
Design Patterns in Peer-to-Peer Systems

A Pattern Language for Overlay
Networks

Semester Project, SS05
Department of Computer Science

ETH Zurich

Dominik Grolimund

Supervisor:

Prof. Peter Müller

Abstract

Developing peer-to-peer systems is a big challenge, because they typically op-
erate in large-scale, highly unreliable and insecure environments and involve the
collaboration of many nodes (i.e. computers) in the network. In recent times,
a lot of efforts have been devoted to the system design of peer-to-peer systems,
resulting in new structured overlay networks. These overlay networks perform the
routing task needed to localize items in the network efficiently even in the presence
of node failures and attacks. However, to tackle the full complexity of practical
peer-to-peer systems, also good software design needs to be applied. Yet, lots
of peer-to-peer systems are developed in an ad-hoc manner, and little has been
written about their software architecture. In this semester project, I have tried to
analyze the software design of overlay networks, the common abstraction of most
peer-to-peer systems. Design patterns have been very successful in documenting
proven and reusable solutions; consequently, I have tried to discover design pat-
terns for overlay networks by investigating different academic and open source
projects, and applying and improving them on a real-world system. This paper
presents the result of this work: a pattern language for overlay networks, consist-
ing of a number of patterns and their relationships, trying to cover most aspects
of overlay networks. For that reason, most patterns are also not new, but are
simply adaptations of well-known patterns to the specific requirements of overlay
networks. The remaining patterns can be regarded as suggested proto-patterns.

Acknowledgments

In autumn 2004, I became interested in design patterns for peer-to-peer systems,
because I was about to develop a peer-to-peer application at ETH Zurich. Since I
still had to do my semester project in my minor, software engineering, I thought
this would be a perfect opportunity to investigate this topic in more detail. Unfor-
tunately, I could not find a professor working on software design at ETH Zurich.

Therefore, I was looking for an expert in design patterns from other universities
and found Prof. Doug Lea from the State University of New York at Oswego. I
sent him an e-mail and asked whether he would be willing to support this project.
Within a couple of hours, I received a reply saying ’OK. Sounds like it could be
fun’. I was very happy about that and am very thankful for his support.

In order to do this work as my semester project, I also needed a professor at
ETH Zurich as my supervisor. I asked Prof. Peter Müller, who is an expert in
formal specification and verification techniques in object-oriented software systems,
and in software engineering in general, whether he would supervise this project.
Even though this topic is not part of his research, he agreed immediately. I am
very grateful to him for giving me this opportunity, and for supporting me during
my work.

1

Contents

1 Introduction 4

2 Overview 7
2.1 Peer-to-Peer Systems . 7
2.2 Overlay Networks . 8
2.3 Patterns . 8
2.4 Pattern Languages . 9

3 Related Work 10

4 Method 13

5 Design Issues 15

6 Pattern Language 20
6.1 Pattern Form . 20
6.2 Overview . 22
6.3 Summaries . 24

7 Patterns 29
7.1 Application Interaction . 29

7.1.1 Overlay Facade . 29
7.1.2 Application Delivery . 33
7.1.3 Application Notification . 37
7.1.4 Extended Overlay Facade 41
7.1.5 Abstract Address Handle . 45

7.2 Messages . 49
7.2.1 Message Factory . 49
7.2.2 Envelope Wrapper . 53
7.2.3 Basic Message . 55
7.2.4 Control Message . 58
7.2.5 Routed Message . 60

2

7.2.6 Specialized Message Type 63
7.2.7 Source Sink Marker . 68

7.3 Message Handling . 72
7.3.1 Message Dispatcher . 73
7.3.2 Message Handler . 77
7.3.3 Autonomous Message . 80
7.3.4 Message Verifier . 85

7.4 Routing . 91
7.4.1 Router . 91

7.5 Local Node . 99
7.5.1 Local Node . 99
7.5.2 Local Node For Each Type 102

7.6 Protocol . 105
7.6.1 Self Maintenance . 106
7.6.2 Separate Protocol . 111

7.7 Remote Nodes . 114
7.7.1 Node Handle . 114
7.7.2 Typed Node Handle . 117
7.7.3 Node Handle Proxy . 120

7.8 Network Interaction . 123
7.8.1 Network Gateway . 123
7.8.2 Network Stub . 127
7.8.3 Traffic Monitor . 129

8 Example 133

9 Conclusions 135

Bibliography 137

3

1 Introduction

In recent times, peer-to-peer systems have gained a lot of popularity due to file
sharing applications such as Napster, Gnutella, eDonkey, Kazaa, and others. Ba-
sically, peer-to-peer refers to a decentralized architecture in which all nodes (i.e.
computers) have identical capabilities and responsibilities and all communication
is potentially symmetric. Peer-to-peer systems have the unique advantage of be-
ing able to harness idle resources (computation cycles, bandwidth, and storage)
of participating computers at the edge of the Internet. This implies that they
typically work in a large-scale, highly unreliable and insecure environment.

Developing such a system is a big challenge. While early peer-to-peer applica-
tions have been developed rather experimentally, they have attracted a great deal
of attention from computer science research ever since, resulting in a number of
ongoing projects at leading universities around the world. Most of this research
activity has been focused on the routing problem: Given a key, find the node that
is responsible for that key. This has led to new structured overlay networks (e.g.
Chord [1], Pastry [2], Tapestry [3], Kademlia [4], CAN [5]), which solve this task
efficiently. Other research projects are dealing with security and stability issues in
the presence of attacks and node failures.

Altogether, almost all research efforts have been devoted to system design so
far. However, a system exposed to such an environment also needs to be well
designed from a software engineering point of view. Yet, lots of existing peer-to-
peer applications are developed in an ad-hoc manner, and little has been written
about their software architecture. Part of this is probably because good design
solutions for traditional distributed systems (client/server) have been around for
a long time (e.g. [6]), and lots of them can be adapted for peer-to-peer systems as
well. On the other hand, peer-to-peer systems exhibit a number of characteristics
that are very different from centralized, asymmetric distributed systems, which
must have a manifestation in the software design as well. This observation is also
supported by peer-to-peer framework initiatives, such as Sun’s JXTA [7], that are
building a higher abstraction around the core problems of peer-to-peer systems.

Although frameworks can be applied to implement a variety of different sys-
tems, it is sometimes questioned whether they are suitable for highly specialized

4

applications [8]. For that reason, large-scale overlay networks are often devel-
oped from scratch. What is needed to improve the software design of peer-to-peer
systems in general, are smaller-scale architectural elements which represent good
solutions in specific contexts. This is the abstraction level of design patterns, which
have proven very successful in documenting solutions in a number of domains.

In this semester project, I am trying to find proven design solutions for re-
curring problems in peer-to-peer systems. Consequently, I have tried to identify
design patterns. Because patterns are rooted in practice, I have investigated differ-
ent academic and open-source projects, as well as tried to implement and improve
found design patterns on a real-world project. This paper presents the results
of this work: a pattern language for peer-to-peer systems, describing a number
of patterns that reoccur in different projects and have led to a favorable design.
It focuses on the common abstraction of most peer-to-peer systems, the overlay
network layer, which is responsible for implementing the routing algorithm. Be-
cause it is trying to solve design issues for most aspects of overlay networks, most
patterns are also not new, but either represent a standard object-oriented design
solution, a well-known, existing pattern, or an adpatation of a well-known pattern
to the specific needs of overlay networks. The remaining patterns can be regarded
as suggested proto-patterns (potential pattern candidates, see for instance [9]),
which are a generalization of ideas that have led to a favorable design in some
overlay networks.

The contributions of this paper and the pattern language are therefore twofold:
First, it tries to capture the expertise and best practice of software designers and
peer-to-peer programmers, and collects this knowledge in a pattern language for
most aspects of overlay networks. Second, it presents a number of suggested proto-
patterns, which have not yet been documented, but belong to the fundemantal
building blocks of overlay networks.

The primary target audience of this paper is programmers and software design-
ers of peer-to-peer systems. The experienced programmer of peer-to-peer applica-
tions will probably find that most patterns are familiar to him. For him, the values
of a pattern language are that these design solutions are generalized and collected,
so that they can help communicate design ideas to others. For someone new to
peer-to-peer systems, it should be a helpful guide when designing the application.
The paper might also be interesting to software designers and programmers from
other domains, who are curious to have a look at the software architecture of peer-
to-peer applications. Finally, I also hope to find pattern enthusiasts reading this
paper and giving me critical feedback on the patterns.

The rest of this paper is structured as follows. Section 2 gives a brief overview
over peer-to-peer systems, overlay networks, patterns and pattern languages. It
can be freely skipped by a reader who is familiar with these topics. In section 3,

5

the related work by others is outlined, and in section 4, I describe the method I
have used to find the patterns. Section 5 analyzes the design issues involved in
the software design of an overlay network. The main part of this paper is given in
sections 6 and 7, which explain the pattern language and the patterns for overlay
networks. Section 6 gives an overview over the pattern language, and section 7
describes each pattern in detail. In section 8, I show how the different patterns
can be combined together to a skeleton of an actual overlay network. Finally, in
section 9, I conclude by analyzing briefly which design issues have been solved by
the pattern language, and the future work that remains to be done.

6

2 Overview

This section gives an overview over the different topics that make up this work.
However, they are not treated in detail, and the familiar reader can freely skip
them. Section 2.1 gives a short introduction into peer-to-peer systems, and section
2.2 goes on to describe the common core of most peer-to-peer systems, the overlay
network. In section 2.3, I give a short overview and definition of patterns. Finally,
section 2.4 explains how collections of patterns are combined in a pattern language.

2.1 Peer-to-Peer Systems

Clay Shirky defines peer-to-peer as follows [10]. ’Peer-to-peer is a class of applica-
tions that takes advantage of resources – storage, cycles, content, human presence
– available at the edges of the Internet. Because accessing these decentralized
resources means operating in an environment of unstable connectivity and unpre-
dictable IP addresses, peer-to-peer nodes must operate outside the DNS system
and have significant or total autonomy from central servers.’

This definition illustrates peer-to-peer systems as an application-level Internet
on top of the Internet. From a bird’s eye view, a peer-to-peer system simply
consists of lots of nodes that are communicating together, both as clients and
servers, in terms of requesting and sending data. Of course, this concept is not
new, and big parts of the Internet infrastructure itself are peer-to-peer as well.
What is new is the fact that the nodes in the system are at the edge of the Internet
and thus unreliable personal computers, which can be turned on and off at any
time. Peer-to-peer systems therefore need to cope with these inherent dynamics.
It also implies that they are very exposed to attacks and failures, because they
operate in an open and insecure environment. Moreover, the scale of peer-to-peer
systems can be extremely large, incorporating millions of nodes.

Peer-to-peer applications have been built for different purposes. An obvious
application is file sharing, which has stirred quite a lot of controversy in the last
years. Other applications enable communication and collaboration (e.g. Skype
[11], Jabber [12]) in a peer-to-peer manner. Although their purpose is different,
they all share the need to localize items in the network (e.g. fragments, files,

7

users). Napster, one of the first file sharing applications, used a simple approach;
localization was not decentralized, but provided by a central server. Unfortunately,
such a simple approach is not scalable. Early systems that followed Napster, such
as Gnutella [13], tried to overcome this scalability problem by using a decentralized
approach; a query was simply flooded through the system. A single query therefore
resulted in lots of messages and was also not efficient in terms of the necessary
search steps [14]. To improve the routing efficiency, computer science research has
come up with structured overlay networks, which are explained in the next section.
For a deeper introduction into peer-to-peer systems, see for instance [15], [16], [17].

2.2 Overlay Networks

Structured overlay networks, such as Chord [1], Pastry [2], Tapestry [3], Kademlia
[4], or CAN [5], are responsible for implementing an efficient routing algorithm.
The nodes in the system are structured in order to decrease the search steps
necessary to find the target identifier. Each node maintains a local routing table,
which holds the identifiers of other nodes in the system. When a query message
arrives, the node forwards the message to the one from its local routing table,
which is closest (using an appropriate metric) to the specified target identifier.
The routing complexity is typically O(log n), where n is the number of nodes in
the system, while each node is maintaining O(log n) nodes in its routing table.

2.3 Patterns

Patterns are a way of ’documenting experience by capturing successful solutions
to recurring problems’ [18]. Therefore, they are best suited for the goal of this
work, describing proven solutions for design problems in peer-to-peer systems.

Although patterns are well-known in software engineering, especially due to
the success of the book ’Design Patterns’ by the ’Gang Of Four’ [19], they have
successfully been applied to other domains as well, including patterns for organiza-
tions, processes, pedagogics, analysis, customer interaction, and many more [20].
In fact, the concept of patterns found its way into software engineering originally
from architecture, when Christopher Alexander was studying ways to improve the
process of designing buildings and urban areas, describing solutions as a set of
patterns.

In his books ([21], [22]), Christopher Alexander defines patterns as follows.
’Each pattern describes a problem which occurs over and over again in our envi-
ronment, and then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the

8

same way twice’. The Hillside Group [20], which organizes pattern workshops for
pattern writers around the world, gives the following definition. ‘Each pattern is
a three-part rule, which expresses a relation between a certain context, a certain
system of forces which occurs repeatedly in that context, and a certain software
configuration which allows these forces to resolve themselves’.

2.4 Pattern Languages

Patterns rarely stand in isolation, but come in collections with rules to combine
them. Christopher Alexander coined the term ’pattern language’ to refer to such
a collection of patterns. Unlike a mere pattern compilation or catalog, a pattern
language includes rules and guidelines which explain how and when to apply its
patterns to solve a problem which is larger than any individual pattern can solve
[23]. Pattern languages organize the expertise of a domain and create a common
vocabulary, which helps communicate software design.

9

3 Related Work

So far, little has been written about the software design of peer-to-peer systems.
To the best of my knowledge, no patterns for peer-to-peer systems have been
documented yet. The goal of this work is to identify patterns for overlay networks,
the common abstraction of most peer-to-peer systems. In this section, however, I
want to outline the related work in a broader perspective.

The closest related work I could find was the investigation of patterns in peer-
to-peer systems of a focus group at EuroPlop 2002 [24], the European patterns
workshop organized by the Hillside Group. A focus group is a discussion session,
in which problems and possible patterns of a domain are discussed. In their pa-
per [25], which describes the result of the discussion brain storming, they outline
different characteristics of peer-to-peer systems and possible problems from a very
broad perspective. They concluded that new patterns might be discovered, but
that most issues could be solved with well-known patterns from distributed sys-
tems. It never resulted in an actual work on that topic or in a documentation of
patterns so far.

When writing this paper, I found that EuroPlop 2005 was taking up on this.
They organized another focus group on the topic of peer-to-peer systems. So far,
the results of this group session have not been published. However, from their goal
description [26], I assume that the scope is still much broader than I take in here,
where I focus only on overlay networks. Therefore, I am very interested in seeing
those results and hope that they can complement the patterns presented in here
to cover a wider area of problems in peer-to-peer systems.

In February 2005, after the task description of this semester project was online,
I received an e-mail from a German student who was writing his Master thesis on
a very similar topic. Unfortunately, I have not yet received his thesis paper and
could not find it on the Internet either.

Related to the architecture of peer-to-peer systems is also the effort by different
research groups to agree on a common application programming interface (API)
for overlay networks. In their paper [27], they also indicate that overlay networks
are the key component of most peer-to-peer systems and show how different ap-
plications can be built on top, including examples such as distributed hash tables,

10

decentralized object location and routing, and group anycast / multicast. On top
of these higher level abstractions, actual applications such as CFS [28], PAST [29],
Scribe [30], and OceanStore [31] can be developed. In their paper, the overlay
network as defined in here is referred to as the key-based routing layer.

In [32], a socket-based approach for programming applications build on top of
overlay networks has been proposed, which has been successfully used for imple-
menting HyperCast [33]. The overlay socket API describes how applications can
interact with different overlay network protocols, and how different transport pro-
tocols can be used. Compared to this work, the focus is more on this interaction,
rather than on the design of the overlay network itself.

The biggest effort in building a higher abstraction around the core problems
of peer-to-peer systems is probably project JXTA [7], a set of open protocols that
allow any device to communicate and collaborate in a peer-to-peer manner. JXTA
is a specification of a peer-to-peer infrastructure layer on top of the network layer,
and is therefore closely related to the notion of an overlay network. However, the
scope and tasks of this layer in JXTA are much broader than typically found in
overlay networks, including entities such as groups, advertisements, services, and
the like.

To build a fully functional peer-to-peer system, one does not only need to
implement the overlay network of course. Therefore, other problems will appear
throughout the whole design. However, good design solutions for problems at
the application level are well-known, and are probably not specific to peer-to-peer
applications. On the other hand, a rich set of patterns from distributed systems in
general are available for problems arising at the network layer. I want to conclude
this section with a (incomprehensive) list of such problems together with some
references on where solutions can be found.

• Concurrency: Concurrency is an inherent issue in any distributed system.
In peer-to-peer systems, many blocking operations are involved, so that they
benefit from concurrency even on a single processor machine. This topic
has been researched in detail. ’Design Principles for Concurrent Systems’ by
Doug Lea [34] describes a number of best practices and design patterns for
concurrent systems. Additionally, a lot of the patterns in ’Pattern-Oriented
Software Architecture II’ [6] provide solutions for designing scalable concur-
rent distributed systems.

• Messaging: Nodes in peer-to-peer systems communicate by exchanging
messages. Consequently, they face similar problems as all applications based
on messages. Messaging, as it is often referred to, has been investigated
extensively in the light of enterprise application integration. Several books
exist on that topic. One with a special treatment on design issues and solu-

11

tions, taking a pattern approach, is the recently published book ’Enterprise
Integration Patterns’ [35].

• Asynchronous operations: Sending messages is inherently asynchronous,
which results in a number of design problems when offering these services
to an application. Again, this issue is present in all distributed systems, so
that this topic has been researched in detail as well. In overlay networks,
asynchronous operations turned out to be no design problem, because it still
operates at the level of messages. At the application level, or the thin layer
of distributed hash tables, these issues become more relevant, because they
build a higher abstraction further away from the notion of messages. Good
design patterns for asynchronous systems can be found in ’Pattern-Oriented
Software Architecture II’ [6].

• Security: This is an issue present in all distributed systems as well, because
they are more open than other software systems. Peer-to-peer systems are
especially exposed. However, most of these issues are rather a matter of
system design, not software design.

• General Design Patterns: At the application level, but also throughout
the software design, general design problems will arise which are not specific
to the domain. The most famous book on general design patterns is ’Design
Patterns’ by the ’Gang of Four’ [19], and lots of tutorials and learning guides
exist on the patterns presented in that book. To name just two websites on
design patterns: the ’Portland Pattern Repository’ [36] by Ward Cunning-
ham provides a huge resource, and the website of the HillSide Group [20] is
a good starting point to explore the vast area of patterns.

• Application Architecture: When building a large application, design
problems will show up at the architectural level. Even though it focuses
on enterprise applications, the book ’Patterns for Enterprise Application Ar-
chitectures’ by Martin Fowler [37] is an invaluable reference for any large,
structured and layered software architecture.

12

4 Method

The term ’pattern mining’ is often used to describe the process of looking for
patterns to document [18], [38]. It typically involves examining lots of source code
and distilling out the core elements that have led to a good design. This indicates
that patterns are rooted in practice, which was also the way I came to do this
work.

In autumn 2004, I started work on a distributed hash table at ETH Zurich
[39], which includes a new overlay network as well. After the system design and
simulations have been done, the software had to be designed and implemented.
I reasoned about the core problems that would occur in the design and did a
literature research, trying to find design solutions for peer-to-peer systems. Un-
fortunately, I could not find a lot on this topic. However, the closely related field
of distributed systems has a rich set of design patterns (e.g. [6]), and some of
them could be applied in this system as well. However, yet other issues at the
conceptual level of the overlay network remained unsolved by known patterns.

