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Abstract

Viper is an intermediate verification language with back-ends that verify
whether a Viper program is correct. In this thesis, we extend Viper with
reasoning features such as existential elimination, universal introduction and
lemmas. Our implementation of these features checks the necessary side
conditions to ensure their soundness. We require for instance that the proof
of a universal introduction does not influence the rest of the program. Hence,
we devise an information flow analysis to check this side condition. As Viper
verifies programs in a modular way, this information flow analysis is also
modular. Therefore, we introduced a new annotation for method specification
that allows the analysis to handle method calls in a modular way.
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Chapter 1

Introduction

Viper [1] is an intermediate verification language with back-ends that verify whether
a Viper program is correct. A Viper program is correct if all its methods are
partially correct. A method is partially correct with respect to a precondition and
a postcondition iff the resulting state after executing the method satisfies the
postcondition given that the initial state satisfies the method’s precondition. A
program is verified by Viper in a modular way, which means that the program is split
into methods that are verified separately. Viper also includes other specifications,
for instance the specification of loop invariants.

In general, Viper is capable of verifying non-trivial programs such as programs
modifying the heap. Thus, Viper is being used by several front-ends to verify
programs written in Go [2], Rust [3], Java [4], and Python [5]. Complex properties
and proof obligations can be expressed using the restricted set of language
features offered by Viper by finding a suitable encoding. This thesis adds three
language features to Viper, which we implemented in a Viper plugin. A Viper
plugin extends the input language of Viper by additional language features and
internally encodes these features. The three language features added are lemmas,
existential elimination, and universal introduction.

Before lemmas were added as a language feature, each user had to consider the
following to prove a lemma. A user formulated a lemma as a method with the proof
in the body. The proof of a lemma has to fulfill certain side conditions to be valid.
For instance, the proof of a lemma should not influence the rest of the program
executed at runtime, so there should be some separation of the proof and the rest
of the code. Additionally, the code for the proof of the lemma should terminate. A
user had to be thorough in checking these side conditions such that the lemma’s
proof is indeed valid.

Another added language feature is existential elimination. If we have an existen-
tially quantified property and we want to obtain a witness for which the property
is satisfied, we use existential elimination. However, obtaining a witness is only
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2 1. Introduction

possible if there exists such a witness for which the property is satisfied. Be-
fore, a user had to first show that such a witness exists by asserting that the
existentially quantified property holds. Then this user picked a variable with an
arbitrary value and assumed this is the witness by assuming the property for this
variable. This is only a valid existential elimination if the property in the assert and
assume statement is the same. If this property is complex, mistakes can be easily
introduced.

The final language feature added to Viper is universal introduction which is a well
known rule in predicate logic. The rule introduces the universal quantifier for a
property. This is useful when proving that a certain property holds for any variable.
Similar to the lemma universal introduction also has side conditions that need
to be respected. For instance, the code which proves the universal introduction
should be separated from the rest of the program during runtime, similar as for the
proof code of lemmas. This and all further side conditions of universal introduction
are checked in the language extension such that a user wanting to implement
universal introduction does not have to check them.

The structure of this thesis is as follows. Firstly, we introduce the new language
features of Viper. We show their encoding and explain the necessary side con-
ditions for the features to be correct. In the case of the universal introduction,
one such side condition requires us to check that values from the proof do not
influence the program. Therefore, we explain in Chapter 3 a simple approach to
track the information flow from the proof to the program. However, we will see that
this approach is non-modular. Thus, in Chapter 4 we present a modular approach
for analysing the information flow. Finally, we evaluate the implemented Viper
plugin based on both approaches.



Chapter 2

Sound Reasoning Features

In this chapter we discuss the three language features that we extend the Viper
with, in order to ensure the soundness of certain reasoning steps. The three
features we added are the elimination of the existential quantifier, the introduction
of the universal quantifier and lemmas. We will explain each of these features and
we will show how the Viper language was extended with a Viper plugin to include
them.

2.1 Lemma

Currently, Viper does not offer support for lemmas and therefore the user has
to simulate lemmas with methods. For instance, if we want to prove something
by induction we want the method that simulates the induction to be a lemma.
A lemma requires the precondition of an induction and based on that proves
the induction statement. The prove of the induction can then be written in the
body of the lemma where the case split between base case and induction step
can be implemented using an if statement and a recursive call of the lemma
corresponds to the induction hypothesis. A lemma is essentially a method with
two side conditions. For one, a lemma must be guaranteed to terminate.

1 method lemma ()
2 ensures false
3 {
4 lemma ()
5 }

Figure 2.1: Non-terminating lemma

For instance, this lemma does not terminate which is equivalent to an incorrect
induction proof without a base case and one could simply prove false as shown
in the example in Figure 2.1. Furthermore, a lemma should be a method with a
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4 2. Sound Reasoning Features

body that does not write to the heap. If a lemma were able to write to the heap it
would be able to modify the behaviour of the rest program. However, the body of
the lemma is the proof of this lemma and therefore should not influence the rest of
the program.

2.1.1 Syntax in Viper

To declare that a method is a lemma the following syntax was added to the Viper
language.

1 method lemma1 ()
2 isLemma
3 {
4 <user provided code >
5 }

Figure 2.2: New syntax for lemmas

The new expression isLemma can be added as either a precondition or a
postcondition in the signature of the method. By adding this expression, two
checks are executed to ensure that the two previously mentioned requirements
are fulfilled. Firstly, to prove that the lemma terminates, a decreases clause
should be added to the method signature by the user. The decreases clause
triggers a check for termination by the termination plugin [6] of Viper. Moreover, it
is checked that the lemma does not write to the heap. Therefore, all statements in
the user provided code are considered. The following statements are disallowed
in this code block: assignment to a field, inhale , exhale , fold , unfold ,
apply , and package . Moreover, method calls are not allowed, however lemma
calls are allowed since they clearly fulfill the side conditions of a lemma. If any
of the above listed statements were allowed it would be possible for lemmas to
influence the behaviour of the rest of the program. But we want to be able to prove
the rest of the program independent of this lemma.

