Disjunction on Demand

Dominik Gabi

Master's Thesis

Chair of Programming Methodology
Department of Computer Science
ETH Zurich

http://www.pm.inf.ethz.ch/

Spring 2011
Supervised by:
Dr. Pietro Ferrara
Prof. Dr. Peter Miiller
Chair of Programming Methodology ETH
i nf Informatik Eidgendssische Technische Hochschule Ziirich
Computer Science Swiss Federal Institute of Technology Zurich

http://www.pm.inf.ethz.ch/

Abstract

Trace Partitioning, as presented by Xavier Rival and Laurent Mauborgne in [11], describes an abstract
domain according to the abstract interpretation theory. Most existing static analyses based on abstract
interpretation adopt a “reachable states” abstraction. Instead, trace partitioning also allows to dynam-
ically keep track of information on how these states are reached. Making it possible to distinguish
between states at the same location that were computed by following a different flow of control can
lead to a considerable gain in terms of precision.

This report describes the trace partitioning domain implementation and integration into Sample, a
novel generic static analyzer. Sample already contains an analysis based on reachable state semantics
and was developed over the last two years by the Chair of Programming Methodology at ETH Ziirich.

Acknowledgments

| would like to thank my family for the countless free meals provided during the writing of this thesis.
Furthermore, | would like to thank Prof. Miiller for the opportunity to write this thesis in his group.
Last but not least, | would like to thank Pietro Ferrara for his supervision and especially for a surprisingly
stable interface to Sample during the time of the project.

Contents

Introduction

1.1 Motivation e
1.2 Goals e
1.3 Prerequisites and Terminology
1.4 Outline e

Abstract Interpretation

2.1 Concrete Semantics
2.2 Abstractiono
2.2.1 Latticeso
2.2.2 Galois Connectionso
2.2.3 Soundness of the Semantics
2.3 Static Analysis L
2.4 Example Domains
2.4.1 Numerical Domains
2.4.2 Programming Language Features

Trace Partitioning

3.1 Refined Semantics
3.2 Partitioning Transition Systems L
3.3 Trace Partitioning Abstract Domain oL
3.4 Static Analysis L
Sample
4.1 Abstract Domain Representation
411 Lattice L
412 Values e
413 States
4.2 Object Oriented Representation
4.2.1 Classes, Methods and Statements
422 Control Flow Graph
4.2.3 Control Flow Graph Execution,
424 Analysis
4.3 Limitations

Trace Partitioning in Sample

5.1 Domain Representation
51.1 Tokens
5.1.2 Directives

5.2 Architecture s
5.2.1 Partitioned State
5.2.2 Partitioning e

19
19
20
22
24

25
25
25
25
26
27
27
27
28
28
29

CONTENTS

5.3 Integration L 36
5.3.1 Core Modification 36
5.3.2 Analysis Interaction 37

5.4 Directives e 37
5.4.1 Partitionlf 38
542 Merge e 38
543 PartitionValue 39
5.4.4 PartitionWhile 41

5.5 User Interface e 44
55.1 Analysis Setup 44
5.5.2 Adding Directives 44
5.5.3 Running the Analysis 45

5.6 Limitations L 45

Evaluation 47

6.1 Partitioning a Conditional 48

6.2 Partitioning over a Variable o 49

6.3 Partitioninga Loop 50

6.4 Performance 51

Future Work and Conclusion 55

7.1 Open Questions e 55
7.1.1 Creating Directives 55
7.1.2 Integrating Directives 56

7.2 Possible Extensions 56
7.2.1 Heuristics e 56
7.2.2 New Directives e 56
7.2.3 Domain Specific Directives 56

7.3 Conclusion e 56
7.3.1 Shortcomings 57
7.3.2 EXperience 57

7.3.3 Contribution e 57

Chapter 1

Introduction

Change is the only constant.! Unlike in other fields, no deep knowledge of the computing industry is
required to acknowledge what the Greek philosophers knew long before the first computer was ever
invented. It is doubtful though, that the Greeks ever imagined the pace at which change has happened
over the past seventy years.

1.1 Motivation

One of the big changes that has happened during this time is a steady increase in complexity, both in
hardware and in software. During the sixties of the last century the idea was introduced that programs
can be described and reasoned about using mathematical models [3, 9]. This insight has lead to the
development of a wide variation of formal methods that have been applied with varying degrees of
success.

