Research in Computer Science 11
Spring 2010 m

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

A feasibility study for a general-purpose
visual programming system

Dimitar Asenov

Supervisor: Peter Miller

19t July, 2010

Contents

1 Introduction and Motivation

4 Discussion

2 Related work
2.1 Visual programming languages L Lo
2.2 Visualization techniques and interaction tools
2.3 Visualization evaluation and experiments
3 The Envision system

3.1 OVerview e
3.2 Source code representation L e e e
3.2.1 Visualization principles of Envision
General-purpose L

Efficient

Fast o e

Intuitive L

Flexible o e

Focused e
Appropriate e
Self-sufficient

Varied L

Friendly e

3.2.2 Entity visualizationso Lo o

3.3 Userinteraction L
3.3.1 Construction of visuals
3.3.2 Giving commands

3.4 Usecaseexampleso
3.4.1 Programming a Hello World application
3.4.2 Visualizing the source code of Envision itself

3.5 Case study: call stack visualization

4.1 Implementation of the visualization principles
4.1.1 General-purpose
4.1.2 Efficient
4.1.3 Fast . . . oL
4.1.4 Intuitive L oL

]

BHEEE

19
120)
120)
120)
120)

4.1.5 Flexible
4.1.6 Focused
4.1.7 Appropriate
4.1.8 Self-sufficient
4.1.9 Varied
4.1.10 Friendly oL o
4.2 Comparison to traditional programming environments
4.2.1 Productivity
4.2.2 Readability

4.2.3 Navigation

4.2.4 Maintainability (Viscosity) o

4.2.5 Teaching

5 Future work

6 Conclusion

122
122
122

Abstract

As electronics and computers become an ever-bigger part of our life there is a growing need
for creating higher-quality software faster. Visualizing the structure, execution and model of
programs can improve the development process. Numerous methods and styles exist for visualizing
different software artifacts but, despite previous efforts, visual programming has only very limited
use in industrial organizations. We present Enwvision - a framework for general-purpose visual
programming. It combines many existing techniques with novel ideas to increase productivity and
code comprehension. It aims to support visual programming for large scale industrial projects in
a wide variety of domains.

1 Introduction and Motivation

Throughout the history of computer science many new programming languages have been de-
veloped. This is hardly surprising given the fact that computational devices are playing an ever
greater role in our life. The increasing variety and power of computers present a challenge to exist-
ing software solutions. To better manage the complexity of growing applications it is necessary to
develop new ways to program. There can be many driving goals when creating a new language: to
make it easier to learn how to program, to introduce support for a new programming paradigm or
hardware feature, to make it very efficient, etc. However, languages alone can no longer cope with
large-scale development tasks. To alleviate the problem there is a continuing effort to improve the
integrated development environments (IDEs) that provide a platform around a language to make
it easier to create and navigate a big programming project.

During all these developments one thing has remained constant - programming languages are
textual. The programmer creates a program by writing its source code. In the process, different
program structures and modules are saved to different files or folders. The source code, written
using a precise grammar, fully defines the structure and behavior of the program. This poses a
number of important restrictions:

e The developer must learn and use a very specific language syntax. This often includes rules
which are not intuitive for novice programmers. Even experienced programmers might find
it difficult or cumbersome to use these rules (e.g. when writing scripts in the Bash scripting
language).

e Creating new programing elements and navigating existing ones relies mostly on symbolic
reasoning and memory.

e Additional resources required for developing bigger projects such as documentation, dia-
grams, etc. are separate from the source code. They help the programmer write the applica-
tion, but do not have a direct influence on it and are not linked to program elements. This
causes inconsistencies when only the code or the documentation is modified.

e Getting familiar with a larger software base by only looking at its source code is an over-
whelming task. To make this possible one refers to the supporting documentation, since the
source code itself does not guide the programmer in how to explore the application.

While modern IDEs help to reduce the impact of these restrictions they can not remove them
since these restrictions are inherent to textual representations.

In an effort to truly remove some of these drawbacks researches have experimented with visual
programming languages. Some of the advantages that they found when using visual representations
are:

e Visual objects can more directly map to programming entities, removing the need for com-
plicated syntax. Thus it is easier for novice programmers to learn to use such a language.
Experienced programmers can also benefit from this and be more productive.

e Visual programming involves not only symbolic, but also visual and spatial cognitive pro-
cesses. This can improve both the comprehension and retention of programs as the graphical
representations more closely match a programmer’s mental model. Studies [I} 2] have shown
that retention for visual images is better compared to that for text.

e Two dimensional graphical representations can be more expressive compared to text which
uses a single dimension.

e Figures, diagrams, tables and such, can be directly embedded in a visual program and make
it easier to understand and explore.

Intuitively visual representations can help better organize a programming activity.

Despite previous efforts to develop visual languages, the term programming is still commonly
associated with writing source code. The top 20 languages used in industry in June 2010 accord-
ing to the popular ranking site TIBOE E| are all textual. Other on-line rankings for languages
yield similar results. While the initial hopes for visual languages were high, they did not meet
researchers’ expectations. Meanwhile research focus has shifted away from visual programming to
software visualization and end-user programming.

We propose a new take on visual programming. Learning from the lessons of previous research
and developing for today’s powerful hardware we have established the concept of Fnwvision - a
general-purpose visual programming system. The goals we set to achieve include developing a
highly flexible visual programming environment, that easily scales to large programming projects
while improving the developer’s experience and performance compared to modern IDEs. This
paper reports on an initial study designed to asses the feasibility of our approach.