2.1.2 Lemma in an Old Context

As mentioned in the previous section, a lemma cannot modify the heap. Therefore,
it is now sound to call a lemma in the old context which means to prove a lemma
on the old state of the heap. To enable such lemma calls in an old context, we
extended the Viper language with the following new syntax.
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 1 label l
2 var t: T
3 t := oldCall [l]( lemma1 ())



→
1 label l
2 assume old [l]( precondition )
3 havoc t
4 assert old [l]( postcondition )

Figure 2.3: oldCall syntax and encoding

Where t are optional target variables, which are variables that the lemma call can
be assigned to. precondition is the precondition and postcondition
is the postcondition of the lemma which need to be assumed and asserted

respectively in the old context. Therefore, we can use the lemma in an old context.
However, since we only consider the lemma’s pre- and postcondition and not the
body, we do not know what values the target variables might be assigned. Thus,
they are havocked in line 3 of our encoding.

2.2 Existential Elimination

Another reasoning feature we added is existential elimination. Existential elim-
ination means that if it can be proven that ∃x.P(x) holds, then the existential
quantifier can be removed and a witness w can be obtained such that P(w) holds.
Up until now this had to be done by the programmer. This meant that if we wanted
to find witnesses ws for some expression P with an arbitrary number of variables,
P had to be written twice as can be seen in the encoding, which lead to code
duplication. Furthermore, if P is complex and one variable had to be changed,
mistakes could easily be introduced since P had to be changed in two places.

2.2.1 Syntax and Encoding in Viper

The newly added syntax for existential elimination in Viper is encoded the following
way: [

1 obtain x:T where {P(x)} P(x)
]

→
1 assert exists x: T :: {P(x)} P(x)
2 var w: T
3 assume P(w)

Figure 2.4: Existential elimination encoding

This encoding is straightforward. Here, P(x) is some arbitrary expression that
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takes x as an argument. The assert statement on line 1 is necessary since if
we would omit this statement we could assume false in line 3 if P(x) does not
hold for any x, and therefore we could prove false. With the assert now added,
if there does not exist x for which P(x) holds, the execution is simply stopped
and an assertion error is thrown. If we know that there exists such a variable x we
can then assume for an arbitrary variable w that P(w) holds. Therefore, we have
found a witness w for our expression P(w).

2.3 Universal Introduction

After proving that P(x) holds for an arbitrary variable x, universal introduction
can be applied to obtain ∀x.P(x). In general we would like to be able to prove
that forall k for which P(k) holds in an old context, that Q(k) holds in the current
context after the execution of the universal introduction body.

2.3.1 Syntax and Encoding in Viper

The new syntax and encoding for universal introduction is the following: 1 prove forall k:T {P(x)} assuming P(k) implies Q(k) {
2 <user provided code >
3 }



→

1 var b: Bool
2 var k: T
3 label l
4 if (b) {
5 assume P(k)
6 }
7 <user provided code >
8 assert b == > Q(k)
9 assume forall k1:T :: {P(x)} old [l](P(k1 )) == > Q(k1)

Figure 2.5: Universal introduction encoding

Here, P and Q are two arbitrary expressions. The assumption on k needs to be
guarded by a boolean value. Otherwise, if P(k) is not satisfiable, then assume

P(k) kills all traces and the rest of the program trivially verifies, even though
it might be incorrect. Therefore, the if statement on line 4 is added including
an arbitrary boolean value b which ensures that the rest of the program is still
checked. Moreover, a label on line 3 is added such that we can use P(k1) in
the forall assumption on line 9 in the state it had before the provided code was
executed.

Furthermore, we need k to be immutable. If we allow k to be modified we would
assert Q(k) for a different k than we assumed P(k) with. This is incorrect
because we want to prove the universal introduction for the same k in both cases.
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Additionally, we require that all quantified variables in the universal introduction
statement do not influence other variables that are in scope outside of the universal
introduction code block. The program executes independent of the execution of the
proof of the universal introduction. To understand why this is a problem, consider
the following example. 1 var x:T

2 prove forall k:T assuming true implies k == x {
3 x := k
4 }


Figure 2.6: Example of an assignment to a variable in scope outside of the universal introduction
block

In this example, the value of x after the universal introduction statement, has been
altered and we have somehow proven that x is equal to all values of type T. This
is obviously wrong and therefore we cannot allow the quantified variables in the
universal introduction statement to influence any of the variables in scope outside
of this statement and present in P or Q which includes the heap. In Figure 2.6 this
is the case in the expression k==x. To avoid such faulty proofs, we need to check
whether a quantified variable in the universal introduction statement influences a
variable that is also present outside of the universal introduction scope. Therefore,
we need to perform an information flow analysis of the code block inside the
universal introduction statement to check the information flow from the proof to
the rest of the program.





Chapter 3

Information Flow Analysis - First
Attempt

As mentioned in the previous chapter, we want to collect all the variables whose
value was influenced by the value of a quantified variable in the universal in-
troduction and check whether these variables are also present outside of the
scope of the proof. In particular, we must ensure that the quantified variable
in a universal introduction is not assigned to a regular program variable or the
heap and hence cannot modify the rest of the program. Therefore, we treat such
quantified variables as tainted and perform an information flow analysis. In this
first attempt, we track tainted variables which we store in a set. Variables are
considered tainted when their value might depend on the value of an already
tainted variable. For each variable that we consider tainted at the beginning of
a statement, we compute a set that contains all the variables whose value was
influenced by the originally tainted variable and consider these variables now
tainted as well. For example, if the value of an initially tainted variable changes,
the values of all variables in its tainted set might change as well. This chapter is
structured as follows: Section 3.1 provides details on how the analysis handles
individual statements, and Section 3.2 illustrates the limitations of this method of
analysis that we overcome in Chapter 4 with a different analysis.

3.1 Analysis Details

In Section 2.3.1 we establish that we want to track which variables are influenced
by the quantified variables in order to determine whether the universal introduction
might influence the rest of the program. Therefore, the initially tainted variables
are the quantified variables from the universal introduction and our information
flow analysis is triggered by a universal introduction statement. Thus, when the
analysis is triggered it adds the quantified variables to the set of tainted variables.
Then the analysis iterates over all the statements in the code block inside the
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10 3. Information Flow Analysis - First Attempt

universal introduction statement and adds variables to or removes them from the
set according to the statement. In this section, we look at several statements and
explain how they influence the set of tainted variables. We use f as the function
that takes a tainted set S and a statement stmt as inputs and returns the updated
set of tainted variables after executing stmt.