After implementing the overlay network, I knew the core problems and was
curious to see how others solved them. I was very motivated to do this investigation
in more detail, trying to find generalized design solutions that could help others
with the same problem. I organized the source code of different open source and
academic peer-to-peer projects. Lots of them turned out to be implemented in
an ad-hoc manner, so that no general design solutions could be found. Others,
however, were trying to model the overlay network to solve the core problems in
the best way. Finally, I investigated a number of projects written in Java, including
FreePastry [40], Tapestry [41], Bamboo [42] (based on Tapestry), P-Grid [43], a
Viceroy implementation [44], JXTA [7], LimeWire [45], jMule [46], Dijjer [47],
OogP2P [48], GISP [49], Azureus [50], JTorrent [51], and Meteor [52]. Other
interesting projects that I knew about were either not open source, or written in
C (e.g. Chord [53]), which did not yield much hope of good design solutions at
the object level.

Because of my experience in developing a distributed hash table (including the
underlying overlay network), I focused more on very similar projects, rather than
other projects, for example about communication or grid computation. Therefore,

13

the projects I have investigated are more data-centric than for instance a chat
application, which needs to localize users instead of data fragments. It is likely
that different problems appear in these applications, even though I believe that
the overlay network will still remain quite similar. This belief is also based on the
fact that Pastry [2], a structured overlay network, has been successfully used for
different applications, including PAST [29], a distributed archival storage system,
Scribe [30], a group communication system, and at least four other applications as
well [54]. Another strong indication that this assumption is correct are the efforts
made by different research groups to agree on a common application programming
interface (API) for overlay networks [27].

Whenever I found the slightest hint of a pattern, I iterated back and forth be-
tween examining that source code and implementing it, so that I could immediately
see if the solution was beneficial in a different context as well.

Of all projects, the most efforts have probably been put into project JXTA, the
peer-to-peer framework initiated by Sun. As a framework, it needs to be flexible
to allow any kind of application to be built on top of it. Because of this generic
approach, JXTA’s architecture is much more complex than the highly specific
overlay networks developed by other research groups. It deals with entities such
as advertisements, groups, and services, which are not present in other projects.
For this reason, I have not investigated JXTA in detail. However, it would be
very interesting to ’mine’ JXTA for design patterns for a wider set of problems of
peer-to-peer systems.

Real world projects face some additional problems that lots of research projects
do not take into account. Even though in theory peer-to-peer systems are totally
symmetric, in reality one will soon need to define different roles for the nodes.
This is because the different computers connected to the network are completely
heterogeneous, so that it is not possible to treat them identical. One example
is problems with firewalls and network address translators (NAT), which make
it sometimes impossible to send unsolicited messages to a node. Therefore, such
computers cannot participate in the routing process. However, this is not the only
reason to define different roles. Another example are computers with much more
resources at their disposal (e.g. bandwidth, storage), so that they can be assigned
with additional tasks to improve overall efficiency. Whereas these problems are
rarely taken into account in research projects, they are often solved in open source
projects, so that I had a closer look at them as well.

Altogether, I only present patterns which I also tried to apply, so that I prop-
erly understood the design problem, the trade-offs (often called forces), and the
solution.

14

5 Design Issues

The advantages of peer-to-peer systems come at the price of higher algorithmic
complexity. To tackle part of this complexity, good design solutions need to be
applied. In this section, I will have a look at possible design issues when developing
a peer-to-peer application. When talking about design, it is important to note that
I am referring to software design (e.g. the level of classes and their relationships),
as opposed to system design (e.g. routing algorithm, load balancing, and fairness).

In this paper, I am focusing on the overlay network, the common abstraction
of most peer-to-peer systems. The overlay network is responsible for implementing
the routing algorithm, which is the only function it offers to an application built
on top. It uses the underlying network layer to send and receive messages over the
network. The software architecture of a peer-to-peer application typically looks as
follows.

Network Layer

Overlay Layer

Application Layer

route(key, message)

send(ip, message)

Chord, Pastry, Tapestry,
CAN, Kademlia, etc.

Scribe, eMule, etc.

As depicted, different kinds of applications can be built on top of the overlay
network layer, such as file sharing applications (e.g. [55]), collaboration applica-
tions (e.g. [11], [12]), or distributed file systems (e.g. [28], [29], [31]). Distributed
file systems, however, are usually not directly built on top of the overlay network
layer, but on top of a distributed hash table (e.g. [42], [53], [56], [57]), which pro-
vides a higher abstraction in that it offers operations such as put and get to store

15

and retrieve data fragments in the network. In the literature, distributed hash ta-
bles and overlay networks are sometimes used interchangeably, because the major
part of distributed hash tables are overlay networks, which are used to localize the
fragments in the network. However, in this paper, I make a sharper distinction
between those two terms, and regard distributed hash tables as a thin layer on top
of the overlay network, as shown in the following figure.

Network Layer

Overlay Layer

DHT

route(key, message)

send(ip, message)

Chord, Pastry, Tapestry,
CAN, etc.

DHash, Bamboo,
OpenDHT, Bunshin, etc.

Application Layer CFS, PAST,
OceanStore, etc.

put(key, fragment)
get(key): fragment

Whether the peer-to-peer system is ’pure’ in a sense that there is no central
server involved at all, or if some aspects are still based on a central authority,
does not matter from this point of view. All that is assumed is that the routing
algorithm is implemented decentralized (as opposed for instance to the server-
based approach in Napster). Authentication, for instance, might still be done
using a central server, but those parameters are either not important for the overlay
network, or simply fed in on initialization.

Following is a list of possible design problems that might occur in the overlay
network. This list is not comprehensive and additional issues will arise in specific
contexts. The patterns presented in this paper are trying to solve some of these
problems.

• Interaction with the application: The application built on top of the
overlay network uses it to route messages to specified keys (e.g. a query
message to find a certain item in the network). How can the overlay network
layer be completely encapsulated, so that it is not dependent on the applica-
tion and can be used for different kinds of applications? How will the overlay
network be accessed? When a message arrives at its target node, it needs
to be delivered up to the application. How does the overlay network pass
messages to the application? How does it notify the application of impor-
tant events, such as for instance when it routes a message further to the next

16

node on the routing path? Some of these problems are known from other
distributed systems, or even software systems in general, in which case the
solutions simply need to be adapted to the requirements of overlay networks.

• Routing: Query messages need to be routed towards their target. On their
way, they pass a lot of intermediate nodes. How are intermediate nodes
processing the message? How does the message dispatching mechanism inter-
act with the routing algorithm? Which objects are taking part in the routing
process? How is the routing algorithm implemented, and how does it inter-
act with the routing table and other local information available? Sometimes,
not only messages sent by the application need to be routed, but others as
well (e.g. join messages). How can different messages be made routable?

• Direct messages: Not all messages need to be routed, but some are sent
directly to other nodes to maintain the routing topology (e.g. ’alive’ mes-
sages). However, not only the overlay protocol needs to send direct messages,
but also the application built on top. This is the case once an item has been
found, and direct communication can take place. Unfortunately, this causes
some design problems. Who is responsible to send these direct messages?
Is it the overlay network, even though its task is only to route messages?
Or is it the underlying network layer directly? But then, the application is
built on top of two separate layers, which causes problems for instance when
dispatching messages. Moreover, common abstractions cannot be shared
anymore, and some code duplication will be necessary.

• Roles: Research networks often only know one type of node, which is re-
sponsible for all the different tasks. In real systems, however, this is rarely
feasible, but different roles for the nodes need to be introduced. The rea-
son for this is that the computers are highly heterogeneous. One example
is that some machines are behind firewalls or network address translators
(NAT), which makes it impossible to send unsolicited messages to such com-
puters. These nodes can therefore sometimes not take part in the routing
process. Another example are the differences in the resources of the individ-
ual computers (e.g. bandwidth, storage), so that some nodes can take more
responsibilities to improve overall efficiency. How is this different behavior
implemented in the overlay network? Even though different computers may
be assigned different tasks, the source code should still be the same. On
the other hand, ’symmetric’ code is hard to read and maintain. How is this
problem solved in the design of the overlay network?

• Firewall, NAT: Real systems often face the problem that some nodes are
behind firewalls or network address translators (NAT), which renders it im-

17

possible to send unsolicited messages to such nodes. How is this problem
solved in practical peer-to-peer systems? Are there reusable design solutions
involved?

• Message integrity: Peer-to-peer systems are very exposed to the outside
world. Because they communicate by exchanging messages, one simple form
of attack is sending forged messages. How are such attacks detected and
damage prevented? How can the message integrity be verified? Again, are
there reusable design solutions involved?

• Message hierarchy: Lots of different kinds of messages exist in the overlay
network. There are basic messages sent by the application, and control
messages which are sent by the overlay network itself. Some of the messages
need to be routed. Some need to be verified. How is the message hierarchy
organized?

• Message dispatching: A message that arrives in the overlay network needs
to be dispatched to the appropriate object which is responsible for process-
ing it. Of course, this is true for all distributed systems. However, overlay
networks represent a special case; some messages need to be processed in
the overlay network, some need to be delivered up to the application, and
some need to be sent away immediately to the next node. How is the inter-
action of the dispatcher with the routing algorithm? Which messages need
to be delivered up to the application? How can the message processing be
implemented clearly and readable?

• Local node: A node in the overlay network is often represented by a phys-
ical computer. Therefore, the notion of an explicit node is not necessary
when designing the object model of the overlay network. What entities need
to be present in the overlay network? How are local nodes included? In real
systems, virtual nodes can be introduced as a simple way to introduce load
balancing. The computer then hosts a number of nodes, rather than repre-
senting a node directly. However, separating the virtual nodes too strictly
is sometimes not favorable because they can benefit from shared resources
such as the routing table.

• Protocols: In order to maintain the routing topology of the overlay network,
different protocols need to be executed periodically. Where and how are these
protocols implemented in the code?

• Remote nodes: In the overlay network, the local nodes communicate with
other nodes. In existing projects, it is often hard to identify the nodes or
peers in the network. Instead of a clear abstraction for local and remote

18

nodes, these entities are obfuscated in the code. This makes it hard to read,
understand and change the code. How are these remote nodes represented?
How are messages sent to them?

• Execution flow: Overlay networks receive messages from other nodes,
which either need to be routed further, processed by the overlay network,
or delivered up to the application. The application in turn asks to route
messages, and periodically, some protocol entity needs to send messages by
its own. Furthermore, some events might occur which result in a notifica-
tion of the application built on top. Altogether, a peer-to-peer application
is highly concurrent, and good design practices need to be applied in order
not to obfuscate the execution flow.

• Testing: Testing peer-to-peer systems is not easy, because setting up the
environment takes a lot of efforts. For small changes, it should be possible
to test the overlay network even without deploying the code to different
computers and starting a test.

• Dynamics: A peer-to-peer system is inherently very dynamic. Computers
can be turned on and off at any time, which results in nodes constantly
joining and leaving the system. This makes it necessary to maintain and
update the routing topology. If computers crash, they cannot properly leave
the system. Still, the system needs to cope with these failures. How are these
dynamics manifested in the code? Are there any reusable design solutions?

19

6 Pattern Language

This section presents a pattern language for overlay networks, the common abstrac-
tion of most peer-to-peer systems. The patterns are all on the conceptual level
of overlay networks, dealing with entities such as messages, dispatchers, routers,
nodes, and the like. This implies that a running network layer to transmit data
over the network in a scalable way is presumed.

The patterns presented are trying to solve some of the design issues described
in section 5. Most of the patterns are not new, however, but are either standard
object-oriented design solutions or well-known patterns adapted to the specific
needs of overlay networks. The remaining patterns are new suggestions that rep-
resent best-practices that have led to a favorable design in different projects. They
can therefore be regarded as potential proto-patterns.

The goal of the pattern language is to collect and categorize expertise and
knowledge in order to help software designers new to peer-to-peer systems, as well
as experts, who find their ideas generalized in the form of patterns. Combining the
patterns appropriately will result in a functional skeleton of an overlay network.
Section 8 provides an example by putting together some of these patterns.

The rest of this section is organized as follows. Section 6.1 describes the form
used to describe each pattern. In section 6.2, the patterns and their relationships
are illustrated, and section 6.3 provides an overview over the problems and so-
lutions that each pattern addresses, and of what type it is, either representing a
standard design solution, a well-known, existing pattern, an adaptation from a
well-known pattern, or a suggested proto-pattern.

6.1 Pattern Form

Patterns are written in various forms, such as the Alexandrian or canonical form,
or the ’Gang Of Four’ form [58], [59]. Important is not which exact form is used,
but that certain important elements are described for each pattern. I closely
followed the rules given in [60], which defines indispensable guidelines for pattern
authors. In the end, I used the following form to describe the patterns, which
is very similar to the form given in [60]. Note that not all elements need to be

20

present in all patterns.

• Pattern Name: The name of the pattern.

• Context: The situation in which the problem occurs. If the pattern pre-
sumes the application of other patterns, they are stated here.

• Problem: The specific problem that needs to be solved.

• Forces: The considerations that need to be taken into account by the solu-
tion. Sometimes, the forces are contradictory (trade-offs), in which case not
all forces can be resolved by the solution.

• Solution: The proposed solution to the problem in the given context, which
takes certain forces into account. Sometimes, a UML diagram is used to
illustrate the solution. However, these diagrams do not fully conform to the
UML standard, but are rather used to sketch the idea in the simplest way.

• Code Samples: Some code samples to illustrate the solution in more detail.
When code samples are provided, they are written in Java syntax. However,
it should be no problem to convert them to another object-oriented language,
such as C#.

• Resulting Context: The context that results after applying this pattern.
It describes which patterns could be applied next.

• Rationale: An explanation of why this solution is most appropriate for the
stated problem in this context.

• Known Uses: Concrete examples of where the pattern is applied.

• Alternative Patterns: Alternative patterns that can be used instead for
a very similar problem.

• Type: The type of the pattern, representing either a standard design solu-
tion (S), a well-known, existing pattern (E), an adaptation from a well-known
pattern (A), or a suggested proto-pattern (P).

• References: References to the literature or other patterns that have led to
that solution, or that build the basis of the specific solution.

21

6.2 Overview

I have grouped the patterns in this language into seven categories:

• Application Interaction contains patterns about how the application in-
teracts with the overlay network layer.

• Messages contains all patterns concerning messages.

• Message Handling describes patterns about how messages are processed.

• Routing describes how messages are routed towards their target.

• Local Nodes contains patterns about the concept of local nodes, including
virtual nodes.

• Remote Nodes describes how remote nodes in the network can be repre-
sented.

• Network Interaction contains pattern about how the network layer could
be accessed.

The following figure provides an overview over all patterns in this pattern
language. The boxes represent the patterns, and the arrows indicate (some of)
the relationships between the patterns. The big colored rectangles represent the
different categories.

22

Application
Notification

Overlay
Facade

Abstract
Address
Handle

Application
Delivery

Extended
Overlay
Access

Network
Gateway

Network Stub
Traffic Monitorinforms

plugs in for testing

uses

Application Interaction

Messages

Network Interaction

receives from

sends to

extends

Envelope
Wrapper

Basic MessageRouted
Message

Message
Verifier

Message
Dispatcher

Local Node

Node Handle

Router

Message
Handler

Autonomous
Message

Typed Node
Handle

Node Handle
Proxy

Local Node For
Each Type

Self
Maintenance

Source Sink
Marker

Message
Factory

uses

dispatches to

implements

extends

interacts with

dispatches according to

implementsimplements

extends

performs

uses

routes

Control
Message

may contain
Local Nodes

Remote Nodes

Routing

Message Handling

can be combined with

Separate
Protocol

Protocol

alternative to

alternative to

may contain

maintains
delivers up

informs

notifies

uses

Specialized
Message Type

sends to

uses

is a

marked with

counterpart to

abstracts

23

6.3 Summaries

This section summarizes the pattern language by providing an overview over all
problem / solution pairs. The second column indicates the type of each pattern:
S = standard object-oriented design solution; E = well-known, existing pattern;
A = adaptation from a well-known pattern; and P = suggested proto-pattern.
In case the pattern already exists (E) or is an adapatation from a well-known
pattern (A), the original pattern is stated in the name column in brackets.

Application Interaction

Pattern Problem Solution
Overlay
Facade
(Facade)

E How do you encapsulate access to
the overlay network from the ap-
plication?

Use an Overlay Facade, which exposes
the operations that the overlay network
provides to the application (API), and
encapsulates the implementation of the
overlay network.

Application
Delivery
(Observer)

E How does the overlay network de-
liver up messages to the applica-
tion?

Use an Application Delivery interface
with a deliver() method, which allows
the overlay network to deliver up mes-
sages by simply calling this method.
An object implementing this interface
is provided by the application.

Application
Notification
(Observer)

E How do you notify the application
in case of an important event?

Use an Application Notification inter-
face with known methods to the over-
lay network, so that it can inform the
application simply by calling the appro-
priate method.

Extended
Overlay
Facade

P How are direct messages sent? Are
they sent using the overlay net-
work, or by accessing the underly-
ing network layer directly?

Extend the Overlay Facade with a
send() method, and use the overlay net-
work layer also to send direct messages
to known addresses.

Abstract
Address
Handle

P How do you encapsulate the neces-
sary algorithm to contact comput-
ers behind firewalls or network ad-
dress translators (NAT), without
affecting the application built on
top?

Use an Abstract Address Handle to re-
fer to another computer. The Abstract
Address Handle encapsulates all infor-
mation necessary to contact comput-
ers even if they are behind firewalls or
NATs. However, for the application,
they can be used as if they were Inter-
net addresses.

24

Messages

Pattern Problem Solution
Message
Factory
(Factory)

E How do you transform the raw
bytes into the different message ob-
jects?

Use a Message Factory, which provides
a create() method that takes the raw
bytes as input and returns the appropri-
ate message object. The Message Fac-
tory encapsulates the logic to transform
the bytes into the message objects prop-
erly.

Envelope
Wrapper
(Envelope
Wrapper)

E How do you send a given message
with another messaging system?

Use an Envelope Wrapper to wrap the
message to be sent in an envelope that
is compliant with the message system
used to send the message.

Basic
Message
(Envelope
Wrapper)

E How do you separate messages sent
by the application from other mes-
sages sent by the overlay network?

Use Basic Messages to wrap messages
sent by the application in a simple En-
velope Wrapper. A Basic Message can
be as simple as only containing the pay-
load. However, it allows the Message
Dispatcher to distinguish it from Con-
trol Messages sent by the overlay net-
work.

Control
Message

S How do you structure control mes-
sages?

Use Control Message as a common su-
per type of all control messages. This
structures the message hierarchy clearly
into Basic Messages and Control Mes-
sages. Additionally, common properties
and behavior can be defined in the Con-
trol Message super type.

Routed
Message
(Envelope
Wrapper)

A How do you make specific messages
routable?

Use a Routed Message which wraps the
message to be routed and adds the nec-
essary header fields that are important
for the routing algorithm.

Specialized
Message
Type

S How can you improve testability on
the messages and profit from static
type-safety to render some faulty
network conditions impossible?

Use Specialized Message Types, which
allows monitoring exactly which mes-
sages two nodes exchange. It also helps
for debugging and allows each message
to be adapted to the specific needs of
each pair of node types, thus includ-
ing strong types for the fields. Wrong
assignments can therefore already be
checked by the compiler.

Source
Sink
Marker
(Marker)

E How can you make the source and
sink node type of a message ex-
plicit, so that it can be checked in
the code?

Use Source Sink Marker to mark the
source and sink node type of each mes-
sage. Let each message simply imple-
ment this (empty) Marker Interface, so
that the node types can be checked pro-
grammatically.

25

Message Handling

Pattern Problem Solution
Message
Dispatcher
(Observer)

E How do you process the different
messages?

