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Abstract

In this bachelor thesis we build a tool that translates programs written in VeriFast to
Chalice. It is based on the theory from the paper “The Relationship Between Separation
Logic and Implicit Dynamic Frames”[7] by Matthew J. Parkinson and Alexander J.
Summers. Our main contribution, besides implementing the translation, consists of
enhancing the methodology to translate the parameterised predicates of VeriFast to
parameterless predicates and heap-functions in Chalice.
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1 Introduction

1.1 Background

1.1.1 Separation Logic and Implicit Dynamic Frames

While standard Hoare logic has been widely accepted as a method for reasoning about
programs, it lacks support for two crucial aspects of modern software engineering: modu-
larity and concurrency. Ideally, one would like for modularity to be able to add additional
properties to a Hoare triple, also described by the framing rule

{P}C{Q}
{P ∧R}C{Q ∧R}

This rule allows one to apply a proof that was made in a local setting to be reused in a
larger (whole program) setting where additional fields and properties (R) exist. Even in
a sequential setting, this rule needs a side-condition that the command C doesn’t alter
the meaning of R (particularly, does not modify any free variable of R). But, in the
presence of a heap, which gives rise to aliasing, such a side-condition is infeasible; hence,
proofs in Hoare logic are not modular by default. One common solution is to extend
Hoare logic with some form of access permissions; a method might only read and modify
the fields it has access to. Usually, different levels (e.g., full and read-only) of access
permissions are considered, for instance fractional permissions [1] where 1 means full
access and every non-zero fraction read access. Access permissions give rise to a framing
rule for additional properties relying only on field locations which the command does not
have full access to (and thus, cannot modify). In addition, it naturally extends to the
case of concurrency if the access permissions on the same field can somehow be split, as
for instance with fractional permissions. We will now discuss two different approaches
which have been pursued in order to tackle these problems and introduce some sort of
access permissions.

Separation Logic Separation logic is an extension to Hoare logic originally developed
for languages with manual memory management, where dealing with aliasing plays a
crucial role. It is built on the idea of disjoint heap fragments that describe the memory
layout. Those disjoint fragments now give rise to a framing rule [8] in separation logic,
where the * (conjunction of disjoint fragments) replaces the regular conjunction:
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{P}C{Q}
{P ∗R}C{Q ∗R}

In addition, the points-to assertions (written e.f 7→ v) [6], which assert that the field
f of the object denoted by the expression e has the value v, can be interpreted as a
permission to the corresponding field. Also, separation logic has been extended with
fractional permissions (written e.f

π7→ v to represent the fraction π), which make it
flexible in the context of concurrency.

Implicit Dynamic Frames The idea behind implicit dynamic frames [9] is somewhat
different. Rather than tackling the framing problem by splitting the heap, one allows
method specifications to directly declare which portion of the (total) heap they may
modify. That portion is called the frame of the method and the declarations are ex-
pressed as functions of the heap; hence, the frames are “dynamic” in the sense that they
may change when the heap gets modified. The frame specifications are achieved by ex-
tending the first-order logic with so called “accessibility predicates” (written acc(o.f, π)
to represent the fractional permission π on the field f of object o) which precisely specify
which locations might be read or written to.

1.1.2 VeriFast

VeriFast is a semi-automated verification tool for C and Java programs that uses sep-
aration logic for preconditions and postconditions. It was originally developed by Bart
Jacobs, Jan Smans, and Frank Piessens at the Katholieke Universiteit Leuven [4]. It
provides a rich set of specification features such as inductive data-types, pure functions
over those ADTs, lemma functions to help the verification, and predicates. Especially,
VeriFast allows the verification of the following properties:

• Whether a method satisfies its specification, given by its precondition and post-
condition

• The absence of data races in concurrent programs

• The absence of illegal memory accesses (and memory leaks) in C. For Java pro-
grams, that property is directly part of the language.

1.1.3 Chalice

Chalice is a tool for the verification of concurrent object-oriented programs which is
based on the idea of implicit dynamic frames [5]. In addition, Chalice is a minimalistic
programming language which is inspired by object-oriented languages but lacks some of
their essential features. The name Chalice is used for both the programming language
and the tool that verifies those programs. The specifications (such as preconditions

6



Verifying Separation Logic in Chalice Daniel Jost

and postconditions) are first class citizens of the language and provide a wide vari-
ety of features to support the verification of both sequential and concurrent programs.
More specifically, the language supports objects, threads, mutual-exclusion, monitor in-
variants, and fine-grained locking. Permissions are handled analogously to fractional
permissions which allows splitting and joining of permissions. The verifier is based on
Boogie, which does a first-order encoding of the program, and checks whether the stated
properties are always satisfied.

1.1.4 Relationship between Separation Logic and Implicit Dynamic Frames

In recent work, Matthew Parkinson and Alex Summers showed how the assertions from
separation logic can be translated into those of implicit dynamic frames [7]. Hence,
they relate the partial heaps of separation logic to the implicit dynamic frames with its
explicit accessibility predicates. In order to achieve this, they have developed a total
heap semantics for separation logic, which they then used to build a logic that serves
as a superset of both separation logic and implicit dynamic frames, called total heaps
permission logic. This semantics is based on the idea of replacing the partial heaps of
separation logic with a total heap combined with permission masks, which specify the
locations in the heap which belong to the original fragment. Then they have shown that
the total heap semantics for separation logic correctly preserves the original semantics
of separation logic and, finally, that it can be reduced to the implicit dynamic frames
subset.

In short, that relationship is based on the idea that the part of the heap we have ac-
cess to (due to the permission mask) corresponds to a partial heap fragment in the
original separation logic. In addition, the points-to construct e.f

π7→ v can be trans-
lated to acc(e.f, π) && e.f == v which is part of the implicit dynamic frames assertion
language.

What the paper did not cover was the issue of relating the predicates of separation
logic and the version of implicit dynamic frames implemented in Chalice. While the
predicates in separation logic and the implicit dynamic frames described by the original
work by Jan Smans [9] do have arguments, the predicates in Chalice do not, due to the
first-order encoding of Chalice. Hence, a straightforward translation of this feature is
not possible.

1.2 Project description

In our project, we now aim for a translation from VeriFast programs to Chalice. Hence,
we explore the practical aspects of the relationship between those two concepts and
especially how to translate the missing pieces such as predicates and the programming
language itself.
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1.2.1 Core

The basic goal of this project is to implement a translation from VeriFast code (sepa-
ration logic) to Chalice code (implicit dynamic frames). In the first phase, a suitable
subset of VeriFast to be supported should be chosen. This will involve the analysis of
existing VeriFast examples in order to identify commonly used features of the VeriFast
assertion-language. In addition, working out by hand how to translate common cases of
generally non-trivial language constructs (like parameterized predicates) will be a sub-
stantial part of this phase. While aiming for a general translation is out of scope for
the core part, there were some pre-existing ideas for how to translate them by hand by
replacing the parameters with functions; thus, one expects that when manually looking
at the examples the translation will often be obvious.

In a second step, this translation should be implemented. This, first, requires parsing
of the VeriFast assertions to an abstract syntax tree. Second, those assertions can then
also be viewed as having been written in total heaps permission logic, whose assertions
are a superset of separation logic. Third, the mapping of the separation logic part of
total heaps permission logic to the Chalice subset can be performed. Finally, Chalice
assertions should be generated, which then can be handed to the Chalice tool.

Finally, the implementation should be used to evaluate how well the Chalice tool can
handle the corresponding examples. Possible shortcomings in both the translation for-
malism and the Chalice tool should be identified.

1.2.2 Extensions

Extra work can be performed in re-evaluating the supported subset of VeriFast in order
to handle a broader class of examples. This might lead to additional insights into how
general the translation is at the moment and how many of the existing VeriFast examples
actually rely on features not yet covered by the translation.

At the start of the project, we considered that the formalism might be extended to handle
VeriFast’s recursive predicate definitions and to figure out how to translate parameterized
and recursive predicates to chalice. Those are of particular interest, as they show up
in most of the existing examples; recursive predicates are especially used whenever the
program is dealing with recursive data structures such as linked-lists. However, the
mapping from parameterized predicates in VeriFast to parameterless predicates and
heap-dependent functions in Chalice is tricky. During the project we have worked out
how to make it practical, and as generally applicable as possible.

Additional language constructs from VeriFast such as fixpoint functions have also been
tackled. Closely related in VeriFast are also abstract data types, which currently are not
implemented in Chalice and which we did not deal with in our project. In the beginning,
we discussed that one might either try to translate them to Chalice as well, or more likely
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go ahead and implement them in Chalice, as that would not only eliminate the need for
a translation but also help on Chalice in general.

1.2.3 Goals

More explicitly, our project had the following goals:

Core

• Identify a suitable subset of the VeriFast assertions to be handled

• Write a compiler that translates VeriFast programs to Chalice programs

• Trying out by hand how to translate common cases of generally non-trivial language
constructs like parameterized predicates

• Evaluate how well Chalice can handle translated separation logic examples

Extensions

• Generalising the by-hand experience for handling some cases of parameterized
predicates automatically, including their folding and unfolding.

• Evaluate the practical feasibility of the extended methodology and translation

• Handle fixpoint functions in the translation

• Implement abstract datatypes for Chalice

9



2 Translation

2.1 Technical overview

We have seen in the introduction that VeriFast and Chalice differ in quite a few ways
and, yet, they try to solve similar problems. We have also seen that the translation
can theoretically be done for the core of the logic except for predicates. However, the
programming languages also differ in many aspects; on one side, there is VeriFast which
supports C and Java programs, and on the other side, there is Chalice with its own
minimalistic language. For the sake of simplicity, we have chosen to only focus on
translating Java programs, since Chalice is also object oriented.

In summary, we have to build a tool which can deal with the translation from Java to
Chalice and can handle some common cases of predicates, in order to obtain a practically
useful tool. We will now continue to give a brief overview of the technical implementation
of our tool and elaborate some of the design decisions we have made.

2.1.1 Programming language and tool-chain

We decided to build our tool in Scala. This was quite a natural choice since Chalice itself
as our translation target is also written in Scala and Scala is quite popular in the software
verification research area, with good library support for things like parsing. In addition,
using Scala will also allow us to reuse the pretty-printer from Chalice and, hence, directly
target the AST of Chalice rather than having to deal with emitting correct Chalice code
ourself.

2.1.2 Semi or fully automated

One of the design decisions we had to make was whether our tool should be semi or fully
automatic. Due to the large number of differences between VeriFast and Chalice, it was
pretty clear from the beginning that not every example can be translated automatically,
and that in some cases user interaction could help; nevertheless, we decided to go for a
fully automatic tool. This decision was based mainly on the additional program com-
plexity that a GUI would require. A GUI that would allow some flexible user interaction
during the translation would definitely be non-trivial and require a lot of effort without
providing much additional insight. As a consequence, we decided that user interaction

10



Verifying Separation Logic in Chalice Daniel Jost

should be made, whenever required, by manual modification of the VeriFast source and
then simply restarting the translation. We believe that this gives enough flexibility to
the user to make our tool usable without complicating our project. However, this obvi-
ously requires that our tool produces meaningful error messages, so that the user knows
which part he must modify. On the other hand, understandable error messages should
be a core feature of every tool that is supposed to fail in certain cases; therefore, that
should be part of our tool anyway.

2.1.3 Overall design

We will now briefly discuss the overall technical design of our translator before diving
into the interesting part of the details during the next chapters.

As a first step, the parsing of the VeriFast program has to be performed. Since parsing
is well known and has good support in Scala we will not discuss that aspect any further.
The parser should be able to parse almost the complete Java 7 language and definitely a
superset of what VeriFast can; however, not all the VeriFast annotations are parseable.
We decided to leave out some of the VeriFast annotations that we definitely cannot
translate, since one might easily extend the parser later. Please have a look at the
appendix for additional details.

As a second step, we do resolution and type-checking. Theoretically, one could assume
that the original VeriFast code is correct - not necessarily that it verifies in VeriFast
but that it is syntactically correct and type checks - however, we will need precise type
information and binding for any non-trivial transformation anyway. Type resolution
should be reasonably complete compared to VeriFast, except that it will fail when using
unsupported built-in features of VeriFast, or external libraries.

The actual translation is then further subdivided into smaller parts. The first and
most important part is a reduction in our own AST to a subset that is then directly
translatable to Chalice. That reduction is composed of multiple steps, each of them
reducing one specific unsupported feature to the supported ones. However, while these
steps work on different parts of VeriFast’s language, the order matters and they are not
totally independent. We have chosen this approach of working with our own AST for as
long as possible to gain more flexibility and keep the tool extensible, compared to trying
to do a single-pass translation; also, having a separate intermediate representation would
not have been worth the effort.

Note especially, that our tool can fail in every single phase of the translation; there is
no unique point where we check whether all used features are supported or whether the
program cannot be translated. Rather, our translation fails at the first point when an
unsupported feature is detected.

It is important to notice that most of the following chapters will be dedicated to that
reduction and not the final translation. In addition, this requires our AST to include
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all the features of the total separation logic and some Chalice-specific features as well.
Therefore, the terminology will be a mixture between the one from VeriFast and Chalice
henceforth.

Finally, we do the translation from our AST to the one of Chalice and invoke the pretty-
printer of Chalice. This step is mostly trivial, since we rely on the reduction having
taken care of all difficult cases; however, the translation might still fail in this step when
there is an unsupported feature for which no reduction step exists at all. As a rule of
thumb, unsupported features for which we can handle special cases will fail during the
reduction and the other ones during the final translation.

12
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2.2 Handling of Parametrized Predicates

Both VeriFast and Chalice support predicates to abstract over assertions. However,
VeriFast has a more general support with some key advantages which make a translation
to Chalice highly non-trivial:

• VeriFast supports predicates with parameters while Chalice does not

• VeriFast supports static predicates in the global scope, while in Chalice every
predicate needs a receiver

On the other hand, Chalice’s functions may depend on the heap, whereas VeriFast’s
functions don’t.

Since predicates are a key abstraction in both of the tools, almost no VeriFast example
exists that does not use them. Therefore, being able to translate predicates is crucial for
any tool that ought to be usable in practice; otherwise, every example would first need
to be rewritten by hand before one can apply the translation. In summary, the handling
of predicates is at the same time one of the most important and one of the most difficult
parts of a translation from VeriFast to Chalice.

In the following section we describe how the advantage of having heap dependent func-
tions is used in our tool to support some of VeriFast’s predicates and discuss the practical
feasibility of the approach. A more general evaluation is included later in section 3 about
the evaluation of our tool.

2.2.1 Introduction

At the beginning of our project, Alexander J. Summers had some ideas on how it might
be possible to use heap-functions to replace the predicate parameters. Especially, he had
two ideas:

1. Replacing the out-parameters, which are uniquely determined by the heap, with a
corresponding getter-function extracted from the predicate body.

As an example, consider the excerpt from a ‘Counter’-class with a predicate and
a method, shown in figure 2.1. In the translated Chalice code at the bottom, the
predicate parameter has been replaced by a getter-function ‘getVal’, which repre-
sents how the out-parameter is defined inside the VeriFast predicate. Whenever
the predicate is then mentioned (as for the contract of the method), the parame-
ter can then be replaced with calls to the getter, as shown in the contract of the
‘get’-method.
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p r e d i c a t e v a l i d ( int va l ) = this . va lue |−> va l ;

int get ( )
//@ r e q u i r e s v a l i d (? x ) ;
//@ ensures v a l i d ( x ) && r e s u l t == x ;

{
//@ open v a l i d ( x ) ;
return this . va lue ;
//@ c l o s e v a l i d ( x ) ;

}

↪→

predicate v a l i d ( ) { acc ( t h i s . value , 100) }

function getVal ( ) : int
requires v a l i d ;

{ unfolding v a l i d in t h i s . va lue }

method get ( ) returns ( r e s : int )
requires v a l i d ;
ensures v a l i d && getVal ( ) = old ( getVal ( ) ) &&

r e s = getVal ( ) ;
{

unfold v a l i d ;
r e s := t h i s . va lue ;
fold v a l i d ;

}

Figure 2.1: Example of a ‘Counter’-class where the predicate parameter gets replaced by
a getter-function

2. Replacing some cases of in-parameters, which are not uniquely determined by the
heap, by storing the originally passed-in parameter value in a ghost-field, right
before the folding of the predicate.