3.1.1 Sequential Composition

f (S, s1; s2) = f ( f (S, s1), s2) (3.1)

For sequential composition s1; s2, we first compute the tainted set for executing
s1 and use the resulting set as input for the analysis of s2. This is correct, since
the two statements happen consecutively and therefore all the variables that are
added to the tainted set in statement s1 are tainted when statement s2 is executed.

3.1.2 Local Variable Assignment

f (S, lhs := rhs) =

{
S ∪ lhs if tainted(rhs)
S \ lhs otherwise

(3.2)

The analysis either adds the variable on the left-hand side to or removes it from
the tainted set based on whether the right-hand side expression is tainted or not.
If the expression rhs is tainted, the variable lhs is added to the tainted set because
it has a tainted value after the assignment. Similarly, if the expression is untainted,
the variable lhs stores an untainted variable after the assignment and thus we can
remove the variable lhs from the set of tainted variables. To decide whether the
expression rhs is tainted or not we use the auxiliary function tainted. The function
tainted(exp) takes an expression exp as an argument and returns whether this
expression contains a variable that is present in the tainted set.

3.1.3 If Statement

f (S, if(cond) {s1} else {s2}) =
{

S ∪ mod(s1) ∪ mod(s2) if tainted(cond)
f (S, s1) ∪ f (S, s2) otherwise

(3.3)

Since either the if block s1 or the else block s2 is executed we need to compute the
analysis for both of these blocks. The same set S is used in both computation be-
cause only one of the two blocks s1 or s2 will be executed. We cannot know which
of these blocks is executed therefore we overapproximate the tainted variables by
taking the union of the tainted variables resulting from the analyses of s1 and s2.
The condition cond is the determining factor which block is executed. Therefore
the value of cond influences the value of all the variables that are modified in
either of the blocks s1 and s2. Hence if the condition is tainted, the variables that
are modified in these block are tainted as well and must be added to the set of
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tainted variables. To decide whether the condition is tainted the auxiliary function
tainted is used as explained in Section 3.1.2 and to determine which variables are
modified in the respective blocks the auxiliary function mod is used. The function
mod(stmt) takes a statement stmt as an argument and returns all variables that
are modified by this statement. Modified means that the value of the variable was
changed by this statement. This is the case, when the variable is assigned a new
value by the statement.

3.1.4 While Statement

f (S, while(cond) {body})

=

{
S if S = f (S, if(cond) {body} else {})
f (S′, while(cond) {body}) otherwise

(3.4)

For the while statement there are several possibilities to be considered. First, the
while body could be executed several times or never. If the body is not executed
at all, all the variables that were previously in the set of tainted variables need to
be kept inside this set. Therefore, one iteration of the loop body is the same as
executing the analysis on an if statement where in one block the body is executed
and in the other block nothing is computed. As explained in Section 3.1.3, the
union of the two resulting sets from the if and else block is taken. Since we leave
the else block empty, the union is taken from the resulting set of the execution of
the body in the if block and the initial tainted set.

However, we cannot know how many times the body of the loop is executed,
thus we need to overapproximate the variables that can be tainted. As in the if
statement, we can overapproximate the set of tainted variables by taking the union
of the tainted set after executing the loop body once, twice, and so on. Because
there are a finite amount of variables in scope, there are also a finite amount of
variables that can be added to the set of tainted variables. Thus, and because
the set can only grow with each iteration, the set will not change after a certain
amount of iterations of the loop body. When we reach this point, where the set
does not grow anymore, we have found the fixed point of the set. In other words,
when the set S is equal to the set that is returned after a further iteration we have
reached the fixed point of set S and can return this fixed point. Otherwise, we
compute a further iteration of the loop body.

3.2 Limitations

The presented information flow analysis computes for a given set of tainted
variables the set of variables that are tainted after performing some statement.
Since the analysis is specific to a particular set of initially tainted variables, this
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analysis is non-modular as we will illustrate with a method call. Consider a method
being called twice in the following manner.

1 method m(a:T,b:T) returns (c:T,d:T)
2 {
3 c:=a
4 d:=b
5 }
6 method main ()
7 {
8 var r1: T
9 var r2: T

10 var r3: T
11 var r4: T
12 prove forall x:T {P(x)} assuming P(x) implies Q(x)
13 {
14 var y: T
15 r1 ,r2 := m(x,y)
16 r3 ,r4 := m(y,x)
17 }
18 }

Figure 3.1: Method calls with set flow analysis

We want to modularly determine which of the variables r1 to r4 are tainted.
With a non-modular analysis we would simply go through the method body of the
called method and execute the same analysis described in the previous section
on the method body to determine the tainted return variables and therefore which
variables r1 to r4 are tainted. Thus, it depends on method m which of the
variables, that the method call is assigned to, are tainted. To be modular and thus
not to analyse the body of method m when considering a call to m, we want to
annotate the callee. This annotation should express the method’s effects on the
set of tainted variables. Since we call the variables in the tainted set tainted, it
follows naturally to annotate each tainted variable as tainted when passed to a
method. When we consider the first method call to m on line 15, we therefore want
to add an annotation to the variable x since this is the quantified variable of the
universal introduction statement and thus tainted. We simply add the annotation
tainted to mark that when calling method m, the first argument can be a tainted
variable. To avoid having to analyse the whole body each time, the return variables
are annotated accordingly with the tainted keyword as well. Hence, the method
specification for m for the method call on line 15 looks the following way.

1 method m( tainted a:T,b:T) returns ( tainted c:T,d:T)
2 {
3 c:=a
4 d:=b
5 }

Figure 3.2: Method signature with tainted keyword
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Now the callee in the method main in Figure 3.1 can analyse the method speci-
fication of m and determines that the variable r1 should be added to the set of
tainted variables. However, on line 16 the callee sees the same method specifi-
cation of m and therefore assumes that again the first argument can be tainted
and therefore the first returned variable, namely r3 is added to the set of tainted
variables. But this leads to an incorrect tainted set. We can easily see that on line
16 the second argument, in this case x, that is passed to method m is a tainted
variable. Thus, looking at the body, variable r4 should be added to the tainted
set, which is not the case.

