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Abstract

Trace Partitioning, as presented by Xavier Rival and Laurent Mauborgne in [11], describes an abstract
domain according to the abstract interpretation theory. Most existing static analyses based on abstract
interpretation adopt a “reachable states” abstraction. Instead, trace partitioning also allows to dynam-
ically keep track of information on how these states are reached. Making it possible to distinguish
between states at the same location that were computed by following a different flow of control can
lead to a considerable gain in terms of precision.

This report describes the trace partitioning domain implementation and integration into Sample, a
novel generic static analyzer. Sample already contains an analysis based on reachable state semantics
and was developed over the last two years by the Chair of Programming Methodology at ETH Zürich.
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Chapter 1

Introduction

Change is the only constant.1 Unlike in other fields, no deep knowledge of the computing industry is
required to acknowledge what the Greek philosophers knew long before the first computer was ever
invented. It is doubtful though, that the Greeks ever imagined the pace at which change has happened
over the past seventy years.

1.1 Motivation

One of the big changes that has happened during this time is a steady increase in complexity, both in
hardware and in software. During the sixties of the last century the idea was introduced that programs
can be described and reasoned about using mathematical models [8, 9]. This insight has lead to the
development of a wide variation of formal methods that have been applied with varying degrees of
success.

In hardware design Model Checking has become a standard procedure. This is understandable
given the cost of possible errors. The situation in software is a different one. While having a long
tradition in compiler design and safety critical projects, formal methods generally have a hard stand.
Although Static Analysis is performed during every compilation of a program, the properties analyzed
are usually limited to rather simple properties such as type checks. Looking at common development
environments, there is clearly a gap between what is being developed in academia and what is used in
day to day life in the industry.

However, there seems to be an ongoing shift in opinion. Relying ever more on distributed services
using the internet has lead to a fragile environment whose exploits are getting more and more attention
from the mainstream media. This makes correctness in software no longer a luxury that can only be
afforded by military and banking institutions but a necessity for an increasing number of businesses.

This is obviously good news for everyone involved in research, but also for everyone who has – as I
have plenty of times – ever struggled with a bug that could have easily been detected by an automatic
tool.

1.2 Goals

Abstract Interpretation is a framework describing in a very general way how to soundly approximate
mathematical models. Sample is a tool for static analysis based on abstract interpretation that is
currently being developed by the Chair of Programming Methodology at ETH Zürich. The goal of
this thesis is to extend Sample with Trace Partitioning, a mechanism within abstract interpretation
supplying the analysis with information about the history of control flow, thereby tracking disjunctive
information and significantly improving overall precision.

1Heraclitus (ca. 535 BC - 475 BC)
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10 1 Introduction

1.3 Prerequisites and Terminology

The programming language used in Sample, in this project as well as in the code listings of this report,
is Scala. Generally, apart from the pattern matching mechanism often used in functional programming,
I try to use as few language specific features as possible and the code samples should be fairly easy to
understand without any prior knowledge of Scala. Nonetheless, should the need arise, the reader is
referred to [14] for further information.

Diagrams depicting software elements are in UML, for which the Wikipedia article provides a good
overview at [15]. Since there does not seem to be a standard on how to use UML with Scala, I use
the following conventions:

• Traits are indicated using the stereotype notation «trait».

• Case classes (used in pattern matching) are indicated using the stereotype «case».

• Type parameters used in inheritance hierarchies are also indicated using the stereotype notation
on the arrow («D»).

1.4 Outline

The rest of this thesis is organized as follows. Chapters 2 and 3 will present the necessary theoret-
ical background for this thesis. The former discusses abstract interpretation in general whereas the
latter focuses on the trace partitioning mechanism. Chapter 4 presents an overview of Sample. The
implementation of the trace partitioning mechanism is presented in Chapter 5, followed by examples
demonstrating its application and a short evaluation in Chapter 6. Finally, Chapter 7 discusses the
remaining open questions, makes suggestions for possible future extensions and concludes.



Chapter 2

Abstract Interpretation

This chapter presents the fundamental theoretical background to understand the trace partitioning
abstract domain presented in Chapter 3. I will start by formally describing abstract interpretation,
continue with its application to static analysis and discuss a few abstract domains.

Abstract Interpretation is a framework that describes the sound approximation of mathematical
models. It was initially presented in 1977 by Patrick and Radhia Cousot in [4] though there exist easier
texts on the subject. The papers [2] and [5] deserve a special mentioning. The former provides a
reader-friendly introduction whereas the latter is a dense explanation of the subject, including all the
necessary proofs, that is more suitable as reference work. Furthermore, the already mentioned paper
by Mauborgne et al. [11] from which some of the following definitions are taken also provides a very
thorough introduction. I will follow along their explanation, though in a less rigorous fashion, focussing
less on the formal aspects and more on the intuition while at the same time introducing the used
notational conventions. Since the goal of this section is to finally provide insight into trace partitioning
I will also borrow their running example.

2.1 Concrete Semantics

A mathematical model for a program P is necessary, in order to talk about its concrete semantics. This
is commonly given as a transition system.

Definition 2.1 (Transition System). A transition system is a tuple P � pΣ,Σ0,Ñq, where

• Σ denotes the set of states,

• Σ0 � Σ the set of initial states and

• Ñ � Σ� Σ is the transition relation.

Example 2.1 (Transition System). To illustrate how to represent a program as a transition system
consider the method ifExample from Listing 2.1 and its corresponding control flow graph (CFG) in
Figure 2.1. The method takes as an argument an integer x, sets the sign variable depending on
whether x is smaller than 0 to -1 or 1 and finally returns x divided by sign.

The mathematical model for the current discussion and, unless stated otherwise, for the rest of this
report assumes that there are variables described by some set X and possible values from another set
V. A memory state (also called store) m P M of the system can be described by a mapping of variables
to values, that is M � X Ñ V. The full state of the system can then be described by mapping each
program location (also called control state) l P L to a memory state, that is Σ � L� M.

The transition system for the ifExample method is fully determined by the set of initial states Σ0.
Figure 2.2 depicts the system having only two initial states. In the first initial state x is set to -2, in the
second state x is initialized with 0. The state changes after executing each statement of the program.

11



12 2 Abstract Interpretation

sign=0 x<0

sign=-1true

sign=1

false
x / sign

Figure 2.1: The Control Flow Graph for the ifExample Method

x ↦ 2
s ign ↦ _

result ↦ _

x ↦ 2
s ign ↦ _

result ↦ _

x ↦ -2
s ign ↦ _

result ↦ _

x ↦ -2
s ign ↦ _

result ↦ _

x ↦ -2
s ign ↦ _

result ↦ _

x ↦ -2
s ign ↦ -1
result ↦ _

x<0 ? true
x ↦ -2

s ign ↦ -1
result ↦ _

x ↦ -2
s ign ↦ -1
result ↦ 2

x ↦ 2
s ign ↦ _

result ↦ _

x ↦ 2
s ign ↦ 1

result ↦ _

x<0 ? false
x ↦ 2

s ign ↦ 1
result ↦ _

x ↦ 2
s ign ↦ 1

result ↦ 2

Figure 2.2: The Transition System

Since the blocks of the control flow graph in this particular example consist of single statements, there
are two states in the transition system for each block. For the sake of clarity, the edges connecting
these two states have not been depicted. The first state represents the input of the block and the
second one the output. The input state is the output of the preceding block. If the edge is weighted,
indicating that it is the result of a conditional, the state is changed by assuming either the condition
(true) or its negation (false) respectively. ©

1 def ifExample(x: Int): Int = {

2 var sign = 0

3 if (x < 0) {

4 sign = -1

5 } else {

6 sign = 1

7 }

8 var y = x / sign

9 y

10 }

Listing 2.1: The ifExample Method

There are several possible ways to define the semantics vPw of the program P. A hierarchical view
of several possible definitions is given in [3]. The two relevant definitions for this presentation are the
trace semantics and the collecting semantics.

Definition 2.2 (Trace). A trace is a finite sequence of states σ � xσ0, σ1, ..., σny. The set of possible
traces over the states Σ is denoted by Σ�.

With the definition of traces it is straightforward to define the first type of semantics, namely the
trace semantics of a program P.

Definition 2.3 (Finite Partial Trace Semantics). The finite partial trace semantics describes the set of



2.1 Concrete Semantics 13

traces that are determined by the transition system P.

vPw � txσ0, σ1, ..., σny P Σ
� | σ0 P Σ0 ^ @i, σi Ñ σi�1u. (2.1)

Definition 2.4 (Trace Semantics as Fixed Point). Alternatively, the trace semantics can be defined
recursively as the least fixed point1

vPw � lfp�
Σ0

FT (2.2)

of the semantic function FT defined as

FT : Σ� Ñ Σ� (2.3)

S Ñ S Y txσ0, ..., σn, σn�1y | xσ0, ..., σny P S ^ σn Ñ σn�1u.

At each step of the iteration, all current traces in vPw are extended by all possible next states as
defined by the transition relation. The resulting traces are then added to the set of current traces and
the iteration starts over again. Starting with the set Σ0 of initial states, this will enumerate all possible
traces described by P. Note that vPw is not necessarily finite and the existence of a fixed point can
therefore not be guaranteed.

Given equation 2.1, we can define the semantics collecting the set of all reachable states as follows.

Definition 2.5 (Collecting Semantics). The states that are reachable in a given transition system are
called collecting semantics

vPwC � tσn | xσ0, ..., σny P vPwu. (2.4)

Definition 2.6 (Collecting Semantics as Fixed Point). Analogously to the trace semantics, the collecting
semantics can be written in fixed point form

vPwC � lfp�
Σ0

FC (2.5)

using the semantic function FC defined as

FC : ΣÑ Σ (2.6)

S Ñ S Y tσn�1 | σn P S ^ σn Ñ σn�1u.

The difference to the iteration computing the trace semantics is that, instead of keeping track of
traces, the iteration only looks at single states. In every step, all next states of all current states, as
described by the transition relation, are added to the set.

Example 2.2 (Semantics). The concepts presented so far can be illustrated looking at the transition
system introduced by Figure 2.2. Each trace of the system starts with an initial state from Σ0. The
two possible initial states are the states on the left side of the figure. The trace semantics contains all
possible traces described by the system. To compute the trace semantics as a fixed point, we start with
the two traces containing only the initial states. For each trace we then recursively add all possible
nodes that are connected to the last state of a trace in the current set of traces. For this example this
is a trivial task but note that this is merely due to the restrictive choice of Σ0. Computing the collecting
semantics is trivial as well, since all depicted states are obviously reachable from an initial state, they
are all part of vPwC. The fixed point computation follows along the same lines as the computation of
the trace semantics.

Note that in the general case, the semantics might not be computable. The set of initial states
might be infinite, considering all possible values of x. Or it might be prohibitively large, for example,
when looking at all possible 32-bit integers for x.

©

Since vPwC in general is undecidable, it is very common to compute an over-approximation of this
set and check whether some safety property holds in all states. This is already a form of abstraction,
a concept which will be formalized in the next section.

1The notion lfp�S 0
F represents the recursive application of F starting with S 0 until S i � S i�1.
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2.2 Abstraction

A single state σ P Σ in the mathematical model might be as simple as containing just a mapping from
variables to values or it might be as complicated as the actual state of some hardware component.
Whichever way, its complexity might be hindering in both formulating as well as verifying interesting
properties.

Abstraction removes complexity by focusing on the important aspects of system. This results in two
problem domains. The concrete domain of the mathematical structure in question and its simplification,
called the abstract domain. Abstract interpretation addresses the problem of relating these two domains
in a sound way. That is, how is it possible to guarantee that statements made about an abstract state
allow sound conclusions about its concrete counterpart?

2.2.1 Lattices

A part of the solution is provided by the restrictions put on the domains. It is necessary that these are
complete lattices.