Section [2] explores related work in the fields of visual languages, software visualization and human-
computer interaction. Next, the main ideas behind the visualization and user interaction in
Envision are presented in section The subsequent section [4] assesses the performance of our
approach compared to existing programming techniques. In section [5] we report on our plans for
further development of the system. Finally we summarize our findings in section [6]

2 Related work

2.1 Visual programming languages

Many visual programming languages (VPLs) have been developed in the past. Schiffer and Frohlich
designed Vista[3] - a VPL which builds on top of the object-oriented programming (OOP) paradigm
and aims to provide support for high-level building blocks and ease of use. At the more abstract
level, programming in Vista involves building entities and networks between components in a
visual environment. A central notion in the language is the processor which is a logical unit in the
program that has a distinct function. Processors are somewhat similar to classes and communicate
with each other via data and signal tokens. Different processors can be connected to each other
using a graphical user interface (GUI). In the GUI each processor is represented by an icon. At
the lower level of abstraction Vista provides access to the full Smalltalk library and allows writing
code fragments using text.

Another tool for visual programming is Seity[4]. It is a visual environment for the Self programming
language. Seity represents objects as three-dimensional boxes that list an object’s properties and

Thttp://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

methods. An important concept for the environment is the focus on objects, rather than views.
Each object is unique and appears at most once on the screen but an object can present different
views of itself based on the current needs of the programmer. Chang and his colleagues argue
that this makes it easier for the programmer to maintain object identity which is not the case
with view-focused IDEs. They propose that manipulating the object directly and not through an
intermediate view, makes the objects concrete and tangible. On the other hand using tools such
as class browsers or object inspectors makes the objects seem secondary and distant.

Citrin et al. in [5] propose VIPR - an entirely new approach to programming based on visually
nesting circles. A program in VIPR would be represented by a circle that consists of a series of
nested circles, representing statements, classes, methods, etc. The execution proceeds by perform-
ing the statement connected with the outer-most circle and removing that circle. More complicated
execution traces can be created by connecting different circles with arrows which indicate the next
statement and possibly have an associated condition. An advantage of VIPR is that each state of
a program at run-time is itself a valid VIPR program - the same language is used for programming
and execution visualization.

Another entirely visual approach to writing object-oriented programs is using Prograph[6]. Classes
in Prograph are represented by icons and so are each class’ fields and methods. A method is
defined visually by connecting various types of entities together using arrows. Entities include
inputs, outputs, function calls, constants, variables, object instances, etc. Prograph comes with a
fully featured environment that allows the user to explore the program using various views. This
includes structure visualizations, class diagrams, property explorers and others.

More recently Grant has designed Visula[7]. The key idea behind Visula is the use of UML-like
sequence diagrams to define program behavior. The diagrams are extended with control-flow and
class definition elements. Since UML-diagrams are used by many professionals such an approach
has the benefit of being familiar to experts.

Most VPLs are short-lived and rarely get much attention outside of research circles. One notable
exception is National Instruments’ LabView. It is a visual data-flow language specifically designed
for data acquisition, analysis and instrument control and automation. Applications represent in-
struments. Each application has a virtual front panel where the user can interact with a wide
variety of controls: buttons, knobs, displays, light emitting diodes etc. The logic of the applica-
tion is defined by its back panel where different processing elements can be connected to define
the data flow. A processing element can be an entire instrument, a built-in library function, an
arithmetic or string operation, etc. Flow control entities such as loops and conditionals are also
included. Programming in LabView is mostly done using the mouse, by dragging and dropping
components from a palette onto the instrument panel and connecting them using wires. In [§],
Baroth and Hartsough report on their experience with the language at the Jet Propulsion Labo-
ratory, California Institute of Technology under a contract with the US National Aeronautics and
Space Administration. The same software system was developed simultaneously in both LabView
and C. The two teams were given identical budget and deadlines to come up with a solution. The
team using LabView managed to cover and significantly exceed the requirements of the software
while maintaining constant contact with the customer. The team using C did not further com-
municate with the customer after receiving the initial requirements and did not make a product
that fully meets them. Our personal experience with LabView in designing automated tests is
also very positive. However LabView is not very well suited for general purpose programming. In
particular its aim at data-flow programming makes it harder to model more reactive systems. Its
support for OOP principles is also limited.

2.2 Visualization techniques and interaction tools

Although the hope had been high that VPLs would bring a revolution in programming, this
was not the case. Nevertheless developers realized that visualizations can indeed improve the

software development process. Thus many tools were created which instead of substituting textual
programming, complement it with visual representations. They have enjoyed a much higher success
and adoption rate in industrial environments.

Major efforts in visualization tools are often implemented in new versions of popular IDEs or
as IDE extensions. Modern programming environments come with color coded language syntax,
auto-completion tools, code snippet libraries, UML diagram generators, etc.

The Human Interactions in Programming E| group at Microsoft Corporation continuously eval-
uates new ways to improve the usability of Microsoft’s Visual Studio IDE. Among others they
have investigated the effect of presenting code usage information directly in the IDE to improve
navigation[9, [10]; why and how software developers use graphics and whether these needs can be
met by embedding images directly in the IDE[I1]; improving navigation by visualizing code with
automatically generated maps[I2] or displaying code-thumbnails of files[13].

Being an open-source tool with a strong community and industrial support the EclipseE| IDE has
also enjoyed a lot of attention from researchers. One of the more popular extensions developed
for Eclipse is Shrimp[I4]. It can visualize various aspects of Java code including class hierarchies,
packages or individual classes. Additionally it has support for showing associated documentation
and navigating around the different elements. Going one step further is CodeBubbles[I5] [16] by
Bragdon et al. This tool uses Eclipse only as a back-end and presents the user’s code in a new
environment that features a visual representation of code based on a bubbles metaphor. A class, a
method, a JavaDoc snippet or even custom notes can be displayed in an independent frame - the
bubble. Each bubble is a text editor in itself. Many bubbles can be shown on the screen and the
programmer can arrange them in any way she prefers. This helps with task oriented programming
activities such as debugging and maintenance.

Another interesting extension for Eclipse, that focuses on user input is Quack[I7]. It allows the
user to program ”sloppily” by entering keywords instead of proper statements. Quack would then
try its best to determine the programmer’s true intent and create the corresponding statements.