An application of this idea is shown in figure 2.2, where the out-parameter ‘len’
is replaced by a ghost-field in Chalice. Notice, how this idea is only applicable
when the predicate instance is unique for a given receiver, which is in this example
guaranteed by having full-access on the next field.
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p r e d i c a t e l inkedListSegment ( int l en ) r e q u i r e s {
next |−> &∗&
( len > 0 ==> next != null &∗&

next . l inkedLis tSegment ( len −1))
} ;

// f o l d i n g t h a t p r e d i c a t e :
//@ c l o s e l i n k e d L i s t S e g m e n t ( x )

↪→

ghost var l en : int ;
predicate l inkedListSegment {

acc ( next ) &&
( t h i s . l en > 0 ⇒ next . l i n k e d l i s t S e g m e n t )

}

// f o l d i n g t h a t p r e d i c a t e :
l en := x ;
fold l inkedListSegment ;

Figure 2.2: A segmented linked-list predicate with an example of how to fold it

The key contribution of our project is the automation of those ideas. Especially, this
included figuring out how such getters can be automatically extracted, how to automat-
ically determine whether the use of ghost-state is applicable, and figuring out all the
details required to make it work that popped up during the project.

As a motivation as to why the automation is non-trivial, let’s look at our linked-list
example (figure 2.3) and see what one can learn by reasoning about the predicate by
hand. This will guide us to the level of reasoning our tool needs to support.

( stat ic ) p r e d i c a t e l i n k e d L i s t ( L inkedLis t j L i s t , l i s t <int> aL i s t )
r e q u i r e s switch ( aL i s t ) {

case n i l : return j L i s t==null ;
case cons (aX , aNext ) : return j L i s t !=null

&∗& j L i s t . va lue |−> ?jX
&∗& j L i s t . next |−> ? jNext
&∗& l i n k e d L i s t ( jNext , aNext )
&∗& aX==jX ;

} ;

Figure 2.3: Predicate of our linked-list example (in VeriFast)

15



Verifying Separation Logic in Chalice Daniel Jost

We can make the following observations:

• ‘jList’ is null iff ‘aList’ is nil. This follows from the observation that when ‘aList’
is nil then ‘jList’ is null and conversely in the other branch.

• if ‘jList’ is null, the predicate does not hold any permissions.

• if ‘jList’ is non-null, we have full permission to the ‘value’ and ‘next’ field of ‘jList’.

• ‘aList’ is uniquely determined by the heap (and the parameter ‘jList’).

Using all those facts, one can conclude that we can actually make this static predicate
a member of the ‘LinkedList’ class; whenever ‘jList’ is null the predicate does not con-
vey additional information or permission. How we deal with static predicates will be
explained in the dedicated section 2.3.1. Also, the second parameter ‘aList’ can be re-
constructed from ‘jList’; hence, there is no need to store it explicitly in the predicate
instance, and we can apply the idea of getter-functions.

After looking at the reasoning involved to translate such a predicate, we do not believe
that there exists one general algorithm that can deal with all predicates from VeriFast;
therefore we tried to keep our tool close to the way a human tackles the predicates and
also implement the same tricks a human applies. This entails some degree of semantic
reasoning about the problem; any approach that just tries to work on a syntactic level
is probably doomed to fail. We, therefore, have taught our tool parts of the semantics
of assertions: what does a conditional statement mean and how can we reason on them
by cases, how is the conjunction (&&) of two expressions evaluated, and so on.

In the end, we have logically factored the handling of predicates into three tasks:

• Analyze a predicate definition and obtain knowledge about it.

• Use that knowledge to translate it.

• Simplify the resulting predicate definition to minimize redundancy and keep it
readable.

In the code, we have split those tasks into two components: a part that actually does the
transformations and an analyzer, which handles the first and the third tasks. The trans-
formations are based on the information provided by the analyzer to actually translate
the predicates. We will now start by discussing the transformations and postponing the
details of the analyzer to a later subsection. The analyzer is somewhat custom tailored
to allow the handling of predicates; therefore, when discussing the project in that order,
the requirements and motivation for the analyzer will evolve naturally.
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2.2.2 Eliminating Parameters

Let’s now look into to issue of replacing the parameters in depth. As we have already
discussed, the idea is to either replace the parameters by a getter-function or the ghost-
state to store the parameter value. Actually, getters are used in both cases: in the first
case we will speak of pure getters, as shown in figure 2.4 , and in the second case of
getters backed by ghost state, as shown in figure 2.5 . Hence, the idea is to turn every
parameter into a getter and instead of passing a value v to the parameter, the result of
the getter must be compared to v.

function getLinkedListSegEnd ( ) : L inkedLis t
requires acc ( l i nkedL i s tSeg , 1 00 ) ;

{
unfolding acc ( l i nkedL i s tSeg , 100) in (

aL i s t [ 1 . . ] 6= [ ] ?
( t h i s . next 6= null ?

t h i s . next . getLinkedListSegEnd ( ) :
null

) :
t h i s . next

)
}

Figure 2.4: Example: a pure getter with a function body

ghost var aL i s t : seq<int>;

function getLinkedLis tSegAList ( ) : seq<int>
requires acc ( l i nkedL i s tSeg , 1 00 ) ;

{
unfolding acc ( l i nkedL i s tSeg , 100) in aL i s t

}

Figure 2.5: Example: a getter backed by ghost state

Note that these getters always require the predicate they belong to as a precondition;
hence, they are only callable when the predicate is folded. This nicely matches the
original semantics in VeriFast where the parameters belong to a predicate instance.
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Feasability

The above ideas of using getter functions to mock the parameters is less general than
having the real parameters; hence, our approaches are not applicable for every param-
eterized predicate. In the following we will describe the conditions which are necessary
for the translation to work.

Pure getters For the first kind of getters (pure functions) to work, there must obvi-
ously exist a functional dependency from the receiver and the other parameters to that
parameter. In addition, for this approach to work the predicate analyzer must be able
to extract a function definition from the predicate body. For instance, in figure 2.6 the
parameter of the first predicate is uniquely determined by the heap and our analysis can
extract the pure getter, while in the second case no such heap-function exists. In the
third case, the parameter would actually be uniquely determined by the heap (test on
y > 1); however, our analyzer will fail to extract the corresponding function (discussed
later in section 2.2.6 about the analyzer).

p r e d i c a t e p1 (boolean x ) r e q u i r e s {
x ? this . f |−> 1 :

this . f |−> 2
} ;

p r e d i c a t e p2 (boolean x ) r e q u i r e s {
x ? this . f |−> 1 :

this . g |−> 2
} ;

p r e d i c a t e p3 (boolean x ) r e q u i r e s {
x ? this . f |−> 1 :

( this . f |−> ?y &∗& y > 1)
} ;

Figure 2.6: Examples of predicates where some of the parameters can be replaced by a
pure-getter and others cannot

In addition, some measures have to been taken to prevent cyclic getters. Consider for
instance a predicate which simply asserts the equality between two parameters:

p r e d i c a t e p( int a , int b) = { a == b}

We cannot hope to handle both parameters by pure functions, as they are not determined
by the heap. Nevertheless, for both of the parameters, the assertion-analyzer will extract
a getter which consists just of a call to the other getter. To prevent such cases, our tools
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builds a dependency graph for all the extracted getters and then does a topological
sort; the calls represent the directed edges. Whenever there is no getter which does not
depend on any other, the cycle is broken by choosing one of the getters, throwing away
its functions, and falling back to ghost state instead.

Ghost state The second approach we use, is to actually store the value passed as argu-
ment in a ghost field. Therefore, instead of having it stored in the predicate instance as
in VeriFast, we store it externally in a ghost field in the enclosing class of the predicate.

In order for the introduction of ghost state to work, the instance of the predicate must
be uniquely determined by the heap, especially by the receiver. Only one instance can
be closed on the same receiver, as we only have one field per receiver. Our tool checks,
that there exists a field, for which the predicate holds full permission in all branches.
In the context of the translation of predicates, we will refer to this field as guard. That
check is sufficient but not necessary as no two instances can both simultaneously hold
full permission on the very same field. Technically, having more than 50 percent would
also be sufficient for having mutual exclusion; however, we need full permission an a field
for dealing with the permission to the ghost field as explained in the next section.

As a very simple example, consider the excerpt from VeriFast’s ‘ArraysManual’ exam-
ple:

//@ p r e d i c a t e person ( i n t minAge , Person person ; i n t age ) =
person . age |−> age &∗&
minAge <= age ;

As we will discuss in section 2.3.1 about the handling of static predicates, ‘person’ will
become the new receiver which leaves ‘minAge’ and ‘age’ as parameters. The parameter
‘age’ directly maps to the corresponding field and, hence, can easily be implemented
with a pure getter. On the other hand, there is no way of extracting ‘minAge’ from the
heap; the predicate can be closed with any value smaller or equal to age. However, that
predicate can only be closed once for every person, due to requiring full access on the
‘age’-field; therefore, we can introduce a ghost-field in the ‘Person’ class and just store
‘minAge’ there as well.

One can think of more complex properties which might ensure the mutual exclusion
for specific predicates, but our approach turned out to general enough to deal with all
examples to which our use of ghost state applies. Furthermore, we limit ourselves to
cases where the receiver uniquely determines the predicate instance while in theory the
whole heap could be considered. However, this would introduce the additional non-trivial
burden of determining where we can store the ghost-fields.

19



Verifying Separation Logic in Chalice Daniel Jost

Access permissions for ghost state

When introducing ghost state the question about when to hold permission to those
fields arises. We want full permission inside the predicate, but what if the predicate
is unfolded, then the permissions are split and later folded at another location? This
problem, for instance, showed up in our segmented linked-list example, where one can
switch between the total-list predicate and the segmented one. Especially, we must not
lose permission to the ghost-state when converting to the other predicate, otherwise that
predicate can never be converted back again.

Our tool implements a shadowing technique where permission to the guard, on which
we know to have full permission on, is shadowed. Whenever the VeriFast code mentions
permissions to the guard with some fraction, permission to the ghost field with the same
fraction is added as well. The only exception is the defining predicate itself, where we
introduce full permission in the beginning, rather than just after the guard, so that we
can freely mention the ghost field inside the body just as we could the original parameter.
Outside the predicate body, that ghost field is obviously never referred to as it replaces a
local parameter; hence, the exact place where permission to this field is mentioned within
a contract or another predicate does not matter. This technique allows the predicate to
be unfolded, the permissions to be split and later for the predicate to be folded again.

For instance, consider the situation in figure 2.7, where the parameter of the ‘valid’
predicate is replaced by the ghost field ‘p’, which shadows ‘value’. Note that permission
to ‘p’ has been introduced with the same fraction as to ‘value’ inside the other predicate
‘A.readValid’ and in the contract of ‘B.g’. So whenever we regain full permission to
‘A.value’, we will also regain full permission to ‘A.p’ and the predicate can be folded
again. The only drawback of this method is that it breaks abstraction up to some
point by exposing the existence of that field in contracts while that field only exists for
implementation purposes and is abstracted by the corresponding getter.

Relation to in- and out-parameters in VeriFast

VeriFast has the concept of distinguishing between in- and out-parameters. We will now
discuss how the distinction between getters with functions and those with ghost state
maps to VeriFast’s concept. One might expect that in-parameters map to ghost state
and out-parameters to functions. In practice our tool does not care too much about
VeriFast’s distinction. It turned out that most of the VeriFast examples do not mark
parameters as out-parameters, since most of them were written before that concept of
marking out-parameters was introduced. Therefore, relying on that information would
require us to introduce unnecessary ghost state in many cases. However, our assertion-
analyzer is general enough to be always able to extract a function whenever a parameter
is marked as an out-parameter; this is due to the fact that VeriFast has some quite
restrictive checks on when a parameter can be marked as out-parameter. The only case
when our tool does care about the differentiation is when it comes to breaking cyclic
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class A {
var value : int
ghost var p: int

predicate v a l i d {
acc ( t h i s . p , 100) && acc ( t h i s . value , 100)

}

predicate readVal id {
rd ( t h i s . va lue ) && rd ( t h i s . p )

}
}

class B {
method m( a: A)

requires a 6= null && a . v a l i d
ensures a 6= null && a . v a l i d

{
unfold a . v a l i d
fold a . readVal id
g ( a )
unfold a . readVal id
fold a . v a l i d

}

method g ( a: A)
requires a 6= null && acc ( a . value , 50) && acc ( a . p )
requires a 6= null && acc ( a . value , 50) && acc ( a . p )

{
a . va lue := 5

}
}

Figure 2.7: The permission to the field value is shadowed for the ghost field p

dependencies: extracted getters for in-parameters have higher priority when needing to
throw away a getter. In summary, our tool handles out-parameters in a more general
way than VeriFast does by often transforming the predicate to an equivalent one where
a parameter can actually be an out parameter.

Once more, have a look at our linked-list predicate from figure 2.3: we have already
reasoned that the ‘aList’ parameter is uniquely determined by the heap and, hence, is
an out-parameter. However, VeriFast does not allow having an inductive-switch on an
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out-parameter.

In our tool, we achieve making ‘aList’ an out-parameter by transforming the inductive-
switch to a conditional in the following way:

switch ( aL i s t ) {
case n i l : return j L i s t == null ;
case cons (aX , aNext ) : return j L i s t != null ;

}
↪→
aL i s t == ( j L i s t==null ? n i l : cons (aX , aNext ) )

This transformation relies on the fact that the assertions of the branches are pairwise
exclusive; concretely, ‘jList’ actually determines which branch of the switch has to be
taken. Hence, we can use a conditional on ‘jList’ instead of the switch. VeriFast,
on the other hand, conservatively checks whether a parameter can be used as an out-
parameter.

Handling the call-site

There exist three different ways in which how the parameters can be used at the call
site.

• A value can be passed as an argument to the predicate; thus, the parameter is
used as an in-parameter.

• The value can be bound to a local variable; the parameter is used as an out-
parameter.

• The caller does not care about the value, denoted by an underscore in VeriFast.
The parameter is treated like an out-parameter but the value cannot be referred
to.

The translation of those usages is dependant on the kind of the caller. Some care has to
be paid especially to the point at which point out-parameters get replaced by retrieving
the value from the corresponding getter. Note that for a predicate with a maybe-null
receiver, a conditional of the form obj != null ? obj.getVal() : cval (where cval denotes
the constant value that replaces the parameter in case the predicate is not held) replaces
any call to the getters; yet we will only talk of calling the getter for conciseness.

Precondition When rewriting the parametrized predicates that occur in preconditions,
the following transformations are applied:

• In-parameters get replaced by an equality check between the corresponding getter
and the passed-in value.
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• Out-parameters: the usage of the introduced variable is handled depending on
the place it gets mentioned. In general, VeriFast’s semantics are that the out-
parameter introduces a local variable with constant value during the whole method.
We, therefore, need to mock that capturing semantics:

– Inside the precondition, the usage will just be replaced by a call to the getter.

– At the beginning of the body of the method the precondition belongs to,
the value of the getter gets stored in a local variable. All references to the
bound variable inside the method now become mentions of that local variable.
Obviously, the obtained value at the beginning of the method cannot yet differ
from the one in the precondition and the predicate is still folded at that point.

A näıve approach might try to replace every mention of the bounded variable
to a getter-call; however, this would neither reflect the correct semantics as
the value might have changed further up since the beginning of the method,
nor be always valid as the predicate might have been unfolded meanwhile.

– Inside the postcondition the getter is used, but in the ‘old’ context which
ensures that we will get the same value as in the precondition.

Postcondition In postconditions we handle the parameters basically the same way as
in preconditions. We can just omit the whole part about when to bind the value and just
always call the getter directly. Furthermore, we must not put it in the old-context.

Unfolding

• In-parameters are neglected when translating an open statement to an unfold state-
ment in Chalice. In VeriFast only a predicate that matches those arguments can
be opened, and since we know the predicate is unique for a given receiver, that
unique instance ought to have those values.

• Out-parameters get their values stored in matching local variables right before the
open statement.

