2. Semantics

C[s] =

{
s if C ≡ •
C1[s]; s1 if C ≡ C1; s1

Definition 2.27 (Semantic domain of configurations) The semantic domain of
configurations is denoted by Φ, has metavariable ϕ associated and is a do-
main of triples over the domains of heaps H, stores Σ and permission masks
Π. Hence, ϕ = (h, σ, π).

Definition 2.28 (Semantic domain of traces) The semantic domain of traces
is denoted by Λ, has metavariable λ associated and is a domain of tu-
ples of sequences of semantic configurations ϕ and a label-mapping func-
tion L : Label 7→ N. Hence, λ = (ϕ, L). The purpose of L is to record
the length of ϕ when λ reaches a label statement. This will allow for
labelled-old expressions to be evaluated in the last configuration of ϕ if
ϕ was the sequence of configurations when λ reached the label. The do-
main of traces Λ has a distinct sub-domain of error traces ΛErr with ΛErr
containing one dedicated trace for each of the error values defined in 2.15:
ΛErr = { λdiv, λnull, λass, λperm, λinf, λwand }. Over the domain of traces Λ,
the following operations are defined: appending a configuration ϕn to a trace
λ = ([ϕ1, ..., ϕn−1], L) is denoted as λ:ϕn and results in a trace ([ϕ1, ..., ϕn], L),
computing the length of a trace λ = ([ϕ1, ..., ϕn], L) is denoted as |λ| and
results in n, computing a sub-sequence of a trace λ = ([ϕ1, ..., ϕn], L) is
denoted as λ[i, j], for i ≤ j, and results in a trace ([ϕi, ..., ϕj], L), applying
the label-mapping function L of trace λ = ([ϕ1, ..., ϕn], L) at point l, i.e.
L(l), is denoted as λ(l), updating the label-mapping function L of trace
λ = ([ϕ1, ..., ϕn], L) at point l to map to n ∈ N, i.e. L[l 7→ n], is denoted
as λ[l 7→ n], retrieving the first configuration of trace λ = ([ϕ1, ..., ϕn], L) is
denoted by FIRST(λ) and results in ϕ1 and retrieving the last configuration
of trace λ = ([ϕ1, ..., ϕn], L) is denoted by LAST(λ) and results in ϕn. Subse-
quently, traces will be used as the state with respect to which the semantics
of Viper language constructs will be defined. As such, tuples (C[s], λ) will
be considered and λ will be called a complete trace if C[s] = ε and λ will be
called a partial trace if C[s] 6= ε.

Definition 2.29 (Local permission collection function) The semantics will often
require to collect all permissions explicitly contained in an assertion a. The
semantic function Q : (A× Λ× B) 7→ Π ∪ X, defined as algorithm 1 in ap-
pendix A, takes care of this and collects all permissions contained inside
assertion a under a given trace λ. The boolean flag, given as the third argu-
ment to Q, indicates whether the permissions inside assertion a should be
collected iso-recursively or equi-recursively [9]: in case a contains a predicate p
then an iso-recursive collection simply collects the permissions mentioned in
connection with p whereas an equi-recursive collection fully unrolls p and col-
lects all permissions contained within this full unrolling. An equi-recursive
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2.2. Semantics

collection of permission renders Q partial in case recursively defined pred-
icates have an infinite unrolling. Note that algorithm 1 makes use of the
expression evaluation function Ve, λU which is defined in 2.58. In order to
have a semantics of total functions, Q is now totalised by defining the func-
tion QT( , , ) : (A×Λ× B) 7→ Π ∪ X. This function computes, even in the
presence of predicates with an infinite unrolling, either a permission mask
reflecting the permissions contained in an assertion, or an error.

QT(a, λ, b) =


π if Q(a, λ, b) = π

x if Q(a, λ, b) = x
xinf if @π. Q(a, λ, b) = π ∧ @x. Q(a, λ, b) = x

The following lemmas demonstrate that the totalised permission collection
function QT(a, λ, b) is deterministic.

Lemma 2.30 (Totalised local permission collection is total)
∀a, λ, b.∃u ∈ Π ∪ X. QT(a, λ, b) = u

Proof Follows from totalising conditions in definition of QT( , , ). �

Lemma 2.31 (Local permission collection is deterministic)
∀a, λ, b, ∀u1, u2 ∈ Π ∪ X. Q(a, λ, b) = u1 ∧ Q(a, λ, b) = u2 ⇒ u1 = u2

Proof By structural induction on a and assuming the expression evaluation
Ve, λU deterministic. �

Corollary 2.32 (Totalised local permission collection is deterministic)
∀a, λ, b. QT(a, λ, b) = u1 ∧ QT(a, λ, b) = u2 ⇒ u1 = u2

Proof Follows from lemmas 2.30 and 2.31. �

Definition 2.33 (Global permission collection function) The semantics will also
require to collect all permissions to heap locations either directly given by
a permission mask or indirectly given by a full unrolling of predicates to
which a permission mask has access to. These permissions are collected
by the semantic function G( , ) : (Π × Λ) 7→ Π ∪ X, which is defined as
algorithm 2 in appendix A. In case of predicates with an infinite unrolling, G
won’t terminate. In order to have a semantics of total functions, the function
GT( , ) : (Π × Λ) 7→ Π ∪ X is now defined and computes, even in the
presence of predicates with an infinite unrolling, either a permission mask,
reflecting all directly and indirectly accessible heap locations, or an error.

GT(π, λ) =


π1 if G(π, λ) = π1

x if G(π, λ) = x
xinf if @π1. G(π, λ) = π1 ∧ @x. G(π, λ) = x

11



2.2. Semantics

The following lemmas demonstrate that the totalised global permission col-
lection function GT(π, λ) is deterministic.

Lemma 2.34 (Totalised global permission collection is total)
∀π, λ.∃u ∈ Π ∪ X. GT(π, λ) = u

Proof Follows from totalising conditions in definition of GT( , ). �

Lemma 2.35 (Global permission collection is deterministic)
∀π, λ, ∀u1, u2 ∈ Π ∪ X. G(π, λ) = u1 ∧ G(π, λ) = u2 ⇒ u1 = u2

Proof Follows from a full unrolling of the premises and lemma 2.32. �

Corollary 2.36 (Totalised global permission collection is deterministic)
∀π, λ. GT(π, λ) = u1 ∧ GT(π, λ) = u2 ⇒ u1 = u2

Proof Follows from lemmas 2.34 and 2.35. �

2.2.2 Evaluation of Expressions and Assertions

Assertion a, which can also be an expression e, evaluates in trace λ to u ∈
V ∪ X if the subsequently inductively defined semantic function ⇓ maps a,
given λ, to u. If ⇓ maps a, given λ, to u, the notation a ⇓λ u will be used.

Definition 2.37 (Evaluation in error-trace) All assertions evaluate to False
within an error-trace.

λ ∈ ΛErr

a ⇓λ False

All subsequent evaluation rules assume an initial non-error trace.

Definition 2.38 (Evaluation of null, booleans and numerals) The syntactic null
value null, booleans b and numerals n are unconditionally evaluated accord-
ing to the following rules.

null ⇓λ null b ⇓λ Bb n ⇓λ Zn

Definition 2.39 (Evaluation of variable identifiers) Variable x evaluates to the
value contained for it in store σ of the last configuration of trace λ.

(h, σ, π) = LAST(λ)

x ⇓λ σ(x)

12



2.2. Semantics

Definition 2.40 (Evaluation of field-lookups) Evaluating a field-lookup x.f re-
quires receiver x not to be null. If receiver x is null, the error value xnull is
generated. Else, if no permission to field f of receiver x is available, the error
value xperm is generated. Otherwise, the semantic value stored in heap h for
the field f of receiver x is returned.

(h, σ, π) = LAST(λ) σ(x) = null

x.f ⇓λ xnull

(h, σ, π) = LAST(λ) π = (πF, πP, πW)
σ(x) = o πF(o, f) = 0

x.f ⇓λ xperm

(h, σ, π) = LAST(λ) π = (πF, πP, πW)
σ(x) = o πF(o, f) > 0

x.f ⇓λ h(o, f)

Definition 2.41 (Evaluation of unary operations) Evaluation of unary opera-
tions is shown for the case of evaluating an unary negation operation. The
remaining cases evaluate analogous.

e ⇓λ x

¬ e ⇓λ x

e ⇓λ b

¬ e ⇓λ ¬b

Definition 2.42 (Evaluation of binary operations) Evaluation of binary opera-
tion expressions is shown for the case of evaluating a division operation.
This case is special as it potentially generates a division-by-zero error. Eval-
uation of the remaining cases is analogous with the exception of not having
to capture the division-by-zero error.

e ⇓λ x

e / e1 ⇓λ x

e ⇓λ v e1 ⇓λ x

e / e1 ⇓λ x

e ⇓λ v e1 ⇓λ 0

e / e1 ⇓λ xdiv

e ⇓λ v e1 ⇓λ v1

e / e1 ⇓λ v / v1

Definition 2.43 (Evaluation of function calls) The semantics of function-calls
renders the expression evaluation function ⇓ partial in case the function to
evaluate recurses infinitely. Definition 2.58 below will take care of this issue
and establishes for Viper a semantics of total functions.

13



2.2. Semantics

∃i. ei ⇓λ x

fun(ei) ⇓λ x

ei ⇓λ:(h,σ,π) vi xi = Param(fun)
a = Pre(fun) a ⇓

λ:(h,σ[xi 7→ vi ],π) x

fun(ei) ⇓λ:(h,σ,π) x

ei ⇓λ:(h,σ,π) vi xi = Param(fun)
a = Pre(fun) a ⇓

λ:(h,σ[xi 7→ vi ],π) False

fun(ei) ⇓λ:(h,σ,π) xass

ei ⇓λ:(h,σ,π) vi xi = Param(fun)
a = Pre(fun) a ⇓

λ:(h,σ[xi 7→ vi ],π) True
Body(fun) ⇓

λ:(h,σ[xi 7→ vi ],π) x

fun(ei) ⇓λ:(h,σ,π) x

ei ⇓λ:(h,σ,π) vi xi = Param(fun)
a = Pre(fun) a ⇓

λ:(h,σ[xi 7→ vi ],π) True
Body(fun) ⇓

λ:(h,σ[xi 7→ vi ],π) v
a1 = Post(fun) a1 ⇓λ:(h,σ[xi 7→ vi ][result 7→v],π) x

fun(ei) ⇓λ:(h,σ,π) x

ei ⇓λ:(h,σ,π) vi xi = Param(fun)
a = Pre(fun) a ⇓

λ:(h,σ[xi 7→ vi ],π) True
Body(fun) ⇓

λ:(h,σ[xi 7→ vi ],π) v
a1 = Post(fun) a1 ⇓λ:(h,σ[xi 7→ vi ][result 7→v],π) False

fun(ei) ⇓λ:(h,σ,π) xass

ei ⇓λ:(h,σ,π) vi xi = Param(fun)
a = Pre(fun) a ⇓

λ:(h,σ[xi 7→ vi ],π) True
Body(fun) ⇓

λ:(h,σ[xi 7→ vi ],π) v
a1 = Post(fun) a1 ⇓λ:(h,σ[xi 7→ vi ][result 7→v],π) True

fun(ei) ⇓λ:(h,σ,π) v

14



2.2. Semantics

Definition 2.44 (Evaluation of predicate unfoldings) An unfolding expression
unfolding acc(p(ei)) in e first requires sufficient permission to unfold pred-
icate p. If not enough permission is available, a permission-error results.
Otherwise, the current trace is extended with all permissions implied by a
single unrolling of predicate p and then continues to evaluate e with these
additional permissions. Recall from 2.29, that QT( , , ) with the third argu-
ment set to True collects the permissions inside an assertion iso-recursively.

∃i. ei ⇓λ:(h,σ,π) x

unfolding acc(p(ei)) in e ⇓λ:(h,σ,π) x

π = (πF, πP, πW) ei ⇓λ:(h,σ,π) vi p = Pn(p, vi) πP(p) < 1

unfolding acc(p(ei)) in e ⇓λ:(h,σ,π) xperm

π = (πF, πP, πW) xi = Param(p) ei ⇓λ:(h,σ,π) vi

p= Pn(p, vi) πP(p) ≥ 1 x = QT(Body(p), λ:(h, σ[xi 7→ vi], π), True)

unfolding acc(p(ei)) in e ⇓λ:(h,σ,π) x

π = (πF, πP, πW) xi = Param(p) ei ⇓λ:(h,σ,π) vi

p= Pn(p, vi) πP(p) ≥ 1 π1 = QT(Body(p), λ:(h, σ[xi 7→ vi], π), True)
π2 = (πF, πP[p 7→ πP(p)− 1], πW) + π1 e ⇓λ:(h,σ,π2) u

unfolding acc(p(ei)) in e ⇓λ:(h,σ,π) u

Definition 2.45 (Evaluation of field-permission lookups) Evaluation of a field-
perm expression requires to retrieve the permission stored in the
field-permission mask πF contained in the head configuration of the current
trace.

(h, σ, π) = LAST(λ) σ(x) = null

perm(x.f) ⇓λ xnull

(h, σ, π) = LAST(λ) π = (πF, πP, πW) σ(x) = o

perm(x.f) ⇓λ πF(o, f)

Definition 2.46 (Evaluation of predicate-permission lookups) Assume predicate
p contained in expression perm(p(ei)) to be of arity n ∈ N. First, the pred-
icate is identified based on the evaluation of the n subexpressions ei. Then
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the permission value for the identified predicate stored in the predicate-
permission mask πP contained in the head configuration of the current trace
is returned.

∃ i : ei ⇓λ x

perm(p(ei)) ⇓λ x

(h, σ, π) = LAST(λ) π = (πF, πP, πW)
ei ⇓λ vi p = Pn(p, vi)

perm(p(ei)) ⇓λ πP(p)

Definition 2.47 (Evaluation of old value lookups) Evaluating old(e) amounts to
evaluating e in the first configuration of the given trace λ.

λ1 = λ[1, 1] e ⇓λ1 u

old(e) ⇓λ u

Definition 2.48 (Evaluation of labelled-old lookups) Evaluating old[l](e)
amounts to evaluating e in the configuration that was last in λ when λ
reached the label statement for l.

λ1 = λ[1, λ(l)] e ⇓λ1 u

old[l](e) ⇓λ u

Definition 2.49 (Evaluation of wand applications) Evaluating applying a −∗
a1 in e first requires the current permission mask π to have permissions to
the actual wand instance a −∗ a1. Moreover, a has to hold in the current
trace λ:(h, σ, π). If so, λ:(h, σ, π) temporarily removes the permissions π1
contained in a, adds the permissions π2 contained in a1, assumes with h1 all
heap information contained in a1 and then evaluates the expression e with
these temporary modifications. Recall QT(a, λ, b) to denote the totalised per-
mission collection function as defined in 2.29. If b is True then permissions
are collected iso-recursively. Below, HT(a, λ, b) is an assumed total and de-
terministic function computing a list of heap locations and values explicitly
mentioned within a. Moreover, the heap locations returned are locations to
which λ has non-zero access. If b is True then the list is computed without
unrolling of predicates contained in a. If b is False then the list is computed
with unrolling of predicates contained in a.
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a −∗ a1 ⇓λ:(h,σ,π) True a ⇓λ:(h,σ,π) True QT(a, λ:(h, σ, π), True) = π1

QT(a1, λ:(h, σ, π), True) = π2 QT(a −∗ a1, λ:(h, σ, π), True) = π3

HT(a1, λ:(h, σ, π), True) = (oi, fi, vi) h1 = h[(oi, fi) 7→ vi]
π4 = π − π1 + π2 − π3 e ⇓λ:(h1,σ,π4) v

applying a −∗ a1 in e ⇓λ:(h,σ,π) v

Definition 2.50 (Evaluation of field-access assertions) Evaluating assertion
acc(x.f, q) requires receiver x not to be null. If x is null, a null-error is gener-
ated. Otherwise, the evaluation is True if the current field-permission mask
πF contains at least permission q to field f of receiver x, and False otherwise.

(h, σ, π) = LAST(λ) σ(x) = null

acc(x.f, q) ⇓λ xnull

(h, σ, π) = LAST(λ) π = (πF, πP, πW) σ(x) = o Qq < 0

acc(x.f, q) ⇓λ xperm

(h, σ, π) = LAST(λ) π = (πF, πP, πW) σ(x) = o Qq ≥ 0

acc(x.f, q) ⇓λ πF(o, f) ≥ Qq

Definition 2.51 (Evaluation of predicate-access assertions) Evaluating assertion
acc(p(ei), q) is similar to evaluating a field-access assertion except to first
computing the actual semantic predicate p.

∃ i : ei ⇓λ x

acc(p(ei), q) ⇓λ x

ei ⇓λ vi Qq < 0

acc(p(ei), q) ⇓λ xperm

(h, σ, π) = LAST(λ) π = (πF, πP, πW)
ei ⇓λ vi Qq ≥ 0 p = Pn(p, vi)

acc(p(ei), q) ⇓λ πP(p) ≥ Qq

Definition 2.52 (Evaluation of conditional assertions) Assertion e → a evalu-
ates to True in case the conditional expression e evaluates to False. Other-
wise, it evaluates to the value to which a evaluates.

e ⇓λ x

e → a ⇓λ x

e ⇓λ False

e → a ⇓λ True

e ⇓λ True a ⇓λ u

e → a ⇓λ u
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2.2. Semantics

Definition 2.53 (Evaluation of separating conjunction assertions) Assertion
a && a1 can only evaluate to True if the current permission mask π can be
split into π1 and π2 s.t. a evaluates to True with π1 and a1 evaluates to True
with π2. This semantics reflects the semantics of separating conjunctions as
it was originally given in [4].

∃π1, π2 : π = π1 + π2 ∧ a ⇓λ:(h,σ,π1) True ∧ a1 ⇓λ:(h,σ,π2) True

a && a1 ⇓λ:(h,σ,π) True

If there is no such split of π, then the only requirement the semantics im-
poses is the assertion a && a1 not to evaluate to True. Hence, an implemen-
tation is free to chose how to handle the complementary case and letting
it either result in False or, if a sub-assertion is evaluated, possibly in some
error x. The semantics at the level of traces will then either result in λass, in
case the implementation handles the complementary case by letting it result
in False, or it results in λx. In any case, the verification of a program will
fail.

Definition 2.54 (Evaluation of magic-wand assertions)

Wn(a −∗ a1, λ) = x

a −∗ a1 ⇓λ x

(h, σ, π) = LAST(λ) π = (πF, πP, πW) Wn(a −∗ a1, λ) = w

a −∗ a1 ⇓λ πW(w) ≥ 1

Definition 2.55 (Evaluation of all-quantified permission assertions) An
all-quantified permission assertion forall x : t :: e requires e to evaluate
to True if any value from the domain of type t substitutes for x inside e.

∃v ∈ Dt. e[x1/x] ⇓λ:(h,σ[x1 7→v],π) x

forall x : t :: e ⇓λ:(h,σ,π) x

∃v ∈ Dt. e[x1/x] ⇓λ:(h,σ[x1 7→v],π) False

forall x : t :: e ⇓λ:(h,σ,π) False

∀v ∈ Dt. e[x1/x] ⇓λ:(h,σ[x1 7→v],π) True

forall x : t :: e ⇓λ:(h,σ,π) True
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2.2. Semantics

Definition 2.56 (Evaluation of existentially-quantified permission assertions) An
existentially-quantified permission assertion exists x : t :: e requires the
domain of type t to have a value v s.t. e evaluates to True if v substitutes for
x inside e.

∃v ∈ Dt. e[x1/x] ⇓λ:(h,σ[x1 7→v],π) True

exists x : t :: e ⇓λ:(h,σ,π) True

@v ∈ Dt. e[x1/x] ⇓λ:(h,σ[x1 7→v],π) True

exists x : t :: e ⇓λ:(h,σ,π) False

Definition 2.57 (Evaluation of forperm assertions) A forperm assertion
forperm[f] x :: a requires assertion a, which is a function of x, to evaluate to
True whenever x has non-zero access permissions to field f.

π = (πF, πP, πW)
∃o. πF(o, f) > 0 ∧ a[x1/x] ⇓λ:(h,σ[x1 7→o],π) x

forperm[f] x :: a ⇓λ:(h,σ,π) x

π = (πF, πP, πW)
∃o. πF(o, f) > 0 ∧ a[x1/x] ⇓λ:(h,σ[x1 7→o],π) False

forperm[f] x :: a ⇓λ:(h,σ,π) False

π = (πF, πP, πW)
∀o. πF(o, f) > 0 ⇒ a[x1/x] ⇓λ:(h,σ[x1 7→o],π) True

forperm[f] x :: a ⇓λ:(h,σ,π) True

Definition 2.58 (Value of assertions) The assertion evaluation function ⇓ de-
fined above is partial as a function-call evaluation won’t terminate if the
evaluated function recurses infinitely. In order to have a semantics of total
functions, the function V , U : A×Λ 7→ V∪X is now defined and computes,
even in the presence of infinitely recursing functions, either a value of an
assertion or an error.

Va, λU =


v if a ⇓λ v
x if a ⇓λ x
xinf if @v. a ⇓λ v ∧ @x. a ⇓λ x
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2.2. Semantics

The following lemmas demonstrate that the totalised assertion evaluation
function Va, λU is deterministic.

Lemma 2.59 (Totalised assertion evaluation is total)
∀a, λ.∃u ∈ V∪ X. Va, λU = u

Proof Follows from totalising conditions in definition of V , U. �

Lemma 2.60 (Assertion evaluation is deterministic)
∀a, λ, ∀u1, u2 ∈ V∪ X. a ⇓λ u1 ∧ a ⇓λ u2 ⇒ u1 = u2

Proof By structural induction on a and assuming the totalised local permis-
sion collection QT(a, λ, b) deterministic. �

Corollary 2.61 (Totalised assertion evaluation is deterministic)
∀a, λ. Va, λU = u1 ∧ Va, λU = u2 ⇒ u1 = u2

Proof Follows from lemmas 2.59 and 2.60. �

2.2.3 Trace Semantics of Statements

The semantics of a statement s is defined as the change of a state represented
by a trace λ. The semantics of statement s is thus defined with respect to
a partial trace (s, λ) and its evolution into a partial trace (s1, λ1). The par-
tial trace (s, λ) evolves into (s1, λ1) if the subsequently inductively defined
binary semantic function  maps (s, λ) to (s1, λ1). To denote that  maps
(s, λ) to (s1, λ1), the notation (s, λ) (s1, λ1) will be used. Note that due to
the following lemma, no explicit semantic rule for sequences of statements
will be required.

Lemma 2.62 (Superfluous plugging composition)
∀C, C1, s. ∃C2. C1[C[s]] = C2[s]

Proof By induction on C1. �

Definition 2.63 (Unconditional error-trace propagation) The semantics of any
statement s is to unconditionally propagate an error-trace.

λ ∈ ΛErr

(C[s], λ) (C[ε], λ)

All subsequent rules of the trace semantics assume an initial non-error trace.

Definition 2.64 (Trace semantics of variable declaration statements) The seman-
tics of statement var x : t is to append to trace λ a new configuration where
for x an arbitrary value from the domain of type t is assumed. Note that
this semantics introduces non-determinism at the level of single traces and
recall that DRef = O ∪ { null }.
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(h, σ, π) = LAST(λ) v ∈ Dt

(C[var x : t], λ) (C[ε], λ:(h, σ[x 7→ v], π))

Definition 2.65 (Trace semantics of new statements) The semantics of statement
x := new(fi) is to let a trace λ assume for x an arbitrary object o which is not
yet used within λ. Note that this semantics introduces non-determinism
on the level of single traces. Furthermore, λ will subsequently have full
permission to all fields fi.

(h, σ, π) = LAST(λ) π = (πF, πP, πW) vi ∈ Dfi
o 6∈ O(λ) h1 = h[(o, fi) 7→ vi] σ′ = σ[x 7→ o] πF

1 = πF[(o, fi) 7→ 1]

(C[x := new(fi)], λ) (C[ε], λ:(h1, σ′, (πF
1 , πP, πW)))

Definition 2.66 (Trace semantics of variable assignment statements) The seman-
tics of statement x := e is to append to a trace λ a new configuration which
is equal to the current last configuration of λ except to contain an updated
store which maps x to the value to which e evaluates to.

Ve, λU = x

(C[x := e], λ) (C[ε], λx)

(h, σ, π) = LAST(λ) Ve, λU = v

(C[x := e], λ) (C[ε], λ:(h, σ[x 7→ v], π))

Definition 2.67 (Trace semantics of field assignment statements) The semantics
of statement x.f := x1 requires the trace λ to have full permission to field f of
receiver x. If not so, a permission-error is generated. Otherwise, and in case
x is not null, the statement appends to λ a configuration which is equal to
the current head configuration of λ except to contain a heap where field f of
receiver x is updated based on x1.