2.3 Visualization evaluation and experiments

Whitely has compiled an overview of VPLs in [I8]. It is immediately evident that there are
only a few quantitative experiments that asses the viability of visual programming. Whitley
concludes that no program representation (textual or visual) is better in absolute terms. Some
representations yield better results in specific tasks, while other representations in others. It is
important that the task at hand and the chosen representation match well. Further observations
were that for smaller programs text might be a preferred option and that special attention should
be paid to how well screen estate is utilized by visual representations. In the end visuals are said to
improve the programming experience but there are not enough experimental studies or sufficient
cognitive theories to guide the design of VPLs.

The classic Cognitive Dimensions(CD) framework by Green and Petre[19] has been often used to
evaluate the design of a new VPL. Their work suggests a number of criteria by which a program-
ming language and its environment can be evaluated. Initially they applied their framework to
three languages: FORTRAN, Prograph and LabView. They found that generally the construc-
tion of visual programs is easier because there are less syntactic hassles and because of the use
of higher-level operators. They also identified several problems with visual programming that
need to be addressed: clutter, insufficient screen real-estate and high viscosity (resistance to local
change of programs).

%http://research.microsoft.com/en-us/groups/hip/
Shttp://www.eclipse.org/

http://research.microsoft.com/en-us/groups/hip/
http://www.eclipse.org/

3 The Enwvision system

The purpose of this feasibility study is to introduce and evaluate the visualization and user inter-
action concepts of Envision. However the overall plan for the Envision system goes beyond this.
To provide a better insight of the context of this study we will first present the full set of features
planned for Envision. Afterwards we elaborate on the visualization and interaction parts of the
system including demonstrative examples.

3.1 Overview

The concept for Envision is a combination of an IDE and an information system. Like a typical IDE
Envision allows programmers to create software and aids in this process in various ways. Acting
as an information system FEnwvision maintains the software’s repository, including all supporting
documentation, graphs, tables etc. and keeps these development artifacts in a consistent state.
Here is a list of the most distinguishing features in both domains:

IDE:

e Visual source code representation - the programmer does not work purely with text, but
rather interacts with a visual representation of the program. The visualization also includes
text in order to achieve maximum flexibility.

e Command enabled user interaction - apart from standard means of input, the user can also
issue commands to the system in a style similar to an operating system shell. These com-
mands are dependent on the currently selected program entity and can represent arbitrary
operations such as constructing new program elements, conducting searches, invoking a new
process or running system commands.

Information system:

e Semantic versioning - unlike traditional file-based version control systems Envision stores
versions of programming entities like classes, methods, fields etc. This allows for better
tracking of software evolution and enables new analysis techniques.

e Content linking - a program will not be just the instructions it executes but will also con-
tain all supporting development artifacts. Figures, animations, tables or documents can be
embedded directly in the software project. Moreover links can exist between different types
of content to keep the application in a consistent state. For example the value of a constant
can be taken from a table in the document describing its meaning and computation.

e Continuous analysis - the Envision system will continuously analyze the software in the back-
ground. This involves activities such as automatic test-case execution, formal verification
and collection of statistics. This information will be reported to the user directly embedded
in the visual representation of the software to aid with the development process.

Envision is primarily aimed at large-scale software development. While we also consider beginners,
the main target users are expert programmers. The system is meant to be a general purpose IDE
that can be used to efficiently build a wide variety of software. To this end it should also support
the more popular programming paradigms. In developing the concept for Envision we strive to
maintain a positive answer to these questions:

e Would we want to use this system every day for our coding needs?

e Can we efficiently build different kinds of software with it?

e Could we use it to create large-scale software products such as an operating system?
e Does the system feel familiar and intuitive for experienced programmers?

e Is it fun and easy to work with?

Our hypothesis is that the combination of these features in an integrated system is very powerful.
The work in this feasibility study represents the first step towards testing our designs. Once
the system is more mature we plan to conduct quantitative studies to objectively evaluate the
fulfillment of the above criteria.

It is important to note that at the moment Enwvision is still in design phase and only a few features
were implemented as part of this study. These are discussed next.

3.2 Source code representation

Despite the large number of visualization techniques developed by researches there is a lack of
quantitative experiments that allow us to set rules for what are good software visualizations and
what are not[I8]. A few works exist that try to establish some guiding principles for creating
visual languages. Here we will briefly discuss two that have helped guide our effort.

Green and Petre developed the classical Cognitive Dimensions framework[I9]. It provides re-
searches with a means to evaluate their designs. Originally the framework was applied to one
textual and two visual programming languages. In our work we have applied Green and Petre’s
five conclusions regarding future work in VPL design:

1. Reduced syntactic load and higher-level operators. Building a program visually reduces the
need to remember and use precise syntax rules common for textual languages. Visual source-
code representations allow for higher-level operations to be expressed concisely. These fea-
tures increase the concentration of the programmer.

2. Improved secondary notation. The capabilities of modern graphics hardware have come a
long way since the Cognitive Dimensions framework was conceived. FEnwision uses a broad
spectrum of visual capabilities in order to improve secondary notation in programs. This
includes colors, shapes, shadows, translucency, visual effects, visual transformations, icons,
animations, grouping, modularizing and others.

3. Familiar control-flow representation. In FEnwvision control flow statements have received a
visual overhaul but remain structurally close to what programmers are used to in traditional
languages.

4. Low wviscosity. Unlike many previous efforts to design a VPL, an explicit goal for Envision is
to be at least as productive as text-based environments with respect to writing or modifying
code. We hope to achieve this by relying heavily on keyboard based input for the IDE. The
input mechanisms of Envision are discussed in detail in section [3.3

5. Better utilization of screen real-estate. Although it is quite a different concept FEnvision
resembles CodeBubbles[I5], [16] when it comes to how the screen can be utilized to show
software fragments. CodeBubbles has been shown to increase the number of function code
visible on the screen by about 50% in the typical case. We hope to achieve similar results.

