
Adding Native Support for Havoc in
Viper

Practical Work

Daniel Zhang

September 9, 2022

Advisors: Prof. Dr. Peter Müller, Dr. Malte Schwerhoff

Department of Computer Science, ETH Zürich

Abstract

To havoc a memory region means to assign it nondeterministic values.
This notion is especially common when describing the semantics of
concurrent code, e.g. to simulate a thread modifying a shared region
to an unknown value. Viper is an Intermediate Verification Language
with several front-ends, some of which verify concurrent code. How-
ever, Viper has no native havoc statement. Instead, developers encode
a havoc using a sequence of existing statements. Unfortunately this
encoding is overly complex, and has become a performance bottleneck
for some front-ends. In this project, we explore adding havoc as a na-
tive feature to Viper, including a “havocall” version which operates on
an unbounded set of regions. Finally, we demonstrate a performance
improvement over the existing encoding.

i

Contents

Contents iii

1 Introduction 1

2 Background 3
2.1 Viper Language Overview . 3
2.2 Viper’s Permission Model . 4
2.3 Implementation in Silicon . 6

3 Adding Havoc to Viper 11
3.1 Havocking with Exhale and Inhale 11
3.2 Syntax . 13
3.3 Semantic Properties of Havocking Resources 14
3.4 Symbolic Execution Rules . 16

3.4.1 Havoc with Non-Quantified Permissions 17
3.4.2 Havocall with Non-Quantified Permissions 17
3.4.3 Incorporating Quantified Permissions 19

4 Implementation and Evaluation 23

5 Conclusion 27

Bibliography 29

iii

Chapter 1

Introduction

Program verification has become an area of renewed interest due recent tech-
nological developments and its applications to safety-critical software. As a
result, various program verification languages have arisen. These languages
cover an assortment of domains, from verifying smart contracts to assembly
language. However, in all of these situations, building the entire verifica-
tion framework, from a high-level source encoding down to the verification
conditions, is a painstaking task.

To ease their development, many verification languages instead compile to
an intermediate verification language (IVL). The IVL will transform the input
into verification conditions, which can be processed by an SMT solver, such
as Z3. The verification result is then translated back up the toolchain. An
IVL should have simple, predictable behavior, providing only a core set of
features. On the other hand, it should share enough similarities with its
front-ends, e.g. by allowing memory accesses and control-flow patterns, to
facilitate an easy translation.

One such IVL is Viper, developed by the Programming Methodology Group
at ETH Zürich [6]. Viper distinguishes itself from other IVLs (e.g. Why3 [1]
and Boogie [4]) due to its permission model, based on a variant of separation
logic [7]. In this logic, the heap is viewed as a collection of distinct resources,
each of which has a memory footprint that may satisfy some invariant. This
logic is useful for describing heap-dependent data structures, especially in
concurrent settings. For this reason, Viper is an appealing target language
for applications that verify multithreaded code.

Another technique for specifying concurrent programs is rely-guarantee rea-
soning [3]. This reasoning provides tools for specifying shared memory re-
gions which may be manipulated by multiple threads, subject to constraints.
These constraints may take the form of invariants on the region, or restric-
tions on acceptable state transitions. Combined with separation logic, these

1

1. Introduction

two tools allow users to specify complex properties involving atomic syn-
chronization primitives.

In order to encode rely-guarantee reasoning, it is helpful to have a notion
of “modifying a memory region to an unknown value”. For example, this
could be used to model a thread assigning unknown values to a shared re-
gion. This concept is referred to as havocking a memory region. Even better,
we would like to know that the memory region still satisfies its invariant
despite the other thread’s modification. A natural extension of havocking a
single memory region is havocking an unbounded set of memory regions,
each of which satisfies some constraint.

It is possible to encode this operation using existing Viper primitives, specif-
ically exhale and inhale statements. However, this encoding is circuitous
— it achieves this behavior by operating on permission amounts instead of
snapshots, a more direct and conceptually simple approach (see Section 3.1).
As a consequence, its behavior is much slower than it could be. Specifically,
its performance is a bottleneck for verifying programs written in Voila, a
front-end for Viper that specializes in fine-grained concurrency [11]. As
a temporary fix, a “havoc hack” was added to Viper. This improved per-
formance significantly, and motivated the development of a more flexible,
long-term solution.

The goal of this project is to add two new statements into Viper: havoc and
havocall. These two statements will havoc a single resource and an un-
bounded set of resources, respectively. This project includes an implemen-
tation in Silicon, one of Viper’s two backends. This implementation should
handle all resources, specifically field access, predicates, magic wands, and
their quantified versions. These two statements should outperform exhale

and inhale, providing a more efficient encoding for Viper front-ends and
allowing us to retire the “havoc hack”.

The contents of this report is as follows. First we provide the necessary
background on Viper. This includes a brief introduction to the language, its
permission model, and its implementation with Silicon. Next, we discuss
how to incorporate havoc into Viper. This involves summarizing the design
goals of havoc and how they influence the symbolic execution rules in Sili-
con. We conclude the report with a discussion of the implementation, and
we analyze performance improvements.

2

Chapter 2

Background

This section provides the background on Viper and Silicon needed to in-
troduce havoc. First, we provide a language overview of Viper, including
its permission model. We then discuss its implementation in Silicon, one
of Viper’s back-ends. In particular, we discuss the program state, and we
introduce some symbolic execution helper functions.

2.1 Viper Language Overview

As mentioned earlier, Viper is an IVL that provides native support for a
variation of separation logic [7]. Several front-ends that compile to Viper
have already been developed. For example, Gobra, Prusti, and Nagini verify
code written in Go, Rust, and Python, respectively. Viper has two back-ends:
Carbon and Silicon. Carbon compiles Viper code into Boogie, a simpler IVL.
Then, the Boogie program is verified via translation to Z3, and the results
are reported back up the tool chain. On the other hand, Silicon symbolically
executes Viper code. While stepping through each code path, Silicon builds
up a list of verification conditions, and dispatches them directly to Z3. We
do not mention Carbon for the remainder of this report, as this project’s goal
was focused on Silicon.