In hardware design Model Checking has become a standard procedure. This is understandable
given the cost of possible errors. The situation in software is a different one. While having a long
tradition in compiler design and safety critical projects, formal methods generally have a hard stand.
Although Static Analysis is performed during every compilation of a program, the properties analyzed
are usually limited to rather simple properties such as type checks. Looking at common development
environments, there is clearly a gap between what is being developed in academia and what is used in
day to day life in the industry.

However, there seems to be an ongoing shift in opinion. Relying ever more on distributed services
using the internet has lead to a fragile environment whose exploits are getting more and more attention
from the mainstream media. This makes correctness in software no longer a luxury that can only be
afforded by military and banking institutions but a necessity for an increasing number of businesses.

This is obviously good news for everyone involved in research, but also for everyone who has — as |
have plenty of times — ever struggled with a bug that could have easily been detected by an automatic
tool.

1.2 Goals

Abstract Interpretation is a framework describing in a very general way how to soundly approximate
mathematical models. Sample is a tool for static analysis based on abstract interpretation that is
currently being developed by the Chair of Programming Methodology at ETH Ziirich. The goal of
this thesis is to extend Sample with Trace Partitioning, a mechanism within abstract interpretation
supplying the analysis with information about the history of control flow, thereby tracking disjunctive
information and significantly improving overall precision.

1Heraclitus (ca. 535 BC - 475 BC)

10 1 Introduction

1.3 Prerequisites and Terminology

The programming language used in Sample, in this project as well as in the code listings of this report,
is Scala. Generally, apart from the pattern matching mechanism often used in functional programming,
| try to use as few language specific features as possible and the code samples should be fairly easy to
understand without any prior knowledge of Scala. Nonetheless, should the need arise, the reader is
referred to [14] for further information.

Diagrams depicting software elements are in UML, for which the Wikipedia article provides a good
overview at [15]. Since there does not seem to be a standard on how to use UML with Scala, | use
the following conventions:

e Traits are indicated using the stereotype notation «trait».
e Case classes (used in pattern matching) are indicated using the stereotype «case».

e Type parameters used in inheritance hierarchies are also indicated using the stereotype notation
on the arrow («D»).

1.4 Outline

The rest of this thesis is organized as follows. Chapters 2 and 3 will present the necessary theoret-
ical background for this thesis. The former discusses abstract interpretation in general whereas the
latter focuses on the trace partitioning mechanism. Chapter 4 presents an overview of Sample. The
implementation of the trace partitioning mechanism is presented in Chapter 5, followed by examples
demonstrating its application and a short evaluation in Chapter 6. Finally, Chapter 7 discusses the
remaining open questions, makes suggestions for possible future extensions and concludes.

Chapter 2

Abstract Interpretation

This chapter presents the fundamental theoretical background to understand the trace partitioning
abstract domain presented in Chapter 3. | will start by formally describing abstract interpretation,
continue with its application to static analysis and discuss a few abstract domains.

Abstract Interpretation is a framework that describes the sound approximation of mathematical
models. It was initially presented in 1977 by Patrick and Radhia Cousot in [4] though there exist easier
texts on the subject. The papers [2] and [5] deserve a special mentioning. The former provides a
reader-friendly introduction whereas the latter is a dense explanation of the subject, including all the
necessary proofs, that is more suitable as reference work. Furthermore, the already mentioned paper
by Mauborgne et al. [11] from which some of the following definitions are taken also provides a very
thorough introduction. | will follow along their explanation, though in a less rigorous fashion, focussing
less on the formal aspects and more on the intuition while at the same time introducing the used
notational conventions. Since the goal of this section is to finally provide insight into trace partitioning
I will also borrow their running example.

2.1 Concrete Semantics

A mathematical model for a program P is necessary, in order to talk about its concrete semantics. This
is commonly given as a transition system.

Definition 2.1 (Transition System). A transition system is a tuple P = (£,%, —), where
e Y denotes the set of states,
e Y, C X the set of initial states and

e — C X x X /s the transition relation.

Example 2.1 (Transition System). To illustrate how to represent a program as a transition system
consider the method ifExample from Listing 2.1 and its corresponding control flow graph (CFG) in
Figure 2.1. The method takes as an argument an integer x, sets the sign variable depending on
whether x is smaller than 0 to -1 or 1 and finally returns x divided by sign.