More recently, Petre has analyzed four previous studies on the mental imagery that expert pro-
grammers use[20]. She also summarizes lessons learned about characteristics of good visualiza-
tions. Her work has helped shape the guiding principles(3.2.1)) of the visualization component in
Envision.

3.2.1 Visualization principles of Envision

Here we list the major design principles that have shaped the initial software representations of
Envision. We also provide the rationale behind them.

Software visualization in Envision should be ...

General-purpose FEnvision is meant to be employed in a wide variety of domains. The visual-
ization component should match this goal.

e Many domain-specific VPLs exist and some also enjoy success in industrial settings[21], [22]
23]. However, for general-purpose applications, purely textual languages like Java, C#, C,
C++, Visual Basic, PHP, Python and their text-based IDEs dominate the market. We want
to promote visual programming in this segment.

Efficient The system should allow the programmer to be at least as effective in constructing
software as text-based IDEs.

e There is little incentive to switch to a new type of IDE if it does not provide tangible benefits.
We feel that past efforts to introduce visual programming have often failed to deliver enough
with respect to programmer productivity. One of the core reasons for developing Envision
is to offer a platform that ultimately improves the programming experience.

Fast The system should be highly responsive to the user.

e Computing a complicated visual scene has the potential to reduce the computer’s respon-
siveness to user input. This is not acceptable for Envision which wants to compete with
text-based IDEs where there is no such problem. The performance of modern graphics
hardware should be utilized to deliver an optimal user experience.

Intuitive The programmer should find it easy to use our environment. Visualizations should
look familiar and perform as expected.

e Two important aspects hinder the adoption of new tools - unfamiliarity and unconventional
behavior. More often than not, past VPLs were not successful in penetrating the commercial
market because they required completely new programming paradigms. Consequently any
benefits they offered were outweighed by the complexity of learning how to use or interpret
them. Envision is based on OOP - a programming paradigm that has stood the test of time
and has proven to be exceptionally versatile. A programmer should be able to work with
the system with a minimal introduction. Where appropriate Envision might provide hints
to the user of how to use novel features.

Flexible The visuals in the system should be flexible to display as much detail or as higher-
level of abstraction as needed. Their flexibility should at a minimum match the one of textual
representations. It should also be possible to create new views and tools through plug-ins.

e In their every day job programmers face a variety of tasks. A good tool should be able to
provide the necessary level of abstraction to quickly navigate and understand software. If
a tool is too narrow in its selection of views or detail level it will, at best, only be used
for specific purposes. This is unacceptable for a general-purpose IDE targeting large-scale
development projects.

10

Focused Visual support should be focused on the task at hand and on the immediate needs of
the programmer. Unnecessary tools or options should not be visible.

e In popular IDEs such as Eclipse or Microsoft Visual Studio there are a lot of different tools,
buttons and menus visible by default. For the most time however a programmer does not
need them. Showing those tools on the screen contributes little to the programming task
at hand when they are not needed. Instead screen real-estate can be better utilized by
displaying more of what the user is actually working on - be it a software fragment or a
document.

Appropriate The representations of software entities should match the nature of the represented
data.

e One of the major outcomes of Whitley’s analysis of empirical studies about VPLs[I8] is
that visuals perform poorly when they are not suited to the entity they represent. It is
vital to carefully choose what visualizations to use in which cases. Equally important is
to be able to say no to a graphic when a few simple lines of text feel much more natural.
FEnvision combines visuals with text in an effort to deliver an optimal experience for various
programming elements.

Self-sufficient No other tool should be needed to design large-scale software. In particular no
stand-alone textual editors should be used.

e Enuwision should provide enough support and levels of abstraction to cover the entire range
of developer needs. Even accessing more complicated features such as memory alignment
declarations or special CPU instructions should be achievable from within the IDE.

Varied The looks of the IDE should take advantage of modern hardware and offer a wide variety
of visual cues and styles.

e Limited by hardware performance the VPLs of one or two decades ago could not look as
appealing and polished as it is possible nowadays. It is essential to exploit the full capabil-
ities of modern hardware to deliver a fully immersing programming experience. Secondary
notations would also benefit from this.

Friendly FEnwvision should be fun to use. It should just ’feel right’.

e If the programmer thinks a tool is hard to use he or she will find alternatives to replace it.
This is especially true of a new IDE that someone is considering for future use. Envision
should be characterized by a natural and inviting interface. Only then will it be considered
for serious software development.

3.2.2 Entity visualizations

On the higher abstraction level the visualization of software in Enwision is based on boxes or
blocks. These are used to display entities such as applications, modules, classes and methods.
More detailed levels of software fragments such as method statements or class fields are specified
in textual format. Figure [I] shows a basic hello world application. The outer-most box is the
application. It contains modules which are similar to packages in Java. In this case there is

11

7
HelloApp

text = "Hello World!"
print(text)

Figure 1: A Hello World application.

only one module - Main. The module’s color and the position of the module boxes within the
application is determined by the programmer.

A module contains classes. The Hello World application has only one class - HelloApp. Classes
are indicated by an icon resembling a class hierarchy. The background color of each class is slightly
transparent so that a user working on a bigger class can identify the module it belongs to. The
user determines the position of a class within the enclosing module.

A class contains fields and methods. Figure[2|shows the representation of a simple circle class. The
box in the upper left corner of the class shows defined fields. They are split into three categories in
three columns - from left to right: public, protected and private. The Circle class has a boolean
field filled which is public and three private fields: x, y and radius.

Methods within a class are also contained in boxes. These boxes have a white background to
improve readability and can be manually placed anywhere in the class. The Circle class has two
methods. A method is indicated by an icon depicting two gears and its name. Furthermore on
the right of the name a box with the method arguments appears. There the type of an argument
appears under its name. A method contains a sequence of statements. As we can see from the
area method these statements are not limited to plain text but can include special symbols,
graphics, formatting, effects, etc. Currently Envision only supports textual statements with a few
exceptions (discussed below). We plan to extend this further. For example special symbols and

2 o —

filled boolean Co X int
Lo y int

. radius float

int int)
return Tr-radius?