To solve this problem, we would therefore need a method specification of m that
annotates the second argument of the method as well as the second return
variable with the tainted keyword. One possibility is to have several method
specifications with all possible method arguments annotated as tainted or not
annotated. This would return the correct tainted set that results from the method
call. However, this leads to specification duplication and every time method m
is called, we need to check the method call against every specification which
results in verification overhead. But this verification overhead is exactly what we
want to avoid by modular verification. Another possibility is to generally annotate
all method arguments as tainted and annotate the according return variables as
tainted. However, in this case the computed tainted set might overapproximate the
actual tainted set substantially. In Figure 3.1 the analysis would add all variables
r1 to r4 to the tainted set instead of only r1 and r3.

In the next chapter, we present a graph-based approach that allows us to express
more precisely how input variables impact output variables. For the example
above, we can express that variable a impacts only variable c and the can be
expressed for variables b and d.





Chapter 4

Modular Flow Analysis with Graphs

In the previous chapter, we introduced an information flow analysis, in order to
ensure that the quantified variables in the universal introduction statement do not
influence the rest of the program. However, it was established that the handling
of method calls, in particular the use of the tainted annotation does not work
efficiently, see Section 3.2. Thus, in this chapter we introduce a more fine-grained
approach to specify methods as shown in Section 4.1. This approach allows us to
specify which variable is influenced by which other variables. This solves the issue
of multiple specifications or the overapproximation of the set of tainted variables.
The tainted analysis discussed in the previous chapter could be used to check this
new specification. However, this does not scale well. For each method, we need to
execute the analysis for each method argument and additionally for a variable that
represents the heap. Therefore, we develop a direct compositional approach for
the modular information flow analysis based on graphs as shown in Section 4.2.

4.1 Flow Annotation

To solve our problem from Section 3.2, namely having multiple method speci-
fications, we introduce an annotation to each method instead of marking each
variable separately as tainted. Instead of having different method specification
for every method argument, we can simply add an annotation to the method for
each return variable, that specifies a set of method arguments this return variable
might be influenced by. Therefore, we can simply check if any of the variables in
this set is tainted. If this is the case, the returned variable will be tainted as well,
otherwise not. The problem with having multiple specifications or a considerably
overapproximated set of tainted variables is therefore solved. Additionally, the
heap as a whole is always considered a method argument as well as a method
return variable, since a method can modify the heap and read from it. This flow
annotation has the following new syntax.

15
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1 method m(a1:T,a2:T) returns (r1:T,r2:T)
2 influenced r1 by {}
3 influenced heap by { heap ,a2}
4 {
5 <user provided code >
6 }

Figure 4.1: New syntax for flow annotation

Based on the code block inside the method, the user can now specify these
annotations. In this case, for r1 it is specified that it is not influenced by any
method argument. For r2 there was no annotation written, therefore in case the
information flow is analysed, it is assumed that r2 might be influenced by all
method arguments including the heap to overapproximate the actual information
flow. Since the heap is always an implicit method argument and return variable, we
can also specify this annotation for the heap. The heap must always be influenced
by itself and in this case the heap is also influenced by method argument a2.

4.1.1 Verification of the Flow Annotation

For each method, it is verified that its flow annotations are correct. This means,
that the annotation should be exact or overapproximate the method arguments
that influence the return variable. If we underapproximate the method arguments
that influence the return variable, we miss a variable that influences the return
variable and therefore the information flow analysis is incorrect. However, if
we overapproximate the variables by which a return variable is influenced, all
the variables that actually influence this variable will be listed and therefore the
information flow analysis is correct.

4.2 Analysis with Graphs

An intuitive way of representing this influenced by relation created by the new flow
annotation shown in the previous section, is to show this relation with an edge in a
graph where the vertices represent the variables. Therefore, in this approach we
use a graph to create the information flow analysis. After trying out different types
of graphs we decided on the directed bipartite graph G(Vinit ∪ Vf inal , E) as the
new data structure used for the information flow analysis. The idea is to build a
graph that shows which initial value of a variable before a statement influences
which final value of a variable after a statement. Therefore, we defined the vertices
Vinit and Vf inal as follows. Vinit contains all variables in scope and their value
before a statement. These vertices only have outgoing edges. Vf inal contains the
corresponding final values of each variable after a statement. These vertices only
have incoming edges. Vinit and Vf inal both contain a variable heap that represents
the state of the heap before and after a statement.
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a b heap

a’ b’ heap’

Figure 4.2: Example graph

In this example graph in Figure 4.2 a, b, and heap represent the variables in
scope and their value before a statement. a’, b’, and heap’ represent the
same variables but their value after the statement. As previously stated, an edge
shows an influenced by relation between two variables. Therefore, we learn from
this graph, that b after the statement is not influenced by its value before the
statement but rather by the value of a before the statement. We also learn that
the value of a after the statement is still influenced by the value of a before
the statement. The same holds for the heap . This leads directly back to the
previously explained method annotation in Section 4.1. Each annotation refers
to a set of edges between the method arguments and the return variable of the
annotation. Thus, we can easily build a graph out of the flow annotations. The
graph for Figure 4.1 looks the following way.

a1 a2 r1 r2 heap

a1’ a2’ r1’ r2’ heap’

Figure 4.3: Flow annotation graph

We can use this flow annotation graph to further analyse method calls in a modular
way, as shown in the next Section 4.3.

4.3 Computing the Flow Analysis Graph

Given this annotation, we can now define the rules to create the flow analysis
graph for each statement. In the following subsection, computeFlowGraph
(S, stmt ) will denote the method that given the set S of current variables
in scope, and a statement stmt computes the resulting graph. Furthermore,
vertices labelled with the variable name represent the initial value, while vertices
labelled with the variable name concatenated with the prime symbol "’" represent
the value of the variable after the statement.
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4.3.1 Local Variable Assignment

The analysis adds edges to the graph based on the left-hand side and the right-
hand side of the assignment. In particular, after an assignment the right-hand
side determines the value of the variable on the left-hand side and therefore the
left-hand side is influenced by the right-hand side.

