
A Standard Library for Gobra

Practical Work

Daniel Nezamabadi

April 01, 2024

Advisors: João Carlos Mendes Pereira, Prof. Dr. Peter Müller

Department of Computer Science, ETH Zürich

Abstract

Gobra is an automated verifier for Go programs based on separation
logic. We implement a standard library containing useful definitions
and lemmas used in specifications and proofs to provide code reusabil-
ity across projects and hopefully allow improvements in performance
and proof stability. Additionally, we extend Gobra by allowing the user
to turn off set axiomatization, proving any proof obligations manually
using the standard library, and by adding the keywords opaque and
reveal, which give fine-grained control to the user over when the body
of a function is revealed. We evaluate the effect of opaque, turning off
set axiomatization and “assisting” the verifier with additional assertions
and instantiations of lemmas from the standard library on quantifier
instantiations and execution time. While using opaque decreases the
number of quantifier instantiations, execution times do not. This may
be due to the relatively small scale of the examples tested. In general, it
appears that the number of quantifier instantiations does not correlate
with execution time. Disabling set axiomatization and manually proving
the proof obligations results in a decrease in quantifier instantiations
and execution time. While the effect of assisting the verifier on quanti-
fier instantiations is unclear, the data suggests that in small examples
verified with a symbolic executing engine, not assisting the verifier at
all results in the best performance in terms of execution time.

i

Contents

Contents iii

1 Introduction 1
1.1 Background . 2

1.1.1 Gobra . 2
1.1.2 Dafny . 4
1.1.3 Verus . 4
1.1.4 Why3 . 4
1.1.5 Dafny and Why3’s Standard Library 4

2 Overview 7

3 Evaluation 9
3.1 Experiments . 9

3.1.1 Experiment Setup . 9
3.1.2 Using opaque . 10
3.1.3 Manual Proofs . 11
3.1.4 Assisting the Verifier . 13

3.2 Limitations of Gobra . 18

4 Conclusion and Future Work 21
4.1 Conclusion . 21
4.2 Future Work . 21

Bibliography 23

iii

Chapter 1

Introduction

A standard library is an essential component of any major programming
language. It provides every programmer with functionality whose imple-
mentation, verification, optimization, and maintenance do not need to be
duplicated across projects.

Standard libraries are not limited to conventional programming languages:
program verifiers like Dafny [2], Verus [10], and Why3 [24] also provide
standard libraries that contain, among other things, commonly used lemmas
and definitions. Gobra [12], a verifier for Go programs [14] used to verify real-
world projects like SCION [21] and a part of the official Go implementation
of WireGuard [13], does not yet have a standard library.

In addition to minimizing repetition across projects, developing a standard
library could enable improvements in performance and proof stability, by
allowing more fine-grained control over the proof context, the set of facts
available to the verifier to prove the postconditions of a function. Two mecha-
nisms could achieve this: firstly, by reducing the context, where unhelpful
facts are minimized to prevent the verifier from going off-track, which could
lead to instability and performance issues. This reduction can be realized
by allowing the user to selectively turn off features of the SMT solver, re-
quiring programmers to leverage the standard library to manually prove
proof obligations that depend on the disabled features. These problematic
features include non-linear integer arithmetic and axiomatization of built-in
data structures like lists and sets. Another way to reduce the context is by
utilizing the keyword opaque, which hides function bodies unless explicitly
revealed by the programmer.

We used ChatGPT 3.5/4 for language tasks like getting suggestions for headlines and
glueing together sentences. Additionally, these tools and GitHub Copilot were used to assist
in writing the Python and Bash scripts for the evaluation [7].

1

1. Introduction

Secondly, guiding the verifier by instantiating lemmas from the standard
library may lead the verifier faster and more reliably to a solution. For
example, it may be useful to explicitly use lemmas that a person would use
to prove the postconditions.

During this practical work, we have begun to lay the foundation of investi-
gating these ideas in more detail by implementing an initial set of packages
inspired by the standard libraries of the verifiers mentioned above, introduc-
ing an option to turn off set axiomatization and implementing as well as
evaluating the keyword opaque.

In this report, we provide an overview of our work and evaluate the impact
of reducing the verifier’s context and guiding the verifier by instantiating
lemmas from the standard on the number of quantifier instantiations and
overall performance. We also highlight challenges encountered in our ex-
periences working with Gobra. The report concludes with a summary of
our efforts and suggests potential areas for further development to improve
Gobra.

1.1 Background

1.1.1 Gobra

Gobra is an automated verifier for Go programs based on separation logic. It
provides numerous features to verify a wide range of properties, including
memory safety, crash safety, data-race freedom, and partial correctness, based
on user-provided specifications.

Firstly, functions and methods can be annotated with pre- and postcondi-
tions, which are verified modularly. This means that a call only uses the
specification of the callee and cannot peek inside the body. If a function
or method has no side effects, such as modifying heap-allocated structures,
and is deterministic, it can be annotated with pure, allowing the usage in
specifications. Pure functions and methods have an implicit postcondition
that ensures their result is equal to their body.

ensures res == (n % 2 == 0)

pure func isEven(n int) (res bool) {

return n % 2 == 0

}

ensures isEven(n) ==> res == n / 2

ensures !isEven(n) ==> res == n / 2 + 1

func halfRoundedUp(n int) (res int) {

if isEven(n) {

res = n / 2

} else {

res = n / 2 + 1

2

1.1. Background

}

return res

}

Listing 1.1: Examples of annotated functions, as seen in the Gobra Tutorial [22]

Reasoning about the heap is enabled with the concept of access permissions.
Access permissions are held by method executions. To read from a heap
location x, the method must hold any non-zero amount of the access permis-
sion acc(x). To write to a heap location, the method must hold the entire
access permission associated with the heap location. Access permissions are
transferred between methods upon call and return.