Viper shares similarities with other imperative languages. Programs are di-
vided into several top-level declarations, including methods and functions.
Method bodies contain a sequence of statements, while function bodies con-
sist of a single (side-effect-free) expression. Both methods and functions
have a contract, specifying the pre- and post-conditions. Viper has a simple,
static type system. Bools and Ints represent Booleans and mathematical
integers, respectively. In addition, the types Set[T] and Seq[T] denote the
aggregate types of mathematical sets and sequences, respectively. Objects on
the heap all have the type Ref (short for “reference”). Viper has no notion of
classes. All fields are declared at the top level and apply to any reference-

3

2. Background

typed variable. The user can allocate a field for any reference using a new

statement.

2.2 Viper’s Permission Model

In this section, we provide an introduction into Viper’s permission model.
At any given point, the program state consists of a set of resources. Each
resource has an underlying memory footprint — this consists of the set of
memory locations that make up the resource. As a simple example, the
memory at the location x.f forms the footprint of this field resource. It is
also possible to combine field resources into predicates, which have larger
footprints. For example, the predicate Pair(x) might be defined to contain
both the f and g fields of x. More details follow shortly.

In order to access the memory in a resource’s footprint, the programmer
must have the appropriate resource permission. Given full permission to a re-
source, the programmer is guaranteed to have exclusive access to its memory
footprint, and therefore the footprint is disjoint from every other resource’s
footprint. This allows the programmer to modify memory without worrying
that it will alias with another resource’s footprint.

Viper provides two primitive statements for manipulating the amount of
permission to a resource. The inhale statement adds a resource to the
heap. inhale statements must be used with caution, as they can cause un-
soundness. For example, inhaling full permission to the same resource twice
would violate the disjointness property. The exhale statement asserts that
we have access to the resource, and then removes it from the heap. Any fact
about this resource’s memory is forgotten. These primitives can be com-
bined to represent the exchange of resources, e.g. from a caller to callee, or
between threads.

There are three basic kinds of resources: fields, predicates, and magic wands.
We provide a brief introduction on each.

Fields Field resources allow users to read or write to a reference’s field. To
assert full permission to a field resource, a programmer uses the keyword
acc, as in acc(e.f). (It is possible to have partial permission to a resource, as
explained later in this section.) acc is an accessibility predicate, and is Viper’s
version of separation logic’s points-to predicate [7]. As mentioned above,
full permission to a resource implies exclusive access. Thus, if we simulta-
neously have acc(x.f) and acc(y.f), then they have different footprints,
and we can conclude x != y.

Predicates Predicates resources combine field resources with logical connec-
tives to create larger structures. Like fields, users can denote access to pred-

4

2.2. Viper’s Permission Model

1 field f: Int

2 field g: Int

3 predicate Pair(x: Ref) {

4 acc(x.f) && acc(x.g) && x.f < x.g

5 }

6

7 method foo(x: Ref)

8 {

9 inhale acc(x.f)

10 inhale acc(x.g)

11 x.f := 1

12 x.g := 2

13 fold Pair(x)

14 // ... code that does not modify Pair(x) ...

15 unfold Pair(x)

16 assert x.f < x.g // guaranteed by predicate body

17 assert x.f == 1 // information that is preserved.

18 }

Figure 2.1: A simple example of Viper with a predicate. First, we inhale
two field resources. We assign 1 and 2 to them so that they satisfy the
constraints in Pair. This allows us to fold the predicate, replacing the two
field resources with Pair(x). When we unfold the predicate, we replace
Pair(x) with the two field resources. We further learn that x.f < x.g, as
this is guaranteed from the predicate body. Finally, we can still assert that
x.f == 1, as this was preserved across the fold-unfold pair.

icates using the acc keyword. In addition, if the user has access to a pred-
icate resource, they can use the unfold statement. Internally, this exhales
the predicate instance, and inhales the predicate body instantiated with its
arguments. The fold statement works in the opposite direction — given the
predicate body, the fold statement exchanges it for the predicate resource.
One key feature of this logic is that information is preserved across fold-
unfold pairs. An example is shown in Figure 2.1, where information about
Pair(x) is preserved after it is folded and unfolded. This feature is achieved
via predicate snapshots, which we discuss in Section 2.3.

Magic Wands Magic wands take the form A --* B, where A and B contain
resources and logical connectives. If the user has A and the wand A --* B,
they can exchange both for B. Wands represent separation logic’s separating
implication [8]. A thorough discussion of magic wands is beyond the scope
of this report. However, they share many similarities with predicates. As
suggested above, just like predicates, wands can be exchanged with other
resources — instead of using fold and unfold, we use package and apply.
Likewise, it is possible to preserve information across a package-apply pair
using a magic wand snapshot. Because their behavior is so similar in the con-

5

2. Background

text of this report, for the remainder of this paper we only discuss predicates
specifically, pointing out the differences with wands when applicable.

Fractional Permissions We can extend the syntax acc(e.f) by allowing
acc(e.f, p). The expression p has type Perm and denotes a permission
amount. When p is 1 (also depicted with the keyword write), we have full
permission to x.f — this is equivalent to acc(x.f). If p is 0 (also depicted
by none), we have no permission to the resource — this is equivalent to it
being absent from our heap. For other values of p between 0 and 1 exclusive,
we have a fractional permission amount. This provides enough permission to
read, but not enough to modify the memory. Holding a permission amount
greater than 1 to a memory location is unsound. Permission amounts can
be split and combined using usual arithmetic rules. As a consequence, if we
have read-only access to a resource, nowhere else can there exist full permis-
sion to the same resource. Fractional permissions extend to predicates with
the syntax acc(P(e), p). However, they do not extend to magic wands
(yet).

Quantified Permissions Predicates are useful for representing data struc-
tures with recursive formats. However, they struggle to encode other data
structures, such as arrays or graphs, with no inherent access patterns. To
solve this problem, Viper uses quantified permissions, which correspond to
separation logic’s iterated separating conjunction [5]. Viper uses quantifiers to
express permissions to an unbounded number of resources. Their syntax is

forall x: T :: c(x) ==> R(x)

where T is the type of x (the quantified variable), c(x) is a Boolean expres-
sion, and R(x) is any of the above resources. This permission indicates that
we have access to any resource R(x) which satisfies the condition c(x). Viper
supports quantifying over multiple variables, but to simplify their presenta-
tion in this report, we only include the case with one quantifier.