Definition 2.7 (Lattice). A partially ordered set pS ,�q is a lattice if for any two elements s0, s1 P S

• there exists a unique least upper bound su P S such that s0 � su ^ s1 � su denoted by s0 \ s1,

• there exists a unique greatest lower bound sl P S such that sl � s0 ^ sl � s1 denoted by s0 [ s1.

A lattice is said to be complete if both the least upper bound and the greatest lower bound are defined
for any subset of S .

Definition 2.7 implies that there exists a single element that is the lower bound of all other elements
in S called bottom and denoted by K. Correspondingly, the single element that is the upper bound of
all other elements is called top and denoted by J.

Example 2.3 (Complete Lattice). A typical example of complete lattices are type hierarchies like the
one depicted in Figure 2.3. It shows a system with four types A, B, C and D where both C and D
are subtypes of B. The top and bottom elements have their counterparts in most modern languages.
In Scala, for example, the top element of the type hierarchy is represented by Any and the bottom
element by the type Nothing. The ordering relation then corresponds to the“subtype”, the least upper
bound to the“least common supertype”and the greatest lower bound to the“greatest common subtype”
relationships. ©

To get an intuition about the function of these lattices it helps to think of their elements in terms
of the information they represent. Taking the least upper bound of two elements corresponds to
finding the minimum element that encompasses the information of both its arguments and results in
a loss of precision. Taking the greatest lower bound means looking for the element representing the
information both elements have in common. The top element then represents the information stored
in all elements of the lattice together without discerning between single possibilities, which in effect
amounts to knowing nothing. On the other end of the lattice, the bottom element represents the
conjunction of all elements and, assuming we discern between more than a single state, amounts to a
contradiction.

2.2.2 Galois Connections

Knowing the structure of the two domains, it is time to look at functions connecting a concrete domain
Σ and its associated abstract domain D. The abstraction maps concrete elements to their abstract
counterparts and is usually denoted by α : Σ Ñ D. The function mapping abstract elements to the
concrete states they describe is called concretization and, by convention, is denoted by γ : D Ñ Σ.
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⊤

A B

⊥

C D

Figure 2.3: A Type Lattice

Definition 2.8 (Galois Connection). The relation of the two domains is a sound abstraction if these

two functions form a Galois connection pΣ,�q ��ÑÐ��
α

γ
pD,�q , that is:

1. α and γ are monotone: @σ, σ1 P Σ, σ � σ1 ùñ αpσq � αpσ1q and vice versa.

2. α � γ is reductive: @d P D, α � γpdq � d.

3. γ � α is extensive: @σ P Σ, σ � γ � αpσq.

Once more, it helps to think in terms of information to develop the intuition about this formalization
of sound abstractions. The first point ensures that a less precise element in the concrete domain results
in a less precise abstraction and conversely a loss in precision in the abstract leads to a loss of precision
in the concrete domain. The last two points are closely related and formalize that while the abstract
counterpart of some element may describe more than just the original element, the converse relation
does not hold for abstract elements. That is, by means of concretization and subsequent abstraction
it is not possible to gain information in the abstract domain.

Example 2.4 (Galois Connection). To further illustrate the points just made, consider the concrete
domain of a program describing a set of variables and the abstract domain provided by the type system
depicted in Figure 2.3 from the previous example. The monotonicity of abstraction ensures that given
two variables x of type C and y of type D, the abstraction of their combination given by type B must
be a supertype of C and D. Assuming that x and y are the only variables in the system, monotonicity
on the concretization ensures that all variables of type C (that is x) are a subset of all variables of type
B (x and y).

To illustrate the necessity of a reductive α � γ, assume that this restriction is violated. Then
starting with x, applying the abstraction to get type C and continuing with the concretization of C

would somehow result in a set that does not include x. This clearly does not represent the common
intuition of a sound abstraction. Arguing for the necessity of the third property can be done along the
same lines. ©

2.2.3 Soundness of the Semantics

Since the full transition system of a program is usually not tractable, having related the static aspects
of the system, it remains unclear what happens during the transitions of the system. Assuming that
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transitions in the concrete system follow a set of rules, corresponding rules for transitions in the abstract
domain need to be defined. How these are defined depends on the abstract properties of interest.
However, the abstract transitions need to fulfill certain restrictions in order to guarantee soundness.

Definition 2.9 (Soundness of Abstract Operations). Given a concrete transition rule vswΣ : ℘pΣq Ñ ℘pΣq
corresponding to a programs transition system, its abstract counterpart vswD : D Ñ D preserves
soundness if

@σ P ℘pΣq, αpvswΣpσqq � vswDpαpσqq. (2.7)

Executing an abstract operation in the abstract domain results in a new state which describes at
least the states that resulted from the execution of the corresponding concrete operation in the concrete
domain.

2.3 Static Analysis

Static analysis with abstract interpretation is based on the fixed point computation of the collecting
semantics (cf. Definition 2.6). However, instead of actually computing the semantics which might
not be decidable, the iteration happens in the abstract domain. Starting with the abstract states
representing the initial states of the concrete transition system, each transition of the concrete system
is simulated with abstract operations until the set of abstract reachable states converges.

This leads to two problems. First of all, what guarantees that a fixed point computed in the concrete
domain corresponds to the fixed point computed in the abstract domain? This question is answered
by the so called fixed point transfer theorem as described in [11].

Theorem 2.1 (Fixed Point Transfer). Given two functions FΣ : ΣÑ Σ and FD : D Ñ D then

@σ P Σ, d P D, σ � γpdq ^ FΣ � γ � γ � FD ùñ lfp�σ FΣ � lfp�d FD (2.8)

The premises for this theorem have already been established with the definition of the Galois
connection.

The second problem is that of convergence. It is obvious that for some programs, the domain
could be of infinite height and hence the fixed point computation may not converge. This problem is
addressed using the widening operator instead of the least upper bound, defined as follows:

Definition 2.10 (Widening). The widening is a binary operator ∇ in D satisfying

1. @d, d1 P D, d � d ∇ d1 ^ d1 � d ∇ d1

2. For any sequence pdnqnPN, the recursive application of the widening operator to the elements of
the sequence starting with some d0 P D will eventually converge.

Replacing the union used in the fixed point iteration with an operator satisfying the above definition
ensures convergence. The widening operator is specific to the abstract domain.

Example 2.5 (Static Analysis). The following example will show a step by step static analysis using
the principles presented so far. The basis for this example is again the method ifExample, shown in
Listing 2.1, but this time with no restrictions on the initial memory state, that is Σ0 � tl0u � M where
l0 denotes the first program location.

The abstract domain of interest is the sign domain depicted in Figure 2.4 that tracks whether a
variable is positive, negative or zero. I will not formally define the abstract operations here, they,
however, follow common sense. For example, a negative number multiplied by a negative number
results in a positive number. The addition of a negative and a positive number could result in either
one and the analysis therefore concludes the result to be J.

Figure 2.5 outlines some of the basic stages of the analysis. À shows the initial state before the
first block as well as its successor state, added by a single iteration of FR. The initial state is set to J,



2.4 Example Domains 17

⊤

+ 0 -

⊥

Figure 2.4: The Sign Lattice

meaning that nothing about the environment is assumed. After simulating the execution of the first
block using the abstract operations, sign is guaranteed to be 0, therefore its sign must also be 0.

Á shows a few steps further in the analysis where the two branch states are already added to the
set of known reachable states. A notable difference between the two branches is that when taking the
false branch, x could either be 0 or + and it must therefore be set to J.

Â shows the final state of the analysis. The initial state of the last block must combine the results of
the two branches by computing the widening. This has the unfortunate consequence that the resulting
state is pretty useless since the little knowledge gained about the sign variable during the computation
of the branch is lost.

Convergence is reached in a single iteration over the transition system since the sign domain is
really simple and the program does not contain any loops. ©

2.4 Example Domains

Having already hinted at the versatility of the abstract interpretation framework I am now going to
provide a quick overview of some of the more commonly used abstract domains.

2.4.1 Numerical Domains

There are tons of domains addressing numerical issues. Although probably not that useful, but often
used as an introductory example, the already presented sign domain is one of them. Another, more
useful numerical domain is the interval domain which represents the value of a variable by a lower and
an upper bound.

The domains seen so far all represent values of single variables and are called non-relational domains.
In contrast, relational domains try to, as their name already suggests, connect different variables. The
prime example of this type of domain are the polyhedra described in [6]. They infer linear dependences
between variables. The Octagons are another example of numerical domains. They track invariants of
the from �x� y ¤ c and can be implemented efficiently as described in [12].

2.4.2 Programming Language Features

The applicability of abstract interpretation is not limited to numerical domains. For example, most
modern object oriented languages use some kind of a heap structure where objects reside in memory.
Abstract interpretation can be used to argue about that structure, answering, for example, questions
about aliasing.

Furthermore, there are plenty of concepts that can be represented using an abstract domain lattice.
To list just a few:
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③

②

①

x ↦ ⊤
s ign ↦ ⊤

result ↦ ⊤

x ↦ ⊤
s ign ↦ 0
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x ↦ -
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true

x ↦ ⊤
s ign ↦ 0

result ↦ ⊤

x ↦ ⊤
s ign ↦ +

result ↦ ⊤
false

x ↦ ⊤
s ign ↦ ⊤

result ↦ ⊤

x ↦ ⊤
s ign ↦ ⊤

result ↦ ⊤

x ↦ ⊤
s ign ↦ ⊤

result ↦ ⊤

x ↦ ⊤
s ign ↦ 0

result ↦ ⊤
x ↦ -

s ign ↦ 0
result ↦ ⊤

x ↦ -
s ign ↦ -

result ↦ ⊤

true

x ↦ ⊤
s ign ↦ 0

result ↦ ⊤

x ↦ ⊤
s ign ↦ +

result ↦ ⊤
false

x ↦ ⊤
s ign ↦ ⊤

result ↦ ⊤

x ↦ ⊤
s ign ↦ 0

result ↦ ⊤

Figure 2.5: Step by Step Static Analysis

• The type system, using a lattice like the one depicted in Figure 2.3.

• Array indices, to prove the safety of array access operations.

• Information about string values [1].

• Exhaustiveness of pattern matching for functional languages [7].

These are just a few of the many possible domains, a search on Google-Scholar for“abstract domain”
provides plenty of reading material for the interested reader.



Chapter 3

Trace Partitioning

This chapter describes the trace partitioning abstract domain as it is presented in [13, 11] in detail.
The theory is necessary in order to understand the implementation described in Chapter 5. Once more,
the focus of the discussion lies on intuition rather than on rigorous formal definitions. All relevant
proofs and further examples can be found in the referenced paper.

Static analysis with abstract interpretation as presented in Section 2.3 has proven to be both flexible
and efficient. There are, however, cases where the approximation of reachable states provided by the
fixed point computation is too coarse to produce meaningful results. This is the case when the proof of
a property relies, for example, on the way a state is reached, a piece of information that is completely
discarded during the standard analysis.

A possible remedy would be to analyze a more precise approximation of the concrete semantics.
Unfortunately, simply abandoning the reachable state semantics in favor of a more precise abstraction
(e.g. the trace semantics) has so far turned out to come at too high a price in terms of complexity.

Trace partitioning is an attempt at finding the middle ground between the prohibitive complexity
of discerning traces and the overly simplistic view of the reachable state semantics. It does so by
effectively partitioning reachable states based on some decisions made along the control flow. The
theory is very general and fits well within the abstract interpretation framework and can be formalized
as an abstract domain.

3.1 Refined Semantics

Before talking about how the partitioning works, it is important to know what exactly a partitioning is
and how it can be used to refine the collecting semantics.

Definition 3.1 (Covering and Partition). A mapping δ : E Ñ ℘pS q is said to be a covering of S if

S �
¤
ePE

δpeq. (3.1)

If additionally all elements of E produce disjunct images in S , i.e.

@e, e1 P E, e , e1 ^ δpeq X δpe1q � ∅, (3.2)

δ is called a partitioning of S .