(h, σ, π) = LAST(λ) σ(x) = null

(C[x.f := x1], λ) (C[ε], λnull)

(h, σ, π) = LAST(λ) π = (πF, πP, πW)
σ(x) = o πF(o, f) < 1

(C[x.f := x1], λ) (C[ε], λperm)

(h, σ, π) = LAST(λ) π = (πF, πP, πW)
σ(x) = o πF(o, f) ≥ 1 σ(x1) = v

(C[x.f := x1], λ) (C[ε], λ:(h[(o, f) 7→ v], σ, π))
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Definition 2.68 (Trace semantics of method-call statements) The semantics of a
method-call x′i := m(ei) is given by an exhale of the precondition of m and an
inhale of the postcondition of m in the same context C and the same trace λ.
Thus, a method-call in Viper is essentially syntactic sugar.

aj = Pre(m) a′j = Post(m) ri = Ret(m) xi = Param(m)

(C[x′i := m(ei)], λ) (C[exhale aj[ei/xi]; inhale a′j[x
′
i/ri]], λ)

Definition 2.69 (Trace semantics of label statements) The semantics of a label
statement label l is to update the label-mapping function of trace λ to re-
member the current length of its sequence of configurations. This allows for
a subsequent labelled-old expression to be able to retrieve the configuration
which is currently the last configuration of λ.

λ1 = λ[l 7→ |λ|]

(C[label l], λ) (C[ε], λ1)

Definition 2.70 (Trace semantics of assert statements) The semantics of an as-
sert statement assert a is to generate an error-trace in case a evaluates to
False in the current trace λ. If a evaluates to True, the semantics is to con-
tinue in the evaluation context C without any further changes.

Va, λU = False

(C[assert a], λ) (C[ε], λass)

Va, λU = x

(C[assert a], λ) (C[ε], λx)

Va, λU = True

(C[assert a], λ) (C[ε], λ)

Definition 2.71 (Trace semantics of assume statements) The semantics of an as-
sume statement assume a is similar to the semantics of an assert statement,
except that no error-trace is generated in case a evaluates to False in the
current trace λ.

Va, λU = x

(C[assume a], λ) (C[ε], λx)

Va, λU = True

(C[assume a], λ) (C[ε], λ)

Definition 2.72 (Trace semantics of inhale statements) The semantics of an in-
hale statement inhale a is to assume all expressions contained in a and to
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extend the current trace λ with all permissions mentioned in accessibility
sub-assertions of a. If a contains a predicate p then the current permission
mask is extended with permissions to the instance of p. This reflects an iso-
recursive treatment of predicates. Furthermore, the semantics of inhaling a
conjunct of assertions a && a1 is given by the semantics of the sequence of an
inhale of a followed by an inhale of a1. Recall from 2.29 that QT(a, λ, b) is the
totalised permission collection function. If b is True, then the permissions
are collected iso-recursively.

(C[inhale e], λ) (C[assume e], λ)

QT(acc(x.f, q), λ, True) = x

(C[inhale acc(x.f, q)], λ) (C[ε], λx)

(h, σ, π) = LAST(λ) QT(acc(x.f, q), λ, True) = π1

(C[inhale acc(x.f, q)], λ) (C[ε], λ:(h, σ, π + π1))

QT(acc(p(ei), q), λ, True) = x

(C[inhale acc(p(ei), q)], λ) (C[ε], λx)

(h, σ, π) = LAST(λ) QT(acc(p(ei), q), λ, True) = π1

(C[inhale acc(p(ei), q)], λ) (C[ε], λ:(h, σ, π + π1))

Ve, λU = x

(C[inhale e → a], λ) (C[ε], λx)

Ve, λU = False

(C[inhale e → a], λ) (C[ε], λ)

Ve, λU = True

(C[inhale e → a], λ) (C[inhale a], λ)

(C[inhale a1 && a2], λ) (C[inhale a1; inhale a2], λ)
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QT(a −∗ a1, λ, True) = x

(C[inhale a −∗ a1], λ) (C[ε], λx)

(h, σ, π) = LAST(λ) QT(a −∗ a1, λ, True) = π1

(C[inhale a −∗ a1], λ) (C[ε], λ:(h, σ, π + π1))

(C[inhale forall x : t :: a], λ) (C[assume forall x : t :: a], λ)

(C[inhale exists x : t :: a], λ) (C[assume exists x : t :: a], λ)

(C[inhale [a1, a2]], λ) (C[inhale a1], λ)

(C[inhale forperm[f] x :: a], λ) (C[assume forperm[f] x :: a], λ)

Definition 2.73 (Trace semantics of exhale statements) The semantics of an ex-
hale statement exhale a is to assert all expressions contained in a and to re-
move from a trace all permissions mentioned in accessibility sub-assertions
of a. Furthermore, the semantics of exhaling a conjunct of assertions a && a1
is given by the semantics of the sequence of an exhale of a followed by an
exhale of a1.

(C[exhale e], λ) (C[assert e], λ)

The semantics of exhaling the permission to a predicate is to havoc all heap
locations for which the current trace λ has neither direct permission nor has
permission folded inside a predicate it currently has access to. The rule be-
low thus makes use of the global permission collection function GT( , ). Re-
call that this function computes a permission mask π2 that unifies all direct
permissions given by πF and all implicit permissions to heap locations given
by a full unrolling of predicates to which the current predicate-permission
mask πP has access to. Note that this semantics corresponds to an equi-
recursive treatment of predicates, which is needed for soundness reasons,
but renders the semantics not implementable.
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∃ i. Vei, λU = x

(C[exhale acc(p(ei), q)], λ) (C[ε], λx)

(h, σ, π) = LAST(λ) π = (πF, πP, πW)

Vei, λU = vi Qq < 0

(C[exhale acc(p(ei), q)], λ) (C[ε], λperm)

(h, σ, π) = LAST(λ) π = (πF, πP, πW)

Vei, λU = vi Qq ≥ 0 p = Pn(p, vi) πP(p) < Qq

(C[exhale acc(p(ei), q)], λ) (C[ε], λperm)

(h, σ, π) = LAST(λ) π = (πF, πP, πW)

Vei, λU = vi Qq ≥ 0 p = Pn(p, vi) πP(p) ≥ Qq
π1 = (πF, πP[p 7→ πP(p)−Qq], πW) GT(π1, λ) = x

(C[exhale acc(p(ei), q)], λ) (C[ε], λx)

(h, σ, π) = LAST(λ) π = (πF, πP, πW)

Vei, λU = vi Qq ≥ 0 p = Pn(p, vi) πP(p) ≥ Qq

π1 = (πF, πP[p 7→ πP(p)−Qq], πW) GT(π1, λ) = π2 h1
π2≡ h

(C[exhale acc(p(ei), q)], λ) (C[ε], λ:(h1, σ, π1))

The semantics of exhaling the permission to a field is analogous to the se-
mantics of exhaling the permission to a predicate and is motivated by a
similar reasoning as described above.

(h, σ, π) = LAST(λ) σ(x) = null

(C[exhale acc(x.f, q)], λ) (C[ε], λnull)

(h, σ, π) = LAST(λ) π = (πF, πP, πW)
σ(x) = o Qq < 0

(C[exhale acc(x.f, q)], λ) (C[ε], λperm)

(h, σ, π) = LAST(λ) π = (πF, πP, πW)
σ(x) = o Qq ≥ 0 πF(o, f) < Qq

(C[exhale acc(x.f, q)], λ) (C[ε], λperm)
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(h, σ, π) = LAST(λ) π = (πF, πP, πW)
σ(x) = o Qq ≥ 0 πF(o, f) ≥ Qq

π1 = (πF[(o, f) 7→ πF(o, f)−Qq], πP, πW) GT(π1, λ) = x

(C[exhale acc(x.f, q)], λ) (C[ε], λx)

(h, σ, π) = LAST(λ) π = (πF, πP, πW)
σ(x) = o Qq ≥ 0 πF(o, f) ≥ Qq

π1 = (πF[(o, f) 7→ πF(o, f)−Qq], πP, πW) GT(π1, λ) = π2 h1
π2≡ h

(C[exhale acc(x.f, q)], λ) (C[ε], λ:(h1, σ, π1))

Ve, λU = x

(C[exhale e → a], λ) (C[ε], λx)

Ve, λU = False

(C[exhale e → a], λ) (C[ε], λ)

Ve, λU = True

(C[exhale e → a], λ) (C[exhale a], λ)

(C[exhale a1 && a2], λ) (C[exhale a1; exhale a2], λ)

Wn(a −∗ a1, λ) = x

(C[exhale a −∗ a1], λ) (C[ε], λx)

(h, σ, π) = LAST(λ) π = (πF, πP, πW)
Wn(a −∗ a1, λ) = w πW(w) < 1

(C[exhale a −∗ a1], λ) (C[ε], λperm)

(h, σ, π) = LAST(λ) π = (πF, πP, πW)
Wn(a −∗ a1, λ) = w πW(w) ≥ 1 πW

1 = πW[w 7→ πW(w)− 1]

(C[exhale a −∗ a1], λ) (C[ε], λ:(h, σ, (πF, πP, πW
1 )))

(C[exhale forall x : t :: a], λ) (C[assert forall x : t :: a], λ)
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(C[exhale exists x : t :: a], λ) (C[assert exists x : t :: a], λ)

(C[exhale [a1, a2]], λ) (C[exhale a2], λ)

(C[exhale forperm[f] x :: a], λ) (C[assert forperm[f] x :: a], λ)

Definition 2.74 (Trace semantics of fold statements) The semantics of a
predicate-fold statement fold acc(p(ei), q) is to remove from a trace λ all
permissions implied by a single unrolling of p. These permissions are col-
lected by the totalised permission collection function QT(a, λ, b), which was
defined in 2.29.

∃i. Vei, λU = x

(C[fold acc(p(ei), q)], λ) (C[ε], λx)

(h, σ, π) = LAST(λ) xi = Param(p) Vei, λU = vi

QT(Body(p), λ[1, |λ| − 1]:(h, σ[xi 7→ vi], π), True) = x

(C[fold acc(p(ei), q)], λ) (C[ε], λx)

(h, σ, π) = LAST(λ) xi = Param(p) Vei, λU = vi

QT(Body(p), λ[1, |λ| − 1]:(h, σ[xi 7→ vi], π), True) = π1 π1 > π

(C[fold acc(p(ei), q)], λ) (C[ε], λperm)

(h, σ, π) = LAST(λ) π = (πF, πP, πW) xi = Param(p) Vei, λU = vi
QT(Body(p), λ[1, |λ| − 1]:(h, σ[xi 7→ vi], π), True) = π1 π1 ≤ π p = Pn(p, vi)

(C[fold acc(p(ei), q)], λ) (C[ε], λ:(h, σ, (πF, πP[p 7→ πP(p) + Qq], πW)− π1))

Definition 2.75 (Trace semantics of unfold statements) The semantics of a
predicate-unfold statement unfold acc(p(ei), q) is similar to the semantics
of the predicate-fold statement but uses the totalised permission collection
function QT(a, λ, b) to add to a trace all permissions implied by a single un-
rolling of p.
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∃i. Vei, λU = x

(C[unfold acc(p(ei), q)], λ) (C[ε], λx)

(h, σ, π) = LAST(λ) π = (πF, πP, πW)

Vei, λU = vi Qq < 0

(C[unfold acc(p(ei), q)], λ) (C[ε], λperm)

(h, σ, π) = LAST(λ) π = (πF, πP, πW)

Vei, λU = vi Qq ≥ 0 p = Pn(p, vi) πP(p) < Qq

(C[unfold acc(p(ei), q)], λ) (C[ε], λperm)

(h, σ, π) = LAST(λ) π = (πF, πP, πW) xi = Param(p)
Vei, λU = vi Qq ≥ 0 p = Pn(p, vi) πP(p) ≥ Qq

QT(Body(p), λ[1, |λ| − 1]:(h, σ[xi 7→ vi], π), True) = x

(C[unfold acc(p(ei), q)], λ) (C[ε], λx)

(h, σ, π) = LAST(λ) π = (πF, πP, πW) xi = Param(p)
Vei, λU = vi Qq ≥ 0 p = Pn(p, vi) πP(p) ≥ Qq

QT(Body(p), λ[1, |λ| − 1]:(h, σ[xi 7→ vi], π), True) = π1

(C[unfold acc(p(ei), q)], λ) (C[ε], λ:(h, σ, (πF, πP[p 7→ πP(p)−Qq], πW) + π1))

Definition 2.76 (Trace semantics of wand-application statements) The semantics
of a wand-apply statement apply a −∗ a1 is given by the semantics of the
sequence of an exhale of the wand-instance itself, an exhale of a without
randomisation of the heap (thus the usage of exhale’ which is almost exhale
but removes permissions without randomisation of the heap) and an inhale
of a1. Not to randomise the heap is important as a1 might immediately give
back permissions which are removed by the exhale of a. Thus, the heap
values have to be preserved between exhaling a and inhaling a1.

(C[apply a −∗ a1], λ) (C[exhale a −∗ a1; exhale’ a; inhale a1], λ)

Definition 2.77 (Trace semantics of if-then-else statements) The semantics of
statement if e then s1 else s2 is to allow for two computations in the same
context C and on the same trace λ: one computation reflects taking the
if-branch, one reflects taking the else-branch. The semantics of taking the
if-branch, for example, is given by the sequence of assuming the condition
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e followed by the semantics of the statement s1 making up the body of the
if-branch.

(C[if e then s1 else s2], λ) (C[assume e; s1], λ)

(C[if e then s1 else s2], λ) (C[assume ¬e; s2], λ)

Definition 2.78 (Trace semantics of while statements) The semantics of state-
ment while e invariant a do s1 is to allow for two computations in the same
context C and on the same trace λ: the first computation reflects entering
the body of the while loop and the second computation reflects the body
of the while loop not being entered. Below, the variables to havoc are the
variables which are written to inside the body s1 of the while-statement.

(C[while e invariant a do s1], λ) (C[exhale a; havoc x; inhale a && e; s1; exhale a], λ)

(C[while e invariant a do s1], λ) (C[exhale a; havoc x; inhale a &&¬e], λ)

(h, σ, π) = LAST(λ) v ∈ Dx

(C[havoc x], λ) (C[ε], λ:(h, σ[x 7→ v], π))

As has been noted, the semantics of Viper statements on the level of a single
partial trace is non-deterministic with non-determinism introduced by the
following statements: variable declarations (definition 2.64), new-statements
(definition 2.65), exhaling permissions to fields (definition 2.73) and while-
statements (definition 2.78).

2.2.4 Verified Viper Program

This section introduces the notion of a verified Viper program. The verifica-
tion of a Viper program is a judgment about all possible evaluations of the
Viper program. Hence, the trace semantics defined in the previous chapter
is not directly suitable to capture the notion of a verified program but first
requires a lifting to the level of sets of partial traces. As a preliminary to for-
mally defining the notion of a verified program, the trace semantics, defined
in the previous chapter, is thus lifted to the level of sets of traces. Moreover,
a reflexive and transitive closure is defined over this lifting, with the closure
then being the basis for defining the notion of a verified Viper program.
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Definition 2.79 (Lifting of trace semantics to sets of traces) Assume ψ to be a
set of partial traces and complete traces. To allow for the evaluation of ψ,
the trace semantics  , defined in section 2.2.3, is lifted to sets of traces as
follows:

ψ { (s1, λ1) | (s, λ) ∈ ψ. (s, λ) (s1, λ1) }

Lemma 2.80 (Lifting of trace semantics is total)
∀ψ. ∃ψ1. ψ ψ1

Proof By induction on the size of ψ, a case analysis of the next statement to
be evaluated in the last partial trace added to ψ, using totality of the totalised
assertion evaluation Va, λU (lemma 2.59), using totality of the totalised local
permission collection QT(a, λ, b) (lemma 2.30) and using totality of the to-
talised global permission collection GT(π, λ) (lemma 2.34). �

Lemma 2.81 (Lifting of trace semantics is deterministic)
∀ψ. ψ ψ1 ∧ ψ ψ2 ⇒ ψ1 = ψ2

Proof By induction on the size of ψ, a case analysis of the next Viper state-
ment to be evaluated in the last partial trace added to ψ, using determinism
of the totalised assertion evaluation Va, λU (lemma 2.61), using determin-
ism of the totalised local permission collection QT(a, λ, b) (lemma 2.32) and
using determinism of the totalised global permission collection GT(π, λ)
(lemma 2.36). �

Definition 2.82 (Reflexive and transitive closure of the lifting) Assume ψ to be a
set of partial traces and complete traces. The reflexive and transitive closure
of the lifted trace semantics  on ψ is denoted by V[ψ] and defined as
follows:

V[ψ] =

{
ψ if ψ = ∅
ψ ∪ V[ψ1] if ψ 6= ∅ and ψ ψ1

Lemma 2.83 (Closure is total) Assume ψ to be a set of partial traces and com-
plete traces where every partial trace is associated with a finite evaluation
context C and a Viper statement s of finite size. Then: ∃ψ1. V[ψ] = ψ1.

Proof Lemma 2.80 shows the lifted trace semantics to be total. Moreover,
the (non-lifted) trace semantics has no rule for complete traces. Thus, V[ψ]
terminates if the assumptions, as given by the statement of the lemma, hold
for ψ. �
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Lemma 2.84 (Closure is deterministic) Assume ψ to be a set of partial traces
and complete traces where every partial trace is associated with a finite
evaluation context C and a Viper statement s of finite size. Then: V[ψ] =
ψ1 ∧ V[ψ] = ψ2 ⇒ ψ1 = ψ2.

Proof Follows from lemma 2.81 which shows the lifted trace semantics  
to be deterministic and from the totality of the closure as shown in lemma
2.83. �

Definition 2.85 (Trace model of Viper assertion) The judgment of a Viper trace
λ to model a Viper assertion a is expressed through the predicate λ |= a and
defined as follows: λ |= a ⇔ Va, λU = True. Most importantly, it follows
from 2.37 that error-traces don’t model Viper assertions. Also recall V , U to
denote the totalised assertion evaluation function defined in chapter 2.58.

Definition 2.86 (Configuration model of Viper assertion) The judgment of a
triple of a Viper heap h, a Viper store σ and a Viper permission mask π
to model a Viper assertion a is expressed through the predicate (h, σ, π) |= a
and defined as follows: (h, σ, π) |= a ⇔ Λ[(h, σ, π)] |= a. Above,
Λ[(h, σ, π)] denotes the trace consisting of the single configuration (h, σ, π).

Definition 2.87 (Complete trace model of Viper assertion) The judgment of a
complete Viper trace (ε, λ) to model a Viper assertion a is expressed through
the predicate (ε, λ) |= a and defined as follows: (ε, λ) |= a⇔ λ |= a.

Definition 2.88 (Set of partial traces and complete traces model of Viper assertion)
Assume ψ to be a set of partial traces and complete traces. The judgment of
ψ to model a Viper assertion a is expressed through the predicate ψ |= a and
defined as follows: ψ |= a⇔ ∀(ε, λ) ∈ ψ. (ε, λ) |= a.

Definition 2.89 (Verified Viper program) The judgment of a Viper program
prog to be verified is expressed through the predicate VP(prog) and defined
as follows: VP(prog)⇔ ∀m ∈ prog, ∀h, σ, π. (h, σ, π) |= Pre(m)⇒
V[{ (Body(m), Λ[(h, σ, π)]) }] |= Post(m).

Importantly, the deterministic nature of the closure V[ψ], as proven in
lemma 2.84, makes the judgment of a Viper program to be verified a de-
terministic one.
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3.1. Syntax

3.1 Syntax

This chapter presents an abstract syntax of Chalice [2]. The concrete syntax
of Chalice programs is given in appendix D. As in the presentation of the ab-
stract syntax of Viper programs in chapter 2.1, the abstract syntax of Chalice
will also be given as a syntactic domain, presented in an EBNF-like notation.

Definition 3.1 (Syntactic domain of expressions) The syntactic domain of ex-
pressions is denoted by E and has metavariable e associated. The domain of
expressions is defined as follows.

E := null | b | n | x | x.f | - e | e + e | e / e | ¬ e | e = e | x.fun(e) |
old(e)

Above, b is the metavariable ranging over the syntactic domain of booleans
B and n ranges over numerals N. Furthermore, x identifies a variable and is
the metavariable associated with the syntactic domain of variable identifiers
Var. Similarly, f, fun and p are associated with the domains F, Fun and P and
identify fields, functions and predicates.

The full list of unary operators and binary operators available in Chalice
can be found in appendix D. However, the operators listed above suffice to
subsequently demonstrate the semantics of Chalice.

Definition 3.2 (Syntactic domain of assertions) The syntactic domain of asser-
tions is denoted by A and has metavariable a associated. The domain of
assertions is defined as follows.

A := e | acc(x.joinable) | acc(x.f, n) | acc(x.p) | e → a | a && a

Definition 3.3 (Syntactic domain of statements) The syntactic domain of state-
ments is denoted by S and has metavariable s associated. The domain of
statements is defined as follows.

S := var x : t | x := e | x.f := x | return x | x := new c | fold acc(x.p) |
unfold acc(x.p) | fork x := x.m(x) | join x := x | if e then s else s |
s; s

Above, c identifies a class and is the metavariable associated with the syn-
tactic domain of class identifiers C. Similarly, m identifies a method and is
associated with the domain M.

Definition 3.4 (Syntactic domain of fields) The syntactic domain of fields is
denoted by Field and has metavariable field associated. The domain of fields
is defined as follows.

Field := var f : t
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3.2. Semantics

Definition 3.5 (Syntactic domain of invariants) The syntactic domain of invari-
ants is denoted by Inv and has metavariable inv associated. The domain of
invariants is defined as follows.

Inv := invariant a

Definition 3.6 (Syntactic domain of functions) The syntactic domain of func-
tions is denoted by Funct and has metavariable funct associated. The domain
of functions is defined as follows.

Funct := function fun(x : t) : t requires a ensures a { e }

Definition 3.7 (Syntactic domain of predicates) The syntactic domain of predi-
cates is denoted by Pred and has metavariable pred associated. The domain
of predicates is defined as follows.

Pred := predicate p { a }

Definition 3.8 (Syntactic domain of methods) The syntactic domain of methods
is denoted by Meth and has metavariable meth associated. The domain of
methods is defined as follows.

Meth := method m(x : t) returns x : t requires a ensures a { s }

Definition 3.9 (Syntactic domain of declarations) The syntactic domain of decla-
rations is denoted by Decl and has metavariable decl associated. The domain
of declarations is defined as follows.

Decl := field | inv | funct | pred | meth

Definition 3.10 (Syntactic domain of classes) The syntactic domain of classes
is denoted by Class and has metavariable class associated. The domain of
classes is defined as follows.

Class := class c { decl }

Definition 3.11 (Syntactic domain of Chalice programs) The syntactic domain
of Chalice programs is denoted by Prog and has metavariable prog associated.
The domain of Chalice programs is defined as follows.

Prog := class

3.2 Semantics

The Chalice semantics presented subsequently is an extension of the seman-
tics presented by Summers and Drossopoulou in [9].
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3.2.1 Preliminary

Unless otherwise specified, all functions defined in this preliminary are as-
sumed to be total.

Definition 3.12 (Semantic domain of Booleans, Integer, objects and errors) The
semantic domains of Booleans (denoted by B and with metavariable b), In-
tegers (denoted by Z and with metavariable z), objects (denoted by O and
with metavariable o) and errors (denoted by X and with metavariable x) are
defined as in the preliminary of the Viper semantics in chapter 2.2.1.

Definition 3.13 (Semantic domain of thread identifiers) An infinite semantic do-
main of thread identifiers is assumed and denoted by Γ. The metavariable
associated with the domain Γ is τ.

Definition 3.14 (Semantic domain of method identifiers) An infinite semantic
domain of method identifiers is assumed and denoted by M. The metavariable
associated with the domain of M is m.

Definition 3.15 (Semantic domain of values) The semantic domain of values is
denoted by V, has metavariable v associated and is the disjoint union of
the domains of Booleans B, Integers Z, objects O, thread identifiers Γ, method
identifiers M and additionally contains the special value null, i.e. V = B ∪
Z ∪ O ∪ Γ ∪ M ∪ { null }. Furthermore, the function D : T 7→ {B, Z, O ∪
{null} } is assumed and maps syntactic types t to the corresponding seman-
tic value sub-domain. The value sub-domain to which t is mapped under
D is denoted by Dt. Important example: Dc = O ∪ {null}, for any class
identifier c.

Definition 3.16 (Semantic domain of heaps) The semantic domain of heaps is
denoted by H, has metavariable h associated and is a domain of functions
mapping either tuples of semantic objects o and syntactic field identifiers f
or tuples of semantic thread identifiers τ and syntactic field identifiers f to
semantic values. Thus, h : ((O× F) 7→ V) ∪ ((Γ× F) 7→ V).