2.3 Implementation in Silicon

This section describes how Viper’s permission model is realized in Silicon.
Before discussing the encoding, we introduce the concept of a symbolic value.
Then we discuss non-quantified permissions, before extending their imple-
mentation to quantified permissions. Next, we describe Silicon’s program
state. Finally, we introduce two of Silicon’s symbolic execution primitives,
and we describe how they manipulate the state.

Symbolic Values We use symbolic values when describing the semantics of
a Viper program. Let V be the type of symbolic values. The symbolic ex-

6

2.3. Implementation in Silicon

ecution rules operate on symbolic values, and so many program types and
expressions have symbolic counterparts. For example, every program vari-
able v ∈ Var has a corresponding symbolic value v ∈ V. As in the preceding
sentence, we use fonts to distinguish between program variables and sym-
bolic values. The program types Int and Bool have symbolic types Int,
Bool ⊂ V. In addition, all binary operators and functions have correspond-
ing symbolic functions which operate on symbolic values. In particular,
if-then-else expressions, whose concrete syntax in Viper is c ? x : y, are
represented with the symbolic expression ite(c, x, y).

We use the function fresh to introduce a fresh symbolic value, i.e. a sym-
bolic value about which we have no knowledge. The type of the value is
clear from context.

Heap Chunks Silicon represents the heap as a set of heap chunks. The cate-
gory of heap chunks is subdivided into predicate chunks, field chunks, and
magic wand chunks. Each heap chunk corresponds to a resource that we
have access to.

Predicate chunks have the shape id(r; s, p). The string id uniquely identifies
the predicate type. Items to the left of the semicolon are in-arguments to the
predicate. Throughout this report, we use an overline to denote multiple in-
stances. Here, r represents the symbolic values of the arguments to id. The
value p denotes the permission amount. Field chunks can be represented
using the same syntax as predicate chunks. For example, field chunk corre-
sponding to e.f is f (e; s, p). Therefore, for the remainder of the report, we
use “predicate chunk” to refer to field chunks as well.

Finally, s represents the snapshot of the predicate chunk. The snapshot rep-
resents the values in the resource’s memory footprint. Each snapshot has
the type Snap ⊂ V. For field chunks, the snapshot contains the symbolic
value at the field location. For other predicate chunks, snapshots represent
trees which mirror the predicate body — the leaves of a snapshot tree con-
tain field chunk snapshots. The exact details of how predicate snapshots
are constructed is not relevant for this report (see [9], Section 3.1.2). The
key takeaway is that snapshots represent the values in the heap chunk’s
footprint. If a snapshot is replaced with a fresh one, the verifier loses infor-
mation about its underlying memory.

Consider the brief example in Figure 2.2. The permissions acc(x.f) and
acc(x.g) are represented by the chunks f (x; s1, 1) and g(x; s2, 1), respec-
tively. The variable assignment on line 9 introduces the fact s1 = 42 to our
knowledge base. On line 10, we exchange our two chunks for the chunk
P(x; s, 1). Furthermore, we learn a fact about s that aggregates information
about s1 and s2 (specifically, we learn s = Pair(s1, s2) — no relation to the

7

2. Background

1 field f: Int

2 field g: Int

3 predicate P(x: Ref) {

4 acc(x.f) && acc(x.g)

5 }

6 method foo(x: Ref)

7 requires acc(x.f) && acc(x.g)

8 {

9 x.f := 42

10 fold P(x)

11 }

Figure 2.2: A simple example where we exchange two field chunks for a
predicate chunk

Pair predicate from Figure 2.1). The knowledge s1 = 42 persists. Thus if
P(x) were unfolded, we would retain the knowledge that x.f == 42.

Quantified Heap Chunks Quantified resources represent an unbounded
number of resources and therefore have a different heap chunk representa-
tion. Consider the quantified permission.

forall x: T :: c(x) ==> acc(id(e(x)), p(x))

Its quantified heap chunk has the shape id(r; sm, pm). As before, r : E are
the arguments to the predicate (or field) id. Then, sm : E → Snap is a
snapshot map. The value at sm(r) is the snapshot of the predicate instance
id(r). Next, pm : E → Perm is a permission map. Analogous to snapshot
maps, the value at pm(r) contains the permission amount of id(r). If the
condition c(x) is not satisfied, then the permission amount is 0.

Observe that pm maps E→ Perm. However, the condition c(x) is expressed
in terms of x ∈ T. With this construction, it is not clear how to check that a
predicate instances id(r) satisfies the condition c(x). In order for this to be
possible, the argument expressions e(x) must satisfy an injectivity property.
We go into further detail when discussing havocall in Section 3.4.2, which
is subject to the same constraint.

Program State Now that we know how to encode heap chunks, we can
describe how Silicon represents the program state. We provide formal def-
initions that are compatible with [9]. The program state has type Σ, with
typical representative σ. The state contains several components — here we
list only the relevant ones.

• A store γ : Var → V. This maps programmatic variables Var to sym-
bolic values V. The store is updated, e.g. after a variable assignment,

8

2.3. Implementation in Silicon

or when we enter a new scope.

• A heap h : H. The heap contains a set of heap chunks.

• A path conditions stack π : Π. This contains a set of path conditions, i.e.
Boolean expressions that must be true in the current execution path.
The stack representation makes it easier to handle backtracking, e.g.
when executing if statements, and is not relevant for this report.

A path condition v ∈ V can be added to a path condition stack π with the
helper function pc-add. This function has signature Π → V → Π. The
final (return) argument is the new path condition stack, with v added. The
implementation can be found in Figure 3.3 of [9]. We use this function when
formulating havoc’s execution rules in Section 3.4.1.

Symbolic Execution We now show Silicon processes program statements
using symbolic execution. The execution primitives that we will introduce
both use continuation-passing style (CPS) [2]. This paradigm is useful for
representing unusual control-flow patterns, such as branching and back-
tracking. It provides no benefit for this report’s contribution (namely havoc

and havocall). However, we describe all functions using CPS to maintain
consistency with [9].

Let S and E be the types of program statements and expressions, respec-
tively. Furthermore, let R be the type of verification results, in particular
Success or Failure. We introduce two symbolic execution primitives:

exec: Σ→ S→ (Σ→ R)→ R
eval: Σ→ E→ (Σ→ V → R)→ R

The function exec is used to process a statement s ∈ S. Doing so will
likely modify the program state. For example, a variable assignment might
update the store σ.γ, or an inhale statement might add a heap chunk to
σ.h. Therefore, a new state σ′ ∈ Σ is computed. This state is passed to the
continuation Q : Σ → R, which is the final (non-return) argument to exec

(as is canonical in CPS). Eventually, this continuation will yield a verification
result, which we immediately return.

