
Master thesis in Computer Science
Fall 2010
Dimitar Asenov
Supervisor: Prof. Dr. Peter Müller

Design and Implementation of Envision -
a Visual Programming System

Description and schedule

October 12, 2010



1 Introduction

This Master thesis is a follow up research on ”A feasibility study for a general-purpose visual pro-
gramming system” [1]. It continues the development of the Envision visual programming system.
This work constitutes further implementation of core features in order to support quantitative
experiments with programmers.

2 Motivation and Goals

The initial feasibility study for Envision showed that the concept has a lot of potential to improve
the programming experience. As the original research report suggests, it is essential to verify this
by conducting experiments with programmers. This will allow stronger claims to be made about
the improvements offered by our approach. It will also contribute some new experimental results
in the field of visual programming - an area marked by a significant scarcity of empirical research
[2].

In order to perform these studies however it is first necessary to further develop the implementation
of Envision. The current prototype lacks essential features for the programming process and is
built using an ad-hoc architecture. The core goal for this Master thesis is to define the underlying
architecture for Envision and use it to implement essential features that will enable empirical
studies with programmers. As time permits additional extensions to the core goal will also be
included in the thesis.

The expected result is to have an implementation that demonstrates the benefits of our approach
to visual programming in a measurable way. It should be suitable for conducting a scenario
based empirical study where participants will have to perform typical programming tasks such as
understanding new code, fixing a bug, refactoring, implementing a new feature, etc. As a possible
extension such a study could be carried out and the results can be published.

The core goals and extensions are described in more details in the next two sections.

3 Core targets

3.1 Architecture

Designing a flexible architecture for the implementation of Envision is essential in order to facilitate
coordinated and rapid implementation of key features. The main requirement for the architecture
is that it should be based on different modules and extensible by user plug-ins. Three activities
comprise the architecture design phase:

• Requirements definition - The major requirements for Envision need to be identified and
reflected in the architecture design.

• Modules and module interaction definition - Based on the requirements a system with
different module systems should be designed. The behavior of each type of module should
be defined as well as interaction between the modules.

• Documentation - All relevant aspects of this process should be documented in a way that
facilitates understanding of design choices and future work on the architecture.

The lessons learned during the development of the feasibility study prototype should be taken in
consideration when making the new architecture.

2



3.2 Implementation

Once the architecture design phase is finished the implementation of key features of Envision can
begin.

This will no longer be a prototype, but the first public version of the programming system. The
main differences to the existing prototype will be:

• Architecture The new implementation will follow a well defined and carefully designed
architecture. This will facilitate the development and further expansion of the software.

• Features Many new features will be implemented to bring the new implementation to a
state usable for empirical studies. See below for details.

• Higher quality implementation The new implementation will be of production quality.
In particular the code should be well documented and tested. This will allow to more easily
distribute Envision as an open source project in the future.

The choice of features to implement is based on the assumption that empirical studies focusing
on the visual interface of Envision will be conducted. Therefore functionality such as semantic
versioning or content linking will not be implemented. Rather the focus will be on:

• Application model The application model (similar to an abstract syntax tree) will be fully
developed and include a wide variety of programming constructs.

• Visualization A visualization module will be developed that can show all constructs from
the application model.

• Interaction Interaction with all visualized program elements and built-in IDE tools (e.g.
search) will be possible.

• Persistence The IDE will allow for the program under development to be saved or loaded
from a persistent storage (disk file, database, etc.).

• Compilation for Java Once an application is developed inside Envision it will be possible
to automatically create a Java equivalent. Only the more common Java features will be
supported at this stage.

Overall the implementation should allow one to develop and work on a small-sized application - up
to about 1000 lines of code. The idea is that such an application will be used during the empirical
studies.

4 Possible extensions

As time permits some of the following extensions will be incorporated in the thesis after the work
on the core is finished.

4.1 User studies with programmers

The goal of this extension is to provide concrete results about the benefits offered by the visual
approach of Envision. The idea is to conduct studies with programmers where each participant
will complete a number of typical programming tasks such as refactoring, fixing a bug or adding a
new feature. Participants will perform these tasks either using Envision or a standard text-based

3



IDE such as Eclipse. The measurable quantities will be the time it takes to complete the task as
well as whether the task was correctly completed or not.

The tasks for this study will be associated with a small toy application developed in Envision.

4.2 Publication

The concept of Envision and the results of the quantitative studies can be published as a workshop
or a conference paper.

4.3 Custom visualization plug-in

To highlight the flexibility of the designed architecture a custom visualization plug-in can be
developed. The plug-in can extend a new visual element or alter an existing one. This could
be something like a stylized comments for example. It should also demonstrate how plug-ins are
integrated into the system.

5 Time planning

This is a preliminary estimation of the time allocated for each activity:

Activity time
Architecture design 1 Month
Core implementation 3 Months
Extensions and final writeup 2 Months
Total 6 Months

References

[1] Dimitar Asenov. A feasibility study for a general-purpose visual programming system, 2010. (ac-
cessed October 4th, 2010) http://www.pm.inf.ethz.ch/education/theses/student_docs/
Asenov_Dimitar/Report.

[2] K.N. Whitley. Visual programming languages and the empirical evidence for and against.
Journal of Visual Languages and Computing, 8(1):109–142, 1997.

4

http://www.pm.inf.ethz.ch/education/theses/student_docs/Asenov_Dimitar/Report
http://www.pm.inf.ethz.ch/education/theses/student_docs/Asenov_Dimitar/Report

	Introduction
	Motivation and Goals
	Core targets
	Architecture
	Implementation

	Possible extensions
	User studies with programmers
	Publication
	Custom visualization plug-in

	Time planning