Gobra also supports predicates, which can abstract away invariants for non-
trivial data structures like slices or recursively defined lists.

type node struct {

value int

next *node

}

pred list(ptr *node) {

acc(&ptr.value) && acc(&ptr.next) &&

(ptr.next != nil ==> list(ptr.next))

}

Listing 1.2: Recursive list using predicates and access permissions, as seen in the Gobra Tutorial
[22]

Sometimes, additional code is needed to verify ‘real’ code. This is referred to
as ghost code. Its main characteristic is that it is not compiled, meaning that
the control flow of the ‘actual’ program cannot depend on it – a property
automatically checked by Gobra.

Gobra implements ghost variants for various constructs: in and out parame-
ters, variables, types, statements, methods, and functions.

In addition to allowing ghost code, Gobra provides many ghost types: se-
quences, sets, multisets, and the Perm type for permission amounts. It also
provides common operations on these ghost types, e.g., sequence concatena-
tion, set union, membership, multiplicity, sequence length and set cardinality.
Using domains, it is also possible to define additional types through mathe-
matical functions and axioms providing their properties. Gobra also supports
the definition of Algebraic Data Types (ADTs), which are implemented in
many programming languages, including Haskell and Rust. By default,
Gobra instantiates axioms for ghost types wherever they are relevant. As
mentioned above, these instantiations may cause proof instability and perfor-
mance degradation.

type List adt {

Nil{}

3

1. Introduction

Cons{int List}

}

Listing 1.3: List definition using an ADT

For a more in-depth discussion of Gobra’s features, we refer to the Gobra
and Viper tutorial [22, 20].

1.1.2 Dafny

Dafny is an imperative, sequential, verification-aware programming language.
It supports common programming concepts like inductive data types (ADTs),
subset types (e.g., bounded integers), lambda expressions and functional
programming idioms, and immutable and mutable data structures. Being
verification-aware, Dafny also supports program verification concepts like
quantifiers, calculational proofs (stepwise formula manipulation), the ability
to use and prove lemmas, pre- and postconditions, termination conditions,
loop invariants and read/write specifications. opaque is also present in
Dafny, which, as described above, allows developers to define functions and
predicates whose body is hidden, except in places where the body is explicitly
revealed using reveal. This allows more abstract reasoning and control over
the proof context, i.e., the “facts” available to the verifier during verification.

1.1.3 Verus

Verus is a tool designed for verifying the correctness of code written in Rust,
contrasting with Dafny, which is a programming language. Like Gobra,
Verus focuses on verifying the correctness of code in an existing, “real-world”
language. Specifically, Verus’ standard library, which is inspired by Dafny’s
standard library and axioms, serves as a useful reference for our work.

1.1.4 Why3

Why3 is a platform for deductive program verification. It provides a language
for specification and programming called WhyML and relies on external
provers, both automatic (e.g., Alt-Ergo, CVC4, Z3) and interactive (e.g., Coq,
PVS, Isabelle/HOL), to discharge verification conditions. Gobra and Dafny
do not provide this level of flexibility.

1.1.5 Dafny and Why3’s Standard Library

Much of the code in Dafny’s core library [3] comes from or was inspired by
code from verification projects like Ironclad [23], Vale [15], Verified BetrFS [18]
and Verifying OpenTitan [16]. It provides, among other things, definitions of
types, operations, and lemmas for a wide range of modules: wrappers (e.g.,
Option<T>), bounded integers, basic file I/O, basic mathematical operations

4

1.1. Background

and lemmas, Unicode, collections (e.g., sequences, sets, maps), non-linear
arithmetic (NLA), relations (i.e., properties of functions) and properties of
binary operations.

lemma LemmaMulBasics(x: int)

ensures 0 * x == 0

ensures x * 0 == 0

ensures 1 * x == x

ensures x * 1 == x

{

}

Listing 1.4: Lemma for NLA from the Dafny Core Library [1]

Most of these concepts can be found in some form in Why3’s standard library
[25] as well. On top of those, Why3 implements a wide range of other
theories like IEEE floats, graph theory, and hash tables, to name a few.

5

Chapter 2

Overview

This chapter gives a brief overview of what we did throughout this practical
work and our reasons for doing so.

Disabling Set Axiomatization We extended Gobra to allow the axiomatiza-
tion of sets to be disabled by passing an empty axiomatization file to Silicon.
A user of this option must manually prove all proof obligations. While
this comes with annotation overhead, it may allow for good performance
and stable proofs. To reduce the burden on the user, we also implement a
standard library containing useful definitions and lemmas, which we will
elaborate on later.

opaque and reveal We added the keyword opaque to Gobra, which can be
used on pure functions to hide their bodies and only reveal them for specific
function calls if explicitly requested using reveal. This allows for more
fine-grained control over what is part of the verifier context, which in turn
may translate into improved control over performance and proof stability.
opaque is not implemented for non-pure functions, as these do not expose
their bodies.