Example

1 method m(a:T) returns (c:T)
2 {
3 c:=a
4 }

a c heap

a’ c’ heap’

Figure 4.4: Local variable assignment example

In this example variable a is assigned to variable c. Therefore, the edge from a
to c’ needs to be added. However, for the values that have not been changed
by this statement we also need to add the edges from their initial value to their
final value since their final value is trivially influenced by their initial value. If these
edges would not be added, the information would be lost by what variables their
value is influenced by or we would assume that their value is not influenced by
any variable in scope. We can formulate this statement the following way in a rule.

Rule: computeFlowGraph (S, lhs := rhs )

→

1 G := emptyGraph (S)
2 if ( containsHeapAccess ( rhs )) {
3 G. addEdges ({ heap } ,{ lhs })
4 }
5 G. addEdges (rhs ,{ lhs })
6 G. addIdentityEdges (S\lhs )

Figure 4.5: Local variable assignment rule

We start computing the graph for the local variable assignment with the empty
graph G. To create the empty graph G the function emptyGraph (S) is called.
It takes a set of variables S as an argument and returns a graph containing no
edges and vertices representing the initial value and the final value of all variables
in S.

If the expression rhs contains an access to the heap, we add an edge from the
variable heap , denoting the whole heap, to the the vertex representing the final
value of lhs , namely lhs’. Then we add an edge from all the variables in rhs
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to lhs’. The auxiliary function containsHeapAccess ( rhs ) takes an
expression rhs as an argument and returns whether this expression accesses the
heap. Furthermore, to add edges to the graph we have function G. addEdges (
S1 ,S2) which takes two sets of variables S1, S2 as arguments and adds an
edge in the graph G from each vertex representing the initial value of a variable
v1 in S1 to to each vertex representing a final value of a variable v2’ in set S2.

Finally, we add all the identity edges for the remaining variables that are not lhs
but that are in scope. Therefore, the auxiliary function G. addIdentityEdges
(S) is called on a graph G and takes a set of variables S. It adds all the identity
edges of the variables in set S, meaning that the function adds all edges from the
vertex representing the initial value to the vertex representing the final value of the
variables in set S.

4.3.2 Sequential Composition

Given two sequential statements we compute the flow analysis graph for each of
them. Because these two statements are sequential the vertex representing the
final value of a variable in the first graph is the same as the vertex representing
the initial value of the same variable in the second graph. Now we can follow the
edges to see which initial value of a variable in the first graph influences which
final value of a variable in the second graph and create the final graph for the
sequential composition.

Example

1 method m(a:T) returns (c:T,d:T)
2 {
3 c:=a
4 d:=c
5 }

a c d heap

a’ c’ d’ heap’

a c d heap

a’ c’ d’ heap’

Figure 4.6: Sequential composition example

In this example, first the graph for the local variable assignment on line 3 is com-
puted and then the graph for the local variable assignment on line 4 is computed
as explained in the previous section. Therefore, we know that in the first graph a
influences c and in the second graph c influences d. Thus, there exists a path
from a to d’ and we know that a influences d. We can build a new graph that
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removes the vertices in the middle, particularly the vertices representing the final
values in the first graph and the vertices representing the initial value in the second
graph. This final graph only includes an edge from the vertices representing the
initial value in the first graph to the vertices representing a final value in the second
graph if there exists such a path.

a c d heap

a’ c’ d’ heap’

Figure 4.7: Final graph of sequential composition example

Hence, the rule for sequential composition follows.

Rule computeFlowGraph (S,s1;s2)

→ 1 mergeGraphs ( computeFlowGraph (S,s1),
2 computeFlowGraph (S,s2 ))

Figure 4.8: Sequential composition rule

The function mergeGraphs (g1 ,g2) takes two graphs g1 and g2 and finds
the path from any vertex representing an initial value of a variable from the first
graph to any vertex representing a final value of a variable in the second graph
and merges them into one graph.

a b heap

a’ b’ heap’

a” b” heap”

a”’ b”’ heap”’

→

a b heap

a”’ b”’ heap”’

Figure 4.9: Merge two graphs

Here, we set the vertices that are single prime equal to the vertices that are
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double prime and find all the paths. Hence, the resulting graph only contains the
vertices representing the initial value before the first statement and the vertices
representing the value of the variables after both the statements have been
executed.

Therefore, this function computes the final graph for the sequential composition as
explained in the previous paragraph.

4.3.3 If Statement

In an if statement the condition determines whether the if or the else block is
executed. Therefore, each assignment in these two blocks is dependent on which
branch is taken. Since there is this dependency on the condition, we can state that
the value of the variables in the condition influences the final value of the variables
that are assigned to in either the if or the else block. Therefore, an edge should
be added between all the variables in the condition and the variables that are
modified in either the if or the else block. Now, we have computed the first graph
necessary for the if statement. We also need to compute the graphs resulting from
the if block and the else block. When all three graphs are computed, we can take
the union of these graphs. This means that we take the union of all edges and
keep the same vertices. The union overapproximates the variables that influence
each other, since we cannot know which branch is taken.

Example

1 method m(a:T,c:T)
2 returns (d:T,e:T)
3 {
4 if (c) {
5 d:=a
6 } else {
7 e:=a
8 }
9 }

a c d e heap

a’ c’ d’ e’ heap’

Figure 4.10: If statement example

As stated above, we add all the edges from the condition to all the variables that
were modified in either the if or the else block, in this case variables d and e.
Furthermore, we add in the if block the edge from a to d’. According to the local
variable assignment rule, shown in Section 4.3.1, all the other identity edges from
a, c, e, and heap need to be in the graph as well. In the else block, we add the
edge from a to e’ as well as all the identity edges from the variables other than e,
once again because of the local variable assigment rule. The resulting graph then
takes the union of all the edges and creates the final graph containing all edges.
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Rule computeFlowGraph (S,if ( cond ) {s1} else {s2 })