As a helper function, exec often calls eval. This function evaluates an ex-
pression into a symbolic value v ∈ V. As an example, evaluating the local
variable x is simply the map look-up σ.γ[x]. In general, an expression eval-
uation may modify the state. Therefore, the new state and symbolic value
are passed on to the continuation Q : Σ→ V → R.

9

Chapter 3

Adding Havoc to Viper

In this section, we describe how havoc works as a native feature in Viper.
First, we discuss issues with its encoding via exhale and inhale as motiva-
tion for introducing the new statements. Then, we introduce the syntax of
the havoc and havocall statements. We then outline the semantics, with
special consideration for when the heap contains fractional permissions. We
conclude this section by showing the symbolic execution rules for havoc
statements in Silicon.

3.1 Havocking with Exhale and Inhale

As mentioned in the introduction, it is possible to encode havoc via exhale
and inhale. Now that we are familiar with how Silicon represents the heap,
we provide more detail on this encoding and explain its shortcomings.

Suppose we want to havoc the resource e.f. An equivalent Viper encoding
would be

label L

var p: Perm := perm(e.f)

exhale acc(e.f, p)

inhale acc(old[L](e.f), p)

We briefly introduce the new syntax. The expression perm(R) computes the
amount of permission p to the resource R. The label statement allows users
to refer to the heap at an earlier state. Let hL denote the heap at the label
L. Then, the expression old[L](e) evaluates the expression e in hL. It is
possible to extend this encoding to handle cases where (1) we havoc only
under a certain condition or (2) we havoc a quantified resource.

We now show how these statements have the same behavior as havoc, start-
ing with simple cases. During an exhale statement, Silicon scans through
the heaping, looking for a matching chunk with enough permission, i.e. a

11

3. Adding Havoc to Viper

1 method foo(e1: Ref , e2: Ref)

2 requires acc(e1.f, 1/3) && acc(e2.f, 2/3)

3 {

4 // encode havoc e2.f:

5 var p: Perm := perm(e2.f)

6 exhale acc(e2.f, p)

7 inhale acc(e2.f, p)

8 }

Figure 3.1: A program that Silicon’s default exhale semantics fails to verify.
At the start of the function, we have two heap chunks. However, we don’t
know if e1 and e2 alias each other. Therefore, p might contain a full per-
mission. Neither heap chunk definitively has at least p permissions, so the
exhale fails.

chunk f (r; s, q) where r = e and q ≥ p. It then removes p permissions,
leaving the chunk with q− p permissions remaining. Since p is defined to
contain all the permission to e.f, we remove the entire heap chunk. In the
inhale statement, we add a new heap chunk f (r; s′, p), where s′ is a fresh
snapshot. Since s′ has no relation to s, all the original facts about the foot-
print are lost. Notice that the net effect of these statements is simply to
replace s with a fresh snapshot s′. However, we achieved this result with
exhale and inhale, which operate on permission amounts.

Although this implementation is sound, havocking would fail in several sit-
uations. Suppose permissions are split as fractions across multiple heap
chunks. For example, our heap might contain the two chunks f (e; s, 1/3)
and f (e; s, 2/3). With the above definition, the exhale statement would look
for a heap chunk with permission p = 1, and it would fail. To solve this
problem, Silicon performs state consolidations (see [9], Section 3.4.2). At cer-
tain points, Silicon identifies chunks that alias each other and consolidates
them into a single chunk. Once these chunks are consolidated, the exhale
succeeds.

However, the aliasing information may be ambiguous at the time of the
exhale. Consider the example in Figure 3.1. At the function start, our heap
contains the chunks f (e1; s1, 1/3) and f (e2; s2, 2/3). We are unsure if e1 = e2,
and so p could be as high as 1. Thus, line 6 fails because neither heap chunk
is a suitable candidate. State consolidation does not help because Silicon
cannot prove that the chunks alias each other.

This situation can be remedied by adjusting the exhale algorithm as follows.
We iterate over all heap chunks with the resource f . One by one, we remove
permissions from chunks until we have accrued all p permissions. To handle
the above issues, the permission amount might depend on aliasing facts.
This method is much more nuanced because at each point, we have several

12

3.2. Syntax

considerations. If the resource is disjoint, we should remove no permissions.
We should only remove permissions as needed, i.e. no more than p in total.
Moreover, for any given heap chunk, we cannot remove so much permission
as to yield a negative permission amount.

Observe this modified exhale algorithm on the above example. We first
consider f (e1; s1, 1/3). If e1 = e2, then these resources alias, and we should
remove permissions. On the other hand, if e1 and e2 are disjoint, then we
should skip this resource. This results in the new heap chunk f (e1; s1, p′1),
where p′1 = ite(e1 = e2, max(0, p− 1/3), 1/3).

The complication propagates to the next heap chunk, f (e2; s2, 2/3). How
much permission should we remove from this heap chunk? It depends on
how much was consumed by the previous one. The remaining permission
that needs to be exhaled is ple f t := p− p′1. Thus, we replace this chunk with
a new one f (e2; s2, p′2), where p′2 = ite(e2 = e2, max(0, ple f t − 2/3), 2/3). In
this case, the if-then-else expression trivially simplifies to ple f t − 2/3.

As you can see, using these semantics for exhale incurs a significant time
penalty. For this reason, it is not the default behavior in Silicon — it must be
enabled using the flag enableMoreCompleteExhale. There are two sources
of slowness. First of all, this implementation mixes lots of casework with
permission arithmetic. In addition, this implementation does not scale well.
The amount of permission that we remove from one heap chunk depends
on how much we removed from the previous ones. Thus, as we have more
and more heap chunks, the execution slows down super-linearly. This is
confirmed with experimental results in Section 4. The slowness is even more
evident in the context of quantified permissions.

Recall our original goal for encoding havoc: we want to replace the heap
chunk f (r; s, p) with f (r; s′, p), where s′ is fresh. With exhale and inhale, we
achieved this end, albeit with a complicated and indirect approach. It would
be simpler and more efficient to just replace the snapshot s with s′. In other
words, we should operate on the snapshot directly, rather than achieve our
means by manipulating the permissions. This motivates the introduction of
a new statement: havoc.