The mathematical model for the current discussion and, unless stated otherwise, for the rest of this
report assumes that there are variables described by some set X and possible values from another set
V. A memory state (also called store) m € M of the system can be described by a mapping of variables
to values, that is M = X — V. The full state of the system can then be described by mapping each
program location (also called control state) / € L to a memory state, that is ¥ = L x M.

The transition system for the ifExample method is fully determined by the set of initial states X.
Figure 2.2 depicts the system having only two initial states. In the first initial state x is set to -2, in the
second state x is initialized with 0. The state changes after executing each statement of the program.

11

© 0 ~NO O b WN -

[y
o

12 2 Abstract Interpretation

sign=0

Figure 2.1: The Control Flow Graph for the ifExample Method

X+ -2 X+ -2 X -2 X -2 X+ -2 X+ -2
sign » _ sign m _ sign e _ sign » -1 sign » -1 sign » -1

[result = _ result = _] [result - _ result - _] [result - _ result» 2]

x<0 ? true

X+ 2 X2
sign e _ sign » _
result » _ result » _

X 2 X 2
sign» 1 sign 1
result » _ result » 2

X 2 X 2
sign » _ sign 1
result » _ result » _

x<0 ? false

Figure 2.2: The Transition System

Since the blocks of the control flow graph in this particular example consist of single statements, there
are two states in the transition system for each block. For the sake of clarity, the edges connecting
these two states have not been depicted. The first state represents the input of the block and the
second one the output. The input state is the output of the preceding block. If the edge is weighted,
indicating that it is the result of a conditional, the state is changed by assuming either the condition
(true) or its negation (false) respectively. o

def ifExample(x: Int): Int = {
var sign = 0
if (x <0) o
sign = -1
} else {
sign =1
¥
var y = x / sign
y

Listing 2.1: The ifExample Method

There are several possible ways to define the semantics [P] of the program P. A hierarchical view
of several possible definitions is given in [3]. The two relevant definitions for this presentation are the
trace semantics and the collecting semantics.

Definition 2.2 (Trace). A trace is a finite sequence of states o = {0,07,...,0,y. The set of possible
traces over the states X is denoted by ¥*.

With the definition of traces it is straightforward to define the first type of semantics, namely the
trace semantics of a program P.

Definition 2.3 (Finite Partial Trace Semantics). The finite partial trace semantics describes the set of

2.1 Concrete Semantics 13

traces that are determined by the transition system P.
[P] = {{o0, 01,0 0y EX | 00 € 2 AVi,0; = Tif1}- (2.1)

Definition 2.4 (Trace Semantics as Fixed Point). Alternatively, the trace semantics can be defined
recursively as the least fixed point*
[P] = oS Fr (2.2)

of the semantic function Fr defined as

Fr:s* > 3* (2.3)

S 58S UKoy Ty Tpi1) | {005 s T ES A Oy = Tyt }-

At each step of the iteration, all current traces in [P] are extended by all possible next states as
defined by the transition relation. The resulting traces are then added to the set of current traces and
the iteration starts over again. Starting with the set ¥, of initial states, this will enumerate all possible
traces described by P. Note that [P] is not necessarily finite and the existence of a fixed point can
therefore not be guaranteed.

Given equation 2.1, we can define the semantics collecting the set of all reachable states as follows.

Definition 2.5 (Collecting Semantics). The states that are reachable in a given transition system are
called collecting semantics

[Plc = {on | {00, ... o0y € [P]}. (2.4)

Definition 2.6 (Collecting Semantics as Fixed Point). Analogously to the trace semantics, the collecting
semantics can be written in fixed point form

[Plc = IfpS Fe (2.5)
using the semantic function F¢ defined as

Fc:L—% (2.6)

So>Su{owt1 |oneS ATy — Tt}

The difference to the iteration computing the trace semantics is that, instead of keeping track of
traces, the iteration only looks at single states. In every step, all next states of all current states, as
described by the transition relation, are added to the set.