→

1 G := identityGraph (S)
2 if containsHeapAccess ( cond ) {
3 G. addEdges ({ heap } ,( modifiedVars (s1)
4 ∪ modifiedVars (s2 ))
5 }
6 G. addEdges (cond ,( modifiedVars (s1) ∪ modifiedVars (s2 )))
7 G. removeIdentityEdges ( modifiedVars (s1)
8 ∩ modifiedVars (s2 ))
9 computeFlowGraph (S,s1) ∪ computeFlowGraph (S,s2) ∪ G

Figure 4.11: If statement rule

First, we check whether the condition contains a heap access, with the auxiliary
function containsHeapAccess , as explained in Section 4.3.1. If the con-
dition contains a heap access, we need to add an edge from the initial value of
the heap to the final value of the variables that have been modified in either the
if or the else block. These variables are computed using the auxiliary function
modifiedVars ( stmt ), which takes a statement and returns all variables
that are modified by the statement. In particular, all variables which are on the
left-hand side of an assignment in that statement. Then we go through all the
variables in the condition and add the edges from these condition variables to
the variables that were modified, using the addEdges function, as explained in
Section 4.3.1. Now we can remove the identity edges from the variables that were
modified in both the if and the else block. This is correct, because if a variable
is modified in both the if and the else block we know that both graphs computed
from the if and the else block will add or remove an edge and therefore we can
remove the identity edge for this variable. To remove the identity edges the function
G. removeIdentityEdges (S) is used, which for a graph G removes all
edges from the vertices representing initial values in the set of variables S to the
vertices representing the final values of these variables. Finally, we take the union
of the three computed graph, namely the graph from the if block, the graph from
the else block and the graph resulting from the condition.

a c heap

a’ c’ heap’

Figure 4.12: Identity graph

To have all the necessary edges in the if condition graph we need to start
the analysis with the identity graph. To create this graph the auxiliary function
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identityGraph (S) is used, which takes a set of variables S and returns
the identity graph. This is the graph that has an edge between the two vertices
representing the value before and after a statement, as shown in Figure 4.12.

4.3.4 While Statement

Computing one iteration or no iteration of the while loop is essentially the same as
computing the if statement with the same condition, the body of the while loop as
the if block, and an empty else block. If the body is never executed all the edges
should stay the same. If the body is executed once the edges should be added
accordingly. The next iteration is conceptually just a sequential composition of the
first iteration. Therefore, we can now merge the two graphs each representing one
iteration of the loop body and get the graph of the while loop after two iterations.
In general, the graph for one iteration can be merged with the graph computed
for the last iteration to compute the graph after an additional iteration. This graph
can only grow and because there are a final amount of variables in scope and
hence a final amount of edges, the graph will reach a fixed point at which no more
edges are added to the graph. Since it is not clear how many iterations of the body
will be executed, we overapproximate and use the fixed point graph as the flow
analysis graph for the while loop.

Example

In the example in Figure 4.13, we see that in the second iteration only a single
edge is added, namely the edge between the variable a and d which is marked
red. This is the only edge that can be found by searching for paths when merging
the graph after one iteration with itself to simulate two iterations. The graph of the
second and third iteration stays the same and therefore we have found a fixed
point and can stop the analysis of the while statement.
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1 method m(a:T,c:T)
2 returns (d:T,e:T)
3 {
4 while (c) {
5 d:=e
6 e:=a
7 }
8 }

One or no iteration of the loop body

a c d e heap

a’ c’ d’ e’ heap’

Two iterations of the loop body

a c d e heap

a’ c’ d’ e’ heap’

Three iterations of the loop body

a c d e heap

a’ c’ d’ e’ heap’

Figure 4.13: While statement example

Rule computeFlowGraph (S, while ( cond ) { body })

→

1 G’ = identityGraph (S)
2 G1 = computeFlowGraph (S, if( cond ) { body } else {})
3 G’ = mergeGraphs (G1 , G’)
4 G = copy (G1)
5 while (G’ != G) {
6 G = copy (G’)
7 G’ = mergeGraphs (G’,G1)
8 }

Figure 4.14: While statement rule

As in the if statement, this analysis starts with the graph containing only the
identity edges that we create using the auxiliary function identityGraph (S)
as discussed in Section 4.3.3. Here, G1 is the graph after one iteration of the while
loop. Therefore, we iterate over the graph G1 until we find the fixed point of this
graph. In our rule, G represents the graph of the last iteration and G’ represents
the graph of the most recent iteration. To compute a new iteration we can merge
the graph representing our most recent iteration G’ and the graph representing
one iteration of the graph G1 using the function mergeGraphs as explained in
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Section 4.3.2. The function copy (G) takes a graph G and returns a copy such
that we can save the graph of the last iteration.

4.3.5 Inhale/Assume

Inhale and assume result in the same graph. Every variable that is inhaled or
assumed could potentially influence each variable that is in scope, because if the
assume or inhale is false we do not know what code is executed and therefore
each variable’s value in the code block might be different based on what was
assumed or inhaled.

Example

1 method m(b: Bool )
2 returns (d:Int , e: Int )
3 {
4 var b’: Bool
5 if (b’) {
6 assume b
7 d := 1
8 } else {
9 assume !b

10 d := 2
11 }
12 }

a d heap

a’ d’ heap’

Figure 4.15: Assume statement example

This example can be encoded as an if statement and therefore we can show
that our flow analysis graph is simply an overapproximation of the computation
of the flow analysis graph for the if statement as shown in Section 4.3.3. Since
variable b’ has no assigned value we cannot know which branch is executed.
However, because the assume statement on line 6 assumes b and the assume
statement on line 9 assumes !b, we can rewrite this code example in Figure 4.15
the following way.

1 method m(b: Bool )
2 returns (d:Int , e: Int )
3 {
4 if (b) {
5 d := 1
6 } else {
7 d := 2
8 }
9 }

Figure 4.16: Assume statements translated to if statement

Therefore, b must influence d. However, since we do not know the rest of the
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code when analysing the assume or inhale statement, we cannot make such
transformations and therefore need to overapproximate the resulting graph. Any
variable present in scope can be assigned to and therefore we need to add an
edge in the graph from every variable in the assume or inhale statement to every
other variable in scope.