Definition 3.17 (Semantic domain of runtime heaps) The semantic domain of
runtime heaps is denoted by H, has metavariable h associated and is a do-
main of functions mapping tuples of semantic objects o and syntactic field
identifiers f to semantic values v. Thus, h : (O× F) 7→ V.

Definition 3.18 (Semantic domain of stores) The semantic domain of stores is
denoted by Σ, has metavariable σ associated and is a domain of functions
mapping syntactic variable identifiers x to semantic values v. Hence, σ :
Var 7→ V.

Definition 3.19 (Semantic domain of field-permission masks) The semantic do-
main of field-permission masks is denoted by ΠF, has metavariable πF associ-
ated and is a domain of functions mapping either tuples of semantic objects
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o and syntactic field identifiers f or tuples of semantic thread identifiers τ
and syntactic field identifiers f to non-negative values in Z. Hence, πF :
((O× F) 7→ Z) ∪ ((Γ × F) 7→ Z). Furthermore, the field-permission mask
mapping all pairs of objects and fields to 0 and all pairs of thread identifiers
and fields to 0 is denoted by ∅F. Addition of field-permission masks is de-
fined as follows: (πF + πF

1 )(o, f) = πF(o, f) + πF
1 (o, f) and (πF + πF

1 )(τ, f) =
πF(τ, f) + πF

1 (τ, f). Equality of field-permission masks is defined as follows:
πF = πF

1 ⇔ ∀(o, f). πF(o, f) = πF
1 (o, f) ∧ ∀(τ, f). πF(τ, f) = πF

1 (τ, f).

Definition 3.20 (Semantic domain of predicate-permission masks) The semantic
domain of predicate-permission masks is denoted by ΠP, has metavariable πP

associated and is a domain of functions mapping tuples of semantic objects
o and syntactic predicate identifiers p to non-negative values in Z. Hence,
πP : (O× P) 7→ Z. Furthermore, the predicate-permission mask mapping
all pairs of objects and predicate-identifiers to 0 is denoted by ∅P. Addi-
tion of predicate-permission masks is defined as follows: (πP + πP

1 )(o, p) =
πP(o, p) + πP

1 (o, p). Equality of predicate-permission masks is defined as
follows: πP = πP

1 ⇔ ∀(o, p). πP(o, p) = πP
1 (o, p)

Definition 3.21 (Semantic domain of permission masks) The semantic domain
of permission masks is denoted by Π, has metavariable π associated and is
a domain of tuples over the domains of field-permission masks ΠF and
predicate-permission masks ΠP. Hence, π = (πF, πP). Furthermore, the
permission mask consisting of ∅F and ∅P is denoted by π∅, i.e. π∅ =
(∅F,∅P). Addition of permission masks is defined as follows: (πF, πP) +
(πF

1 , πP
1 ) = (πF + πF

1 , πP + πP
1 ). Equality of permission masks is defined as

follows: (πF, πP) = (πF
1 , πP

1 )⇔ πF = πF
1 ∧ πP = πP

1 .

Definition 3.22 (Permission Collection Function) To collect all permissions ex-
plicitly requested by assertion a, the function Z : (A×H×H× Σ) 7→ Z ∪ X
is assumed. Z collects the permissions inside assertion a iso-recursively [9]:
predicates inside assertion a are not unrolled but are treated as an entity to
which permissions can be either obtained or lost. The full definition of Z can
be found as algorithm 3 in appendix A. Note that the definition of Z makes
use of the expression-evaluation function Ve, hold, h, σU, which is defined in
3.36.

Definition 3.23 (Semantic domain of thread configurations) The semantic do-
main of thread configurations is denoted by C, has metavariable c associated
and contains triples of semantic heaps h, semantic stores σ and syntac-
tic statements s as well as the special element idle: C = (H × Σ × S) ∪
{ idle, trash }.

Definition 3.24 (Semantic domain of thread entities) The semantic domain of
thread entities is denoted by EΓ and is a domain of tuples of thread configu-
rations c and thread identifiers τ: EΓ = C× Γ. The metavariable associated
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with the domain EΓ is eτ and represents the tuple (c, τ). eτ is called active if
it represents a tuple (c, τ) with c = (h, σ, s). If eτ has thread configuration
c = idle then eτ is called idle and if eτ has thread configuration c = trash
then eτ is called trashed.

Definition 3.25 (Semantic domain of object entities) The semantic domain of
object entities is denoted by EO and is a domain of tuples of an element
out of { alloc, free } and semantic objects o: EO = { alloc, free } ×O. The
metavariable associated with the domain EO is eo and represents either the
tuple (alloc, o) or the tuple (free, o).

Definition 3.26 (Semantic domain of entities) The semantic domain of entities
is denoted by E and is the union of the domain of thread entities and the
domain of object entities: E = EΓ ∪ EO. The metavariable associated with the
domain E is el. If el represents a thread entity then l = τ for some thread
identifier τ. If el represents an object entity then l = o for some semantic
object o.

Definition 3.27 (Semantic domain of runtime entity collections) The semantic
domain of runtime entity collections is denoted by R and is a domain of tuples
of sets of thread entities eτ and sets of object entities eo. The metavariable
associated with the domain R is r and hence r = (eτ, eo).

Definition 3.28 (Semantic domain of runtime configurations) The semantic do-
main of runtime configurations is denoted by C, has metavariable c associated
and is a domain of tuples over the domain of runtime heaps H and the
domain of runtime entity collections R. Thus, c = (h, r).

Definition 3.29 (Mapping between heaps and runtime heaps) Recall runtime
heaps h to only accept objects as receivers while heaps h accept both, ob-
jects as well as thread identifiers as receivers. In order for threads having
access to information about other threads currently running, the function
d , c : H×R 7→ H, defined below, creates a heap h which contains all infor-
mation in a runtime heap h and all information regarding currently active
threads of a runtime entity collection r.

dh, rc(o, f) = h(o, f)

dh, rc(τ, f) =


σ(this) if f = recv∧ ((hold, σ, s), τ) ∈ r
σ(xi) if f = parami ∧ ((hold, σ, s), τ) ∈ r∧ xi = Param(σ(meth))
σ(meth) if f = meth∧ ((hold, σ, s), τ) ∈ r
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The inverse, mapping heaps h to runtime heaps h, is given by restricting
the domain of the heap h to only have objects as receivers. For the sake of
type-correctness in the following formulas, the function b e : H 7→ H is now
defined which computes this transformation.

bhe(o, f) = h(o, f)

3.2.2 Evaluation of Expressions

The evaluation of an expression e takes place with respect to a triple consist-
ing of a heap hold, a heap h and a store σ. Heap hold, as explained in more
detail in chapter 3.2.3, is a snapshot of the Chalice state as it was just before
a thread started the execution of its method. Similarly, h is a snapshot of the
Chalice state as it was just before a thread executed its next statement. Ex-
pression e then evaluates with hold, h and σ to r ∈ V∪ X if the subsequently
inductively defined semantic function ⇓ maps e, given the triple (hold, h, σ),
to r. If ⇓ maps e, given the triple (hold, h, σ), to r, the notation e ⇓(hold,h,σ) r
will be used.

Definition 3.30 (Evaluation of null, booleans, numerals and variable identifiers)

null ⇓(hold,h,σ) null b ⇓(hold,h,σ) Bb n ⇓(hold,h,σ) Zn x ⇓(hold,h,σ) σ(x)

Definition 3.31 (Evaluation of field-lookups)

σ(x) = null

x.f ⇓(hold,h,σ) xnull

σ(x) = o

x.f ⇓(hold,h,σ) h(o, f)

Definition 3.32 (Evaluation of unary operations) Evaluation of unary opera-
tions is shown for the case of a unary negative operation. The remaining
cases evaluate analogous.

e ⇓(hold,h,σ) x

- e ⇓(hold,h,σ) x

e ⇓(hold,h,σ) v

- e ⇓(hold,h,σ) - v

Definition 3.33 (Evaluation of binary operations) Evaluation of binary opera-
tion expressions is shown for the case of a division operation. This case is
special as it potentially generates a division-by-zero error. Evaluation of the
remaining cases is analogous with the exception of not having to capture
the division-by-zero error.
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e ⇓(hold,h,σ) x

e / e1 ⇓(hold,h,σ) x

e ⇓(hold,h,σ) v e1 ⇓(hold,h,σ) x

e / e1 ⇓(hold,h,σ) x

e ⇓(hold,h,σ) v e1 ⇓(hold,h,σ) 0

e / e1 ⇓(hold,h,σ) xdiv

e ⇓(hold,h,σ) v e1 ⇓(hold,h,σ) v1

e / e1 ⇓(hold,h,σ) v/v1

Definition 3.34 (Evaluation of function calls) The semantics of a function-call
renders the expression evaluation function ⇓ partial if the function to evalu-
ate recurses infinitely.

σ(x) = null

x.fun(ei) ⇓(hold,h,σ) xnull

σ(x) = o ∃ i : ei ⇓(hold,h,σ) x

x.fun(ei) ⇓(hold,h,σ) x

σ(x) = o ei ⇓(hold,h,σ) vi xi = Param(fun)
Body(fun) ⇓(hold,h,σ[this 7→o][xi 7→vi ])

x

x.fun(ei) ⇓(hold,h,σ) x

σ(x) = o ei ⇓(hold,h,σ) vi xi = Param(fun)
Body(fun) ⇓(hold,h,σ[this 7→o][xi 7→vi ])

v

x.fun(ei) ⇓(hold,h,σ) v

Definition 3.35 (Evaluation of old expressions) In essence, old is pushed down
to the leafs of the expression-tree making up expression e. Field-lookups
then take place via hold which reflects the Chalice state as it was just before
a thread started executing its method.

old(null) ⇓(hold,h,σ) null old(b) ⇓(hold,h,σ) Bb

old(n) ⇓(hold,h,σ) Zn old(x) ⇓(hold,h,σ) σ(x)

σ(x) = null

old(x.f) ⇓(hold,h,σ) xnull

σ(x) = o

old(x.f) ⇓(hold,h,σ) hold(o, f)
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old(e) ⇓(hold,h,σ) x

old(- e) ⇓(hold,h,σ) x

old(e) ⇓(hold,h,σ) v

old(- e) ⇓(hold,h,σ) - v

old(e) ⇓(hold,h,σ) x

old(e / e1) ⇓(hold,h,σ) x

old(e) ⇓(hold,h,σ) v old(e1) ⇓(hold,h,σ) x

old(e / e1) ⇓(hold,h,σ) x

old(e) ⇓(hold,h,σ) v old(e1) ⇓(hold,h,σ) 0

old(e / e1) ⇓(hold,h,σ) xdiv

old(e) ⇓(hold,h,σ) v old(e1) ⇓(hold,h,σ) v1

old(e / e1) ⇓(hold,h,σ) v/v1

σ(x) = null

old(x.fun(ei)) ⇓(hold,h,σ) xnull

σ(x) = o ∃ i : old(ei) ⇓(hold,h,σ) x

old(x.fun(ei)) ⇓(hold,h,σ) x

σ(x) = o old(ei) ⇓(hold,h,σ) vi xi = Param(fun)
old(Body(fun)) ⇓(hold,h,σ[this 7→o][xi 7→vi ])

x

old(x.fun(ei)) ⇓(hold,h,σ) x

σ(x) = o old(ei) ⇓(hold,h,σ) vi xi = Param(fun)
old(Body(fun)) ⇓(hold,h,σ[this 7→o][xi 7→vi ])

v

old(x.fun(ei)) ⇓(hold,h,σ) v

old(e) ⇓(hold,h,σ) x

old(old(e)) ⇓(hold,h,σ) x

old(e) ⇓(hold,h,σ) v

old(old(e)) ⇓(hold,h,σ) v

Definition 3.36 (Value of expressions) The expression evaluation function ⇓
defined above is partial as the evaluation of a function-call with an infinite
recursion won’t terminate. In order to have a semantics of total functions,
the function V , , , U : E×H×H× Σ 7→ V ∪ X is now defined and com-
putes, even in the presence of infinitely recursing functions, either the value
to which an expression evaluates to or, in case of a non-terminating evalua-
tion, an error.
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Ve, hold, h, σU =


v if e ⇓(hold,h,σ) v

x if e ⇓(hold,h,σ) x

xinf if @v. e ⇓(hold,h,σ) v ∧ @x. e ⇓(hold,h,σ) x

The following lemmas demonstrate that the totalised expression evaluation
function Ve, hold, h, σU is deterministic.

Lemma 3.37 (Totalised expression evaluation is total)
∀e, hold, h, σ.∃u ∈ V∪ X. Ve, hold, h, σU = u

Proof Follows from totalising conditions in definition of V , , , U. �

Lemma 3.38 (Assertion evaluation is deterministic)
∀e, hold, h, σ, ∀u1, u2 ∈ V∪ X. e ⇓(hold,h,σ) u1 ∧ e ⇓(hold,h,σ) u2 ⇒ u1 = u2

Proof By structural induction on e. �

Corollary 3.39 (Totalised expression evaluation is deterministic)
∀e, hold, h, σ. Ve, hold, h, σU = u1 ∧ Ve, hold, h, σU = u2 ⇒ u1 = u2

Proof Follows from lemmas 3.37 and 3.38. �

Based on the definitions above, the judgment of a model of a Chalice asser-
tion can now be defined.

Definition 3.40 (Model of Chalice assertion) The judgment of a 4-tuple of a
Chalice heap hold, a Chalice heap h, a Chalice store σ and a Chalice permis-
sion mask π to model a Chalice assertion a is expressed through the predicate
(hold, h, σ, π) |= a and defined as follows:

(hold, h, σ, π) |= e⇔ Ve, hold, h, σU = True

(hold, h, σ, (πF, πP)) |= acc(x.joinable)⇔ σ(x) = τ ∧ πF(τ, joinable) ≥ 100

(hold, h, σ, (πF, πP)) |= acc(x.f, n)⇔ σ(x) = o ∧ Zn ≥ 0 ∧ πF(o, f) ≥ Zn

(hold, h, σ, (πF, πP)) |= acc(x.p)⇔ σ(x) = o∧ πP(o, p) ≥ 100

(hold, h, σ, π) |= e → a⇔ Ve, hold, h, σU = True⇒ (hold, h, σ, π) |= a

(hold, h, σ, π) |= a1 && a2 ⇔ ∃π1, π2.π = π1 + π2 ∧ (hold, h, σ, π1) |= a1
∧ (hold, h, σ, π2) |= a2
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3.2.3 Local Operational Semantics

This section defines an operational semantics for statements which affect
single thread entities only. Assume such a statement to be denoted by s.
Furthermore, assume a heap h and a thread entity eτ with a configuration
(hold, σ, (s; s1)), i.e. eτ = ((hold, σ, (s; s1)), τ). Heap hold in thread entity
eτ reflects the method pre-state and is used during the evaluation of old-
expressions. Statement s then leads the heap h and the thread entity eτ to
a new heap h1 and a new thread entity e′τ if the subsequently inductively
defined semantic function ⇀ maps the tuple (h, eτ) to (h1, e′τ). If ⇀ maps
the tuple (h, eτ) to (h1, e′τ), the notation h, eτ ⇀ h1, e′τ will be used.

Definition 3.41 (Semantics of variable declaration statement) The semantics of
a variable declaration statement var x : t allows Chalice to continue with an
arbitrary value chosen from the semantic domain corresponding to type t.
Thus, this semantics introduces non-determinism into the local operational
semantics of Chalice.

v ∈ Dt

h, ((hold, σ, (var x : t; s)), τ) ⇀ h, ((hold, σ[x 7→ v], s), τ)

Definition 3.42 (Semantics of variable assignment statement) Recall V , , , U to
denote the totalised expression evaluation function defined in 3.36.

Ve, hold, h, σU = v

h, ((hold, σ, (x := e; s)), τ) ⇀ h, ((hold, σ[x 7→ v], s), τ)

Definition 3.43 (Semantics of field assignment statement)

σ(x) = o h1 = h[(o, f) 7→ σ(y)]

h, ((hold, σ, (x.f := y; s)), τ) ⇀ h1, ((hold, σ, s), τ)

Definition 3.44 (Semantics of fold statement) As the operational semantics of
Chalice has no explicit permission-logic incorporated, the semantics of a
fold statement, and subsequently also the semantics of an unfold statement,
is simply to continue to the next statement.

σ(x) = o

h, ((hold, σ, (fold acc(x.p); s)), τ) ⇀ h, ((hold, σ, s), τ)

Definition 3.45 (Semantics of unfold statement)
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σ(x) = o

h, ((hold, σ, (unfold acc(x.p); s)), τ) ⇀ h, ((hold, σ, s), τ)

Definition 3.46 (Semantics of if-then-else statement) Recall V , , , U to denote
the totalised expression evaluation function defined in 3.36.

Ve, hold, h, σU = True

h, ((hold, σ, (if e then s1 else s2; s)), τ) ⇀ h, ((hold, σ, (s1; s)), τ)

Ve, hold, h, σU = False

h, ((hold, σ, (if e then s1 else s2; s)), τ) ⇀ h, ((hold, σ, (s2; s)), τ)

3.2.4 Paired Operational Semantics

This section defines an operational semantics for statements which affect a
pair of entities. Assume such a statement to be denoted by s. Furthermore,
assume a heap h, a thread entity eτ with configuration (hold, σ, (s; s1)), i.e.
eτ = ((hold, σ, (s; s1)), τ), as well as an entity el. Statement s then leads
the heap h, the thread entity eτ and the entity el to a new heap h1, a new
thread entity e′τ and a new entity e′l if the subsequently inductively defined
semantic function → maps the tuple (h, (eτ, el)) to (h1, (e′τ, e′l)). If → maps
the tuple (h, (eτ, el)) to (h1, (e′τ, e′l)), the notation h, eτ|el → h1, e′τ|e′l will be
used.

Definition 3.47 (Semantics of fork statement) The semantics of a fork state-
ment for method m includes taking an arbitrary idle thread τ1 which subse-
quently works off m. Moreover, thread τ1 gets a method pre-state, reflected
in hold

1 , which is the encoding of the current runtime configuration, reflected
in h. Note that this rule introduces non-determinism into the operational
semantics of Chalice as it allows any idle thread to be chosen to work off the
forked method.

hold
1 = h σ(y) = o σ1 = [meth 7→ m][this 7→ o][xi 7→ σ(zi)] s1 = Body(m)

h, ((hold, σ, (fork x := y.m(zi); s)), τ)|(idle, τ1)→ h, ((hold, σ[x 7→ τ1], s), τ)|((hold
1 , σ1, s1), τ1)

Definition 3.48 (Semantics of join statement)

σ(x) = τ1

h, ((hold, σ, (join y := x; s)), τ)|((hold
1 , σ1, return z), τ1)→ h, ((hold, σ[y 7→ σ1(z)], s), τ)|(trash, τ1)
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Definition 3.49 (Semantics of new statement) The semantics of a new state-
ment includes taking an arbitrary free object o and then to remove o from
the set of free objects. Note that this rule introduces non-determinism into
the semantics of Chalice as it allows for any free object to be chosen.

cls(o) = c fi = fields(c) h1 = h[(o, fi) 7→ zero(fi)]

h, ((hold, σ, (x := new c; s)), τ)|(free, o)→ h1, ((hold, σ[x 7→ o], s), τ)|(alloc, o)

3.2.5 Operational Semantics

This section defines an operational semantics on the level of runtime configu-
rations c = (h, r). A runtime configuration (h, r) can transition to a runtime
configuration (h1, r1) if (h1, r1) is in the reflexive and transitive closure of
the subsequently inductively defined semantic function  . If  maps the
tuple (h, r) to (h1, r1), the notation h, r  h1, r1 will be used.  is defined
by the following two rules.

r[τ] = eτ h = dh, rc h, eτ ⇀ h1, e′τ h1 = bh1e

h, r h1, r[τ 7→ e′τ]

r[τ] = eτ r[l] = el h = dh, rc h, eτ|el → h1, e′τ|e′l h1 = bh1e

h, r h1, r[τ 7→ e′τ][l 7→ e′l]
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Chapter 4

Encoding Chalice into Viper

This chapter defines an encoding of Chalice into Viper. For each syntactic
Chalice domain introduced in chapter 3.1, a syntactic function is specified
which maps a Chalice language construct to a Viper language construct. All
encodings are such that the Chalice methodology given in chapter 4 of [10]
is preserved. Following the encoding of syntactic domains, an encoding of
the semantic domains will be defined.

The following assumptions are made about the Chalice program to be en-
coded:

• All field identifiers, all function identifiers, all predicate identifiers and
all method identifiers of all classes in the Chalice program are unique
with respect to the whole program. This could be established, for
example, by prepending the class name to each of the identifiers in the
input program.

• A field access is always via this: this.f instead of just f.

Contents
4.1 Syntactic Domains . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Semantic Domains . . . . . . . . . . . . . . . . . . . . . . . 51
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4.1. Syntactic Domains

4.1 Syntactic Domains

Definition 4.1 (Encoding of expressions) The translation of Chalice expres-
sions into Viper is given by the syntactic function J K. The inductive defi-
nition of J K can be found in table 4.1. (Note that the symbol used for the
encoding function will subsequently be overloaded by the encoding defi-
nitions of the remaining syntactic Chalice domains. However, the actual
encoding function at hand can be recognized by considering the type of the
input.)

JnullK = null
JbK = b
JnK = n
JxK = x
Jx.fK = JxK.f
J- eK = - JeK
Je1 + e2K = Je1K + Je2K
Je1 / e2K = Je1K / Je2K
J¬ eK = ¬ JeK
Je1 = e2K = Je1K = Je2K
Jx.fun(ei)K = fun(JxK, JeiK)
Jold(e)K = old(JeK)

Table 4.1: Encoding Chalice expressions into Viper

This encoding warrants discussion as to why the Chalice methodology of
[10] is preserved. In Chalice, a field lookup x.f, for example, requires to
assert to have enough permission to lookup field f of the object behind x. A
corresponding assertion is not directly represented in the encoding specified
in table 4.1. However, the semantics of Viper defined in chapter 2.2 is such
that the field lookup first checks whether non-zero permission is available
for the field. If this check fails, a permission-error is generated. This error
then propagates to the level of traces where an error-trace is generated. This
error-trace then leads the verification of the encoded program to fail. Thus,
the methodology of [10] is preserved. Furthermore note that a function
call in Chalice is bound to an object as Chalice functions are properties of
Chalice classes. As Viper has no notion of a class, a Chalice function call
(bound to an object) is modelled as a Viper function call (not bound to an
object but) expecting a reference-type variable as its first argument which
represents this from Chalice. Thus, function calls in Viper are then relative
to a reference-type variable which previously was created by the translation
to correspond to a class object in Chalice. The case where Chalice evaluates
a function call to xnull, which happens if the receiver of the function call is
null, is matched in Viper as the encoding of statements, given in 4.3, looks
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ahead into expressions and creates a non-null assertion for every function-
call expression. An approach analogous to function calls will subsequently
be used in the translation of Chalice predicate accesses as well as Chalice
method calls, both of which are bound to objects in Chalice.

Definition 4.2 (Encoding of assertions) The translation of Chalice assertions
into Viper is given by the inductive syntactic function J K defined in table
4.2.

JeK = JeK
Jacc(x.joinable)K = acc(JxK.recv, 1/1) && acc(JxK.argi, 1/1)
Jacc(x.f, n)K = acc(Jx.fK, JnK/100)
Jacc(x.p)K = acc(p(JxK), 1/1)
Je → aK = JeK → JaK
Ja1 && a2K = Ja1K && Ja2K

Table 4.2: Encoding Chalice assertions into Viper

The methodology of Chalice presented in [10] dictates that a conjunct of
assertions is operationally equivalent to a sequence of the assertions. The
semantics of Viper is such that inhaling and exhaling conjuncts of assertions
is reduced to a sequence of inhales and exhales of assertions. As all valida-
tions of assertions in Chalice are reduced to either exhaling or inhaling the
assertion in Viper, the methodology of Chalice is preserved. The only trans-
lation that warrants discussion is the translation of joinable-access assertions.
A joinable-access assertion occurs in the context of fork and join statements
and is expanded into a conjunct of access assertions to all fields which are
used to model the Chalice methodology of forks and joins. The meaning
of each field is explained in the next section which deals with the encoding
of Chalice statements. Expanding a joinable-access assertion in this manner
guarantees a subsequent join to have all the permissions required to gather
the information needed for an inhale of the forked methods post-condition.
More details regarding forks and joins follow in the discussion of the encod-
ing of statements.

Definition 4.3 (Encoding of statements) The translation of Chalice statements
into Viper is given by the inductive syntactic function J K defined in table
4.3.