The name trace partitioning is misleading since the theory does not depend on partitions but is sound
with coverings as well. Nonetheless, for the sake of simplicity, the further discussion will distinguish
between the two only when necessary.

The underlying idea of trace partitioning is to refine the collecting semantics using partitions.
To illustrate how, it helps to take another look at the whole abstraction process from the concrete
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semantics of a program to the abstract state. Since Galois connections, as defined by Cousot & Cousot,
are composable, the abstraction can be split into two parts

vPw ���ÑÐ���
αC

γC
vPwC ���ÑÐ���

αD

γD
D. (3.3)

The two steps are

• the abstraction of the concrete semantics vPw to the collecting semantics vPwC followed by

• the abstraction of the reachable states of the collecting semantics to some other abstract domain
D.

The first abstraction can be extended to include a partitioning δ : E Ñ vPw. The two steps can
then be rewritten as

vPw ���ÑÐ���
αδ

γδ
pE Ñ vPwq ���ÑÐ���

αD

γD
D. (3.4)

Here, αδ describes the abstraction that transforms the concrete semantics into a function that maps
elements of some label set E to traces of vPw. The abstraction is called partitioning abstraction and
can be shown to form a Galois connection, provided that δ is in fact a covering or a partitioning. A
more formal definition of the abstraction and concretization functions follows.

Definition 3.2 (Partitioning Abstraction). The partitioning abstraction is defined as

αδ : vPw Ñ pE Ñ vPwq (3.5)

σ ÞÑ λpeq � σX δpeq

and its corresponding concretization as

γδ : pE Ñ vPwq Ñ vPw (3.6)

φ ÞÑ
¤
ePE

φpeq.

Note that so far no decision about the form of δ has been made. This leaves a large degree of
freedom in designing the abstract domain. Consider, on the one hand, the partitioning that maps a
unique label to each trace of vPw. This amounts to having access to the full trace semantics during
the further analysis at the expense of having to deal with the accompanying complexity. On the other
hand, a partitioning that collects traces ending in the same state results in the classical situation of
dealing with the collecting semantics during the analysis. These are the two extremes, anywhere in
between is possible. As always there is a trade-off between complexity and precision of the analysis.
The fundamental difference to other approaches to this problem is that this trade-off can be managed
with great flexibility using the mechanism introduced by a custom partitioning function.

This extension is the foundation of trace partitioning. The rest of this chapter will be concerned
with defining an appropriate partition function as well as constructing the lattice structure required for
a sound abstract domain.

3.2 Partitioning Transition Systems

The extension of the traditional abstraction and the choice of the partitioning in particular leave many
questions to be answered. The goal of this section is to define a useful partitioning as well as an
ordering on partitions that can be used to define an abstract domain. Furthermore, it is important to
introduce the notion of semantic adequacy, showing that this extension describes the same program as
the original semantics.
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The underlying structure to partition is the program whose semantics is represented by the transition
system. But what does it mean to partition such a system? This is probably the most complex aspect
of trace partitioning. It requires an extension of the notion of transition systems presented in Definition
2.1.

Definition 3.3 (Partitioned System, Trivial Extension). A partitioned transition system PT is an exten-
sion of a transition system P � pΣ,Σ0,Ñq represented as a tuple pT,ΣT ,ΣT

0 ,Ñ
T q where

• T denotes a set of tokens (or labels),

• ΣT � T � Σ denotes the set of states,

• ΣT
0 � T � Σ0 the set of initial states and

• ÑT � ΣT � ΣT is the transition relation.

Furthermore, the trivial extension of P is defined as the partitioned system with a single token t (i.e.
T � ttu) where all states are extended with t and the extended transition relation completely ignores
the newly introduced token.

The only difference to the original transition system is that every state now comes with an additional
token of some token set T . The token set T can be thought of as a set of available labels that can
be associated with states. This makes it possible to assign tokens to whole traces of P, effectively
providing a way to define the partitioning δ.

Another way of looking at the tokens is interpreting them as an extension of the control state as
it is done in the presentation of Mauborgne and Rival. The extended control state is then defined as
LT � T � L, a notion which I too will use in the further presentation.

Definition 3.4 (Partitioned Semantics). The partitioned semantics vPT wP of PT is described by applying
the partitioning abstraction (Definition 3.2) to the concrete semantics using the partitioning

δ : vPw Ñ pL Ñ vPwq (3.7)

S ÞÑ λplq � ts P S |Dσ P ΣT , s � x..., pl, σqyu.

In order to relate two partitioned systems PT and PT 1

that are based on the same original transition
system P, a function τ : T Ñ T 1 relating the labels is required. This function is called forget function
since it is mainly used to relate a more complicated set of labels to a simpler one by systematically
“forgetting” information. The function is trivially extended to states, traces, and sets of traces by
applying τ to the associated token, all occurring states, and all occurring traces of the set respectively.

Definition 3.5 (Coverings, Partitions, Completeness). For a transition system P and its two extensions
PT and PT 1

:

1. PT is a τ-covering of PT 1

if for every transition in PT there exists a corresponding transition in
PT 1

, that is

• ΣT 1

0 � ΣT
0

• @σ0 P Σ
T , σ11 P Σ

T 1

, τpσ0q Ñ
T 1

σ11 ùñ Dσ1 P Σ
T , τpσ1q � σ11 ^ σ0 Ñ

T σ1.

2. PT is a τ-partition of PT 1

if additionally the corresponding transition is unique

• @σ1 P ΣT 1

0 , D!σ P ΣT
0 , σ

1 � τpσq

• @σ0 P Σ
T , σ11 P Σ

T 1

, τpσ0q Ñ
T 1

σ11 ùñ D!σ1 P Σ
T , τpσ1q � σ11 ^ σ0 Ñ

T σ1.

3. Furthermore, PT is called τ-complete with respect to PT 1

if it does not contain any superfluous
transitions
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• @σ P ΣT
0 , τpσq P Σ

T 1

0

• @σ0, σ1 P Σ
T , σ0 Ñ

T σ1 ùñ τpσ0q Ñ
T 1

τpσ1q.

The relations “τ-complete covering” and“τ-complete partition” can be shown to be transitive, anti-
symmetric and reflexive and hence describe a partial ordering on the set of possible partitioned systems
of P. The ordering is denoted with the 2τ operator.

Definition 3.6 (Partial Ordering). The partial ordering 2 amongst partitioned systems PT and PT 1

based
is defined as

PT 2 PT 1

ðñ Dτ, PT 2τ PT 1

. (3.8)

Each transition system describes many partitioned transition systems that are complete coverings
of itself. The most basic one is the trivial extension which therefore corresponds to the K element
of the ordering. The J element is not tractable and more of a theoretical interest. It must cover all
possible complete coverings of the trivial extensions for all possible forget functions τ for all possible
token sets.

Example 3.1 (Extended System). For this example, consider once more the example program from
Listing 2.1. This time, only the control but not the memory state changes, the memory abstraction
consists of one single element. Figure 3.1 depicts the basic transition system in À. The labels of the
nodes correspond to the control states and indicate the line number of the program. The graph Á
shows the trivial extension PT with T � ttu and the graph on the right represents a partitioning of
the trivial extension with T 1 � tt0, t1, t2u. The additional two tokens t1 and t2 can be thought of as
a partitioning of traces depending on which conditional branch has been taken. The forget function
τ : T 1 Ñ T maps all ti P T 1 to t P T (i.e. it forgets the index) and therefore the statements PT 2τ PT 1

and PT 2 PT 1

hold. ©

For qualitative statements about coverings and reductions one further helper function is necessary.

Definition 3.7 (Semantic Transfer). The semantic function Γτ for two extended transition systems PT

and PT 1

, where PT is a τ-covering of PT 1

, transfers a function from one system to another by associating
the “forgotten” tokens in the covered system with the corresponding “forgotten” traces of the original
mapping

Γτ : pT Ñ vPT wq Ñ pT 1 Ñ vPT 1

wq (3.9)

φ ÞÑ λpt1q �
¤
tτpφplqq|t P T, τptq � t1u.

Finally, this makes it possible to state the single most important theorem about partitioned transition
systems.

Theorem 3.1 (Semantic Adequacy). If PT is a τ-complete partitioning or τ-complete covering of PT 1

the partitioned semantics is adequate (sound and complete), that is

vPT 1

wP � ΓτpvPT wPq. (3.10)

Simply put, by partitioning a system information may be gained, but it is not possible to construct
a less precise set of traces.

3.3 Trace Partitioning Abstract Domain

Now that the groundwork has been laid, it is time to put the pieces together and finally build the trace
partitioning abstract domain.

Definition 3.8 (Trace Partitioning Domain). The trace partitioning abstract domain for a given transi-
tion system P contains tuples of the form pT, PT ,Φq where
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① ② ③

l₂

l₄

true

l₆

false

l₈

l₂, t

l₄, t

true

l₆, t

false

l₈, t

l₂, t₀

l₄, t₁

true

l₆, t₂

false

l₈, t₁ l₈, t₂

Figure 3.1: Trivial Extension and Complete Partition

• T is a set of tokens,

• PT is a complete covering of P and

• Φ is a function Φ : LT Ñ vPT wP relating partitioned control states with the partitioned traces
reaching the control state.

The ordering can be defined as follows. For two elements pT, PT ,Φq ¤ pT 1, PT 1

,Φ1q if

• PT 2τ PT 1

and

• Φ � ΓτpΦ
1q, using the semantic transfer from Definition 3.7.

The choice of Φ is not defined here. It is one more aspect that provides flexibility in trace parti-
tioning. In this context, of special interest are invariants on reachable states of the system. Instead of
mapping partitioned control states to traces, the Φ functions that are used subsequently therefore map
locations of the transition system to state invariants from some guest domain D, that is Φ : LT Ñ D.

Given an element of the abstract domain, the corresponding state of the concrete domain can be
computed using the concretization function.

Definition 3.9 (Concretization Function). The concretization of an element pT, PT ,Φq is computed in
three steps:

1. By projecting Φ onto the trivial extension using Γτt , where τt maps all arguments to a single
token t,
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2. applying the partitioning concretization γδ (Definition 3.2) and finally

3. applying the isomorphism τε transforming the trivial extension back to the base transition system.

This can be written more concisely as

γP � τε � γδ � Γτt . (3.11)

To complete the domain, a widening operator has to be defined.

Definition 3.10 (Widening for the Trace Partitioning Domain). A widening operator ∇P can be defined
by a pairwise widening on the structure and the domain function. Then,

pT0, PT0 ,Φ0q∇PpT1, PT1 ,Φ1q � pT2, PT2 ,Φ2q (3.12)

where

• PT2 � PT0∇PT1 for some widening ensuring PT0 2τ0 PT2 and PT1 2τ1 PT2 and

• Φ2 � pΦ0 � τ0q∇DpΦ1 � τ1q by applying the widening on the composed domain.

Again, this definition is flexible. What exactly the widening of two partitioned systems is will be
addressed when discussing the implementation in Chapter 5. As for the widening on Φ, assuming it
has the previously discussed form mapping locations to invariants (i.e. LT Ñ D), the widening can be
defined as the widening of the guest domain.

3.4 Static Analysis

Once more, this report assumes that the domain of interest is formed by the composition of the trace
partitioning domain with an invariant domain of the form Φ : LT Ñ D for some guest domain D. This
can also be rewritten as Φ : pL � T q Ñ D which is isomorphic to Φ : L Ñ pT Ñ Dq. This little trick
makes it possible to compute the static analysis as a fixed point over the reachable states as previously
shown in Section 2.3.

The main difference is that the analysis states are no longer simply the abstract states but consist in
fact of a mapping T Ñ D. How to deal with these partitioned states is one of the problems addressed
when discussing the implementation in Chapter 5.
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Sample

Sample is a tool for static analysis based on abstract interpretation that is currently being developed
at ETH Zürich. Sample is written completely in Scala. The project is open with respect to the choice
of language as well as the type of analysis. The core of the Sample analyzer is split into two major
packages which are both part of the ch.ethz.inf.pm.sample namespace.