Rule g(S, inhale ( exp )) or g(S, assume ( exp ))

→ 1 G := identityGraph (S)
2 G. addEdges (exp ,S)

Figure 4.17: Inhale and assume statement rule

Here, the initial flow analysis graph G is the identity graph created using the auxil-
iary function identityGraph as explained in Section 4.3.3. Using the function
addEdges , as explained in Section 4.3.1, the edges are added from every vari-
able in the expression exp to every variable currently in scope represented by
S.

4.3.6 Field Assignment

A field assignment is an assignment of some expression to a certain place in the
heap. Since the heap is represented by a single variable, each right-hand side
expression of an assignment influences the same variable representing the heap.

Example

1 field f:T
2 method m(a:T,b: Ref )
3 requires acc (b.f)
4 {
5 b.f:=a
6 }

a b heap

a’ b’ heap’

Figure 4.18: Field assignment example

This method requires access to the field b.f such that we can write to this field.
In line 5, we assign a to this field and therefore assign a new value to this location
in the heap. Thus the edge from a to heap’ is added. However, it is important to
note that different to the local variable assignment, the identity edge of the variable
heap is still in the graph because the heap always might be influenced by itself.
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Rule g(S,x.f:= rhs )

→ 1 G := identityGraph (S)
2 G. addEdges (rhs ,{ heap })

Figure 4.19: Field assignment rule

G represents the identity graph, created using the function identityGraph ,
as seen in Section 4.3.3. Since we defined one variable to represent the whole
heap, we can add an edge from every variable in rhs to heap , using the function
addEdges , as defined in Section 4.3.1.

4.3.7 Method Call

We can now use the newly added annotation to create the graph for a method call
in a modular way. Unlike before, in the set-based approach, we can now simply
create the graph described by the annotations of the called method. Additionally,
we need to consider that the variables contained in the expression that is passed
to the method influences the arguments of the method itself. The same holds for
the return variables of the method. These return variables influence the variables
that this method is assigned to. Hence, we will need to create two additional
graphs to represent these influenced by relations.

Example

1 method m(a1:T,a2:T)
2 returns (r1:T)
3 influenced r1 by {a1}
4 influenced heap by { heap }
5 {
6 r1 := a1
7 }

9 method m1(a:T,b:T)
10 returns (d:T)
11 {
12 d:=m(a,b)
13 }

a b d heap

a1 a2 r1 heap”

a1 a2 r1 heap”

a1’ a2’ r1’ heap”’

a1’ a2’ r1’ heap”’

a’ b’ d’ heap’

Figure 4.20: Method call example
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In Figure 4.20, we create the graph that adds an edge between the variables
passed to the method and the method arguments as well as a graph that shows
which return variables of the method influence which variables that the method is
assigned to. Then we compute the graph of the flow annotation as explained in
Section 4.2. Now we can simply merge these graphs and get the final graph for
the method call statement, as shown in Figure 4.21.

a b d heap

a’ b’ d’ heap’

Figure 4.21: Merged graph for the method call example

Rule g(S,
−→
t :=m(−→a ))

→

1 G := emptyGraph (S)

3 G1 := emptyGraph (S)
4 G1 := G1. addEdges’(a, m. arguments )

6 G2 := emptyGraph (S)
7 G2 := G2. addEdges’(m. return_vars ,ts’)

9 for ( flow_annotation (t, args ) in m) {
10 G. addEdges (args ,{t})
11 }
12 mergeGraphs ( mergeGraphs (G1 ,G),G2)

Figure 4.22: Method call rule

Here G is the empty graph created using the auxiliary function, as seen in Sec-
tion 4.3.1. −→

t and −→a represent a set of target variables ts and variables a
passed to method m. To compute the graph G1 containing edges from all vari-
ables a passed to the method, to arguments of the method m. arguments , the
auxiliary function addEdges’(S1 ,S2) is used. This function is similar to the
function addEdges shown in Section 4.3.1. However, it is specified whether the
vertices at either end of the edge represent the initial value or the final value of the
variable. Similarly, we compute the graph G2 containing the edges from all the
return variables of the method m. return_vars to the variables ts that the
method is assigned to, using the function addEdges’. To compute the graph of
the annotations, all flow annotations of the called method m are checked. For each
flow annotation there is the return variable t and the method arguments args
that influence variable t. For each flow annotation all edges from the vertices
in the argument set args to the return variable t are added, using the function
addEdges as explained in Section 4.3.1.
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The same analysis described for the method call is also used for oldCall
statement, which is part of the newly added language features for lemmas in Viper.

4.3.8 Universal Introduction Statement

For the universal introduction statement, we simply compute the flow analysis
graph for the body of the universal introduction statement. If any of the side-
conditions are not met for the universal introduction statement an error will be
thrown in another part of the verification process.

4.3.9 Exhale

If the exhale statement is pure, no edges need to be added to the flow analysis
graph. However, if we have an exhale statement that is impure, it is possible that
some access rights to the heap have been removed and therefore the heap is
modified. Hence, we need to add an edge between every variable in the exhale
statement and the heap.

The assert statement is conceptually the same as a pure exhale statement and
therefore the graph does not have to be changed and we can simply return the
identity graph.





Chapter 5

Evaluation

The modular flow analysis explained in the previous chapter heavily relies on graph
computations. However, graphs are more computationally expensive than sets,
which we use in our first approach. In this chapter, we evaluate our graph-based
approach. In Section 5.1, we qualitatively compare the results from the set- and
graph-based approaches. In Section 5.2, we evaluate the performance of our
graph-based approach. The machine on which this code was timed has an Intel
i7-8565U CPU processor, 16GB RAM and a Microsoft Windows 11 operating
system.

5.1 Set vs. Graph-based Information Flow Analysis

We test the graph-based approach against a set-based approach to compare the
two outputs. Ideally both approaches should result in the same information flow.
The information flow was computed on test cases only including the implemented
statements for sets. Hence, we consider Viper methods consisting of variable
assignments, if and while statements, and sequential compositions. The remaining
statements were not implemented because of the limitations of this approach,
see Section 3.2. For each method, we compute the information flow using both
approaches and compare their results. For the set-based approach, we execute
the information flow analysis multiple times for each method. In particular, we
mark a different input parameter as tainted in each iteration and store the resulting
set of tainted output parameters. For the graph-based approach, we execute the
information flow analysis with the method input and output parameters as the
vertices. Afterwards, we compare the information flow for each variable. For each
variable in the graph we gather the outgoing edges and store their target variables
in a set. We can now simply compare the stored tainted sets from the set-based
approach and the target variable sets from the graph-based approach for each
input parameter. For all test cases, we have not identified any differences.