According to Chalice, statement x := new c has to lead to a heap contain-
ing for each field of class c an initial default value and to a permission-mask
with full access to each field of class c. The translation into Viper first creates
a reference-type variable mentioning each field of class c. The semantics of
Viper is such that a new statement leads to full permissions for each of the
fields mentioned in the statement. As the encoding furthermore leads to a
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Jvar x : tK = var JxK : JtK
Jx := eK = assert JxiK != JnullK;

JxK := JeK
Jx.f := yK = Jx.fK := JyK
Jreturn xK = ε

Jx := new cK = JxK := new(fi);
JxK.fi := zero(fi)

Jfold acc(x.p)K = assert JxK != JnullK;
fold acc(p(JxK), 1/1)

Junfold acc(x.p)K = assert JxK != JnullK;
unfold acc(p(JxK), 1/1)

Jfork x := y.m(zi)K = exhale JPre(m)K[JyK/JthisK][JziK/JxiK];
var JxK : Ref;
JxK := new(recv, argi);
JxK.recv := JyK;
JxK.argi := JziK;

Jjoin y := xK = assert acc(JxK.recv, 1/1) && acc(JxK.argi, 1/1);
var JyK : JType(m)K;
inhale JPost(m)K[JxK.recv/JthisK][JxK.argi/JxiK]

[JyK/JzK];
exhale acc(JxK.recv, 1/1) && acc(JxK.argi, 1/1);

Jif e then s1 else s2K = assert JxiK != JnullK;
if JeK then Js1K else Js2K

Js1; s2K = Js1K; Js2K

Table 4.3: Encoding Chalice statements into Viper

sequence of field-assignments assigning a default zero value of the appro-
priate type (with respect to the field to be assigned), the translation respects
the methodology of Chalice.

As can be seen in table 4.3, variable assignment statements as well as if-then-
else statements are preceded by a sequence of asserts asserting a variable not
to be null. This sequence has to be computed by the encoding and results
from looking ahead into expressions and searching for function-calls. Each
receiver of such a function call has to be asserted for non-null in Viper in
order to match a Chalice error resulting from a null-receiver.

Fork and join statements, as dictated by Chalice, are translated into an ex-
hale of the forked methods m’s pre-condition and into an inhale of m’s
post-condition. The encoding given in table 4.3 works as follows. A fork
statement constructs a record with fields recv and argi. Note that the fields
argi have to be of appropriate types with respect to m and the arguments m
expects. The encoding thus has to create for each Chalice type an arg field
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and pick the type-correct ones during the translation of a fork. Recall that a
post-condition is a function of this, the formal arguments xi and the return
variable z. As such it is sufficient to record the receiver of the method-call
as well as the arguments to the method-call to later properly inhale m’s post-
condition. At the join site, this is then replaced by the receiver recv, which
was recorded at the fork site, and the formal argument variables xi are re-
placed by the argument variables argi, which also were recorded at the fork
site. Moreover, the result variable y substitutes for the formal return variable
z. After the inhale of m’s post-condition, the permission to the receiver field
recv and to the argument fields argi of the record are exhaled. This prevents
a second join on the same object. Note that at the join-site, m is available
to the translation as Chalice tokens carry along the identifier of the method
that was forked.

Definition 4.4 (Encoding of fields) The translation of Chalice class fields into
Viper is given by the inductive syntactic function J K defined in table 4.4.

Jvar f : tK = field f : JtK

Table 4.4: Encoding Chalice class fields into Viper

This encoding works, as an identifier of a Chalice class field is assumed to
be unique with respect to the whole Chalice program under translation.

Definition 4.5 (Encoding of functions) The translation of Chalice functions
into Viper is given by the inductive syntactic function J K defined in table
4.5.

Jfunction fun(x : t) : t requires a ensures a { e }K =
function fun(JthisK : Ref, JxK : JtK) : JtK requires JaK ensures JaK { JeK }

Table 4.5: Encoding Chalice functions into Viper

Note that this translation works, as a function name is assumed to be unique
with respect to the whole Chalice program. Furthermore it is worth to note
that the resulting Viper function has at least the formal parameter this of
type Ref. This is due to Chalice function calls being bound to objects. At the
call site of a function, the Viper reference-type variable corresponding to the
Chalice object is then passed as the first argument to the function, as can be
seen in table 4.1.

Definition 4.6 (Encoding of predicates) The translation of Chalice predicates
into Viper is given by the inductive syntactic function J K defined in table
4.6.
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Jpredicate p { a }K = predicate p(JthisK : Ref) { JaK }

Table 4.6: Encoding Chalice predicates into Viper

Note that also this translation assumes Chalice predicate names to be unique
with respect to the whole Chalice program under translation. Furthermore
note that the resulting Viper predicate always has exactly this of type Ref
as a formal argument. This is due to Chalice predicates being defined with
respect to a class and the predicate usage hence being bound to an object. As
can be seen in the translation of assertions in table 4.2, the use of a Chalice
predicate is translated into a call of the predicate, with the Viper reference-
type variable corresponding to the Chalice object, on which the predicate
was called, passed as the one argument.

Definition 4.7 (Encoding of methods) The translation of Chalice methods into
Viper is given by the inductive syntactic function J K defined in table 4.7.

Jmethod m(x : t) returns x : t requires a ensures a { s }K =
method m(JthisK : Ref, JxK : JtK) : returns JxK : JtK
requires JaK ensures JaK { JsK }

Table 4.7: Encoding Chalice methods into Viper

Also here it is assumed that Chalice method names are unique with respect
to the whole Chalice program. Furthermore, as in the case of functions and
predicates, the resulting method has at least the formal argument this of type
Ref, as Chalice method calls are bound to objects. As explicit method calls
are not supported by the semantics presented in this work, this translation
is ahead of time. A future semantics will be able to model a method call by
passing the Viper reference-type variable corresponding to the receiver of
the Chalice method call as the first argument to the method.

Definition 4.8 (Encoding of classes) The translation of Chalice classes into
Viper is given by the inductive syntactic function J K defined in table 4.8.

Jclass c { field; inv; funct; pred; meth }K =
JfieldK; JfunctK; JpredK; JmethK

Table 4.8: Encoding Chalice classes into Viper

Note that the translation of a class excludes the translation of the class in-
variant. This is due to the semantics presented in this work not supporting
any use case of class invariants.
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Definition 4.9 (Encoding of Chalice programs) The translation of a Chalice pro-
gram into Viper is given by the inductive syntactic function J K defined in
table 4.9.

JclassK = JclassK

Table 4.9: Encoding a Chalice program into Viper

4.2 Semantic Domains

As can be seen from the definition of the Chalice statement encoding given
in table 4.3, the allocation of a new object in Chalice is matched with the
allocation of a new object in Viper and the fork of a method in Chalice is
matched with an allocation of an object in Viper. The encoding of semantic
domains, presented subsequently, requires a means of relating the object al-
located in Chalice when executing a new-statement with the object allocated
in Viper and relating the thread identifier chosen by Chalice during the ex-
ecuting of a fork-statement with the object allocated in Viper. By definition
given in 2.13, the set of objects O is infinite. Thus, the means of relating
Chalice objects with Viper objects and Chalice thread-identifiers with Viper
objects can be given by an assumed bijection from O∪ Γ to O.

Definition 4.10 (Bijection translating between Chalice and Viper) The transla-
tion of Chalice objects into Viper objects and the translation of Chalice
thread-identifiers into Viper objects is given by the assumed bijective func-
tion γ : O∪ Γ 7→ O. The inverse function of γ will be denoted as γ−1.

Definition 4.11 (Encoding of values) Chalice values v are encoded into Viper
values according to the semantic function J K defined below. (Note that also
the encoding functions of semantic domains are notationally overloaded. As
in the case of the overloaded syntactic functions from the previous chapter,
the semantic functions too can be recognized by considering the type of the
input.)

JvK =

{
γ(v) if v ∈ O∪ Γ
v else

Note that the value encoding function J K is bijective.

Definition 4.12 (Encoding of stores) Chalice stores σ are encoded into Viper
stores according to the semantic function J K defined below.

JσK(JxK) = Jσ(x)K
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Definition 4.13 (Encoding of permission masks) Chalice permission masks
π = (πF, πP) are encoded into Viper permission masks according to the
semantic function J K defined below.

JπK(o, f) =

{
JπF(γ−1(o),joinable)

100 K if f ∈ { recv, argi }
JπF(γ−1(o),f)

100 K else

JπK(p) = J
πP(γ−1(o), p)

100
K for (o, p) ∈ O× P s.t. p = P2(p, o)

Definition 4.14 (Encoding of heaps) Recall that a Chalice heap h is always the
encoding of a Chalice runtime heap h and a runtime entity collection r, i.e.
h = dh, rc. The encoding of Chalice heap h = dh, rc into a Viper heap is
thus based on h and r and given by the following function J K.

JhK(o, f) = Jdh, rcK(o, f)

=


Jσ(this)K if f = recv ∧ ((hold, σ, s), τ) ∈ r s.t. τ = γ−1(o)
Jσ(xi)K if f = argi ∧ ((hold, σ, s), τ) ∈ r s.t. τ = γ−1(o)
Jh(γ−1(o), f)K else
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Chapter 5

Soundness of Encoding

Informally, the encoding of Chalice into Viper presented in chapter 4 is
sound, whenever the verification of a translated Chalice program within
Viper implies the verification of the Chalice program with respect to the
semantics of Chalice. To formalise this idea, this chapter first defines the
judgment of a Chalice program to be verified and a Chalice runtime config-
uration to be valid. Based on these judgments, soundness of the encoding
can then formally be stated.
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5.1. Verified Chalice Programs

5.1 Verified Chalice Programs

The notion of a Chalice program prog to be verified is based on the semantics
of Viper and essentially expresses the encoding of prog to be a verified Viper
program.

Definition 5.1 (Verified Chalice Program) The judgment of a Chalice program
prog to be verified is expressed through the predicate VP(prog) and defined
as follows: VP(prog)⇔ ∀m ∈ prog, ∀h, σ, π. (h, σ, π) |= JPre(m)K
⇒ V[{ (JBody(m)K, Λ[(h, σ, π)]) }] |= JPost(m)K.

5.2 Valid Runtime Configurations

As a preliminary to the formal statement of the encoding of Chalice into
Viper to be sound, the notion of a valid Chalice runtime is introduced. This
notion reflects (in strongly simplified parlance) that each step taken by Chal-
ice during the execution of a program can be matched within Viper by one
or possibly multiple steps during the evaluation of the encoded program.
The notion of a valid Chalice runtime requires the judgment of a sequence
of Chalice permission masks to be valid with respect to a Chalice runtime
configuration. Thus, before defining valid runtime configurations, the valid-
ity of a sequence of Chalice permission masks is introduced.

Definition 5.2 (Valid Permission Mask) The judgment of a Chalice permis-
sions mask π = (πF, πP) to be valid is expressed through predicate |= π and
defined as follows: |= π ⇔ ∀(o, f). πF(o, f) ≤ 100 ∧ ∀(τ, f). πF(τ, f) ≤ 100.

Definition 5.3 (Valid Permission Masks) The judgment of a sequence of Chal-
ice permissions masks πτ to be valid with respect to a Chalice runtime entity
collection r is expressed through predicate |=r πτ and defined as follows:
|=r πτ ⇔ |= (∑eτ∈r πτ) + (∑eo∈free(r) ∑f∈fields(eo)(∅

F[(o, f) 7→ 100],∅P)) +

(∑eτ∈idle(r)(∅F[(τ, joinable) 7→ 100],∅P)).

Definition 5.4 (Read-only equivalence of stores) The judgment of Chalice
stores σ and σ1 to be read-only equivalent reflects σ and σ1 to be equal on vari-
ables which are read only in a Chalice method. The judgment is expressed
through predicate σ

ro≡ σ1 and defined as follows: σ
ro≡ σ1 ⇔ σ(this) =

σ1(this) ∧ σ(meth) = σ1(meth) ∧ ∀x ∈ Param(σ(meth)). σ(x) = σ1(x)

Definition 5.5 (Heap equivalence on permission masks) The judgment of a Chal-
ice runtime heap h and a Chalice runtime heap h1 to be equal on permission
mask π = (πF, πP) is expressed through predicate h

π≡ h1 and defined as
follows: h

π≡ h1 ⇔ ∀(o, f). πF(o, f) > 0⇒ h(o, f) = h1(o, f).
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Definition 5.6 (Valid Runtime Configuration) The judgment of a Chalice run-
time configuration (h, r) to be valid with respect to a Chalice program prog is
expressed through the predicate VR(prog, h, r) and defined as follows:

VR(prog, h, r) ⇔ ∃(πold
τ , πτ). (5.1)

|=r πτ ∧ (5.2)
∀eτ ∈ idle(r). πτ = π∅ ∧ (5.3)

∀((hold, σ, s), τ) ∈ r. (5.4)

(JholdK, JσoldK, Jπold
τ K) |= JPre(m)K ∧ (5.5)

∃(JsK, λ) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }], (5.6)

∃h2
πτ≡ h. (Jdh2, rcK, JσK, JπτK) = LAST(λ) ∧ (5.7)

V[{ (JsK, λ) }] |= JPost(m)K (5.8)
where m = σ(meth), xi = Param(m),

σold = [meth 7→ m][this 7→ σ(this)][xi 7→ σ(xi)]

In (5.1), the judgment asks for each thread τ ∈ r for the existence of a tuple of
permission-masks (πold

τ , πτ) where πold
τ is the permission-mask associated

with the method pre-state and πτ is the mask associated with the current
state of τ while working off a method m (if any). (5.2) imposes the distribu-
tion of the current permissions to the threads, reflected in πτ, to be valid and
(5.3) requires idle threads not to use any permissions. (5.4) to (5.8) imposes
for all active threads τ, working off method m and with s the statement
to be executed next, the following requirement: (5.5) the encoded method
pre-state associated with thread τ has to satisfy the encoded precondition of
method m and (5.6) there has to be a partial trace in the transitive closure of
the Viper set of traces semantics starting with a singleton set of partial traces
containing only the partial trace made up of the encoded method pre-state
of thread τ and an evaluation context where the encoded body of method
m has to be worked off s.t. (5.7) the last configuration of this partial trace is
equivalent to the current state of thread τ (modulo fields where thread τ cur-
rently has no access to) and (5.8) this partial trace has to go on to complete
traces satisfying the encoded postcondition of method m.

5.3 Soundness of Encoding

With all the notions introduced in the previous chapters, soundness of the
encoding of Chalice into Viper can now formally be stated as follows.
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Corollary 5.7 (Soundness of the encoding of Chalice into Viper)

∀prog, m, h, r, h1, r1.
VP(prog) ∧ m ∈ prog ∧ (5.9)

r[τ1 6= τ] = (idle, τ1) ∧ r[τ] = ((dh, rc, σ[meth 7→ m], Body(m)), τ) ∧ (5.10)
VR(prog, h, r) ∧ h, r h1, r1 ∧ (5.11)
r1[τ] = ((dh, rc, σ1, return x), τ) (5.12)
⇒
∃π.(dh, rc, dh1, r1c, σ1, π) |= Post(σ1(meth)) (5.13)

Proof Follows as a corollary from lemma 5.8 and theorem 5.9, both stated
subsequently. �

Corollary 5.7 expresses the following: whenever it holds that (5.9) a Chalice
program prog is a valid program and m is a method of prog and (5.10) the
runtime entity collection r has all threads τ1 idle except for thread τ setup
with method pre-state dh, rc and working off method m and (5.11) h and
r form a valid runtime with respect to prog and the Chalice operational
semantics transitions from h and r to h1 and r1 and (5.12) in r1 thread τ has
worked off method m then (5.13) there is a permission mask π for thread τ
with which the current state of thread τ can satisfy the postcondition of m.

Lemma 5.8, used to prove the soundness-of-encoding corollary 5.7 and
stated next, demonstrates that modelling of assertions is sound.

Lemma 5.8 (Soundness of modelling assertions)

∀prog, m. VP(prog) ∧ m ∈ prog ∧ σold = σ0[meth 7→ m] ∧ (5.14)

(JholdK, JσoldK, JπoldK) |= JPre(m)K ∧ (5.15)

(JsK, λ) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, JπoldK)]) }] ∧ JaK ∈ JsK ∧ (5.16)

(JhK, JσK, JπK) = LAST(λ) ∧ σ
ro≡ σold ∧ hold

1
πold

≡ hold ∧ h1
π≡ h ∧ (5.17)

λ |= JaK (5.18)
⇒
(hold

1 , h1, σ, π) |= a (5.19)

Proof By structural induction on the Chalice assertion a. For full proof see
B.9. �

Theorem 5.9, used to prove the soundness-of-encoding corollary 5.7 and
stated next, demonstrates that validity of runtime configurations is pre-
served by the operational semantics of Chalice.

Theorem 5.9 (Preservation of runtime configuration validity by Chalice)
∀prog, h, r, h1, r1. VP(prog) ∧ VR(prog, h, r) ∧ h, r h1, r1 ⇒ VR(prog, h1, r1)

Proof By induction on the length of the execution leading from (h, r) to
(h1, r1) as given by the rules of . For full proof see B.11. �
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Chapter 6

Conclusion and Future Work
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6.1. Conclusion

6.1 Conclusion

This thesis presented a first formal semantics for a substantial subset of
the Viper language. The design of the semantics was strongly influenced
by the presence of old-expressions whose evaluation, in essence, requires a
semantics to keep a history of states. For this, the semantics of Viper defined
the notion of a trace (2.28) as a sequence of states indexable via state-labels.
Such a trace then allows for an expression being evaluated in any state the
trace met during the verification of a method and thus also allows for the
evaluation of old-expressions (2.47) (2.48).

The semantics presented also supports language constructs dealing with
predicates. As predicates are recursive definitions of assertions, they can ei-
ther be treated as entities to which a state can have access to (the iso-recursive
treatment) or can be identified with the full unrolling of their definition (the
equi-recursive treatment). The semantics of Viper is a hybrid: predicates are
treated iso-recursively until completeness requires an unrolling. This combi-
nation is, for example, reflected in the semantics of exhaling permissions
to a predicate (2.73). As such, the semantics of Viper is theoretically com-
plete but non-implementable in case predicates with an infinite unrolling
are present.

Moreover, the semantics of Viper is in parts non-deterministic as it allows,
for example, a declared variable to be initialised with an arbitrary value
chosen from the domain of its type (2.64). However, this non-determinism
has no effect on whether a program verifies: the verification of a program
was defined to be a judgment about all possible evaluations of the program
(2.89). As this includes all of the non-determinism possibly generated by the
semantics of a statement, overall verification was proven to be deterministic
(2.84).

This thesis also presented an encoding of Chalice into Viper and proved
this encoding to be sound (5.7): whenever the encoding of a Chalice pro-
gram verifies with respect to the semantics of Viper then the Chalice pro-
gram verifies with respect to the semantics of Chalice. Proving sound-
ness required to match within Viper every step previously taken by Chal-
ice. A challenge arouse from both Chalice as well as Viper to allocate new
objects non-deterministically. Moreover, Chalice also selects threads non-
deterministically which, by encoding, leads to Viper allocating a new object
- non-deterministically. To obtain a sound encoding required the encod-
ing to uniquely translate Chalice objects into Viper objects and to uniquely
translate Chalice threads into Viper objects. Realising the sets of objects to
be countably infinite then allowed to construct this translation from an as-
sumed bijective function mapping from the union of objects and threads in
Chalice to objects in Viper. Soundness could then be proven by first encod-
ing the step of Chalice into Viper, observing a potentially non-deterministic
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set of evaluations in Viper and then by finally pulling out the one string of
evaluation that matched, under the assumed translation, the step taken in
Chalice.

6.2 Future Work

The Viper semantics presented does currently not support the packing of
wands. Packing a wand involves the computation of a footprint which satis-
fies the semantics of a wand [4]. Sound algorithms computing such a foot-
print exist [11] but incorporating an algorithm into the semantics of Viper
seems arbitrary until it is proven that such an algorithm computes a foot-
print which, in a certain sense, is optimal. However, to this day, the nature
of a wand-footprint is not well understood and questions like uniqueness or
minimality of a footprint have not formally been answered yet. As the exis-
tence of an optimal footprint is not guaranteed by theory and the incorpora-
tion of an arbitrary footprint computation into Viper is out of question, the
development of a semantics for packing wands is work for a future project.

Moreover, the Viper semantics presented in this thesis does not support
custom domains, triggers for quantifiers and goto-statements. The extension
of the semantics to include these language constructs is all potential work
for a future project.

Similarly, the subset of Chalice that was encoded into Viper and whose en-
coding was proven sound within this thesis can be extended until all of
Chalice is supported. Major elements of Chalice currently missing support
are object-monitors as well as abstract read permissions [12].

At last, the conceptual complexity as well as the notational complexity of
the Viper semantics, the Chalice semantics and mostly the notion of sound-
ness and the proof thereof call for a mechanisation within a suitable proof-
assistant like Coq [13] or Isabelle/HOL [14]. A first pay-off of such a mecha-
nisation would be the guarantee that soundness is indeed proven which, due
to the level of details involved, is almost impossible to obtain from a pen-
and-paper proof. A second interesting pay-off would result from the proof-
assistants being able to generate executable code which is a provably correct
representation of the theory specified within the proof-assistant. Thus, if the
semantics of Viper would be mechanised, if the semantics of Chalice would
be mechanised and if the encoding of Chalice into Viper would be mech-
anised then a proof-assistant would be able to generate a provably correct
executable which encodes Chalice into Viper.
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Auxiliary Functions
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Algorithm 1 Local Permission Collection Function Q
1: function Q(a : A, λ : Λ, isIso : B) : Π ∪ X
2: // Assume: λ = λ1:(h, σ, π)
3: if a ≡ acc(x.f, q) then
4: if σ(x) = null then
5: return xnull
6: else if Qq < 0 then
7: return xperm
8: else
9: return (∅F[(σ(x), f) 7→ Qq],∅P,∅W)

10: end if
11: end if
12: if a ≡ acc(p(e1, ..., en), q) then
13: if ∃i. Vei, λU = x then
14: return x
15: else if Qq < 0 then
16: return xperm
17: else
18: // Assume: Vei, λU = vi, p = P|p|(p, vi), xi = FV(p)
19: π1 := (∅F,∅P[p 7→ Qq],∅W)
20: if isIso then
21: return π1
22: else if Q(Body(p)[yi/xi], λ1:(h, σ[yi 7→ vi], π), isIso) = x then
23: return x
24: else
25: return π1 + Q(Body(p)[yi/xi], λ1:(h, σ[yi 7→ vi], π), isIso)
26: end if
27: end if
28: end if
29: if a ≡ e → a1 then
30: if Ve, λU = x then
31: return x
32: else if Ve, λU = True then
33: return Q(a1, λ, isIso)
34: end if
35: end if
36: if a ≡ a1 && a2 then
37: if Q(a1, λ, isIso) = x then
38: return x
39: else if Q(a2, λ, isIso) = x then
40: return x
41: else
42: return Q(a1, λ, isIso) + Q(a2, λ, isIso)
43: end if
44: end if
45: if a ≡ a1 −∗ a2 then
46: if Wn(a1 −∗ a2, λ) = x then
47: return x
48: else
49: return (∅F,∅P,∅W[Wn(a1 −∗ a2, λ) 7→ 1])
50: end if
51: end if
52: return π∅
53: end function
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Algorithm 2 Global Permission Collection Function G
1: function G(π : Π, λ : Λ) : Π ∪ X
2: // Assume: λ = λ1:(h, σ, π) and π = (πF, πP, πW)
3: do
4: card := |{ (o, f) |πF(o, f) > 0 }|
5: for each p ∈ P s.t. πP(p) > 0 do
6: // Assume: p, vi s.t. p = P|p|(p, vi) and xi = FV(p)
7: if QT(Body(p)[yi/xi], λ1:(h, σ[yi 7→ vi], π), False) = x then
8: return x
9: else

10: π := π + QT(Body(p)[yi/xi], λ1:(h, σ[yi 7→ vi], π), False)
11: end if
12: end for each
13: while card < |{ (o, f) |πF(o, f) > 0 }|
14: return π
15: end function
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Algorithm 3 Permission Collection Function Z

1: function Z(a : A, hold : H, h : H, σ : Σ) : Π ∪ X
2: if a ≡ acc(x.joinable) then
3: if σ(x) = null then
4: return xnull
5: else
6: return (∅F[(σ(x), joinable) 7→ 100],∅P)
7: end if
8: end if
9: if a ≡ acc(x.f, n) then

10: if σ(x) = null then
11: return xnull
12: else if Zn < 0 then
13: return xperm
14: else
15: return (∅F[(σ(x), f) 7→ Zn],∅P)
16: end if
17: end if
18: if a ≡ acc(x.p) then
19: if σ(x) = null then
20: return xnull
21: else
22: return (∅F,∅P[(σ(x), p) 7→ 100])
23: end if
24: end if
25: if a ≡ e → a1 then
26: if Ve, hold, h, σU = x then
27: return x
28: else if Ve, hold, h, σU = True then
29: return Z(a1, hold, h, σ)
30: end if
31: end if
32: if a ≡ a1 && a2 then
33: if Z(a1, hold, h, σ) = x then
34: return x
35: else if Z(a2, hold, h, σ) = x then
36: return x
37: else
38: return Z(a1, hold, h, σ) + Z(a2, hold, h, σ)
39: end if
40: end if
41: return π∅
42: end function
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B.1. Soundness of Encoding