Standard Library We implemented packages that contain definitions and
lemmas commonly used in specifications. These packages are for mathemat-
ical and Go’s maps, sequences, sets, basic math definitions and commonly
used utilities for verification. We give an example of one such lemma in
Listing 2.1.

// Subset relation is transitive.

ghost

opaque

requires xs subset ys

requires ys subset zs

ensures xs subset zs

7

2. Overview

decreases

pure func SubsetIsTransitive(xs, ys, zs set[int]) util.Unit {

return util.Unit{}

}

Listing 2.1: Subset transitivity lemma in the standard library

The packages’ definitions were heavily inspired by Dafny, Why3, and Verus,
the latter of which also appears to be inspired by Dafny. While some defini-
tions were straightforward to port, others required more effort, as Dafny, in
particular, is at times more expressive than Gobra.

We implement a standard library for broadly two reasons, the first of which
is minimizing repetition across projects. This has the typical benefits from a
software engineering perspective, as mentioned in the introduction: imple-
mentation, verification, optimization, and maintenance of functionality do
not need to be duplicated if they are part of the standard library.

The second reason is that a standard library may play a part in improving
performance and proof stability, for example, by disabling axiomatization
and manually proving proof obligations using the standard library instead.
Additionally, it allows for further exploration in this direction. One of these
directions we explore is whether assisting the verifier by instantiating lemmas
from the standard library improves performance and stability.

Evaluation We developed Python scripts to measure the execution time
of Gobra and automatically extract the number of quantifier instantiations
during the verification of a package into the CSV format and to analyze and
compare the generated CSVs using box plots. Additionally, we assembled a
set of interesting programs and evaluated them using these tools to investi-
gate the effect of opaque, manually proving proof obligations after turning
off set axiomatization and assisting the verifier using intermediate assertions
and lemmas from the standard library.

8

Chapter 3

Evaluation

In this chapter, we want to investigate the following questions:

• What is the effect of opaque on the number of quantifier instantiations
and execution time?

• What is the effect of turning off set axiomatization and manually prov-
ing the proof obligations on quantifier instantiations and execution
time?

• What is the effect of “assisting” the verifier by asserting additional
statements and instantiating lemmas on quantifier instantiations and
execution time?

We will also report on Gobra’s limitations that prevented us from being
productive or impeded the applicability of our work.

3.1 Experiments

3.1.1 Experiment Setup

The experiments are run on a laptop with an Intel Core i5-8625U @ 1.6GHz
and 8GB RAM. We extract the number of quantifier instantiations by pro-
cessing output generated after enabling quantifier instantiations profiling in
Z3 [4] and measure execution time as the time it takes for that command to
finish. The following versions of the programs were used:

• Silicon: commit 0608ac9 (29.02.2024) [8]

• Gobra: version 0608ac92, commit da25624 (04.03.2024) [6]

• Z3: version 4.8.7 (19.11.2019) [9]

Silicon is one of Gobra’s verification backends and uses Z3. We use an old
version of Z3, as enabling quantifier instantiation profiling in newer versions

9

3. Evaluation

results in errors and output for which we could not find any documentation
[5].

All experiments were run for 30 iterations. We plot the data as boxplots: a box
corresponds to the three quartile values (25th percentile, median, and 75th
percentile), while the “whiskers” contain points within 1.5 of the interquartile
range. The diamonds represent outliers. The axes have different scales and
do not necessarily start from zero.

3.1.2 Using opaque

To evaluate the effect of opaque, we verify three packages with increasing
complexity and compare the number of quantifier instantiations and the
execution time between versions of the package where lemmas have been
turned opaque or not. The first package contains a non-trivial lemma from
the sets package of the standard library and its dependencies. The second
package will be the entirety of the sets package. The final package we
consider here will be the entirety of the dicts package, which uses the sets

package.

As opaque hides the body of pure functions, this experiment essentially
investigates the effect of hiding a lemma’s proof from users. Note that
lemmas proven inductively use themselves on a “smaller” instance and
thus use themselves. Since the proof of a lemma is unnecessary to a user,
hiding it does not require users to adapt their proofs or programs. By
removing unnecessary information from the verifier’s proof context, we
expect quantifier instantiations and execution time in the opaque version of
the packages to decrease.

Looking at figures 3.1a, 3.2a, and 3.3a, we can see that using opaque con-
sistently reduces the number of quantifier instantiations. However, if we
consider figures 3.1b, 3.2b, and 3.3b, which plot the execution times, we
cannot observe a clear effect of opaque: in Figure 3.1b median execution
time and variability seem to be smaller in the opaque version of the package,
whereas in figures 3.2b and 3.3b they seem to be the same or slightly.

This is surprising, as we expected that fewer quantifier instantiations would
translate to shorter execution times. Nonetheless, these experiments do not
conclusively show that opaque will never affect execution times. The effects
of opaque on execution time may only reveal themselves in larger projects.
This is because in larger projects more quantifiers and thus triggers are
present. As opaque hides the function bodies, those triggers would have
fewer opportunities to cause unnecessary quantifier instantiations, leading to
potentially improved execution time.