Folding

• In-parameters are handled depending on whether the getter is backed by ghost
state or not. For getters backed by ghost state, the passing of a value gets replaced
by an assignment to the ghost-state. The other in-parameters get ignored as for
the unfold statement.

• As for the unfold statement, out-parameters get bound to a local variable; however,
that here that must occur just after the folding since the getter is only valid once
the predicate is folded.
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Dealing with recursion

Recursive predicates are a common class of predicates with parameters. Any kind of
recursive data type like lists or trees naturally leads to a recursive predicate. Hence,
correct handling of recursive predicates is crucial for many examples to verify.

Conceptionally, there is nothing special about recursive predicates and they are treated
just like any other predicate with parameters. However, some technical details had
to be considered in order to let them work nicely. Those tricks mainly result from
the limitations of the asssertion-analyzer: it only considers equalities when trying to
extract the getters. Hence a predicate invocation of the form next.valid(vnext) cannot
be handled whereas next.valid && next.getPNext() == vnext can be handled. Hence
when trying to extract the recursive function for the parameter ‘pnext’, the recursive call
must already have been rewritten to the getter syntax. Our tool handles that case by
rewriting the call-site early on and binding them to stub-getters before trying to extract
the actual getter.

2.2.3 Analyzing predicates

In the previous section we have seen several places were the handling of the predicates
required some form of knowledge about the predicate. Some further use-cases will also
show up in section 2.3 about the handling of static methods and predicates. We now
focus on the predicate analyzer which is supposed to obtain that knowledge. Especially,
we have seen that the anaylzer must be able to answer the following questions (some
result from section 2.3.1 too):

• Determine whether one of the parameters of a static predicate is guaranteed to be
non-null by the predicate body so that we can make it the new receiver.

• Determine whether a predicate holds no permission in case a given parameter is
known to be null to apply the “not-holding” trick introduced in section 2.3.1.

• Determine whether a predicate holds full permission to at least one field so that
we can use ghost-state to replace the parameters of the predicate.

• Extracting getters for the predicate parameters from the predicate body.

• Rewriting the predicate body after the getters have been extracted. We will look
into this point in some more detail.

Furthermore, the analyzer also has some closely related use-cases outside of the handling
of predicates:

• The handling of static methods also relies on choosing one of the parameters to
be the new receiver. Therefore, we must be able to determine whether one of
the formal parameters of a static method is guaranteed to be non-null by the
precondition.
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• Our dead-code elimination relies on constant folding of expressions, which is done
by the analyzer. However, here we just care about expressions and not assertions
in general. As a consequence, we have split the analyzer into an assertion- and an
expression-analyzer; the assertion-analyzer internally uses the expression one.

In summary, we have seen that the analyzer must be able to reason about values and
permissions. Additionally, it performs constant folding which can be used to simplify
predicates.

2.2.4 Semantics of knowledge

Let us first focus on the knowledge we want to extract; especially, we first take a quick
look at what we actually want to model when talking about ‘knowledge’:

We are basically analyzing a predicate body, which is an assertion. In addition, the body
of a predicate is only of interest when an instance of the predicate is currently folded an
all of our use-cases are of the form: if the predicate is held, does the following property
hold? Hence, when talking about the extracted ‘knowledge’, it is always assumed that
the predicate holds. For instance, consider the assertion 1 == 2 which if used as the body
of a predicate, will cause our analyzer to extract that one equals to two. Nevertheless,
this is not a problem, since such a predicate can never be folded.

Also, we want our representation of knowledge to be more lightweight and abstract than
the expressions and assertions VeriFast uses; otherwise, we could just extract the body
itself as the most precise form of knowledge and, therefore, not gain anything. In the
end it boils down to a trade-off between having simple and usable facts and being as
expressive as possible. Having a more restricted set of constructs, however, also implies
that we cannot model every detail of the original assertion; hence, the assertion cannot
be reconstructed from the knowledge in general.

Formally, this is modelled as an implication: holding an assertion ‘a’ implies the knowl-
edge of this assertion to be true. Note that the converse, therefore, does not necessarily
hold: ¬a 9 ¬knowledge. In some cases, however, we will see that we do care about
having the negation at hand. Then, however, we must ensure that our knowledge is
equivalent to the assertion; hence, the implication becomes an equivalence. In this case
we say that the knowledge is precise.

Additionally, we only care about knowledge for boolean expressions like comparison and
not for arbitrary expressions like ‘1+1’. Boolean expressions are a subset of assertions
and our assumption that the expressions implies the knowledge is only meaningful for
expressions that evaluate to true or false.
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2.2.5 Representation of knowledge

Value Facts

In our tool, two basic forms of facts about values exist:

• Equalities

• Inequalities

These facts are used to reason about the values of local variables (usually defined by
formal parameters) or fields. However, the left and right hand sides of a basic fact are
general expressions, which e.g., allows the representation of conditional knowledge of the
form

v ≡ cnd ?a : b

Reasoning always happens with conjunctions of basic value facts. This encoding was
chosen since all our use-cases of the analyzer require that we know some value-fact
for sure, and if we would encode disjunctions, they would needed to be simplified at
the end. As a consequence, we have chosen to ignore them completely for the sake of
simplicity; therefore, disjunctions need to be encoded as a conditional expression inside
the basic fact, which turned out to be expressive enough when it comes to extracting
pure getters.

One of the main drawbacks of not being able to encode disjunctions is that we cannot
properly negate facts. In some situations, however, taking the negation of a fact is
desirable, e.g. one would like to assume ¬c inside the else-branch of an expression
of the form c ? a : b. As discussed, even if the condition c does not contains any
disjunction, taking the negation might not possible since our facts are less expressive
than the expressions of VeriFast and therefore the semantics of our knowledge k for the
expression c is defined to be c ⇒ k. However, the conditions are in practice often very
simple expressions like a single equality or inequality, which can be easily expressed by
an equivalent fact; in those cases, our facts will be marked as precise.

In summary, the negation of a conjunction of facts is only meaningfully representable if
the conjunction is a precise singleton set. Otherwise, the negation is the empty knowledge
set (treated as imprecise).

Permission Facts

The analyzer reasons not only about values, but also about the permissions held by a
assertion. As we have seen, we are especially interested to know whether an assertion
either holds no permission at all or holds full permission to a specific field.
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Therefore, for representing permissions in the analyzer we have chosen the following
three kinds of permission facts:

φ (no permission) The assertion is known to not hold any permissions

ψ (unknown) The assertion might hold permissions of an unknown fraction on one or
more fields. ψ is used in two situations: when the assertion contains a predicate-
assertion (which wasn’t unfolded automatically during the analysing), and when
an exact fraction of the permission could not be determined, as for [?p]this.f 7→ v
or [ ]this.f 7→ v or when the fraction is not a constant expression.

π(e.f, p) (known fraction p on f) The assertion holds at least a known fraction on a
single specific field location.

Two operations over those basic permission facts are defined. For the addition, we have
the following simplification rules:

φ+ φ := φ

φ+ ψ := ψ

φ+ π(e.f, p) := π(e.f, p)

ψ + ψ = ψ

ψ + π(e.f, p) := π(e.f, p)

π(e.f, p1) + π(e.f, p2) := π(e.f, p1 + p2)

Note that since fractions are always positive, adding an unknown fraction ψ to π(f, p)
results in at least a fraction p as well. Strictly speaking, one could even model that case
as strictly-larger and, hence, introduce a fourth kind of permission-fact. However, since
we only really care in φ and π we omitted that case.

Furthermore, the disjunction ∨ over basic permission facts (and additions of basic
facts) is defined. This has been done, since in contrast to the value-facts, we do not
want to have general expressions inside the facts. The addition is extended over those
disjunctions in the natural way, too.

(a ∨ b) + (c ∨ d) := (a+ c) ∨ (a+ d) ∨ (b+ c) ∨ (b+ d)

Internally, the assertion-analyzer always represents permission facts in DNF. In contrast
to the value facts, however, we do have disjunctions as well as conjunctions (addition).
This was chosen because we cannot model conditionals inside single permissions facts,
as it is the case for value facts.
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2.2.6 Analyzing and folding expressions

In this section we will describe how the analyzer generates and propagates knowledge
through expressions. The process of constant folding the expressions (simplifying the ex-
pressions) is well known and will not be discussed in detail. Note that while the extracted
knowledge is subject to the implication semantics of the knowledge, the simplifications
done by the constant folding are conservative and valid without further assumptions.

Subexpressions are evaluated and folded recursively. During the recursive process, the
analyzer keeps track of a set of assumptions primarily gained from branch conditions.

Boolean literal For a boolean literal ‘v’, a fact of the form true == v is generated and
marked as precise. This is due to the fact that the knowledge is only valid when the
expression ‘v’ actually evaluates to true, as we have modelled with the implication.

Equality expression (==) As for every non-atomic expressions, the sub-expressions
get analysed and folded recursively beforehand. Then, the equality fact old(lhs) ==
old(rhs) is generated and treated as precise. “Old” denotes here the subexpression
before the recursive folding. We could theoretically also generate a fact about the folded
equality; however in the end we want the knowledge to be about the original assertion.

Also note that the knowledge from the sub-expressions is not reused, since that knowl-
edge only applies whenever the expression evaluates to true. This cannot be assumed
for the operands just assuming the equality holds.

Constant folding:

• if the left- and right-hand-sides are structurally equal, the result becomes true

• if the analyzer can prove the lhs and the rhs to be equal from the current assump-
tion set, then the result becomes true as well. Here ‘proving’ means that, either
the two terms are structurally equivalent, or that the analyser can derive it from
the equality-facts in the current assertion set.

• otherwise the expression remains unchanged.

Disequality expression (!=) Similar to the equality, one inequality fact is generated.
Also, similar to equality-expressions, the current assumptions are used to try to prove
the inequality.
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Conditional (ternary operator) The condition is evaluated under the same assumptions
as the expression itself. For recursively evaluating the then-branch, the knowledge of
the condition is added to the assumptions. For evaluating the else-branch, the negation
is added to the assumptions.

• If the branch-condition has been folded to true or false), the knowledge of the
according branch (then for true, else for false) is taken.

In addition, the constant folding can rewrite the conditional expression to just that
branch.

• If exactly one branch got folded to false, the knowledge of the other branch is taken.
In addition, we have learned which value the branch condition must evaluate to
and can therefore either add the knowledge of the branch condition (if the else-
branch evaluates to false) or its negation to the knowledge about the conditional.
Since the knowledge about the condition basically models the condition itself, this
is nothing different than recording to which value the condition evaluates.

Once more, remember that our knowledge is modelled by an implication; hence,
is only meaningful when the conditional-expression evaluates to true. Therefore,
knowing that one branch evaluates to false for sure implies that this branch cannot
be the one which will be evaluated. Those semantics are motivated by the fact that
we mainly analyze assertions in a context where they hold, as when a predicate
is folded. This is a form of backward-reasoning which one frequently does when
looking at a predicate body by hand. For expressions, this reasoning might look
surprising, since for example in an expression b == (c ? false : true) where b is
false we will generate the knowledge for the right-hand side that c will be false as
well. This is obviously not true when looking at the top-level expression. However,
that knowledge will not be part of the knowledge about the equality. Hence, this
reasoning is still sound for sub-expressions, although not of great use.

• Otherwise we have to ‘condition’ our knowledge to represent the uncertainty of the
branch. As discussed, we cannot represent the disjunctions directly but must put
them inside the expressions. Hence, facts with a common left- or right-hand-side
are collected (e.g., f == g and f == h) and a new fact of the form f == cnd ? g:h
(where cnd denotes the condition of the expression we are analysing) is generated.

The knowledge about that conditional expression is marked as precise iff the knowledge
of the used branches and the conditional is precise.

Logical Not For the knowledge about a negation ¬n, we take the negation of the
knowledge of the expression n. As already discussed, the negation of the knowledge is
only meaningful if it is a precise singleton-set, otherwise we discard all knowledge.

Constant folding is only applied if n has already been folded to (or originally was) a
boolean literal itself.
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And

• The conjunction of the knowledge from the subexpressions is taken. It is marked
as precise iff both of the subexpressions are precise. Since we can directly express
conjunctions in our knowledge, this is the straightforward way of dealing with it.

• The constant folding will replace the conjunction by ‘true’ iff both of its subex-
pressions have been folded to ‘true’ as well; if one of them got folded to ‘false’, we
can fold the whole conjunction to ‘false’.

Or The intersection of the knowledge from the subexpressions is taken; remember that
knowledge is represented as a set of basic facts which model conjunctions of them. The
generated knowledge is marked imprecise unless both the sets of the subexpressions were
identical and precise.

Non boolean expressions Other expressions remain unchanged and we have said that
we do not define the knowledge for them. For instance, we cannot extract any knowledge
from a numeric expression like 3 + 1, since our knowledge covers only equalities and
inequalities.

2.2.7 Analyzing assertions

Assertions get analyzed equivalently to expressions; we recursively extract the knowledge
and constant-fold them. Especially, when arriving at an expression in the recursive
process, that expression gets analyzed the way we discussed before.

In addition, when analyzing assertions we can now also extract knowledge about the
permissions held by the assertions.

Empty Assertion (emp in VeriFast) VeriFast distinguishes between the ‘true’-assertion
and the empty assertion. However, in Java programs that distinction is not of any
importance. Hence, we cannot extract any value facts, but know that this assertion does
not hold any permissions; thus, we can add the permission fact φ

Separation Assertion In terms of value-facts and constant-folding, a separation asser-
tion ‘a &*& b’ is treated just like the conjunction ‘a && b’. Furthermore, the permission
held by the separation assertion are known to be the addition of the ones held by a and
b.
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Points-To Assertion In terms of value-facts, a points-to assertion [p]obj.f 7→ v gen-
erates an implicit obj 6= null and an equality obj.f = v to match the semantics of
VeriFast.

Depending on whether p is actually passed in (for instance [1/2]obj.f 7→ v), hence an
expression, or a binding of the fraction (such as [?x]obj.f 7→ v), either the permission-
fact π(f, p) or ψ is generated. Whenever the fraction is bound, we do not know any
lower bound on it, we just now for sure from the semantics of VeriFast that the fraction
is non-zero which is represented by ψ.

Access Permission Access permissions of the total separation logic are treated exactly
the same way as points-to assertion, except for the value-equality not being present.

Our tool internally uses this superset during the simplifications, and supporting both
points-to assertions and access permissions results in greater flexibility in which order
the simplifications are executed.

Access-All Permission Currently, we do not model access-all permissions (access to all
fields of an object) directly. The only place were they might occur is in the precondition of
the constructor that we generate ourself and since there is no application of our analyzer
that deals with constructors we do not care about it. For correctness, we nevertheless
insert generate a ψ to encode that we do have some permission, as we sometimes are
interested to know that an assertion holds no permission for sure.

Predicate Assertion Preconditions of methods are often expressed in terms of pred-
icate assertions; therefore, when analyzing such preconditions (e.g., to determine how
to transform a static method into a non-static one) automatic unfolding of predicate
assertions is crucial. For predicate assertions we, hence, do automatic unfolding dur-
ing the analysing and basically take the knowledge we got from analysing the unfolded
predicate.

We have to be careful, however, not to mix knowledge about variables inside the predicate
and those outside with equal names. Also, we have to limit the recursion depth in order
to prevent infinite unfolding. For our cases, a maximal depth of one turned out to be
enough.

Note that if we want to use the analyzer to extract the getter-functions, it is important
to rewrite the predicate-assertions, to the form where the parameters have been replaced
with getters, ahead of running the analyzer. Only once we have rewritten the predicate-
assertion from obj.pred(e) to obj.pred&∗& obj.getV () == e, the analyzer can extract
the equality about the passed in argument e and the formal parameter v. In the form
with arguments, our analyzer cannot establish any equality-fact on the passed-in value.
We have already elaborated this aspect in the section about the handling of recursive
predicates (section 2.2.2).
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Implication Assertion When analyzing an implication assertion cnd ⇒ thn we obvi-
ously have to match the semantics of the implication:

• if cnd got folded in the recursive call to true, we know that the thn-part must
evaluate to true in order for the whole assertion to evaluate to true. Hence, we
can assume both the knowledge and the permissions of the thn-part.