Example 2.2 (Semantics). The concepts presented so far can be illustrated looking at the transition
system introduced by Figure 2.2. Each trace of the system starts with an initial state from X,. The
two possible initial states are the states on the left side of the figure. The trace semantics contains all
possible traces described by the system. To compute the trace semantics as a fixed point, we start with
the two traces containing only the initial states. For each trace we then recursively add all possible
nodes that are connected to the last state of a trace in the current set of traces. For this example this
is a trivial task but note that this is merely due to the restrictive choice of £;. Computing the collecting
semantics is trivial as well, since all depicted states are obviously reachable from an initial state, they
are all part of [P]c. The fixed point computation follows along the same lines as the computation of
the trace semantics.

Note that in the general case, the semantics might not be computable. The set of initial states
might be infinite, considering all possible values of x. Or it might be prohibitively large, for example,
when looking at all possible 32-bit integers for x.

O

Since [P]c in general is undecidable, it is very common to compute an over-approximation of this
set and check whether some safety property holds in all states. This is already a form of abstraction,
a concept which will be formalized in the next section.

IThe notion prngF represents the recursive application of F starting with S until S; = S;4;.

14 2 Abstract Interpretation

2.2 Abstraction

A single state o € X in the mathematical model might be as simple as containing just a mapping from
variables to values or it might be as complicated as the actual state of some hardware component.
Whichever way, its complexity might be hindering in both formulating as well as verifying interesting
properties.

Abstraction removes complexity by focusing on the important aspects of system. This results in two
problem domains. The concrete domain of the mathematical structure in question and its simplification,
called the abstract domain. Abstract interpretation addresses the problem of relating these two domains
in a sound way. That is, how is it possible to guarantee that statements made about an abstract state
allow sound conclusions about its concrete counterpart?

2.2.1 Lattices

A part of the solution is provided by the restrictions put on the domains. It is necessary that these are
complete lattices.

Definition 2.7 (Lattice). A partially ordered set (S,C) is a lattice if for any two elements s, s1 € S
e there exists a unique least upper bound s, € S such that s E s, A 51 E 5, denoted by sy L sy,
e there exists a unique greatest lower bound s; € S such that s; E sy A 5; = 51 denoted by so i s;.

A lattice is said to be complete if both the least upper bound and the greatest lower bound are defined
for any subset of S .

Definition 2.7 implies that there exists a single element that is the lower bound of all other elements
in S called bottom and denoted by L. Correspondingly, the single element that is the upper bound of
all other elements is called top and denoted by T.

Example 2.3 (Complete Lattice). A typical example of complete lattices are type hierarchies like the
one depicted in Figure 2.3. It shows a system with four types A, B, C and D where both C and D
are subtypes of B. The top and bottom elements have their counterparts in most modern languages.
In Scala, for example, the top element of the type hierarchy is represented by Any and the bottom
element by the type Nothing. The ordering relation then corresponds to the “subtype”, the least upper
bound to the “least common supertype” and the greatest lower bound to the “greatest common subtype”
relationships. o

To get an intuition about the function of these lattices it helps to think of their elements in terms
of the information they represent. Taking the least upper bound of two elements corresponds to
finding the minimum element that encompasses the information of both its arguments and results in
a loss of precision. Taking the greatest lower bound means looking for the element representing the
information both elements have in common. The top element then represents the information stored
in all elements of the lattice together without discerning between single possibilities, which in effect
amounts to knowing nothing. On the other end of the lattice, the bottom element represents the
conjunction of all elements and, assuming we discern between more than a single state, amounts to a
contradiction.

2.2.2 Galois Connections

Knowing the structure of the two domains, it is time to look at functions connecting a concrete domain
Y and its associated abstract domain D. The abstraction maps concrete elements to their abstract
counterparts and is usually denoted by @ : ¥ — D. The function mapping abstract elements to the
concrete states they describe is called concretization and, by convention, is denoted by y: D — X.

2.2 Abstraction 15

A/T\B

\ C D
1
Figure 2.3: A Type Lattice

Definition 2.8 (Galois Connection). The relation of the two domains is a sound abstraction if these
. . . Y .
two functions form a Galois connection (X, <) = (D,E) , that is:

1. @ and y are monotone: Yo, o € Z, o € o/ = (o) C a(o”’) and vice versa.
2. awovy is reductive: Yd € D, aoy(d) Ed.

3. yoa is extensive: Yo € Z, o S y o a(0).