3.2 Syntax

Havoc statements take the following form:

havoc c ==> R

Here, c is a Boolean expression which we refer to as the havoc condition. The
havoc condition can be syntactically omitted, in which case it is true. Then,
the resource R is referred to as the havocked resource. This resource is only

13

3. Adding Havoc to Viper

havocked if the havoc condition is satisfied. It can be any non-quantified
resource, i.e. a field, predicate, or a magic wand. Note that havoc only acts
on snapshot values and has no effect on permission amounts (unlike inhale
and exhale). For this reason, surrounding the havocked resource with acc is
not valid syntax.

To havoc an unbounded number of resources, we introduce the havocall

statement. It has similar syntax but includes a quantified variable:

havocall x: T :: c(x) ==> R(x)

Both the condition and the resource can depend on the quantified variable.
havocall with multiple quantified variables is allowed. However, it is not
conceptually more challenging than havocall with one quantifier, so for the
remainder of the report, we simplify their presentation by only considering
one quantified variable.

3.3 Semantic Properties of Havocking Resources

Suppose we encounter the statement havoc x.f. If our heap contains the
field chunk f (x; s, write), then our task is simple — we must replace s with
a fresh snapshot. However, we must address the same concerns as in Figure
3.1. There could be several field chunks with fractional permissions that all
correspond to x.f. We may have a field chunk f (y; s, p), where x and y alias.

These possibilities lead to the following procedure. First, we gather the field
chunks with the shape f (r; s, p). Instead of directly replacing s with a fresh
snapshot, we must handle the case where r and x alias. For this reason, we
replace s the snapshot s′ := ite(x = y, fresh, s). Note that this term is not
eagerly evaluated. Therefore, we handle situations like 3.2 properly. The
heap chunk’s permission value remains the same.

Havocking predicates behaves exactly the same as havocking fields. When a
predicate instance’s snapshot is replaced, we lose all information about the
predicate’s footprint. However, the predicate instance can still be unfolded.
When the unfold occurs, we may learn information about the predicate’s
memory footprint mandated from the predicate definition. However, all
other facts about the footprint are lost. For example, consider the program in
Figure 3.3. After the havoc statement, we lose information that x.f contains
the value 2. However, when we unfold, we still know that x.f satisfies the
predicate’s body.

Havocking Resources with Fractional Permissions

Previously, we motivated the havoc statement with the need to “change
a memory region to an unknown value”. When our heap contains a full

14

3.3. Semantic Properties of Havocking Resources

1 field f: Int

2 method foo(x: Ref , y: Ref)

3 requires acc(x.f) && x.f == 42

4 {

5 havoc y.f

6 assume x != y

7 assert x.f == 42

8 }

Figure 3.2: On line 5, we have no information about the reference y. In
particular, we don’t know if y is just an alias of x. Therefore, we cannot
assert x.f == 42 immediately after line 5. After line 6 we learn that x and y

are different references, so the havoc statement has no effect on x.f. (In fact,
it has no affect on the program state at all, since we have no heap chunks
that match the havoc statement.) Therefore, we can assert x.f == 42. This
example shows that havoc must not eagerly replace snapshots

1 field f: Int

2 predicate positive(x: Ref) {acc(x.f) && x.f > 0}

3 method foo(x: Ref)

4 requires acc(x.f) && x.f == 2

5 {

6 fold positive(x)

7 havoc positive(x)

8 unfold positive(x)

9 assert x.f > 0

10 }

Figure 3.3: Havocking a predicate. After the havoc statement, we lose in-
formation about the body of the predicate. Therefore, on line 9, we cannot
assert that x.f is 2. However, from the predicate body definition, we know
that it is still positive.

permission to the havocked resource, this interpretation is exactly correct.
However, the behavior is more subtle when our heap contains only a frac-
tional permission to the havocked resource. In this case, we do not have full
permissions, so we cannot modify the resource’s memory. Even though we
replace the snapshot with a fresh one, this does not constitute a nondeter-
ministic assignment.

Consider the example in Figure 3.4. At the start of the method, the heap
contains a full permission to x.f. However, a fractional permission is hid-
den inside the predicate P(x). When we havoc x.f, only the snapshot for
the remaining fraction is replaced. Thus, by unfolding P(x), Viper can re-
learn the facts about x.f that were havocked. In this situation, it would be
incorrect to describe havoc as “assigning a nondeterministic value to x.f”,

15

3. Adding Havoc to Viper

1 field f: Int

2 predicate P(x: Ref) {acc(x.f, 1/3)}

3 method HavocFrac(x: Ref)

4 requires acc(x.f) && x.f == 42

5 {

6 fold P(x)

7 havoc x.f

8 unfold P(x)

9 assert x.f == 42

10 }

Figure 3.4: Havocking with fractional permissions. On line 6, we fold 1/3
of the permission into the predicate P. At this point, the heap contains
acc(P(x)) and acc(x.f, 2/3). When we havoc x.f on line 7, only 2/3
of its permissions are available — the other 1/3 is stored in P(x). To execute
the havoc, we replace the snapshot of acc(x.f, 2/3) with a fresh snapshot.
Therefore, immediately after line 7, it would be impossible to assert x.f ==

42. However, we then unfold P(x) to reveal our 1/3 permission of acc(x.f).
This permission is combined with the 2/3 permission, and the information
about the snapshot is consolidated. We relearn that x.f == 42. This exam-
ples shows that it is possible to retain information about a resource when
only a fraction has been havocked.

since we didn’t have full permissions in the first place.

This behavior might seem unintuitive. It would be possible to implement
havoc such that it fails unless a full permission is havocked. However, the
chosen definition matches existing constructs in Viper. For example, the user
might think that the statement

exhale acc(x.f, perm(x.f))

removes all accesses to x.f. However, a fraction of x.f could be similarly
hidden inside of a predicate. In addition, adding this restriction would
require permission math, which would undercut our potential performance
gains.

3.4 Symbolic Execution Rules

In this section, we introduce the execution rules for havoc and havocall. We
begin with the simplest case, where we havoc a resource and the heap con-
tains only non-quantified resources. Next, we address havocall statements
with non-quantified resources. Finally, we introduce the execution rules for
both statements in the context of quantified resources.