• if cnd has been folded to false, we cannot assume anything about the thn-part.
Therefore, we just know that !cnd holds and the corresponding knowledge can be
added. In addition, we know that the implication does not hold any permissions
since in VeriFast the cnd is a pure expression which cannot contain permissions.
The implication-assertion can, furthermore, be simplified (fold) to just true, match-
ing the natural semantics of implications with false as a condition.

• if the thn-part has been folded to false we know that the cnd must also evaluate to
false; hence the appropriate knowledge gets added and we know that the implica-
tion does not hold any permissions. Also, we can simplify the implication-assertion
to !cnd.

• Otherwise we cannot assume anything for the value-facts since our encoding of
value-facts does not allow to express a disjunction or implication; however, we can
add the disjunction for the permissions.

Conditional Assertion Conditional assertions get treated almost identically to
conditional-expressions. The basic difference is that for the permission-facts we can
properly encode the disjunction in the case that we cannot rule out one of the branches.

Inductive-Switch Assertion Inductive-Switch assertions are treated quite similarly to
conditional-assertions. If the structure of the expression e on which the switch acts on
(switch(e) {...}) is known (e.g., either cons or nil), we can simplify the switch to the
according branch. This includes replacing the bound variables from the case-statement
with the corresponding subexpression of e. For instance, if e is cons(1, x) and the case-
statement of the form case cons(h, t) : [body], the variable h will be replaced with 1
inside the case-block, and t with x correspondingly.

Otherwise, if only one branch is satisfiable (not has been folded to false), we cannot
just simplify the assertion (for folding), but at least can just take the knowledge of that
branch. This is due to the fact, that whenever the assertion holds, this branch must
be satisfied. Furthermore, we can add an equality-fact on the structure of e to our
knowledge.

Last, if neither of the previous cases applies, we need to “switchify” our equality-facts.
This means that we put the switch inside the right-hand side of equality facts which
share the same left-hand side, by using conditionals. This is a generalisation of what the
analyser does when conditioning facts as described for conditional-expressions.
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2.2.8 Solving equalities

We have now seen how we can extract knowledge from assertions. For values, that
knowledge is represented by a set of equalities and inequalities which technically we now
need to solve for the variable we are interested in.

We first tried an approach where we assumed that the equations are always already solved
for the variable we are interested in; hence, we only considered value-facts where either
the left-hand or right-hand side was exactly that variable. While this assumption might
look quite strong at first sight it actually works out for many examples. For instance,
consider a points-to assertion this.f 7→ v where v is the variable we are interested in.
When analyzing that points-to assertion we will produce the equation f == v, which
obviously doesn’t need to be solved. Actually, it turned out that for many predicates
the parameters just get directly mapped to a field; hence, for those examples there is no
need of equation solving.

However, at some point it became clear that for many recursive predicates there exist
both a predicate definition that does not need equation solving and an almost identical
one that does. As an example, let us look at a simple (non segmented) linked list
predicate in two versions, as shown in figure 2.8 and 2.9.

p r e d i c a t e l i n k e d l i s t ( L i s t l , int l ength , l i s t <int> i tems ) = {
l != null &∗&
l . next 7→ ?n &∗&
l . va l 7→ ?v &∗&
(n == null ?

l ength == 1 &∗& item = cons (v , n i l ) :
l i n k e d l i s t (n , length −1, ? i ) &∗& items == cons (v , i )

)
}

Figure 2.8: A predicate where a definition for length cannot be extracted without solving
an equation
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p r e d i c a t e l i n k e d l i s t ( L i s t l , int l ength , l i s t <int> i tems ) = {
l != null &∗&
l . next 7→ ?n &∗&
l . va l 7→ ?v &∗&
(n == null ?

l ength == 1 &∗& item = cons (v , n i l ) :
l i n k e d l i s t (n , ? len , ? i ) &∗&
lenght == len + 1 &∗&
items == cons (v , i )

)
}

Figure 2.9: A predicate where a definition for length can be simply extracted

Both of them look reasonable and there seems no reason to believe that a programmer
might have a strong preference for one of them. Hence, we would like to support both
of them (or fail for both), but not support one and fail for the other. However, for
the first one the analyzer will extract the equation length − 1 == l.next.getLength()
which does need solving for length, whereas for the second one the equation length ==
l.next.getLength() + 1 will be generated.

As a consequence we realized that some sort of minimalistic equation solver was needed.
Since we do not expect considerably more complicated equations than the length−1 ==
v above, we kept it simple and made the following assumptions:

• The solver only supports the basic arithmetic operations, namely: addition, sub-
traction, multiplication, and division.

• The variable we are solving for is only allowed to be mentioned once inside the
equation.

Since we deal with multiplication we have to account for the case that we might generate
a division by zero; therefore, some side conditions might have to be added. For instance,
when solving a ∗ b == c for a, the equation a == c

b is only valid if b is non-zero and
unless b is a compile-time constant we cannot rule that case out during the translation.
The remaining question is: where do we place the side-condition? We have considered
two options:

• Only as a precondition to the getter-function.

Remember, that we mainly extract the knowledge to built the getter-functions that
replace the predicate parameters. Hence, the division will only occur inside the
getter; thus, it makes sense to add the side condition as a precondition. However,
Chalice would then have to figure out that the side-condition holds for every call-
site. This is problematic since the required knowledge to prove the side condition

34



Verifying Separation Logic in Chalice Daniel Jost

is usually encoded in the original predicate, which is folded when the getter gets
called (and so the information may not be “seen” by the verifier, as predicates are
not unfolded automatically).

• Inside the predicate body.

We have just discussed that the necessary knowledge to prove the side condition
is usually encoded in the predicate itself. Hence, it may make sense to put the
side condition right there as well. We would then carry that knowledge with the
predicate instance and get it for free inside the getter which unfolds the predicate.
However, in the end that would just shift the problem of proving the side condition
from the call-site to the folding of the predicate.

Actually, we believe that for many cases the side condition will not be directly derivable
from the predicate, anyway. For instance, in figure 2.10 the reasoning has to be done
inductively (base-case: l0 = 1; inductive case: ln = ln−1 + 1), which Chalice cannot
perform automatically. In fact, a stronger induction hypothesis will have to be added to
the predicate body.

p r e d i c a t e ListAverage ( int a , int l ) r e q u i r e s {
this . va lue |−> ?v &∗&
this . next |−> ?n &∗&
(n != null ==> (n . ListAverage (?b , ?m) &∗&

m == l−1 &∗&
b∗m+v == a∗ l )

) &∗&
(n == null ==> ( a == v &∗& l == 1))

}

function getA ( ) : int
requires ListAverage &&

getL ( ) 6= 0 ; // s ide−c o n d i t i o n
{ (b∗m + v )/ getL ( ) }

Figure 2.10: A predicate where the extracted getter for the parameter a will need a
side-condition, which is not directly derivable from the predicate body

As a consequence, the user will be forced to fix the translated code manually. Hence, we
opted for the easier solution and just included it in precondition; the user will then need
to fix it manually by adding a suitable condition to the predicate and possibly remove
the precondition, as shown in figure 2.11.
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p r e d i c a t e ListAverage ( int a , int l ) r e q u i r e s {
// i n s e r t such a c o n d i t i o n in the t r a n s l a t e d Cha l i ce code
l ength != 0 &∗& code
[ . . . ]

}

function getA ( ) : int
requires ListAverage ; // s ide−c o n d i t i o n removed !

{ (b∗m + v )/ getL ( ) }

Figure 2.11: The example of figure 2.10 manually fixed

2.2.9 Simplifying predicates

We have now seen all the techniques required to construct the pure getter-functions from
the predicate using our analyzer: the predicate is analyzed to extract the knowledge,
and then the equality-facts are tried to be solved for the parameter we are replacing.
However, we actually not only want to construct the getters but literally extract them;
thus, removing the information it covers from the original predicate body itself. This
both has an ideological and a technical reason:

• Remove redundancy: extracting some part of the predicate into a getter implies
that we extract parts of the information provided by the predicate; the equivalent
information in the predicate body is then redundant. It is not just our goal to
create Chalice code that verifies but also code that is concise and readable.

• Since we want to remove the parameter, we cannot refer to it inside the predi-
cate body any longer. In addition, we cannot simply replace it by a call to the
corresponding getter because our getter requires the predicate to be folded when
called. Finally, just removing every expression that has an occurrence of the pa-
rameter might not work; not every occurrence necessarily contributed to the getter
definition.

So how do we remove the part covered by the getter? We plug in the definition (body)
of the getter for every occurrence of the parameter the predicate and let the constant
folding of the analyzer take care of the redundancy.

As an example, let us once again look at the non-segmented linked list. This time, we
have also added an assertion that the abstract list has a non-zero length for the second
case, for the purpose of adding some information about aList which is not used in the
getter.
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p r e d i c a t e l i n k e d L i s t ( L inkedLis t j L i s t , l i s t <int> aL i s t )
r e q u i r e s switch ( aL i s t ) {

case n i l : return j L i s t==null ;
case cons (aX , aNext ) : return j L i s t !=null

&∗& j L i s t . va lue |−> ?jX
&∗& j L i s t . next |−> ? jNext
&∗& l i n k e d L i s t ( jNext , aNext )
&∗& aX==jX
&∗& length ( aL i s t ) > 0 ;

} ;

Figure 2.12: The original predicate in VeriFast with parameters

After an initial rewrite that makes the predicate non-static and binds the arguments of
the recursive predicate call to the corresponding getters, we get:

p r e d i c a t e l i n k e d L i s t ( l i s t <int> aL i s t )
r e q u i r e s switch ( aL i s t ) {

case n i l : return this==null ;
case cons (aX , aNext ) : return this !=null

&∗& acc ( this . va lue )
&∗& acc ( this . next )
&∗& this . next . l i n k e d L i s t && this . next . getAList ( ) == aNext
&∗& aX==this . va lue
&∗& length ( aL i s t ) > 0 ;

} ;

Now, our getter for aList can be extracted from the body:

function getAList ( ) : seq<int>
requires acc ( l i n k e d L i s t , 1 00 ) ;

{
unfolding acc ( l i n k e d L i s t , 100) in
cons ( t h i s . value , t h i s . next 6= null ?

t h i s . next . getAList ( ) : [ ] )
}

If we now plug the getter definition back into the predicate and remove the parameter
we get a predicate that can directly be translated to Chalice, as shown in figure 2.13.

However, this new predicate contains a lot of redundancy which we would like to elimi-
nate; therefore, we now apply the constant folding. As a first step, we remove the nil-case,
since with the non-static predicate that is no longer possible. In addition, we can bind
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predicate l i n k e d L i s t ( )
requires switch ( cons ( t h i s . value , t h i s . next 6= null ?

t h i s . next . getAList ( ) : [ ] ) ) {
case ni l : r e turn t h i s=null ;
ca se cons (aX , aNext ) : r e turn t h i s 6=null

&∗& acc ( t h i s . va lue )
&∗& acc ( t h i s . next )
&∗& t h i s . next . l i n k e d L i s t
&∗& t h i s . next . getAList ( ) = aNext
&∗& aX=t h i s . va lue
&∗& length ( cons ( t h i s . value , t h i s . next 6= null ?

t h i s . next . getAList ( ) : [ ] ) ) > 0 ;
} ;

Figure 2.13: The predicate in which the parameter has been eliminated

predicate l i n k e d L i s t ( )
re turn t h i s 6=null

&∗& acc ( t h i s . va lue )
&∗& acc ( t h i s . next )
&∗& t h i s . next . l i n k e d L i s t
&∗& t h i s . next . getAList ( ) =

( t h i s . next 6= null ? t h i s . next . getAList ( ) : [ ] )
&∗& t h i s . va lue=t h i s . va lue
&∗& length ( cons ( t h i s . value , t h i s . next 6= null ?

t h i s . next . getAList ( ) : [ ]
) ) > 0 ;

} ;

Figure 2.14: The predicate where the inductive-switch has been removed

the values of ‘aX’ and ‘aNext’ to the corresponding expressions, as we can structurally
match the cons-pattern to the expression we do the switch on (figure 2.14).

Furthermore, we know that this !=null is generally true. After analyzing the first such
inequality, we also add it to the assumption set; hence, for the second and third occur-
rence we could actually assume it even if it were not an expression that trivially holds,
as shown in figure 2.15.
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predicate l i n k e d L i s t ( )
re turn acc ( t h i s . va lue )

&∗& acc ( t h i s . next )
&∗& t h i s . next . l i n k e d L i s t
&∗& t h i s . next . getAList ( ) = t h i s . next . getAList ( )
&∗& t h i s . va lue = t h i s . va lue
&∗& length ( cons ( t h i s . value , t h i s . next . getAList ( ) ) ) > 0 ;

} ;

Figure 2.15: The predicate after simplifying expressions of the form this !=null

Finally, we know that the two remaining equalities trivially hold since they have a struc-
turally equivalent right-hand and left-hand side. Now we have our simplified predicate
that can easily be translated to Chalice:

predicate l i n k e d L i s t ( )
re turn acc ( t h i s . va lue )

&∗& acc ( t h i s . next )
&∗& t h i s . next . l i n k e d L i s t
&∗& length ( cons ( t h i s . value , t h i s . next . getAList ( ) ) ) > 0 ;

} ;

Figure 2.16: The translated predicate

Note that the part about the length was not removed during the simplification as that
part is not included in the extracted getter. Strictly speaking that part is also redundant;
however, it was in the original predicate as well and our analyzer does not know about
the semantics of ‘length’.

In summary, the approach of using the constant folding to remove the introduced redun-
dancy works well, because the control structure (conditional expressions, switches) of
the extracted getter corresponds to the one from the predicate. Hence, using the branch
conditions from the predicate body, the according part from the getter definition can be
picked which leads to trivial equations.

2.2.10 Possible extensions

While we have implemented all fundamental methodologies to handle predicates we could
think of, especially the analyzer and equation solver could still be improved in various
ways.
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First, the transitivity of equality is currently not taken into account when trying to prove
facts. Some care would need to be applied, in order to prevent infinite recursion. So far,
this never turned out to be a problem; however, one can construct artificial examples
where this would start to play a role.

Second, one could consider to integrate range analysis for integers. Enhancing value
facts to include information about ranges would generalize the reasoning, and especially
allow reasoning about inequalities which play a role for lengths and sizes of for instance
lists and sets.
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2.3 Static and global context

In order for our tool to be of practical use, it must be able to deal with a wide variety
of VeriFast programs. Static fields and methods are of those parts which are frequently
used in Java and thus VeriFast; however, do not have a direct equivalent in Chalice.

In the following section we will explore how, and to what extent, we have dealt with
static methods, fields, lemma-methods, predicates, and fixpoint-functions.

2.3.1 Handling static predicates

The basic idea is to select one of the reference parameters and make it the new receiver;
hence, move the predicate to the corresponding class.

In order for this to work, the predicate must have at least one reference parameter of a
user defined class which meets the requirement that the body of the predicate ensures
that parameter to be non null. Then we can rely on having an object of the corresponding
class at every caller of the predicate. For knowing whether a parameter is guaranteed
to be non-null, we once again rely on our predicate analyzer from section 2.2.6.

In some cases, however, we can also select a parameter which might be null. The idea is
then to simply not hold / require the predicate in those cases. Requiring p.pred becomes
p 6= null⇒ p.pred. That case applies if the following points are fulfilled:

• Whenever the chosen parameter is null, the predicate must not hold any permis-
sions. Hence, we do not lose any permissions by simply not holding the predi-
cate. In addition, not holding the predicate implies that the predicate cannot be
unfolded; therefore, the unfolding must be skipped. If a predicate which holds
permission were skipped, we would lack those permissions after skipping the un-
folding.

• Whenever the chosen parameter is null, there must be a functional dependency
for all other parameters; thus, all others parameters p2, ..., pn must take known
constant values c2, ..., cn whenever the predicate is closed with p1 being null.

We can then simply extract those constant values to the call-site and write instead
of p(v1, v2, ..., vn) an equivalent assertion

p 6= n u l l ?
v1.p(v2, ..., vn) :
c2 = v2 && . . . && cn = vn

Note that a limitation in the current implementation of the tool is that it will not
retry with another parameter when this point is not fulfilled; the translation will
fail in that case. However if needed, this restriction could easily be lifted with
some refactoring.
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Again, checking all of those conditions and extracting the constant values is the duty of
the predicate-analyzer.