Taking this into consideration, we infer that using opaque can be an effec-
tive way to reduce the number of quantifier instantiations and improve

10

3.1. Experiments

20 25 30 35 40

Number of Instantiations

$Set[Int]_prog.in_intersection_in_both

$Set[Int]_prog.not_in_difference

$Set[Int]_prog.card_non_negative

Qu
an

tif
ie

r

Variant
Default
opaque

(a) Top Three Quantifier Instantiations

Default opaque

Variant

9.4

9.5

9.6

9.7

9.8

9.9

Ex
ec

ut
io

n
tim

e
(s

)

(b) Execution Time

Figure 3.1: Verification of a lemma from the sets package

performance if said quantifier instantiations are a problem.

It is worth noting that in Figure 3.3a, k!1144 is one of the quantifiers that
was instantiated the most and was barely affected by opaque. This makes
sense as it is most likely an auxiliary quantifier created by Z3 during model
construction [11].

3.1.3 Manual Proofs

We will now evaluate the effect of turning off set axiomatization and manually
proving the required proof obligations using the standard library on the
number of quantifier instantiations and execution time. We achieve this by
considering a package that has been designed to cause a large amount of

11

3. Evaluation

0 100 200 300 400 500 600

Number of Instantiations

$Set[Int]_prog.in_intersection_in_both

$Set[Int]_prog.in_left_in_union

$Set[Int]_prog.not_in_difference

Qu
an

tif
ie

r
Variant

Default
opaque

(a) Top Three Quantifier Instantiations

Default opaque

Variant

12.6

12.8

13.0

13.2

13.4

13.6

Ex
ec

ut
io

n
tim

e
(s

)

(b) Execution Time

Figure 3.2: Verification of the sets package

quantifier instantiations. As a baseline, we will use a fully automatic version
of the proof: we do not “assist” the verifier in any way; that is, we do not
add additional assert statements to guide the verifier to a solution. We will
explore this direction in the next section. An overview of the number of
quantifier instantiations for the automatic version is provided in Figure 3.4.

The effect of turning off set axiomatization and manually proving the required
proof obligations is significant: the only quantifier instantiations are three
instantiations of prog.getter_over_tuple2, which is equivalent to verifying
an empty file. Additionally, as shown in Figure 3.5, the median execution
time of the manually proven version is reduced by 0.5s, albeit the variability
seems to have increased slightly.

12

3.1. Experiments

1000 1500 2000 2500 3000 3500

Number of Instantiations

$Set[Int]_prog.in_intersection_in_both

$Set[Int]_prog.in_right_in_union

$Set[Int]_prog.in_left_in_union

k!1144

Qu
an

tif
ie

r

Variant
Default
opaque

(a) Top Four Quantifier Instantiations

Default opaque

Variant

18.0

18.2

18.4

18.6

18.8

19.0

19.2

19.4

19.6

Ex
ec

ut
io

n
tim

e
(s

)

(b) Execution Time

Figure 3.3: Verification of the dicts package

While the reduction in quantifier instantiations aligns with our expectations,
the decrease in median execution time may appear disappointing. The
relatively small decrease in execution time may be due to the small scale
of the example: even though the automatic verification causes quantifier
instantiations in the hundreds or even thousands, the verifier may be able to
easily converge to a solution. Thus, in this example, the execution time may
be dominated by some verification overhead, not the problem’s difficulty.

3.1.4 Assisting the Verifier

As our final set of experiments, we will investigate the effect of “assisting” the
verifier by asserting additional properties and instantiating lemmas. We will

13

3. Evaluation

500 1000 1500 2000 2500

$Set[Int]_prog.in_intersection_in_both

$Set[Int]_prog.in_left_in_union

$Set[Int]_prog.in_right_in_union

$Set[Int]_prog.not_in_difference

$Set[Int]_prog.in_difference

$Set[Int]_prog.in_union_in_one

Figure 3.4: Quantifier instantiations for the automatic, unassisted synthetic function verification.

Automatic Manual

Variant

8.6

8.8

9.0

9.2

9.4

9.6

9.8

Ex
ec

ut
io

n
tim

e
(s

)

Figure 3.5: Execution time of verifying automatically and manually proven synthetic function

14

3.1. Experiments

consider two examples: the synthetic example investigated in the previous
section and a proof from chapter 10.2 of the book “Program Proofs” [19],
which was ported to Gobra in the context of Timon Egli’s bachelor thesis
[17].

Synthetic

• Fully Assisted: Instantiate lemmas for every proof obligation.

• Weak Eq: Remove an unnecessary postcondition from a lemma.

• No Eq: Do not instantiate lemmas for assertions of the form |xs − ys| =
|xs| − |xs ∩ ys|

• No Eq/Upper: Do not instantiate lemmas for assertions of the form
|xs − ys| = |xs| − |xs ∩ ys| or |xs ∪ ys| ≤ |xs|+ |ys|

• Unassisted: Do not instantiate any lemmas.

We consider five different variations of the synthetic function: Fully Assisted,
Weak Eq, No Eq, No Eq/Upper, and Unassisted.