B.1 Soundness of Encoding

Lemma B.1 (Soundness of old-expression evaluation)
∀prog, m. VP(prog) ∧ m ∈ prog ∧ σold = σ0[meth 7→ m] ∧ (JholdK, JσoldK, JπoldK) |= JPre(m)K ∧ (JsK, λ) ∈

V[{ (JBody(m)K, Λ[(JholdK, JσoldK, JπoldK)]) }] ∧ Jold(e)K ∈ JsK ∧ σ
ro≡ σold ∧ hold

1
πold

≡ hold ∧ VJold(e)K, λU =

JvK ⇒ Vold(e), hold
1 , h, σU = v

Proof By structural induction on the Chalice expression e. �

Lemma B.2 (Soundness of expression evaluation)
∀prog, m. VP(prog) ∧ m ∈ prog ∧ σold = σ0[meth 7→ m] ∧ (JholdK, JσoldK, JπoldK) |= JPre(m)K ∧ (JsK, λ) ∈
V[{ (JBody(m)K, Λ[(JholdK, JσoldK, JπoldK)]) }] ∧ JeK ∈ JsK ∧ (JhK, JσK, JπK) = LAST(λ) ∧ σ

ro≡ σold ∧

hold
1

πold

≡ hold ∧ h1
π≡ h ∧ VJeK, λU = JvK ⇒ Ve, hold

1 , h1, σU = v

Proof By structural induction on the Chalice expression e and using lemma B.1. �

Lemma B.3 (Soundness of modelling expressions)
∀prog, m. VP(prog) ∧ m ∈ prog ∧ σold = σ0[meth 7→ m] ∧ (JholdK, JσoldK, JπoldK) |= JPre(m)K ∧ (JsK, λ) ∈
V[{ (JBody(m)K, Λ[(JholdK, JσoldK, JπoldK)]) }] ∧ JeK ∈ JsK ∧ (JhK, JσK, JπK) = LAST(λ) ∧ σ

ro≡ σold ∧

hold
1

πold

≡ hold ∧ h1
π≡ h ∧ λ |= JeK ⇒ (hold

1 , h1, σ, π) |= e

Proof As a corollary from lemma B.2, using the definition of λ |= a given in 2.85, using JTrueK = True
and using the definition of (hold, h, σ, π) |= a given in 3.40. �

Lemma B.4 (Soundness of modelling joinable assertions)
∀prog, m. VP(prog) ∧ m ∈ prog ∧ σold = σ0[meth 7→ m] ∧ (JholdK, JσoldK, JπoldK) |= JPre(m)K ∧ (JsK, λ) ∈
V[{ (JBody(m)K, Λ[(JholdK, JσoldK, JπoldK)]) }] ∧ Jacc(x.joinable)K ∈ JsK ∧ (JhK, JσK, JπK) = LAST(λ) ∧ σ

ro≡

σold ∧ hold
1

πold

≡ hold ∧ h1
π≡ h ∧ λ |= Jacc(x.joinable)K ⇒ (hold

1 , h1, σ, π) |= acc(x.joinable)

Proof By unfolding all definitions. �

Lemma B.5 (Soundness of modelling field-access assertions)
∀prog, m. VP(prog) ∧ m ∈ prog ∧ σold = σ0[meth 7→ m] ∧ (JholdK, JσoldK, JπoldK) |= JPre(m)K ∧ (JsK, λ) ∈
V[{ (JBody(m)K, Λ[(JholdK, JσoldK, JπoldK)]) }] ∧ Jacc(x.f, n)K ∈ JsK ∧ (JhK, JσK, JπK) = LAST(λ) ∧ σ

ro≡

σold ∧ hold
1

πold

≡ hold ∧ h1
π≡ h ∧ λ |= Jacc(x.f, n)K ⇒ (hold

1 , h1, σ, π) |= acc(x.f, n)

Proof By unfolding all definitions. �

Lemma B.6 (Soundness of modelling predicate-access assertions)
∀prog, m. VP(prog) ∧ m ∈ prog ∧ σold = σ0[meth 7→ m] ∧ (JholdK, JσoldK, JπoldK) |= JPre(m)K ∧ (JsK, λ) ∈
V[{ (JBody(m)K, Λ[(JholdK, JσoldK, JπoldK)]) }] ∧ Jacc(x.p)K ∈ JsK ∧ (JhK, JσK, JπK) = LAST(λ) ∧ σ

ro≡

σold ∧ hold
1

πold

≡ hold ∧ h1
π≡ h ∧ λ |= Jacc(x.p)K ⇒ (hold

1 , h1, σ, π) |= acc(x.p)
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Proof By unfolding all definitions. �

Lemma B.7 (Soundness of modelling conditional assertions)
∀prog, m. VP(prog) ∧ m ∈ prog ∧ σold = σ0[meth 7→ m] ∧ (JholdK, JσoldK, JπoldK) |= JPre(m)K ∧ (JsK, λ) ∈
V[{ (JBody(m)K, Λ[(JholdK, JσoldK, JπoldK)]) }] ∧ Je → aK ∈ JsK ∧ (JhK, JσK, JπK) = LAST(λ) ∧ σ

ro≡

σold ∧ hold
1

πold

≡ hold ∧ h1
π≡ h ∧ λ |= Je → aK ⇒ (hold

1 , h1, σ, π) |= e → a

Proof Unfolding all definitions, using lemma B.2 and induction when reaching JaK. �

Lemma B.8 (Soundness of modelling conjuncts of assertions)
∀prog, m. VP(prog) ∧ m ∈ prog ∧ σold = σ0[meth 7→ m] ∧ (JholdK, JσoldK, JπoldK) |= JPre(m)K ∧ (JsK, λ) ∈
V[{ (JBody(m)K, Λ[(JholdK, JσoldK, JπoldK)]) }] ∧ Ja1 && a2K ∈ JsK ∧ (JhK, JσK, JπK) = LAST(λ) ∧ σ

ro≡

σold ∧ hold
1

πold

≡ hold ∧ h1
π≡ h ∧ λ |= Ja1 && a2K ⇒ (hold

1 , h1, σ, π) |= a1 && a2

Proof Unfolding all definitions and induction when reaching Ja1K and Ja2K. �

Lemma B.9 (Soundness of modelling assertions)
∀prog, m. VP(prog) ∧ m ∈ prog ∧ σold = σ0[meth 7→ m] ∧ (JholdK, JσoldK, JπoldK) |= JPre(m)K ∧ (JsK, λ) ∈
V[{ (JBody(m)K, Λ[(JholdK, JσoldK, JπoldK)]) }] ∧ JaK ∈ JsK ∧ (JhK, JσK, JπK) = LAST(λ) ∧ σ

ro≡ σold ∧

hold
1

πold

≡ hold ∧ h1
π≡ h ∧ λ |= JaK ⇒ (hold

1 , h1, σ, π) |= a

Proof As a corollary from lemmas B.3, B.4, B.5, B.6, B.7 and B.8. �

Lemma B.10 (Completeness of expression evaluation)
∀prog, m. VP(prog) ∧ m ∈ prog ∧ σold = σ0[meth 7→ m] ∧ (JholdK, JσoldK, JπoldK) |= JPre(m)K ∧ (JsK, λ) ∈
V[{ (JBody(m)K, Λ[(JholdK, JσoldK, JπoldK)]) }] ∧ JeK ∈ JsK ∧ (JhK, JσK, JπK) = LAST(λ) ∧ σ

ro≡ σold ∧

hold
1

πold

≡ hold ∧ h1
π≡ h ∧ Ve, hold

1 , h1, σU = v ⇒ VJeK, λU = JvK

Proof Analogous to B.2. �
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Theorem B.11 (Preservation of runtime configuration validity by Chalice)
∀prog, h, r, h1, r1. VP(prog) ∧ VR(prog, h, r) ∧ h, r h1, r1 ⇒ VR(prog, h1, r1)

Proof The proof is by induction on the length of the execution leading from (h, r) to (h1, r1) as given by
the rules of  . The base case, where no execution took place, trivially holds. An arbitrary execution
of length n + 1 is now assumed where by induction hypothesis, the sub-execution of length n preserves
the runtime configuration validity. Thus, left to prove is that the last step in the execution preserves the
validity of the runtime configuration. The transition from (h, r) to (h1, r1) is now assumed to be the result
of a single step of Chalice. A case analysis of the Chalice statements that possibly lead to this last step will
now prove that (h1, r1) is still a valid runtime. Assumptions 1 and 2 are the same for each case analysis
in the induction proof and are restated here for later referencing.

VP(prog)⇔ ∀m ∈ prog, ∀h, σ, π. (h, σ, π) |= JPre(m)K⇒ (A1)
V[{ (JBody(m)K, Λ[(h, σ, π)]) }] |= JPost(m)K

VR(prog, h, r) ⇔ ∃(πold
τ , πτ). (A2.0)

|=r πτ ∧ (A2.1)
∀eτ2 ∈ idle(r). πτ2 = π∅ ∧ (A2.2)

∀((hold
τ2

, σ2, s3), τ2) ∈ r. (A2.3)

(Jhold
τ2

K, JσoldK, Jπold
τ2

K) |= JPre(m)K ∧ (A2.4)

∃(Js3K, λ) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, JσoldK, Jπold
τ2

K)]) }], (A2.5)

∃h3
πτ2≡ h. (Jdh3, rcK, Jσ2K, Jπτ2K) = LAST(λ) ∧ (A2.6)

V[{ (Js3K, λ) }] |= JPost(m)K (A2.7)

where hold
τ2

= dh2, r2c, m = σ2(meth), xi = Param(m),

σold = [meth 7→ m][this 7→ σ2(this)][xi 7→ σ2(xi)]

The proof now proceeds to a case analysis of the Chalice statement executed that lead to transition
h, r h1, r1.
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Case var x : t: In this case, assumption 3, h, r h1, r1, (A3) has the following derivation tree:

r[τ] = ((hold, σ, (var x : t; s)), τ) h = dh, rc

v ∈ Dt

h, ((hold, σ, (var x : t; s)), τ) ⇀ h, ((hold, σ[x 7→ v], s), τ) h1 = bhe

h, r h1, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]

With h1 = bhe = bdh, rce and r1 = r[τ 7→ ((hold, σ[x 7→ v], s), τ)], the conclusion to prove is as
follows.

VR(prog, h1, r1) ⇔ VR(prog, bdh, rce, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]) ⇔ ∃(πold’
τ , π′τ). (B.1)

|=r[τ 7→((hold,σ[x 7→v],s),τ)] π′τ ∧ (B.2)

∀eτ2 ∈ idle(r[τ 7→ ((hold, σ[x 7→ v], s), τ)]). π′τ2
= π∅ ∧ (B.3)

∀((hold
τ2

, σ3, s4), τ2) ∈ r[τ 7→ ((hold, σ[x 7→ v], s), τ)]. (B.4)

(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K) |= JPre(m)K ∧ (B.5)

∃(Js4K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K)]) }], (B.6)

∃h4

π′τ2≡ bdh, rce. (B.7)

(Jdh4, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK, Jσ3K, Jπ′τ2
K) = LAST(λ1) ∧ (B.8)

V[{ (Js4K, λ1) }] |= JPost(m)K (B.9)

where hold
τ2

= dh2, r2c, m = σ3(meth), xi = Param(m),

σold’ = [meth 7→ m][this 7→ σ3(this)][xi 7→ σ3(xi)]

The case is proven by taking the same sequence of permission masks as given by assumption (A2.0):

(πold’
τ , π′τ) = (πold

τ , πτ) (B.10)

It remains to be shown that the choice (B.10) satisfies conclusions (B.2), (B.3) and (B.4)-(B.9).

Claim (B.2): |=r[τ 7→((hold,σ[x 7→v],s),τ)] π′τ

Proof From (B.10): π′τ = πτ. Thus:

(B.2) ⇔ |=r[τ 7→((hold,σ[x 7→v],s),τ)] πτ (B.11)

By expanding the definition of |=r[τ 7→((hold,σ[x 7→v],s),τ)] given in 5.3:

(B.11)⇔|=( ∑
eτ∈r[τ 7→((hold,σ[x 7→v],s),τ)]

πτ)+ (B.12)

( ∑
eo∈free(r[τ 7→((hold,σ[x 7→v],s),τ)])

∑
f∈fields(eo)

(∅F[(o, f) 7→ 100],∅P))+

( ∑
eτ∈idle(r[τ 7→((hold,σ[x 7→v],s),τ)])

(∅F[(τ, joinable) 7→ 100],∅P))
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According to (A3), the set of free objects is the same as before the transition:

free(r[τ 7→ ((hold, σ[x 7→ v], s), τ)]) = free(r) (B.13)

Thus, for term two in (B.12) it holds:

( ∑
eo∈free(r[τ 7→((hold,σ[x 7→v],s),τ)])

∑
f∈fields(eo)

(∅F[(o, f) 7→ 100],∅P)) = ( ∑
eo∈free(r)

∑
f∈fields(eo)

(∅F[(o, f) 7→ 100],∅P))

(B.14)

Similarly, the set of idle threads is the same as before the transition. Thus:

( ∑
eτ∈idle(r[τ 7→((hold,σ[x 7→v],s),τ)])

(∅F[(τ, joinable) 7→ 100],∅P)) = ( ∑
eτ∈idle(r)

(∅F[(τ, joinable) 7→ 100],∅P))

Hence:

(B.11)⇔|=( ∑
eτ∈r[τ 7→((hold,σ[x 7→v],s),τ)]

πτ)+ (B.15)

( ∑
eo∈free(r)

∑
f∈fields(eo)

(∅F[(o, f) 7→ 100],∅P))+

( ∑
eτ∈idle(r)

(∅F[(τ, joinable) 7→ 100],∅P))

By the operational semantics of Chalice, and in particular by (A3), threads are neither removed nor
added to a runtime entity collection. Thus:

( ∑
eτ∈r[τ 7→((hold,σ[x 7→v],s),τ)]

πτ) = ( ∑
eτ∈r

πτ) (B.16)

From (B.16) it thus follows:

(B.15)⇔|=( ∑
eτ∈r

πτ)+ (B.17)

( ∑
eo∈free(r)

∑
f∈fields(eo)

(∅F[(o, f) 7→ 100],∅P))+

( ∑
eτ∈idle(r)

(∅F[(τ, joinable) 7→ 100],∅P))

By definition of |=r given in 5.3:
(B.17)⇔|=r πτ (B.18)

Summarising (B.11), (B.12), (B.15), (B.17) and (B.18):

(B.2) ⇔ |=r πτ (B.19)

|=r πτ holds by assumption (A2.1), which proves claim (B.2). �
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Claim (B.3): ∀eτ2 ∈ idle(r[τ 7→ ((hold, σ[x 7→ v], s), τ)]). π′τ2
= π∅

Proof By choice of permission masks (B.10):

(B.3) ⇔ ∀eτ2 ∈ idle(r[τ 7→ ((hold, σ[x 7→ v], s), τ)]). πτ2 = π∅ (B.20)

According to (A3), the set of idle threads remained unchanged during the transition:

idle(r[τ 7→ ((hold, σ[x 7→ v], s), τ)]) = idle(r) (B.21)

Thus:
(B.20) ⇔ ∀eτ2 ∈ idle(r). πτ2 = π∅ (B.22)

Summarising (B.20) and (B.22):

(B.3) ⇔ ∀eτ2 ∈ idle(r). πτ2 = π∅ (B.23)

∀eτ2 ∈ idle(r). πτ2 = π∅ holds by assumption (A2.2), which proves claim (B.3). �

Claim (B.4)-(B.9): ∀((hold
τ2

, σ3, s4), τ2) ∈ r[τ 7→ ((hold, σ[x 7→ v], s), τ)].
(Jhold

τ2
K, Jσold’K, Jπold’

τ2
K) |= JPre(m)K ∧

∃(Js4K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K)]) }], ∃h4

π′τ2≡ bdh, rce.
(Jdh4, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK, Jσ3K, Jπ′τ2

K) = LAST(λ1) ∧ V[{ (Js4K, λ1) }] |= JPost(m)K
where hold

τ2
= dh2, r2c, m = σ3(meth), xi = Param(m), σold’ = [meth 7→ m][this 7→ σ3(this)][xi 7→ σ3(xi)]

Proof Claim (B.4)-(B.9) quantifies over the set of active threads in runtime-entity collection r[τ 7→
((hold, σ[x 7→ v], s), τ)]. According to (A3), this set of active threads can be partitioned as follows: a)
thread τ which executed statement var x : t and b) all other active threads τ2 6= τ. Claim (B.4)-(B.9)
is proven if it holds for thread τ as well as for an arbitrary thread chosen from partition b).

Arbitrary active but non-executing thread τ2 6= τ:

Proof By chosing ((hold
τ2

, σ3, s4), τ2) ∈ r[τ 7→ ((hold, σ[x 7→ v], s), τ)] with τ2 6= τ, claim (B.4)-(B.9)
reduces to:

(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K) |= JPre(m)K ∧ (B.24)

∃(Js4K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K)]) }], (B.25)

∃h4

π′τ2≡ bdh, rce. (B.26)

(Jdh4, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK, Jσ3K, Jπ′τ2
K) = LAST(λ1) ∧ (B.27)

V[{ (Js4K, λ1) }] |= JPost(m)K (B.28)

where hold
τ2

= dh2, r2c, m = σ3(meth), xi = Param(m),

σold’ = [meth 7→ m][this 7→ σ3(this)][xi 7→ σ3(xi)]
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By choice of permissions (B.10): π′τ2
= πτ2 and πold’

τ2
= πold

τ2
. Furthermore, as τ2 is active but

non-executing: σ3 = σ2, s4 = s3, and σold’ = σold, all given by assumption (A2.3)-(A2.7). Claim
(B.4)-(B.9) thus reduces to:

(Jhold
τ2

K, JσoldK, Jπold
τ2

K) |= JPre(m)K ∧ (B.29)

∃(Js3K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, JσoldK, Jπold
τ2

K)]) }], (B.30)

∃h4
πτ2≡ bdh, rce. (B.31)

(Jdh4, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK, Jσ2K, Jπτ2K) = LAST(λ1) ∧ (B.32)
V[{ (Js3K, λ1) }] |= JPost(m)K (B.33)

where hold
τ2

= dh2, r2c, m = σ2(meth), xi = Param(m),

σold = [meth 7→ m][this 7→ σ2(this)][xi 7→ σ2(xi)]

(B.29) holds by assumption (A2.4). To prove (B.30)-(B.33), the partial trace (Js3K, λ) and the
runtime heap h3, promised by assumption (A2.5), are chosen. Thus, assume:

(Js3K, λ) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, JσoldK, Jπold
τ2

K)]) }] (B.34)

h3
πτ2≡ h (B.35)

(Jdh3, rcK, Jσ2K, Jπτ2K) = LAST(λ) (B.36)
V[{ (Js3K, λ) }] |= JPost(m)K (B.37)

The existence of (Js3K, λ) and h3 then prove (B.30)-(B.33) if additionally h3
πτ2≡ bdh, rce and

Jdh3, rcK = Jdh3, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK holds.

Claim: h3
πτ2≡ bdh, rce

Proof By assumption (B.35):

h3
πτ2≡ h (B.38)

Assume πτ2 = (πF, πP). Then, by definition of
πτ2≡ given in 5.5:

(B.38) ⇔ ∀(o, f). πF(o, f) > 0⇒ h3(o, f) = h(o, f) (B.39)

Using the definition of d , c given in 3.29:

(B.39) ⇔ ∀(o, f). πF(o, f) > 0⇒ h3(o, f) = dh, rc(o, f) (B.40)

Using the definition of b e given in 3.29:

(B.40) ⇔ ∀(o, f). πF(o, f) > 0⇒ h3(o, f) = bdh, rce(o, f) (B.41)

Summarising (B.38)-(B.41) and applying the definition of
πτ2≡ given in 5.5 proves the claim:

h3
πτ2≡ h ⇔ h3

πτ2≡ bdh, rce (B.42)

�
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Claim: Jdh3, rcK = Jdh3, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK

Proof By definition of function equality:

Jdh3, rcK = Jdh3, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK⇔ (B.43)

∀(o, f).Jdh3, rcK(o, f) = Jdh3, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK(o, f)

The claim is proven by a case analysis on f.
Case f 6∈ { recv, argi }
Then by definition of heap encoding J K given in 4.14:

Jdh3, rcK(o, f) = Jh3(γ
−1(o), f)K = Jdh3, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK(o, f) (B.44)

Case f = recv
Then by definition of heap encoding J K given in 4.14:

Jdh3, rcK(o, f) = Jσ4(this)K (B.45)

where ((hold
2 , σ4, s5), τ3) ∈ r s.t. τ3 = γ−1(o)

In Chalice, variable this is read-only. Furthermore, by assumption (A3), no active thread
was reset to idle. Thus, thread τ3 still exists in r[τ 7→ ((hold, σ[x 7→ v], s), τ)] with the same
value for this in σ4:

Jσ4(this)K = Jdh3, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK(o, f) (B.46)

Case f = argi
Analogous to the case f = recv.

Thus, the claim holds:

Jdh3, rcK = Jdh3, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK (B.47)

�

Thus, conclusion (B.4)-(B.9) holds for an arbitrary but non-executing thread. �

Active and executing thread τ:
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Proof For the active and executing thread ((hold, σ[x 7→ v], s), τ) ∈ r[τ 7→ ((hold, σ[x 7→ v], s), τ)]
claim (B.4)-(B.9) reduces to:

(JholdK, Jσold’K, Jπold’
τ K) |= JPre(m)K ∧ (B.48)

∃(JsK, λ1) ∈ V[{ (JBody(m)K, Λ[(JholdK, Jσold’K, Jπold’
τ K)]) }], (B.49)

∃h4
π′τ≡ bdh, rce. (B.50)

(Jdh4, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK, Jσ[x 7→ v]K, Jπ′τK) = LAST(λ1) ∧ (B.51)
V[{ (JsK, λ1) }] |= JPost(m)K (B.52)

where hold = dh2, r2c, m = σ[x 7→ v](meth), xi = Param(m),

σold’ = [meth 7→ m][this 7→ σ[x 7→ v](this)][xi 7→ σ[x 7→ v](xi)]

By choice of permissions (B.10): π′τ = πτ and πold’
τ = πold

τ . Furthermore, variable meth is
ghost, variable this is read-only as are variables xi. Thus: σ[x 7→ v](meth) = σ(meth), σ[x 7→
v](this) = σ(this) and σ[x 7→ v](xi) = σ(xi). Thus, σold’ = σold, given by assumption (A2.3)-
(A2.7). Conclusion (B.4)-(B.9) thus reduces for τ to:

(JholdK, JσoldK, Jπold
τ K) |= JPre(m)K ∧ (B.53)

∃(JsK, λ1) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }], (B.54)

∃h4
πτ≡ bdh, rce. (B.55)

(Jdh4, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK, Jσ[x 7→ v]K, JπτK) = LAST(λ1) ∧ (B.56)
V[{ (JsK, λ1) }] |= JPost(m)K (B.57)

where hold = dh2, r2c, m = σ(meth), xi = Param(m),

σold = [meth 7→ m][this 7→ σ(this)][xi 7→ σ(xi)]

(B.53) holds by assumption (A2.4). Assumptions (A2.5)-(A2.7) promise the existence of a partial
trace (Jvar x : t; sK, λ) and a runtime heap h3 for which it holds:

(Jvar x : t; sK, λ) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }] (B.58)

h3
πτ≡ h (B.59)

(Jdh3, rcK, JσK, JπτK) = LAST(λ) (B.60)
V[{ (Jvar x : t; sK, λ) }] |= JPost(m)K (B.61)

By definition of statement encoding J K given in 4.3:

(Jvar x : t; sK, λ) = (var JxK : JtK; JsK, λ) (B.62)

From the definition 2.64 of the Viper trace semantics of variable declarations and (B.60) it follows:

(C[var JxK : JtK], λ) (C[ε], λ:(Jdh3, rcK, JσK[JxK 7→ v1], JπτK)) (B.63)
where C = •; JsK and v1 ∈ DJtK

73



B.1. Soundness of Encoding

From the definition 2.26 of plugging a statement into an evaluation context it follows:

(C[ε], λ:(Jdh3, rcK, JσK[JxK 7→ v1], JπτK)) = (JsK, λ:(Jdh3, rcK, JσK[JxK 7→ v1], JπτK)) (B.64)

From the definition 2.82 of the reflexive and transitive closure V[ψ], (B.58) and (B.62)-(B.64) it
follows:

(JsK, λ:(Jdh3, rcK, JσK[JxK 7→ v1], JπτK)) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }] (B.65)

Moreover, the definition 2.82 of the reflexive and transitive closure V[ψ] also allows to conclude:

∀v1 ∈ DJtK.(JsK, λ:(Jdh3, rcK, JσK[JxK 7→ v1], JπτK)) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }] (B.66)

The assumed bijection γ defined in 4.10 and the definition 4.11 of value encodings J K allows to
conclude:

∃(JsK, λ:(Jdh3, rcK, JσK[JxK 7→ v1], JπτK)) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }] (B.67)

where v1 = JvK with v given by assumption (A3)

The partial trace (JsK, λ:(Jdh3, rcK, JσK[JxK 7→ v1], JπτK)) promised by (B.67) is now taken. Thus
assume:

(JsK, λ:(Jdh3, rcK, JσK[JxK 7→ v1], JπτK)) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }] (B.68)

v1 = JvK (B.69)

Recall in order for claim (B.4)-(B.9) to hold, (B.54)-(B.57) have to hold. This is proven to hold
with the partial trace (JsK, λ:(Jdh3, rcK, JσK[JxK 7→ v1], JπτK)) given by (B.68) and h3 given by

(B.59). In order for claim (B.4)-(B.9) to hold with this choice, it is left to prove that h3
πτ≡ bdh, rce,

Jdh3, rcK = Jdh3, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK and JσK[JxK 7→ v1] = Jσ[x 7→ v]K. h3
πτ≡ bdh, rce

holds with an argument analogous to (B.42). Jdh3, rcK = Jdh3, r[τ 7→ ((hold, σ[x 7→ v], s), τ)]cK
holds with an argument analogous to (B.47). Left to prove: JσK[JxK 7→ v1] = Jσ[x 7→ v]K.