Once more, it helps to think in terms of information to develop the intuition about this formalization
of sound abstractions. The first point ensures that a less precise element in the concrete domain results
in a less precise abstraction and conversely a loss in precision in the abstract leads to a loss of precision
in the concrete domain. The last two points are closely related and formalize that while the abstract
counterpart of some element may describe more than just the original element, the converse relation
does not hold for abstract elements. That is, by means of concretization and subsequent abstraction
it is not possible to gain information in the abstract domain.

Example 2.4 (Galois Connection). To further illustrate the points just made, consider the concrete
domain of a program describing a set of variables and the abstract domain provided by the type system
depicted in Figure 2.3 from the previous example. The monotonicity of abstraction ensures that given
two variables x of type C and y of type D, the abstraction of their combination given by type B must
be a supertype of C and D. Assuming that x and y are the only variables in the system, monotonicity
on the concretization ensures that all variables of type C (that is x) are a subset of all variables of type
B (x and y).

To illustrate the necessity of a reductive @ oy, assume that this restriction is violated. Then
starting with x, applying the abstraction to get type C and continuing with the concretization of C
would somehow result in a set that does not include x. This clearly does not represent the common
intuition of a sound abstraction. Arguing for the necessity of the third property can be done along the
same lines. o

2.2.3 Soundness of the Semantics

Since the full transition system of a program is usually not tractable, having related the static aspects
of the system, it remains unclear what happens during the transitions of the system. Assuming that

16 2 Abstract Interpretation

transitions in the concrete system follow a set of rules, corresponding rules for transitions in the abstract
domain need to be defined. How these are defined depends on the abstract properties of interest.
However, the abstract transitions need to fulfill certain restrictions in order to guarantee soundness.

Definition 2.9 (Soundness of Abstract Operations). Given a concrete transition rule [s]s : 9(£) — 9(Z)
corresponding to a programs transition system, its abstract counterpart [s]p : D — D preserves
soundness if

Vo e p(2), a([s]x(0) E [slp(a(o)). (2.7)

Executing an abstract operation in the abstract domain results in a new state which describes at
least the states that resulted from the execution of the corresponding concrete operation in the concrete
domain.

2.3 Static Analysis

Static analysis with abstract interpretation is based on the fixed point computation of the collecting
semantics (cf. Definition 2.6). However, instead of actually computing the semantics which might
not be decidable, the iteration happens in the abstract domain. Starting with the abstract states
representing the initial states of the concrete transition system, each transition of the concrete system
is simulated with abstract operations until the set of abstract reachable states converges.

This leads to two problems. First of all, what guarantees that a fixed point computed in the concrete
domain corresponds to the fixed point computed in the abstract domain? This question is answered
by the so called fixed point transfer theorem as described in [11].

Theorem 2.1 (Fixed Point Transfer). Given two functions Fs : £ — X and Fp : D — D then
Voel, deD, c Sy(d) AFsoy<SyoFp = WpsFs C pr%FD (2.8)

The premises for this theorem have already been established with the definition of the Galois
connection.

The second problem is that of convergence. It is obvious that for some programs, the domain
could be of infinite height and hence the fixed point computation may not converge. This problem is
addressed using the widening operator instead of the least upper bound, defined as follows:

Definition 2.10 (Widening). The widening is a binary operator V in D satisfying
1. Vd,deD,dcdVd Ard=dVd

2. For any sequence (d,)nen, the recursive application of the widening operator to the elements of
the sequence starting with some dy € D will eventually converge.

Replacing the union used in the fixed point iteration with an operator satisfying the above definition
ensures convergence. The widening operator is specific to the abstract domain.

Example 2.5 (Static Analysis). The following example will show a step by step static analysis using
the principles presented so far. The basis for this example is again the method ifExample, shown in
Listing 2.1, but this time with no restrictions on the initial memory state, that is £y = {lp} x M where
Iy denotes the first program location.

The abstract domain of interest is the sign domain depicted in Figure 2.4 that tracks whether a
variable is positive, negative or zero. | will not formally define the abstract operations here, they,
however, follow common sense. For example, a negative number multiplied by a negative number
results in a positive number. The addition of a negative and a positive number could result in either
one and the analysis therefore concludes the result to be T.