Figure 2: A simple Circle class.

12

graphics will be used to indicate assignments, function calls, recursive functions, matrices, return
statements and others.

Control structures are a special case of statements. Fnuvision currently has custom visualizations
for if-else statements and loops. Figure[3|shows a factorial method that includes control statements.
An ’if’ control statement is indicated by a yellow diamond icon. Next to it is the condition. Below

n
Py {factorial}
<>n<1

return 1 int result = 1

Ointi=15i<n; ivr
I result *= i 4
return result

\)

Figure 3: Control statements in a factorial function.

this horizontally arranged are the 'then’ and ’else’ branches indicated by light green and red
background colors respectively. A ’loop’ is indicated by an icon with rotating arrows and a special
border. Next to the icon is the header defining the loop including terminating or continuing
conditions.

As we've seen above visual abstractions exist for higher-level language features while specific
details and execution statements are presented textually. However we find that adding additional
visual effects or hints can be helpful even for text-based information. The reader might also notice
that there are hardly any keywords visible. This is because the concepts that keywords embody
are often better represented visually. For instance we can use color and/or position to indicate
semantics. The structure of the ’if-else’ statement and the fields of a class are good examples for
this.

3.3 User interaction

In order to improve programming productivity and appeal more to expert programmers input in
Envision is mostly from the keyboard. In the current implementation the mouse is only used to
zoom in and out using the wheel and to move visual objects. The programmer can simply click
anywhere on an object and drag it to a different position. One exception is clicking on a piece of
text which displays the text editing cursor instead. Mimicking text-based IDEs all text visible on
the screen is editable directly.

The two major features that define the feel of the user input system are discussed next.

3.3.1 Construction of visuals

Visual objects in Envision are not drawn or chosen from a palette. Instead they are constructed
by typing. For example to create a new class the programmer would type ’class MyNewClass’ and
press Enter. This will create a new class within the currently selected module. The class name will
be set to 'MyNewClass’. The class will be selected and ready to receive input. The programmer
can then proceed to add methods or fields in a similar fashion using the keyboard. Whenever a
new entity or statement is added its parent automatically expands to fully include it.

More complicated structures are also created from the keyboard. Typing ’if condition’ will create

13

a new if statement with the specified condition. Figure [4] shows this process. Similarly typing
'for header’ will create a new for loop with the specified header. This is illustrated in figure [f]
Moreover it is possible to create statements based on the current context. For instance if the
currently visible scope contains an integer variable named ’count’ and the user types ’for count’
the system would automatically generate a for loop that counts from 0 to count - 1. As a counting
variable the first non-used of i, j, k, I, m, ... will be used. This is demonstrated in figure [6]

(a) Waiting for input (b) Typing a cre- (c) Anifstatement is
ation command created

Figure 4: Creating an if statement.

@ inti = 0; i<top; i++
Il 4

for int i = 0; i<top; i+4

(a) For loop command (b) Resulting statement

Figure 5: Creating a for loop by specifying the complete header.

The concept behind this mechanism is the separation between what the user types and what the
application fragments look like. In traditional IDEs and programming languages the programmer
directly writes the final structure of the software. This has the drawback that a specific grammar
must be learned and used. Such a grammar typically contains many syntactical rules, symbols,
delimiters, etc. This is not very convenient but is necessary in order for the parser to be able to
understand the language and in order for the language to stay compact. In Envision syntax is kept
to a minimum. The programmer expresses her desires by commands which the IDE interprets.
It is responsible for figuring out what exactly the user means and for creating the corresponding

elements size

int[] int

elements size
int[] int

int sum =0

@ inti = 0; i<size; ++i

l I

(a) For loop command (b) Resulting statement

Figure 6: Creating a for loop by specifying just the counting variable.

14

software fragment. This reduces the complexity of what needs to be typed especially with respect
to syntax. At the same time concreteness is maintained - the visual result has a precise meaning.

3.3.2 Giving commands

By right-clicking anywhere on the screen the user shows a command prompt. It is used to quickly
perform a variety of tasks which are dependent on the context:

e Create new software entities such as modules, classes, methods, fields, etc.
e Invoke IDE functions such as searching, opening views or projects and others.
e Execute system commands like copying files or playing the next song in your audio player.

e Perform user-defined actions.

The context of a prompt depends on where the programmer has clicked. After the user types a
command it will be passed to the entity defining the context. This could be for example a method
or a class. If the current context can not understand the command it is propagated to its parent.
This process continues until some entity knows how to handle the command. If there is no such
entity an error message appears directly under the prompt.

Figure |7 shows how to create a new class. The use has right-clicked on the translate method.
A method does not understand the ’class’ command and will pass it to its parent - a class. A
class also does not understand this command and will propagate this to its enclosing module. The
module interprets the class command by creating a new class with the specified name.

If the context was the Application object itself, the command would fail since an Application does
not know the ’class’ command. This is depicted in figure [8| Providing a wrong command would
also result in a similar error message.

This prompt provides great flexibility at the programmer’s fingertips. Common IDE functions can
be invoked directly without opening menus or dialogs. Entire software fragments can easily be
built by typing a single line.

3.4 Use case examples

3.4.1 Programming a Hello World application

Here we will see how to create a Hello World application step-by-step. After starting Envision an
empty canvas appears with a prompt in the middle. Type the following commands:

—_

app HelloWorld - creates a new application called Hello World.

2. module Main - creates the Main module within the application.

3. class Hello - creates a new class within the module.
4. method main - creates the main method of the class.
5. print "Hello World!" - the only statement of our program.