16

3.4. Symbolic Execution Rules

3.4.1 Havoc with Non-Quantified Permissions

We begin with the execution rules for havocking non-quantified resources.
We provide pseudocode for three functions in Figure 3.5. Some of these
helper function will be reused with havocall and quantified resources.

The function exec was introduced in Section 2.3 and is used to execute all
Viper statements — we add case for havoc in Figure 3.5 line 2. First, we
evaluate all involved expressions into terms. Next, we call the helper func-
tion execHavoc. To this function, we must provide an extra data argument.
This argument provides extra information needed to calculate the snapshot
replacement condition (more on this later). The exact contents of the data ar-
gument differs between the implementations of havoc and havocall. There-
fore, we give it the type HavocData, defined by the following tagged union:

HavocData = HavocOneData V | HavocAllData V

In this case, we use the HavocOneData constructor. The function execHavoc

calculates the new state, which contains our newly havocked heap chunks.
We then call the continuation on this new state.

The function execHavoc replaces snapshots for the relevant resources. First,
we gather the heap chunks of type id — these are the only ones which
could be affected by the havoc statement. We process each of these heap
chunks individually. We use the subroutine replacementCond to provide the
replacement condition b, which determines under which condition the heap
chunk should be havocked. In this case, replacementCond checks whether
the arguments to the havocked resource are equal to the heap chunk, and if
c′ is true. For example, if we encounter the statement havoc c ==> P(e1, e2)
and our heap contains the heap chunk P(r1, r2; s, p), then the replacement
condition is b := (c′ ∧ e′1 = r1 ∧ e′2 = r2). We emphasize that b is not
evaluated eagerly — it is merely a symbolic expression.

We then construct a new snapshot s′. If b holds, then the heap chunk is
havocked, and so s′ will equal a fresh snapshot. Otherwise, it points to the
original snapshot. After processing all the relevant heap chunks, we return
the new state.

3.4.2 Havocall with Non-Quantified Permissions

Before discussing the execution rules for havocall, we must mention the
injectivity requirement. Consider the generic form of havocall:

havocall x: T :: c(x) ==> P(e(x)).

where arguments of P have type E. Let e(x)′ be the symbolic expressions
corresponding to the arguments e(x). Let e? : T → E be the function that

17

3. Adding Havoc to Viper

1: exec: Σ→ S→ (Σ→ R)→ R
2: exec(σ1, havoc c ==> id(e), Q) =
3: eval(σ1, c :: e, (λ σ2, c′ :: e′·
4: σ2 := execHavoc(σ2, id, c′, HavocOneData(e′))
5: Q(σ2)))

6:
7: execHavoc: Σ→ Id→ V → HavocData→ Σ
8: execHavoc(σ, id, c′, data) =
9: Let hid ⊆ σ.h be all the chunks with identifier id

10: h′id := ∅
11: foreach id(r; s, p) ∈ hid do

12: b := replacementCond(c′, r, data)
13: s′ := ite(b, fresh(), s)
14: h′id := h′id ∪ {id(r; s′, p)}
15: σ{h := (σ.h \ hid) ∪ h′id}
16:
17: replacementCond: V → V → HavocData→ V
18: replacementCond(c′, r, HavocOneData(e′)) =
19: c′ ∧ e′ = r

Figure 3.5: Execution rules for havocking a non-quantified resource

maps x to e(x)′. We require that e? is injective. The justification is very sim-
ilar to the reasoning for quantified permissions, which we summarize here.
Suppose we have a heap chunk P(r; s, p). Under what situations should we
replace s with a fresh snapshot? We should havoc s if there exists some y
such that the conditions c(y)′ and

∧
e(y)′ = r both hold. However, evaluat-

ing such existentials is very difficult for SMT solvers. We therefore impose
the restriction that e? is an invertible function, with inverse e−1 : E → T.
With this condition, to determine if we should havoc the snapshot, it suf-
fices to check c(e−1(r)).

We are now ready to discuss the execution rule for havocall, shown in
Figure 3.6. First, we must evaluate all the relevant expressions. This is
complicated since the expressions could contain quantified variables, so we
cannot simply pass them to eval. Instead, we employ the same technique
used to evaluate quantified permissions in [9], Section 4.2.2. Essentially, we
leverage the execution rule for evaluating forall expressions. Then, we
pattern match on the result to extract the condition and argument terms.
The function D is a dummy function whose only purpose is to allow us to
process the predicate arguments. This takes place on lines 2–3.

Lines 4–11 all relate to the injectivity requirement. First, we assert e? is actu-

18

3.4. Symbolic Execution Rules

1: exec(σ1, havocall x : T :: c(x) ==> id(e(x)), Q) =
2: eval(σ1, forall x : T :: c(x) ==> D(e(x)),
3: (λ σ2, (∀x : T · c(x)′ ⇒ D′(e(x)′)) ·
4: Let y1, y2 be fresh symbolic constants of type T
5: assert(σ2, c(y1)

′ ∧ c(y2)′ ∧ e(y1)′ = e(y2)′

6: ⇒ y1 = y2)

7: Let imge be a fresh function of type E→ Bool
8: imgde f := ∀x : T · c(x)′ ⇒ imge(e(x)′)
9: Let e−1 be a fresh function of type E→ T

10: inv1 := ∀r : E · imge(r) ∧ c(e−1(r))′ ⇒ ∧
ei(e−1(r))′ = ri

11: inv2 := ∀x : T · c(x)′ ⇒ e−1(e(x)′) = x
12: σ3 := execHavoc(σ2, id, c(x)′, HavocAllData(e−1))
13: π3 := pc-add(σ3.π, {inv1, inv2, imgde f })
14: Q(σ3 {π := π3})))
15:
16: replacementCond(c(x)′, r, HavocAllData(e−1)) =

17: c(e−1(r))′

Figure 3.6: Execution rules for havocall with non-quantified resources

ally injective. Then, we must ensure that e−1 only receives arguments within
its domain. Therefore, we define a function imge, which detects if a value
is in the domain of e−1, i.e. the range of e?. This function is axiomatized
with imgde f . We then define a fresh inverse function e−1 and axiomatize it
appropriately. We must pass e−1 to execHavoc, as it is used to construct the
replacement condition.