• The abstractdomain package contains classes representing the concepts related to abstract
interpretation.

• The package oorepresentation contains the facilities related to analyzing an object oriented
language.

I will start by discussing the former in Section 4.1 before going into details about the specifics of
object oriented languages in Section 4.2. This is not meant to be a comprehensive documentation
of the Sample project but rather a qualitative overview of the architecture providing the foundation
for the coming chapters. Unfortunately, there is currently not much more documentation available
and, since Sample is still under active development, the following material is a snapshot of the current
development state. Furthermore, the active development also implies that there are features not yet
implemented. The current limitations are briefly discussed in Section 4.3.

4.1 Abstract Domain Representation

The abstractdomain package is responsible for handling the abstract domains. A coarse overview of
the package is given in Figure 4.1.

4.1.1 Lattice

At the root of the inheritance tree is the Lattice trait which, as its name already suggests, represents
a lattice as described in Section 2.2. It provides factory methods for elements, the J as well as the K
element (factory, top, bottom). Furthermore, the lub, glb and widening compute the least upper
bound, the greatest lower bound and the widening of two elements respectively. Most importantly,
implementing classes have to provide an implementation for the ordering relation (lessEqual). It is
discussed first because of its widespread usage throughout Sample. There are few classes that do not
incorporate or at least interact with this trait.

4.1.2 Values

The class Expression, which is not depicted in the figure, represents the result of a statement.
This result can have several possible forms amongst others are constants, variables and arithmetic
as well as boolean expressions. Although it is not commonly the case, values in Sample need not

25



26 4 Sample

Figure 4.1: The abstractdomain Package

be generated deterministically and hence expressions are not sufficient to represent values during the
analysis. SymbolicAbstractValue (abbreviated SAV in Figure 4.1) deals with this subtlety by relating
expressions to the states they where generated in. A symbolic abstract value can therefore represent
multiple values at once. The following example attempts to clarify this concept.

Example 4.1. Some languages such as Scala allow conditionals to return values. Consider the assign-
ment r = if (x < 0) -1 else 1. Assuming that evaluating the numerical constant -1 results in a
state p and evaluating 1 results in the state q respectively, the value representation assigned to r will
be of the form t-1 ÞÑ p, 1 ÞÑ qu. ©

4.1.3 States

The State trait is the most fundamental trait of the Sample project. It represents abstract states of the
analysis. A state’s behavior is specific to the kind of analysis that is performed and the implementing
subclasses have to provide the details.

These details include the basic abstract operations and define what happens when, for example, a
variable is created (createVariable), when a variable is assigned some value (assignVariable) but
also what happens when a variable is read (getVariableValue) etc.

Furthermore, the state describes what happens when some expression is evaluated in the context
of the current state (assume). A special case occurs when the current context is evaluated to true

or false respectively (testTrue, testFalse). This is the mechanism that allows conditionals to be
handled by the analysis. Depending on whether the analysis follows the true-branch or the false-
branch during the analysis the branching condition is evaluated accordingly. All these operations have
in common that they do not modify the state objects but result in new state objects representing the
modified state after applying the corresponding operations.

Since it should be possible to compare and combine states, the trait also incorporates the Lattice

trait.
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Figure 4.2: The oorepresentation Package

The Generic Abstract State

A default implementation of the State trait is provided by the GenericAbstractState class. This
implementation combines two abstract domains. The first one is a domain that keeps track of the
heap structure during the analysis. The second can be any other analysis that implements the Seman-

ticDomain trait, a simplification of the State trait allowing subclasses to safely ignore heap related
concepts.

Apart from managing the two domains, the generic abstract state also keeps track of what ex-
pression has last been evaluated in the current state in form of the SymbolicAbstractValue r1.
Keeping track of the current expression not only makes it simple to implement the previously discussed
testTrue/testFalse methods, but also makes it possible to support the assignment of more complex
statements (see Example 4.1).

4.2 Object Oriented Representation

The other important package oorepresentation is roughly depicted in Figure 4.2. Its main responsi-
bilities are the handling of some object oriented language, this includes the handling of the fixed point
iteration discussed in Section 2.3.

4.2.1 Classes, Methods and Statements

Not listed in the figure are the classes representing the standard object oriented concepts. Classes
are represented by ClassDefinition and provide access like most common introspection frameworks.
The class definition provides access to its methods of type (MethodDeclaration) which in turn provide
access to their execution body as ControlFlowGraph object. Instances of these classes are language
specific and are generated from implementations of the Compiler trait. The Sample project currently
provides compilers for Java Bytecode and for Scala.

The second basic notion not entirely depicted in Figure 4.2 is that of a Statement. Case classes for
assignments (Assignment), method calls (MethodCall) etc. provide implementations for this abstract
class. A list of all subclasses is depicted in Figure 4.3. These implementations of Statement mainly
provide access to their semantics. The forwardSemantics (backwardSemantics) takes a state as
argument and returns a state representing the analysis after (before) that statement is executed.

4.2.2 Control Flow Graph

At the center of the package are two implementations of the WeightedGraph trait representing a generic
graph with weighted edges. The trait takes two type parameters specifying the type of the node and
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Figure 4.3: The Statement Subclasses

the type of the weight of the edges. The first implementation is the ControlFlowGraph representing,
the control flow graph of the method to be analyzed. The nodes contain lists of Statement objects
and the edges may be weighted with optional Boolean values indicating conditional branches of the
control flow. An example of such a control flow graph was presented earlier in Figure 2.1.

4.2.3 Control Flow Graph Execution

The second type of weighted graph is ControlFlowGraphExecution. For a given control flow graph
and a state, the execution of the control flow can also be represented as graph. Depending on the
type of the analysis, the provided state denotes either the entry state (forward analysis) or the exit
state (backward analysis) of the system. Then, for each node of the control flow graph containing n
statements, the corresponding node in the execution graph contains n � 1 states. The state i � 1 of
the node then represents the state before statement i� 1 and after statement i. The edge sets of two
corresponding control flow and control flow execution graphs are identical.

The actual computation of the states of the control flow execution is the subject of the next section.

4.2.4 Analysis

The classes presented so far are already sufficient to perform static analyses. A client has to provide
a control flow graph, which is usually acquired by compiling some source file and extracting the body
of a method of a class. Furthermore, the initial state of the analysis has to be provided. This state
is analysis specific but usually some kind of GenericAbstractState with a heap and some other
domain. Sample includes various domains. Amongst those is an interface to apron [10], a collection
of common numerical domains.

Fixed Point Iteration

The method forwardSemantics of the ControlFlowGraph computes the exit state of the analysis
for a given initial state. It works by returning the exit state of the ControlFlowGraphExecution

generated by a call to forwardSemantics of the same class. This function in turn delegates the work
to a private method called semantics which is the place where the fixed point iteration happens. The
method takes as an argument a function performing a single iteration step and applies it until the
states of the control flow graph execution do not change any more or until a widening limit is reached.



4.3 Limitations 29

The function used in the computation of the forward semantics is called forwardSingleIteration

and is also a member of the ControlFlowGraphExecution class.
This single iteration will be of importance for the discussion of some implementation details of

the trace partitioning extension and will therefore be discussed in more detail. A single iteration steps
over all nodes of the control flow graph. For each node it computes an entry state and stores it at
position 0 in the corresponding execution graph node. The entry state is computed by a helper method
(entryState) that collects, by means of the least upper bound, all last states of nodes in the execution
graph that contain an edge pointing to the current node. If that edge is weighted by a Boolean value
the corresponding state transformation, testTrue or testFalse, is applied beforehand.

The missing states of the execution graph node are then computed by the forwardBlockSeman-

tics. This method subsequently computes the forward semantics of each statement of the control
flow graph block, starting with the previously computed entry state and stores the result in the next
element of the execution graph list.

Parameters

The singleton SystemParameters specifies various details of the analysis. Most notably, it defines the
widening limit (wideningLimit) that specifies when the fixed point iteration switches from using the
least upper bound to applying the widening, thereby forcing the iteration to converge.

The system parameters also specify the property of interest for the analysis. Properties are of type
Property and define a method that is automatically passed the final control flow graph execution
of the analysis. Sample already defines a few properties, such as the DivisionByZero property that
generates a warning message if there is a possible division by zero.

During the analysis, the parameters singleton keeps track of what class, method etc. is being
analyzed at the moment. Furthermore, specifying different output objects (progressOutput, scree-
nOutput) allows the client to intercept and handle the text output of the static analyzer.

4.3 Limitations

As already hinted at, Sample is still under active development. This also means that there are currently
several limitations as to what can be analyzed.

There are some limitations as to what language constructs are supported in Sample. Interprocedural
calls will be supported by the use of contracts. However, the contracts specification language is still
under discussion and development. This is especially problematic for languages where native array
access is modelled as a method call, which is the case in Scala. The problem can be addressed though
by “simulating” arrays as will be seen later in this presentation.

Furthermore, not all abstract domain implementations have fully matured yet. Most of the short-
comings are concerned with not fully implementing logic rules such as DeMorgan for negated boolean
expressions or detecting contradictions in the internal state. While the former usually just ends the
analysis with an exception, the latter can be problematic since it may result in states that are K but
are not recognized as such.
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Chapter 5

Trace Partitioning in Sample

This chapter presents my implementation of the trace partitioning abstract domain and its integration
into Sample.

Before discussing various implementation details, Section 5.1 illustrates how the concepts of the
trace partitioning domain from Chapter 3 are adapted to the concrete implementation. Section 5.2 then
continues by presenting an alternative State implementation, the core of the extension. The necessary
modifications to Sample to use this new State implementation are the subject of Section 5.3. The
flexibility of the implementation is then demonstrated with the various directives in Section 5.4 before
Section 5.5 presents the extension of an already existing user interface. Finally, Section 5.6 addresses
some of the shortcomings of the current implementation and suggests some future extensions.

5.1 Domain Representation

The main challenge of a trace partitioning implementation lies in representing the elements pT, PT ,Φq of
the trace partitioning domain. This implementation assumes that Φ is of the form Φ : pL�T q Ñ D for
some guest domain D. It can therefore be, by curryfication, represented in the form Φ : L Ñ pT Ñ Dq.
This has the advantage that the static analysis can be performed as described in 2.3 using a states of
the form T Ñ D.

5.1.1 Tokens

As Mauborgne and Rival suggest, tokens from T represent decisions that have been taken during the
analysis along the control flow. Since in the end it is desirable to have easy access to multiple decisions
made during the analysis, the singleton tokens used so far are impractical. A more flexible approach is
therefore needed.

Definition 5.1 (Token). A token in T can be represented as a stack of labels from some label set E. A
token is then either

• the initial token denoted by init,

• a label e P E or

• the combination of two tokens t, t1 P T represented as t :: t1.

The following example illustrates the use of tokens to keep track of decisions and how using a stack
representation results in a more intuitive approach.

Example 5.1 (Tokens). Coming back to the extended system PT 1

from Example 3.1 with the token set
T 1 � tt0, t1, t2u, recall the interpretation of the tokens:

31
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• t0: The initial token, nothing has been decided.

• t1: The analysis follows along the true branch of the conditional.

• t2: The false branch has been chosen during the analysis.

Using the newly introduced notation, the elements can be reinterpreted starting with the initial token
init instead of t0. The two tokens discerning the two branches are then init :: If(2,true) and
init :: If(2,false) respectively. The name of the label (If) indicates that a decision has been made
about following a conditional. The first argument points to the location of the conditional in question
and the second argument indicates which branch has been taken.