To assist the verifier, we use lemmas from the standard library, which have
been copied to the package of every variant without their function bodies. We
do not include the function body so as not to unnecessarily verify the lemmas
again, and we include the copies in the packages of all variants, even if they
are not used, to reduce the factors that may influence the measurements in
case there is an overhead associated with the definition of abstract functions.

We note that going from Fully Assisted to Weak Eq does not correspond
to decreased assistance. Instead, it eliminates unnecessary facts from the
context by weakening the lemma from the standard library.

While we observe a decrease in quantifier instantiations in Figure 3.6a when
removing an unnecessary postcondition (Weak Eq), execution time barely
changes as seen in Figure 3.6b.

Assisting the verifier does not seem to consistently affect quantifier instan-
tiations: for example, consider the quantifier in_intersection_in_both.
Comparing Weak Eq to No Eq in 3.6a, we see that reducing assistance slightly
decreases quantifier instantiations. If we now consider No Eq/Upper, which
corresponds to a further decrease in assistance, we can observe a slight in-
crease in quantifier instantiations. In both cases, the decrease in assistance
appears to lead to a slight increase in the median execution time. Addition-
ally, we observe that the variance of the execution time for No Eq/Upper is
the largest.

Counterintuitively, not assisting the quantifier results in the least number
of quantifier instantiations and execution time. In this case, the variance

15

3. Evaluation

500 1000 1500 2000 2500 3000

Number of Instantiations

$Set[Int]_prog.in_intersection_in_both

$Set[Int]_prog.in_left_in_union

$Set[Int]_prog.in_right_in_union

Qu
an

tif
ie

r

Variant
Fully Assisted
Weak Eq
No Eq
No Eq/Upper
Unassisted

(a) Top Three Quantifier Instantiations

Fully Assisted Weak Eq No Eq No Eq/Upper Unassisted

Variant

9.2

9.4

9.6

9.8

10.0

10.2

Ex
ec

ut
io

n
tim

e
(s

)

(b) Execution Time

Figure 3.6: Verifying the synthetic function with different levels of assistance

in quantifier instantiations and execution time appears to be as good as
any other level of assistance. Furthermore, the fully assisted version of the
experiments seems to have the most variance in quantifier instantiations. On
the one hand, it makes sense that if more things are in the verifier’s context
due to assistance, we have more quantifier instantiations; on the other hand,
if the proof obligation is already proven by instantiating a corresponding
lemma, one would expect that the variation in quantifier instantiations should
be smaller and fewer quantifier instantiations are needed.

In regards to execution time, we would expect that with more assistance,
execution time and its variation should decrease, but that is not the case.
Execution time seems to be best if the verifier is left alone.

16

3.1. Experiments

Program Proofs

In Chapter 10.2, we consider four variations of the proof: Full, First Half,
Last Half, and Minimal.

• Full: Instantiates the induction hypothesis and asserts properties of the
data structure.

• First Half: Only instantiates the induction hypothesis and properties
asserted in the full version occurring before it.

• Last Half: Only instantiates the induction hypothesis and properties
asserted in the full version occurring after it.

• Minimal: Only instantiates the induction hypothesis.

Note that the asserted properties are not “difficult” because they do not
require any general lemma but follow relatively easily from the definitions.

Figure 3.7a plots the top five quantifier instantiations of the package, which
only assists in the first half of the proof. We note the following: Firstly, the
top three quantifier instantiations are auxiliary quantifiers created by Z3,
and the largest number of quantifier instantiations is less than a hundred.
In particular, the distribution of quantifier instantiations appears to be bi-
modal: for example, in different executions, we have either 30 or around 85
instantiations of the quantifier card_non_negative. Comparing this to the
top quantifier instantiations of other versions plotted in Figure 3.7b, this is
unusual: There, the number of quantifier instantiations appears to be in the
hundreds with significant variability.

If quantifier instantiation were a strong predictor of execution time and its
variability, we would expect execution time to be lowest in First Half and have
very small variability. However, this is not the case: as seen in Figure 3.7c,
while First Half executions are faster than Full or Last Half, Minimal has the
lowest execution time. Additionally, the variability of the execution time of
First Half is larger than Full and comparable to that of Last Half, which has
the largest variation in the number of quantifier instantiations.

Looking at Figure 3.7b in more detail, we see that going from Full to Last
Half makes quantifier instantiations consistently worse in both median and
variability. From Full to Minimal, the median and variability of quantifier
instantiations get worse in 3 cases, but in 2 cases, quantifier instantiations
drop to almost 0 with barely any variability. As previously described, going
from Full to First Half results in the largest reduction in quantifier instantia-
tions. Thus, the effect of (reducing) assistance on the variability of quantifier
instantiations is unclear.

This is unexpected, as one would expect that at least variability decreases
with increasing assistance. These observations seem consistent with the

17

3. Evaluation

experiment using the synthetic function: assisting the verifier doesn’t seem
to have a consistent effect on quantifier instantiations, and not manually as-
sisting the verifier seems to perform best in execution time. Finally, similarly
to the previous observations, quantifier instantiations alone cannot explain
execution time.

3.2 Limitations of Gobra

In this section, we give a brief overview of problems with Gobra that kept us
from being productive or impeded the applicability of our work.