As before, execHavoc iterates through all the relevant heap chunks, replac-
ing them with a fresh snapshot if the replacement condition holds. The
replacement condition is calculated in replacementCond. Finally, we add
the injectivity axioms to our path conditions and continue the computation.

3.4.3 Incorporating Quantified Permissions

We now consider havoc and havocall with quantified permissions. In gen-
eral, mixing quantified permissions and non-quantified permissions is chal-
lenging. Silicon simplifies this by making the following design decision: ei-
ther the heap consists entirely of quantified permissions or of non-quantified
permissions. If the programmer mixes the two, Silicon performs a simple
translation step from non-quantified to quantified permissions. Therefore,
we only need to provide a new execution rule if quantified permissions are
present.

19

3. Adding Havoc to Viper

1: execHavocQP(σ, id, c′, data) =
2: Let hid ⊆ σ.h be all the chunks with identifier id
3: h′id := ∅
4: π′ := σ.π
5: foreach id(r; sm(r), p(r)) ∈ hid do

6: b(r) = replacementCond(c′, r, data)
7: Let sm′ be a fresh snapshot map of type E→ Snap
8: sm′de f := ∀r : E · ¬b(r)⇒ sm(r) = sm′(r)
9: π′ := pc-add(π′, sm′de f)

10: h′id := h′id ∪ {id(r, sm′(r), p(r))}
11: σ{π := π′, h := (h \ hid) ∪ h′id}

Figure 3.7: Execution rules for havoc and havocall with quantified resources

The main difference with the previous implementation is that we must re-
place snapshot maps instead of snapshots. To this end, we only need to
provide an alternative definition of execHavoc, which we call execHavocQP.
When the state contains quantified permissions, the havoc and havocall

cases of exec will call this function instead. (This detail is omitted from
the pseudocode.) Apart from this, the implementations of the other two
functions, exec and replacementCond, need no adjustments.

The function execHavocQP starts off similarly to execHavoc. We extract the
relevant heap chunks of type id. For each heap chunk, we determine the
snapshot’s replacement condition.

At this point, the implementation diverges from execHavoc. On line 7, we
declare a fresh snapshot map sm′ for our new chunk. We axiomatize sm′ as
follows: for any input r, the snapshot sm(r) is preserved if the replacement
condition is not satisfied. We provide no axiomatization for other inputs (i.e.
where the replacement condition might be satisfied). This has the effect of
replacing the snapshot values with unknown entities. Finally, we then add
this axiom to our set of path conditions, and add the heap chunk to our
heap.

Consider the example in Figure 3.8. In this case, our heap contains the
quantified heap chunk P(r; sm(r), pm(r)). We would like to havoc P(g(x))

under the condition b. Intuitively, we should end up with a snapshot map
where if b holds, then only the snapshot P(g(x)) is replaced. We start by
evaluating the expressions. Next, exec calls execHavocQP. We consider our
heap chunk P(r; sm(r), pm(r)). We calculate the replacement condition to
be b∧ r = g(x). We use this to axiomatize a new snapshot map, sm′(r), with

∀r : Snap · ¬(b ∧ r = g(x))⇒ sm(r) = sm′(r)

20

3.4. Symbolic Execution Rules

1 predicate P(x: Ref) {...}

2 function g(x: Ref): Ref {...}

3 method foo(s: Set[Ref], x: Ref , b: Bool)

4 requires forall z: Ref :: z in s ==> P(z)

5 {

6 havoc b ==> g(x).f

7 }

Figure 3.8: An example where we havoc with quantified permissions.

Finally, we add the updated heap chunk P(r; sm′(r), pm(r)) to our state
and return. The situation would be similar if we had performed a havocall
instead of a havoc — we would have done the required injectivity steps,
and we would have used a HavocAllData when calculating the replacement
condition.

21

Chapter 4

Implementation and Evaluation

Implementation

As mentioned before, Viper contains two implementations: Silicon and Car-
bon. Both implementations share a common component called Silver, which
handles parsing, typechecking, and generating the AST. For this project, we
added the nodes Havoc and Havocall to Viper’s AST. We implemented the
corresponding parsing and typechecking rules, before handling their execu-
tion in Silicon.

The corresponding symbolic execution rules have stubs in Executor.scala,
which dispatch functions in a new file: HavocSupporter.scala. This file,
contains the vast majority of the required code changes in Silicon. The im-
plementation is under 200 lines of code, and it closely follows the pseu-
docode in Section 3.4.1. For much of the implementation, existing helper
functions could be employed. For example, all functions for checking injec-
tivity and axiomatizing an inverse function already existed from quantified
permissions. In addition, there is a new test suite which checks various
combinations of havoc and havocall.

Benchmarks

To judge the performance of havoc, a few benchmarks were written. They
were generated with a Python script, so as to parameterize them on an
input size. For example, they might have n variables aliasing, or n invo-
cations of havoc. There were two versions of each benchmark — one with
havoc or havocall, and one with the equivalent behavior in exhale and inhale
statements. All benchmarks were run with enableMoreCompleteExhale. In
addition, Silicon was built in single-threaded mode to yield more consis-
tent results. Only six benchmarks were written. Ideally, we would test the
performance of havoc in more situations. However, these benchmarks are
meant to stress the usage of havoc, and so they may not represent realistic

23

4. Implementation and Evaluation

1 method foo(y: Ref , xi: Ref)

2 requires acc(xi.f, 1/n) // for each i
3 requires xn.f == 42

4 {

5 havoc y.f

6

7 // Learn each xi is an alias of y

8 assume y == xi // for each i
9

10 // Therefore , xn has been havocked

11 assert xn.f == 42 // should fail

12 }

Figure 4.1: An example benchmark, parameterized on the test size n. Any
expression with xi should be instantiated with x1 through xn. Two versions
were created. In the alternate version, line 5 is replaced with exhale and
inhale statements.

code. Thus, their performance should be taken with a grain of salt anyways.
Nevertheless, they demonstrate asymptotic improvement of havoc over ex-
hale and inhale. An example benchmark is shown in Figure 4.1.

Of the six benchmarks created, all of them performed at least as well as their
exhale-inhale counterpart, and three of them performed asymptotically bet-
ter. The most striking example is shown in Figure 4.2. This plot corresponds
to the benchmark in Figure 4.1. This benchmark was based off the example
in 3.1, where we havoc an expression with several heap chunks that might
alias. In that section, we argued that the performance was slow because the
permission math scaled super-linearly. This plot confirms our suspicion. On
the other hand, havocking a heap chunk is a relatively simple operation —
it does not depend on operations with previous heap chunks.