Claim: JσK[JxK 7→ v1] = Jσ[x 7→ v]K

Proof First recall (B.69): v1 = JvK. Thus, left to prove: JσK[JxK 7→ JvK] = Jσ[x 7→ v]K. By definition
of store equality:

JσK[JxK 7→ JvK] = Jσ[x 7→ v]K ⇔ (B.70)
∀JyK.JσK[JxK 7→ JvK](JyK) = Jσ[x 7→ v]K(JyK)

The claim is then proven by a case analysis on y with either y = x or y 6= x and a straight forward
unfolding of the definition of store encodings JK given in 4.12. �

Thus, conclusion (B.4)-(B.9) holds for the active and executing thread. �

Thus, conclusion (B.4)-(B.9) holds for an arbitrary active thread. �
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Case if e then s1 else s2: In this case, assumption 3, h, r h1, r1, (A3) has the following derivation tree:

r[τ] = ((hold, σ, (if e then s1 else s2; s)), τ) h = dh, rc

Ve, hold, h, σU = True

h, ((hold, σ, (if e then s1 else s2; s)), τ) ⇀ h, ((hold, σ, s1; s), τ) h1 = bhe

h, r h1, r[τ 7→ ((hold, σ, s1; s), τ)]

With h1 = bhe = bdh, rce and r1 = r[τ 7→ ((hold, σ, s1; s), τ)], the conclusion to prove is as follows.

VR(prog, h1, r1) ⇔ VR(prog, bdh, rce, r[τ 7→ ((hold, σ, s1; s), τ)]) ⇔ ∃(πold’
τ , π′τ). (B.71)

|=r[τ 7→((hold,σ,s1;s),τ)] π′τ ∧ (B.72)

∀eτ2 ∈ idle(r[τ 7→ ((hold, σ, s1; s), τ)]). π′τ2
= π∅ ∧ (B.73)

∀((hold
τ2

, σ3, s4), τ2) ∈ r[τ 7→ ((hold, σ, s1; s), τ)]. (B.74)

(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K) |= JPre(m)K ∧ (B.75)

∃(Js4K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K)]) }], (B.76)

∃h4

π′τ2≡ bdh, rce. (B.77)

(Jdh4, r[τ 7→ ((hold, σ, s1; s), τ)]cK, Jσ3K, Jπ′τ2
K) = LAST(λ1) ∧ (B.78)

V[{ (Js4K, λ1) }] |= JPost(m)K (B.79)

where hold
τ2

= dh2, r2c, m = σ3(meth), xi = Param(m),

σold’ = [meth 7→ m][this 7→ σ3(this)][xi 7→ σ3(xi)]

The case is proven by taking the same sequence of permission masks as given by assumption (A2.0):

(πold’
τ , π′τ) = (πold

τ , πτ) (B.80)

It remains to be shown that the choice (B.80) satisfies conclusions (B.72), (B.73) and (B.74)-(B.79).

Claim (B.72): |=r[τ 7→((hold,σ,s1;s),τ)] π′τ

Proof Analogous to proof of claim (B.2). �

Claim (B.73): ∀eτ2 ∈ idle(r[τ 7→ ((hold, σ, s1; s), τ)]). π′τ2
= π∅

Proof Analogous to proof of claim (B.3). �

Claim (B.74)-(B.79): ∀((hold
τ2

, σ3, s4), τ2) ∈ r[τ 7→ ((hold, σ, s1; s), τ)].
(Jhold

τ2
K, Jσold’K, Jπold’

τ2
K) |= JPre(m)K ∧

∃(Js4K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K)]) }], ∃h4

π′τ2≡ bdh, rce.
(Jdh4, r[τ 7→ ((hold, σ, s1; s), τ)]cK, Jσ3K, Jπ′τ2

K) = LAST(λ1) ∧ V[{ (Js4K, λ1) }] |= JPost(m)K
where hold

τ2
= dh2, r2c, m = σ3(meth), xi = Param(m), σold’ = [meth 7→ m][this 7→ σ3(this)][xi 7→ σ3(xi)]
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Proof Claim (B.74)-(B.79) quantifies over the set of active threads in runtime-entity collection r[τ 7→
((hold, σ, s1; s), τ)]. According to (A3), this set of active threads can be partitioned as follows: a)
thread τ which executed statement if e then s1 else s2 and b) all other active threads τ2 6= τ. Claim
(B.74)-(B.79) is proven if it holds for thread τ as well as for an arbitrary thread chosen from partition
b).

Arbitrary active but non-executing thread τ2 6= τ:

Proof Analogous to proof of claim (B.4)-(B.9) and the subproof considering the arbitrary active
but non-executing thread. �

Active and executing thread τ:

Proof For the active and executing thread ((hold, σ, s1; s), τ) ∈ r[τ 7→ ((hold, σ, s1; s), τ)] claim
(B.74)-(B.79) reduces to:

(JholdK, Jσold’K, Jπold’
τ K) |= JPre(m)K ∧ (B.81)

∃(Js1; sK, λ1) ∈ V[{ (JBody(m)K, Λ[(JholdK, Jσold’K, Jπold’
τ K)]) }], (B.82)

∃h4
π′τ≡ bdh, rce. (B.83)

(Jdh4, r[τ 7→ ((hold, σ, s1; s), τ)]cK, JσK, Jπ′τK) = LAST(λ1) ∧ (B.84)
V[{ (Js1; sK, λ1) }] |= JPost(m)K (B.85)

where hold = dh2, r2c, m = σ(meth), xi = Param(m),

σold’ = [meth 7→ m][this 7→ σ(this)][xi 7→ σ(xi)]

By choice of permissions (B.80): π′τ = πτ and πold’
τ = πold

τ . Moreover σold’ = σold, given by
assumption (A2.3)-(A2.7). Claim (B.74)-(B.79) thus reduces for τ to:

(JholdK, JσoldK, Jπold
τ K) |= JPre(m)K ∧ (B.86)

∃(Js1; sK, λ1) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }], (B.87)

∃h4
πτ≡ bdh, rce. (B.88)

(Jdh4, r[τ 7→ ((hold, σ, s1; s), τ)]cK, JσK, JπτK) = LAST(λ1) ∧ (B.89)
V[{ (Js1; sK, λ1) }] |= JPost(m)K (B.90)

where hold = dh2, r2c, m = σ(meth), xi = Param(m),

σold = [meth 7→ m][this 7→ σ(this)][xi 7→ σ(xi)]

(B.86) holds by assumption (A2.4). Assumptions (A2.5)-(A2.7) promise the existence of a partial
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trace (Jif e then s1 else s2; sK, λ) and a runtime heap h3 for which it holds:

(Jif e then s1 else s2; sK, λ) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }] (B.91)

h3
πτ≡ h (B.92)

(Jdh3, rcK, JσK, JπτK) = LAST(λ) (B.93)
V[{ (Jif e then s1 else s2; sK, λ) }] |= JPost(m)K (B.94)

By definition of statement encoding J K given in 4.3:

(Jif e then s1 else s2; sK, λ) = (assert JxiK != JnullK;if JeK then Js1K else Js2K; JsK, λ) (B.95)

Recall the semantics of Viper assert statements given in 2.70: a failing assert results in an error-
trace. Moreover, recall the rule of error-trace propagation given in 2.63: error-traces uncondi-
tionally propagate to the end of the evaluation. Also recall A2.1 according to which the current
program is a valid program. From this and (B.86) and (B.91) it follows that all assert statements
succeed. According to the semantics of Viper assert statements, trace λ continues unaffected
through succeeding assert statements. From this, (B.91) and (B.95) it then follows:

(if JeK then Js1K else Js2K; JsK, λ) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }] (B.96)

Additionally, by definition 2.82 of the closure V[] of the lifted trace semantics, it also holds:

(if JeK then Js1K else Js2K; JsK, λ) ∈ V[{ (Jif e then s1 else s2; sK, λ) }] (B.97)

Now recall the semantics of Viper if-else statements given in 2.77. Moreover recall definition
2.82 of the closure V[] of the lifted trace semantics. With this, the following holds:

(assume JeK; Js1K; JsK, λ) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }] (B.98)

(assume JeK; Js1K; JsK, λ) ∈ V[{ (Jif e then s1 else s2; sK, λ) }] (B.99)

Recall from assumption (A3): Ve, hold, h, σU = True. From this and lemma B.10 it follows:

VJeK, λU = JTrueK 4.11
= True. From this, (B.98) and the semantics of Viper assume statements

given in 2.71 the following follows:

(Js1K; JsK, λ) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }] (B.100)

(Js1K; JsK, λ) ∈ V[{ (Jif e then s1 else s2; sK, λ) }] (B.101)

From this and the definition of statement encodings given in 4.3 the following follows:

(Js1; sK, λ) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }] (B.102)

(Js1; sK, λ) ∈ V[{ (Jif e then s1 else s2; sK, λ) }] (B.103)

From (B.94) and (B.103) and the definition of the closure V[] given in 2.82 the following follows:

V[{ (Js1; sK, λ) }] |= JPost(m)K (B.104)
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Recall in order for claim (B.74)-(B.79) to hold, (B.87)-(B.90) has to hold. This can be proven
for (Js1; sK, λ), as given by (B.102), and h3 as given by (B.92). With this choice and (B.104),

(B.90) holds. Left to prove with this choice is: h3
πτ≡ bdh, rce and Jdh3, rcK = Jdh3, r[τ 7→

((hold, σ, s1; s), τ)]cK. h3
πτ≡ bdh, rce holds with an argument analogous to (B.42). Jdh3, rcK =

Jdh3, r[τ 7→ ((hold, σ, s1; s), τ)]cK holds with an argument analogous to (B.47). Thus, claim (B.74)-
(B.79) holds for the active and executing thread τ. �

Thus, conclusion (B.74)-(B.79) holds for an arbitrary active thread. �
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Case fork x := y.m(zi): In this case, assumption 3, h, r h1, r1, (A3) has the following derivation tree:

hold
1 = h σ(y) = o σ1 = [meth 7→ m][this 7→ o][xi 7→ σ(zi)] s1 = Body(m)

h, ((hold, σ, (fork x := y.m(zi); s)), τ)|(idle, τ1)→ h, ((hold, σ[x 7→ τ1], s), τ)|((hold
1 , σ1, s1), τ1)

r[τ] = ((hold, σ, (fork x := y.m(zi); s)), τ) r[τ1] = (idle, τ1) h = dh, rc h1 = bhe
h, r h1, r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold

1 , σ1, s1), τ1)]

With h1 = bhe = bdh, rce and r1 = r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold
1 , σ1, s1), τ1)], the

conclusion to prove is as follows.

VR(prog, h1, r1) ⇔ VR(prog, bdh, rce, r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold
1 , σ1, s1), τ1)]) ⇔ ∃(πold’

τ , π′τ). (B.105)

|=r[τ 7→((hold,σ[x 7→τ1],s),τ)][τ1 7→((hold
1 ,σ1,s1),τ1)]

π′τ ∧ (B.106)

∀eτ2 ∈ idle(r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold
1 , σ1, s1), τ1)]). π′τ2

= π∅ ∧ (B.107)

∀((hold
τ2

, σ3, s4), τ2) ∈ r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold
1 , σ1, s1), τ1)]. (B.108)

(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K) |= JPre(m)K ∧ (B.109)

∃(Js4K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K)]) }], (B.110)

∃h4
π′τ2≡ bdh, rce. (B.111)

(Jdh4, r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold
1 , σ1, s1), τ1)]cK, Jσ3K, Jπ′τ2

K) = LAST(λ1) ∧ (B.112)

V[{ (Js4K, λ1) }] |= JPost(m)K (B.113)

where hold
τ2

= dh2, r2c, m = σ3(meth), xi = Param(m),

σold’ = [meth 7→ m][this 7→ σ3(this)][xi 7→ σ3(xi)]

The case is proven by taking the following permission masks:

πold’
τ = πold

τ (B.114)

π′τ = πτ + (∅F[(τ1, joinable) 7→ 100],∅P)− Z(Pre(m)[y/this][zi/xi], h, h, σ) (B.115)

πold’
τ1

= Z(Pre(m)[y/this][zi/xi], h, h, σ) (B.116)

π′τ1
= Z(Pre(m)[y/this][zi/xi], h, h, σ) (B.117)

∀τ2 6∈ { τ, τ1 }.(πold’
τ2

, π′τ2
) = (πold

τ2
, πτ2) (B.118)

where m is the method forked by τ and now executed by τ1

It remains to be shown that choices (B.114)-(B.118) satisfy conclusions (B.106), (B.107) and (B.108)-
(B.113).

Claim (B.106): |=r[τ 7→((hold,σ[x 7→τ1],s),τ)][τ1 7→((hold
1 ,σ1,s1),τ1)]

π′τ

Proof Analogous to proof of claim (B.2) and noting that τ1 was removed from the set of idle threads
and the permissions π′τ1

given to τ1 are the permissions taken away from τ. �
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Claim (B.107): ∀eτ2 ∈ idle(r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold
1 , σ1, s1), τ1)]). π′τ2

= π∅

Proof Analogous to proof of claim (B.3) and noting that with (B.118) all threads that are still idle
have the same permissions as before. �

Claim (B.108)-(B.113): ∀((hold
τ2

, σ3, s4), τ2) ∈ r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold
1 , σ1, s1), τ1)].

(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K) |= JPre(m)K ∧

∃(Js4K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K)]) }], ∃h4

π′τ2≡ bdh, rce.
(Jdh4, r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold

1 , σ1, s1), τ1)]cK, Jσ3K, Jπ′τ2
K) = LAST(λ1) ∧

V[{ (Js4K, λ1) }] |= JPost(m)K
where hold

τ2
= dh2, r2c, m = σ3(meth), xi = Param(m), σold’ = [meth 7→ m][this 7→ σ3(this)][xi 7→ σ3(xi)]

Proof Claim (B.108)-(B.113) quantifies over the set of active threads in runtime-entity collection
r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold

1 , σ1, s1), τ1)]. According to (A3), this set of active threads
can be partitioned as follows: a) thread τ which executed statement fork x := y.m(zi) b) the newly
forked thread τ1 and c) all other active threads τ2 6∈ { τ, τ1 }. Claim (B.108)-(B.113) is proven if it
holds for thread τ, thread τ1 as well as for an arbitrary thread τ2 chosen from partition c).

Active and forking thread τ:

Proof For the active and executing thread ((hold, σ[x 7→ τ1], s), τ) ∈ r[τ 7→ ((hold, σ[x 7→
τ1], s), τ)][τ1 7→ ((hold

1 , σ1, s1), τ1)] claim (B.108)-(B.113) reduces to:

(JholdK, Jσold’K, Jπold’
τ K) |= JPre(m)K ∧ (B.119)

∃(JsK, λ1) ∈ V[{ (JBody(m)K, Λ[(JholdK, Jσold’K, Jπold’
τ K)]) }], (B.120)

∃h4
π′τ≡ bdh, rce. (B.121)

(Jdh4, r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold
1 , σ1, s1), τ1)]cK, Jσ[x 7→ τ1]K, Jπ′τK) = LAST(λ1) ∧

(B.122)

V[{ (JsK, λ1) }] |= JPost(m)K (B.123)

where hold = dh2, r2c, m = σ[x 7→ τ1](meth), xi = Param(m),

σold’ = [meth 7→ m][this 7→ σ[x 7→ τ1](this)][xi 7→ σ[x 7→ τ1](xi)]

By choice of permissions (B.114): πold’
τ = πold

τ . Furthermore, variable meth is ghost, variable
this is read-only as are variables xi. Thus: σ[x 7→ τ1](meth) = σ(meth), σ[x 7→ τ1](this) = σ(this)
and σ[x 7→ τ1](xi) = σ(xi). Thus, σold’ = σold, given by assumption (A2.3)-(A2.7). Claim (B.108)-
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(B.113) thus reduces for τ to:

(JholdK, JσoldK, Jπold
τ K) |= JPre(m)K ∧ (B.124)

∃(JsK, λ1) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }], (B.125)

∃h4
π′τ≡ bdh, rce. (B.126)

(Jdh4, r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold
1 , σ1, s1), τ1)]cK, Jσ[x 7→ τ1]K, Jπ′τK) = LAST(λ1) ∧

(B.127)

V[{ (JsK, λ1) }] |= JPost(m)K (B.128)

where hold = dh2, r2c, m = σ(meth), xi = Param(m),

σold = [meth 7→ m][this 7→ σ(this)][xi 7→ σ(xi)]

(B.124) holds by assumption (A2.4). Thus left to prove in order for claim (B.108)-(B.113) to
hold are (B.125)-(B.128). Assumptions (A2.5)-(A2.7) promise the existence of a partial trace
(Jfork x := y.m(zi); sK, λ) and a runtime heap h3 for which it holds:

(Jfork x := y.m(zi); sK, λ) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }] (B.129)

h3
πτ≡ h (B.130)

(Jdh3, rcK, JσK, JπτK) = LAST(λ) (B.131)
V[{ (Jfork x := y.m(zi); sK, λ) }] |= JPost(m)K (B.132)

By definition of statement encoding J K given in 4.3:

(Jfork x := y.m(zi); sK, λ) = (exhale JPre(m)K[JyK/JthisK][JziK/JxiK]; (B.133)
var JxK : Ref; (B.134)
JxK := new(recv, argi); (B.135)
JxK.recv := JyK; (B.136)

JxK.argi := JziK; (B.137)
JsK, λ) (B.138)

From (B.132), the Viper rule of unconditional error-trace propagation (2.63), the definition of the
Viper closure V[] given in 2.82 and the definition of |= given in (2.88) it follows that the exhale
in (B.133) must succeed. Thus:

(C[exhale JPre(m)K[JyK/JthisK][JziK/JxiK], λ) (C[ε], λ2) ∧ λ1 6∈ ΛErr (B.139)

with C = •; var JxK : Ref; JxK := new(recv, argi); JxK.recv := JyK; JxK.argi := JziK;JsK

From (B.139) and (B.131) and lemmas B.13, B.15 and B.14 it follows:

(h?, JσK, π?) = LAST(λ2) (B.140)

where π? = JπτK−QT(JPre(m)K[JyK/JthisK][JziK/JxiK], λ, True), h? π?

≡ Jdh3, rcK
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From (B.139) and the definition of the semantics of Viper variable declaration statements given
in (2.64) it follows:

∀o ∈ O. ∃λ3. (C1[var JxK : Ref], λ2) (C1[ε], λ3) (B.141)

with C1 = •; JxK := new(recv, argi); JxK.recv := JyK; JxK.argi := JziK;JsK
and (h?, JσK[JxK 7→ o], π?) = LAST(λ3)

From (B.141) and the definition of the semantics of Viper allocation statements given in (2.65) it
follows:
∀o? 6∈ O(λ3). ∃λ4. (C2[JxK := new(recv, argi)], λ3) (C2[ε], λ4) (B.142)

with C2 = •; JxK.recv := JyK; JxK.argi := JziK;JsK

and (h?[(o?, recv) 7→ v][(o?, argi) 7→ vi], JσK[JxK 7→ o][JxK 7→ o?], π?[(o?, recv) 7→ 1][(o?, argi) 7→ 1]) = LAST(λ4)

The proof now continues by analysing (C2[ε], λ4) for which it holds:

C2 = •; JxK.recv := JyK; JxK.argi := JziK;JsK (B.143)

(h?[(o?, recv) 7→ v][(o?, argi) 7→ vi], JσK[JxK 7→ o][JxK 7→ o?], π?[(o?, recv) 7→ 1][(o?, argi) 7→ 1]) = LAST(λ4) (B.144)

o? = γ(τ1) (B.145)

From (B.143), (B.144) and (B.145) as well as the Viper semantics of field assignments given in
2.67 it follows (simplified):

(C2[ε], λ4) ...  (JsK, λ5) (B.146)

(h?[(o?, recv) 7→ JσK(JyK)][(o?, argi) 7→ JσK(JziK)], (B.147)
JσK[JxK 7→ o?],

π?[(o?, recv) 7→ 1][(o?, argi) 7→ 1]) = LAST(λ5)

o? = γ(τ1) (B.148)

Moreover, from (B.129), (B.132), (B.139), (B.141), (B.142), (B.146) and the definition of the closure
V[] given in 2.82 it follows:

(JsK, λ5) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }] (B.149)

V[{ (JsK, λ5) }] |= JPost(m)K (B.150)

Recall that in order for claim (B.108)-(B.113) to hold, (B.125)-(B.128) have to hold. This is now
proven for (JsK, λ5) and h3, which is given by (B.130). Left to prove with this choice:

h3
π′τ≡ bdh, rce (B.151)

h?[(o?, recv) 7→ JσK(JyK)][(o?, argi) 7→ JσK(JziK)] = (B.152)

Jdh3, r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold
1 , σ1, s1), τ1)]cK

JσK[JxK 7→ o?] = Jσ[x 7→ τ1]K (B.153)

π?[(o?, recv) 7→ 1][(o?, argi) 7→ 1] = Jπ′τK (B.154)

where π? = JπτK−QT(JPre(m)K[JyK/JthisK][JziK/JxiK], λ, True), h? π?

≡ Jdh3, rcK, o? = γ(τ1)
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(B.151) follows from a proof analogous to (B.42) and noting that h3
πτ≡ h, as given by (B.130),

and ∀(o, f).π′τ(o, f) ⇒ πτ(o, f). (B.152) follows from a proof analogous to (B.47) and noting
γ−1(o?) = τ1. (B.153) follows from a proof analogous to (B.70) and noting o? = γ(τ1). (B.154)
holds if QT(JPre(m)[y/this][zi/xi]K, λ, True) = Z(Pre(m)[y/this][zi/xi], h, h, σ). This follows from
lemma B.19.