This “not-holding the predicate” trick is correct since a predicate can only talk about
the heap and its parameters. Whenever the predicate does not have any permissions to
the heap, therefore, all of its information deals with what valid values for parameters are.
Then, since those are also known constants that equality is equivalent to the predicate
body.

While those requirements for applying the “not-holding” trick might sound quite re-
strictive, it turned out that it is still general enough to handle some practical cases. For
instance, reconsider our linked-list example shown in figure 2.17: the next field being
null encodes the end of the list, and therefore closing on the null-list forms the base case
of the recursive predicate.

( stat ic ) p r e d i c a t e l i n k e d L i s t ( L inkedLis t j L i s t , l i s t <int> aL i s t )
r e q u i r e s switch ( aL i s t ) {

case n i l : return j L i s t==null ;
case cons (aX , aNext ) : return j L i s t !=null

[ . . . ]
} ;

Figure 2.17: Our static linked-list predicate: our “not-holding” trick applies

If we now look at that predicate by hand, it becomes obvious that the predicate does
not hold any permissions whenever jList is null and, in addition, aList is also uniquely
identified to being nil in that case; hence, our trick applies. We have seen also other
examples of predicates where this trick is able to deal with the base-case of a recursive
predicate definition (e.g. Stack.java) and, hence, believe that it should be general enough
to handle most of such cases.

2.3.2 Static (lemma) methods

The overall approach is to convert a static method to an equivalent non-static one
by picking one of the parameters to be the new receiver. Obviously, this requires a
reference parameter which must be non-null at all call-sites; otherwise we would try to
call a method on null. In practice, this approach turned out to work quite well; many
methods expect their parameters to be non-null, and for most of the remaining static
methods we do have some fall-back techniques that we will describe later.

In the implementation, we use our assertion-analyzer infrastructure from section 2.2.6 to
try to prove that the precondition implies one of the reference parameters to be non-
null. If multiple parameters satisfy that condition, always the first one is picked. That
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void swap ( Counter c2 )
//@ r e q u i r e s t h i s . v a l u e |−> ?v1 &∗& c2 . v a l u e |−> ?v2 ;
//@ ensures t h i s . v a l u e |−> v2 &∗& c2 . v a l u e |−> v1 ;

{
int tmp = t h i s . va lue ;
t h i s . va lue = c2 . va lue ;
c2 . va lue = tmp ;

}

Figure 2.19: The translated method of the one in figure 2.18

parameter then gets removed from the list of formal-parameter declarations, all its usages
inside the method replaced by ‘this’, and the method gets moved to the corresponding
class.

stat ic void swap ( Counter c1 , Counter c2 )
//@ r e q u i r e s c1 . v a l u e |−> ?v1 &∗& c2 . v a l u e |−> ?v2 ;
//@ ensures c1 . v a l u e |−> v2 &∗& c2 . v a l u e |−> v1 ;

{
int tmp = c1 . va lue ;
c1 . va lue = c2 . va lue ;
c2 . va lue = tmp ;

}

Figure 2.18: the ‘swap’ method from VeriFast’s ‘Counter’ example

As an example, consider the static ‘swap’ from figure 2.18. This static method contains
two reference parameters, both of type ‘Counter’. Note that the assertion of the form
c.value 7→?v in the precondition implies c to be non-null. Hence, both c1 and c2 are
known to be non-null at every invocation. As a consequence, we can pick c1 to be the
receiver of the generated instance method and turn the method into the one shown in
figure 2.19 inside the ‘Counter’ class.

While the technical implementation works in many cases, moving a method to another
class might be problematic from the point of view of information hiding; the static
method might have been an implementation detail of a certain class which now has been
moved to another class. Since Chalice does currently not support any form of visibility
modifiers, however, that does not cause any problems in the verification. If Chalice did
support such a feature in a future version, of course, all such transformed static methods
could still be marked as public during the translation. However, there seems to be no
way of preserving the desired information hiding when moving a method to a completely
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different class; if this would be desired, another approach for handling the static methods
would need to be taken.

More interesting from our point of view is the question: for which kinds of methods
is this rewriting even applicable? Thus, how many methods cannot be handled this
way? In practice it turned out that for some methods, none of the parameters can be
guaranteed to be non-null; however the method does a null-check inside the body. This
was especially common with lemma-methods belonging to potentially-null predicates, as
discussed in the section about dealing with static predicates before, also refereed as the
“not-holding” trick. Therefore, we would like to apply a similar trick: not calling the
method whenever the new receiver is null.

The “not-holding” trick for predicates, where the predicates is not held in situations
when the new receiver of the generated instance predicate would be null, often applies
for base cases such as the empty list segment. Our similar trick for lemma methods is
now motivated by the fact that lemma methods are often closely related to the predicate
instances, since lemma methods are intended to transform the abstract state of the
program (abstracted by the predicate). In some cases the static lemma methods even
takes the “same” parameter as the one from the predicate that could not derived to be
non-null; hence, there is little chance for this parameter to be now guaranteed to be
non-null in case of the lemma method. However, since such cases tend to represent e.g.
base-cases, not only does the predicate not assert anything non-trivial (and can be left
out), but also the lemma method tends to either do nothing or return a constant. This
becomes more evident, when considering that in case the lemma method requires the
predicate in the precondition, the unfolding of the predicate will be guarded with a null-
check inside the lemma-method, as there exists no predicate instance otherwise. In short,
such newly introduced null-checks often give raise to a situation were the lemma-method
body becomes empty in case of the parameter being null.

As an example of such a “not-calling” situation, consider the lemma-method of a seg-
mented linked-list from figure 2.20, which converts the segmented predicate to the non-
segmented equivalent.

• Assume that for the segmented-list predicate, and the non-segmented version as
well, the potentially-null trick applies for the first parameter. Whenever the first
parameter is null, in which case the predicate denoted the empty-list segment
represented by linkedListSeg(null, null, nil), the predicate will not be held in the
corresponding translated Chalice code.

• Hence, we cannot simply expect ‘jList’ to be derivable to be non-null from the
predicate mentioned in the precondition. However, whenever ‘jList’ is null then we
know, from back when we applied the not-holding trick, that ‘aList’ is empty.

• In addition, due to applying the potentially-null trick on the predicate, the open-
and close statements on the first respectively last line get guarded by a null-check
on ‘jList’.
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• Furthermore, one can also easily see, that ‘aList’ being nil leads the switch to be
an empty statement.

• As a consequence, the whole method basically becomes a no-op whenever ‘jList’ is
null and we might apply our ‘not-calling’ trick.

lemma void seg2Tot ( L inkedLis t j L i s t )
r e q u i r e s l i n k e d L i s t S e g ( j L i s t , null , ? aL i s t ) ;
ensure s l i n k e d L i s t ( j L i s t , aL i s t ) ;

{
open l i n k e d L i s t S e g ( j L i s t , null , aL i s t ) ;

switch ( aL i s t ){
case n i l :

case cons (x , aR ) :
i f (aR != n i l ) {

seg2Tot ( j L i s t . next ) ;
}
else {

c l o s e l i n k e d L i s t (null , n i l ) ;
}

}

c l o s e l i n k e d L i s t ( j L i s t , aL i s t ) ;
}

Figure 2.20: A static lemma from the segmented linked-list example

In order to automatically deduce that a method does not perform any operation, we
have implemented a dead code elimination described in section 2.4.2. Whenever our
dead code elimination can eliminate the whole body of a method under the assumption
that a parameter is null, we known that we can apply the “not-calling” trick. A draw-
back is that, however, we then no longer get the postcondition of that method. Even
though the postcondition of a method with empty body should follow directly from the
precondition, it might guide the verifier; hence, the verifier might not try to derive that
property automatically. One possible solution might be to assert, or even assume, the
postcondition whenever a call is skipped due to a null-receiver.

In addition, the same trick also applies for methods which return a constant expression
in case of a null receiver. While we have not met an example benefitting from this,
it seems like a natural extension. Also, it should cover most cases of legacy code that
does null checking inside the method rather than requiring it in the precondition. For
instance, the following two methods can both be handled this way:
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int f oo (A a , int x ) {
i f ( a != null ) {

int tmp = a . x ;
a . x = x ;
return tmp ;

}

return −1;
}

class B {
int v ;
boolean compare (B other ) {

i f ( other == null ) {
return fa l se ;

}

return v == other . v ;
}

}

Figure 2.21: Examples of static methods that can be handled by the “not-calling” trick

Fallback: inlining One important category of static methods usually cannot be handled
in the way discribed above: factory methods. Factory methods tend to return a reference
instead of taking them as parameters and might not take any parameters at all. On the
other hand, factory methods are rarely recursive. Their non-recursive nature makes them
suitable for inlining, which is performed by our tool as a fallback strategy. Obviously,
our tool has to check for the recursiveness and the translation will fail whenever the
static method can neither be turned into a non-static one, nor inlining is applicable.
Some care has also to be taken not to create naming collisions with existing variable
and parameter names at the call-site; this is achieved by renaming all parameters and
local variables of the inlined method and putting them into a separate block to limit the
scope of the local variables. In addition, both the pre- and the postcondition get turned
into assertions.

Nevertheless, information hiding and encapsulation are violated by this transformation;
however as Chalice does not have any access modifiers, this is currently more of a ideo-
logical objection rather than a technical limitation; although, Chalice might implement
information hiding in the future.

As an example of a static method were we need our fallback, consider the factory method
of figure 2.22 from VeriFast’s ‘AmortizedQueue’ example. In figure 2.23, the translated
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code of a call-site of this method is shown were inlining has been applied.

public stat ic LinkedLis t New( )
//@ r e q u i r e s t r u e ;
//@ ensures r e s u l t != n u l l &∗& l i n k e d l i s t ( r e s u l t , n i l ) ;

{
LinkedLis t l = new LinkedLis t ( ) ;
//@ c l o s e l i n k e d l i s t ( l , n i l ) ;
return l ;

}

Figure 2.22: A static (factory) method without parameter

Notice how the result variable was renamed to tmp 24, and l to tmp 25, to avoid naming
conflicts. Furthermore, the whole implementation was put into its own scope (curly
brackets) to prevent the local variables from escaping. Also you can see how the contracts
have been turned into assertions. In the last line, the result of the method invocation is
used, which became a simple access of the temporary variable.

[ . . . ]
var tmp 24: L inkedLis t ;
{

// the p r e c o n d i t i o n g e t s a s s e r t e d
assert true ;
{

// the a c t u a l i n l i n e d body
var tmp 25: L inkedLis t := new LinkedLis t ;
ca l l tmp 25 . i n i t ( ) ;
fold acc ( tmp 25 . l i n k e d l i s t , 1 0 0 ) ;
tmp 24 := tmp 25 ;

}

// the p o s t c o n d i t i o n s g e t s a s s e r t e d
assert tmp 24 6= null &&

acc ( tmp 24 . l i n k e d l i s t , 100) &&
tmp 24 . getVs ( ) = [ ] ;

}
// l a t e r . . .
[ var e : L inkedLis t := tmp 24 ; ]

Figure 2.23: Call-site where the method from figure 2.22 got inlined
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Other possible approaches We have considered some other approaches to the handling
of static methods as well:

• Firstly, simply declare the method as non-static and require the call-site to create a
new instance of the class containing the method at every invocation. This approach
would relieve us from having to pick one of the parameters as the receiver is always
an additional, known to be non-null, instance. However, it would demand all of
our classes with static methods to provide a parameter-less constructor; hence, we
could no longer enforce any invariants on instances of those classes.

• As a second alternative one could think of a global ‘static-context’ class, which
hoists all static methods of the whole program. While such a class would obviously
not need any non-trivial constructors or invariants, it would impose some other
problems such as naming-conflicts and break modularity.

• Last, the probably most practical solution would maybe be to have some kind of
Scala-like companion class for every class containing static methods. We would
then always be able to create such a helper object, but also remain modular.
In retrospect, we would probably try to implement that approach, since it looks
much simpler than the current implementation. Owing to the fact that our current
implementation was so far able to deal with all static methods we have dealt so
far, we did not have an incentive to replace the current implementation.

2.3.3 Static fields

The current implementation of the tool cannot handle any VeriFast program containing
static fields. Therefore, the translation of such a program will fail. Fortunately, very
few of the existing VeriFast samples use static fields.

Static fields can be viewed as a form of global state; they are available at every point of
the program. Without having support for any similar feature in Chalice, the emulation
of static fields would imply to having to pass some object around the whole program
to every single method and function. That object could then be used to represent the
global context. However, this still doesn’t address the question of how the permissions
to this special object should be handled, especially in a concurrent setting where we
could not simply pass around write-access along with the special global object to every
method.

We have discussed during the project whether static fields could be emulated by having
a second class for every class in the original VeriFast program that basically mocks
the class-objects of Java. However, the question of how one could make those classes
singletons or at least being able to get hold of a specific instance remained unanswered.

A more feasible approach for future extension might be to only try to cope with static
fields that represent compile time constants. Those could easily be propagated to the
call-sites and would cover most of the existing VeriFast examples using static fields.
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In the long term, however, extending Chalice to have something like static fields or
singletons will possibly be the approach to pursue.

2.3.4 Static fixpoint functions

In VeriFast, fixpoint functions are quite often declared in the global scope; thus, are
implicitly static.

Whereas lemma methods can be handled the same way as regular methods, we had to
come up with a different treatment for static fixpoint functions. In contrast to lemma-
methods they do often not operate on reference types (the actual object), but rather on
the abstract data-types. As a consequence they usually don’t have reference parameters
which could become the new receiver. One could then think of trying to introduce a fake
receiver, hence just declaring them non-static in an arbitrary class. However, fixpoint
functions are most often used in contracts where one cannot simply create a new object.
In addition, inlining defeats the whole purpose of abstracting the contract specification
and the static functions are very often recursive which prevents inlining altogether.

Hence, it became obvious that a different approach has to be taken for supporting static
fixpoint functions. In the following we will present what approach was first taken, why
that approach failed, and how we now support static functions.

First approach In the first approach we nevertheless stuck to the idea of having a fake
receiver, since every function in Chalice needs a receiver.

Since we cannot hope for having a reference parameter and a new receiver cannot be
created for every use, we have chosen to use ‘this’ as the fake receiver, as shown in
figure 2.24. Owing to not having a static context in Chalice, ‘this’ is always a valid
reference parameter. This, however, implies that the function definition needs to be
copied to every class where that function is called. Hence, there is the potential problem
of having multiple technically equivalent functions but Chalice treating them as different
ones. This will let the verification fail whenever a contract is specified in terms of such
a function, but Chalice only knows that the property holds for the actually equivalent
function.
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stat ic f i x p o i n t int f oo ( ) { [ . . . ] }
class A {

int bar ( )
//@ ensures r e s u l t == foo ( ) ;

{ [ . . . ] }
}

↪→

class A {
function f oo ( ) : int { [ . . . ] }
method bar ( ) returns ( r e s : int )

ensures r e s = t h i s . foo ( ) ;
{ [ . . . ] }

}

Figure 2.24: A static function with a usage, and its translated version

Limitation of that approach Whereas that approach was able to translate any of
VeriFast’s fixpoint-functions, it hindered the verification of the program, not only due
to the issue of duplicated definitions, but also due to the fake receiver itself.

Once again, consider the example of a non-empty linked-list. Especially, we focus on the
recursive implementation of a ‘contains’-method and its abstract counterpart ‘aContains’
shown in figure 2.25. The problem is the recursive call: we get an assertion of the form

next . aContains (old ( next . getAList ( ) ) , x )

from the postcondition. However, the postcondition of the current call requires the
assertion with this as a fake receiver. Since those receivers are “dummy”, and thus,
the value of the function doesn’t depend on them, this equivalence would actually hold.
However, Chalice would need to prove the following equivalence:

next . aContains (old ( next . getAList ( ) ) , x ) =
t h i s . aContains (old ( next . getAList ( ) ) , x )

In order to avoid this problematic situation and prove that the value of the abstract
function does not depend on the choice of the receiver of a recursive function, Chalice
would need to do an inductive proof, which it obviously does not attempt. This is
understandable, as for general functions there is no reason to include parameters they
do not depend on.