Suppose the true branch contained another conditional where the distinction of the two branches
benefits the analysis. The tokens generated for this distinction will then be the stacks init ::
If(2,true) :: If(4,true) and init :: If(2,true) :: If(4,false). ©

5.1.2 Directives

The tokens need to be generated during the analysis. The mechanism responsible for doing it is called
a directive. A directive specifies the kind of distinctions it can make by providing a list of tokens
representing possible choices. Applying such a directive to a token t then leads to the tokens that
result from pushing each token specified in the directive on top of t. A special case is the directive for
merging partitions which, instead of appending tokens to a stack, removes them. The details of this
operation will be discussed later.

Example 5.2 (Directive). The PartitionIf directive that distinguishes between executions along the
two branches of a conditional at position i generates the two tokens If(i,true) and If(i,false)

representing the two possible choices. Applying the directive to some token t results in t :: If(i,true)
and t :: If(i,false). ©

These directives could be generated from annotations in the source code or, for example, from
heuristics. This implementation requires them to be provided externally. The way to do this at the
moment is either by means of writing analysis specific code or by using the user interface discussed
later on.

5.2 Architecture

The core of the implementation is depicted in Figure 5.1. At the center lies the class Partitioned-

State. The partitioned state represents the full state of the analysis at a given location. That is, at
any point l P L during the analysis the state must keep track of the mapping from tokens to states of
the guest domain (T Ñ D).

This mapping can be efficiently represented by a tree structure where the nodes consist of the
directives mapping tokens to their children. At the leaves of the tree are the states of the guest
domain. This structure is implemented by the abstract class Partitioning. Each partitioned state
consists of one such partitioning.

As a general rule, the responsibilities of the two classes PartitionedState and Partitioning

are split as follows. The partitioned state’s main concern is the implementation of the State trait
and providing interfaces for directives and for the analysis. The partitioning, on the other hand, solely
manages the tree structure and is mainly concerned with the lattice operations.

The directives are represented by the abstract Directive class. Implementing classes have to
override the apply method that is responsible for transforming the tree structure. Furthermore, they
have to provide a list of tokens they generate. Since directives are applied between statements, each
directive is identified by the program point of the statement it precedes. More details and example
implementations will be provided in Section 5.4.
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Figure 5.1: The tracepartitioning Package

5.2.1 Partitioned State

The PartitionedState is similar to the GenericAbstractState in that it provides some default
implementation of the State trait. The type parameter D represents the kind of guest domain. This
guest domain is typically a generic abstract state.

Semantic Operations

Implementing the State trait seems straightforward but comes with its own set of challenges. Apart
from the testTrue and testFalse methods, which require feedback from some directives (cf. Section
5.4), the semantic operations (e.g. createVariable) are simply redirected to the leaves of the
partitioning.

The main challenge is introduced by the nondeterministic symbolic abstract values. Functions which
do not contain abstract values in their arguments are mapped to the leaf states using the private helper
function map that takes as argument a function transforming a leaf (f: D => D) and applies this
function to all leaves of the partitioning. Listing 5.1 illustrates the usage of the map function.

1 override def createObject(t: Type, pp: ProgramPoint): PartitionedState[D] = {

2 map(_.createObject(t, pp))

3 }

Listing 5.1: The createObject Method

When a method takes a single argument of type SymbolicAbstractValue, the situation is already
a bit more complicated. An example of such a method is the assume method. The expression that the
state is supposed to assume could come from several different partitioned states, all containing their
own partitioning. The nondeterministic nature of the value makes it necessary to consider every possible
combination. This is achieved using the helper function mapValue that takes a symbolic abstract value
for a PartitionedState and a function transforming a leaf with a symbolic abstract value for the
guest state type (f: (D, SymbolicAbstractValue[D]) => D) as arguments. The way mapValue

works is that it applies the function for each possible expression and state combination onto the current
partitioning and then takes the least upper bound over all results. Two partitioned states are combined
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using the zipmap function of the partitioning. This function assumes that partitionings have the same
structure and then applies a function combining leaves given as argument to corresponding leaves.

Things get even more complicated when there are two arguments of type SymbolicAbstractValue
or even lists of symbolic abstract values. PartitionedState defines private helper functions for all
these cases, for more details the reader is referred to the documentation in the source code.

Handling Directives

Another responsibility of the partitioned state is the application of directives. Its apply method
delegates the partitioning process to the Directive object only if certain conditions are met. Either

• the directive is a Merge directive (cf. Section 5.4.2) or

• the current partitioning does not exceed a predefined size (determined by width and depth of the
tree).

If the conditions are met, a new partitioned state with the transformed partitioning is returned, otherwise
the state just returns itself. This mechanism is part of the widening that is globally enforced and not
specific the type of directive that is applied. It effectively limits the possible size of the partitioning
during the analysis.

5.2.2 Partitioning

The Partitioning represents the tree structure of the partitioned state. Leaves of the tree wrap
around a single state of the guest domain. The corresponding subtype is Leaf and its value attribute
provides access to the guest state. The Node subclass represents an inner node of the tree. Apart
from the reference to the directive that created the node, it also contains a list of its children. The
mapping from tokens to children is defined as a one to one relation between corresponding elements
of the lists directive.tokens and children. That is, element i of the tokens list of the directive
maps to element i of the children list.

As mentioned before, the primary responsibility of the partitioning is defining the lattice opera-
tions. Mauborgne and Rival state that the ordering can be defined pairwise on the extended system
(using some forget function τ) and the guest domain. They do not present the specifics of their
implementation. The description of our implementation follows.

Lattice Elements

The implementation provides two more case classes inheriting from Partitioning, namely the Top and
Bottom classes, representing the J and K elements of the lattice respectively. In this implementation,
the Bottom element represents the most simple partitioning containing only the K state of the guest
domain. The tree structure of that element is assumed to adapt to whatever it is compared to. This
gives priority to the guest domain over the trace partitioning domain. It furthermore has several practical
advantages for the implementation of several directives, a few of which will be further elaborated in
Section 5.4.

Ordering

The easiest way to define the partial ordering is the case where a leaf is compared with some other
element and then distinguishing the different cases. The code for this can be seen in Listing 5.2.

There are two simple cases where the argument is either Top or another Leaf. The first case simply
results in true since any object is less or equal to J, the second case where the tree structure is equal
(i.e. both are leaves), the result is that of the comparison in the guest domain. When the argument is
Bottom the case is a bit trickier. The special treatment is necessary since it cannot be represented as
a leaf. Recalling the definition given earlier the task then becomes trivial, comparing the value element
to the K element of the guest domain. As for the case when the argument is an inner Node, there
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1 override def lessEqual(p: Partitioning[D]): Boolean = p match {

2 case Top() => true

3 case Bottom() => value.lessEqual(value.bottom)

4 case Node(_, _) => value.lessEqual(p.lubState)

5 case Leaf(v) => value.lessEqual(v)

6 }

Listing 5.2: The lessEqual Method in Leaf

exists a trivial forget function that maps the argument to a single leaf. This forget function simply
forgets all the partitionings. The value of the newly generated leaf is then defined by the Γ function,
collecting all leaf states with the least upper bound (lubState).

The method comparing nodes is shown in Listing 5.3.

1 override def lessEqual(p: Partitioning[D]): Boolean = p match {

2 case Top() => true

3 case Bottom() => children.forall(_.lessEqual(Bottom()))

4 case Node(d, cs) => directive.compatible(d) &&

5 children.indices.forall(i => children(i).lessEqual(cs(i)))

6 case Leaf(v) => false

7 }

Listing 5.3: The lessEqual Method in Node

The trivial cases include again the comparison to Top which always returns true, and this time
the comparison to a leaf, which always results in false, since there exists no forget function that can
possibly transform a leaf into a node. Consistent with the earlier definition of the Bottom element,
comparing to the Bottom results in checking whether all children of the node are less or equal to
the argument. The case where two objects of type Node are compared to each other is slightly more
complicated. The nodes can only be less or equal to each other if they are compatible. Compatibility
is defined by the directive the node contains. In most cases, as this is the default implementation
provided in the Directive class, compatible simply means equal. Given two compatible nodes, the
definition then requires that all children have to be pairwise less than or equal to each other.

Least Upper Bound

The implementation of the least upper bound assumes the commutativity of the operation. The
discussion of the greatest lower bound is omitted since it would follow along the same lines.

Listing 5.4 shows the implementation of the least upper bound of the Leaf class.

1 override def lub(p: Partitioning[D]): Partitioning[D] = p match {

2 case Top() => Top()

3 case Bottom() => this

4 case Node(_, _) => p.lub(p, this)

5 case Leaf(v) => Leaf(value.lub(value, v))

6 }

Listing 5.4: The lub Method in Leaf

Again, four cases are distinguished. Three cases are trivial. Taking the least upper bound with
the Top element results in Top. With the Bottom element the result is the current leaf and when the
argument is another Leaf, the result is simply a new leaf containing the least upper bound of the
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two values. Using the assumption of commutativity, the only non-trivial case is delegated to the Node

implementation shown in Listing 5.5.

1 override def lub(p: Partitioning[D]): Partitioning[D] = p match {

2 case Top() => Top()

3 case Bottom() => this

4 case Node(d, cs) => if (directive.compatible(d)) {

5 Node(directive, for ((c1, c2) <- children.zip(cs))

6 yield lub(c1, c2))

7 } else {

8 case _ => Top()

9 }

10 case Leaf(v) => Node(directive, children.map(lub(_, p)))

11 }

Listing 5.5: The lub Method in Node

This depiction is, for the sake of simplicity, not entirely accurate and a modified version will be
presented in Section 5.4.4. First off, the trivial cases for arguments of type Top and Bottom work as
with the Leaf.

In case the argument is a Node, the distinction is made between compatible nodes and incompatible
ones. The former results in a new node whose directive is the current directive and whose children are
the least upper bounds of the corresponding children of the current node and the argument. Since it
is not obvious what the result of the combination of two incompatible elements would be, the latter
case returns Top.

Last but not least, arguments that are leaves are passed down the tree structure until they are
combined with the leaves of the current tree. This is equivalent to extending the argument into a
compatible structure by extending it with the directive of the current node and taking the least upper
over the resulting compatible structure as described above.

5.3 Integration

In general, the goal was to keep modifications to the Sample code to a minimum in order to integrate
the trace partitioning domain. This section describes the core extension as well as how the analysis
interacts with the directives in more detail.

5.3.1 Core Modification

The changes made to the core of Sample are minimal and limited to a single method in the Con-

trolFlowGraphExecution class, namely forwardBlockSemantics (cf. Section 4.2.4). A slightly
simplified version of the forwardBlockSemantics is shown in Listing 5.6.

1 private def forwardBlockSemantics(s: S, b: List[Statement]): List[S] = b match {

2 case x :: xs =>

3 val sp = s.before(identifyingPP(x))

4 sp :: forwardBlockSemantics(x.forwardSemantics(sp), xs)

5 }

6 case Nil => s :: Nil

7 }

Listing 5.6: The forwardBlockSemantics Method
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The method takes two arguments, the state of the analysis before the block and a list of statements
representing the execution block. It then computes a list of states where each element represents the
analysis state after executing the corresponding statement of the block. Two cases are distinguished:
When the block is empty, the entry state is returned. When the block is non-empty, the state before
the block is transformed by the newly introduced before method and prepended to the resulting
list. The tail of the block is processed recursively with the entry state obtained from applying the
forwardSemantics of the current statement on the modified entry state. This one additional state
modification is the sole difference to the original analysis code.

The before method was added to the State trait. It is called to indicate that the analysis is
about to process a statement. It gives the state the possibility to react by computing a new state
for the remaining analysis. The argument for before is a program point identifying the statement
(identifyingPP) and is obtained by computing the left most program point involved in the statement.

5.3.2 Analysis Interaction

The nature of the fixed point iteration makes tracking the control flow during the analysis a tricky
affair. The implementation does not allow for any assumptions to be made about the order in which
blocks are analyzed. Furthermore, branching conditions are not evaluated after analyzing a block but
while computing its entry state, hindering an intuitive approach to designing directives. Nonetheless,
the extension provides facilities that address these issues and, with a bit of practice, make it possible
to define effective directives.