Notice how this does not require typing any special punctuation symbols or caring about format
and syntax. This process is illustrated in figure [0}

15

7
HelloApp

Co X int
Lo y int
. radius float

filled boolean

O

rfarea)
int int .
return mr-radius?

class Square]

(a) A prompt

7
HelloApp

filled boolean Do X int
1y int
| radius float

(b) The new class

Figure 7: Creating a new class by using a prompt. The context here is the translate method.

16

7
HelloApp

L xint
| Ly int
. radius float

filled boolean

class Triangle|

| have no clue what you mean by:
class Triangle

Figure 8: An error displayed at the prompt. The context here is HelloApp which does not
understand the ’class’ command.

HelloWorld

[class Hello|

HelloWorld

module Main|

(a) (b) (c)

app HeIIoWorIc‘

7
HelloWorld

7
HelloWorld

method main|

print "Hello World'"]

(d) (e)

Figure 9: Creating a Hello World application.

17

3.4.2 Visualizing the source code of Envision itself

Enwision is currently developed in C++. To get a better idea of how our approach scales to bigger
applications we included a rudimentary C++ parser that was able to import Enwvision’s source
code. Figure[I0]shows the result.

Figure 10: Enwvision visualizing itself. The canvas is zoomed out so that the entire Application is
visible. A raster image was used here, since the inclusion of the vector version would increase this
document’s size by 100MB.

In the figure we can see in darker colors the different modules comprising the system. They are
grouped with respect to color and position based on function. Blue modules pertain to visual-
ization, gray to the program model, green to input handling, orange to C++ parsing, etc. Here
we can see how Envision adds a new dimension to the Application. It allows the programmer
to glance over the entire software piece and explore visually the relation between the different
high-level modules.

Zooming in on the ’constructs’ module we can see the different classes that belong to it in Figure

i}

Classes here are also arranged in a special way: from left to right and from top to bottom they
start with the top-most construct types such as Application and Module and go to more detailed
types such as Statement or Loop. Similarly the programmer can arrange the methods within a
class. In all classes in the constructs module the following convention applies: constructors and
destructors appear immediately below the field declarations; core logic methods appear under the

18

Figure 11: The constructs module of Envision. Classes here implement the logical model of
programming entities such as classes, methods, statements etc. Zoom-in to see more detail.

constructors; getters and setters appear to the right; auxiliary methods, if any, appear in the lower
right corner.

We can see how one can get an overview of an entire module or even the entire application by
zooming out. Navigating around the application space is currently achieved by zooming in and
out, using the scroll bars or using the arrow keys on the keyboard.

In our experience of visualizing FEnvision’s source code, one of the most useful features was to see
methods or classes side by side.

3.5 Case study: call stack visualization

This style of software representation could offer interesting features in terms or error reporting and
debugging. We explored a sample call stack visualization presented in figure[I2] The methods from
the stack are arranged from left to right in the order in which they were called. The highlighted
line(orange) in each method is where the call to the next one occurs. Vertically the methods are
aligned to this line to make it easier to trace. Information about the run-time argument values
appears above each method. A useful feature here is the juxtaposition of all relevant methods on
one screen. This eliminates the need to switch between different files or classes as is the case in
modern IDEs.

4 Discussion

As part of this feasibility study we developed a mock-up version of Envision which was presented
in the previous section. It focuses only on the core concepts of visualization and user input. Here
we discuss our experiences with the application and comment on how it compares to traditional
IDEs.

It is important to note that the mock-up Enwvision application can not be used to develop soft-

19

Figure 12: A mock-up stack-trace from the execution of Envision. A vector graphic could not be
produced.

ware. Therefore all the comparisons in this section are based on preliminary results and projected
features. This introspective evaluation is only an initial step. Proper quantitative studies are
required to objectively asses the performance of our approach.

4.1 Implementation of the visualization principles

First we reflect on how the current concept of Envision implements the design principles outlined
in section

4.1.1 General-purpose

FEnvision is similar to a wrapper around an OOP language like C++, Java or C#. It retains the
same object model and relationship between entities. It also inherits the general-purpose nature
of those languages.

4.1.2 Efficient

We believe the proposed input methods which are a core part of Envision have the potential to
be even more efficient that textual programming. This is evidently the case with the simple Hello
World example presented earlier. To measure the efficiency of our approach on larger real-world
programs, it would be first necessary to implement more features.

4.1.3 Fast
The current mock-up application is performing snappily even at more demanding tasks such as

rendering of the entire Envision code base. Moreover this is done entirely in software using a
single thread on a mid-range laptop. Therefore at its current stage of development Envision

20

meets the performance goal. To accommodate for future expansions we plan to employ rendering
on dedicated graphics hardware.

4.1.4 Intuitive

Our system is based on OOP. So far the main visualization techniques are encapsulating entities
into boxes and showing a tree hierarchy of the different entities. The former is natural when it
comes to objects and data structures - enclosing them with a frame makes them more concrete
and tangible. The latter is inherent in the structure of software written in the OOP paradigm.
We think this contributes to the intuitiveness of Envision.

4.1.5 Flexible

We have shown that Envision is capable of covering the full spectrum of abstractions for a software
application. It can show the entire application at once, outlining the relationship between different
modules. Using the zoom feature it is possible to focus on a single module, class or method. At
the method level one can directly observe the execution instructions of the program. This should
provide enough flexibility for practically any task.

4.1.6 Focused

Enwvision’s interface is minimal, there are no menus, toolbars or multiple visible tools. Only source
code fragments are shown and arranged in the way the programmer specifies. Common tasks can
be performed directly using the prompt. We find this more efficient both in terms of speed and
utilizing screen real estate.

4.1.7 Appropriate

We do not limit our approach to pure pictorial visualizations. The integration of text and visuals
in Envision aims to match a concept with a natural representation. Our system is flexible and
can provide for many different types of visualizations. A more objective evaluation and long-term
experimentation is needed to determine which visualization styles are suited for what software
fragments.