Second attempt As a consequence it became clear that Chalice needs some basic
support for static functions as well. That especially made sense because there are plans

50



Verifying Separation Logic in Chalice Daniel Jost

to extend Chalice with inductive datatypes, which would require some form of static
functions anyway.

However, after some evaluation we decided to make a minimal implementation that still
relies on a fake receiver, and leave the addition of real static functions for future work.
Our current implementation supports static functions of the following form:

• The ‘static’ keyword can be added to functions

• Those functions are not allowed to access the non-static context (hence mention
‘this’). The only exception is for another fake receiver as in described in the next
point.

• However, they still get called on a fake receiver of the type they are declared in.

This allows for a very simple implementation: in the translation from Chalice to Boogie,
the receiver of a function is just transformed to a parameter of the Boogie-function,
which now gets dropped for static functions. Minimal changes had to be made to the
parser and the AST, which basically just required the keyword to be parsed and stored.
In the typechecker, an additional check that a static function does not implicitly or
explicitly access ‘this’ had to be added.

Support for real static functions would have required much deeper modifications to the
parser and especially the resolution since they currently do not expect an expression of
the form ‘A.f’ where A is a class name. While in theory doable, those changes proved
to be difficult, as the parser and resolution are quite entangled.

The current implementation proved to be good enough to let most of our programs verify.
However, the drawback of duplicated functions still exists, and caused the verification
to fail in one of our examples.
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method conta in s ( x: int ) returns ( r e s : bool )
requires acc ( t h i s . l i n k e d L i s t , 1 0 0 ) ;
ensures acc ( t h i s . l i n k e d L i s t , 100) &&

t h i s . getAList ( ) = old ( t h i s . getAList ( ) ) &&
r e s = t h i s . aContains (old ( t h i s . getAList ( ) ) , x ) ;

{
unfold acc ( t h i s . l i n k e d L i s t , 1 0 0 ) ;

// does the f i r s t e lement match?
i f ( va lue = x ) {
fold acc ( t h i s . l i n k e d L i s t , 1 0 0 ) ;
r e s := true ;
} else {

// does the l i s t have more e lements ?
i f ( next = null ) {

fold acc ( t h i s . l i n k e d L i s t , 1 0 0 ) ;
r e s := fa l se ;

} else {
ca l l r e s n e x t := next . conta in s ( x ) ;
fold acc ( t h i s . l i n k e d L i s t , 1 0 0 ) ;
r e s := r e s n e x t ;

}
}

}

function aContains ( l : seq<int>, x: int ) : bool
{

( | l | = 0 ?
fa l se :
( l [ 0 ] = x ?

true :
( l [ 1 . . ] = [ ] ? fa l se : t h i s . aContains ( l [ 1 . . ] , x ) )

)
)

}

Figure 2.25: Example of a case were the dummy receiver prevents the verification
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2.4 Control Flow

There are several language differences between Java (as used by VeriFast) and Chalice
we have to overcome in the translation. One of them is the lack of early exits with
return-statements; in Chalice there exists a return variable which can be assigned to,
but the control flow always leaves a method regularly by executing its statements to the
end.

Nevertheless, we want to translate return-statements with assignments to the result
variable; thus, we need to overcome the problem of early returns. Therefore, we need
to modify the body of the method when replacing return-statements with assignments
to the result-variable. This is done by introducing additional if-statements that guard
on a additional local variable which encodes whether the method would (in the presence
of real return-statements) already have exited or not. In short, that variable encodes
whether an assignment to the return variable has already happened and whenever it is
set, no more code of the method should be executed, to match the early-return semantics
of Java.

In addition, we want the resulting Chalice code to be as readable as possible, and in
some cases that guard-variable is redundant. Therefore, some optimisations such as dead
code elimination have been introduced.

2.4.1 Basic methodology

As we have already briefly explained, we replace every return-statement with an assign-
ment to the result variable and then only conditionally execute the remaining parts of
the method. Conditionally executing the remaining parts is obviously important when-
ever the return is inside a branch and not at the end of the method, which is often
the case. For instance, consider the following example of a Java method with an early
return, and the corresponding Chalice version.

public boolean f oo ( int a )
{

i f ( a == 0) {
return fa l se ;

}

bar ( ) ;
return true ;

}

Figure 2.26: A Java method with an early return
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method f oo ( a: int ) returns ( r e s : boolean )
{

var i s R e s u l t S e t : boolean := fa l se ;
i f ( a = 0) {

r e s := fa l se ;
i s R e s u l t S e t := true ;

}

i f ( ! i s R e s u l t S e t ) {
ca l l bar ( ) ;
r e s := true ;
i s R e s u l t S e t := true ;

}
}

Figure 2.27: The translated Chalice code of Figure 2.26

Note in particular that the call to ‘bar’ might have side-effects and must not be executed
whenever the initial branch is taken. Note that the Chalice code of Figure 2.27 does
not directly correspond the one actually produced by our tool; in the next subsection
we will explain some techniques which have been applied to make the produced Chalice
code more readable.

Note that there is actually one caveat when making the execution of the rest of the
method conditional: VeriFast allows pure statements, such as predicate folding, directly
after a return statement that get treated as an epilogue, meaning that those statements
still get executed right after the return statement and before the method is left. In regular
Java, such code would be unreachable, which would also be reflected by introducing a
guard right after the assignment. Hence, guards are only introduced after the current
scope (e.g. the current if-statement, while-loop, block, or the whole method) has been
left.

One drawback is that this could cause our tool to make truly unreachable code (impure
statements after a return-statement) reachable again; however, VeriFast itself rejects
such programs.

Similarly to if-statements, we also need to handle returns in while-loops: the rest of the
loop body should no longer get executed, the loop condition should not be evaluated,
and no further iteration should be performed. Therefore, we extend the loop-condition
to include a test on the result-set variable first.

As discussed in Section 2.5, Chalice only allows pure expressions as loop conditions
and for instance not method calls. Hence, the loop condition might have to be “pulled
out” and evaluated before the loop and at the end of the loop-body. Therefore, we
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i f ( a = 0) {
r e s := fa l se ;
i s R e s u l t S e t := true ;
// note : we do not guard on ! i s R e s u l t S e t here
// the f o l l o w i n g code i s an e p i l o g u e and not unreachab le
c l o s e ( t h i s . v a l i d ) ;

}

// here we must now guard . . .
i f ( ! i s R e s u l t S e t ) {

. . .
}

Figure 2.28: Example of a method with an ‘epilogue’

have to make sure that our return-statement elimination here does not interfere with
that transformation of impure expressions, which is done in an earlier stage in the
translation.

On the one hand, that “pulling out” makes our life easier by ensuring that the new
loop-condition is pure and we do not have to worry about executing it too often; hence,
we can just add the guard to the loop condition as shown in Figure 2.29. On the other
hand, that “pulling out” has just placed the actual evaluation of the loop condition at
the end of the body. In the case of a loop that returns unconditionally, as shown in
Figure 2.29, this evaluation of the loop-condition (call to ‘c’) is, therefore, actually dead
code and should never be executed. We now have to ensure that we do not treat that
evaluation as an epilogue of the return-statement; otherwise, we would execute one more
time than desired.

Break-statements can be handled in a similar way and continue-statements are currently
unsupported by VeriFast. In addition, other loops get converted to while-loops in an
earlier stage; hence, our tool can handle all kinds of loops.
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// f i r s t e v a l u a t i o n o f the loop condi t ion , p u l l e d out
ca l l loopCnd: boolean := c ( )

// loop wi th a guarded c o n d i t i o n
while ( ! i sResSet && loopCnd ) {

[ . . . ]

// t h i s loop always r e t u r n s in the f i r s t i t e r a t i o n
r e s := fa l se ;
i sResSet := true ;

// not an e p i l o g u e o f the return−s ta tement
// but dead code in t roduced by our t r a n s l a t i o n
// Dead code e l i m i n a t i o n w i l l remove t h i s . . .
i f ( ! i sResSet ) {

// a c t u a l e v a l u a t i o n o f the loop c o n d i t i o n
ca l l loopCnd := c ( )

}
}

Figure 2.29: Correct handling of the evaluation of the loop-condition

2.4.2 Optimizations

We will now discuss some of the optimizations our tool performs in order to keep the
code concise and readable. First, reconsider the previous example from Figure 2.26. We
notice that the return-statement occurs in an if-branch without a corresponding else-
branch; therefore, instead of guarding on the result-set variable, we can simply put the
remaining code in the else-branch.

Second, we have implemented a generic dead code elimination procedure to deal with
redundancy and keep the generated code readable. While dead code elimination is
important to remove unnecessarily-introduced guarding variables and branches during
the rewriting of the return-statements, it is also used in numerous other places in our
tool. As we have stated previously, it is not only our goal to generate code that verifies
in Chalice but also code that is readable.

There are quite a few places in our tool where we introduce some additional variables
or branches, and often they are needed to handle the general cases but can be omitted
in the common cases, like methods that do not return early. Rather than optimizing
the generated code at every stage of the translation and trying to be clever when to
introduce local variables and branches, we just always emit them and then rely on having
the generic dead code elimination to remove the redundancy as a post-processing step.
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method f oo ( a: int ) returns ( r e s : boolean )
{

var i s R e s u l t S e t : boolean := fa l se ;
i f ( a = 0) {

r e s := fa l se ;
i s R e s u l t S e t := true ;

} else {
ca l l bar ( ) ;
r e s := true ;
i s R e s u l t S e t := true ;

}
}

Figure 2.30: Simplified version of Figure 2.27

This is useful because it allows many parts of the translation to be greatly simplified,
and to postpone the caring about readability to one place.

Note that this approach can alter not only the code introduced by our tool but also
code from the original VeriFast program; however, since our dead code elimination is
conservative and does not perform any unsound modifications this should never affect
correctness. Also, the original code gets modified quite strongly during the translation
anyway, and finally, the original code usually does not contain lots of dead code or
redundancy.

Our dead code elimination procedure is based on single static assignment (SSA) and
performs the following tasks:

• Forward propagation of constants. This is for instance important when dealing
with our ‘isResSet’ variable which first gets initialized to false and then assigned
to true; those values can often be forward propagated.

• Constant folding of guard expressions of if-statements and loops. This is important
to determine whether the branch (respectively the loop body) is reachable or not.
Especially, when ‘isResSet’ has been constant propagated, the negation in the
guarding can be fold.

• Removal of unreachable branches, where the branch-condition got either folded to
‘true’ or ‘false’. In this case, the unreachable branch can be completely removed,
and also, if-statements which do not have an else-branch and the condition is known
to evaluate to false, can be completely removed. Conversely, if the condition got
folded to true, the if statement is superfluous and the body can be pulled out.
Notice, how the first three points play together in order to eliminate those simple
guards on the isResSet guard.
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• Removal of local variable writes if the assigned value is never read. Especially,
when the written value is a constant it might have been propagated and then
the write itself is redundant. Note in particular, that writes to fields are never
optimized in any way, to stay conservative.

• Removal of unused local variable declarations. Most of them result from the other
optimizations where the reads got replaced by constants and all the writes were
removed.

Our dead code elimination procedure currently does not handle some cases which could
easily be identified by hand:

• It does not take branch conditions into account when constant folding the guards of
nested if-statements. Therefore, the inner branch of the following example cannot
be deduced to be unreachable:

method bar ( a: int ) returns ( r e s : boolean )
{

i f ( a = 0) {
i f ( a 6= 0) {

// unreachab le
[ . . . ]

}
}

}

Figure 2.31: Example of the limitations of the dead code elimination

For the current use-cases this particular optimization never turned out to be crucial
and some care would have to be taken to use correctly use the SSA form when
there are writes to ‘a’ inside the outer if-statement. Especially, the constant folding
is done by our expression-analyzer described in section 2.2.6, which currently does
not understand the SSA annotations.

• The dead code elimination so far does not track any initialization properties; par-
ticularly, newly created objects are not known to be non-null. This can lead to
some redundant null-checks right after creating a new object.

In our original example of Figure 2.26, the first optimization removes the guarding on the
result-set variable (Figure 2.30). The dead code elimination can then remove the writes
to, and also the declaration of, the result-set variable. Finally, our example becomes
much more concise and therefore easier to read:
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method f oo ( a: int ) returns ( r e s : boolean )
{

i f ( a = 0) {
r e s := fa l se ;

}
else {

ca l l bar ( ) ;
r e s := true ;

}
}

Figure 2.32: The actual translated Chalice code of Figure 2.26

59



Verifying Separation Logic in Chalice Daniel Jost

2.5 Impure Expressions

When bridging the gap between the language features of Java and Chalice, expressions
with side-effects play a big role. On one side, there is Java, which supports a wide variety
of expressions including side-effects, such as assignments, method calls, object creation,
and increment operations. On the other hand, there is Chalice where all expressions
are pure. Therefore, during the translations all side-effects have to be removed from
expressions.

On a high level, our technique is to “pull” the side-effects out from expressions and
put the part of the evaluation which has side-effects as separate statements before the
expressions. This gives rise to the following two questions: How does the extraction
work, and where exactly do we place the additional statements?

When extracting side-effects we can basically distinguish three kinds of expressions:

1. Those which have inherent side effects

2. Those which affect the evaluation of sub-expressions and, therefore, the side-effects
of them.

3. Those which just propagate side effects from the sub-expressions

The first kind includes the following types of expressions: assignment, object creation,
method invocation, and prefix/postfix increment/decrement. The extraction is mostly
straightforward:

Assignment The whole assignment gets placed before the actual expression. The as-
signed variable can be then used to obtain the value in the expression.

foo ( x = 3 ) ;

↪→

x := 3 ;
foo ( x ) ;

Figure 2.33: A method-call where the passed argument contains an assignment (on top).
On bottom: the assignment was extracted to its own statement in the
translated version.

Object creation (constructor invocation) An additional variable is introduced and gets
assigned a new object. That variable can be used in lieu of the new-statement in
the expression.
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Method invocation Similar to object creation, an additional variable is used to store
the result of the invocation. In addition, we must obey the evaluation order of
the receiver and the arguments, which themselves have to be evaluated before the
method invocation itself.

Prefix increment / decrement Prefix operators can be treated like assignments. The
new value is then used.

Postfix increment / decrement The old value has to be saved to an additional variable
before incrementing, as shown in figure 2.34

y = x++;

↪→

var tmp := x ;
x := x + 1:
y := tmp ;

Figure 2.34: The handling of a postfix increment

The second kind of expression includes the conditional-expressions, as well as the short-
cut and- and or-operator.

Conditional expression The extracted side-effects of the then- and else-branch have to
be put into an equivalent if-statement to prevent the evaluation of both branches.

z = ( x == y ) ? foo ( ) : 0 ;

↪→

var tmp: int ;
i f ( x = y ) {

ca l l tmp := foo ( ) ;
}
// The e l s e−branch does not conta in s ide−e f f e c t s
// Hence , we do not need to e v a l u a t e i t be forehand
z := ( x = y ) ? tmp : 0 ;

Figure 2.35: Evaluation of the branches of a conditional-expression

&&-operator The right hand side should only be evaluated whenever the left hand side
did evaluate to ‘true’. Hence, the extracted side-effects need to be wrapped into
an if-statement guarding on the left hand side, as shown in Figure 2.36
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y = ( x == 3) && foo ( ) ;

↪→

var tmp: bool ;
i f ( x = 3) {

// only e v a l u a t e ( c a l l foo ) i f the LHS i s t r u e
ca l l tmp := foo ( ) ;

}
y := ( x = 3) && tmp ;

Figure 2.36: Evaluation of an &&-expression

||-operator Similar to the and-operator, an if-statement needs to be introduced.