Lack of Generics At the moment, Gobra does not support generics. Con-
sequently, the standard library contains definitions only for collections of
integers, even though most of them would apply to any type. This limits
the applicability of the standard library, especially in real-world projects like
SCION [21].

Lack of closed The keyword closed would be similar to opaque in that it
hides the body. However, unlike opaque, there would be no way to reveal
the body. It would be preferable if lemmas in the standard library could be
marked with closed, as the proofs are considered implementation details
that shouldn’t be exposed to users.

Scope Leakage Currently, Gobra does not properly respect access modifiers
when importing packages. When importing, Gobra adds the entire package
to the verifier’s context, causing the client to try to verify private definitions
or public lemmas, including opaque functions. In the context of the standard
library, if the client disables, for example, set axiomatization, verification will
fail, as they cannot verify the imported, opaque lemmas without the built-in
axioms.

Restricted Return Values for Pure Functions Currently, pure function can
only have one single return value. This may become a problem if the standard
library’s support for Go’s maps, which have been suggested to be prone to
more verification problems, needs to be extended, as they make significant
use of multiple return values.

Lack of Docmentation Gobra lacks documentation in both using and
extending it. The lack of overview of the architecture and classes used
to implement Gobra caused a lot of time spent clicking through the code,
even though adding opaque was not particularly complicated. Additionally,
the lack of a complete user manual made it sometimes unclear what Gobra

18

3.2. Limitations of Gobra

30 40 50 60 70 80

k!553

k!569

k!587

$Multiset[Int]_prog.card_non_negative

$Multiset[Int]_prog.card_empty

(a) Top Five Quantifier Instantiations (only assisting with the first half)

0 100 200 300 400 500 600 700 800

Number of Instantiations

$Multiset[Int]_prog.count_card

$Multiset[Int]_prog.card_non_negative

$Multiset[Int]_prog.card_empty

$Multiset[Int]_prog.count_union

$Multiset[Int]_prog.count_unionone

Qu
an

tif
ie

r

Variant
Full
Last Half
Minimal

(b) Top Five Quantifier Instantiations (without First Half)

Full First Half Last Half Minimal

Variant

10.4

10.6

10.8

11.0

11.2

11.4

Ex
ec

ut
io

n
tim

e
(s

)

(c) Execution Time

Figure 3.7: Verifying an example from Chapter 10.2 of Program Proofs with different levels of
assistance 19

3. Evaluation

could do and how it could do it. While the thorough test suite was quite
useful in alleviating these problems, this form of documentation is not ideal.

Editor Support Previously, the VSCode plugin for Gobra regularly hanged
VSCode. This was presumably caused by Gobra trying to verify the code
when the user stopped typing by default, and it was fixed.

Incompleteness Occasionally, Gobra was not able to prove assertions for
unclear reasons. On one such occasion, the issue was fixed by updating to
a newer version. Nonetheless, significant time was spent trying to get the
assertion through by adding intermediate assertions.

Lack of Tooling At the moment, Gobra feels like a black box, both in terms
of whether assertions can be proven and in terms of performance. While
this may be fine if proofs go through quickly, it makes analyzing and fixing
problems when they do not quite difficult.

For example, when Gobra fails to verify an assertion, it is unclear what Gobra
“knows” or not. Thus, the user must guess and manually add intermediate
assertions to find the problem. However, this requires them to run verification
repeatedly until the problem is fixed. If performance is slow, this process
significantly reduces productivity. Additionally, there is no strong set of
tools to gather and analyze performance metrics. This is in contrast to
Dafny, which can show how much work has been spent to verify a particular
definition [26].

Parser Error Messages Parser error messages become unhelpful when pure
functions are used with more involved definitions using let and ? as done in
the standard library. For example, missing parenthesis in the definition of
one function may result in an error in a completely different function that
has no problems.

20

Chapter 4

Conclusion and Future Work

In this chapter, we briefly summarize our findings and suggest directions for
future work.

4.1 Conclusion

Using opaque decreases the number of quantifier instantiations but not the
execution time. However, this may be due to the relatively small scale of
the examples tested. We generally observe that quantifier instantiations
alone do not seem to correlate to execution time. As expected, turning
off axiomatization and manually proving the proof obligations results in
quantifier instantiations equivalent to proving an empty file and a reduction
of execution time.

Assisting the verifier does not seem to have a clear effect on quantifier
instantiations: while in some cases, the number of quantifier instantiations
decreases, in other cases, it increases. Similar observations hold for the
variability. In general, it appears that assisting the verifier hurts execution
time, suggesting that we should minimize what is passed to the verifier for
pure performance.

4.2 Future Work

As described in our discussion of the limitations of Gobra, the applicability
of the standard library could be significantly improved by implementing
support for generics, closed and more complete support of Go’s scoping
rules. Additionally, implementing packages for types like arrays, options,
multisets, and packages for non-linear arithmetic may increase the usefulness
of the standard library.

21

4. Conclusion and Future Work

Furthermore, improved tooling for understanding the verifier’s context and
performance may allow for a more thorough evaluation of the standard
library and keywords like opaque and closed. Porting Dafny’s concept of
work units may be a first step in this direction.

Finally, our analysis did not measure proof stability beyond performance.
In particular, we did not measure how proof stability changes in terms of
provability. Measuring this kind of stability and finding solid predictors to
motivate concrete programming guides could be another work direction. One
simple, straightforward way could be to measure provability across different
Z3 versions.