Usage in Voila

To further test havoc, we incorporated it into one of Viper’s front-ends:
Voila. Voila is a verification language that focuses on programs with fine-
grained concurrency. For this reason, it relies on an efficient implementation
of havoc and havocall. In fact, the authors listed it as a major performance
impediment [10].

To handle this issue, Silicon offers a “havoc hack” — when built without the
flag disableHavocHack407, the user can invoke an unconditional havocall.
For each predicate type P that a user wants to havoc, they must declare
the abstract method (without a body) ___silicon_hack407_havoc_all_P.
This method takes no arguments (even if the predicate does). Then, when
they want to perform the havocall, they call this method. There is no way

24

Figure 4.2

to constrain which predicate instances are havocked, either by providing a
havoc condition or by providing expressions for the arguments. To execute
this statement, Silicon identifies all the heap chunks with the predicate type
P and simply gives them a fresh snapshot. A comparison between the three
different ways of quantified havocking is shown in Figure 4.3.

Voila already provides a flag disableSiliconSpecificHavockingCode. This
flag controls whether the exhale-inhale or the havoc hack version is used. I
added another option which outputs the havocall version. The 49 tests in
the folder voila_evaluation_examples were used, again in single-threaded
mode. A comparison between the havoc hack and havocall version is shown
in Figure 4.4. The two versions had comparable performances, but in most
cases, havocall outperformed. This result is surprising because the havoc
hack’s implementation is targeted for this use case. However, both ver-
sions dramatically outperformed exhale-inhale. Of the 49 tests attempted,
39 failed outright. A further 6 timed out after three minutes, and the re-
maining 4 were much slower than either the havoc hack over havocall.

25

4. Implementation and Evaluation

havocall x: Ref :: P(x)

(a) havocall implementation

label L

exhale forall z: Ref :: acc(P(x), perm(P(x)))

inhale forall z: Ref :: acc(P(x), old[L](perm(P(x))))

(b) Exhale-inhale implementation

___silicon_hack407_havoc_all_P ()

(c) “Havoc hack” implementation

Figure 4.3: Comparison of three ways of havocking all occurrences of a the
predicate P(x)

Figure 4.4: This histogram compares the performance of havocall with Sili-
con’s havoc hack on Voila’s evaluation examples. 49 test were run, and for
each test, the relative slowdown of the Silicon hack was calculated. A line
at x = 1 is drawn to indicate no improvement. Everything to the right indi-
cates a performance improvement for havocall. The majority of tests show a
slight improvement of havocall over the havoc hack.

26

Chapter 5

Conclusion

In this project, we introduced two new statements, havoc and havocall into
Viper. These two statements mimic a nondeterministic assignment to a re-
source’s memory by replacing its snapshot. Viper already had a way of
havocking snapshots by combining exhale and inhale statements. In this
report, we demonstrated that a native havoc statement outperforms the ex-
isting method, both in targeted benchmarks and in code generated from a
Viper front-end. The implementation in Silicon is contained within its own
package and is relatively concise.

Future Work

There are still a few outstanding tasks if the Programming Methodology
Group decides that it wants to add havoc and havocall as core features to
Viper. Most importantly, there should be a Carbon implementation of these
statements. This must be done to maintain a consistent feature set between
the two back-ends. As of this writing, it is unclear how difficult this would
be because Carbon represents permissions very differently from Silicon.

It would also be useful to have more front-ends use havoc statements. Cur-
rently, the only “real-world” code that we’ve benchmarked uses an uncon-
ditional havocall. Benchmarking conditional versions of havoc and havocall
would allow us to explore the performance differences in more situations.

Lastly, in a final meeting with the Programming Methodology Group, we
discussed that havoc might be an unintuitive keyword. In most other sit-
uations, it corresponds to a true assignment of a nondeterministic value.
However, as discussed in Section 3.3, havocking a resource with fractional
permissions does not change its value, and in certain instances, the value
can be re-asserted. Possible alternative names for havoc include forget or
refresh.

27

Bibliography

[1] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei
Paskevich. Why3: Shepherd your herd of provers. In Boogie 2011: First
International Workshop on Intermediate Verification Languages, pages 53–
64, Wrocław, Poland, August 2011.

[2] Daniel P. Friedman and Mitchell Wand. Essentials of programming lan-
guages (3. ed.). MIT Press, Cambridge, MA, 2008.

[3] Cliff B Jones. Development Methods for Computer Programs Including a
Notion of Interference. Oxford University Computing Laboratory, 1981.

[4] K Rustan M Leino. This is boogie 2. manuscript KRML, 178(131):9, 2008.

[5] P. Müller, M. Schwerhoff, and A. J. Summers. Automatic verification of
iterated separating conjunctions using symbolic execution. In S. Chaud-
huri and A. Farzan, editors, Computer Aided Verification (CAV), volume
9779 of LNCS, pages 405–425. Springer-Verlag, 2016.

[6] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag,
2016.

[7] M. J. Parkinson and A. J. Summers. The relationship between sepa-
ration logic and implicit dynamic frames. Logical Methods in Computer
Science, 8(3:01):1–54, 2012.

[8] M. Schwerhoff and A. J. Summers. Lightweight Support for Magic
Wands in an Automatic Verifier. In J. T. Boyland, editor, European Con-
ference on Object-Oriented Programming (ECOOP), volume 37 of LIPIcs,
pages 614–638. Schloss Dagstuhl, 2015.

29

Bibliography

[9] Malte Schwerhoff. Advancing Automated, Permission-Based Program Veri-
fication Using Symbolic Execution. PhD thesis, ETH Zürich, 2016.

[10] Felix Wolf. Verifying fine-grained concurrent data structures. Master’s
thesis, Master thesis, ETH Zurich, 2018.

[11] Felix A. Wolf, Malte Schwerhoff, and Peter Müller. Concise outlines for
a complex logic: A proof outline checker for tada (full paper). CoRR,
abs/2010.07080, 2020.

30

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Adding Native Support for Havoc in Viper

Zhang Daniel

Zurich, 9.9.2022