Finally, there are expressions which neither directly have side-effects nor alter the way
subexpressions get evaluated. Nevertheless, care has to be taken to get the evaluation
order right. Consider the following example of the binary expression x + (x = 3): one
might think that we can just pull the side-effects of the left- and right-hand-side out
and place them one after another. However, x by itself does not have any side-effects,
yet we need to evaluate it before executing the assignment x = 3. Therefore, we need
to take a snapshot of x before updating it; hence, we actually need to evaluate both
sub-expressions beforehand (of the evaluation of the plus) to preserve evaluation order,
as shown in Figure 2.37.

y = x + ( x = 3 ) ;

↪→

var o ld x := x ; // snapshot o f LHS
x := 3 ; // e v a l u a t i o n o f RHS
y := o ld x + x ; // usage o f the e x p r e s s i o n

Figure 2.37: Example of taking a snapshot for binary-expressions

Applying that approach in general, every subexpression needs to get evaluated in its
own statement in the right order, before the actual expression can be evaluated. This
might introduce a lot of unnecessary variables when the subexpressions do not affect
each other as for instance in y+x where both variables technically need to be evaluated
outside. Hence, some adhoc optimizations have been performed in our tool to prevent
us from introducing too many unneeded temporary variables.

The second question which remains to be answered, is where to put the extracted eval-
uation. Since we only have to deal with expressions from the Java code and not the
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VeriFast annotations, which are pure anyway, we can rely on having every expression
embedded in some statement. In addition, statements almost always occur within a
block, and otherwise, the statement can be replaced with a block containing just that
statement. Hence, when an expression e is embedded in a statement s, we put the
extracted evaluation right before s in the same block.

One important exception is the placement of the loop-condition of while-loops. Not only
must the evaluation happen before the first iteration, but also before every consecutive
iteration. Hence, we have to place the extracted evaluation both before the while-loop
and at the end of the loop body:

[ eva lua t i on o f e ]
while ( e ) {

// loop body
// . . .
[ e va lua t i on o f e ]

}

Figure 2.38: Evaluation of a loop-condition with side-effects

2.6 Constructors

In contrast to Java, Chalice does not have constructors. Whenever you create a new
object in Chalice, you just get full permissions on all fields of the new object. Further-
more, the fields of a freshly created object are uninitialized. When translating the Java
code we, therefore, have to do the initialization done by the constructor manually.

Our translation generates an ‘init’-method for every constructor, or one for the default
constructor. We then just call the initialization-method right after creating a new object,
which can be done since object creation is a statement and not an expression in Chalice
anyway (the issue of using ‘new’ as an expressions in VeriFast has already been handled
in section 2.5). For instance, consider the following constructor of a class:
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public int x ;
public int y = 1 ;

public LinkedLis t ( int aX)
//@ r e q u i r e s aX >= 0 ;
//@ ensures x == aX &∗& y == 1 ;
{

this . x = aX ;
}

Figure 2.39: Example of a constructor in VeriFast

and the corresponding initialization method in Chalice:

var x: int ;
var y: int ;

method i n i t (aX: int )
requires acc ( t h i s .∗ , 100) && aX ≥ 0 ;
ensures x = aX && y = 1 ;

{
t h i s . x = 0 ;
t h i s . y = 1 ;
t h i s . x = aX ;

}

Figure 2.40: Translated constructor of figure 2.39

That initialization method requires access to all fields in the precondition (expressed by
acc(this.∗, 100) ), additionally to the original precondition of the constructor. The body
first initializes all fields with either the default (as for variable x) of the corresponding
type or the value which was given at the field declaration (as for y); then, the body of the
constructor follows. Finally, as a postcondition we just use the one of the constructor.

2.7 Lemma Methods

Currently we treat lemma-methods exactly like regular methods and translate them to
regular Chalice methods, owing to the fact that no closer counterpart exists. However,
this has two pitfalls:
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Conceptional: The purpose of lemma-methods is to modify the abstract state; they are
not meant to be executable. This distinction is completely lost in the current
translation.

Practical: The control-flow of lemma-methods can depend on ghost-variables. If we
directly translate such code, Chalice surprisingly still accepts it, although the ex-
ecution of a (real) method should obviously not depend on the ghost state. There
is also a translation from Chalice to C#, and we expect this translation either to
fail or produce incorrect code in such a case.

2.8 Abstract Data Types and Inductive Switches

For both abstract data types (ADT) and inductive switches, we have only very limited
support. This is on the one hand owing to the fact that they are not that frequent in our
VeriFast samples and on the other hand that have no matching counterpart in Chalice
and are also not easily emulatable.

The only ADT that is supported is the built-in ‘list’ of VeriFast. This is the only built-in
ADT of VeriFast and by far the most common one that is used. In addition, it is the
only one that has some sort of built-in equivalent in Chalice: the sequence type ‘seq’.

There is no proper way to emulate other, user-defined, ADTs since the basic intention of
them is to abstract over actual classes and data types. Hence, emulating them by using
regular classes would simply defeat the purpose of that abstraction. In addition, ADTs
can be freely mentioned inside specifications without having to have access permission,
since they are immutable, and one does not need to construct them explicitly. If one were
to try to replace them with regular classes, the objects would need to be constructed
outside of the specification and either be passed to the method or be returned by the
method; also, access permissions would need to be carried around. In short, one would
probably need to extend Chalice at some point to support ADTs as well; however, this
turned out to be outside the scope of this project.

As we have already mentioned, the ‘list’ ADT of VeriFast can be more or less directly
be translated to the ‘seq’ type of Chalice. Construction of a list then becomes [ ] for
nil and [x] ++ [tail] for cons(x, tail). Reversely extraction of variables of ‘cons’ can
be translated to l[0] for cons(?x, ) and l[1..] for cons( , ?t); both of the expressions
replacing their respective bound variables (x and t). Inductive switches on the ‘list’ can
be replaced with an if-else statement testing on the length of the list; the extraction for
the cases can then be handled as described before.
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f i x p o i n t l i s t <int> remove ( l i s t <int> l , int x ) {
switch ( l ) {

case cons (v , n ) : return x==v ?
n :
cons (v , remove (n , x ) ) ;

case n i l : return n i l ;
}

}

function remove ( l : seq<int>, x: int ) : seq<int> {
| l | > 0 ?

( x = l [ 0 ] ?
l [ 1 . . ] :
[ ( l [ 0 ] ) ] ++ remove ( l [ 1 . . ] , x )

) :
[ ]

}

Figure 2.41: Example of a function using the built-in ‘list’ ADT and the translated coun-
terpart

Other inductive switches are currently not supported and there is no real incentive as
they would work on the unsupported ADTs.

2.9 Subtyping

Subtyping is commonly considered as one of the core features of object oriented lan-
guages. Nevertheless, Chalice currently does not support any form of subtyping even
though it is an OOP-like language with classes. An ongoing Master’s Thesis [2] aims to
address this topic, but is not available at the time of writing this report.

Subtyping has many facets that we would need somehow to translate: on the Java
side there are features like interfaces, inheritance, dynamic dispatch, and casting; on the
specification side there exist features such as predicate-families in VeriFast to accompany
subtyping.

Our tool does not support any form of subtyping and, hence, the translation will fail for
all the examples making use of it. Of course, we could try to work around it and apply
some sort of clever tricks like we did for other features such as static methods. Some
possible ideas we discussed during the project were:
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• Remove interfaces that are only implemented by a single class and use that class
directly. This obviously comes at the cost of breaking both abstraction and ex-
tendibility since one assumes that all the possible implementations are known.
However, for the Java side, this would allow some of the examples to be trans-
lated.

• Expand interfaces to wrappers that hold the actual instance in a field and then
delegate all the invocations. This would allow the retention of some of the intended
abstraction and clearly be more general than the first approach.

However, this approach also relies on knowing all possible implementations, since
one will need one field per possible implementation and do case splitting for del-
egation. The key advantage would be that most of the idioms of subtyping like
dynamic dispatch and (explicit) casting would follow quite naturally from that
approach.
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interface Counter {
int get ( ) ;

//@ r e q u i r e s v a l i d (? v a l u e ) ;
//@ ensures v a l i d ( v a l u e ) &∗& r e s u l t == v a l u e ;

}

class C1 implements Counter { . . . }
class C2 implements Counter { . . . }

class Counter {
instC1 : C1
instC2 : C2

method get ( ) returns ( r e s : int )
requires v a l i d ;
ensures v a l i d && old ( getValue ( ) ) = getValue ( ) &&

r e s = getValue ( ) ;
{

i f ( instC1 6= null ) {
ca l l r e s := instC1 . get ( ) ;

}
else i f ( instC2 6= null ) {

ca l l r e s := instC2 . get ( ) ;
}

}
}

Figure 2.42: Excerpt from an interface-example of VeriFast (on top) and the proposed
translation with explicit case-splitting (on bottom)

• For direct subclasses one could either introduce an additional interface or try to
do the trick described above directly in the superclass. In any case, having dealt
with interfaces the other features such as inheritance would not cause any real
additional troubles.

So why did we not implement the second approach? First, it only describes how to deal
with the Java part; how to deal with predicate families (section 2.9) is even less clear.
Second, while subtyping is common, there are still many interesting examples which do
not require it in contrast, e.g., to predicates and static methods which are used all over
the place. Therefore, we did not try to deal with subtyping, and require the user to
manually apply such tricks on the original source code by hand. Finally, we hope that
eventually some form of subtyping will be implemented in Chalice itself; however, this
is clearly out of scope for our project.
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2.10 Loops

In Java, there exist three kinds of loops: while-loops, for-loops, and do-while-loops. On
the contrary, only while-loops are supported in Chalice. Yet, transforming a for-loop to
a while-loop is straight-forward: we just put the initialization before the loop and move
the update to the end of the loop body. However, one needs to ensure that the definition
scope loop variable does not escape the loop; otherwise, having two for-loops both using
i as the loop variable would cause a name collision. To our rescue, Chalice allows the
use of extra blocks to limit the scope of variables; therefore, we can put the transformed
for-loop into its own block.

for ( int i = 0 ; i < n ; i = i +1) {
[ body ]

}

↪→

{
int i = 0 ;
while ( i < n) {

[ body ]
i = i +1;

}
}

Figure 2.43: Example of a for-loop and its equivalent while-loop. Note the additional
brackets around the while-loop and the initialization to prevent i from es-
caping.

Similarly a do-while-statement can be translated to a while-statement by introducing an
additional boolean guard that encodes whether the first iteration has been completed,
like shown in figure 2.44. The short-cut semantics of the ||-operator prevent the original
condition cnd from being evaluated before the first iteration.

do { [ . . . ] } while ( cnd ) ;

↪→

{
var f i r s t := true ;
while ( f i r s t | | cnd ) { [ . . . ] ; f i r s t = fa l se ; } ;

}

Figure 2.44: The translation of a do-while loop
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2.11 Overloading

Translating from Java to Chalice includes the removal of any overloading, since Chalice
requires names to be unique in a given scope. This does not only affect methods, but also
fields, predicates, and functions which all have to have different names. However, Chalice
is just as expressive, even though it does not support overloading, since overloading is
just pure syntactic convenience and is completely resolved at compile time. Hence, we
can simply rename overloaded names: we add an unique number to every overloaded
member. Of course we also need to adapt all the callsites; however, since our resolution
completely binds them this becomes a trivial task.

void add ( int x ) { }
void add ( Counter x ) { }

↪→

method add 1 ( x: int ) { }
method add 2 ( x: Counter ) { }

Figure 2.45: Elimination of overloading by renaming the conflicting methods

2.12 Exceptions

There is some basic support for exceptions in VeriFast; notably, VeriFast supports a spe-
cial kind of postcondition for checked-exceptions1, which applies in the case the method
left by throwing an exception.

void throwsMyException (boolean thrw )
throws MyException /∗@ ensures thrw == t r u e ; @∗/
//@ r e q u i r e s t r u e ;
//@ ensures thrw == f a l s e ;

{
i f ( thrw ) {

throw new MyException ( ) ;
}

}

Figure 2.46: A VeriFast example with an exception-contract

1http://docs.oracle.com/javase/specs/jls/se7/html/jls-11.html#jls-11.2.3
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Chalice, currently, does not support any kind of exceptions or exceptional control-flow.
As a consequence our tool does not support exceptions, as emulating this non-structured
control-flow in a reasonable manner (producing readable code) seems almost impossible,
although theoretically possible. In addition, in the VeriFast examples only the ‘Excep-
tion’ test-case uses exceptions.

2.13 Permissions

In the assertion language, one of the challenging differences is that Chalice works with
percentages of permissions, whereas VeriFast uses real fractional permissions. While
every percentage can obviously be expressed as an fraction, the reverse is not true: even
simple fractions like 1

3 do not have a counterpart in Chalice.

When motivating our approach, one has to be aware that fractional permissions are
rarely used in the VeriFast examples; the only occurrences are in the various ‘spouse’-
examples which use the extremely simple fraction 1

2 . We, therefore, settled for a simple
approach and leave a more ambitious translation up to further improvement of the tool.
Such an extended transition could, for instance, take advantage of the fact that reals
have recently been added to Chalice, although, they are not used by default.

As a consequence, our tool only supports fractions which can be expressed as a percent-
age, otherwise the translation fails. We first support some basic arithmetic on fractions,
including addition, subtraction, multiplication, and division. Then, we multiply the
resulting fraction by 100 and try to cancel it in order to obtain an integer number. Fur-
thermore, that approach also prevents us from supporting fractions which are general
expressions, i.e. refer the variables, since there is no way to ensure 100 ∗ e is an integer
for a general expression e.

What we do support, on the other hand, are “unknown” fractions of the form [ ] f 7→ v
from VeriFast. That concept of having an arbitrary but non-zero permission translates
nicely to the read-star (written as rd∗(f)) assertions of Chalice. This kind of permission
turned out to be more frequently used than concrete fractions, too.

Several ideas for more sophisticated approaches have been discussed during the project;
however, they were left for possible future extension. Especially, it can be noticed that
the exact amount of the fractions are not of great importance; in the end it just matters
whether we have no, read, or write permission. Hence, instead of splitting write-access
into three equal fractions of 1

3 one could also split them into one fraction of 1
2 and two

of 1
4 . One could therefore try to rewrite all fractions to different ones are expressible as

percentage. The difficult part is that once those fractions are joined again to form 1
1 ,

that has also to be the case in the rewritten form; hence, some careful analysis of the
whole program would have to be done to figure out the constraints under which we can
rewrite the fractions.
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As an other alternative, the new permission model of Chalice [3] (read, read-star, and
write), which was particularly motivated by the fact that concrete fractions are often ir-
relevant, could be used. However, the same restrictions of splitting up and later rejoining
also apply.

2.14 Assertions

The translation from VeriFast’s assertions to these of Chalice is (with the exception of
predicates) straight forward. It has been shown [7] that the semantics are preserved when
we simply replace the points-to-assertion [p]o.f 7→ v with access to the field followed by
an equality assertion acc(o.f , p) && f =v.

public void f oo ( )
//@ r e q u i r e s t h i s . head |−> 0 ;
//@ ensures t r u e ;

{ [ . . . ] }

↪→

method f oo ( )
requires acc ( t h i s . head , 100) && t h i s . head = 0 ;
ensures true ;

{ [ . . . ] }

Figure 2.47: Example of a contract containing a points-to-assertions and its translation

Furthermore, there is a difference in the semantics of preconditions between VeriFast
and Chalice. Namely, when we have a points-to-assertion o.f 7→ v in a precondition
in VeriFast it implicitly requires the target object o to be non-null. In Chalice that
requirement must be stated explicitly, otherwise the verification will complain about the
precondition itself since it accesses a field on a potentially null reference. Therefore, we
must add o 6= null in front of every points-to-assertion in preconditions.
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3 Evaluation

When performing the evaluation of our tool, we wanted to answer a number of questions
for each test-case in order to evaluate the tool itself, the feasibility of the translation,
and in particular how well Chalice does on verifying the translated programs:

• Can the program by translated?

1. Why could it not automatically be translated?

2. Could it (theoretically) be translated by hand?

3. If it is impossible by hand, which features of VeriFast or Java prevent the
translation altogether?

4. If it can be done by hand but not by our tool, how would one need to improve
our tool?

5. How could the test-case be modified to allow either an automatic or manual
translation?

• Can the translated test-case be verified?

1. If not, did the translation introduce the problems by not conserving some
properties or facts or even introducing new flaws?

2. How can the translated Chalice code be enhanced to allow the translation?

3. Is it an unexpected difficulty for Chalice or was it obvious that Chalice could
not verify such a program?

To conduct our evaluation we mainly used the Java test-cases from VeriFast. We re-
stricted ourself to the single-file test-cases since our tool currently only handles those
and because it is very unlikely for a bigger test-case to not contain any unsupported
features such as inheritance. In addition, we have written our own (simple) linked-list
example and also a segmented linked-list.