Figure 2.5 outlines some of the basic stages of the analysis. @ shows the initial state before the
first block as well as its successor state, added by a single iteration of Fg. The initial state is set to T,

2.4 Example Domains 17

N

L

Figure 2.4: The Sign Lattice

meaning that nothing about the environment is assumed. After simulating the execution of the first
block using the abstract operations, sign is guaranteed to be 0, therefore its sign must also be 0.

@ shows a few steps further in the analysis where the two branch states are already added to the
set of known reachable states. A notable difference between the two branches is that when taking the
false branch, x could either be 0 or + and it must therefore be set to T.

® shows the final state of the analysis. The initial state of the last block must combine the results of
the two branches by computing the widening. This has the unfortunate consequence that the resulting
state is pretty useless since the little knowledge gained about the sign variable during the computation
of the branch is lost.

Convergence is reached in a single iteration over the transition system since the sign domain is
really simple and the program does not contain any loops. o)

2.4 Example Domains

Having already hinted at the versatility of the abstract interpretation framework | am now going to
provide a quick overview of some of the more commonly used abstract domains.

2.4.1 Numerical Domains

There are tons of domains addressing numerical issues. Although probably not that useful, but often
used as an introductory example, the already presented sign domain is one of them. Another, more
useful numerical domain is the interval domain which represents the value of a variable by a lower and
an upper bound.

The domains seen so far all represent values of single variables and are called non-relational domains.
In contrast, relational domains try to, as their name already suggests, connect different variables. The
prime example of this type of domain are the polyhedra described in [6]. They infer linear dependences
between variables. The Octagons are another example of numerical domains. They track invariants of
the from +x +y < ¢ and can be implemented efficiently as described in [12].

2.4.2 Programming Language Features

The applicability of abstract interpretation is not limited to numerical domains. For example, most
modern object oriented languages use some kind of a heap structure where objects reside in memory.
Abstract interpretation can be used to argue about that structure, answering, for example, questions
about aliasing.

Furthermore, there are plenty of concepts that can be represented using an abstract domain lattice.
To list just a few:

18

2 Abstract Interpretation

X T
signe> T
result» T

®

X+ T
sign » +
result» T

X T
signe> T
result» T

X -
sign o -
resulte> T

X T
sign = +
result» T

X T
signe T
result» T

X+e T

X+ T
sign» 0
result» T
xe T
sign» 0
result» T
false
X+ T
sign » 0 true X -
result» T .
sign» 0
result» T
X T
sign= 0
result» T
X T
sign » 0 true X > -
result»> T .
sign » 0
result» T

sign T

X b -
result» T

sign » -

X T
signe= T
result»> T

result» T

Figure 2.5: Step by Step Static Analysis

The type system, using a lattice like the one depicted in Figure 2.3.

e Array indices, to prove the safety of array access operations.

Information about string values [1].

e Exhaustiveness of pattern matching for functional languages [7].

These are just a few of the many possible domains, a search on Google-Scholar for “abstract domain”

provides plenty of reading material for the interested reader.

Chapter 3

Trace Partitioning

This chapter describes the trace partitioning abstract domain as it is presented in [13, 11] in detail.
The theory is necessary in order to understand the implementation described in Chapter 5. Once more,
the focus of the discussion lies on intuition rather than on rigorous formal definitions. All relevant
proofs and further examples can be found in the referenced paper.

Static analysis with abstract interpretation as presented in Section 2.3 has proven to be both flexible
and efficient. There are, however, cases where the approximation of reachable states provided by the
fixed point computation is too coarse to produce meaningful results. This is the case when the proof of
a property relies, for example, on the way a state is reached, a piece of information that is completely
discarded during the standard analysis.

A possible remedy would be to analyze a more precise approximation of the concrete semantics.
Unfortunately, simply abandoning the reachable state semantics in favor of a more precise abstraction
(e.g. the trace semantics) has so far turned out to come at too high a price in terms of complexity.

Trace partitioning is an attempt at finding the middle ground between the prohibitive complexity
of discerning traces and the overly simplistic view of the reachable state semantics. It does so by
effectively partitioning reachable states based on some decisions made along the control flow. The
theory is very general and fits well within the abstract interpretation framework and can be formalized
as an abstract domain.

3.1 Refined Semantics

Before talking about how the partitioning works, it is important to know what exactly a partitioning is
and how it can be used to refine the collecting semantics.