22

Bibliography

[1] Dafny core library: Multiplication. https://github.com/dafny-lang/
libraries/blob/master/src/NonlinearArithmetic/Mul.dfy. Ac-
cessed: 2023-10-12.

[2] Dafny homepage. https://dafny.org/. Accessed: 2023-10-12.

[3] Dafny standard libraries. https://github.com/dafny-lang/dafny/

tree/master/Source/DafnyStandardLibraries. Accessed: 2024-03-07.

[4] Github – report quantifier instantiations. https://github.com/

viperproject/silicon/pull/587. Accessed: 2024-03-25.

[5] Github – strange output when reporting quantifier instantiations us-
ing newer z3 versions. https://github.com/viperproject/silicon/
issues/786. Accessed: 2024-03-25.

[6] Github – viperproject/gobra at da25624.
https://github.com/viperproject/gobra/tree/

da25624a260e5dbe86035ab9df42154e59c55567. Accessed: 2024-03-25.

[7] Github – viperproject/gobra-libs. https://github.com/viperproject/
gobra-libs. Accessed: 2024-03-27.

[8] Github – viperproject/silicon at 0608ac9.
https://github.com/viperproject/silicon/tree/

0608ac922cf9d6b4b8dcfff6d31b7a66daa28e38. Accessed: 2024-03-25.

[9] Release z3-4.8.7. https://github.com/Z3Prover/z3/releases/tag/

z3-4.8.7. Accessed: 2024-03-25.

[10] Verus: Verified rust for low-level systems code. https://github.com/
verus-lang/verus. Accessed: 2023-10-16.

23

https://github.com/dafny-lang/libraries/blob/master/src/NonlinearArithmetic/Mul.dfy
https://github.com/dafny-lang/libraries/blob/master/src/NonlinearArithmetic/Mul.dfy
https://dafny.org/
https://github.com/dafny-lang/dafny/tree/master/Source/DafnyStandardLibraries
https://github.com/dafny-lang/dafny/tree/master/Source/DafnyStandardLibraries
https://github.com/viperproject/silicon/pull/587
https://github.com/viperproject/silicon/pull/587
https://github.com/viperproject/silicon/issues/786
https://github.com/viperproject/silicon/issues/786
https://github.com/viperproject/gobra/tree/da25624a260e5dbe86035ab9df42154e59c55567
https://github.com/viperproject/gobra/tree/da25624a260e5dbe86035ab9df42154e59c55567
https://github.com/viperproject/gobra-libs
https://github.com/viperproject/gobra-libs
https://github.com/viperproject/silicon/tree/0608ac922cf9d6b4b8dcfff6d31b7a66daa28e38
https://github.com/viperproject/silicon/tree/0608ac922cf9d6b4b8dcfff6d31b7a66daa28e38
https://github.com/Z3Prover/z3/releases/tag/z3-4.8.7
https://github.com/Z3Prover/z3/releases/tag/z3-4.8.7
https://github.com/verus-lang/verus
https://github.com/verus-lang/verus

Bibliography

[11] Z3 guide: Quantifiers. https://microsoft.github.io/z3guide/docs/
logic/Quantifiers/. Accessed: 2024-03-22.

[12] Linard Arquint, João Carlos Mendes Pereira, Peter Müller, Dionisios
Spiliopoulos, and Felix Wolf. Gobra homepage. https://www.pm.inf.
ethz.ch/research/gobra.html. Accessed: 2023-10-12.

[13] Linard Arquint, Felix A. Wolf, Joseph Lallemand, Ralf Sasse, Christoph
Sprenger, Sven N. Wiesner, David Basin, and Peter Müller. Sound
verification of security protocols: From design to interoperable imple-
mentations. In 2023 IEEE Symposium on Security and Privacy (SP), pages
1077–1093, 2023.

[14] The Go Authors. Go homepage. https://go.dev/. Accessed: 2023-10-
12.

[15] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,
Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure
Thompson. Vale: Verifying high-performance cryptographic assembly
code. In Proceedings of the 26th USENIX Conference on Security Symposium,
SEC’17, page 917–934, USA, 2017. USENIX Association.

[16] Secure Foundations Lab CMU. Verifying opentitan. https://github.
com/secure-foundations/veri-titan. Accessed: 2023-10-12.

[17] Timon Egli. Translating pedagogical exercises to viper’s go front-end,
2023. Bachelor’s Thesis at Department of Computer Science, ETH
Zürich.

[18] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon Howell, Rob
Johnson, and Bryan Parno. Storage systems are distributed systems
(so verify them that way!). In Proceedings of the 14th USENIX Conference
on Operating Systems Design and Implementation, OSDI’20, USA, 2020.
USENIX Association.

[19] K.R.M. Leino and K. Leino. Program Proofs. MIT Press, 2023.

[20] ETH Zürich Department of Computer Science. Viper tutorial. http:

//viper.ethz.ch/tutorial/. Accessed: 2023-10-12.

[21] João Carlos Mendes Pereira, Peter Müller, Dionisios Spiliopoulos, and
Felix Wolf. Verifiedscion homepage. https://www.pm.inf.ethz.ch/

research/verifiedscion.html. Accessed: 2023-10-12.