Use a Message Dispatcher, which re-
ceives the raw bytes from the network
layer, creates the corresponding mes-
sage object using the Message Factory,
and dispatches it to the actual object
responsible for processing it.

Message
Handler
(Observer)

E How can you make the Message
Dispatcher be as simple and small
as possible?

Use a Message Handler interface
which simply provides a method han-
dle(Message message). All objects that
are responsible for processing messages
need to implement this interface. Then,
the Message Dispatcher can call this
method to dispatch off messages and is
prevented from processing them by it-
self.

Autonomous
Message
(Command
Message)

A How could you let messages
process themselves, making the
Message Dispatcher and Message
Handlers become redundant?

Use Autonomous Messages, which
know how to process themselves. They
are processed by calling an execute()
method on the message object.

Message
Verifier

P How can you include a simple ver-
ification mechanism, which can be
extended for specific messages?

Use a Message Verifier, which provides
a method verify() that checks the in-
tegrity of all messages. If credentials
are included, it will verify that they are
indeed issued for the claimed sender.

Routing

Pattern Problem Solution
Router P How do you implement the routing

algorithm and how does it interact
with other objects in the overlay
network?

Use a Router, which encapsulates
the routing algorithm and provides
a method to route Routed Messages.
This method checks whether a Routed
Message is at its target, or if it needs
to be sent away, in which case the
router chooses the next node according
to its routing algorithm from the rout-
ing table and neighbors table. It in-
teracts with the Message Dispatcher to
dispatch messages that have arrived at
their target to the appropriate object.

26

Local Nodes

Pattern Problem Solution
Local
Node

S How do you model the object space
of the overlay network around the
concept of local nodes?

Use a Local Node for each node that
is hosted on the computer, resulting in
a visual and clear structure in the ob-
ject space. The Local Node has its own
identifier and stores connections to re-
mote nodes (Node Handles), which rep-
resent the topology of the overlay net-
work.

Local
Node
For
Each
Type

S How do you integrate different
node types with different behavior?

Use Local Node For Each Type, which
represents each different node type in
the network explicitly. Local Node For
Each Type extends the Local Node,
which provides the properties and be-
havior that are shared among all node
types.

Protocol

Pattern Problem Solution
Self
Maintenance

P How do you implement the main-
tenance protocol?

Use Self Maintenance, which encapsu-
lates the maintenance protocol in the
Local Node and runs it periodically
in its own thread. This makes the
nodes be the only active components in
the system, responsible for joining and
maintaining themselves the same way
as in the system model.

Separate
Protocol

S How do you implement different
protocols, needing to run at differ-
ent time intervals?

Use a Separate Protocol for each differ-
ent protocol, encapsulating the respec-
tive logic. Each Separate Protocol can
be run at different time intervals.

Remote Nodes

Pattern Problem Solution
Node
Handle

S How do you store all the different
information available about a re-
mote node in the overlay network?

Use a Node Handle, which provides an
abstract handle of a remote node. It
stores all available information about
a node at a central place. Make the
Node Handle serializable or write a pro-
prietary marshalling algorithm, so that
the necessary information can be trans-
mitted easily.

27

Pattern Problem Solution
Typed
Node
Handle

S How can you make the Node Han-
dles ’type-safe’, making it easier to
detect mistakes and improve read-
ability?

Use a Typed Node Handle, which is
simply an extension of a Node Han-
dle for each type of node. Make the
base type abstract and consequently
use the appropriate Typed Node Han-
dle throughout the overlay network and
in message objects.

Node
Handle
Proxy
(Proxy)

A How can you refer to nodes in the
same way, whether they reside lo-
cally or remotely, thus making the
underlying transmission of a mes-
sage transparently?

Use a Node Handle Proxy, which can
represent both, a remote or a lo-
cal node. It provides a method re-
ceive(Message) which either lets the Lo-
cal Node process the message or sends
the message using the underlying net-
work to the remote node.

Network Interaction

Pattern Problem Solution
Network
Gateway
(Gateway)

E How do you remove strong depen-
dence on the network layer and al-
low to put in control mechanisms
for outgoing messages?

Use a Network Gateway, which encap-
sulates access to the underlying net-
work gateway.

Network
Stub
(Service Stub)

E How can you include a simulation
environment for your overlay net-
work?

Use a Network Stub, which uses the
same interface as the network layer, but
behaves differently, for instance simu-
lating the sending and receiving of mes-
sages.

Traffic
Monitor

S How can all incoming and outgoing
messages easily be monitored?

Use a Traffic Monitor at the overlay net-
work layer, which is informed of all in-
coming and outgoing messages, inter-
prets them and updates its statistics.

28

7 Patterns

7.1 Application Interaction

This section contains patterns that deal about the interaction of the overlay net-
work with an application built on top of it. Most of them are adaptations from
well-known patterns from other layered or component-oriented software systems.

7.1.1 Overlay Facade

Context

You are developing an overlay network, which solves the task of routing a message
to a given key. You want to expose this functionality to an application, such as a
distributed hash table, built on top of your overlay network.

Problem

How do you encapsulate access to the overlay network from the application?

Forces

• The overlay network should be completely encapsulated, so that changes in
the implementation do not affect the application at all.

• The overlay network should not depend on the application built on top, so
that it can be reused by different applications.

• The access to the overlay network should be as clear and simple as possible.
The underlying complexity should be completely hidden, making it trivial
to use the overlay network to route messages to a specified key.

• The application should not be dependent on the overlay network either, so
that the overlay network can simply be replaced by another one.

• Accessing different parts of the overlay network directly can be more efficient.

29

• It should not be possible to use the overlay network in the wrong way.

Solution

route(key, message)

OverlayFacade

Overlay Network

Use an Overlay Facade, which exposes the operations that the overlay network
provides to the application (API), and encapsulates the implementation of the
overlay network.

Specify the operations of the overlay network in an Overlay Facade. The im-
plementation then accesses the appropriate objects of the overlay network to im-
plement the operations provided. In order to initialize the overlay network, only
the Overlay Facade object needs to be constructed. This will be the only reference
that the application will have into the overlay network layer.

The methods specified in the Overlay Facade depend on what the overlay net-
work layer provides to the application. In most cases, this will be a route() method,
which routes messages to a given key. The interface corresponds to the API that
the overlay network layer offers to any application built on top of it.

The actual implementation of the Overlay Facade pattern can look differently.
Whether the Overlay Facade object is created directly, or whether an initialization
class is used that returns an Overlay Facade interface, depends on the specific
initialization procedure.

30

Resulting Context

Using Overlay Facade, the application can now access the functionality provided
by the overlay network. The overlay network, on the other hand, does not have
a reference to the application, which is needed for instance to deliver up mes-
sages that arrive for that application. For that reason, you will need Application
Delivery.

Additionally, you might want to use the overlay network not only to route
messages, but also to send them directly to a known address, once the query
message has been answered. In that case, Extended Overlay Facade can be used
instead.

The application can implement a Gateway, as well as a Service Stub, on top of
the Overlay Facade as is done with Network Gateway and Network Stub to access
the network (see [37]). This allows the application to test itself even without a
proper overlay network in place.

Rationale

The solution is very simple, but solves the problem effectively. The same solution
is also applied in other layered and component-oriented software systems (see
References). It resolves most forces stated:

• Because the application can only access the overlay network through the op-
erations provided in the Overlay Facade, the implementation can be freely
changed and does not affect the application, as long as it remains semanti-
cally equivalent.

• The overlay network does not depend on the application built on top at all,
so that any application can make use of it.

• Because of the narrow interface provided by the Overlay Facade, the ap-
plication does not depend that much on the specific overlay network. This
makes it trivial to switch to another overlay network that provides the same
functionality.

• The Overlay Facade makes it very simple to use the overlay network. The
underlying complexity is completely hidden.

• Accessing the objects in the overlay network directly would be slightly more
efficient, because the Overlay Facade needs to delegate the calls to the ap-
propriate hidden object. However, in most cases, this effect is negligible,
because it is orders of magnitudes smaller than the resulting waiting time
due to the message transport.

31

• Because of the restricted access, the Overlay Facade makes it impossible to
use the overlay network in the wrong way.

The solution has the following favorable qualities:

• Encapsulation: The Overlay Facade encapsulates the overlay network as a
component completely.

• Reusability: The overlay network as a component can easily be reused by
another application, because the Overlay Facade makes an explicit interface.

• Low coupling: Because of the single access point, using Overlay Facade will
result in low coupling between the application and the overlay network.

• High cohesion: The explicitly stated operations will make the component as
a whole very cohesive.

• Understandability: Overlay Facade makes it trivial to understand the func-
tions provided by the overlay network. From a high-level point of view, it
is not necessary to jump into the overlay network when reading the source
code.

• Simplicity: Using the overlay network is very simple due to the explicit
operations provided by the Overlay Facade.

• Clarity: The Overlay Facade results in a clear structure and a clear access
point of the overlay network component.

• Modularity: The Overlay Facade encapsulates the overlay network compo-
nent as a module, with the only external methods specified in the Overlay
Facade.

• Abstraction: Overlay Facade is a nice abstraction to specify the external
interface of the overlay network.

• Extendibility: The overlay network can be extended freely and the function-
ality can always be added to the Overlay Facade.

Known Uses

Facades are used in a lot of software system, when access to another component
needs to be encapsulated or simplified. In overlay networks, the Facade pattern is
also the preferred pattern for this need. FreePastry combines the Overlay Facade
with Application Delivery and Application Notification in an application object.

32

Type

Existing pattern (E): Facade.

References

Overlay Facade corresponds to the well-known Facade pattern, described in ’Design
Patterns’ [19]. In the Facade pattern, it is possible that the Facade simply provides
a simplified interface, but that other objects in the subsystem can still be accessed
directly. In this case, we want to restrict access completely, so that not other
objects can be accessed by the application at all.

Overlay Facade is also related to the Gateway pattern, described in ’Patterns
of Enterprise Application Architecture’ [37]. Compared to the Gateway pattern,
however, the Facade is provided by the subsystem, whereas a Gateway is mostly
written by the programmer accessing the subsystem (see [37] or Network Gateway)
from the outside.

There are a number of other patterns closely related to this. Wrapper Facade
is most often used to wrap a non-OO API, which is not the case for this pattern.
Adapter is also related, however, in this case, the Overlay Facade does not try to
adapt an existing interface, but creates its own. The Handle Body pattern can
be used to implement this pattern, separating the interface from its implementa-
tion. A more generic variant of Handle Body is described by the Bridge pattern.
Messaging Gateway is also very similar, in that it provides an access point to a
messaging system (see [35]).

The methods that the Overlay Facade provides can conform to the API speci-
fied in [27].

The creation of an overlay socket (see [32]) is very similar to the creation of an
Overlay Facade.

7.1.2 Application Delivery

Context

The routing functionality, which the overlay network provides to the application, is
inherently asynchronous. When using the route() operation to route a message to
a key, the message is simply routed towards its target, but no answer is given as a
return value of the operation. This implies that an answer, once it arrives, needs to
be delivered up to the application. Moreover, at the target node, the query message
needs to be delivered up to the application, without this application having used
any operation provided by the overlay network, thus asynchronously.

33

Problem

How does the overlay network deliver up messages to the application?

Forces

• The overlay network should be completely encapsulated and reusable for
other applications. An explicit reference to an object in the application
layer is therefore not a solution.

• Making the operations provided by the Gateway synchronous and therefore
avoiding upcalls is not feasible for a number of reasons. An obvious one is
that messages that arrive at the responsible node need to be delivered up
without this application having used any operation at all.

• More than one application might be using the same overlay network at the
same time.

Solution

deliver(sender, message)

IApplicationDelivery

route(key, message)

register(IApplicationDelivery)

OverlayFacade

Overlay Network

34

Use an Application Delivery interface with a deliver() method, which allows
the overlay network to deliver up messages by simply calling this method. An
object implementing this interface is provided by the application.

The Application Delivery interface is defined by the overlay network, but the
application is responsible for implementing it. The interface will need to contain
a method similar to deliver(Address sender, Message message). When messages
arrive that need to be delivered up to the application, the overlay network will call
this method to deliver them.

Since the message cannot be interpreted by the overlay network, it will deliver
either the raw bytes, or a common message object known to the overlay network
as well as the application (the same common message object can be used in the
Overlay Facade). Sender is the address of the original sender of this message.
The sender address might be either an Internet address, or an Abstract Address
Handle.

If only one application can be built on top of the overlay network, then the
Application Delivery object can simply be specified when initializing the overlay
network layer (see Code Samples). If several applications should be built on the
same overlay network instance, the overlay network needs to store a list of all
objects conforming to Application Delivery, instead of only one. There might be a
register(IApplicationDelivery applicationDelivery) method in the Overlay Facade
(see UML diagram). Because it does not know to which application a message
should be delivered, it will need to deliver it to all applications and let it be their
responsibility to decide. However, if more flexible mechanisms are needed, it would
be easy to use an application type identifier to let the overlay network know to
which application to deliver to.

Resulting Context

Using Application Delivery, the overlay network knows how to deliver up messages
to the application. How the application accesses the overlay network is explained
in Overlay Facade. The sender object can either be an Internet address, or an
Abstract Address Handle.

Besides messages, there might occur other events in which case the overlay
network might need to inform the application. For that case, use the Application
Notification pattern.

Rationale

The Application Delivery is a simple mechanism to let the overlay network com-
municate with the application, even though it does not know it beforehand. It

35

resolves all forces stated:

• It allows building any application on top of the overlay network, and makes
it therefore completely reusable.

• By providing an Application Delivery interface to the overlay network, the
operations can be made asynchronous.

• It even allows building multiple applications on top of the same overlay
network instance, by storing a list of Application Delivery objects in the
overlay network.

The solution has the following favorable qualities:

• Low coupling: Using Application Delivery results in minimal coupling be-
tween the overlay network and the application built on top, because the
overlay network does not have an explicit reference to the application.

• Flexibility: Because of the interface provided by Application Delivery, any
kind of application can be built on top of the overlay network. Furthermore,
it is also possible to register several applications at the same time for a single
overlay network.

• Clarity: Application Delivery makes it very clear where and when the overlay
network delivers up messages to the application.

• Understandability: It is very easy to understand the message flow between
the overlay network and the application built on top when using Application
Delivery, because the methods that exchange data are explicitly stated.

Known Uses

Most overlay networks today are designed for reuse. Therefore, they all have
similar mechanisms to register an application not known beforehand with the
overlay network. The listener pattern is predestined for this purpose and is used
in most systems. FreePastry, for example, has been used for different kinds of
applications such as PAST [29], Scribe [30], and others [54]. The JXTA framework
is very flexible, and the listener pattern is used throughout the design.

36

Alternative Patterns

The approach taken in the Berkeley socket API provides an alternative solution to
handle asynchronous messages. There, the application uses the blocking receive()
to receive messages. This has at least two advantages. First, the application
can call receive() whenever it is ready to process the next message. Second, the
processing is done by another thread than the one who delivers up the messages.
The latter advantage is especially important, depending on the system design
and whether the application executes a lot of (potentially also blocking) methods.
However, this can also be controlled by the overlay network which can start a new
thread for the delivery. Using a receive() would need a buffer in the overlay network
to cache messages that have not yet been delivered up. In any case, concurrency
issues need to be solved and the application must be carefully designed (see for
instance [34]).

The overlay socket API (see [32] uses this approach for delivering messages.
P2P Sockets [61] is a project that provides a socket based API on top of JXTA.

In case Application Notification needs to be applied, Application Delivery could
be the better alternative to deliver up messages, because the two mechanisms are
very similar.

Type

Existing pattern (E): Observer.

References

Application Delivery is very closely related to the well-known Observer pattern
[19]. There, the Application Delivery object corresponds to the observer. Appli-
cation Delivery is related to event listeners in general, which are used in event
systems (e.g. GUI frameworks).

The Application Delivery interface can conform to the common API defined in
[27].

7.1.3 Application Notification

Context

A number of events occurring in the overlay network may be of interest to an
application built on top. One such event is for example defined in [27]; when the
overlay network is about to route a message to the next node, a forward() method
in the application should be called. If this method returns true, the message can be
sent off, otherwise, it needs to be dropped. This allows the application to control

37

whether a message should be routed further. Other possible events include ready()
or disconnected(), in which case the application might have more information on
how to bootstrap again, for instance by providing some new seed nodes.

Problem

How do you notify the application in case of an important event?

Forces

• The overlay network should be completely encapsulated and reusable for
other applications. An explicit reference to an object in the application
layer is therefore not a reusable solution.

• Different events might occur.

• An actual application might not be interested in some or all of the events.

38

Solution

forward(message)

disconnected()
ready()

IApplicationNotification

route(key, message)

register(IApplicationNotification)

OverlayFacade

Overlay Network

Use an Application Notification interface with known methods to the overlay
network, so that it can inform the application simply by calling the appropriate
method.

This solution is very similar to Application Delivery. The application needs
to implement an interface, defined in the overlay network layer, which gives the
overlay network known methods to call in case an event happens.

In the simplest case, the interface can for instance provide methods such as
ready(), disconnected(), forward(Message message) to inform the application of
the respective event. In most cases, such simple events are sufficient (see also
[27]). If a more flexible and generic solution is needed, a proper event listening
mechanism can be applied, where an event object would be passed as a parameter.
The event object would inform the application of the respective event. Such a
solution is more flexible and allows adding new event types easily. Furthermore,
applications could subscribe only to those events that are interesting for them.

39

Resulting Context

Once Application Notification is applied, the application can be informed of events
happening in the overlay network. In the case of the forward() method, this even
gives some control to the application, which can now decide whether a message
may be routed further.

Rationale

Using Application Notification is very simple and similar to Application Delivery.
It resolves all forces stated, and can be extended whenever the need arises:

• The overlay network is not dependent on the application, because the Ap-
plication Notification interface is defined in the overlay network.

• In the simplest case, different methods for different events can be specified
in the interface. If a more flexible mechanism is needed, the proper event
can be passed as a parameter in an event object.

• In the simplest case, the application implements the methods specified in the
interface, but does not do anything in it (empty method). Again, this can
be made more flexible by implementing a proper event listening mechanism,
where an application can subscribe to individual events only. However, in
most cases, this is not necessary.

The solution has the following favorable qualities:

• Low coupling: Similar to Application Delivery, also Application Notification
results in minimal coupling between the overlay network and the application
built on top, because the overlay network does not have an explicit reference
to the application.

• Flexibility: Application Notification is a very flexible mechanism, because
the application can decide which events it is interested in and how it reacts.

• Extendibility: Adding a new event to Application Notification is very easy.

• Clarity: Application Notification results in a clear and visual structure for
the possible events of the overlay network.

• Understandability: Using Application Notification, it is easy to understand
where and when an event is triggered.

40

• Not overdesigned: Application Notification can be extended as needed. In
simple overlay networks with only few events that are known beforehand, it is
not necessary to make the Application Notification mechanism very generic.
Simply calling a method provided in the interface is sufficient. However, if
an application should be able to register for certain specific events only, it is
easy to change the implementation to a proper event listening mechanism.

• Documentation: The explicit Application Notification serves as an ideal doc-
umentation for all events that can be fired by the overlay network.

Known Uses

Again, as in Application Delivery, most overlay networks use the listener pattern
to notify the application of events.

Type

Existing pattern (E): Observer.

References

Again, as in Application Delivery, Application Notification is very closely related
to the Observer pattern and to event listeners in general. It is stated here as its
own pattern simply because it is an architectural element of most overlay networks.

In [27], some possible events that could happen in the overlay network are
defined.

7.1.4 Extended Overlay Facade

Context

The task of the overlay network is to route messages to given keys. Most often,
messages that need to be routed are query messages, which try to localize an item
in the network. Once a reply has been received, the application can now send
further messages to the responsible node directly, and no routing is needed any
more. Sending a message directly to a node, however, is not the task of the overlay
network layer, but of the underlying network layer.