Apart from the traditional interaction described in Section 5.2.1 over the State trait interface, the
PartitionedState provides an interface for the additional interaction needed to make decisions based
on the flow of control. The first part of this interface is the already mentioned before method that
informs the partitioned state about what statement is next up in the analysis. Its implementation can
be seen in Listing 5.7.

1 def before(p: ProgramPoint): PartitionedState[D] = {

2 (this /: TracePartitioning.get[D](p))((s, d) => s.apply(d))

3 }

Listing 5.7: The before Method

A singleton object called TracePartitioning stores all the directives of the current analysis. Its
get method returns a list of directives for a given program point. The resulting state is then computed
by starting with the current state and subsequently applying each directive to the newly obtained state.
The fold left operator, represented by /: in Scala, makes this a one line operation.

In order to keep track of the control flow in the partitioned state, the state also informs directives
when a branch has been taken, that is when testTrue or testFalse have been called. This happens
over a simple observer interface (PartitionedStateObserver) that all directives inherit. When one
of the aforementioned methods is called, all active directives have the opportunity to change the current
partitioning. A directive is active if it is present in the current tree structure and its identifying program
point coincides with the branching condition that will be evaluated. The implementation assumes that
this condition can be accessed by means of the getExpression method defined in State.

Barring one exception, the two mechanisms give sufficient control over the analysis to implement
the directives that are the subject of the next section.

5.4 Directives

This section describes the directives that are currently implemented. Examples demonstrating their
usage will be presented in Chapter 6. The illustrations in this section are slightly simplistic looking at
states consisting of a single node or leaf whereas in practice the structure of the partitioning might be
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Figure 5.2: The PartitionIf Directive

more elaborate. However, the extension to more complicated structures is a straightforward application
of the definitions given earlier (cf. Section 5.2.2).

5.4.1 PartitionIf

Since it is the classical example and has already been mentioned, the PartitionIf directive will be
presented first. Once more, the directive’s purpose is to distinguish two kinds of traces based on a
conditional flow of control. The first set of traces are those that follow the true branch, the second
set consists of traces following the false branch.

Figure 5.2 illustrates the basic transformations of the directive. Just before the analysis encounters
the conditional statement, it will call the before method of the partitioned state containing a single
leaf with some guest state s. The initial state in the figure is labeled with a À. The state will then
look up the directives stored in the TracePartitioning singleton and find the PartitionIf directive
which it subsequently applies to the partitioning. This will result in a tree structure as depicted in Á.
The node contains the directive and the left child represents the state following the true branch, as
indicated by its token If(true), while the right child represents the state following the false branch
respectively.

During the further analysis, both branches will eventually be taken. When following the true

branch, the testTrue method of the partitioned state will be called and will then be mapped to all the
leaves of the partitioning. Subsequently, the state will inform all active directives that the testTrue

method has been called and gives them a chance to change the partitioning. The PartitionIf directive
makes use of that facility by setting the child representing the false branch to Bottom, representing the
contradiction. The resulting state is depicted in Â.

In the subsequent analysis, the false branch remains effectively discarded until the two branches
are joined together by taking the least upper bound over the over two complementary partitionings.
This join operation is depicted in Figure 5.3. The left state p is obtained after analyzing the true

branch, the right state q after the false branch. Taking the least upper bound results in a new
partitioning with the same directive where the least upper bound is applied to corresponding leaves of
the tree.

5.4.2 Merge

The Merge directive differs from other directives in that it is the only one capable of reducing the size
of the tree. It represents the inverse transformation of a given directive, stored in the source attribute.
Upon application, the directive searches through the partitioning for nodes containing the generating
directive and when it finds one, replaces it with the least upper bound of all its children.
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Figure 5.3: Least Upper Bound on Join
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Figure 5.4: The Merge Directive

The application of the Merge directive for the PartitionIf from the previous section is depicted
in Figure 5.4.

5.4.3 PartitionValue

The next directive is called PartitionValue. Its purpose is to distinguish traces based on the value
of a variable.

As Figure 5.5 shows, the implementation is based on the more general notion of a PartitionCon-

dition directive. This directive creates a child assuming each condition it stores in form of a list of
Expression objects.

The PartitionValue directive imposes a restriction on what kind of conditions are supported.
This restriction is represented by a VariableContext object that specifies which variable is restricted
(identifier) and by what restrictions (restrictions). These restrictions are of type Restriction

which is an abstract class generating an expression. The two implementing subclasses are Value and
Range, representing, for some variable x and integers i and j, expressions of the form x == i and j <=

x && x <= i respectively.

Functionally, there is no difference between the condition and value partitioning except that the
latter simplifies the rather involved build up of the expressions.

One more level of specialization is provided by the PartitionSign directive that splits an integer
value into its three possible sign values.
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Figure 5.5: PartitionCondition and PartitionValue
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Figure 5.6: The PartitionValue Directive



5.4 Directives 41

PartitionWhile(pp, 3)

⊥

While(inf)

s

While(0)

⊥

While(1)

⊥

While(2)

⊥

While(3)

Figure 5.7: The PartitionWhile Directive
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Figure 5.8: Control Flow Graph for a Loop

5.4.4 PartitionWhile

The PartitionWhile is by far the most complex directive currently implemented. Unfortunately, its
requirements pose some problems to the implementation using the current framework.

Figure 5.7 depicts the initial partitioned state after applying the directive. The directive takes
two parameters. First, like all directives the program point, here pointing to the loop condition. The
second parameter n denotes the number of times the loop is unrolled during the analysis. The resulting
partitioned state has n+2 children. The first child, identified by the While(inf) token, represents the
executions that go through the loop more than n times. The second child with the token While(0)

represents the traces that skip the loop completely. The rest of the states with the tokens While(i)

collect the traces that iterate through the loop exactly i times.
Maintaining these invariants during the analysis is quite tricky. Figure 5.8 depicts the major stages

involved in analyzing a loop. Here, À represents the loop condition. Before evaluating the loop
condition, the PartitionWhile directive is applied. When the condition is evaluated to true, the
testTrue method is called and the analysis continues inside the loop at Á. The resulting state is then
joined with the state coming from outside the loop at Â and the directive is once more applied to get
back to the loop condition. The analysis continues by repeating the previously described steps or by
following the false branch and leaving the loop structure by applying testFalse to Ã.
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Figure 5.9: The Partitioned State Before and After testTrue

Starting with some initial state at Â and applying the directive initially results in the state depicted
in Figure 5.7. Note that applying the directive is required only once. When the partitioning already
contains a PartitionWhile directive for the loop condition, it does not make sense to generate any
further nodes. This is unlike, for example, the PartitionIf directive which, inside a loop and lacking
a corresponding Merge directive, will split leaves with new nodes until the widening limit is reached.

Entering the loop then calls testTrue on the state which in turn gives the directive the possibility
to modify the partitioning. Having entered the loop means that the invariant for the While(0) child
is being violated. This state will be analyzed in the loop and hence eventually exit the loop, making it
effectively the child that should be mapped to by the While(1) token. Shifting the state one child to
the right and marking the While(0) child with a contradiction restores the invariants for both leaves.
The same shift to the right can restore the invariants for the rest of the While(i) states in future
iterations. The While(inf) child needs some special attention. The shift of the While(n) will only
wrap around if the state for While(inf) is Bottom. The other case happens when this shift has already
happened and the state already represents the traces looping through more than n times. The former
case is depicted in Figure 5.9 and the code segment handling this piece of logic can be seen in Listing
5.8.

1 override def testTrue(p: Partitioning[D]): Partitioning[D] = p match {

2 case Node(d, c) => if (compatible(d)) {

3 val ci = if (c(0) != Bottom()) c(0) else c.last

4 Node(PartitionWhileComputing(pp, n),

5 ci :: Bottom[D]() :: c.tail.take(n))

6 } else {

7 Node(d, c.map(testTrue(_)))

8 }

9 case _ => p

10 }

Listing 5.8: The testTrue Method

Although, the handling of this directive is already a bit more complicated than, for example, the
PartitionIf directive, the real trouble starts with the required non uniformity of the least upper
bound operator. Consider the location Â in Figure 5.8 from the perspective of a partitioned state
coming from inside the loop Á. This state will be joined with a state that comes in two possible forms.

1. A state that also contains the PartitionWhile directive for the loop condition À. This is the
case if the loop in question itself is inside an other loop and the partitioned state is fed back.

2. Some other state not containing the PartitionWhile directive for the condition at À.

The former case is handled just fine by the default implementation. The least upper bound will
result in a new state where the leaves of the directive node are joined pairwise and since all the leaves
satisfy the previously stated invariants, the resulting state will satisfy those as well. In the latter case
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however, this does not work. The other state represents traces that so far have not traversed the loop.
Implicitly, this makes it the leaf of a PartitionWhile node for the token While(0) and it should be
logically treated as such.

It is important to notice that this behavior is specific to the location Â in Figure 5.8. For states
outside the loop, joining two states works as usual. This distinction between the partitioned state
inside and outside the loop is addressed by two distinct directives representing either case. The reader
may have already noticed in Figure 5.9 that, aside from a shift of the leaves to the right, the directive
also changes. The two directives are PartitionWhile, representing the general case outside the loop
and PartitionWhileComputing, denoting the same directive inside the computation of the loop.
As already hinted at, the former is transformed into the latter when entering the loop, that is when
testTrue is called. The reverse happens when the loop is left with the application of the testFalse

method.
The distinction between the two cases is solely used in the lattice operations least upper bound,

greatest lower bound and the widening. For all other intents and purposes they are equal. This fact
is reflected by the compatible method. Moreover, the PartitionWhile directive is the reason why
compatible was introduced in the first place instead of simply using the default == method.

The Directive class has no way of influencing the least upper bound operation of two partitioned
states and in my opinion has no business in doing so. However, as just demonstrated, the implemen-
tation of the PartitionWhile clearly requires to change the way joins operate. Assuming that this
directive remains an exception1, it seems acceptable to have this little piece of logic removed from its
natural setting.

Listing 5.9 displays the final implementation of the least upper bound method of the Node class.

1 override def lub(p: Partitioning[D]): Partitioning[D] = p match {

2 case Top() => Top()

3 case Bottom() => this

4 case Node(d, cs) => if (directive.compatible(d)) {

5 Node(directive, for ((c1, c2) <- children.zip(cs))

6 yield lub(c1, c2))

7 } else {

8 (directive, d) match {

9 case (PartitionWhileComputing(_, _), _) =>

10 Node(directive, children.patch(1, List(p.lub(p, children(1))), 1))

11 case (_, PartitionWhileComputing(_, _)) =>

12 Node(d, cs.patch(1, List(this.lub(this, cs(1))), 1))

13 case _ => Top()

14 }

15 }

16 case Leaf(v) => directive match {

17 case PartitionWhileComputing(_, n) =>

18 Node(directive, children.patch(1, List(p.lub(p, children(1))), 1))

19 case _ => Node(directive, children.map(lub(_, p)))

20 }

21 }

Listing 5.9: The final lub Method in Node

The main differences compared with the simplified version from Listing 5.5 are the additional case
distinctions for incompatible nodes. In case two nodes are joined and one of them contains a Par-

titionWhileComputing directive, instead of just returning Top, the join is computed as described
above. When the argument is a leaf, the method checks whether the current node contains a Parti-

tionWhileComputing directive and then performs the join accordingly.

1I can not think of any other possible directive with the same requirements
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Figure 5.10: The Graphical User Interface

5.5 User Interface

Sample comes with a small graphical user interface (GUI) that greatly simplifies running analyses. This
section describes the main functionality of the user interface. I have made various changes both for
improving usability in general and to be able to quickly generate directives used in the analysis. The
application is written in Java and the interface was mostly created using IntelliJ’s “UI Designer”
plug-in.