Definition 3.1 (Covering and Partition). A mapping 6 : E — ¢(S) is said to be a covering of S if

s = Js(e). (3.1)

ecE

If additionally all elements of E produce disjunct images in S, i.e.
Ve, € E, e ¢ Ad(e) né(e) =0, (3.2)
o0 is called a partitioning of S.

The name trace partitioning is misleading since the theory does not depend on partitions but is sound
with coverings as well. Nonetheless, for the sake of simplicity, the further discussion will distinguish
between the two only when necessary.

The underlying idea of trace partitioning is to refine the collecting semantics using partitions.
To illustrate how, it helps to take another look at the whole abstraction process from the concrete

19

20 3 Trace Partitioning

semantics of a program to the abstract state. Since Galois connections, as defined by Cousot & Cousot,
are composable, the abstraction can be split into two parts

[P] ==[Plc == D. (33)

The two steps are

e the abstraction of the concrete semantics [P] to the collecting semantics [P]¢ followed by

e the abstraction of the reachable states of the collecting semantics to some other abstract domain
D.

The first abstraction can be extended to include a partitioning 6 : E — [P]. The two steps can
then be rewritten as

[P] %,(E — [P]) <Z: D. (3.4)

Here, a;s describes the abstraction that transforms the concrete semantics into a function that maps
elements of some label set E to traces of [P]. The abstraction is called partitioning abstraction and
can be shown to form a Galois connection, provided that § is in fact a covering or a partitioning. A
more formal definition of the abstraction and concretization functions follows.

Definition 3.2 (Partitioning Abstraction). The partitioning abstraction is defined as

@ : [P] = (E—[P]) (3.5)

o Ale)-ondle)
and its corresponding concretization as

Ys: (E = [P]) — [P] (3.6)
¢ (o).

ecE

Note that so far no decision about the form of § has been made. This leaves a large degree of
freedom in designing the abstract domain. Consider, on the one hand, the partitioning that maps a
unique label to each trace of [P]. This amounts to having access to the full trace semantics during
the further analysis at the expense of having to deal with the accompanying complexity. On the other
hand, a partitioning that collects traces ending in the same state results in the classical situation of
dealing with the collecting semantics during the analysis. These are the two extremes, anywhere in
between is possible. As always there is a trade-off between complexity and precision of the analysis.
The fundamental difference to other approaches to this problem is that this trade-off can be managed
with great flexibility using the mechanism introduced by a custom partitioning function.

This extension is the foundation of trace partitioning. The rest of this chapter will be concerned
with defining an appropriate partition function as well as constructing the lattice structure required for
a sound abstract domain.

3.2 Partitioning Transition Systems

The extension of the traditional abstraction and the choice of the partitioning in particular leave many
questions to be answered. The goal of this section is to define a useful partitioning as well as an
ordering on partitions that can be used to define an abstract domain. Furthermore, it is important to
introduce the notion of semantic adequacy, showing that this extension describes the same program as
the original semantics.

3.2 Partitioning Transition Systems 21

The underlying structure to partition is the program whose semantics is represented by the transition
system. But what does it mean to partition such a system? This is probably the most complex aspect
of trace partitioning. It requires an extension of the notion of transition systems presented in Definition
2.1.

Definition 3.3 (Partitioned System, Trivial Extension). A partitioned transition system P! is an exten-
sion of a transition system P = (%,%, —) represented as a tuple (T,X", 2], —") where

e T denotes a set of tokens (or labels),
e T = T x ¥ denotes the set of states,
° Eg C T x X the set of initial states and
o T < 3T x 3T s the transition relation.

Furthermore, the trivial extension of P is defined as the partitioned system with a single token t (i.e.
T = {t}) where all states are extended with t and the extended transition relation completely ignores
the newly introduced token.

The only difference to the original transition system is that every state now comes with an additional
token of some token set T. The token set T can be thought of as a set of available labels that can
be associated with states. This makes it possible to assign tokens to whole traces of P, effectively
providing a way to define the partitioning ¢.

Another way of looking at the tokens is interpreting them as an extension of the control state as
it is done in the presentation of Mauborgne and Rival. The extended control state is then defined as
LT =T x L, a notion which | too will use in the further presentation.