3.1 Initial evaluation with the unmodified test-cases

We first conducted an evaluation without modifying the test-cases; secondly, we mod-
ified some of the test-cases and re-evaluated them. The results of an initial run are
summarised in Table 3.1, where the underlying problems are denoted as a foot-note.
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Table 3.1: Evaluation with unmodified test-samples

Testcase T V Error Problem

AbstractClasses failed failure in final translation 1
Account ok ok
AmortizedQueue ok failed *
ArrayList failed parser error 8
ArraysManual failed parser error 5
Automation failed parser error 6
Bag failed failure in typechecker 14
Compounds-Assignment ok ok 1

Comprehensions failed parser error 6
ConstantExpression failed failure in final translation 9
Constants failed failure in typechecker 2
Contrib failed failure in parser 4
Counter ok ok
DefaultCtor failed failure in final translation 10, 1
Division failed failure in final translation 15
DoWhile failed error in typechecker 11
Downcast failed parser error 7
Exceptions failed parser error 12
FieldInitializers failed failure in final translation 3
InstanceOf failed error in typechecker 2
InterfaceLemmas failed parser error 6
Iterator failed parser error 6
map failed parser error 7
MonitorExample failed parser error 4
NetedExprTest ok ok
Recell failed failure in final translation 1
Spouse ok ok
Spouse2 ok ok1

SpouseFinal ok ok1

Stack failed failure in simplifications *
StaticFields failed parser error 7, 9
SuperCalls failed parser error 7, 1
SuperConstructorCall failed failure in final translation 1
ThreadRun failed parser error 13, 6
Tree failed failure in simplification *
LinkedList ok ok *
LinkedListSeg failed Cannot handle predicate *

1 inheritance 2 interfaces 3 super-constructor invoc. 4 predicate constructors
5 higher-order predicate 6 abstract predicate 7 predicate families
8 auto lemmas 9 static fields 10 use of short / byte
11 external libraries 12 exceptions 13 concurrency 14 built in pair not supported
15 unsupported operators (division, bitwise-and, ...) * discussed separately

74



Verifying Separation Logic in Chalice Daniel Jost

3.2 Discussion of selected test-cases

For some of the test-cases we could modify the original VeriFast example to make the
translation work nevertheless, or modify the generated Chalice program to let the veri-
fication pass. We will now discuss those test-cases in detail and discuss why the changes
were necessary. In addition, we will discuss why some test-cases failed and cannot be
fixed, and discuss some that were verified but are nonetheless worth discussing.

AmortizedQueue For the ‘AmortizedQueue’ our translation works and produces a syn-
tactically correct Chalice program; however, the verification fails. When inspecting the
failure, it became clear that the failure resulted from our implementation of the (pseudo)
static functions in Chalice. We do get a duplication of the list-reversal function and there
is a method in the class ‘AmortizedQueue’ looking like this:

method i n i t 1 ( f r o n t : LinkedList , r ea r : L inkedLis t )
requires [ . . . ] ;
ensures [ . . . ] t h i s . r e v e r s e i n t (old ( r ea r . getVs ( ) ) )

{
[ . . . ]
ca l l f := rea r . r e v e r s e ( ) ;
[ . . . ]

}

Figure 3.1: The problem of duplicated functions

Notably, the ‘reverse int’ in the postcondition refers to the version from the ‘Amor-
tizedQueue’ class; however the actual reversing is done by calling the according method
on the linked-list which expresses its postcondition in terms of the duplicated reversal-
function there. As a consequence, Chalice would need to prove the equivalence between
those reversal-functions which is infeasible due to their recursive nature.

Nevertheless, hand-modification can easily be done to allow the program to verify (except
some termination checks) by replacing the postcondition with rear . reverse int (old(rear .getVs())
and completely deleting the version in the ‘AmortizedQueue’ class.

Stack The ‘Stack’ test-case originally failed in the translation, since it tried to use a
discarded predicate argument as the new receiver. However, the test-case can easily
modified by hand to indicate the desired receiver of the predicate as shown in Figure 3.2,
in which the modification is shown in a comment.
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/∗@
p r e d i c a t e nodes ( Node n0 ; i n t count ) =

n0 == n u l l ?
count == 0

:
n0 . v a l u e |−> &∗& n0 . next |−> ? next &∗&
nodes ( next , ? ncount ) &∗&
count == 1 + ncount ;

@∗/

[ . . . ]

//@ p r e d i c a t e v a l i d ( i n t count ) = head |−> ?h &∗& nodes (h , count ) ;

int pop ( )
//@ r e q u i r e s v a l i d (? count ) &∗& 0 < count ;
//@ ensures v a l i d ( count − 1 ) ;

{
//@ open v a l i d ( count ) ;
//@ open nodes ( head , ) ; // i n s t e a d o f : nodes ( , )
int r e s u l t = head . va lue ;
head = head . next ;
//@ c l o s e v a l i d ( count − 1 ) ;
return r e s u l t ;

}

Figure 3.2: Excerpt of the hand-modified Stack test-case indicating the modified line

By inspecting the ‘valid’ predicate that was unfolded, it becomes immediately clear that
only ‘head’ can be the first argument of the ‘nodes’ predicate. However, doing such an
analysis automatically is out of scope for our current tool as it must reason that the
only way to get a ‘nodes’ predicate at that location of the program is from the unfolding
before. Note that the first parameter of the ‘nodes’-predicate is actually an in-parameter
and discarding it makes the predicate instance non-unique. Hence, the discarding in such
a situation is only allowed because VeriFast implements some heuristic, which picks an
arbitrary instance from the matching ones.

The resulting program, obtained by making the receiver explicit, translates and also
verifies without any further problem.
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LinkedList For the ‘LinkedList’ example we wrote at the very beginning of our project,
we just had to replace our own inductive list-type by the built-in one of VeriFast. Our
translation can currently only handle the built-in list ADT.

After circumventing a known parser bug of Chalice (function-calls not allowed directly
inside an ‘acc’-expression2), the program verifies with two errors. Yet, those errors
result from the termination check of functions, which in Chalice currently only takes
the size of the heap into account. However, since the static functions we contributed
to Chalice usually don’t rely on the heap any longer at all, but rather depend on the
length of an ADT list as a variant, that termination criterion is useless in these cases.
The termination checks can be turned off in Chalice and then the verification succeeds
as expected.

LinkedListSeg Here we had to manually rewrite the segmented predicate to a version
where the empty segment has the canonical representation “linkedListSeg(nil, nil)” in
order for our translation to work. Otherwise, an arbitrary number of such predicates
could be closed on the same receiver (the segment start) and one could not store the
segment end in ghost-state; obviously there is also no functional dependency between
the segment start and end, in contrast to the non-segmented version where the start and
the heap determines the whole list. We have already discussed this issue in section 2.2
as well as why we cannot do such a transformation automatically.

With the rewritten predicate, the test-case can both be translated and verified, except
for the usual termination check problems. In summary, we have written a segmented
linked list in VeriFast that can be fully automatically translated and that verifies in
Chalice, while it was unclear whether a segmented linked list can even be encoded in
Chalice at the beginning of our project.

Tree In this test-case our tool tries to inline a (global) static, recursive lemma method
which operates on an inductive data-type (tree). Lemma methods that act on ADTs
are intrinsically recursive and, most of the time, do not take any reference parameters.
However, since the ADT itself is unsupported, this class of static functions (that we
cannot handle), is not of great relevance. If Chalice, however, gets extended to include
ADTs then also one needs to come up with a way of dealing with such static methods.

Spouse The three test-cases ‘Spouse’, ‘Spouse2’, and ‘SpouseFinal’, which verify with
no problems, provide some further evidence that (apart from inheritance) our tool is
able to cope with non-trivial programs. While the first and the last version use a param-
eterized predicate with fractional permissions, the ‘Spouse2’ even uses multiple nested,
parametrized predicates (Figure 3.3) to express the validity of a marriage. The translated

2http://boogie.codeplex.com/workitem/10226
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version (Figure 3.4) not only reflects that nesting but also gets the access permissions
in the getter-functions right, by invoking getValid0Spouse from getValidSpouse.

protected p r e d i c a t e t i c k e t ( Person spouse ) =
[ 1 / 2 ] this . spouse |−> spouse &∗&
spouse != null ;

protected p r e d i c a t e va l i d0 ( Person spouse ) =
[ 1 / 2 ] this . spouse |−> spouse &∗&
spouse == null ?

[ 1 / 2 ] this . spouse |−> null
: emp ;

public p r e d i c a t e v a l i d ( Person spouse ) =
this . v a l i d0 ( spouse ) &∗&
spouse != null ?

spouse . t i c k e t ( this )
: emp ;

Figure 3.3: The predicates of ‘SpouseFinal’ (VeriFast)

3.3 Discussion of the results

On the subject of the feasibility of the translation, it became clear that a large portion
of the test-cases are not translatable by our tool; however, for most of them the reason
is simply the use of subtyping, inheritance, or a related specification feature such as
predicate families and constructors. We somewhat hoped in the beginning that the
lack of subtyping in Chalice would not be so big a deal, since most of the test-cases
are rather small and such small samples have the tendency to only consist of a single
class. However, we were proven wrong and the results indicate that most of VeriFast’s
Java examples do use some sort of subtyping. Unfortunately, subtyping is not only a
problem for our automatic translation but, since Chalice lacks subtyping at all, it is also
unclear how one could translate those examples by hand without completely changing
their intent.

For the remaining few examples which our tool could not handle, no particular culprit
could be identified. Almost every one of them failed for a different unsupported feature
such as ADTs, external interfaces, and arrays. In theory one could probably try to
handle those cases in our tool with some effort; however, since they only affect a single
example and at least some of them contain inheritance as well it was not considered
worth the effort.
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predicate t i c k e t {
acc ( t h i s . spouse , 50) &&
t h i s . spouse 6= null

}

predicate va l i d0 {
acc ( t h i s . spouse , 50) &&
( t h i s . spouse = null ? acc ( t h i s . spouse , 50) : true )

}

predicate v a l i d {
acc ( t h i s . va l id0 , 100) &&
( t h i s . getVal id0Spouse ( ) 6= null ?

t h i s . getVal id0Spouse ( ) . t i c k e t &&
t h i s . getVal id0Spouse ( ) . getTicketSpouse ( ) = t h i s
: true

)
}

function getTicketSpouse ( ) : Person
requires acc ( t i c k e t , 10 0 ) ; {

unfolding acc ( t i c k e t , 100) in t h i s . spouse
}

function getVal id0Spouse ( ) : Person
requires acc ( va l id0 , 1 0 0 ) ; {

unfolding acc ( va l id0 , 100) in t h i s . spouse
}

function getVal idSpouse ( ) : Person
requires acc ( va l id , 1 0 0 ) ; {

unfolding acc ( va l id , 100) in t h i s . getVal id0Spouse ( )
}

Figure 3.4: The translated predicates of ‘SpouseFinal’
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More interesting is to note that except for our own two linked-lists, not a single example
failed due to an untranslatable predicate. While our treatment of predicates is highly
incomplete and can only handle certain kinds of predicates, it seems to be complete
enough to handle the common cases. The same applies for our handling of static methods
and fixpoint-functions as well: whilst incomplete, we only saw a single example where
they caused an abort in the translation, and there it is closely related to the use of
user-defined ADTs.

Considering the evaluation of Chalice, it is worthwhile to note how well Chalice does on
the translated examples. Several test-cases verified without a single modification, once
translated. Also, this is not limited to toy-examples but also highly non-trivial test-
cases such as the ‘Spouse’ ones which contain for instance multiple nested predicates
with parameters. The ‘AmortizedQueue’ example was the only one that our tool was
able translate but some additional tweaks were required to get it verified. It was a bit
surprising that Chalice ran for more than one hour on the original example whereas
mostly it is done within seconds on test-cases of similar size. Overall, we noticed that
Chalice verified all the working examples quite fast; however, back when the translation
of the fixpoint-functions was broken, also other examples (LinkedList, LinkedListSeg,
Stack) were falsified rather slowly by Chalice.

Finally, our own segmented linked-list turned out to be the test-case which provided
the most insight. On the one hand, it contained the only predicate which our tool
could not handle and, nevertheless, is translatable by hand; we have already discussed
in Section 2.2 why doing such a translation automatically would be challenging. On the
other hand, it was one of the examples where the need for static functions became very
clear originally, and once they were added to Chalice, this allowed the translation.
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A Unsupported features and limitations

A.1 Parser

Unsupported Java features

• Class literals (including void.class)

• Generic wildcards

• Generic bounds

• Native, transient, and stricfp modifier

• Anonymous inner classes

• Super constructor invocation

• Resources try-blocks introduced in Java SE 7.0

Unsupported VeriFast features

• Predicate families

• Predicate constructors

• Higher order predicates

• Auto lemmas

• Exception contracts

A.2 Resolution

• For inner classes, the resolution does not take members defined in enclosing classes
into account, unless they are qualified by a ‘this’ expression explicitly referring to
the enclosing class (e.g., C.this.f where ‘C’ denotes the name of the outer class).

• Resolution does not support referring to members of the generic type parameter
(e.g., x.f where x is of type T inside MyList〈T 〉)

• Referring to types defined in external libraries

• Static field access and static method invocation on expressions
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• Constructors with generic parameters

• Inductive switch statements on a inductive types except the built in list

A.3 Simplifications

Fractional permissions Only fractions expressible as an integer percentage are sup-
ported. Other fractions like 1

3 will cause the simplification to fail.

In addition the expression denoting the fraction must be a compile time constant; hence,
may especially not refer to any variables. Otherwise, the fractional value could not be
safely converted into a percentage. The constant must be composed only from integers as
well as addition, subtraction, multiplication, and division; other operations like shifting
are not supported.

Control flow

• Exceptional control flow (exceptions) are unsupported

• break statements and continue statements are unsupported

Static methods Static methods are only supported if at least one of the following
criteria holds:

• There exists a formal parameter of a user defined reference-type which is guaran-
teed by the precondition to be non-null. Then this parameter is made the receiver
of the instance method.

• There exists a formal parameter, such that when it is null the method body is
a no-op (for methods without return type) or a constant expression. This allows
this parameter to be made the receiver and the method to be simply not called
whenever that parameter is null.

• The method is not recursive, to allow inlining.

Predicates Static predicates defined in the global scope are only supported when one
of the following conditions hold:

• There exists a parameter of a user defined reference-type which is guaranteed to
be non-null by the predicate body.

• There exists a parameter of a user defined type for which, when null, the following
conditions hold, such that the predicate can be erased:

– The predicate does not hold any permissions
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– All other parameters become constant expressions, hence there exists a func-
tional dependency from that parameter to all others.

– That parameter is only referred to as an out parameter and never bound
(p(?x)) or used in an existential form like p( )

Predicate with parameters (except the one used as the receiver of static predicates) are
only supported when one of the following conditions hold:

• There exists a functional dependency from the other parameters and the heap;
hence, the parameter can be expressed as a pure function. In addition, for multiple
parameters those functions may not contain recursion among each other.

• The predicate holds full permission to at least one field. Note that this field must
be statically determined and an existential of the form c?acc(f1) : acc(f2) is not
sufficient.

Inductive switches Inductive switches (expressions, assertions, and statements) are
only supported on the built in inductive list.

A.4 Final translation

Some features unsupported by the tool are not currently handled by the intermediate
simplifications and, therefore, will cause the final translation to fail.

• Any kind of inheritance such as inheriting from a class, implementing or interface,
and calling a super constructor.

• Declaring an enum or using one

• Declaring an interface

• Declaring a custom Java annotation class

• The float, double, and char data types

• Shift operators and bitwise operators (negation, xor)

• Static fields: both declaration and access

• Any kind of generics except for generic fixpoint methods

• All flavors of exceptions: try-catch blocks, the throw statement, and throws dec-
larations

• Synchronized blocks

• Initializer blocks; both static and non-static
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• Arrays

• Boxed types

• Java switches

• Inductive data types except for the built in list

• Auto lemma methods
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