4.1.8 Self-sufficient

The current mock-up application just showcases some interesting aspects of the Envision concept.
Much more work is needed before the application can be used to design programs. This is discussed
further in section 6l

4.1.9 Varied

Presently Envision is rendered entirely using zoom-able vector graphics in full 32-bit color. Various
effects such as anti-aliasing, font smoothing and translucency are also used. Our visualization styles
include different shapes, colors and borders and as representation entities we use boxes, gradients,
symbols, icons and text. Semantics are described by both the look of an object as well as by
its position. As one can see we are already utilizing a wide variety of visual objects and plan to
expand this further.

21

4.1.10 Friendly

Our experience with Envision’s current interface is positive. However there are many planned
features that we need to implement before the application is functional. Since friendliness is a
very subjective quality, only a large-scale experiment with programmers can help make conclusions.

4.2 Comparison to traditional programming environments

Here we evaluate how Envision’s approach compares to one of the most popular IDEs - Eclipse.
Eclipse is a mature software development platform with a complete set of features and numerous
extensions contributed by third parties. It is actively supported by both industrial organizations
and by the open source community. Therefore a direct comparison between Enuvision and Eclipse
at this time is unrealistic. Rather we will limit ourselves to the code editing and navigating
functions. Furthermore we will only consider the standard Eclipse installation that does not
include any third-party plug-ins.

4.2.1 Productivity

Productivity here refers to the speed at which one can write code.

In Eclipse one has to type the entire structure of their program manually. A few exceptions are
the use of the code completion feature and code wizards for e.g. new classes.

In Envision the programmer creates structure by issuing commands. These commands are context
sensitive and have a light syntax. In essence what the programmer types is not directly the
software structure but is first interpreted by the environment based on the context to determine
what programming fragment should be created. This concept is similar to sloppy programming
[24, 17, 25]. This separation can be very powerful. For example when typing, the user can use a
compact syntax similar to scripting or functional languages, while the result can be a standard
OOP structure for languages like Java. We plan to enhance the command typing mechanism to
aid the programmer in a way similar to code completion. This will further make it easier to quickly
create complicated program structures.

We feel that Envision will enable higher productivity compared to Eclipse as the input mechanisms
we propose become more mature.

4.2.2 Readability

Eclipse provides a number of readability improvements over plain text file editors. These include
syntax coloring, code elision and automatic formatting. The underlying representation however,
remains purely textual.

Envision on the other hand shows the entire program structure in one consistent tree hierarchy.
It produces images which have a minimal number of distracting features. Common semantics are
represented visually rather than via syntax and keywords. Only the core logic of the application
appears in textual form. There is no need for formatting since code structure is automatically and
explicitly visualized by the system.

As a result, from a cognitive point of view, we believe our approach will improve readability.
Graphically expressed features will be processed by the visual cognitive system. This is a very
quick parallel process that is largely unconscious. Thus more capacity is left for deeper cognitive
processes which are needed to process application-specific logic expressed as text.

22

4.2.3 Navigation

In Eclipse one navigates between different code fragments by switching to different tabs. Optionally
one can search for a specific keyword, entity definition or object reference. It is also possible to
click on an identifier in the editor window and navigate to its definition or uses.

These mechanisms are extremely useful when the programmer is looking for specific information.
Therefore we are planning to include such features.

Additionally Fnvision allows the programmer to navigate code by looking at the software structure.
Zooming out, one can see how different methods, classes and modules relate to each other. This
is very useful when exploring the software for the first time. We believe that developers can use
this feature to get more familiar with an unknown application faster.

4.2.4 Maintainability (Viscosity)

Maintainability here refers directly to one of the more severe problems identified by Green and
Petre in [19] - resistance to local change. In their original analysis they concluded that visual
programming languages reduce the user’s performance when local modifications are necessary to
existing programs. They found that such tasks are done several times faster in traditional textual
IDEs.

On this point a textual IDE such as Eclipse facilitates high performance.

Enwvision aims to achieve similar results. All textual fields visible on the screen can be directly
modified. Since core logic is expressed as textual instructions they should allow for equally fast
changes. One problem we experienced with the mock-up application is that each time there was
a change to a program fragment we needed to manually adjust the positioning of surrounding
entities. This is currently a hindrance in achieving low viscosity and we plan to include automatic
positioning features to alleviate this problem.

4.2.5 Teaching

While Eclipse is an extremely powerful platform for software development, it has little to offer
to novice programmers. We have experience in courses where non-programmers were learning to
program in Java using Eclipse. Mistakes often made by beginners include misplacing of semicolons,
confusing the scope of an identifier, using the wrong kind of parenthesis or brace and bad code
formatting.

Since Envision takes care of structure internally all of the above problems disappear. For small
classroom examples Fnvision can be especially useful since the entire application can be visualized
on a single screen.

5 Future work

Envision is still a work in progress. Many core concepts are planned for future development and
the ones discussed here still need additional improvements. Here is a summary of possible future
work:

e Quantitative analysis - Although this study serves to give an initial impression of the
Envision system, it needs to be objectively validated. More information is needed on how
expert programmers will interact with the system. Quantitative studies with developers
must be carried out.

23

6

Feature-full prototype - A feature-full prototype can be designed to enable better system
evaluation and experimentation. Such a prototype would also be needed to support studies
with programmers.

Concept refinement - The visualization and interaction concepts need further improve-
ment. In particular the input system requires a more complete implementation that will
provide more insight about its strengths and weaknesses.

Error reporting - we have barely scratched the surface of how Envision can benefit error
reporting and debugging. More knowledge is needed about how our visual approach can
improve existing practices.

Information system implementation - We have not yet investigated the information
system side of Enwision. This track of research and development also presents many chal-
lenges: How will semantic versioning work? What content can be linked and how? Which
analysis techniques can we combine to improve the programming experience? How do we
present the results of this analysis?