5.5.1 Analysis Setup

Figure 5.10 shows a screenshot of the user interface as it is presented after running the application.
The user is asked in À to first specify the compiler to use and to provide a source file to analyze.

The chosen file can be displayed using the“Display”button to the right. The user can then edit a list of
methods that should be analyzed in Á. Subsequently, a list of directives follows in Â. The directives can
either be entered as a String, in which case the Directive companion object tries to parse the input,
or by means of a wizard discussed later in this section. The next step in Ã is to specify what kind of
analysis to run. The choices here depend on the available plug-ins. Furthermore, a heap representation
has to be picked. Once everything is set up, the “Analyze” button Ä initiates the analysis.

5.5.2 Adding Directives

Pressing the “Add” button in the directives section starts the wizard. An example of a wizard helping
to set up a PartitionValue directive is shown in 5.11.
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1

2

Figure 5.11: Adding a Directive

The top section, indicated by À, of the wizard is common to all directives and consists of the choice
of directive and an identifying program point. Choosing the right program point is currently a tedious
task. However, displaying the source inside the user interface using the “Display” button and placing
the cursor at the right location provides the line and column numbers in the lower left corner of the
window.

The rest of the panel, marked by Á, is directive specific. For the PartitionIf directive, no more
parameters have to be specified. For PartitionWhile only the parameter n has to be set. The
screenshot shows the additional parameters for PartitionValue. The variable over which to partition
has to be chosen, here it is x. Furthermore, a list of intervals can be provided.

5.5.3 Running the Analysis

Once the analysis is started, the interface might ask some further parameters before actually running
the analysis. The apron analysis, for example, provides a collection of several abstract domains, one of
which has to be chosen. Furthermore, the property of interest for the analysis has to be selected. Again,
the available choices are specific to the chosen analysis. For instance, the numerical domains provided
by apron all support the already mentioned DivisionByZero property that generates a warning for
every possible division where the divisor can not be guaranteed to be non-zero.

Once these parameters are set, the analysis can be run. Feedback is provided by a progress bar and
some status updates. Once the analysis is terminated, a quick log is displayed to the user containing
all generated output. This usually includes the warnings of the properties (or absence thereof) as well
as some statistics about the analysis, for example, how much time has passed.

A special property supported by most analyses is the ShowGraph property. Unlike other properties
it does not check any property during the analysis. Upon completion, it displays the control flow graph
of the analyzed method. Figure 5.12 shows such a control flow graph. The user can then click on the
nodes to get a representation of the control flow graph execution, displaying the sequence of states of
the block connected by the statements between them.

5.6 Limitations

The current limitations of Sample naturally also apply to the trace partitioning implementation. This
includes that calls to methods without contracts result in a total loss of information. Nonetheless,
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Figure 5.12: The ShowGraph Property

the implementation already includes some facilities to deal with different calling contexts. The Void

token and its corresponding directive PartitionNone, for example, can be used to distinguish between
different stacks in a state. Further information on the usefulness of this special construct can be found
in [11].

Furthermore, the limited availability of numerical types in Sample also limits the PartitionValue

directive. However, the design of the directive has been made with multiple supported types in mind
and the adaption, once more types become available, should not pose a problem.

Generally, the implementation of most directives has been straightforward. I therefore consider
the overall design to be quite flexible and hope it will prove easy to extend further. However, there
are limitations which became apparent when implementing the PartitionWhile directive. Most of
these have already been addressed in the previous section. The directive has an additional flaw which
is unavoidable. While in general, the running time and convergence of the analysis with partitioned
states depends heavily on how the directives and the widening limits are chosen, the PartitionWhile

directive is problematic as soon as non-trivial loops, especially nested ones, are analyzed. This stems
from the nature of the invariants imposed on the leaves. Changing the state of the leaf for While(0)
affects all other leaves. Changing this one leaf invalidates all other leaves and the iteration computing
the loop states has to reach a new fixed point. I speculate that an iteration algorithm aware of the
partitioned states might provide some form of mitigation, though this subject is out of the scope of
this thesis.



Chapter 6

Evaluation

This chapter will present an adaptation of the examples provided in [11] as well as a short evaluation
of the performance impact the trace partitioning has on the static analysis. As previously mentioned,
array accesses are not yet precisely supported in Sample but required for the following examples. One
way to work around this problem is to make pseudo array accesses. Listing 6.1 depicts a normal array
access in Scala.

1 def arrayAccess(): Int = {

2 val index = 1

3 val array = Array(0, 1, 2)

4 array(index)

5 }

Listing 6.1: Normal Array Access

To illustrate what is meant by pseudo array access, Listing 6.2 replicates the same behavior without
having to call any access methods and is therefore analyzable using Sample.

1 def pseudoArrayAccess(): Int = {

2 val index = 1

3 var result = 0

4

5 if (index == 0) result = 0

6 else if (index == 1) result = 1

7 else if (index == 2) result = 2

8 else return 0

9

10 result

11 }

Listing 6.2: Pseudo Array Access

The return 0 statement in line 8 represents the exceptional control flow in case the index is out
of bounds. This will result in an exit state and its execution will not interfere with the rest of the
analysis. Note that, due to the verbose nature of this access, it is shortened in the following examples
wherever logically possible.

Furthermore, since the only numerical type supported by Sample at the moment is Int, the adapted
examples using linear interpolation will not be using floating point numbers as in their original presen-
tation but are limited to integers. However, the principles behind the examples remain the same. Once
Sample supports Float, all that needs to be changed are the type declarations in the guest domain.

47
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① ② ③

PartitionIf((3,13))

sign ↦ [0,0]

If(true)

sign ↦ [0,0]

If(false)

PartitionIf((3,13))

⊥

If(true)

sign ↦ [1,1]

If(false)

PartitionIf((3,13))

sign ↦ [-1,-1] ⊔ ⊥

If(true)

⊥ ⊔ sign ↦ [1,1]

If(false)

Figure 6.1: Key States of the Analysis

Although the guest domain used in this chapter is once more the interval domain, this need not be
the case. It has, however, the advantage that it is a very intuitive domain and can easily be visualized
and understood.

6.1 Partitioning a Conditional

The first example here is also the introductory example that was already used to illustrate the extended
transition system. The method of interest is shown in Listing 6.3

1 def ifExample(x: Int): Int = {

2 var sign = 0

3 if (x < 0) {

4 sign = -1

5 } else {

6 sign = 1

7 }

8 var y = x / sign

9 y

10 }

Listing 6.3: The ifExample Method

The property of interest is whether or not there could be an unsafe division in this method. That is,
is there a division where the divisor could possibly be zero? Intuitively, there is no such division. Proving
so, especially using common numerical abstract domains, turns out to be surprisingly complicated.

The division occurs in line 8 and the divisor is the sign variable. At the beginning of the analysis,
no assumptions about the value of the variable can be made, thus sign is represented by J or, when
using an interval domain, the equivalent [-inf,inf] interval. After simulating line 2, the value of
sign is clearly zero, hence it will be represented by [0,0]. Continuing, the flow of control is split into
the true and false branch of the conditional. At the end of the branches, the value lies in [-1,-1]

and [1,1] respectively. Joining the two branches just before the division leads to the interval [-1,-1]
\ [1,1] = [-1,1]. This interval obviously contains the zero and the analysis generates a warning
when looking at the statement in line 8.

A whole class of commonly used domains, called convex domains, follows along the same line of
reasoning and thus fails to prove this seemingly trivial property. More complex domains can provide a
solution but are usually prohibitively expensive.

Inserting a PartitionIf directive for the condition in line 3 (more precisely at position (3,13))
will distinguish traces following either of the conditional branches. Figure 6.1 illustrates the concrete
key states of the partitioned analysis.

Up to the conditional statement, the analysis starting with a partitioned state in form of a leaf
containing the interval state is completely equivalent to the analysis just described. Once the conditional



6.2 Partitioning over a Variable 49

Figure 6.2: The Piece-Wise Linear Function

is encountered, the directive will take effect and split the leaf into a node with two children. The graph À
illustrates the state after analyzing line 3. The partitioned state is then passed through the branches by
applying the testTrue or testFalse method and subsequently the semantic function of the respective
branch’s single statement. The state at the end of the false branch is depicted in Á. The result from
the true branch looks similar, but with a leaf for the If(true) token containing the interval [-1,-1].
Before inspecting line 8, the two branches are joined. Â shows how the guest states are combined
leaf-wise using the least upper bound. The analysis then successfully proves that the division in line 8

is safe.

6.2 Partitioning over a Variable

The second example here is concerned with the evaluation of the following piecewise linear interpolation
function.

f pxq �

$'&
'%

�1� x if x   �1
�1� x if x ¡ 1
0 otherwise

(6.1)

A plot of the function is given in Figure 6.2. An implementation of this function evaluates the
function as f pxq � ci � mix, with coefficients determined by the interval x lies in. Starting with the
somewhat cumbersome array workaround presented earlier and drastically simplifying it, this method
leads to the code displayed in Listing 6.4.

The point of interest in this example is the value of y at the end of the method. To have a point of
comparison it is once more helpful to quickly step through the analysis using the normal, non-partitioned
interval domain. At the beginning, nothing is known. All values are assumed to have the value of J,
represented by [-inf,inf]. Executing the initial assignments, that is lines 2 to 3, leads to a state
where the value of x is still undefined and that of y, c and m is [0,0]. Since nothing is known about
x, the four consecutive conditionals are not determined and c ends up in the interval [-1,0] while
m is assumed to be somewhere in [-1,1]. This information is utterly useless once line 12 is reached
because x could have any value and the slope could be anything from -1 to 1. The analysis therefore
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1 def valueExample(x: Int): Int = {

2 var y = 0

3 var c = 0

4 var m = 0

5

6 if (x < -1) c = -1

7 if (x > 1) c = -1

8

9 if (x < -1) m = -1

10 if (x > 1) m = 1

11

12 y = c + m*x

13 y

14 }

Listing 6.4: The valueExample Method

concludes that the resulting y must lie in the interval given by [-inf,inf]. Looking at the plot, this
result is disappointing and unnecessarily inaccurate.

Inserting a PartitionValue directive at the beginning of the method and a Merge directive before
returning the result leads to the key states depicted in Figure 6.3. The directive here is applied before the
first assignment and distinguishes the three intervals [-inf,2], [-1,1] and [2,inf] for the variable
x. Note that since the method works with integers, these intervals cover the whole range of possible
values. The initial partitioned state is depicted in À. The leaves simply represent the assumptions made
by the partitioning directive. Continuing with the partitioned state, the analysis gains in precision when
accessing the coefficient arrays as is shown in Á, the state right before the polynomial evaluation. The
state afterwards, depicted in Â, infers that, for x smaller than -1 or greater than 1, y must be positive,
and zero otherwise. Merging the directive results in the leaf depicted in Ã. While merging leads to a
loss of information, it is still possible to infer that y is always greater or equal to zero, which is exactly
the purpose of this analysis.

Note that although the intervals for the directive chosen for this illustration coincide with the
definition intervals of the linear interpolation function, this is not necessary to gain precision in the
analysis. Even a split of x into a positive and negative interval would lead to a better result, though
it would no longer be possible to prove the lower bound of zero (but that of -1).

