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1 Introduction and Motivation
Viper [1] is an intermediate verification language with back-ends that verify
whether a Viper program is correct. A Viper program is correct if all its methods
are partially correct. A method is partially correct with respect to a precondition
and a postcondition iff the resulting state after executing the method satisfies the
postcondition given that the initial state satisfies the method’s precondition. A
program is verified by Viper in a modular way, which means that the program
is split into methods that are verified separately. Viper also includes other
specifications, for instance to specify loop invariants.
In general, Viper is capable of verifying non-trivial programs such as programs
modifying the heap. Thus, Viper is being used by several front-ends to verify
programs written in Go [2], Rust [3], Java [4], and Python [5]. In Viper, more
complex properties can be expressed and verified as methods, but the proof
code is restricted to the language features Viper offers. Particularly relevant to
this thesis, Viper currently does not offer existential elimination and universal
introduction, i.e. the introduction of the universal quantifier and the elimination
of the existential quantifier. Additionally Viper currently has no support for
lemmas instead lemmas have to be simulated with methods. Past projects had
to introduce local assumptions to work around these missing language features.
Therefore, the main goal of this thesis is to extend Viper in a way that such local
assumptions can be avoided and existential elimination, universal introduction
and lemmas can be used in a sound way.

1.1 Motivating Example
To prove an algorithm correct by induction one has to find some sort of induc-
tive argument. In the case of quicksort [6], this argument is performed on the
subarrays that are created by splitting the input array on a pivot. One subar-
ray consists of elements smaller than the pivot, the other consists of elements
greater than the pivot. The base case, sorting a singleton array, is trivial. In the
inductive step the array of length n+1 is sorted by performing a recursive call
on the subarrays with length ≤ n, where we can use the induction hypothesis.
In other cases, it might not be as easy to find a suitable induction hypothesis.
One such example is shearsort [7]. Shearsort takes as input an n × n-matrix
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and outputs the matrix sorted in a snake-like order in ⌈log2 (n)⌉ + 1 iterations.
Each iteration consists of two main steps:

Algorithm 1 Shearsort
1: repeat ⌈log2 (n)⌉ + 1 times:
2: Sort rows in an alternating way.
3: First row: left-to-right
4: Second row: right-to-left
5: ...
6: Sort columns top-to-bottom.

7 3 2
8 9 6
5 4 1

Input matrix

2 3 7
9 8 6
1 4 5
Round 1:

sorting rows

1 3 5
2 4 6
9 8 7
Round 1:

sorting columns

1 3 5
6 4 2
7 8 9
Round 2:

sorting rows

1 3 2
6 4 5
7 8 9
Round 2:

sorting columns

1 2 3
6 5 4
7 8 9
Round 3:

sorting rows

1 2 3
6 5 4
7 8 9
Round 3:

sorting columns

1 2 3
6 5 4
7 8 9

Output matrix

Figure 1: Shearsort algorithm executed on a 3 × 3-matrix.

Directly expressing a suitable induction hypothesis can be challenging but we
can apply the 0-1-principle [8] as an intermediate step to simplify the problem.

1.2 0-1-Principle
The 0-1 sorting principle informally states that if a sorting algorithm sorts all
inputs of 0’s and 1’s , then it sorts any input. This principle can be applied in
Viper to prove the correctness of shearsort as follows. First an integer threshold
t has to be fixed, then any value ≤ t can be viewed as 0, and values > t as 1.
Using Viper and this fixed threshold t, it can now be proven that the created 0-1
matrix is sorted after the algorithm has been executed, as shown in the example
below. In the last step using universal introduction, it can be proven that the
0-1 matrix will be sorted for any threshold t.
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1 0 0
1 1 1
1 0 0

Input matrix

0 0 1
0 0 1
1 1 1

After round 1

0 0 0
1 0 1
1 1 1

After round 2

0 0 0
1 1 0
1 1 1

After round 3

0 0 0
1 1 0
1 1 1

Output matrix

Figure 2: Shearsort algorithm executed on a 3×3-matrix using the 0-1-principle
with threshold t = 4.

In the example above, the rows that are marked with green are correctly
sorted. It is now clearly visible that after each round the matrix is ”more
sorted”.