Problem

How are direct messages sent? Are they sent using the overlay network, or by
accessing the underlying network layer directly?

41

Forces

• The overlay network layer’s task is only to route messages to keys, not to
send them directly to a given address (e.g. Internet address).

• The send operation to directly send a message to a given address is imple-
mented in the network layer, thus it should not be duplicated in the overlay
network.

• Having only one abstraction for communication, routing or sending, is much
more convenient and simpler for the application built on top.

• Exposing the underlying network layer to the application does not conform
to common layering principles, and creates more dependencies.

• Additionally, if the network layer is used to send messages directly, then this
layer would also need to know whether to dispatch a message to the overlay
network layer, or to the application layer. Thus, it would need to be able to
interpret at least some part of the message as well.

Solution

route(key, message)
send(address, message)

OverlayFacade

Overlay Network

Network send(address, message)

42

Extend the Overlay Facade with a send() method, and use the overlay network
layer also to send direct messages to known addresses.

Using Extended Overlay Facade, the overlay network completely hides the
underlying network layer. The send() method simply delegates the call to the
appropriate method of the network layer, using for instance Network Gateway. If
the specified address is an Abstract Address Handle, the overlay network might
even help to circumvent firewalls or network address translators (NAT).

Resulting Context

If the receiver of the message might potentially be behind a firewall or network
address translator (NAT), use Abstract Address Handle instead of an Internet
address as the destination of the message. The message to be sent should be
wrapped in a Basic Message, to let the Message Dispatcher distinguish it from
Control Messages at the receiving end. Then, the Message Dispatcher can deliver
it to the application using Application Delivery. The Extended Overlay Facade
should make use of a Network Gateway to send the message using the underlying
network layer.

Rationale

Extended Overlay Face enhances the responsibilities of the overlay network layer.
This extension is not necessarily favorable, because sending messages is not the
actual task of the overlay network. It does, however, provide some significant
advantages, which makes it the better alternative in most cases. First, the overlay
network completely hides the underlying network layer. This respects common
layering principles (e.g. [63]), which allows changing lower layers without affecting
upper layers in a software system. Second, it avoids code duplication. Since
applications have already properly registered themselves with the overlay network
(using Application Delivery), they do not need to do the same with the network
layer as well. Third, in some contexts, it does have a more important and practical
reason as well. In case some computers are behind firewalls or network address
translators (NAT), the overlay network may have some additional information to
contact a computer. It may be possible to contact a certain computer over its
connection to another node, which is not behind a firewall or NAT. When using
Abstract Address Handle, the application does not have to worry about this and
can simply send messages using Extended Overlay Facade to addresses (Abstract
Address Handles) it has received from the overlay network (Application Delivery).

Extended Overlay Facade resolves most forces stated:

43

• The actual task of the overlay network is only to route messages. To rec-
oncile the purist view, the overlay network’s task can be extended to all
communication tasks. Thus, if the overlay network layer is viewed as the
only communication layer, the send operation neatly fits in.

• The overlay network does not duplicate the send operation, it simply dele-
gates the call to the network layer.

• The Extended Overlay Facade makes it very simple for the application to
route and send messages.

• Using the Extended Overlay Facade allows hiding the underlying network
layer completely, thus following strict layering principles.

• If the application only connects with the overlay network layer, the same
dispatcher and resources can be used.

The solution has the following favorable qualities:

• Encapsulation: The Extended Overlay Facade completely encapsulates the
underlying network layer from the application.

• Low coupling: The application is completely decoupled from the network
layer. Changes to the network layer do not affect the application at all.

• Avoids code duplication: Because the overlay network does need to know
which messages to deliver to the application already, this code does not need
to be duplicated for the network layer again.

• Simplicity: For the application, it is very simple to only need to communicate
with the overlay network layer, instead of two different layers at the same
time. The functionality provided in the Extended Overlay Facade is easy to
understand.

• Layering principles: The Extended Overlay Facade results in good layering
principles, because the application layer only needs to communicate with its
lower layer, and the network layer is completely shielded away.

Unfortunately, the solution misses the following qualities:

• High cohesion: In a pure view, the send operation would belong to the
network layer only.

44

• Abstraction: Again, the abstraction of the Extended Overlay Facade is some-
how wrong, because the overlay network is not responsible to send simple
direct messages.

However, these two points can be reconciled if one regards the overlay network
layer as the only communication layer the application needs to talk to.

Known Uses

The issue addressed by this pattern is especially relevant to practical systems.
Therefore, most practical systems provide a method to send messages directly
to an address, once it is known. However, often the underlying network is used
directly.

Type

Proto-pattern (P).

References

Of course, this pattern is a simple extension of the Overlay Facade. However,
because it has a number of design consequences, it is stated as its own pattern. A
send operation is also specified in [27].

The Overlay Facade could even be extended further to provide more methods
to an application built on top. One could imagine statistical information of the
overlay network which could be of interest to an application. However, because
of the different semantics of these methods, a second interface for this could be
provided, as is for instance done in [32] with the statistics interface.

7.1.5 Abstract Address Handle

Context

The overlay network’s routing functionality is used to localize nodes in the network.
Once a node has been found, further messages can be sent directly to its address.
If you are using Extended Overlay Facade, then this send() method is provided by
the overlay network. Unfortunately, in real networks, it is sometimes not possible
to send a message to an Internet address directly, because of firewalls or network
address translators (NAT). In that case, the communication must either be relayed
over a well-configured node, or ’hole punching’ techniques need to be applied. This
renders it impossible to simply use an Internet address as a parameter of the send()
method. However, the application built on top should not need to worry about

45

these problems and should be able to simply send messages to the return address
provided by the overlay network in Application Delivery.

Problem

How do you encapsulate the necessary algorithm to contact computers behind
firewalls or network address translators (NAT), without affecting the application
built on top?

Forces

• The application should simply be able to send a direct message to the re-
turn address that it has received from the answer of a query (Application
Delivery).

• Not all computers are well-configured in practical systems, making it impos-
sible to simply use Internet addresses.

• Contacting a node hosted on a badly-configured computer may need the
interaction of more than one node. The underlying complexity should be
hidden from the application.

Solution

IAbstractAddressHandle

mediator: InternetAddress
target: InternetAddress

AbstractAddressHandle

Use an Abstract Address Handle to refer to another computer. The Abstract
Address Handle encapsulates all information necessary to contact computers even
if they are behind firewalls or NATs. However, for the application, they can be

46

used as if they were Internet addresses.

The Abstract Address Handle simply serves as a handle to a remote node for
the application. The application does not need to access the address object’s
internals. Therefore, all the application receives in Application Delivery is an
empty interface with no methods, which serves as such an abstract handle. If this
Abstract Address Handle interface is used in the Extended Overlay Facade, the
overlay network can cast the interface to the appropriate object which provides
access to all information necessary to contact that computer, including its Internet
address and possibly a mediator Internet address.

How the firewall or NAT is traversed depends on the actual implementation.
The mediator (relay) address contained in the Abstract Address Handle might
relay all messages to that node, or it may be used to initiate ’hole punching’
methods.

Resulting Context

If you are using Abstract Address Handle, then the receiver Internet Address
in the Extended Overlay Facade can be replaced by Abstract Address Handle.
Consequently, Application Delivery will deliver Abstract Address Handles instead
of Internet addresses as well. This gives the application an abstract handle to
communicate to a physical computer. In order to communicate, it will need the
overlay network, and thus Extended Overlay Facade in place.

Rationale

Using an Abstract Address Handle provides an abstract handle for the application
to refer to a remote computer, no matter whether it is behind a firewall or NAT.
In case it is, the overlay network can read the mediator address out of the casted
address object and can start the mechanism to contact the computer. If the
computer is not behind a firewall or NAT, its Internet address can be used directly
by the overlay network.

Abstract Address Handles resolves most forces stated:

• The application can simply send a message to the address it has received
from the overlay network. The logic to contact nodes behind firewalls or
NATs is completely encapsulated in the overlay network.

• Because not all computers can be contacted directly, the overlay network
never returns simple Internet addresses, but Abstract Address Handles.

47

• Because the overlay network has the knowledge about the connection of
nodes in the network, it is the correct place to implement the traversal logic.
Abstract Address Handles hides the underlying complexity completely.

The solution is good because it has a number of favorable qualities:

• Abstraction: The Abstract Address Handle is a nice abstraction to refer to
remote addresses, because it is completely transparent how the underlying
layer contacts this address. Otherwise, the application would need to care
about these issues.

• High cohesion: Abstract Address Handle puts the logic on how to contact
a remote address at the right place, so that it results in a highly cohesive
architecture.

• Simplicity: For the application, it is trivial to send a message to a given
Abstract Address Handle.

• Understandability: Using Abstract Address Handle is very easy to under-
stand, because the traversal logic is encapsulated and does not need to be
understood.

• Encapsulation: The traversal logic is encapsulated, so that it can freely be
modified without affecting the application.

• Flexibility: It is easy to support different lower layer transport protocols
and the like, because the application does not need to take care about these
issues at all.

Solution

Known Uses

A lot of academic overlay network do not take problems arising from firewalls or
NATs into account, so that this pattern is not applied there. Practical projects
sometimes use hole punching techniques, but are implemented rather ad-hoc, so
that no nice abstractions can be found. The emtpy Address interface in FreePastry
is a similar idea, even though its purpose is a little bit different.

Type

Proto-pattern (P).

48

7.2 Messages

Overlay networks communicate by exchanging messages. This section contains
patterns describing solutions to all kinds of design problems with messages in the
overlay networks. Of course, messages are an integral part of any distributed
systems, and good design patterns for messages have been around for a long time.
Therefore, some of these patterns are adapted from other messaging systems (e.g.
’Enterprise Integration Patterns’), and are listed in this pattern language only for
the sake of completeness.

7.2.1 Message Factory

Context

Nodes communicate by exchanging messages. Serializing message objects and
transmitting them by using high-level programming language abstractions is very
convenient and is often the preferred method used in traditional distributed sys-
tems. For efficiency reasons, however, messages in peer-to-peer systems are some-
times exchanged by transmitting the raw bytes that make up a message directly,
using lower-level protocols such as UDP. Therefore, the marshalling and demar-
shalling needs to be implemented proprietarily. On the receiving end, the network
layer has no knowledge about the messages and simply delivers the raw bytes that
correspond to one logical message up to the Message Dispatcher. These bytes then
need to be transformed into the appropriate message object to further process it
conveniently.

Problem

How do you transform the raw bytes into the different message objects?

Forces

• Processing message objects is much more convenient than processing raw
bytes directly.

• The bytes enter the overlay network through the Message Dispatcher. How-
ever, knowing how to interpret these bytes is not the task of the Message
Dispatcher.

• During the development process, adding new message types should be easy.

• Message objects may know how to marshall and demarshall themselves.

• Changing message types should not affect a lot of places in the source code.

49

Solution

create(data: ByteBuffer): Message

MessageFactory

Message()
Message(data: ByteBuffer)
marshall(data: ByteBuffer)

Message

Use a Message Factory, which provides a create() method that takes the raw
bytes as input and returns the appropriate message object. The Message Factory
encapsulates the logic to transform the bytes into the message objects properly.

The Message Factory itself does not need to know how to create the different
messages. Instead, it lets the message object construct itself. However, the Mes-
sage Factory knows how to read the type information from the bytes, which serves
as an index in the message type table. It can then call the constructor of the ap-
propriate message object to let the message object be constructed. It returns this
message object to the Message Dispatcher, or throws an exception if the message
could not be constructed or if the type does not exist.

The Message Factory encapsulates the message type table. Changes to the
message types therefore only affect the Message Factory.

Code Samples

public class MessageFactory {

public Message create(ByteBuffer data)

throws MessageNotUnderstoodRuntimeException {

assert data != null;

assert data.hasRemaining();

byte type = data.get(data.position());

switch (type) {

case ClientSuperAlive.TYPE:

return new ClientSuperAlive(data);

case ClientSuperJoinRequest.TYPE:

return new ClientSuperJoinRequest(data);

50

// ...

default:

throw new

MessageNotUnderstoodRuntimeException("...");

}

}

}

Resulting Context

The Message Factory is usually called as the first command of the Message Dis-
patcher, which receives the raw bytes from the network layer. Once the message
object is created, its integrity might need to be verified using Message Verifier.

Rationale

Using the Message Factory results in a clear separation of concerns: The message
objects remain responsible for serializing and deserializing themselves, while the
Message Dispatcher does not need to know anything about how or which message
to construct. This logic (the message type table) is encapsulated in the Message
Factory, which is the only place that needs to be changed when new message
objects are added or message types are changed.

Message Factory resolves all forces stated:

• The Message Factory converts the raw bytes into message objects, so that
they can be further processed conveniently.

• The Message Dispatcher does not need to know how to create message ob-
jects. Instead, it simply calls the Message Factory.

• When adding a new message type, only the Message Factory needs to be
adapted. This makes it very easy to add new message objects.

• The message objects can encapsulate the logic of how to marshall and de-
marshall themselves. The Message Factory can simply call the appropriate
method.

• When changing the type of a message, it only needs to be reflected in the
encapsulated type table of the Message Factory.

51

The solution has the following favorable qualities:

• Encapsulation: The message creation is completely encapsulated in the Mes-
sage Factory, so that no other object needs to know how to create message
objects.

• Extendibility: Adding new message types is easy, because only the Message
Factory needs to be adapted.

• High cohesion: Using a Message Factory leads to a highly cohesive architec-
ture. The Message Dispatcher does not need to know how to create message
objects. The Message Factory on the other hand, needs to know which mes-
sage object to create by reading off the type information from the raw bytes.
The message creation, however, can still be encapsulated in the message
object itself.

• Abstraction: The Message Factory is a good abstraction for creating message
objects.

• Understandability: It is very easy to understand where messages are created
when using a Message Factory.

• Clarity: Using a Message Factory leads to a clear design, because the different
functions of message processing are completely separated.

Known Uses

Message Factories are used in almost all messaging systems. If high-level means
provided by the programming language are used, then the underlying Message
Factory is simply hidden.

In overlay networks, where messages are often marshalled and unmarshalled
proprietarily, Message Factories are often used.

Type

Existing pattern (E): Factory.

References

Message Factory is a common pattern in messaging systems, where raw bytes
need to be transformed into message objects. It can be regarded as a variant of
the Factory pattern [19].

52

7.2.2 Envelope Wrapper

Context

A message from one messaging system needs to be sent with another one.

Problem

How do you send a given message with another messaging system?

Forces

• The message to be sent belongs to a different semantic hierarchy.

• The message format in both messaging systems might be completely differ-
ent.

• The message system with which the message is ultimately sent may expect
some specific header fields.

Solution

getHeaderField()
getInternalMessage(): Message

EnvelopeWrapper

MessageinternalMessage

or

getHeaderField()
getInternalMessage(): ByteBuffer

EnvelopeWrapper

Use an Envelope Wrapper to wrap the message to be sent in an envelope that
is compliant with the message system used to send the message.

The Envelope Wrapper is a simple message from the underlying message sys-
tem, so that its header fields fully comply with it. As its payload, it takes the
message to be sent, which it does not need to understand itself. When the Enve-
lope Wrapper arrives at its target, the payload is simply unwrapped and delivered

53

to the system for which it provided service. Because the message inside the Enve-
lope Wrapper remains unchanged, the message is delivered in the expected format
as if it was sent directly.

Resulting Context

Basic Message is an implementation of Envelope Wrapper. Routed Message is a
slight modification of the same general idea.

Rationale

The solution is elegant and very simple, which makes it the preferred pattern in
most messaging systems. It resolves all forces stated:

• The message that is wrapped in the envelope can belong to a different mes-
saging system.

• The two messaging systems can have completely different formats. The En-
velope Wrapper is understood by the transporting messaging system. As
soon as it arrives at its target, the contained message is unwrapped and is
understood by the target messaging system.

• The expected header fields are properly included in the Envelope Wrapper.

The solution has the following favorable qualities:

• Flexibility: Envelope Wrapper is a very flexible concept, because it allows
any kind of message to be sent with another messaging system.

• Simplicity: Applying Envelope Wrapper is very simple; no changes are nec-
essary to the messaging system.

• Clarity: Envelope Wrapper is a very clear and visual concept, because a
message is simply contained in another one, but not converted.

• Understandability: It is very easy to understand how a message is trans-
ported and when another messaging system is used.

Known Uses

Envelope Wrapper is a base pattern which is not only used in object-oriented
software systems. Its idea is applied generally in similar situations. A well-known
example is TCP / IP, where TCP messages are simply wrapped in IP packets. At
the receiving end, the contained TCP message is delivered up to the TCP layer of

54

the Internet stack. Another famous example of Envelope Wrapper is SOAP, where
messages are typically send as the payload of a SOAP envelope.

In overlay networks, a variant of Envelope Wrapper is the preferred way to
implemented Routed Message. FreePastry and Tapestry are just two examples
where this pattern is applied.

In [32], application messages are wrapped in overlay message headers, which
represent an Envelope Wrapper.

Type

Existing pattern (E): Envelope Wrapper.

References

Envelope Wrapper is well-known. A detailed description can for instance be found
in ’Enterprise Integration Patterns’ [35], which describes messaging patterns in
general.

7.2.3 Basic Message

Context

An application uses the overlay network to route a message to a given key (e.g.
a query message to localize an item in the network). Additionally, when using
Extended Overlay Facade, the application also sends direct messages using the
overlay network (e.g. a message to start data transfer). Altogether, the messages
sent by the application have a totally different semantic from the other messages
sent by the overlay network itself (Control Messages). When an application mes-
sage arrives at its target node, the Message Dispatcher needs to distinguish it from
Control Messages and needs to deliver it up to the application, using Application
Delivery.

Problem

How do you separate messages sent by the application from other messages sent
by the overlay network?

Forces

• The message sent by the application cannot be interpreted by the overlay
network, because it may have a different format and has a different semantic.

55

• The message needs to be recognized as an application message and needs to
be delivered up at the receiving node.

• At least one bit of information is needed to distinguish it from other messages
in the overlay network.

• When using Extended Overlay Facade, not all messages sent by the applica-
tion need to be routed.

• Conversely, not only messages sent by the application might need to be
routed, but Control Messages can be routed as well (e.g. join messages).

Solution

getType()
getPayload(): ByteBuffer

BasicMessage

Use Basic Messages to wrap messages sent by the application in a simple
Envelope Wrapper. A Basic Message can be as simple as only containing the
payload. However, it allows the Message Dispatcher to distinguish it from Control
Messages sent by the overlay network.

When marshalling, one additional bit (e.g. the type) is sufficient to distinguish
it from Control Messages. At the receiving end, the Message Factory creates a
Basic Message object with the uninterpreted raw bytes as its payload, which can
be delivered up to the application using Application Delivery.

Resulting Context

Basic Messages often need to be routed, in which case they should be the content
of Routed Messages. Once the Basic Message arrives at its target, its payload
needs to be delivered up to the application built on top. Thus, the payload will
be delivered using Application Delivery.

Rationale

One bit is needed to distinguish Basic Messages from Control Messages. There-
fore, using a simple Envelope Wrapper is a straightforward and elegant solution.

56

However, this could also be achieved with a flat message hierarchy. Basic Message
serves also as a way to structure the message hierarchy nicely into application
and Control Messages.

Basic Message resolves all forces stated.

• When wrapped in a Basic Message, the overlay network does not need to
interpret the application message.

• However, because it is wrapped in a Basic Message, the overlay network
knows that it needs to be delivered up to the application eventually.

• The information to distinguish it from other messages is encoded in the type
of the Basic Message.

• The Basic Message itself is not always routed towards its target. Instead, if
it needs to be routed, it can be included in a Routed Message.

• By making the concept of routable messages orthogonal to Basic Messages
(see Routed Message), also Control Messages can be routed.