Thus, claim (B.108)-(B.113) holds for the active and forking thread τ. �

Newly forked thread τ1:

Proof For the newly forked thread ((hold
1 , σ1, s1), τ1) ∈ r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→

((hold
1 , σ1, s1), τ1)] claim (B.108)-(B.113) reduces to:

(Jhold
1 K, Jσold’K, Jπold’

τ1
K) |= JPre(m)K ∧ (B.155)

∃(Js1K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
1 K, Jσold’K, Jπold’

τ1
K)]) }], (B.156)

∃h4

π′τ1≡ bdh, rce. (B.157)

(Jdh4, r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold
1 , σ1, s1), τ1)]cK, Jσ1K, Jπ′τ1

K) = LAST(λ1) ∧
(B.158)

V[{ (Js1K, λ1) }] |= JPost(m)K (B.159)

where hold
1 = dh, rc, m = σ1(meth), xi = Param(m),

σold’ = [meth 7→ m][this 7→ σ1(this)][xi 7→ σ1(xi)]

From (A3) it follows: σ1(this) = o = σ(y) and σ1(xi) = σ(zi). Thus, σold’ = σ1. Also, from (A3):
s1 = Body(m). Moreover, by choice of permissions (B.116): πold’

τ1
= Z(Pre(m)[y/this][zi/xi], h, h, σ)

With this, claim (B.108)-(B.113) reduces for τ1 to:

(Jhold
1 K, Jσ1K, JZ(Pre(m)[y/this][zi/xi], h, h, σ)K) |= JPre(m)K ∧ (B.160)

∃(JBody(m)K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
1 K, Jσ1K, JZ(Pre(m)[y/this][zi/xi], h, h, σ)K)]) }], (B.161)

∃h4

π′τ1≡ bdh, rce. (B.162)

(Jdh4, r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold
1 , σ1, s1), τ1)]cK, Jσ1K, Jπ′τ1

K) = LAST(λ1) ∧
(B.163)

V[{ (JBody(m)K, λ1) }] |= JPost(m)K (B.164)

where hold
1 = dh, rc, m = σ1(meth), xi = Param(m),

σ1 = [meth 7→ m][this 7→ σ1(this)][xi 7→ σ1(xi)]

To prove (B.160), recall (B.139). For the partial trace given in (B.139), it holds with lemma B.12:

λ |= JPre(m)[y/this][zi/xi]K (B.165)

where (Jdh3, rcK, JσK, JπτK)
(B.131)
= LAST(λ)
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From (B.165), and lemma B.16 it follows:

Λ[(Jdh3, rcK, JσK, JπτK)] |= JPre(m)[y/this][zi/xi]K
2.86⇔

(Jdh3, rcK, JσK, JπτK) |= JPre(m)[y/this][zi/xi]K (B.166)

From (B.166) and lemma B.17 and lemma B.18:

(Jdh3, rcK, J[this 7→ σ(y)][xi 7→ σ(zi)]K, JπτK) |= JPre(m)K (B.167)

Moreover, as field meth 6∈ FV(Pre(m)):

(Jdh3, rcK, J[meth 7→ m][this 7→ σ(y)][xi 7→ σ(zi)]K, JπτK) |= JPre(m)K (B.168)

From (B.168) and (A3):

(Jdh3, rcK, Jσ1K, JπτK) |= JPre(m)K (B.169)

From (B.169), (B.130) and lemma B.20 it follows:

(Jdh, rcK, Jσ1K, JπτK) |= JPre(m)K (B.170)

From (B.170) and (A3) it follows:

(Jhold
1 K, Jσ1K, JπτK) |= JPre(m)K (B.171)

From (B.171) and lemma B.22 it follows:

(Jhold
1 K, Jσ1K, JZ(Pre(m), hold

1 , hold
1 , σ1)K) |= JPre(m)K (B.172)

From (B.172) and (A3):

(Jhold
1 K, Jσ1K, JZ(Pre(m), h, h, σ1)K) |= JPre(m)K (B.173)

From (B.173), (A3) and lemma B.21:

(Jhold
1 K, Jσ1K, JZ(Pre(m)[y/this][zi/xi], h, h, σ)K) |= JPre(m)K (B.174)

Thus, claim (B.160) holds. Claim (B.161)-(B.164) is proven with Λ[(Jhold
1 K, Jσ1K, Jπold’

τ1
K)] and h, all

given by (A3). Left to prove with this choice:

h
π′τ1≡ bdh, rce (B.175)

Jhold
1 K = Jdh, r[τ 7→ ((hold, σ[x 7→ τ1], s), τ)][τ1 7→ ((hold

1 , σ1, s1), τ1)]cK (B.176)

V[{ (JBody(m)K, Λ[(Jhold
1 K, Jσ1K, Jπold’

τ1
K)]) }] |= JPost(m)K (B.177)

(B.175) holds with a proof analogous to (B.42). (B.177) follows from assumption (A1) which
can be triggered with (B.174). By assumption (A3): hold

1 = dh, rc. (B.176) follows from a proof
analogous to (B.47) and by observing that Λ[(Jhold

1 K, Jσ1K, Jπold’
τ1

K)] has no permission to access
fields recv or argi of object o? = γ(τ1). Thus, any query for such a field in the right-hand side
heap of (B.176) will be forwarded to r.

Thus, claim (B.160)-(B.164) holds for the newly forked thread τ1. �
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Arbitrary active thread τ2 6∈ { τ, τ1 }:

Proof Analogous to proof of claim (B.4)-(B.9) and the subproof considering the arbitrary active
but non-executing thread. �

Thus, claim (B.160)-(B.164) holds for an arbitrary active thread. �
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Case x.f := y: In this case, assumption 3, h, r h1, r1, (A3) has the following derivation tree:

r[τ] = ((hold, σ, (x.f := y; s)), τ) h = dh, rc

σ(x) = o h1 = h[(o, f) 7→ σ(y)]

h, ((hold, σ, (x.f := y; s)), τ) ⇀ h1, ((hold, σ, s), τ) h1 = bh1e

h, r h1, r[τ 7→ ((hold, σ, s), τ)]

With h1 = bh1e = bh[(o, f) 7→ σ(y)]e = bdh, rc[(o, f) 7→ σ(y)]e and r1 = r[τ 7→ ((hold, σ, s), τ)], the
conclusion to prove is as follows.

VR(prog, h1, r1) ⇔ VR(prog, bdh, rc[(o, f) 7→ σ(y)]e, r[τ 7→ ((hold, σ, s), τ)]) ⇔ ∃(πold’
τ , π′τ). (B.178)

|=r[τ 7→((hold,σ,s),τ)] π′τ ∧ (B.179)

∀eτ2 ∈ idle(r[τ 7→ ((hold, σ, s), τ)]). π′τ2
= π∅ ∧ (B.180)

∀((hold
τ2

, σ3, s4), τ2) ∈ r[τ 7→ ((hold, σ, s), τ)]. (B.181)

(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K) |= JPre(m)K ∧ (B.182)

∃(Js4K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K)]) }], (B.183)

∃h4

π′τ2≡ bdh, rc[(o, f) 7→ σ(y)]e. (B.184)

(Jdh4, r[τ 7→ ((hold, σ, s), τ)]cK, Jσ3K, Jπ′τ2
K) = LAST(λ1) ∧ (B.185)

V[{ (Js4K, λ1) }] |= JPost(m)K (B.186)

where hold
τ2

= dh2, r2c, m = σ3(meth), xi = Param(m),

σold’ = [meth 7→ m][this 7→ σ3(this)][xi 7→ σ3(xi)]

The case is proven by taking the same sequence of permission masks as given by assumption (A2.0):

(πold’
τ , π′τ) = (πold

τ , πτ) (B.187)

It remains to be shown that the choice (B.187) satisfies conclusions (B.179), (B.180) and (B.181)-(B.186).

Claim (B.179): |=r[τ 7→((hold,σ,s),τ)] π′τ

Proof Analogous to the proof of (B.2) for statement var x : t. �

Claim (B.180): ∀eτ2 ∈ idle(r[τ 7→ ((hold, σ, s), τ)]). π2
τ2
= π∅

Proof Analogous to the proof of (B.3) for statement var x : t. �

Claim (B.181)-(B.186): ∀((hold
τ2

, σ3, s4), τ2) ∈ r[τ 7→ ((hold, σ, s), τ)].
(Jhold

τ2
K, Jσold’K, Jπold’

τ2
K) |= JPre(m)K ∧

∃(Js4K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K)]) }], ∃h4

π′τ2≡ bdh, rc[(o, f) 7→ σ(y)]e.
(Jdh4, r[τ 7→ ((hold, σ, s), τ)]cK, Jσ3K, Jπ′τ2

K) = LAST(λ1) ∧ V[{ (Js4K, λ1) }] |= JPost(m)K
where hold

τ2
= dh2, r2c, m = σ3(meth), xi = Param(m), σold’ = [meth 7→ m][this 7→ σ3(this)][xi 7→ σ3(xi)]
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Proof Claim (B.181)-(B.186) quantifies over the set of active threads in runtime-entity collection
r[τ 7→ ((hold, σ, s), τ)]. According to (A3), this set of active threads can be partitioned as follows:
a) thread τ which executed statement x.f := y and b) all other active threads τ2 6= τ. Claim (B.181)-
(B.186) is proven if it holds for thread τ as well as for an arbitrary thread chosen from partition
b).

Active and executing thread τ:

Proof For the active and executing thread ((hold, σ, s), τ) ∈ r[τ 7→ ((hold, σ, s), τ)] claim (B.4)-
(B.9) reduces to:

(JholdK, Jσold’K, Jπold’
τ K) |= JPre(m)K ∧ (B.188)

∃(JsK, λ1) ∈ V[{ (JBody(m)K, Λ[(JholdK, Jσold’K, Jπold’
τ K)]) }], (B.189)

∃h4
π′τ≡ bdh, rc[(o, f) 7→ σ(y)]e. (B.190)

(Jdh4, r[τ 7→ ((hold, σ, s), τ)]cK, JσK, Jπ′τK) = LAST(λ1) ∧ (B.191)
V[{ (JsK, λ1) }] |= JPost(m)K (B.192)

where hold = dh2, r2c, m = σ(meth), xi = Param(m),

σold’ = [meth 7→ m][this 7→ σ(this)][xi 7→ σ(xi)]

By choice of permissions (B.187): π′τ = πτ and πold’
τ = πold

τ . Furthermore, σold’ = σold, given by
assumption (A2.3)-(A2.7). Claim (B.181)-(B.186) thus reduces for τ to:

(JholdK, JσoldK, Jπold
τ K) |= JPre(m)K ∧ (B.193)

∃(JsK, λ1) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }], (B.194)

∃h4
πτ≡ bdh, rc[(o, f) 7→ σ(y)]e. (B.195)

(Jdh4, r[τ 7→ ((hold, σ, s), τ)]cK, JσK, JπτK) = LAST(λ1) ∧ (B.196)
V[{ (JsK, λ1) }] |= JPost(m)K (B.197)

where hold = dh2, r2c, m = σ(meth), xi = Param(m),

σold = [meth 7→ m][this 7→ σ(this)][xi 7→ σ(xi)]

(B.193) holds by assumption (A2.4). Assumptions (A2.5)-(A2.7) promise the existence of a partial
trace (Jx.f := y; sK, λ) and a runtime heap h3 for which it holds:

(Jx.f := y; sK, λ) ∈ V[{ (JBody(m)K, Λ[(JholdK, JσoldK, Jπold
τ K)]) }] (B.198)

h3
πτ≡ h (B.199)

(Jdh3, rcK, JσK, JπτK) = LAST(λ) (B.200)
V[{ (Jx.f := y; sK, λ) }] |= JPost(m)K (B.201)
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By definition of statement encoding J K given in 4.3:

(Jx.f := y; sK, λ) = (JxK.f := JyK; JsK, λ) (B.202)

From (B.201) and (B.202), the Viper rule of unconditional error-trace propagation (2.63), the
definition of the Viper closure V[] given in 2.82 and the definition of |= given in (2.88) it follows
that the field assignment in (B.202) has to succeed:

(C[JxK.f := JyK], λ) (C[ε], λ:(Jdh3, rcK[(o1, f) 7→ v], JσK, JπτK)) (B.203)

where C = •; JsK, v = JσK(JyK) = Jσ(y)K, o1 = JσK(JxK) = Jσ(x)K
(A3)
= JoK = γ(o)

Moreover:
JπτK(o1, f) ≥ 1 (B.204)

(B.204) will be important when analysing an arbitrary but non-executing thread τ2 as it implies
Jπτ2K(o1, f) = 0 for all τ2 6= τ. By definition 2.26 of the Viper evaluation context it follows from
(B.203):

(C[ε], λ:(Jdh3, rcK[(o1, f) 7→ v], JσK, JπτK)) = (JsK, λ:(Jdh3, rcK[(o1, f) 7→ v], JσK, JπτK)) (B.205)

where v = JσK(JyK) = Jσ(y)K, o1 = JσK(JxK) = Jσ(x)K
(A3)
= JoK = γ(o)

Recall in order for (B.181)-(B.186) to hold, (B.194)-(B.197) have to hold. This is now proven for
(JsK, λ:(Jdh3, rcK[(o1, f) 7→ v], JσK, JπτK)) and h3[(o, f) 7→ σ(y)], where h3 is given by (B.199).In or-

der for (B.194)-(B.197) to hold with this choice it has to hold: h3[(o, f) 7→ σ(y)]
πτ≡ bdh, rc[(o, f) 7→

σ(y)]e and Jdh3, rcK[(o1, f) 7→ v] = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK.

Claim: h3[(o, f) 7→ σ(y)]
πτ≡ bdh, rc[(o, f) 7→ σ(y)]e

Proof Recall (B.199): h3
πτ≡ h and assume πτ = (πF, πP). Then, by definition of

πτ≡ given in
2.25:

(B.199) ⇔ ∀(o2, f2). πF(o2, f2) > 0⇒ h3(o2, f2) = h(o2, f2) (B.206)

Using the definition of d , c given in 3.29:

(B.206) ⇔ ∀(o2, f2). πF(o2, f2) > 0⇒ h3(o2, f2) = dh, rc(o2, f2) (B.207)

Furthermore:

(B.207) ⇔ ∀(o2, f2). πF(o2, f2) > 0⇒ h3[(o, f) 7→ σ(y)](o2, f2) = dh, rc[(o, f) 7→ σ(y)](o2, f2)
(B.208)

Using the definition of b e given in 3.29:

(B.208) ⇔ ∀(o2, f2). πF(o2, f2) > 0⇒ h3[(o, f) 7→ σ(y)](o2, f2) = bdh, rc[(o, f) 7→ σ(y)]e(o2, f2)
(B.209)

The definition of
πτ≡ given in 2.25 then proves the claim:

(B.209) ⇔ h3[(o, f) 7→ σ(y)]
πτ≡ bdh, rc[(o, f) 7→ σ(y)]e (B.210)

�
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Claim: Jdh3, rcK[(o1, f) 7→ v] = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK

Proof By definition of function equality:

Jdh3, rcK[(o1, f) 7→ v] = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK⇔ (B.211)

∀(o2, f2). Jdh3, rcK[(o1, f) 7→ v](o2, f2) = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2)

Recall from the semantics of Chalice: f 6∈ { recv, argi }. The claim is then proven by a case
analysis of (o2, f2).

Case (o2, f2) = (o1, f)
Then:

Jdh3, rcK[(o1, f) 7→ v](o2, f2) = Jdh3, rcK[(o1, f) 7→ v](o1, f) = v (B.212)

Note: f2 6∈ { recv, argi. Also recall from (B.205): o1 = γ(o). Then, by definition of heap
encoding given in (4.14):

Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2) = (B.213)

Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o1, f) =

Jh3[(o, f) 7→ σ(y)](γ−1(o1), f)K = Jh3[(o, f) 7→ σ(y)](γ−1(γ(o)), f)K =

Jh3[(o, f) 7→ σ(y)](o, f)K = Jσ(y)K
(B.205)
= v

Thus, from (B.212) and (B.213):

Jdh3, rcK[(o1, f) 7→ v](o2, f2) = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2) (B.214)

Case o2 = o1 ∧ f2 6= f ∧ f2 ∈ { recv, argi}
Assume f2 = recv. The complementary cases can be shown analogously to the following
argument. Then:

Jdh3, rcK[(o1, f) 7→ v](o2, f2) = Jdh3, rcK[(o1, f) 7→ v](o1, f2) = Jdh3, rcK(o1, f2) (B.215)

By definition of heap encoding given in (4.14):

Jdh3, rcK(o1, f2) = Jσ6(this)K (B.216)

where ((h3, σ6, s8), τ3) ∈ r s.t. τ3 = γ−1(o1)

In Chalice, variable this is read-only. Furthermore, by assumption (A3), no active thread
was reset to idle. Thus, thread τ3 still exists in r[τ 7→ ((hold, σ, s), τ)] with the same value
for this in σ6:

Jσ6(this)K = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o1, f2) (B.217)

Thus, from (B.215), (B.216) and (B.217):

Jdh3, rcK[(o1, f) 7→ v](o2, f2) = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2) (B.218)
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Case o2 = o1 ∧ f2 6= f ∧ f2 6∈ { recv, argi}
Then:

Jdh3, rcK[(o1, f) 7→ v](o2, f2) = Jdh3, rcK[(o1, f) 7→ v](o1, f2) = Jdh3, rcK(o1, f2) (B.219)

Then, by definition of heap encoding given in (4.14):

Jdh3, rcK(o1, f2) = Jh3(γ
−1(o1), f2)K

(B.205)
= Jh3(γ

−1(γ(o)), f2)K = Jh3(o, f2)K (B.220)

Thus, from (B.219) and (B.220):

Jdh3, rcK[(o1, f) 7→ v](o2, f2) = Jh3(o, f2)K (B.221)

On the other hand:

Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2) = (B.222)

Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o1, f2)

Then, by definition of heap encoding given in (4.14):

Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o1, f2) = Jh3[(o, f) 7→ σ(y)](γ−1(o1), f2)K
f 6=f2=

(B.223)

Jh3(γ
−1(o1), f2)K

(B.205)
= Jh3(γ

−1(γ(o)), f2)K = Jh3(o, f2)K

Thus, from (B.222) and (B.223):

Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2) = Jh3(o, f2)K (B.224)

Thus, from (B.221) and (B.224):

Jdh3, rcK[(o1, f) 7→ v](o2, f2) = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2) (B.225)

Case o2 6= o1 ∧ f2 = f
Note from the semantics of Chalice: f2 6∈ { recv, argi}. Then:

Jdh3, rcK[(o1, f) 7→ v](o2, f2) = Jdh3, rcK[(o1, f) 7→ v](o2, f)
o1 6=o2= Jdh3, rcK(o2, f) (B.226)

As f2 6∈ { recv, argi}, it follows from the definition of heap encoding given in (4.14):

Jdh3, rcK(o2, f) = Jh3(γ
−1(o2), f)K (B.227)

On the other hand:

Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2) = (B.228)

Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f)
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As f2 6∈ { recv, argi}, it follows from the definition of heap encoding given in (4.14):

Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f) = (B.229)

Jh3[(o, f) 7→ σ(y)](γ−1(o2), f)K

Recall from (B.205): o1 = γ(o). Thus: o = γ−1(o1). From this and o1 6= o2: o 6= γ−1(o2).
From this and (B.229):

Jh3[(o, f) 7→ σ(y)](γ−1(o2), f)K = Jh3(γ
−1(o2), f)K (B.230)

From (B.228), (B.229) and (B.230):

Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2) = Jh3(γ
−1(o2), f)K (B.231)

From this and (B.226):

Jdh3, rcK[(o1, f) 7→ v](o2, f2) = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2) (B.232)

Case o2 6= o1 ∧ f2 6= f∧ f2 ∈ { recv, argi}
Analogously to the previous cases.
Case o2 6= o1 ∧ f2 6= f∧ f2 6∈ { recv, argi}
Analogously to the previous cases.

Thus, the claim holds. �

Thus, conclusion (B.181)-(B.186) holds for the active and executing thread. �

Arbitrary active but non-executing thread τ2 6= τ:

Proof By chosing ((hold
τ2

, σ3, s4), τ2) ∈ r[τ 7→ ((hold, σ, s), τ)] with τ2 6= τ, claim (B.181)-(B.186)
reduces to:

(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K) |= JPre(m)K ∧ (B.233)

∃(Js4K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, Jσold’K, Jπold’
τ2

K)]) }], (B.234)

∃h4

π′τ2≡ bdh, rc[(o, f) 7→ σ(y)]e. (B.235)

(Jdh4, r[τ 7→ ((hold, σ, s), τ)]cK, Jσ3K, Jπ′τ2
K) = LAST(λ1) ∧ (B.236)

V[{ (Js4K, λ1) }] |= JPost(m)K (B.237)

where hold
τ2

= dh2, r2c, m = σ3(meth), xi = Param(m),

σold’ = [meth 7→ m][this 7→ σ3(this)][xi 7→ σ3(xi)]

By choice of permissions (B.187): π′τ2
= πτ2 and πold’

τ2
= πold

τ2
. Furthermore, as τ2 is active

but non-executing: σ3 = σ2, s4 = s3, and σold’ = σold, all given by assumption (A2.3). Claim
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(B.181)-(B.186) thus reduces to:

(Jhold
τ2

K, JσoldK, Jπold
τ2

K) |= JPre(m)K ∧ (B.238)

∃(Js3K, λ1) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, JσoldK, Jπold
τ2

K)]) }], (B.239)

∃h4
πτ2≡ bdh, rc[(o, f) 7→ σ(y)]e. (B.240)

(Jdh4, r[τ 7→ ((hold, σ, s), τ)]cK, Jσ2K, Jπτ2K) = LAST(λ1) ∧ (B.241)
V[{ (Js3K, λ1) }] |= JPost(m)K (B.242)

where hold
τ2

= dh2, r2c, m = σ2(meth), xi = Param(m),

σold = [meth 7→ m][this 7→ σ2(this)][xi 7→ σ2(xi)]

(B.238) holds by assumption (A2.4). To prove (B.239)-(B.242), the partial trace (Js3K, λ) and the
runtime heap h3, promised by assumption (A2.5), are now taken. Thus, assume:

(Js3K, λ) ∈ V[{ (JBody(m)K, Λ[(Jhold
τ2

K, JσoldK, Jπold
τ2

K)]) }] (B.243)

h3
πτ2≡ h (B.244)

(Jdh3, rcK, Jσ2K, Jπτ2K) = LAST(λ) (B.245)
V[{ (Js3K, λ) }] |= JPost(m)K (B.246)

(B.239)-(B.242) can now be proven for (Js3K, λ) and h3[(o, f) 7→ σ(y)]. In order for (B.239)-

(B.242) being proven, it has to hold: h3[(o, f) 7→ σ(y)]
πτ2≡ bdh, rc[(o, f) 7→ σ(y)]e and Jdh3, rcK =

Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK.

Claim: h3[(o, f) 7→ σ(y)]
πτ2≡ bdh, rc[(o, f) 7→ σ(y)]e

Proof Recall (B.244): h3
πτ2≡ h and assume πτ2 = (πF

τ2
, πP

τ2
). Then, by definition of

πτ2≡ given
in 2.25:

(B.244) ⇔ ∀(o2, f2). πF
τ2
(o2, f2) > 0⇒ h3(o2, f2) = h(o2, f2) (B.247)

By definition of mapping runtime-heaps to heaps d , c given in 3.29:

(B.247) ⇔ ∀(o2, f2). πF
τ2
(o2, f2) > 0⇒ h3(o2, f2) = dh, rc(o2, f2) (B.248)

Moreover:

(B.248) ⇔ ∀(o2, f2). πF
τ2
(o2, f2) > 0⇒ h3[(o, f) 7→ σ(y)](o2, f2) = dh, rc[(o, f) 7→ σ(y)](o2, f2)

(B.249)
Then by definition of mapping heaps to runtime-heaps be given in 3.29:

(B.249) ⇔ ∀(o2, f2). πF
τ2
(o2, f2) > 0⇒ h3[(o, f) 7→ σ(y)](o2, f2) = bdh, rc[(o, f) 7→ σ(y)]e(o2, f2)

(B.250)
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B.1. Soundness of Encoding

Thus, by definition of
πτ2≡ given in 2.25:

h3[(o, f) 7→ σ(y)]
πτ2≡ bdh, rc[(o, f) 7→ σ(y)]e (B.251)

�

Claim: Jdh3, rcK = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK

Proof By definition of function equality:

Jdh3, rcK = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK⇔ (B.252)

∀(o2, f2). Jdh3, rcK(o2, f2) = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2)

The claim is then proven by a case analysis of f2.

Case f2 = recv
Then by definition of heap encoding J K given in 4.14:

Jdh3, rcK(o2, f2) = Jσ6(this)K (B.253)

where ((h3, σ6, s8), τ3) ∈ r s.t. τ3 = γ−1(o2)

In Chalice, variable this is read-only. Furthermore, by assumption (A3), no active thread
was reset to idle. Thus, thread τ3 still exists in r[τ 7→ ((hold, σ, s), τ)] with the same value
for this in σ6:

Jσ6(this)K = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2) (B.254)

Case f2 = argi
Similar to the case for recv.