We have also measured the execution times for the set- and graph-based ap-
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proaches. However, all considered test cases are fairly small and thus the mea-
sured execution times for each test file are aroung 500 ms. The execution times
for the graph and set computation were up to 7 ms and the standard deviation
for all test files’ complete execution time was between 10 and 20 ms. Deducing
meaningful conclusions is difficult because the variance of the underlying java
virtual machine or operating system has potentially a big impact on these numbers.

5.2 Modular Flow Analysis Runtime

Due to the restricted set of supported statements in the set-based approach, we
only consider small and hand-written Viper programs in Section 5.1. To obtain
meaningful performance metrics for the graph-based approach, we separately
evaluate the graph-based approach on large Viper programs generated by Gobra
[2].

We measure the overall time to verify a given Viper program and the time spent
for performing the modular flow analysis. However, the modular flow analysis is
normally only performed for methods that are annotated with flow annotations.
The large Viper programs generated by Gobra do not contain any flow annotation.
Thus, we have modified the Viper plugin to execute the modular flow analysis for all
methods. We repeat each test case 10 times. Table 5.1 lists the average execution
time after discarding the slowest and fastest run of the overall verification and the
modular flow analysis. The last column lists the modular flow analysis’ impact on
the overall verification time in percentage.

Our test cases are based on the artifact of Arquint et al. [7]. The first two test cases
correspond to the initiator and responder implementations, respectively, of the
Needham Schroeder Lowe (NSL) protocol. The latter two test cases correspond to
the labeling and tracemanager package from the reusable verification library. Due
to limitations of our implementation, we have manually transformed the generated
Viper program to equivalent ones without goto and new statements.

Test case Lines
of code

Verification
time [s]

Flow
analysis
time [s]

Impact on
verification
time [%]

initiator.gobra.vpr 18’214 74.859 0.84 1.1

responder.gobra.vpr 18’379 81.235 0.901 4.3

labeling.gobra.vpr 16’432 17.212 0.736 1.1

tracemanager.gobra.vpr 15’558 40.344 0.635 1.6

Table 5.1: Comparison of the modular information flow’s execution time to the overall verification
time for large Viper programs generated by Gobra
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The table shows, that even for large Viper programs, the overhead introduced to
perform the modular information flow analysis is negligible compared to the overall
verification time. Our current implementation has not been optimized so far. Thus,
we believe the overhead could be lowered even further by summarizing the effects
to the graph of particular statements instead of computing many intermediate
graphs and merging them, as we currently do. It is also important to mention that
we forced the plugin to execute the information flow analysis on these test cases.
In practice, the analysis will only be performed on methods that have at least one
flow annotation.





Chapter 6

Conclusion

In this thesis, we extended the Viper language by three reasoning features, namely
lemmas, existential elimination, and universal introduction, in a Viper plugin. These
three reasoning features make reasoning in Viper easier and less error prone. In
particular, all necessary side-conditions are checked such that users do not need
to worry about them.

Firstly, lemmas can now be annotated as such, which induces proof obligations
that their proofs terminate and do not modify the heap. Our plugin reports an error
if these obligations are not met. Aside from these side conditions, lemmas also
open up new possibilities, particularly we allow lemma calls in old contexts, since
they do not modify the heap. Due to the same reason, lemmas allow us to encode
lemma calls in a more efficient way compared to method calls because asserting
and assuming their pre- and postconditions, respectively, is sufficient.

Secondly, we have added existential elimination. Compared to a manual encoding
our new language feature removes code duplication, as the quantified property
only has to be written once, and is less error prone, in particular when a code
base evolves.

The final reasoning feature added is universal introduction. One of the side-
conditions for universal introduction is, that the proof code inside the statement
does not modify the execution of the rest of the program. Hence, we track which
variables are influenced by the quantified variable as well as whether the heap
is influenced by the quantified variable. We present a modular information flow
analysis that is of independent interest and demonstrate how we apply this analysis
to the particular use case of universal introduction.

In a first attempt the modular information flow analysis was done using a set-
based approach. The new tainted keyword introduced to analyse method calls
makes this approach non-modular. Therefore in summary, a method’s annotation
has to be permissive enough for all calls of this method. Hence, we introduce
flow annotations in the method specification to express whether a given output
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parameter is influenced by the heap and which input parameters it is influenced
by. Thus, these flow annotations describe a graph of the information flow from
method inputs to outputs. Throughout the analysis of the method body we use the
same graph representation to check whether the flow annotations provided by the
user are correct. Even though the modular flow analysis was initially developed for
the purpose of verifying the universal introduction statement, it can be applied to
other use cases.

6.1 Future Work

In this section, we elaborate what can be done to extend and improve the newly
implemented features. Although our modular information flow analysis supports
most statements in Viper, we want to extend the support to goto and new state-
ments as well as to the new language feature for existential elimination as future
work.

Furthermore, this thesis focuses on reasoning in Viper. However, Viper front-ends
would benefit likewise from these reasoning features. As future work, we would like
to explore to what extend, for example universal introduction in Gobra can directly
be encoded to the corresponding counterpart in Viper or whether additional checks
in the front-end are necessary.

Additionally, future work can look at the combination of the reasoning features
introduced in this thesis and offer new syntax for common combinations. For
example, one might want to prove a universal introduction using a lemma. Such a
statement might look as follows for some function P, label l, and lemma lemma .

1 prove forall k:T {P(k)} assuming P(k)
2 implies oldCall [l] lemma (k) {...}

Figure 6.1: New syntax for a lemma call acting as the proof of a universal introduction

This is not possible at the moment since we can only assume and imply expres-
sions and not statements or lemmas.

Although our evaluation confirms that our modular information flow analysis adds a
minimal overhead to verifying a program, the computation of flow analysis graphs
could be optimized. Currently, a new graph is computed for every statement and
then merged with the graph of the consecutive statement.
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