The solution has the following favorable qualities:

• Clarity: Using Basic Message results in a very clear structure, separating
application messages from other messages in the overlay network.

• Understandability: The concept of Basic Message makes it very easy to
understand which messages are sent by the application, and which are sent
by the overlay network itself.

• Flexibility: Any kind of application message can be sent in a Basic Message,
without any changes to the overlay network.

Known Uses

Some overlay networks do not use Extended Overlay Facade, so that all messages
sent by the application can be wrapped in Routed Messages. However, in order to
make that sufficient for the Message Dispatcher to know whether to deliver it to
the application or not, application messages must be the only ones that may be
wrapped in Routed Messages. This is true for some of the same overlay networks
as well, so that in these cases, a separate Basic Message is not needed.

In all other overlay networks, some other mechanism needs to be applied. Un-
fortunately, there is often only one message hierarchy in the whole application.

57

Although this obviously works, it does not lead to a nice, readable, extensible and
maintainable design, because control messages strongly differ from basic messages
in their semantics. This is the reason why I have written Basic Message as a
’pattern’ standing on its own.

In HyperCast [33], the overlay message header is a concrete example of this
pattern [32].

Type

Existing pattern (E): Envelope Wrapper.

References

Basic Message is simply an instance of an Envelope Wrapper. In [32], Basic Mes-
sages are called application messages.

7.2.4 Control Message

Context

You are using Basic Message to distinguish application messages from control
messages. There are a lot of control messages in your system, and all of them
might share some properties and behavior.

Problem

How do you structure control messages?

Forces

• All control messages might share some properties and behavior.

• Lots of different control messages exist in the overlay network.

• All control messages need to be distinguished from Basic Messages.

58

Solution

getType()

ControlMessage

AliveJoin LeaveNeighbors

Use Control Message as a common super type of all control messages.
This structures the message hierarchy clearly into Basic Messages and Control
Messages. Additionally, common properties and behavior can be defined in the
Control Message super type.

Control Message is the base class of all control messages, which inherit its
properties and behavior. They extend their base class by the specific properties
(header fields) they need and implement their own marshalling and demarshalling
algorithm (note that it can be very helpful to generate this code automatically
using a reflection-based pre-processor).

Resulting Context

Control Messages are constructed in the overlay network and sent away using the
underlying network layer. When they arrive, they need to be reconstructed in
coordination with the Message Factory.

Some Control Messages (e.g. join messages) might need to be routed, so they
can be contained in Routed Messages as well.

Rationale

Control Message is the obvious counterpart to Basic Messages. It leads to a
clearly structured message hierarchy. Using Control Message as the common super
type when properties or behavior needs to be shared corresponds to standard
object-oriented modeling.

Control Message resolves all forces stated:

• By having a common super type, all Control Messages can share some be-
havior and properties easily.

59

• All different control messages are cleary structured in the message hierarchy
when using Control Message.

• Therefore, they are also clearly separated from Basic Messages sent by the
application.

The solution has the following favorable qualities:

• Clarity: Structuring all messages of the overlay network under the common
super type Control Message leads to a clear structure of the message hiearchy.

• Understandability: It is very easy to read and understand which messages
are protocol messages, and which messages contain data of the application
built on top.

• Extendibility: Using implementation inheritance, all Control Messages can
be extended easily by simply adding or modifying fields in the Control Mes-
sage super type.

• High cohesion: Because of the common super type, all common information
about protocol messages are grouped together.

Known Uses

In overlay networks, Control Message is mostly applied when properties or behavior
need to be shared. As a mere structuring pattern to separate Control Messages
from Basic Messages, it is not used as often. However, a Control Message super
type can for instance be found in P-Grid, HyperCast, Tapestry, and Azureus.

Type

Standard design solution (S).

References

In [32], Control Messages are called protocol messages.

7.2.5 Routed Message

Context

Routing a message to a given key is the task of the overlay network. Each node on
the routing path needs to check whether it is the target of this message, or whether
it needs to send it away to the next node. This logic is implemented using a Router.

60

However, it implies that these messages contain specific header fields, such as at
least the target key of the message. If you are using Basic Message, this would be
a place to include those header fields. However, it is often not true that only Basic
Messages need to be routed, but Control Messages might need to be routed as well
(e.g. join messages). Additionally, if you are using Extended Overlay Facade, not
all Basic Messages need to be routed. At intermediate nodes, all routable messages
need to be treated equally. Only at their target node, different actions need to be
performed.

Problem

How do you make specific messages routable?

Forces

• Whether a message is routable or not is orthogonal to other message charac-
teristics (e.g. Basic Messages and Control Messages both might be routable).

• All routable messages share some header fields, such as at least the target
key.

• Code duplication and dependence on the message type are not favorable.

• Intermediate nodes should need to know what to do with the message no
matter its content or specific type.

Solution

getType()
getSource(): Id
getTarget(): Key

getPayload(): ByteBuffer

RoutedMessage

Use a Routed Message which wraps the message to be routed and adds the
necessary header fields that are important for the routing algorithm.

Routed Message is a variant of an Envelope Wrapper. As its payload, it can
take any message. Therefore, Basic Messages and Control Messages can both be
made routable by simply creating a Routed Message containing it. Intermediate

61

nodes only read the fields from the Routed Messages that they need in the Router.
If a message is at its target node, its content can be dispatched by the Message
Dispatcher (see Router for implementation details).

Routed Message is also a variant of the Composite pattern [19], because it
takes as payload any object of the common super type. However, this should
not be extended much further, because it does not often make sense that Routed
Messages can contain other instances of Routed Messages. This could be corrected
by letting Basic Message and Control Message both extend a message class B,
which extends message class A. Then, Routed Message could itself extend from A
and take as payload any message of type B.

Note that if your programming language does support multiple implementation
inheritance, the Routed Message could also be a super type of all those messages
that need to be routable. In case your programming language only supports single
inheritance, than the same effect can still be achieved if you are using automatic
code generation for the message objects.

Resulting Context

When a Routed Message arrives, it needs to be checked whether it is at its target
or needs to be sent to the next node on the routing path. This is taken care of
in the Router pattern, which expects Routed Message objects as input. Routed
Messages can contain both, Basic Messages or Control Messages, because often
not only application messages need to be routed, but ’join’ messages for instance
as well.

Rationale

The solution takes into account that several messages can be routable. Thus, it
would not be flexible to add the header fields needed for the routing algorithm
only to a specific message type. Furthermore, the abstraction is very nice, because
the actual message that is routed is simply the payload of an Envelope Wrapper
message.

Routed Message resolves all forces stated:

• By using Routed Message, both, Basic and Control Messages, can be routed.

• The common header fields are given by the Routed Message.

• The Router and Message Dispatcher does not need to check for different types
of messages that are routable. Instead, it can treat all Routed Messages the
same way.

62

• Also intermediate nodes can treat all Routed Messages the same way, no
matter the content.

The solution has the following favorable qualities:

• Flexibility: Using Routed Message, it is trivial to make any kind of message
routable. The mechanism is thus very flexible.

• Encapsulation: The Routed Message encapsulates all the header fields nec-
essary for the routing logic.

• Clarity: Using Routed Message leads to a very clear structure. If a message
is routed or not is orthogonal to the message hierarchy.

• Abstraction: Routed Message is a very nice abstraction for all messages that
are routed.

• Understandability: It is easy to see whether a message is routed or not, and
it is easy to see how an intermediate node treats a Routed Message.

• High cohesion: Routed Message leads to high cohesion in the message space;
the concept of routed messages is encapsulated in the Routed Message, while
the specific message that is routed is encapsulated by itself.

• Avoids code duplication: Because the concept is factored out of individual
messages, no code duplication needs to take place.

Type

Adaptation of an existing pattern (A): Envelope Wrapper.

Known Uses

Almost all overlay networks use a variant of Routed Message as a basic concept
(e.g. FreePastry, Tapestry). FreePastry combines Routed Message with a variant
of Autonomous Message.

7.2.6 Specialized Message Type

Context

In real systems, the overlay network often consists of different types of nodes
(e.g. super, storage, and client nodes). All these different nodes are connected
together, so that lots of messages need to be sent in total. The messages sent

63

between different node types are often very similar in their intent and behavior.
One example of such a universal message type is an ’alive’ message that can usually
be sent between any two nodes to inform the receiver that the sending node is still
active. However, using the same messages between any pair of nodes can make it
hard to test, detect faulty conditions and monitor the network. Additionally, the
content of universal messages is sometimes misused to convey different kinds of
information, thus strong types cannot be used.

Problem

How can you improve testability on the messages and profit from static type-safety
to render some faulty network conditions impossible?

Forces

• For each pair of nodes, similar messages need to be sent. Using the same
message for each pair of nodes is therefore often possible.

• For monitoring and testing, looking at the sender and receiver of a message
can yield some information.

• Sometimes, however, the information given by the sender and receiver is not
enough to unambiguously deduce which node has sent which message. This
is for instance the case if several nodes can be hosted on one computer, but
the sender and receiver addresses only correspond to the Internet address of
the computer.

• Using universal messages, testing and debugging the protocol is much harder
because messages cannot be distinguished early, or by simply looking at their
types.

• Messages sometimes convey information such as Node Handles. When using
universal messages, these fields cannot be strongly typed, thus for instance
Typed Node Handle cannot be applied in the messages.

• Creating new message types takes some effort. They need to be added to the
Message Factory, and if the marshalling and demarshalling algorithm must
be written manually, it is tedious and error-prone.

64

Solution

ClientSuperAlive

Alive

StorageSuperAlive SuperStorageAliveSuperClientAlive

Use Specialized Message Types, which allows monitoring exactly which mes-
sages two nodes exchange. It also helps for debugging and allows each message to
be adapted to the specific needs of each pair of node types, thus including strong
types for the fields. Wrong assignments can therefore already be checked by the
compiler.

Specialized Message Type splits the universal ’alive’ message into one for each
different pair of node types. It therefore distinguishes between ’super-client-alive’,
’client-super-alive’, ’super-storage-alive’, etc. This makes it easier to monitor the
network and to debug. Additionally, each message can now contain strongly typed
fields, which renders faulty assignments impossible, which were hard to detect
otherwise. Static type-safety can further be improved if message types can only
be sent off if their target address corresponds to the correct node type. A ’super-
client-alive’ message may only be sent off, if the target Node Handle is a Typed
Node Handle of type client. Together with Source Sink Marker, this can be easily
checked. Furthermore, the statistics provided by a Traffic Monitor can be much
more accurate when using Specialized Message Types.

The drawback of this pattern is that creating new message types takes some
efforts, especially if a proprietary marshalling and demarshalling code must be
written. To overcome this, it can be very helpful to write an automatic reflection-
based code generator.

When using Specialized Message Types, there are many more messages in the
message hierarchy. Therefore, a good naming convention should be applied. Using
explicit names that contain the sending node and the receiving node (e.g. Super-
ClientAlive) can be a good choice, because it makes it very clear to the reader of
the code. Additionally, Source Sink Marker can be used to state this information
more explicit and to even check it in the code.

65

Resulting Context

When using Specialized Message Types, the Message Factory needs to be updated
for each type of message. The Message Dispatcher needs to dispatch each message
to the object responsible for processing it. If you are using Message Handler in
combination with Local Node For Each Type, then all messages sent to a given
node type will be processed by the same Local Node. Therefore, it would be nice
to detect the sink node type of a message automatically. This problem is addressed
in Source Sink Marker.

Rationale

Using Specialized Message Types corresponds to the object-oriented approach of
always using the most specific type possible. This allows specifying the system
as accurate as possible, avoiding any ambiguities. Because the specific messages
can then contain strong types, some mistakes can already be detected by the
compiler. Additionally, using Specialized Message Types improves testability and
allows to monitor the network much more accurately.

Specialized Message Type resolves most forces stated:

• Although it is possible to send the same message between different pairs
of nodes, Specialized Message Type has a number of advantages, such as
improved testability and static type-safety, so that it can be better in some
cases.

• While the sender and receiver can yield some information, it is not always
possible to deduce the type of the nodes unambiguously. Specialized Message
Type is a simple solution for this problem.

• In the case of virtual nodes, sender and receiver node type can be deduced
when using Specialized Message Type.

• Using Specialized Message Type, it is easy to test, debug and monitor
the overlay network, because only the interesting Specialized Message Type
needs to be tracked.

• Specialized Message Type also allows to contain type-safe data. Instead of
Node Handles, Typed Node Handles can be used for instance.

• However, adding new message types for each pair of message takes some
effort and bloats the message hierarchy.

The solution has the following favorable qualities:

66

• Type-safety: Not only can it be checked whether a certain node type can
receive a certain message type, but the messages itself can also contain type-
safe information, such as Typed Node Handle instead of Node Handle.

• Clarity: Introducing a new type of message for each pair makes it very
explicit and therefore clear which messages are exchanged by which node
types.

• Understandability: The explicit structure makes it very easy to understand
the purpose of each message.

• Testability: With Specialized Message Types, it is much easier to test and
debug the network, because the exchange of a message between a certain
pair of nodes can be tracked individually.

Unfortunately, the solution misses the following qualities:

• Flexibility: Using general message types is much more flexible, because no
adaptions are needed when adding new node types.

• Effortless: Adding a new message type for each pair of node takes some
effort.

• Simplicity: The message hierarchy is more complex than if there was only
one general message type. However, while at first glance it is more complex,
reading the source code becomes much simpler.

However, taking the extra effort needed can be justified by the benefits of a
clear, explicit structure that improves testability.

Known Uses

Unfortunately, Specialized Message Type is not used that often, but universal
message types are sent between each pair of node. In a lot of academic projects,
however, there is often only one type of node, so that Specialized Message Type
cannot even be applied.

Type

Standard design solution (S).

67

7.2.7 Source Sink Marker

Context

If you are using Specialized Message Types, each message should be sent and
received by exactly one type of node. Explicit names for the message classes,
containing the sender (source) and receiver (sink) node type, can help the reader
of the code. However, the Message Dispatcher still needs to know each message
type and reasoning about the source and sink node type in the code is not possible
(e.g. in the Traffic Monitor).

Problem

How can you make the source and sink node type of a message explicit, so that it
can be checked in the code?

Forces

• Using long class names to indicate the source and sink of a message is very
helpful for the programmer reading the source code, but is not sufficient for
the dispatching mechanism to distinguish the types as well.

• Using a separate table which lists the source and sink of each message is a
source for inconsistency and duplication. Furthermore, it does not improve
readability when browsing through the code.

• Using reflection to reason about the source and sink node type from its class
name is not efficient and safe.

68

Solution

IClientSink

IClientSource

ISuperSink

ISuperSource

IStorageSink

IStorageSource

SuperClientAlive

ControlMessage

Message

Alive

Use Source Sink Marker to mark the source and sink node type of each
message. Let each message simply implement this (empty) Marker Interface, so
that the node types can be checked programmatically.

Simply create a source and a sink Marker Interface for each type (e.g. IClientN-
odeSource, IStorageNodeSource, ISuperNodeSource, IClientNodeSink, IStorageN-
odeSink, ISuperNodeSink), and let each message implement the corresponding in-
terface. If you are using Local Node For Each Type, then the dispatching mecha-
nism becomes very simple; only the sink type of a message has to be checked (e.g.
in Java using instanceof) in order to dispatch it to the appropriate local node
object.

Because Source Sink Marker introduces explicit types for the messages, some
mistakes can be detected already at compile-time. Other mistakes can be detected
by using assertions at run-time. It can for instance be checked that messages for
a client node can only be sent off if the target node is of type client (using Typed
Node Handle).

If the programming environment easily allows seeing the interface of an object,
then it is also more readable for the programmer. At least when a programmer
looks at the class, it becomes clear who sends and who receives this type of mes-
sage. To improve readability further, it can also be a good choice to use explicit
names for the message types, containing the source and sink node type (e.g. Su-
perClientAlive).

69

Code Samples

public class MessageDispatcher {

public void dispatch(InternetAddress sender, ByteBuffer data) {

assert sender != null;

assert data != null;

Message message = messageFactory.create(data);

// ...

if (message instanceof RoutedMessage) {

// ...

} else if (message instanceof BasicMessage) {

// ...

} else if (message instanceof ControlMessage) {

if (message instanceof IClientNodeSink) {

ClientNode clientNode = machine.getClientNode();

if (clientNode != null) {

clientNode.handle(message);

} else {

throw new MessageHandlingException("...");

}

} else if (message instanceof IStorageNodeSink) {

Collection<StorageNode> storageNodes = machine.getStorageNodes();

if (!storageNodes.isEmpty()) {

for (StorageNode storageNode : storageNodes) {

storageNode.handle(message);

}

} else {

throw new MessageHandlingException("...");

}

} else if (message instanceof ISuperNodeSink) {

SuperNode superNode = machine.getSuperNode();

if (superNode != null) {

superNode.handle(message);

} else {

70

throw new MessageHandlingException("...");

}

}

}

}

}

Resulting Context

When using Local Node For Each Type and Message Dispatcher, each Local Node
needs to register itself at the implicit Message Dispatcher for the messages it
is interested in. Likewise, if an explicit Message Dispatcher is used, it needs to
dispatch the messages off to the Local Node depending on their type. Once Source
Sink Marker is applied, this becomes very simple, because now only the sink type
needs to be checked.

Rationale

Source Sink Marker introduces strong types and therefore makes the system more
explicit and safe. Using Source Sink Marker, the source and sink node type of a
message can be checked programmatically, which can help at different places (e.g.
Message Dispatcher, Traffic Monitor).

It resolves all forces stated:

• Using Source Sink Marker allows the Message Dispatcher and other places
in the code to check the source and sink node type of a message program-
matically.

• Source Sink Marker states the type of the source and sink of a message at
the right place, the message itself. This avoids inconsistencies and improves
readability.

• Checking the type of an object is much more efficient and safe than using
reflection.

The solution has the following favorable qualities:

• Clarity: Source Sink Marker makes it explicit and easy to check the source
and sink node type a message programmatically.

71

• Understandability: When reading the code, this extra information helps to
understand it quicker.

• Simplicity: Using Source Sink Marker, the Message Dispatcher becomes
much simpler, because messages can simply be dispatched off according to
their sink node type.

• Effortless: Using Source Sink Marker gains some of the effort that was spent
to create each different Specialized Message Type, because in the Message
Dispatcher, most often only the sink type of a message needs to be checked
to decide which Message Handler to dispatch it to.

Known Uses

Marker Interfaces are used a lot in different software systems. Prominent examples
are for instance the Serializable and Remote interface in the Java programming
language.

For the purpose of marking the source and sink of messages, I could not find
this pattern be applied in overlay networks so far.

Type

Existing pattern (E): Marker.

References

Source Sink Marker is a concrete instance of the Marker Interface pattern, which
is a well-known base pattern. A description of the Marker Interface pattern can
for instance be found in [64].

7.3 Message Handling

Messages arriving at a node need to be processed. They either need to be delivered
up to the application, sent further to the next node on the routing path, or han-
dled by the overlay network itself to maintain the routing topology. This section
introduces patterns describing how messages are received and processed. Similar
to the patterns from the last section, these patterns are known from distributed
systems and are simply adapted in here for the special requirements of overlay
networks.

72

7.3.1 Message Dispatcher

Context

When a message arrives, the network layer delivers the raw bytes that make up a
logical message up to the overlay network layer. You are using Message Factory
to transform the raw bytes into a message object. Depending on the actual type
of the message, different actions need to be performed in the overlay network.

Problem

How do you process the different messages?

Forces

• Processing all messages at one single place is not favorable.

• Despite the large number of messages, it should be easily readable how and
where each message is processed. The execution flow should be very clear.

• Adding new message types should be very simple.

• Some messages need to be delivered to the application.

• Messages might be corrupted. However, they should not result in an unstable
state of the overlay network.