Definition 3.4 (Partitioned Semantics). The partitioned semantics [PT]p of PT is described by applying
the partitioning abstraction (Definition 3.2) to the concrete semantics using the partitioning

6:[P] - (L—[P]) (3.7)
S A(l)-{seSPoexl,s={.,(Lo)}.

In order to relate two partitioned systems PT and PT' that are based on the same original transition
system P, a function 7: T — T’ relating the labels is required. This function is called forget function
since it is mainly used to relate a more complicated set of labels to a simpler one by systematically
“forgetting” information. The function is trivially extended to states, traces, and sets of traces by
applying 7 to the associated token, all occurring states, and all occurring traces of the set respectively.

Definition 3.5 (Coverings, Partitions, Completeness). For a transition system P and its two extensions
PT and PT":

1. PT is a T-covering of PT" if for every transition in PT there exists a corresponding transition in
PT' that is

T’ T
e X ©X

T T

!
o = o €3, (o)) =) Ao T oy

!
e Voo eXT, ot exl, 1(0g) — |

2. PT is a t-partition of PT" if additionally the corresponding transition is unique

. Vo"eEg', Jloex], o =1(0)

T T

! !
o YogeXT, ol e, 7(0g) — oy = oy e, (o) =0 Aog = o

3. Furthermore, PT is called T-complete with respect to PT" if it does not contain any superfluous
transitions

22 3 Trace Partitioning

o Voexl, 1(o) ezl

Toy = 1(00) T (o).

o Yoo, o€, 0p —

The relations “r-complete covering” and “r-complete partition” can be shown to be transitive, anti-

symmetric and reflexive and hence describe a partial ordering on the set of possible partitioned systems
of P. The ordering is denoted with the <, operator.

Definition 3.6 (Partial Ordering). The partial ordering < amongst partitioned systems PT and P"" based
is defined as
PP <Pl —3r, PP < P, (3.8)

Each transition system describes many partitioned transition systems that are complete coverings
of itself. The most basic one is the trivial extension which therefore corresponds to the | element
of the ordering. The T element is not tractable and more of a theoretical interest. It must cover all
possible complete coverings of the trivial extensions for all possible forget functions 7 for all possible
token sets.

Example 3.1 (Extended System). For this example, consider once more the example program from
Listing 2.1. This time, only the control but not the memory state changes, the memory abstraction
consists of one single element. Figure 3.1 depicts the basic transition system in @. The labels of the
nodes correspond to the control states and indicate the line number of the program. The graph @
shows the trivial extension PT with T = {t} and the graph on the right represents a partitioning of
the trivial extension with 7' = {1y, ;,1,}. The additional two tokens #; and #, can be thought of as
a partitioning of traces depending on which conditional branch has been taken. The forget function
7:T' - T mapsall ;e T' toteT (i.e. it forgets the index) and therefore the statements PT <, PT’
and P" < P hold. o

For qualitative statements about coverings and reductions one further helper function is necessary.

Definition 3.7 (Semantic Transfer). The semantic function Ty for two extended transition systems PT
and PT', where PT is a T-covering of PT' | transfers a function from one system to another by associating
the “forgotten” tokens in the covered system with the corresponding “forgotten” traces of the original

mapping
oo (T = [PT]) = (1" = [P"]) (3.9)
¢ At) - | Jr(@)lre T,(r) = 7}

Finally, this makes it possible to state the single most important theorem about partitioned transition
systems.

Theorem 3.1 (Semantic Adequacy). If PT is a T-complete partitioning or T-complete covering of P
the partitioned semantics is adequate (sound and complete), that is

[P e = T ([P"Tp). (3.10)
Simply put, by partitioning a system information may be gained, but it is not possible to construct
a less precise set of traces.
3.3 Trace Partitioning Abstract Domain

Now that the groundwork has been laid, it is time to put the pieces together and finally build the trace
partitioning abstract domain.

Definition 3.8 (Trace Partitioning Domain). The trace partitioning abstract domain for a given transi-
tion system P contains tuples of the form (T, PT,®) where

3.3 Trace Partitioning Abstract Domain 23

@ @ ©)

2
true \false
8 i

\/ \/

false

le, t

Figure 3.1: Trivial Extension and Complete Partition

o T is a set of tokens,
e PT is a com