Case f2 6∈ { recv, argi }
The semantics of Viper for a field-access, which is the context in which a heap-lookup
Jdh3, rcK(o2, f2) occurs, requires for thread τ2 to have enough permission to field f2 of
object o2:

Jπτ2K(o2, f2) ≥ 1 (B.255)

As f2 6∈ { recv, argi }, it follows from the definition of permission-mask encoding given in
4.13 and the definition of value encoding given in 4.11:

(B.255) ⇔ J
πF

τ2
(γ−1(o2), f2)

100
K ≥ 1⇔ πF

τ2
(γ−1(o2), f2) ≥ 100 (B.256)
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B.1. Soundness of Encoding

Recall (B.204): JπτK(o1, f) ≥ 1 with πτ = (πF
τ , πP

τ ). Furthermore, from (B.203): o1 = γ(o).
Thus, with the definition of permission-mask encoding given in 4.13 and the definition of
value encoding given in 4.11:

JπτK(o1, f) ≥ 1 ⇔ J
πF

τ(γ
−1(o1), f)
100

K ≥ 1⇔ πF
τ(γ

−1(γ(o)), f)
100

≥ 1⇔ πF
τ(o, f) ≥ 100

(B.257)
Now, as f2 6∈ { recv, argi }, it follows from the definition of heap encoding J K given in 4.14:

Jdh3, rcK(o2, f2) = Jh3(γ
−1(o2), f2)K (B.258)

Similarly:

Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2) = Jh3[(o, f) 7→ σ(y)](γ−1(o2), f2)K
(B.259)

From (B.256) and (B.257) it follows:

(o, f) 6= (γ−1(o2), f2) (B.260)

Thus:
(B.259) ⇔ Jh3(γ

−1(o2), f2)K (B.261)

From (B.259) and (B.261):

Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2) = Jh3(γ
−1(o2), f2)K (B.262)

Thus, from (B.258) and (B.262):

Jdh3, rcK(o2, f2) = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK(o2, f2) (B.263)

�

Thus, the claim Jdh3, rcK = Jdh3[(o, f) 7→ σ(y)], r[τ 7→ ((hold, σ, s), τ)]cK holds. �

Thus, conclusion (B.181)-(B.186) holds for an arbitrary active but non-executing thread. �

Thus, conclusion (B.181)-(B.186) holds for an arbitrary active thread. �

Auxiliary

Lemma B.12 ∀a, λ, λ1. (C[exhale a], λ) (C[ε], λ1) ∧ λ1 6∈ ΛErr ⇒ λ |= a

Proof By structural induction on the Chalice assertion a. �

Lemma B.13 ∀a, λ, λ1. (C[exhale a], λ)  (C[ε], λ1) ∧ λ1 6∈ ΛErr ∧ (h, σ, π) = LAST(λ) ∧ (h1, σ1, π1) =
LAST(λ1)⇒ σ1 = σ
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B.1. Soundness of Encoding

Proof By structural induction on the Chalice assertion a. �

Lemma B.14 ∀a, λ, λ1. (C[exhale a], λ)  (C[ε], λ1) ∧ λ1 6∈ ΛErr ∧ (h, σ, π) = LAST(λ) ∧ (h1, σ1, π1) =
LAST(λ1)⇒ π1 = π −QT(a, λ, True)

Proof By structural induction on the Chalice assertion a. �

Lemma B.15 ∀a, λ, λ1. (C[exhale a], λ)  (C[ε], λ1) ∧ λ1 6∈ ΛErr ∧ (h, σ, π) = LAST(λ) ∧ (h1, σ1, π1) =

LAST(λ1)⇒ h1
π1≡ h

Proof By structural induction on the Chalice assertion a and the observation that whenever GT(π1, λ) =
π2 then π1 ≤ π2. This argument is needed when the induction proof reaches the exhale of a predicate.�

Lemma B.16 ∀m, λ. λ |= JPre(m)K ∧ (h, σ, π) = LAST(λ)⇒ Λ[(h, σ, π)] |= JPre(m)K

Proof By structural induction on the Chalice precondition Pre(m) and realising that a Chalice precondi-
tion does not contain old expressions. �

Lemma B.17 ∀a, λ. λ |= a ∧ (h, σ, π) = LAST(λ) ∧ xi = FV(a)⇒ λ[1, |λ| − 1]:(h, [xi 7→ σ(xi)], π) |= a

Proof By structural induction on assertion a. �

Lemma B.18 ∀a, λ. λ |= a[xi/yi] ∧ (h, σ, π) = LAST(λ)⇒ λ[1, |λ| − 1]:(h, σ[yi 7→ σ(xi)], π) |= a

Proof By structural induction on the Chalice precondition Pre(m) and realising that a Chalice precondi-
tion does not contain old expressions. �

Lemma B.19 ∀m, λ. (JhK, JσK, JπK) = LAST(λ) ∧ h1
π≡ h⇒ QT(JPre(m)K, λ, True) = JZ(Pre(m), h1, h1, σ)K

Proof By structural induction on the Chalice precondition Pre(m), realising that a Chalice precondition
does not contain old expressions and using lemma B.10 and lemma B.2 when the induction reaches the
case of a conditional assertion. �

Lemma B.20 ∀a. (Jdh, rcK, JσK, JπK) |= JaK ∧ h1
π≡ h⇒ (Jdh1, rcK, JσK, JπK) |= JaK

Proof By structural induction on the Chalice assertion a. �

Lemma B.21
∀m, σ, σ1. xi = FV(Pre(m)) ∧ σ1(yi) = σ(xi) ∧ Z(Pre(m), h, h, σ) = π ⇒ Z(Pre(m)[yi/xi], h, h, σ1) = π

Proof By structural induction on the Chalice assertion a. �

Lemma B.22 ∀m. (JhK, JσK, JπK) |= JPre(m)K⇒ (JhK, JσK, JZ(Pre(m), h, h, σ)K) |= JPre(m)K

Proof By structural induction on the Chalice precondition Pre(m) and realising that a Chalice precondi-
tion doest not contain old expressions. �
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Appendix C

Viper: Concrete Syntax

This appendix defines the concrete syntax of Viper by means of specifying a
context-free grammar using an EBNF notation.
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C.1. Notation

C.1 Notation

Nonterminals are indicated by italic type, whereas any terminals are indi-
cated by ”quoted bold type”. The production rules make use of the fol-
lowing operators: a bar | represents an alternative, a comma , is used for
concatenation, brackets () are used for grouping, a semicolon ; marks the end
of the production rule, a star ? is used to indicate zero or more repetitions,
a plus + indicates one or more repetitions and a question-mark ? indicates an
optional occurrence.

C.2 Concrete Syntax

C.2.1 Keywords

keyword := ”return” | ”Int” | ”Perm” | ”Bool” | ”Ref” | ”Rational” |
”true” |”false” | ”null” | ”import” | ”method” | ”function” |

”predicate” | ”program” | ”domain” | ”axiom” | ”var” |
”returns” | ”field” | ”define” | ”wand” | ”requires” |
”ensures” | ”invariant” | ”fold” | ”unfold” | ”inhale” |
”exhale” | ”new” | ”assert” | ”assume” | ”package” | ”apply” |
”while” | ”if” | ”elseif” | ”else” | ”goto” | ”label” | ”fresh” |
”constraining” | ”Seq” | ”Set” | ”Multiset” | ”union” |

”intersection” | ”setminus” | ”subset” | ”unfolding” | ”in”
| ”folding” | ”applying” | ”packaging” | ”old” | ”lhs” | ”let” |
”forall” | ”exists” | ”forperm” | ”acc” | ”wildcard” | ”write” |
”none” | ”epsilon” | ”perm” | ”unique” ;

C.2.2 Identifiers

identifier := (letter | ” ”) , (letter | digit | ” ”)? ;

letter := lower | upper ;

lower := ”a” | ”b” | ”c” | ”d” | ”e” | ”f” | ”g” | ”h” | ”i” | ”j” |
”k” | ”l” | ”m” | ”n” | ”o” | ”p” | ”q” | ”r” | ”s” | ”t” |
”u” | ”v” | ”w” | ”x” | ”y” | ”z” ;

upper := ”A” | ”B” | ”C” | ”D” | ”E” | ”F” | ”G” | ”H” | ”I” |
”J” | ”K” | ”L” | ”M” | ”N” | ”O” | ”P” | ”Q” | ”R” | ”S” |
”T” | ”U” | ”V” | ”W” | ”X” | ”Y” | ”Z” ;

digit := ”0” | ”1” | ”2” | ”3” | ”4” | ”5” | ”6” | ”7” | ”8” | ”9” ;

C.2.3 Literals

literal := null literal | boolean literal | integer literal | permission literal ;
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C.2. Concrete Syntax

null literal := ”null” ;

boolean literal := ”false” | ”true” ;

integer literal := digit + ;

permission literal := ”none” | ”wildcard” | ”write” | ”epsilon” ;

C.2.4 Types

type := primitive type | domain type | sequence type | set type |
multiset type ;

primitive type := ”Rational” | ”Int” | ”Bool” | ”Perm” | ”Ref” ;

domain type := identifier , ”[” , ((type | identifier) , ”,”)? ,
(type | identifier)? , ”]” ;

sequence type := Seq , ”[” , type , ”]” ;

set type := Set , ”[” , type , ”]” ;

multiset type := Multiset , ”[” , type , ”]” ;

C.2.5 Expressions

expression := iff expression ;

iff expression := or expression , ”<==>” , iff expression |
or expression ;

or expression := equality expression , ”||” , or expression |
equality expression ;

equality expression := comparison expression , (”==” | ”!=”) ,
equality expression | comparison expression ;

comparison expression := sum expression ,
(”<=” | ”<” | ”>” |”>=” | ”in”) , comparison expression |
sum expression ;

sum expression := term expression ,
(”++” | ”+” | ”-” | ”union” | ”intersection” | ”setminus” |
”subset”) , sum expression | term expression ;

term expression := suffix expression , (”∗” | ”/” | ”\\” | ”%”) ,
term expression | suffix expression ;

suffix expression := atomic expression , suffix? ;

suffix := ”.” , identifier | ”[..” , expression , ”]” |
”[” , expression , ”..]” | ”[” , expression , ”..” , expression , ”]” |
”[” , expression , ”]” | ”[” , expression , ”:=” , expression , ”]” ;
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C.2. Concrete Syntax

atomic expression := literal | ”result” | ”-” , sum expression |
”!” , sum expression | ”+” , sum expression |
”(” , expression , ”)” | function application expression |
unfolding expression | folding expression | perm expression |
old expression | labelled old expression | packing wand expression |
applying wand expression ;

function application expression := identifier , ”(” , actual argument list , ”)” ;

actual argument list := (expression , ”,”)? , expression? ;

unfolding expression := ”unfolding” , access assertion , ”in” ,
expression ;

folding expression := ”folding” , access assertion , ”in” , expression ;

perm expression := ”perm” , ”(” , location access , ”)” ;

location access := field access | predicate access ;

field access := atomic expression , suffix + ;

predicate access := identifier , ”(” , actual argument list , ”)” ;

old expression := ”old” , ”(” , expression , ”)” ;

labelled old expression := ”old” , ”[” , identi f ier , ”]” , ”(” , expression , ”)” ;

packing wand expression := ”packing” ,
(”(” , magic wand assertion , ”)” | identi f ier) , ”in” , expression ;

applying wand expression := ”applying” ,
(”(” , magic wand assertion , ”)” | identi f ier) , ”in” ,
expression ;

C.2.6 Assertions

assertion := expression | access assertion | conditional assertion |
separating conjunction assertion | magic wand assertion |
quantified permission assertion | inhale exhale assertion |
forperm assertion ;

access assertion := ”acc” , ”(” , location access , (”,” , expression)? ,
”)” ;

conditional assertion := expression , ”==>” , assertion ;

separating conjunction assertion := assertion , ”&&” , assertion ;

magic wand assertion := assertion , ”-∗” , assertion ;

quantified permission assertion := (”forall” | ”exists”) ,
non empty formal argument list , ”::” , ”{” , triggers , ”}” ,
assertion ;
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non empty formal argument list := formal argument , formal argument list ;

formal argument := identifier , ”:” , type ;

formal argument list := (formal argument , ”,”)? , formal argument? ;

triggers := (trigger , ”,”)? , trigger? ;

trigger := expression ;

inhale exhale assertion := ”[” , assertion , ”,” , assertion , ”]” ;

forperm assertion := ”forperm” , ”[” , identifiers , ”]” , identifier ,
”::” , assertion ;

identifiers := (identifier , ”,”)? , identifier? ;

C.2.7 Statements

statement := declaration statement | new statement | assignment statement |
label statement | goto statement | if then else statement |
while statement | method call statement | assert statement |
assume statement | inhale statement | exhale statement | fold statement |
unfold statement | wand package statement |
wand application statement ;

declaration statement := variable declaration statement |
define declaration statement | wand declaration statement ;

variable declaration statement := ”var” , identifier , ”:” , type ,
(”:=” , expression)? ;

define declaration statement := ”define” , identifier , assertion ;

wand declaration statement := ”wand” , identifier , ”:=” , assertion ;

new statement := identifier , ”:=” , ”new” , ”(” , (”∗” | identifiers) ,
”)” ;

assignment statement := variable assignment statement |
field assignment statement ;

variable assignment statement := identifier , ”:=” ,
(expression | method call statement) ;

field assignment statement := field access , ”:=” ,
(expression | method call statement) ;

label statement := ”label” , identifier ;

goto statement := ”goto” , identifier ;

if then else statement := ”if” , ”(” , expression , ”)” , block ,
else if else ;
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C.2. Concrete Syntax

block := ”{” , statements , ”}” ;

statements := statement? ;

else if else := else if | else ;

else if := ”elseif” , ”(” , expression , ”)” , block , else if else ;

else := (”else” , block)? ;

while statement := ”while” , ”(” , expression , ”)” , invariants , block ;

invariants := (invariant , ”;”?)? , invariant? ;

invariant := ”invariant” , assertion ;

method call statement := identifier , ”(” , actual argument list , ”)” ;

assert statement := ”assert” , assertion ;

assume statement := ”assume” , assertion ;

inhale statement := ”inhale” , assertion ;

exhale statement := ”exhale” , assertion ;

fold statement := ”fold” , access assertion ;

unfold statement := ”unfold” , access assertion ;

wand package statement := ”package” , magic wand assertion ;

wand application statement := ”apply” , magic wand assertion ;

C.2.8 Declarations

declaration := define declaration | domain declaration | field declaration |
function declaration | predicate declaration | method declaration ;

define declaration := define declaration statement ;

domain declaration := ”domain” , identifier , ”[” , identifiers , ”]” ,
”{” , function signature? , axiom declaration? , ”}” ;

function signature := ”function” , identifier , ”(” , formal argument list ,
”)” , ”:” , type ;

axiom declaration := ”axiom” , identifier , ”{” , assertion , ”}” ;

field declaration := ”field” , identifier , ”:” , type ;

function declaration := function signature , preconditions , postconditions ,
”{” , expression , ”}” ;

preconditions := (precondition , ”;”?)? , precondition? ;

precondition := ”requires” , assertion ;
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C.2. Concrete Syntax

postconditions := (postcondition , ”;”?)? , postcondition? ;

postcondition := ”ensures” , assertion ;

predicate declaration := ”predicate” , identifier , ”(” ,
formal argument list , ”)” , ”{” , assertion , ”}” ;

method declaration := ”method” , identifier , ”(” ,
formal argument list , ”)” , ”returns” , formal argument list ,
preconditions , postconditions , block? ;

C.2.9 Program

program := declaration? ;
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Appendix D

Chalice: Concrete Syntax

This appendix defines the concrete syntax of Chalice by means of specifying
a context-free grammar using an EBNF notation.
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D.1. Notation

D.1 Notation

For an explanation of the notation used in the specification, refer to chap-
ter C.1.

D.2 Concrete Syntax

D.2.1 Keywords

keyword := ”class” | ”ghost” | ”var” | ”const” | ”method” |
”channel” | ”condition” |”assert” | ”assume” | ”new” | ”this” |
”reorder” | ”between” | ”and” | ”above” | ”below” | ”share” |
”unshare” | ”acquire” | ”release” | ”downgrade” | ”lock” |
”fork” | ”join” | ”rd” | ”acc” | ”credit” | ”holds” | ”old” |
”assigned” | ”call” | ”if” | ”else” | ”while” | ”invariant” |
”lockchange” | ”returns” | ”requires” | ”ensures” | ”where” |
”static” | ”int” | ”bool” | ”false” | ”true” | ”null” | ”string” |
”waitlevel” | ”lockbottom” | ”module” | ”external” |
”predicate” | ”function” | ”free” | ”send” | ”receive” | ”ite” |
”fold” | ”unfold” | ”unfolding” | ”in” | ”forall” | ”exists” |
”seq” | ”nil” | ”result” | ”eval” | ”token” | ”empty” | ”wait” |
”signal” | ”unlimited” | ”set” | ”sum” | ”max” | ”refines” |
”tracked” | ”transforms” | ”replaces” | ”by” | ”spec” | ” ” | ”*” ;

D.2.2 Types

type declaration := (”int” | ”bool” | identifier | ”string” | ”seq” | ”set”) ,
(”<” , (type , ”,”)? , type? , ”>”)? ;

D.2.3 Expressions

expression := ite expression ;

expression list := (expression , ”,”)? , expression? ;

partial expression list := ((expression | ” ”) , ”,”)? , (expression | ” ”)? ;

expression body := ”{” , expression , ”}” ;

ite expression := iff expression , (”?” , ite expression , ”:” , ite expression)? ;

iff expression := impl expression , ”<==>” , iff expression ;

impl expression := logical expression , ”==>” , impl expression ;

logical expression := cmp expression ,
((”&&” , cmp expression) | (”||” , cmp expression))? ;
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cmp expression := concat expression ,
((”==” | ”!=” | ”<=” | ”<” | ”>” | ”>=” | ”<<” | ”in” | ”!in”) ,
concat expression)? ;

concat expression := add expression , (”++” , add expression)? ;

add expression := mult expression , ((”+” | ”-”) , mult expression)? ;

mult expression := unary expression , ((”*” | ”/” | ”%”) , unary expression)? ;

unary expression := (”!” , unary expression) | (”-” , unary expression) | suffix expression ;

suffix expression := atom , suffix thing? ;

atom := (numeric literal | ”false” | ”true” | ”null” | string literal |
”waitlevel” | ”lockbottom” | ”this” | ”result” |
back pointer member access | identifier , (”(” , expression list , ”)”)? |
”rd” , ”(” , (((identifier , read perm arg , ”)”) |
((atom , ”.”)? , back pointer member access , read perm arg , ”)”) |
(select expr fer sure x , read perm arg , ”)”)) |
(read perm arg , ”)”) | (”*” , ”)”)) |
”rd” , ”*” , ”(” , ((identifier , ”)”) |
((atom , ”.”)? , back pointer member access , ”)”) |
(select expr fer sure x , ”)”)) |
”acc” , ”(” , ((identifier , access perm arg , ”)”) |
((atom , ”.”)? , back pointer member access , access perm arg , ”)”) |
(select expr fer sure x , access perm arg , ”)”)) |
”credit” , ”(” , expression , (”,” , expression)? , ”)” |
”holds” , ”(” , expression , ”)” |
”rd” , ”holds” , ”(” , expression , ”)” |
”rd” |
”assigned” , ”(” , identifier , ”)” |
”old” , ”(” , expression , ”)” |
”unfolding” , suffix expression , ”in” , expression |
”|” , expression , ”|” |
”eval” , ”(” , eval state , ”,” , expression , ”)” |
”ite” , ”(” , expression , ”,” , expression , ”,” , expression , ”)” |
”(” , expression , ”)” |
quantifier type | quantifier seq | quantifier set |
”[” , expression , ”..” , expression , ”]” |
”nil” , ”<” , type declaration , ”>” |
”[” , expression list , ”]” |
”empty” , ”<” , type declaration , ”>” |
”{” , expression list , ”}” ;

suffix expression := atom , (suffix thing)? ;
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suffix thing := ”[” , expression , ”]” |
”[” , expression , ”..” , ”]” |
”[” , ”..” , expression , ”]” |
”[” , expression , ”..” , expression , ”]” |
”.” , identifier , (”(” , expression list , ”)”)? |
”.” , back pointer member access |
”.” , ”acquire” , expr body |
”.” , ”release” , expr body |
”.” , ”fork” , call target , partial expression list , ”)” , expr body ;

back pointer member access := ”∼” , ”(” , identifier , ”.” , identifier , ”)” ;

read perm arg := (”,” , ”*” | ”,” , expression)? ;

select expr fer sure x := atom , ident or special , (”.” , identifier)? ;

select expr fer sure := atom , ”.” , identifier , (”.” , identifier)? ;

access perm arg := (”,” , expression)? ;

call target := identifier , ”(” | select expr fer sure , ”(” ;

D.2.4 Assertions

assertion := expression | access assertion | conditional assertion |
separating conjunction assertion | magic wand assertion |
quantified permission assertion | inhale exhale assertion |
forperm assertion ;

access assertion := ”acc” , ”(” , location access , (”,” , expression)? ,
”)” ;

conditional assertion := expression , ”==>” , assertion ;

separating conjunction assertion := assertion , ”&&” , assertion ;

magic wand assertion := assertion , ”-∗” , assertion ;

quantified permission assertion := (”forall” | ”exists”) ,
non empty formal argument list , ”::” , ”{” , triggers , ”}” ,
assertion ;

non empty formal argument list := formal argument , formal argument list ;

formal argument := identifier , ”:” , type ;

formal argument list := (formal argument , ”,”)? , formal argument? ;

triggers := (trigger , ”,”)? , trigger? ;

trigger := expression ;

inhale exhale assertion := ”[” , assertion , ”,” , assertion , ”]” ;
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forperm assertion := ”forperm” , ”[” , identifiers , ”]” , identifier ,
”::” , assertion ;

identifiers := (identifier , ”,”)? , identifier? ;

D.2.5 Statements

statement := block statement | assert statement | assume statement |
local variable statement | call statement | if then else statement |
while statement | reorder statement | share statement |
unshare statement | acquire statement | release statement |
lock statement | ”[[” , block statement body , ”]]” | rd statement |
downgrade statement | free statement | assignment statement |
fold statement | unfold statement | fork statement | join statement |
wait statement | signal statement | send statement | receive statement ;

block statement := ”{” , block statement body , ”}” ;

block statement body := ”{” , statement? , ”}” ;

assert statement := ”assert” , expression , ”;” ;

assume statement := ”assume” , expression , ”;” ;

local variable statement := variable specifier , variable announcement ;

variable specifier := (”var” | ”spec” | ”const” |
”ghost” , (”const” | ”var”)) ;

variable announcement := (identifier type , ”,”)? , identifier type , ”;” |
identifier type , (”:=” , rhs)? , ”;” ;

identifier type := identifier , (”:” , type declaration)? ;

rhs := ”new” , identifier , (”{” , field init list , ”}”)? ,
install bounds? | expression ;

field init list := (field init , ”,”)? , field init? ;

field init := identifier , ”:=” , expression ;

install bounds := ”between” , expression list , ”and” , expression list |
”below” , expression list , (”above” , expression list)? |
”above” , expression list , (”below” , expression list)? ;

call statement := ”call” , call signature , ”;” ;

call signature := (identifier list , ”:=”)? , call target , expression list , ”)” , ”;” ;

call target := identifier , ”(” | select expr fer sure , ”(” ;

if then else statement := ”if” , ”(” , expression , ”)” , block statement ,
(”else” , else statement)? ;
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else statement := ”if” , if then else statement | statement ;

while statement := ”while” , ”(” , expression , ”)” , loop spec ,
block statement ;

loop spec := loop spec x? ;

loop spec x := ”invariant” , expression , ”;” |
”lockchange” , expression list , ”;” ;

reorder statement := ”reorder” , expression , install bounds? , ”;” ;

share statement := ”share” , expression , install bounds? , ”;” ;

unshare statement := ”unshare” , expression , ”;” ;

acquire statement := ”acquire” , expression , ”;” ;

release statement := ”release” , expression , ”;” ;

lock statement := ”lock” , ”(” , expression , ”)” , block statement ;

rd statement := ”rd” , (”lock” , ”(” , expression , ”)” , block statement |
”acquire” , expression , ”;” | ”release” , expression , ”;”) ;

downgrade statement := ”downgrade” , expression , ”;” ;

free statement := ”free” , expression , ”;” ;

assignment statement := identifier , ”:=” , rhs , ”;” |
select expr fer sure , ”:=” , rhs , ”;” ;

fold statement := ”fold” , expression , ”;” ;

unfold statement := ”unfold” , expression , ”;” ;

fork statement := ”fork” , call signature ;

join statement := ”join” , (identifier list , ”:=”)? , expression , ”;” ;

wait statement := ”wait” , member access , ”;” ;

signal statement := ”signal” , ”forall”? , member access , ”;” ;

send statement := ”send” , suffix plus expr , (”(” , expression list , ”)”)? , ”;” ;

receive statement := ”receive” , (identifier list , ”:=”)? , expression , ”;” ;

D.2.6 Declarations

class declaration := ”class” , identifier , ”{” , member declaration? , ”}” ;

member declaration := field declaration | invariant declaration |
method declaration | condition declaration | predicate declaration |
function declaration | coupling declaration | transform declaration ;
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field declaration := ”tracked”? , ”ghost”? , ”var” , identifier , ”:” ,
type , ”;” ;

invariant declaration := ”invariant” , expression , ”;” ;

method declaration := ”method” , identifier , formal parameters ,
(”returns” , formal parameters)? , method spec? , block statement ;

formal parameters := ”(” , formal list? , ”)” ;

formal list := (formal , ”,”)? , formal? ;

formal := identifier , (”:” , type declaration)? ;

method spec := ”requires” , expression , ”;” |
”ensures” , expression , ”;” |
”lockchange” , expression list , ”;” ;

condition declaration := ”condition” , identifier , (”where” , expression)? , ”;” ;

predicate declaration := ”predicate” , identifier , ”{” , expression , ”}” ;

function declaration := ”unlimited”? , ”static”? , ”function” , identifier ,
formal parameters , ”:” , type declaration , method spec? , (”{” , expression , ”}”)? ;

channel declaration := ”channel” , identifier , formal parameters ,
(”where” , expression)? , ”;” ;

D.2.7 Program

program := (class declaration | channel declaration)? ;
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