Solution

dispatch(sender: InternetAddress,
rawMessage: ByteBuffer)

MessageDispatcher

Use a Message Dispatcher, which receives the raw bytes from the network
layer, creates the corresponding message object using the Message Factory, and
dispatches it to the actual object responsible for processing it.

Usually, the Message Dispatcher needs to conform to an interface defined by
the network layer (similar to Application Delivery for the overlay network layer).

73

Whenever a message arrives, the network layer will call this method to deliver the
raw bytes to the overlay network layer.

The actual implementation of the Message Dispatcher can look very differently.
It can either be an explicit or an implicit Message Dispatcher. In the explicit Mes-
sage Dispatcher, it is explicitly stated which message object to dispatch to which
object (e.g. using a switch statement on the message type). In an implicit Mes-
sage Dispatcher, Message Handlers register themselves with it, so that it does not
know whom to dispatch a message object statically, but dispatches it to whoever
registered it for that message type (e.g. using a list that stores the type together
with the Message Handler object).

Both implementations are feasible and have their own advantageous. An ex-
plicit Message Dispatcher has the advantage that the execution flow can be fol-
lowed explicitly by reading the code of the dispatcher. In the implicit dispatcher,
different objects register themselves with the dispatcher, so readability is hindered
by the need to read different places making up the dispatcher logic. On the other
hand, explicit Message Dispatchers are more rigid, whereas implicit Message Dis-
patchers can be extended with new message objects easily. However, this argument
is not as strong if one takes into account that both solutions require about one or
two lines of code that need to be added at the maximum for each message type,
and using for instance Source Sink Marker might make it unnecessary in both
cases. In general, implicit Message Handlers are typically the preferred method
when Message Handlers need to be registered that are not known at compile time.
This if often the case in frameworks or libraries, where new handlers need to be
registered without changing the source code of the dispatcher (e.g. event listeners
in GUI frameworks). In this case, however, the overlay network is usually under
full control of the programmer and no handlers need to be added at runtime (com-
pared to the discussion in Application Delivery, where a more flexible mechanism
is needed).

Because the Message Dispatcher does have a special relation with Application
Delivery and Router, the explicit dispatcher might make this clearer. An implicit
Message Dispatcher is only possible if all objects responsible for processing mes-
sages conform to a common interface (the Message Handler). This would only be
possible by implementing this for Application Delivery and Router as well, which
is certainly possible, but not necessarily favorable. However, using a Message Han-
dler for all other objects is strongly recommended, even in the case of an explicit
Message Dispatcher.

To guarantee stability even in the case of corrupted messages (wrong content),
the Message Dispatcher needs to apply meaningful exception handling mechanisms
and makes use of the Message Verifier.

74

Code Samples

public class MessageDispatcher {

public void dispatch(InternetAddress sender, ByteBuffer data) {

assert sender != null;

assert data != null;

Message message = messageFactory.create(data);

// ... see Message Verifier, Traffic Monitor

// dispatch off messages

}

}

Resulting Context

The Message Dispatcher will need the Message Factory to first create the message
object. Because some messages need to be checked for their integrity, Message
Dispatcher can make use of a Message Verifier. The Message Dispatcher dispatches
the messages off to the appropriate object, which should be a Message Handler.
The Message Dispatcher needs to work closely together with the Router in case
a Routed Message is not at its target, but needs to be routed to the next node.
If a Routed Message containing a Basic Message (issued by the application built
on top) has arrived at its target node, the Message Dispatcher needs to deliver
the message up to the application, using Application Delivery. If you are using an
explicit dispatcher, then Source Sink Marker can be helpful to make the dispatcher
be lean and elegant.

If there is only one node per computer, or if each node listens on a different port
(demultiplexing at a lower level), then the Message Dispatcher can be combined
with Local Node.

Rationale

The Message Dispatcher is only responsible for dispatching the messages to the
appropriate objects. These Message Handlers are then responsible for processing
the message (separation of concerns). Adding new message types is very simple,
because the object processing a new message type only needs to be registered at
the Message Dispatcher.

75

The Message Dispatcher resolves all forces stated:

• Instead of processing the messages directly when they enter the overlay net-
work, the Message Dispatcher dispatches them off to the appropriate object
processing the message.

• Using a Message Dispatcher results in a very clear structure regarding in-
coming messages.

• When adding new message types, only the Message Dispatcher needs to be
changed (as well as the Message Factory of course).

• The Message Dispatcher can deliver Basic Messages up to the application.

• The Messsage Dispatcher can drop corrupted messages. In cooperation with
the Message Verifier, it easy to treat all messages equally if they are cor-
rupted.

The solution has the following favorable qualities:

• High cohesion: Using a Message Dispatcher to simply dispatch off incom-
ing messages leads to high cohesion, because the Message Dispatcher is only
responsible for dispatching the messages, while the Message Handler is re-
sponsible for processing it.

• Clarity: Using a Message Dispatcher leads to a very clear design, because it
is made explicit where messages enter the overlay network.

• Understandability: Using a Message Dispatcher, it is easy to see which Mes-
sage Handler is responsible to process which message, and thus the incoming
message objects can easily be tracked and understood.

• Size: When the Message Dispatcher is only responsible to dispatch the mes-
sage objects, it remains very small and understandable.

Known Uses

Most distributed systems use Message Dispatcher to dispatch off messages. Also
in overlay networks, this pattern is dominantly used for this purpose. FreePastry
combines Message Dispatcher with Local Node. Tapestry and Bamboo combine
Message Dispatcher with Router. In some projects, the Message Dispatcher does
not really dispatch the messages off, but processes them by itself, thus leading to
long and obfuscated dispatching logic.

76

Alternative Patterns

Autonomous Message is closely related to a Message Dispatcher, because it pro-
vides another solution to the same problem. If different messages result in the
same action, Message Dispatcher might be the better alternative.

Type

Existing pattern (E): Observer.

References

This pattern is well-known from lots of distributed systems, and it has been doc-
umented several times. It can be regarded as a variant of the Observer pattern,
at least in the implicit case. The responsibility of the Message Dispatcher in over-
lay networks is a little bit extended compared to other systems, because Routed
Messages require special processing. This, however, depends on the actual imple-
mentation used (see Router).

7.3.2 Message Handler

Context

You are using Message Dispatcher to dispatch off messages to the objects respon-
sible for processing them. If you are using an implicit Message Dispatcher, all
objects responsible for processing a message object need to conform to a com-
mon interface. If you are using an explicit Message Dispatcher, there is no such
obligation. In either case, the Message Dispatcher should be as simple as possible.

Problem

How can you make the Message Dispatcher be as simple and small as possible?

Forces

• The Message Dispatcher should only need to dispatch off messages to the
appropriate objects. It should not process the messages directly.

• A message should be processed as late as possible, meaning that it should
be processed as close to the corresponding object as possible.

• The execution flow when messages arrive should be very clear. It should be
very easy to see how a message is processed and who is responsible for it.

77

• Processing message objects directly can be more efficient.

Solution

handle(Message message)

MessageHandler

MessageDispatcher

Use a Message Handler interface which simply provides a method han-
dle(Message message). All objects that are responsible for processing messages
need to implement this interface. Then, the Message Dispatcher can call this
method to dispatch off messages and is prevented from processing them by itself.

For implicit Message Dispatchers, it is mandatory that all objects implement
the Message Handler interface. But even for explicit Message Dispatchers, it might
be beneficial because it results in a clear and standardized design. Because the
handle() method takes message objects as arguments, it forces the Message Dis-
patcher to dispatch off the messages, rather than processing part of them by itself,
leading to long and obfuscating code.

The object responsible for processing messages should implement the Message
Handler interface directly. If there are lots of messages for which it is responsible,
however, it might be worthwhile to refactor the internal dispatching out into an
inner class (or even a separate class). The implementation of the handle() method
would then simply call another handle method on an instance of its internal mes-
sage handler class.

Resulting Context

The Message Dispatcher dispatches messages off to Message Handler objects. Lo-
cal Nodes are a perfect example of where to apply Message Handlers. An implicit
Message Dispatcher can simply store a list of message types together with their
Message Handler object, and then look up this list to know whom to dispatch the
message to. Application Delivery and Router are a special case of Message Han-
dlers. Of course, also these objects could implement a Message Handler. Because
of their special role, however, this can be implicit so that the methods deliver()
and route() are called explicitly. This implies that the implicit dispatching can

78

only be applied for other Message Handlers (handling especially Control Messages)
in the overlay network. It also makes a stronger point on why explicit Message
Dispatchers can be preferred in overlay networks.

Rationale

Of course, this solution is very simple and straightforward. It is a key component of
the Observer pattern, or event listeners in general, where Observable and Listener
interfaces fulfill the role of Message Handlers. The reason why this solution is
written as a ’pattern’ on its own is to make another point. Because using Message
Handlers in explicit Message Dispatchers is not an obligation, it often leads to long
and obfuscating code in the dispatcher. The dispatcher would typically unwrap
some of the content contained in the message and would call different methods on
helper objects (such as Local Nodes) in order to process it. If the logic is only
small, it would sometimes do the whole processing by itself and would even send it
off using the underlying network layer. By stating this as its own pattern, it gives
reasons to use Message Handlers explicitly for every object processing messages,
resulting in small and easy maintainable Message Dispatchers.

Delaying the message processing by dispatching it off to Message Handlers
in every situation actually trades off efficiency for clarity. However, it can be
argued whether this really results in significant efficiency losses due to method calls.

Message Handler resolves most forces stated:

• Using Message Handlers makes it explicit to not process messages in the
Message Dispatcher itself, resulting in a lean Message Dispatcher and a clear
structure.

• Using Message Handlers results in a highly cohesive architecture, where mes-
sages are processed as close to the appropriate object as possible.

• Using a common interface makes it clear and readable where messages arrive
and how they are processed.

• As already noted, delegating the messages off to Message Handlers is slightly
less efficient than processing them directly.

The solution has the following favorable qualities:

• High cohesion: When using Message Handlers, it is made very explicit that
the Message Dispatcher may not process the message objects itself, leading
to high cohesion.

79

• Size: Because the Message Dispatcher does not process messages itself, it
remains very small.

• Clarity: It is made explicit where and how message objects are processed,
leading to a clear structure.

• Understandability: It is easy to track message objects and understand how
and by which object they are processed.

• Flexibility: It is very easy to add new Message Handlers.

• Encapsulation: The processing logic is completely encapsulated by the Mes-
sage Handler.

• Abstraction: Using Message Handlers gives a nice abstraction in the overlay
network, because the message flow and processing is made more explicit.

Known Uses

Message Handler is used whenever an implicit Message Dispatcher is applied. This
is the case for instance in FreePastry, where Message Handlers implement the
MessageReceiver interface. Unfortunately, where explicit Message Dispatchers are
used, Message Handler is rarely applied.

Type

Existing pattern (E): Observer.

References

Message Handler corresponds to the well-known Observer interface in the Observer
pattern [19], and to event listeners in general.

7.3.3 Autonomous Message

Context

A Message Dispatcher dispatches off messages to the appropriate object processing
it. This implies two things. First, the conditional logic in the Message Dispatcher
needs to be maintained when the message hierarchy changes, and second, Message
Handlers are processing message objects, rather than message objects processing
themselves.

80

Problem

How could you let messages process themselves, making the Message Dispatcher
and Message Handlers become redundant?

Forces

• Maintaining the conditional dispatching logic in the Message Dispatcher
takes some effort.

• When using Message Handlers, processing logic is not encapsulated in the
message object itself.

• Processing message objects by Message Handlers is ’function-oriented’, not
truly object-oriented.

• Letting messages process themselves makes it harder to read all message
processing logic, because it is encapsulated in different message objects.

• Simply letting messages dispatch themselves to Message Handlers does not
bring a lot of advantages.

• If different messages are processed similarly, the code will be very similar as
well.

Solution

execute()

Message

Use Autonomous Messages, which know how to process themselves. They are
processed by calling an execute() method on the message object.

When a message enters the overlay network, it first needs to be transformed
into a message object, using Message Factory. After that, the execute() method
of the message object is called to let it process itself. The object which first
calls the Message Factory and then executes the message object can be regarded
as a very simple Message Dispatcher. However, the whole conditional logic of

81

which message to dispatch to which Message Handler is not necessary anymore.
Additionally, Message Handlers are not needed any more either, because messages
process themselves completely.

A Routed Message, for example, will interact together with the Router to check
whether it is at its target node. If so, it will unwrap the internal message and let
it be created and executed by the same simple Message Dispatcher. If not, it
will make itself be sent to the next node on the routing path. Basic Messages
will deliver themselves up to the application using Application Delivery. Control
Messages perform the appropriate action in the overlay network themselves, for
instance adding Node Handles to the routing table or refreshing entries in the
neighbors table.

Code Samples

public abstract class Message {

public void execute();

}

public class MessageDispatcher {

public void dispatch(InternetAddress sender, ByteBuffer data) {

assert sender != null;

assert data != null;

Message message = messageFactory.create(data);

message.execute();

}

}

Resulting Context

Autonomous Messages will either be Control, Basic or Routed Messages. Routed
Messages need to interact with the Router. They also need to work together with
Network Gateway or Node Handle Proxy to transmit themselves using the network
layer. Basic Messages need to deliver themselves up using Application Delivery.
Control Messages will make use of different objects from the overlay network, such

82

as Local Node.

Rationale

Autonomous Messages implement the whole message processing in a truly object-
oriented manner. Message Dispatchers and Message Handlers disappear, and
processing code is close to the object itself, in its own execute() method, rather
than spread all over in the overlay network.

However, Autonomous Messages may also have some severe drawbacks. If
several messages need to be processed similarly, the execute() method will contain
very similar code. Such code duplication can only be avoided if the message objects
can inherit their behavior from a common super type, which is not always possible
using single implementation inheritance due to the complex message hierarchy. If
the processing code would be refactored out of the message object, the solution will
soon resemble the Message Handler pattern, and the only logic that is contained in
the message object will be the dispatching logic. Then, however, a central Message
Dispatcher might provide a better overview.

Furthermore, it is not clear whether the execute() should only be called after a
message is constructed through the Message Factory, thus representing an incom-
ing message, or whether it can also be called for messages that are created locally
meant to be sent off. To overcome this, one could split each message object in
two, an incoming and an outgoing message object. The incoming message object
would process itself, whereas the outgoing message object would sent itself off over
the network. Both, the incoming and the outgoing message object, would extend
their common super type, which contains all fields and shared behavior. However,
the execute() method would be overridden by each type. Such a design would not
only bloat the message hierarchy, but also lead to code duplication, at least in the
outgoing message object’s execute() method.

However, Autonomous Messages can be a good solution in some occasions,
because the processing logic is encapsulated in the message object itself. There
is a similar pattern known in the literature, the Command Message, a variant
of the Command pattern, which has been successfully used in different systems.
However, it is important to note that Autonomous Messages differ significantly
from Command Messages (see Reference).

Because of the listed drawbacks, it is arguable whether Autonomous Message
should be used at all. At first, it is very tempting, but it later may prove to have
more disadvantages than advantages. In these cases, Autonomous Message could
possibly also be an ’anti-pattern’ [65] in some contexts.

Autonomous Message resolves some of the stated forces:

83

• The dispatching logic does not need to be maintained in the Message Dis-
patcher, but is included in the Autonomous Message itself.

• The processing logic is encapsulated in the message object.

• Therefore, Autonomous Message corresponds to straightforward object-
oriented modeling.

• Unfortunately, when using Autonmous Message, it is harder to read the
processing logic for different message objects, because it is strongly encap-
sulated.

• Instead of dispatching themselves to Message Handlers, Autonomous Mes-
sages should only be applied if they can be executed autonomously, not
depending on lots of other objects.

• If different messages need to be processed very similarly, Autonomous Mes-
sage is not the best choice, because it results in code duplication.

The solution has the following favorable qualities:

• High cohesion: Autonomous Messages lead to high cohesion, if all the
processing logic can be contained in the message object itself.

• Low coupling: Then, it results in very low coupling as well. However, it is
rarely the case that a message can be executed very autonomously, without
relying on other objects, because it most often needs to change the state of
the environment at its target.

• Encapsulation: The Autonomous Message encapsulates both, data and be-
havior, in itself.

• Flexibility: Adding new message types results in almost no changes in the
rest of the overlay network, not even in the Message Dispatcher and Message
Handlers.

Known Uses

FreePastry uses a variant of Autonomous Message for its Routed Message. The
RouteMsg object contains a method routeMessage() which routes a message off to
the next node, given that the next node is already set up by the Router. However,
this is the only place where it is used in FreePastry, and other messages are dis-
patched off and processed normally. However, Autonomous Message is also used
in some other general peer-to-peer systems.

84

Alternative Patterns

Message Dispatcher together with Message Handler is an alternative to this pat-
tern. It may be better in situations where several messages need to be processed
similarly.

Type

Adaptation from an existing pattern (A): Command Message.

References

Autonomous Message closely resembles the Command pattern [19]. In the Com-
mand pattern, commands are wrapped as objects with their appropriate execute()
method. This pattern has been extended to message objects, known in the litera-
ture under the name of Command Message (e.g. [35]), which has been successfully
used in a lot of systems. Similar to Autonomous Message, Command Messages can
be executed after they are received. However, there is an important difference to
Autonomous Message. Command Messages contain commands in their message as
content. The contained source code can be executed at the target using reflection
mechanisms or scripting functionality. In Autonomous Messages, no source code
is contained when sent over the network. It is simply a matter of design where the
processing logic is contained, thus it does not enhance flexibility.

7.3.4 Message Verifier

Context

Peer-to-peer systems are very vulnerable to attacks because they are inherently
open and exposed. One specific form of attack is by sending messages with a
forged sender address, that is, messages claiming to be from a certain node, while
they are in reality sent by an attacker. You want to include a simple yet effective
mechanism to detect such messages. Messages need to carry cryptographic proofs
(credentials, signatures) in order to verify the sender of a message. However,
credentials can be quite large, so that they could bring down overall efficiency
if they were included in all messages. Because message integrity is not equally
important for all messages, credentials should be included in some specific messages
only. For all other messages, you may want to perform some simple verification
checks.

85

Problem

How can you include a simple verification mechanism, which can be extended for
specific messages?

Forces

• Forged messages should be detected early, before they can cause damage.

• Some message should include credentials. It should be easy to add credentials
to existing messages or to new ones.

• Verifying the credentials is similar for all messages containing credentials.

• The message hierarchy can be quite complex.

• Simple verification can be done by checking header fields.

• Each message may include its proper verification logic.

Solution

verify(Message): boolean

MessageVerifier

verify(): boolean

Message

getCredentials(): Credentials

IContainsCredentials

issuedFor(InternetAddress):
boolean

Credentials

verify(): boolean

NormalMessage

verify(): boolean
getCredentials(): Credentials

SecureMessage

Use a Message Verifier, which provides a method verify() that checks the in-
tegrity of all messages. If credentials are included, it will verify that they are
indeed issued for the claimed sender.

The Message Verifier provides a central place for doing all verification checks.
The verify() method can first do some simple checks on the header fields or do
other integrity checks. Then, it calls the verify() method of each message, which
allows each message to implement its own verification algorithm. Furthermore, if
a message contains credentials, it checks whether the credentials are indeed issued
for that sender, thus verifying that the message is really sent by the claimed

86

sender. If the Message Verifier cannot verify a message, it can be dropped by the
Message Dispatcher, so that it cannot cause any damage.

The verify() method of each message is provided by the common super type
Message. The Message class simply implements this method by returning true. If
a specific message type wants to implement its own verification algorithm, it can
simply override this method.

Interesting checks can only be done if a message contains cryptographic proofs.
This allows for instance to verify that the sender is really who he claims to be.
All messages containing such credentials need to implement a common interface
(e.g. IContainsCredentials), so that the Message Verifier knows that it needs to
check the credentials. Messages implementing this interface need to implement
a method similar to getCredentials(), which returns the credentials so that the
Message Verifier can perform the checks.