6.3 Partitioning a Loop

The third example is very similar to the previous one in that it is also concerned with the evaluation of
a piecewise linear function. The function in question is defined as

f pxq �

$'&
'%

x if 0 ¤ x   2
4� x if 2 ¤ x   4
0 otherwise

(6.2)

and plotted in Figure 6.4.
Once more, the linear functions are represented by coefficients ci and mi for four intervals stored

in an array. The main difference to the example before is how the index for accessing the coefficients
is computed. The idea is to store the upper bound of the interval in a special array iv and increase
the index i until iv(i+1) is no longer bigger than x. This array for the function above would then
be Array(0, 2, 4, 6). The regularity of this array was chosen in order to alleviate this presentation
of one more pseudo array access than necessary. The final code evaluating the function is shown in
Listing 6.5.
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① ②
PartitionValue((2,13), context)

x ↦ [-inf,2]

Condition
(-inf <= x && x <= 2)

x ↦ [-1,1]

Condition
(-1 <= x && x <= 1)

x ↦ [2,inf]

Condition
(2 <= x && x <= inf)

PartitionValue((2,13), context)

x ↦ [-inf,2]
c ↦ [-1,-1]
m ↦ [-1,-1]

Condition
(-inf <= x && x <= 2)

x ↦ [-1,1]
c ↦ [0,0]
m ↦ [0,0]

Condition
(-1 <= x && x <= 1)

x ↦ [2,inf]
c ↦ [-1,-1]
m ↦ [1,1]

Condition
(2 <= x && x <= inf)

③
④

PartitionValue((2,13), context)

x ↦ [-inf,2]
c ↦ [-1,-1]
m ↦ [-1,-1]
y ↦ [0,inf]

Condition
(-inf <= x && x <= 2)

x ↦ [-1,1]
c ↦ [0,0]
m ↦ [0,0]
y ↦ [0,0]

Condition
(-1 <= x && x <= 1)

x ↦ [2,inf]
c ↦ [-1,-1]
m ↦ [1,1]
y ↦ [0,inf]

Condition
(2 <= x && x <= inf)

x ↦ [-inf,inf]
c ↦ [-1,0]
m ↦ [-1,1]
y ↦ [0,inf]

Figure 6.3: Analysis with a PartitionValue Directive

Without a partitioned state, the analysis has very limited power. As always, starting with J for all
variables and analyzing the initializing statements x has the value [-inf,inf] and all other [0,0].
The while loop only affects the i variable and knowing that the loop is executed at most three times,
the analysis will conclude that i must be in the interval [0,3]. Unfortunately, this leads to all
possible combinations for the pseudo array accesses and finally the conclusion that y can have any
value whatsoever.

Partitioning over the value of x does not improve the analysis. Consider the leaf for the token
Condition(2 <= x && x <= 3). The state will be analyzed every time the fixed point iteration
iterates through the loop. The first time i is determined to be in the interval [1,1]. The second
iteration will then join that result with the newly determined interval [2,2] and hence result in [1,2].
The last iteration will add 3 to the interval and combined with the state skipping the loop altogether
the resulting state will map i to [0,3], which is exactly what happened without a partitioning.

The sensible thing to do is therefore to partition over the different executions of the loop statement.
Knowing that the array index can have at most four values, distinguishing the traces leading to those
four values is a good choice. The state À in Figure 6.5 shows a simplified version of the state after the
loop has been analyzed. The fact that the loop is never executed more than three times is reflected in
the state for the token While(inf) where it leads to a contradiction. Before evaluating the polynomial,
the pseudo array accesses determining the values of c and m are executed and lead to state Á. So far,
the value of x has been neglected in this analysis. It is determined by what the underlying domain
can conclude from assuming the loop condition. For this example it is i < (x+2)/2, which is merely
enough to prove that in the end after merging the directive y will always be greater than -4. Even
with this imprecision caused by the array workaround, the result is a serious improvement over the
non-partitioned analysis.

6.4 Performance

It is inherently difficult to make any qualitative statements about the performance of the trace par-
titioning implementation. The convergence of the fixed point iteration is highly dependent on the
inserted directives and the chosen widening limits set for the fixed point iteration as well as for the
trace partitioning mechanism.
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Figure 6.4: The Piece-Wise Linear Function

①

PartitionWhile((7,16), 3)

⊥

While(inf)

i ↦ 0

While(0)

i ↦ 1

While(1)

i ↦ 2

While(2)

i ↦ 3

While(3)

②

PartitionWhile((7,16), 3)

⊥

While(inf)

i ↦ 0
c ↦ 0
m ↦ 0

While(0)

i ↦ 1
c ↦ 0
m ↦ 1

While(1)

i ↦ 2
c ↦ 4
m ↦ -1

While(2)

i ↦ 3
c ↦ 0
m ↦ 0

While(3)

Figure 6.5: Analysis with a PartitionWhile Directive
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1 def whileExample(x: Int): Int = {

2 var y = 0

3 var m = 0

4 var c = 0

5 var i = 0

6

7 while (i < (x+2)/2 && i < 3) {

8 i = i + 1

9 }

10

11 if (i == 0) { c = 0; m = 0 }

12 else if (i == 1) { c = 0; m = 1 }

13 else if (i == 2) { c = 4; m = -1 }

14 else if (i == 3) { c = 0; m = 0 }

15 else return 0

16

17 y = c + m*x

18 y

19 }

Listing 6.5: The whileExample Method

Ignoring the widening limits, having no directives and performing the analysis with an initial parti-
tioned state in form of a leaf simply adds the constant cost of redirecting the calls to the state interface
to the enclosed guest state. On the other hand, having a PartitionIf directive inside a loop without
a corresponding Merge directive leads to an exponential blow-up.

Further complications in estimating the running time stem from the fact that a significant gain in
precision can also lead to a significantly faster convergence as was observed by Mauborgne and Rival.
Again, this heavily depends on the chosen directives, a problem that is further addressed in Section
7.1.

Using a large body of methods to analyze and some heuristics to automatically generate directives
would permit a more useful analysis. Unfortunately, two requirements for this to be feasible are not
yet fulfilled. For one, Sample is not yet ready to deal with real world code making analysis of a large
body of code difficult (cf. Section 5.6). Moreover, the trace partitioning implementation still depends
on manually generated directives and is therefore unable to act unsupervised, limiting its applicability
to bigger code.

Mauborgne and Rival evaluated their implementation on large projects containing up to 400’000
lines of code using heuristically inserted directives. Their results show a great increase in precision, and
a significant decrease of iterations used in some but not all of the analyses.
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Chapter 7

Future Work and Conclusion

To conclude, this chapter addresses some of the remaining questions still left open in Section 7.1.
Based on the these issues, Section 7.2 proposes possible extensions. Finally, Section 7.3 concludes this
report with some final remarks.

7.1 Open Questions

While the implementation provides a solid framework, the bigger picture has so far been neglected.
This section tries to address some of the issues that come up when thinking about the future of Sample
in the context of the trace partitioning extension.

7.1.1 Creating Directives

It is unclear how directives should be generated. The user interface that is currently part of the Sample
project provides a convenient way of specifying directives for the analysis of small methods but this
approach is impractical for larger projects.

The companion object for the Directive class contains a parser that recognizes the directives
presented in this report. A modified compiler/preprocessor might take advantage of this facility to
generate directives from annotations in the code. While annotations are certainly easier to handle than
using a user interface, this simply shifts the problem of generating directives to an earlier phase. I
personally do not think that the manual generation of annotations has a future. As if having to write
annotations was not bad enough, the dynamic nature of trace partitioning does not even guarantee
that the directive is actually followed during the analysis. For the programmer unfamiliar with the inner
workings of Sample this means nothing less than having to deal with additional code clutter whose
benefits are highly uncertain at best. Considering how badly annotation mechanisms, even those with
clear benefits, are received, it is unlikely that this would ever be adopted in a broader community. If
the goal is to make the static analysis accessible to non-specialized personnel the process has to be at
least partially automated.

A possible remedy for this problem are heuristics that generate the directives automatically. Rival
and Mauborgne propose a few example strategies such as always partitioning the outermost conditional
or unrolling the outermost loop to some fixed degree. These two example heuristics are, however, fairly
obvious. To come up with a heuristic that automatically inserts a PartitionValue is a lot more
complicated. For types with limited possible values, that is Boolean or Enum, it might make sense to
just partition into every possible value. For a standard Integer this is already prohibitively expensive
and makes nesting of directives practically impossible. A slightly more useful strategy would split
integers into a negative, positive and zero range. The special handling of the zero might make sense,
but other than that it is hard to come up with any convincing reason as to why the analysis should
automatically generate such an arbitrary directive.

55
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7.1.2 Integrating Directives

The presented implementation is extensible and coming up with and implementing new directives is
not difficult (see Section 7.2). A further challenge will therefore be how to account for this fact,
making integration of new directives easy. The design of such a mechanism would, however, be largely
dependent on the kind general interface, if any, Sample will provide in the future.

7.2 Possible Extensions

Trace partitioning opens up a wide field for possible future extensions. Some of them directly resolve
problems presented in the previous section, others build upon the new trace partition implementation.

7.2.1 Heuristics

As described before, heuristics generating directives should be a priority for the future development.
The big problem with heuristics is that they are directive specific. Their usefulness might vary among
different kinds of software and it is furthermore unclear how different directives influence each other.
All these complexities, and of course the complexity of the nature of a heuristic itself, make empirical
research inevitable. This in turn will make the development of heuristics both time intensive and
probably error prone as well.

7.2.2 New Directives

A further extension would be to provide more directives. The framework is fairly flexible and generating
a new directive is as simple as creating a subclass of Directive. The more constricted Partition-

Condition also provides a very flexible mechanism to generate new directives. Recall, this directive
splits the current state into leaves where each leaf represents an assumption taken from a list of
assumptions. These assumptions are provided in form of Expression objects representing arbitrary
arithmetic, boolean and, newly introduced at the time of this writing, reference expressions and their
negations.

One possible application outside the domain of trace partitioning could be as simple as ensuring
the precondition of a method before its analysis with a single expression. Taking this thought further,
negating this precondition could also be used to check whether it is actually a necessary requirement.

7.2.3 Domain Specific Directives

The new directives presented so far solely rely on the abstract state interface which is extremely general.
Though quite extensive, the Expression interface might not be specific enough to represent certain
properties of interest. It limits the kind of partitions to numerical, boolean and reference statements.
A possible extension could be to look into directives that are specific to the underlying guest domain.

Having a generic abstract state necessarily includes a heap analysis. This could, for example, be
used to distinguish traces where some reference is certain to be null and traces where it is not. A
similar partitioning on the heap domain could discriminate traces where two variables are certainly
aliases of each other and traces where that is guaranteed not to be the case.

Considering the diversity of abstract interpretation, the possibilities using this kind of extension
seem almost infinite.

7.3 Conclusion

Overall, I am content with the quality of the implementation and documentation this project has
produced. There are, however, still a few shortcomings that I would like to address in this section.
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7.3.1 Shortcomings

As I have already pointed out, the concrete implementation of the PartitionWhile directive does
not strike me as conceptually beautiful. Since beauty lies in the eye of the beholder and considering
the ridiculous standards most programmers have when it comes to elegance of code, it is a reasonable
compromise.

Furthermore, the testing suite for the extension is not quite as extensive as I would like it to be.
This strikes me as important since especially the basic operations of the partitioned state are already
quite complex and hence an implementation is prone to errors. At the time of this writing the project
is still ongoing and more time for testing is definitely allocated. Moreover, the continuous use of the
project has improved my overall confidence in the correctness of the implementation. Of course, usage
is no substitute for proper testing.

7.3.2 Experience

Looking back, I have collected valuable experiences during this project. The subject has proven to be,
especially in the beginning, fairly challenging. The occasional frustration from having to understand
complicated, formal mathematical descriptions was usually compensated with a better understanding
of what is even after six months still an interesting topic.

The design and implementation gave me a chance to contribute to a bigger project written in a
language I was only somewhat familiar with. While demanding, the experience has been rewarding
both in terms of learning to work my way through a large code base and at the same time learning a
new language.

7.3.3 Contribution

The main contribution of this thesis is arguably more the groundwork for than the actual exploration
of new frontiers. However, it is my sincere hope that this report, apart from documenting my project,
provides an easy and accessible introduction to the topic of trace partitioning. Furthermore, I hope
that the implementation will provide the basis for future research. New subjects to explore are certainly
not hard to find.
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