Conclusion

In this study we have presented Envision - a combination of an IDE for visual programming and an
information system. Our contributions include developing the concept of Envision and its design
principles, implementing a mock-up application to demonstrate its core ideas and comparing its
performance to a modern text-based IDE - Eclipse. The evaluation of our approach carried out
during this feasibility study is largely positive with some inconclusive results. There is a lot of
future work needed to further develop the concept of Envision and validate its applicability. We
strive to promote visual programming in large scale software development projects. The ultimate
goal of Envision is to allow the production of higher-quality software faster.

References

[1]

R.N. Shepard. Recognition memory for words, sentences, and picturesl. Journal of Verbal
Learning and Verbal Behavior, 6(1):156-163, 1967.

L. Standing. Learning 10000 pictures. The Quarterly Journal of Ezxperimental Psychology,
25(2):207-222, 1973.

S. Schiffer and J.H. Frohlich. Visual programming and software engineering with Vista. Visual
object-oriented programming: concepts and environments, pages 199-227, 1995.

B.W. Chang, D. Ungar, and R.B. Smith. Getting close to objects: Object-focused program-
ming environments. Visual object-oriented programming: concepts and environments, pages
185-198, 1995.

W. Citrin, M. Doherty, and B. Zorn. The design of a completely visual object-oriented
programming language. Visual Object-Oriented Programming: Concepts and Environments.
Prentice-Hall, New York, 1995.

PT Cox, FR Giles, and T. Pietrzykowski. Prograph. Visual Object-Oriented Programming:
Concepts and Environments. Prentice-Hall, New York, 1995.

C. Grant. The Visula programming language and environment. In IEEE Symposium on Visual
Languages and Human-Centric Computing, 2006. VL/HCC 2006, pages 203206, 2006.

24

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

E. Baroth and C. Hartsough. Visual programming in the real world. In Visual object-oriented
programming, page 42. Manning Publications Co., 1995.

R. DeLine, A. Khella, M. Czerwinski, and G. Robertson. Towards understanding programs
through wear-based filtering. In Proceedings of the 2005 ACM symposium on Software visu-
alization, pages 183-192. ACM, 2005.

R. DeLine, M. Czerwinski, and G. Robertson. Easing program comprehension by sharing
navigation data. 2005.

M. Cherubini, G. Venolia, R. DeLine, and A.J. Ko. Let’s go to the whiteboard: how and
why software developers use drawings. In Proceedings of the SIGCHI conference on Human
factors in computing systems, page 566. ACM, 2007.

R. DeLine. Staying oriented with software terrain maps. In International Conference on
Distributed Multimedia Systems. Citeseer.

R. DeLine, M. Czerwinski, B. Meyers, G. Venolia, S. Drucker, and G. Robertson. Code
thumbnails: Using spatial memory to navigate source code. 2006.

M.A. Storey, C. Best, J. Michaud, D. Rayside, M. Litoiu, and M. Musen. SHriMP views:
an interactive environment for information visualization and navigation. In CHI’02 extended
abstracts on Human factors in computing systems, page 521. ACM, 2002.

A. Bragdon, R. Zeleznik, S.P. Reiss, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman,
F. Adeputra, and J.J. LaViola Jr. Code bubbles: a working set-based interface for code un-
derstanding and maintenance. In Proceedings of the 28th international conference on Human
factors in computing systems, pages 2503-2512. ACM, 2010.

A. Bragdon, S.P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman,
F. Adeputra, and J.J. LaViola Jr. Code Bubbles: Rethinking the user interface paradigm of
integrated development environments. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, pages 455-464. ACM, 2010.

G. Little and R.C. Miller. Keyword programming in java. Automated Software Engineering,
16(1):37-71, 2009.

K.N. Whitley. Visual programming languages and the empirical evidence for and against.
Journal of Visual Languages and Computing, 8(1):109-142, 1997.

T.R.G. Green and M. Petre. Usability Analysis of Visual Programming Environments: A
"Cognitive Dimensions’ Framework. Journal of Visual Languages and Computing, 7(2):131-
174, 1996.

M. Petre. Mental imagery and software visualization in high-performance software develop-
ment teams. Journal of Visual Languages € Computing, 2010.

K.N. Whitley and A.F. Blackwell. Visual programming in the wild: A survey of LabVIEW
programmers. Journal of Visual Languages & Computing, 12(4):435-472, 2001.

A. Cimino, F. Longo, and G. Mirabelli. A General Simulation Framework for Supply Chain
Modeling: State of the Art and Case Study. Arziv preprint arXiv:1004.3271, 2010.

S. Bangsow. Manufacturing Simulation with Plant Simulation and Simtalk: Usage and Pro-
gramming with Examples and Solutions. Springer Verlag, 2010.

G. Little and R.C. Miller. Translating keyword commands into executable code. In Proceedings
of the 19th annual ACM symposium on User interface software and technology, page 144.
ACM, 2006.

25

[25] G. Little, T.A. Lau, A. Cypher, J. Lin, EIM. Haber, and E. Kandogan. Koala: capture,
share, automate, personalize business processes on the web. In Proceedings of the SIGCHI
conference on Human factors in computing systems, page 946. ACM, 2007.

26

	Introduction and Motivation
	Related work
	Visual programming languages
	Visualization techniques and interaction tools
	Visualization evaluation and experiments

	The Envision system
	Overview
	Source code representation
	Visualization principles of Envision
	General-purpose
	Efficient
	Fast
	Intuitive
	Flexible
	Focused
	Appropriate
	Self-sufficient
	Varied
	Friendly

	Entity visualizations

	User interaction
	Construction of visuals
	Giving commands

	Use case examples
	Programming a Hello World application
	Visualizing the source code of Envision itself

	Case study: call stack visualization

	Discussion
	Implementation of the visualization principles
	General-purpose
	Efficient
	Fast
	Intuitive
	Flexible
	Focused
	Appropriate
	Self-sufficient
	Varied
	Friendly

	Comparison to traditional programming environments
	Productivity
	Readability
	Navigation
	Maintainability (Viscosity)
	Teaching

	Future work
	Conclusion