Code Samples

public class MessageDispatcher {

public void dispatch(InternetAddress sender, ByteBuffer data) {

assert sender != null;

assert data != null;

Message message = messageFactory.create(data);

if (!messageVerifier.verify(sender, message)) {

// message not verified

// perform appropriate action

return;

}

// ...

}

}

public class MessageVerifier {

public boolean verify(InternetAddress sender, Message message) {

assert sender != null;

87

assert message != null;

// do basic checks reflecting general policies

if (!message.verify()) {

return false;

}

if (message instanceof IContainsCredentials) {

Credentials credentials = ((IContainsCredentials) message)

.getCredentials();

if (!credentials.verifyOwner(sender)) {

return false;

}

}

return true;

}

}

public interface IContainsCredentials {

public Credentials getCredentials();

}

public class Credentials {

public boolean verifyOwner(InternetAddress sender) {

assert sender != null;

// ...

}

}

public class Message {

88

public boolean verify() {

return true;

}

}

public class NormalMessage extends Message {

public boolean verify() {

// check fields and content

}

}

public class SecureMessage extends Message implements IContainsCredentials {

private Credentials credentials;

public boolean verify() {

// check fields and content

}

public Credentials getCredentials() {

return credentials;

}

}

Resulting Context

Messages need to be verified when they arrive in the overlay network. After creat-
ing the message using Message Factory, the check needs to be done immediately,
before dispatching or processing the message further. Thus, the Message Dis-
patcher calls the Message Verifier just after the message has been created. In case
it is not verified, the Message Dispatcher either drops (and logs) the message, or
performs any other appropriate action.

Note that some simple semantic checks can be included by always using strong
types. Therefore, it is recommended to use Typed Node Handle to include in
messages, which also gives reasons to use Specialized Message Types.

89

Rationale

In the case of single implementation inheritance, the credentials cannot be verified
by a method provided by a common super class, because of the complex mes-
sage hierarchy and the fact that only specific messages should include credentials.
Therefore, this logic needs to be factored out into a Message Verifier. Messages
that include credentials need to be recognized and need to provide a common
method getCredentials() to get the contained credentials. This makes it very easy
to include strong security for specific messages only, and adding credentials to
existing or new messages is trivial. If multiple implementation inheritance can
be used, then the verification method could also be provided by a common super
class. Aspect-oriented programming could also be applied for this purpose.

The simple verify() method provided by the common super class Message can
be overridden by specific messages to do some simple checks on other fields or on
the content. In the simplest case, the method just returns true.

The Message Verifier also provides a central place to include other verification
checks, reflecting common policies on an abstract level, orthogonal to individual
messages (for instance to drop all messages sent by a specific address).

The Message Verifier resolves some of the forces stated:

• If the Message Verifier is called as soon as the Message Factory has created
the message object, forged messages are detected early and can be dropped
by the Message Dispatcher.

• Not all messages need to contain credentials, because it is an overhead and
makes the message larger, consuming more bandwidth. However, it is very
easy to include credentials for any kind of message that needs it.

• All messages containing credentials are verified the same way.

• The Message Verifier pattern takes into account that the message hierarchy
can be very complex, and that for instance the credentials cannot always be
inherited.

• Simple verification of header fields, or applying a general policy, is very easy
using the Message Verifier.

• Each message can include its own verification logic.

The solution has the following favorable qualities:

90

• Flexibility: The Message Verifier is a very flexible mechanism. Any kind of
message can be verified, and the level of security can be increased stepwise.
Credentials are completely orthogonal to the rest of the message hierarchy,
and every message object can implement its own verification logic.

• High cohesion: Verification logic is implemented in three parts, but access
and checks are encapsulated in the Message Verifier.

• Understandability: It is easy to understand when and where verification logic
is executed, and what happens in the Message Dispatcher if a message is not
verified.

• Clarity: The Message Verifier is a very clear and visual structure for where
verification of messages takes place.

Known Uses

FreePastry is designed to include a Message Verifier. JXTA uses credentials and
certificates in an extended way.

Type

Proto-pattern (P).

7.4 Routing

Routing messages to specified keys is the main task of the overlay network. The
actual routing algorithm is highly specific to the overlay network, but the solution
to its software design can be reused for all overlay networks. This section introduces
the pattern which is used in most overlay networks.

7.4.1 Router

Context

The task of the overlay network is to route messages to specified keys. To achieve
this goal, every node receiving a message sends it to the node from its routing table
with the identifier which is closest (in whatever metric used) to the key. Once the
message arrives at its target node, it needs to be delivered up to the application.
You are using Routed Message to identify such messages.

91

Problem

How do you implement the routing algorithm and how does it interact with other
objects in the overlay network?

Forces

• All messages, including Routed Messages, enter the overlay network through
the Message Dispatcher. However, it is not the task of the Message Dis-
patcher to implement the routing algorithm.

• A message that has arrived at its target node needs to be delivered up to
the application. Otherwise, the message needs to be sent to the next node.

• However, in some specific overlay networks, the message must not be deliv-
ered up to the application, but needs to be sent to connected nodes. This
is for instance the case in a network where storage nodes are connected to
super nodes, but only super nodes participate in the routing algorithm. A
super node might need to unwrap the Routed Message and send its contained
message off to a connected storage node.

• In some cases, the application built on top needs to be informed before a
message is sent to the next node (using Application Notification).

• The specific routing algorithm, as well as the metric used, should be encap-
sulated from the rest of the overlay network, so that its implementation can
be changed easily.

• Despite the complexity of the algorithm, it should be easy to read and un-
derstand where the routing takes place in the code.

• The same code should be used when an application uses the overlay network
to route a message, and when a Routed Messages arrives at an intermediate
node. This avoids code duplication.

• The Message Dispatcher knows whom to dispatch which message. Therefore,
once a Routed Message has arrived at its target, the internal message should
be dispatched off using the Message Dispatcher. Otherwise, it would lead to
code duplication.

• Information about the network (Node Handles) might not only be stored in a
routing table, but in a neighbors and other objects as well. This information
must potentially also be taken into account in the routing algorithm.

92

• Not only Basic Messages might be contained in Routed Messages, but Con-
trol Messages (e.g. join messages) as well. Therefore, not all messages that
arrive at their target need to be delivered up to the application.

Solution

route(RoutedMessage)

Router RoutingTable

MessageDispatcher

NetworkGateway

IApplicationDelivery

Node

Neighborhood

IMessageHandler

route(Message)

OverlayFacade

Network

IApplicationDelivery

Use a Router, which encapsulates the routing algorithm and provides a method
to route Routed Messages. This method checks whether a Routed Message is at
its target, or if it needs to be sent away, in which case the router chooses the next
node according to its routing algorithm from the routing table and neighbors
table. It interacts with the Message Dispatcher to dispatch messages that have
arrived at their target to the appropriate object.

The Router is implemented by an object which provides a method
route(RoutedMessage message), which either decides that it is at its target, or
that it needs to be sent away, in which case it would call the appropriate method
on the Network Gateway. Because in the overlay network, not all Basic Messages
need to be routed, as well as because not only Basic Messages, but also Control
Messages can be contained in Routed Messages, the Message Dispatcher already
needs to know whom to dispatch which message. Therefore, the Router should
not need to dispatch off messages by itself, because this would result in unneces-
sary code duplication. Instead, the Router should rely on the Message Dispatcher

93

to do that job. However, there are some interesting details regarding the actual
implementation of the interaction of the Router with the Message Dispatcher.

A simple and elegant solution looks as follows. When a Routed Message ar-
rives at the Message Dispatcher, it dispatches it to the Router (either calling route
directly in an explicit Message Dispatcher, or let the Router object implement a
Message Handler). The Router decides whether the Routed Messages has arrived
at its target, or if it needs to be sent away to the next node using the Network
Gateway. In case it has arrived at its target, the payload of the Routed Message,
thus the actual Basic or Control Message, will be delivered again to the Message
Dispatcher. Since the payload is not yet transformed into a message object, deliv-
ering it works exactly the same way as when messages are delivered by the network
layer. However, it might be necessary for the Message Dispatcher to distinguish
these two cases, so that it would need to provide a separate method to the Router,
which takes note of it (for instance making a distinction for the Traffic Monitor)
and delegates to the usual deliver() method. In any case, the Message Dispatcher
now lets the message object be created by the Message Factory, and then dis-
patches it off to the appropriate message as if it was sent directly and arrived
through the network layer. The following figures shows a sequence diagram of
an example where a Routed Message contains a Basic Message and arrives at its
target node.

Network Message
Dispatcher

Message
Factory Router IApplication

Delivery

create

deliver(rawMessage)

RoutedMessage

route(RoutedMessage)

deliver(internalMessage)

deliver(payload)

create

BasicMessage

94

This is the preferred implementation if this mechanism is sufficient, which is
usually true in networks with only one type of node. In networks with several
node types, the target node of the routing algorithm might not be the same as
the one that should receive the message in the end (e.g. the target of a message
is a storage node, but only super nodes take part in the routing process). In this
case, the message needs to be sent away to that machine. Even though this could
be achieved in the aforementioned implementation, the next approach makes this
more explicit and readable for the programmer.

In the second approach, the Message Dispatcher does not immediately dispatch
a Routed Message off to the Router, but calls a method isAtTarget(RoutedMessage
routedMessage) provided by the Router, which returns true, if the Routed Message
is at its target, or false otherwise. If so, the Message Dispatcher might either deliver
it to the application, or, as motivated, needs to send it off to a connected node
(this could be a super node which has connections to several storage nodes). It
could call another object which takes care for that. However, this implementation
makes the execution flow more explicit. If the message is not at its target, the
Message Dispatcher calls the route() method from the Router, to actually send it
to the next node on the routing path.

Code Samples

public class MessageDispatcher {

public void dispatch(InternetAddress sender, ByteBuffer data) {

assert sender != null;

assert data != null;

Message message = messageFactory.create(data);

// ...

if (message instanceof RoutedMessage) {

router.route((RoutedMessage) message);

} else if (message instanceof BasicMessage) {

applicationDelivery.deliver(sender, ((BasicMessage) message)

.getPayload());

} else if (message instanceof ControlMessage) {

// ...

}

95

}

}

public class Router {

public void route(RoutedMessage routedMessage) {

assert routedMessage != null;

// implement routing algorithm

// either send to the next node using Network Gateway,

// or deliver the internal message to the Message Dispatcher

}

}

Resulting Context

The Router is responsible for routing messages to given keys. It therefore expects
the messages in a certain format that contains the necessary information. This
special message is a Routed Message.

The Router needs to interact with the Message Dispatcher, because it does not
know how to dispatch a specific message once it has arrived at its target node.
The Message Dispatcher, on the other hand, calls the Router in case a Routed
Message arrives. In the case that a message needs to be sent further, the Router
makes use of the Network Gateway.

The Overlay Facade uses the Router to route Basic Messages, contained in
Routed Messages, to their target. Local Node, Self Maintenance or Separate Pro-
tocol might make use of the Router to route Control Messages (e.g. join messages),
contained in Routed Messages, to their target.

Some applications might need to be informed whenever the router sends off
a message to the next node, which gives the application a possibility to control
which messages are sent. This functionality is also defined as the forward() method
in [27]. For that reason, the Router might need to notify the application using
Application Notification.

96

Rationale

The Router encapsulates the routing algorithm and allows making changes to
it easily, without affecting other parts of the code. The Router can be used for
incoming Routed Messages, as well as for application messages that need to be
routed to their target. Using the Router makes it very easy to understand the
design of the overlay network even if the routing algorithm is complex.

The Router resolves most forces stated:

• The routing algorithm is separated from the Message Dispatcher, and com-
pletely encapsulated in the Router.

• The collaboration of the Message Dispatcher and the Router makes it possi-
ble to include the dispatching logic only once, in the Message Dispatcher.

• Again, the collaboration of the Message Dispatcher and the Router allows
to process the message in any way needed.

• The router can inform the application built on top before it sends a message
away, using Application Notification.

• The implementation of the routing algorithm can be changed, as long as it
remains semantically equivalent and conforms to the interface of the Router.

• Using the Router pattern, it is not necessary to understand the routing
algorithm, because it is easy to understand what it does.

• The Router is used for both, arriving external Routed Messages, as well as
Routed Messages that need to be sent away for the application built on top.

• Because of the collaboration of the Message Dispatcher and the Router, the
Router does not need to know whom to dispatch which message.

• The Router can use all information locally available, such as routing tables
and neighborhood structures.

• Again, the Router uses the Message Dispatcher to dispatch off the internal
message, once it has arrived at its target node.

The solution has the following favorable qualities:

• Encapsulation: The Router encapsulates all routing logic completely, which
makes it easy to change the implementation, as long as it remains semanti-
cally equivalent.

97

• High cohesion: Because the routing logic is encapsulated, the architecture is
highly cohesive, putting all routing logic at a single place.

• Abstraction: The Router is a nice abstraction that helps to understand the
source code.

• Understandability: It is easy to understand the functionality of the Router
even if the specific routing algorithm is not understood in detail.

• Clarity: Using an explicit Router makes the structure of the overlay network
very clear.

• Avoids code duplication: Because of the design of the Router, it can be used
for incoming messages that need to be routed further, as well as for Basic
Messages that the application built on top wants to send.

Known Uses

A Router is used in lots of overlay networks. The actual implementation, however,
can look very differently. In FreePastry, for instance, messages arrive at the Pas-
tryNode (the Message Dispatcher combined with Local Node), which dispatches
the Routed Messages off to the Router. This in turn is responsible to set up the
next hop using the routing algorithm of Pastry. After that, the message is sent
to the PastryNode again, which dispatches it off to the Router as before. This
time, the next hop has been set, so that the Routed Messages is executed as an
Autonomous Message, which lets the Node Handle Proxy representing the next
hop receive the message. If the Node Handle Proxy’s reference to its PastryNode
equals the next hop, the Routed Message’s internal message is received by the
local PastryNode. If so, the PastryNode this time delivers it up to the applica-
tion. If not, the Node Handle Proxy is responsible for transmitting the message to
the actual computer where the node resides. The complexity of this algorithm in
FreePastry partly results from the flexibility provided by the use of Node Handle
Proxy in combination with Local Node. Maybe it could be simplified by some
minor refactoring.

In HyperCast, the Router is called Forwarding Engine, which has its own net-
work adapter to receive messages. In HyperCast, only (and all) application mes-
sages (Basic Messages) are routed, so that listening on another port is possible.
This makes application messages not arrive at the usual dispatcher, but at the
Forwarding Engine directly.

Type

Proto-pattern (P).

98

7.5 Local Node

A computer participating in a peer-to-peer system often corresponds to a node in
the network. In some overlay networks, however, a computer can host even more
than one node. This is mainly due to load balancing reasons, so that powerful
computers can be split into a number of so called virtual nodes. I refer to the
nodes hosted on a computer as the local nodes, as opposed to remote nodes, which
are hosted on other computers. In real networks, often not all nodes have identical
roles, which is because of the heterogeneity of the physical computers that take
part in the overlay network. One example is computers behind firewalls or net-
work address translators (NAT), which cannot participate in the routing process.
Therefore, different roles such as super, storage, and client nodes are introduced.
From a design perspective, this has a number of implications. This section de-
scribes patterns dealing about the concept of local nodes and their manifestation
in the design of the overlay network.

7.5.1 Local Node

Context

In the overlay network, each physical computer represents a node. However, in
some networks, each computer may also host more than one node, but many so
called virtual nodes to provide a simple mechanism for load balancing. The nodes
hosted on one computer are often referred to as local nodes, as opposed to remote
nodes which are hosted on other computers. Even though this concept is very
simple, the local nodes can cause some design problems in the object space of the
overlay network.

Problem

How do you model the object space of the overlay network around the concept of
local nodes?

Forces

• An explicit node object is often not necessary, because it is represented by
the physical computer implicitly.

• However, in some cases, several virtual nodes are hosted on the same ma-
chine.

• It may be beneficial if all nodes hosted on one machine could profit from
shared resources.

99

Solution

getId()

Node

RoutingTable

Neighborhood

Use a Local Node for each node that is hosted on the computer, resulting in
a visual and clear structure in the object space. The Local Node has its own
identifier and stores connections to remote nodes (Node Handles), which represent
the topology of the overlay network.

Each Local Node is simply represented by an object. This object stores all
information about the local node. Connected nodes are stored in the object as
references to Node Handles. This makes it easy to see whether a Local Node is
disconnected from the network, in which case it can join again.

Resulting Context

Once the Local Node pattern is applied, a lot of design issues are resolved, because
it effectively paves the way for future design decisions.

If there are different nodes in your overlay network, you should extend the
Local Node by Local Node For Each Type. In case each Local Node can maintain
itself in the network by periodically executing a protocol, Self Maintenance can be
applied. If the protocols are more complex and need to be executed in different
time intervals, a Local Node can be maintained by Separate Protocol instead.

The Local Node should be a Message Handler, so that it processes Control
Messages itself.

The connected nodes can be represented by Node Handles.

Rationale

Of course, the solution is very simple and straightforward. However, there are some
intricacies which need to be taken into account. The notion of an explicit node is
often not necessary, because the physical computer represents a node implicitly.
Therefore, objects such as the routing table, for instance, do not need to belong
to a specific node, but may reside in a flat object space. When speaking about

100

the system, messages arrive at nodes. In the software model, however, messages
do not arrive at nodes directly, but at the Message Dispatcher. In the case of a
Routed Message, the message is processed by the Router and does not even arrive
at a Local Node at all. Bringing the system and the software model into close
conciliation, however, would not lead to the best solution, because resources could
not be shared anymore. The Message Dispatcher and the Router are orthogonal
to the Local Node, if several virtual nodes are hosted. Instead of regarding the
physical computer as a node in the system, it helps a lot to view the physical
computer as simply hosting different nodes.

Note, however, that this discussion is only relevant if all nodes are listening
on the same port. If virtual nodes are implemented by nodes listening on differ-
ent ports, then a more pure, system-oriented design can be applied. However,
using different ports is often not the best option for practical peer-to-peer systems.

The Local Node resolves most forces stated:

• Even though an explicit node object is not always necessary, it is much easier
to read and understand the code.

• If several virtual nodes are hosted on the same machine, a Local Node object
becomes necessary.

• The Local Node objects may not need to be separated strictly. Instead, they
can make use of some shared resources, such as the routing table.

The solution has the following favorable qualities:

• Encapsulation: Local Node encapsulates all the logic and data belonging to
the local node in a proper entity.

• High cohesion: Because the Local Node builds an encapsulated unit, it leads
to high functional cohesion.

• Clarity: Using Local Node results in a very clear and explicit structure of the
overlay network, which makes it easy to distinguish local nodes from remote
nodes.

• Understandability: It is much simpler to understand the overlay network if
the nodes are made explicit.

• Extendibility: Local Node makes it easy to extend the concept of the local
node.

101

Known Uses

FreePastry uses the concept of Local Node, but it extends it heavily. There, the
PastryNode combines several patterns presented here. The PastryNode object im-
plements the Message Dispatcher pattern. Messages directly arrive at the node,
instead of a separate Message Dispatcher object. This is feasible because the de-
multiplexing of which node receives a message is done at a lower level (each node
listens on a different network channel). If only one port / network channel should
be used, then a separate Message Dispatcher will be needed. But the PastryN-
ode object even takes on further responsibilities. In fact, when the application
wants to route a message, it is received by the PastryNode as if the message came
through the network. In FreePastry, each application is built on top of a specific
PastryNode. When a message arrives for this application, the PastryNode uses as
variant of ApplicationDelivery to deliver it to the application. It is also possible
to register several applications per PastryNode, but the reverse is not possible.
Therefore, there is only PastryNode per application. This is different from other
approaches where there is only one application, but several virtual nodes under-
lying in the overlay network. In fact, this design decisions implies a number of
issues. In FreePastry, a message always arrives at a PastryNode, which then dis-
patches it to the appropriate object, such as the Router if it is a Routed Message.
The Router sets up the next hope of the message, and now either sends it to the
next node using a variant of Node Handle Proxy, or lets the wrapped message
be received by the PastryNode (this is combined together by letting each Node
Handle Proxy have a reference to a Local Node and vice versa). In this case, the
PastryNode will deliver the message up to the application.