[22] Viper Project. Gobra tutorial. https://github.com/viperproject/

gobra/blob/master/docs/tutorial.md. Accessed: 2023-10-12.

24

https://microsoft.github.io/z3guide/docs/logic/Quantifiers/
https://microsoft.github.io/z3guide/docs/logic/Quantifiers/
https://www.pm.inf.ethz.ch/research/gobra.html
https://www.pm.inf.ethz.ch/research/gobra.html
https://go.dev/
https://github.com/secure-foundations/veri-titan
https://github.com/secure-foundations/veri-titan
http://viper.ethz.ch/tutorial/
http://viper.ethz.ch/tutorial/
https://www.pm.inf.ethz.ch/research/verifiedscion.html
https://www.pm.inf.ethz.ch/research/verifiedscion.html
https://github.com/viperproject/gobra/blob/master/docs/tutorial.md
https://github.com/viperproject/gobra/blob/master/docs/tutorial.md

Bibliography

[23] Microsoft Research. Ironclad. https://github.com/microsoft/

Ironclad/tree/main. Accessed: 2023-10-12.

[24] Toccata. Why3 homepage. https://why3.lri.fr/. Accessed: 2023-10-
12.

[25] Toccata. Why3 standard library. https://why3.lri.fr/stdlib/. Ac-
cessed: 2023-10-12.

[26] Aaron Tomb and Jean-Baptiste Tristan. Avoiding verifica-
tion brittleness in dafny. https://dafny.org/blog/2023/12/01/

avoiding-verification-brittleness/. Accessed: 2024-03-22.

25

https://github.com/microsoft/Ironclad/tree/main
https://github.com/microsoft/Ironclad/tree/main
https://why3.lri.fr/
https://why3.lri.fr/stdlib/
https://dafny.org/blog/2023/12/01/avoiding-verification-brittleness/
https://dafny.org/blog/2023/12/01/avoiding-verification-brittleness/

Declaration of originality
The signed declaration of originality is a component of every written paper or thesis authored during the
course of studies. In consultation with the supervisor, one of the following three options must be selected:

Title of paper or thesis:

Authored by:
If the work was compiled in a group, the names of all authors are required.

Last name(s): First name(s):

With my signature I confirm the following:
í I have adhered to the rules set out in the Citation Guide.
í I have documented all methods, data and processes truthfully and fully.
í I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for originality.

Place, date Signature(s)

If the work was compiled in a group, the names of all authors
are required. Through their signatures they vouch jointly for the
entire content of the written work.

1 E.g. ChatGPT, DALL E 2, Google Bard
2 E.g. ChatGPT, DALL E 2, Google Bard
3 E.g. ChatGPT, DALL E 2, Google Bard

,�FRQILUP�WKDW�,�DXWKRUHG�WKH�ZRUN�LQ�TXHVWLRQ�LQGHSHQGHQWO\�DQG�LQ�P\�RZQ�ZRUGV��L�H��WKDW�QR�RQH�
KHOSHG� PH� WR� DXWKRU� LW�� 6XJJHVWLRQV� IURP� WKH� VXSHUYLVRU� UHJDUGLQJ� ODQJXDJH� DQG� FRQWHQW� DUH�
H[FHSWHG��,�XVHG�QR�JHQHUDWLYH�DUWLILFLDO�LQWHOOLJHQFH�WHFKQRORJLHV��

,�FRQILUP�WKDW�,�DXWKRUHG�WKH�ZRUN�LQ�TXHVWLRQ�LQGHSHQGHQWO\�DQG�LQ�P\�RZQ�ZRUGV��L�H��WKDW�QR�RQH�
KHOSHG� PH� WR� DXWKRU� LW�� 6XJJHVWLRQV� IURP� WKH� VXSHUYLVRU� UHJDUGLQJ� ODQJXDJH� DQG� FRQWHQW� DUH�
H[FHSWHG��,�XVHG�DQG�FLWHG�JHQHUDWLYH�DUWLILFLDO�LQWHOOLJHQFH�WHFKQRORJLHV��

,�FRQILUP�WKDW�,�DXWKRUHG�WKH�ZRUN�LQ�TXHVWLRQ�LQGHSHQGHQWO\�DQG�LQ�P\�RZQ�ZRUGV�� L�H�� WKDW�QR�RQH�
KHOSHG� PH� WR� DXWKRU� LW�� 6XJJHVWLRQV� IURP� WKH� VXSHUYLVRU� UHJDUGLQJ� ODQJXDJH� DQG� FRQWHQW� DUH�
H[FHSWHG��,�XVHG�JHQHUDWLYH�DUWLILFLDO�LQWHOOLJHQFH�WHFKQRORJLHV���,Q�FRQVXOWDWLRQ�ZLWK�WKH�VXSHUYLVRU��,�
GLG�QRW�FLWH�WKHP�

A Standard Library for Gobra

Nezamabadi Daniel

Zurich

	Contents
	Introduction
	Background
	Gobra
	Dafny
	Verus
	Why3
	Dafny and Why3's Standard Library

	Overview
	Evaluation
	Experiments
	Experiment Setup
	Using opaque
	Manual Proofs
	Assisting the Verifier

	Limitations of Gobra

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