2 Useful Reasoning Features in Viper
2.1 Existential Elimination
Existential elimination means that if it can be proven that ∃x.P (x) holds, then
the existential quantifier can be removed and a witness w can be obtained such
that P (w) holds. Naively adding existential elimination to Viper, encoded as
the following Viper statement, would be unsound.

[
obtain x::T where P(x)

]
→

var w: T;
assume P(w)

Figure 3: An unsound Viper encoding for existential elimination.

To correct this encoding, we first need to assert that there exists a variable
that satisfies P . Such a correct encoding would be:

[
obtain x::T where P(x)

]
→

assert exists x: T :: P(x);
var w: T;
assume P(w)

Figure 4: A correct Viper encoding for existential elimination.

The assert statement ensures that a witness is guaranteed to exist.

2.2 Universal Introduction
After proving that P (x) holds for an arbitrary variable x, universal introduction
can be applied to obtain ∀x.P (x). In general we would like to be able to prove
that ∀k.P (k) =⇒ Q(k) in Viper. One seemingly possible encoding would be:
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 prove forall k:T assuming P(k) implies Q(k) {
<code provided by user >

}



→

var arb_k: T;
assume P(arb_k );
<code provided by user >
assert Q(arb_k );
assume forall k:T :: P(k) ==> Q(k)

Figure 5: An unsound Viper encoding for universal introduction.

Even though this seems to work at first glance, there are some problems
with this code. For instance, the assumption on k needs to be guarded by a
boolean value, since if P (k) is not satisfiable, then assume P(k) kills all traces
and the rest of the program trivially verifies, even though it might be incorrect.
An if statement including an arbitrary boolean value ensures that the rest of
the program is still checked. Moreover, a label has to be added such that we
can use P (k) in the forall assumption in the state it had before the provided
code was executed. prove forall k:T assuming P(k) implies Q(k) {

<code provided by user >
}



→

var b: Bool;
var arb_k: T;
label l;
if(b) {

assume P(arb_k)
}
<code provided by user >
assert b ==> Q(arb_k );
assume forall k:T :: old[l](P(k)) ==> Q(k)

Figure 6: An improved Viper encoding for universal introduction.

It also has to be analysed whether in the provided code k :: T influences any
other variables in the program, for example in an assignment or a conditional
assignment. In the example below P (k) is true und Q(k) is the assertion x == k.

var x: T;
prove forall k:T assuming true implies x == k {

x := k
}

Figure 7: Example of an assignment where variable k influences x.

4



Additionally, P and Q have to be restricted, for example it is required that
they are expressions.

2.3 Pure Method as Lemma
In order to prove an implication, like in the encoding for the universal introduc-
tion, one might want to use a lemma. Currently Viper does not offer support for
lemmas and therefore the user has to simulate lemmas with methods. However,
this is prone to errors. An example of such an incorrect proof is the following
code.

method incorrect_proof (n: Int)
ensures false

{
incorrect_proof (n -1)

}

Figure 8: Incorrect induction proof

This proof is not guaranteed to terminate which is equivalent to the induction
proof not having a base case making it incorrect. Therefore, we would like to
add sound support for lemmas, for example by checking whether the lemma
terminates. Furthermore, lemmas should have no side-effects, i.e. no write
operations to the heap, such that they might for example be called in an old
context.

3 Goals
3.1 Core Goals
3.1.1 Existential Elimination

• Design a Viper-to-Viper plug-in and add syntax for existential elimination
like in Section 2.1.

• Implement the plug-in performing the corresponding encoding.

• Write test cases for the plug-in.

3.1.2 Universal Introduction

• Design a Viper-to-Viper plug-in and add syntax for universal introduction,
see Section 2.2.

• Develop a modular static analysis to make sure the universal introduction
is safe and implement it.

• Add the encoding for universal introduction to the plug-in.

• Write test cases for the universal introduction in the plug-in.
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3.1.3 Lemmas

• Add support for lemmas in the Viper-to-Viper plug-in, see Section 2.3.

• Write test cases for lemmas in the plug-in.

3.1.4 Case Studies/Evaluation:

• Evaluate the Viper plug-in by verifying one or more sorting algorithms
with the 0-1-principle.

• Evaluate the Viper plug-in on an existing Viper codebase and qualitatively
asses the expressiveness of the plug-in compared to the local assumptions
in the codebase.

3.2 Extension Goals
• Add support for simple set, sequence and map comprehensions as part of

the plug-in.

• Add support for the new features in Gobra
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