Type

Standard design solution (S).

7.5.2 Local Node For Each Type

Context

You are using Local Node, but there are different types of nodes in your over-
lay network, such as super, storage, and client nodes. These different node types
also have different properties and behavior, and are connected with different re-
mote nodes in the network. Depending on the resources of the physical computer,
different node types need to be hosted.

102

Problem

How do you integrate different node types with different behavior?

Forces

• The different node types might share some properties and behavior.

• Not making the different node types explicit results in code that is hard to
maintain because a lot of special cases (e.g. lots of if and switch statements)
are needed.

• Different node types might need to be initialized dynamically on different
computers.

Solution

getId()

Node

getSuperNodeHandle()

ClientNode

getSuperNodeHandle()

StorageNode

getClientNodeHandles()
getStorageNodeHandles()

getNeighborhood()

SuperNode

Use Local Node For Each Type, which represents each different node type in
the network explicitly. Local Node For Each Type extends the Local Node, which
provides the properties and behavior that are shared among all node types.

Client nodes are fundamentally different from super nodes; they have different
responsibilities and are connected with different node types in the network. A
super node usually fulfills a number of tasks, such as participating in the routing
process and maintaining the network topology. Client nodes, on the other hand,

103

simply rely on a super node and therefore only need to be connected to few other
nodes. They also do not participate in the routing process. This different behavior
needs to have a manifestation in the code, which is represented by the Local Node
For Each Type.

Depending on the physical computer, different Local Nodes can be hosted. A
computer behind a firewall or network address translator (NAT) can usually not
host a super node, whereas a powerful computer with lots of storage and band-
width can host several storage nodes (virtual nodes). Using Local Node For Each
Type allows makeing this configuration very dynamically, by simply initializing
the specific Local Node object.

If you are using Self Maintenance, the new node will join the network auto-
matically and maintains itself up from its creation. The different node types need
to perform different maintenance protocols, which are naturally set up by using
this pattern.

Resulting Context

Once Local Node For Each Type is applied, the different node types are properly
set up. In this case, it can be very useful to use Specialized Message Types and
Source Sink Marker for the different messages that are sent among the different
node types. This helps to integrate each different node type smoothly with the
Message Dispatcher. Therefore, each Local Node should also be a Message Han-
dler. When referring to a specific type of node on another computer, Typed Node
Handle should be used. Local Node For Each Type is also the base pattern for
Self Maintenance, which implements the maintenance protocol.

Rationale

Using a Local Node For Each Type helps in implementing the different behavior
and different properties in a natural way. Because peer-to-peer systems are
symmetric, a clear distinction of the different roles is often taken late in the
development process, so that it is reflected in different places using if and switch
statements, which do not lead to a nice, object-oriented design. This is the reason
to let this simply best practices stand as its own pattern. Of course, using Local
Node For Each Type is simply traditional object-oriented modeling, where a
Local Node is inherited by special cases.

Local Node For Each Type resolves most forces:

• The different node types can easily share behavior and properties in their
common super type.

104

• Instead of complicated logic in the Local Node object, Local Node For Each
Type splits the different node types and allows implementing the special
behavior separate.

• The different properties of heterogeneous computers can be reflected by ini-
tializing different node types on each computer. Using Local Node For Each
Type makes this very easy.

The solution has the following favorable qualities:

• Understandability: Because the different behavior is not implemented in
one node object with complicated conditional logic and special cases, the
behavior of each node is much simpler to understand.

• Clarity: Local Node For Each Type makes it clear, which nodes are running
on each computer.

• Type-safety: Because the Local Node object is split in one for each node
type, strong types can be used in each Local Node For Each Type, which
leads to stronger type-safety.

• Flexibility: It is easy to configure and run different Local Node For Each
Type on each computer.

Known Uses

Local Node For Each Type is simply an example of using inheritance and poly-
morphism, which is applied in all object-oriented software systems. Unfortunately,
in overlay networks, this specific pattern is not often used. Instead, the code is
written very ’symmetric’, resulting in lots of if and switch statements along the
execution of the code, obfuscating its behavior. Using Local Node For Each Type
reflects the different behavior clearly and explicitly.

Type

Standard design solution (S).

7.6 Protocol

In an overlay network, nodes constantly join and leave. Because of these dynamics,
the routing topology needs to be maintained in order to guarantee high routing
efficiency. These dynamic operations are specified in protocols. In this section,
two alternative patterns are described for implementing the protocols.

105

7.6.1 Self Maintenance

Context

Nodes constantly join and leave the overlay network, which makes it necessary to
maintain the routing topology and update it to reflect the changes. Therefore,
every node needs to run a maintenance protocol periodically, which sends ’alive’
messages to connected nodes, checks if connected nodes are still alive, and much
more. If a node realizes that its connected node is not online anymore, it will need
to join again.

Problem

How do you implement the maintenance protocol?

Forces

• Protocol logic spread around the overlay network is hard to read and main-
tain.

• The only entities active in the overlay network are the nodes.

• The maintenance protocol needs to be run periodically.

106

Solution

run()

isConnected()
maintenance()
join()
shutDown();

doJoin()
doMaintenance()

Node

Runnable

public void run() {

 while(...) {
 maintenance();
 }

}

doJoin()
doMaintenance()

ClientNode

doJoin()
doMaintenance()

StorageNode

doJoin()
doMaintenance()

SuperNode

private void maintenance() {

 if (!isConnected()) {
 join();
 else {
 doMaintenance();
 }

}

Use Self Maintenance, which encapsulates the maintenance protocol in the
Local Node and runs it periodically in its own thread. This makes the nodes be
the only active components in the system, responsible for joining and maintaining
themselves the same way as in the system model.

In Java, the Local Node object simply implements the Runnable interface. In
the run() method, the maintenance() method of the Local Node object is peri-
odically called in a loop, which waits before looping the next time for a certain
amount of time (the maintenance frequency). The maintenance() method im-
plements the protocol. It also lets the Local Node join the network if it is not
connected. Therefore, it is sufficient to construct the Local Node and start a new
thread on it. Instead of implementing the Runnable interface, the Local Node
could also extend the Thread class.

This maintenance protocol represents the periodic action that is performed by
each node. Of course, the node also needs to react on Control Messages that arrive.
Because Local Node can be combined with Message Handler, also the reactive part
of the protocol is encapsulated in the Local Node object. However, the methods

107

performing the protocol need to be implemented carefully, taking into account that
the receiver thread tries to access the same objects at the same time. Therefore,
safety and liveness issues must be solved by applying good design principles (see
for instance [34]).

The maintenance() method does not need to implement the whole logic by
itself, but can also rely on helper objects. However, by using Self Maintenance,
the protocol is properly encapsulated in the object, and reading the code is very
easy.

Code Samples

public abstract class Node implements Runnable {

public void run() {

while (/* ... */) {

maintenance();

try {

long beforeWait = System.currentTimeMillis();

long maintenanceFrequency = getMaintenanceFrequency();

while ((System.currentTimeMillis() - beforeWait)

< maintenanceFrequency)) {

wait(maintenanceFrequency);

}

} catch (InterruptedException e) {

// ...

}

}

}

private void join() {

// ...

doJoin();

}

private void maintenance() {

if (!isConnected()) {

join();

108

return;

} else {

doMaintenance();

}

}

protected abstract void doJoin();

protected abstract void doMaintenance();

protected abstract boolean isConnected();

}

public class ClientNode extends Node {

private SuperNodeHandle connectedSuperNode; // using Typed Node Handle

protected void doJoin() {

// ...

}

protected void doMaintenance() {

// ...

}

protected boolean isConnected() {

return (connectedSuperNode != null);

}

}

// creating and starting a new node

ClientNode clientNode = new ClientNode();

Thread thread = new Thread(clientNode);

thread.start();

Resulting Context

Some events occurring in the maintenance protocol execution might be interesting
to the application built on top (e.g. when the Local Node is ready or disconnected

109

from the network). In this case, Application Notification can be used to inform
the application.

Rationale

Using Self Maintenance corresponds to the way overlay networks are being
modeled from a system’s perspective. It is the nodes that join and leave the
network, and it is the nodes, and not protocols, which send ’alive’ and other
Control Messages. Furthermore, using Local Node as Message Handler plus Self
Maintenance encapsulates the Local Node completely.

Local Node resolves most forces stated.

• The protocol logic of each node is encapsulated in the node object itself.

• Using Self Maintenance, only the nodes are active in the system, making it
easy to understand the dynamics of the network.

• The Local Node runs its maintenance protocol periodically.

The solution has the following favorable qualities:

• Encapsulation: The dynamics are encapsulated in the Local Node object.

• High cohesion: Because everything is encapsulated in the Local Node object,
this leads to high cohesion.

• Low coupling: Because the logic is encapsulated in the Local Node object,
there is only low coupling involved when executing the protocol.

• Abstraction: Because the nodes are active in the system, Self Maintenance
leads to a nice abstraction.

• Understandability: It is easy to understand where and when each node runs
its maintenance protocol.

Unfortunately, the pattern misses the following qualities:

• Flexibility: It is not easy to change the protocol or use different protocols
for different tasks. If this is needed, Separate Protocol might be the better
choice.

• Extendibility: The protocol cannot be extended that easily, because the
whole protocol is regarded as one block, instead of different protocols for
different tasks.

110

Known Uses

Unfortunately, I have not seen this pattern being used in other systems. More
often, Separate Protocol was applied. However, in the case that the maintenance
algorithm can be triggered at a constant time interval per Local Node, it can be
very beneficial.

Alternative Patterns

If different protocols need to be triggered at different time intervals, Separate
Protocol can be applied.

Type

Proto-pattern (P).

References

Because of the inherent concurrency, safety and liveness issues need to be solved.
Design principles and patterns for concurrent systems are described in [34].

7.6.2 Separate Protocol

Context

You are in a very similar context as in Self Maintenance. However, compared to
Self Maintenance, different protocols need to be run at different time intervals.

Problem

How do you implement different protocols, needing to run at different time inter-
vals?

Forces

• Nodes are active in the system, not protocols.

• Different protocols need to be executed at different time intervals.

• A single protocol can have quite a complex logic.

• A single protocol might be switched for another one.

111

Solution

getFrequency()

Protocol

run()

Runnable

run()

JoinProtocol

run()

RoutingTableMaintenance
Protocol

run()

NeighborhoodMaintenance
Protocol

Use a Separate Protocol for each different protocol, encapsulating the respec-
tive logic. Each Separate Protocol can be run at different time intervals.

A Separate Protocol corresponds to an object or several objects implementing a
specific protocol. For each protocol, a new object is responsible, e.g. a join protocol
object, a routing table protocol object, and a neighborhood protocol object. The
protocol objects run as their own thread, looping periodically at different time
intervals.

Resulting Context

Some events happening in the protocol might be interesting to the application
built on top, in which case Application Notification can be used. Such an event
could be that the Local Node is disconnected from the network, in which case the
application might have more information (e.g. seeds) to bootstrap again.

Rationale

Separate Protocol creates a separate, self-contained entity for each protocol that
needs to be run. If the protocols are complex, this pattern nicely separates

112

the different concerns. Additionally, it allows that each protocol can be run at
different time intervals, which is not possible using Self Maintenance. However,
from a system’s perspective, it is not protocols that are active themselves, but
nodes acting according to protocols. At the level of the software system, this
notion needs to be traded off for the stated benefits.

Separate Protocol resolves some of the forces stated:

• Compared to Self Maintenance, the node objects are not ’active’ any more,
but the protocols run separately.

• It is trivial to run the different protocols at different time intervals.

• Each protocol is encapsulated completely and can include a complex logic.

• Each protocol can be switched separately, making it easy to change the
configuration and try different protocols individually.

The solution has the following favorable qualities:

• Encapsulation: The Separate Protocol encapsulates the logic of each indi-
vidual protocol.

• High cohesion: The strong encapsulation makes the design functionally co-
hesive.

• Flexibility: Each protocol can be replaced individually.

• Extendibility: Each protocol can be extended easily.

• Understandability: Using Separate Protocol, it is easy to understand which
entity executes which protocol.

• Abstraction: If an individual protocol is important, it is nice to have a proper
abstraction for it.

• Clarity: If each protocol is encapsulated as an entitiy, it results in a clear
structure of the protocols.

Known Uses

Most overlay network use this pattern to implement their protocols. FreePastry
uses it to implement the join, leafset, and routeset protocol. The latter two are
responsible for maintaining the routing topology in the Pastry network.

113

Alternative Patterns

If there is only one maintenance protocol, Self Maintenance might be a better
alternative because it corresponds to the notion of nodes being active in the system,
not protocols.

Type

Standard design solution (S).

7.7 Remote Nodes

The local nodes are communicating with remote nodes in the overlay network
by exchanging messages. The patterns in this section describe ways to represent
remote nodes.

7.7.1 Node Handle

Context

Remote nodes in the network are identified by unique identifiers, but in order to
send a message to them, at least also the Internet address (IP address plus port) is
needed. Additional information about a node may be necessary at different places
in the overlay network, such as for instance the last time an ’alive’ message has been
received or the proximity of a node in the routing table. Some of these information
should be included when node information are transmitted in messages.

Problem

How do you store all the different information available about a remote node in
the overlay network?

Forces

• Not all the information available at one node is needed everywhere.

• Storing the different information about a node at different places makes it
hard to maintain and can lead to inconsistencies.

• Storing the different information about a node at different places makes it
hard to see which information belongs to a single remote node.

• Some of the information of a node need to be transmitted in messages, but
not all of them.

114

Solution

getId()
getInternetAddress()

getLastContact()
getProximity()

NodeHandle

Use a Node Handle, which provides an abstract handle of a remote node. It
stores all available information about a node at a central place. Make the Node
Handle serializable or write a proprietary marshalling algorithm, so that the
necessary information can be transmitted easily.

The Node Handle is simply represented by an object, with all the information
available of a node stored in it. Different parts of the overlay network can then
access the needed information through the accessor methods (e.g. getId()). When-
ever the node information needs to be transmitted, simply use the marshalling
method of the object. This can be for instance be by using Java’s serialization
mechanism (fields that should not be serialized can be made transient), or by
using a proprietary marshalling method (e.g. marshall()) which returns the byte
representation of the necessary information of a node.

Resulting Context

The Node Handle can be used wherever a remote node needs to be referenced.
That way, each remote node only exists once, so that duplication of information
and inconsistencies are avoided by design. If you are having different types of
nodes in the network, Node Handle should be extended by Typed Node Handle.
Node Handle is also the base pattern for the Node Handle Proxy extension.

Rationale

The solution is very simple and straightforward, and complies with common
object-oriented modeling. It avoids duplication of information by encapsulating
them in a common object. It also allows extensions of the remote node, which
would not have been possible otherwise (e.g. Typed Node Handle, Node Handle
Proxy). Because of its simplicity, it is merely worth mentioning. I decided to
do so, because it is the base pattern of Typed Node Handle and Node Handle

115

Proxy, and because some overlay networks do not encapsulate these information
properly so that the information is spread around in the overlay network, leading
to error-prone and code that is hard to maintain.

Node Handle resolves all forces stated:

• Information about a node can be accessed through the Node Handle object
as needed.

• All information about a node is encapsulated in the Node Handle object,
leading to consistent data.

• Using Node Handle makes it very clear which remote node is being accessed.

• The Node Handle object can include its own serialization method. This
makes it very easy to include it in messages.

The solution has the following favorable qualities:

• Abstraction: The Node Handle is the proper abstraction to refer to remote
nodes.

• Encapsulation: All information about remote nodes is encapsulated in the
Node Handle.

• Consistency: Because all information about one node only exists at one place
when using Node Handle consequently, the data is always consistent.

• High cohesion: All data and methods available for remote nodes are included
in the Node Handle object, which leads to high cohesion.

• Extendibility: Using Node Handle, it is easy to extend the concept of remote
nodes, for instance by adding a new method or a new data field.

• Understandability: Using Node Handle, it is easy to understand the code,
because it is clear what node is refered to at a specific place.

• Clarity: Applying the concept of Node Handle results in a clear structure of
the remote nodes.

Known Uses

Node Handle is used in lots of overlay networks, one prominent example being
FreePastry, which extends this pattern even further to Node Handle Proxy. Dijjer
for example uses a similar pattern to refer to other peers.

116

Type

Standard design solution (S).

7.7.2 Typed Node Handle

Context

You are using Node Handle to identify remote nodes in the network. However,
there are different types of nodes in the network, such as super, storage, and client
nodes. Just by a looking at a Node Handle, it is not clear which type of node
is stored in it. Apart from that, Node Handles are also not ’type-safe’; it might
be possible to add a client node to the routing table, even though they cannot
participate in the routing process. Such mistakes are not prohibited by the design,
which makes the code error-prone and hard to test. In this case, only super nodes
should be possible to add to the routing table. In other situations, however, the
exact type of the node does not matter and all Node Handles should be treated
alike.

Problem

How can you make the Node Handles ’type-safe’, making it easier to detect mis-
takes and improve readability?

Forces

• Mistakes from using the wrong node type in a Node Handle should already
be detected by the compiler (static type-safety).

• It can also be that some node types require more information than others.

117

Solution

getId()
getInternetAddress()

NodeHandle

ClientNodeHandle StorageNodeHandle SuperNodeHandle

Use a Typed Node Handle, which is simply an extension of a Node Handle for
each type of node. Make the base type abstract and consequently use the appro-
priate Typed Node Handle throughout the overlay network and in message objects.

In detail, the solution looks as follow. Use Node Handle to create a node handle
class (NodeHandle), which contains common properties such as the identifier and
the Internet address of a node, as well as common behavior. Make this node
handle class abstract. Then create a class which extends the node handle class
for each type (e.g. ClientNodeHandle, StorageNodeHandle, SuperNodeHandle).
These classes correspond to Typed Node Handles. Now, consequently use the
appropriate Typed Node Handle throughout the overlay network and in message
objects, so that always strong types are used (e.g. the routing table only adds
SuperNodeHandles, and neighbor messages only take SuperNodeHandles as well).

The specific Typed Node Handle does not need to have properties on its own.
It is already beneficial only for the type information. If, however, each node
handle has additional properties, or if behavior can be specialized (e.g. at least
the toString() method can be adapted), then this would be the place to do so.
It might be, for instance, that each Typed Node Handle has a special Id object,
such as ClientId, StorageId, and SuperId (this is again an example of using strong
types).

Whenever the nodes should be treated alike, for instance when iterating
through a list of Node Handles, the abstract Node Handle super type can be
used.

Resulting Context

Using Typed Node Handle brings a number of benefits. First, type checks can
already be done by the compiler. For instance, messages that contain node in-

118

formation are correctly using a reference to a Typed Node Handle, so that wrong
assignments are detected by the compiler. Another example of such static type-
safety is the routing table, which does not allow client and storage nodes to be
assigned. Altogether, Typed Node Handle renders some unnecessary program-
ming mistakes impossible. Second, reading the source code is getting much easier
when using Typed Node Handle. Third, using Typed Node Handle immediately
allows extending the remote node handle of each type in different ways. One such
extension is for instance Node Handle Proxy.

Rationale

The solution is not really a ’pattern’, but simply an example of the use of
subtyping (in this case also subclassing) and polymorphism, which are one of the
cornerstones of the object-oriented programming paradigm. However, I decided
to add it here for the sake of completeness, because using it results in a clearer
and less error-prone design. This pattern is a concrete example of the use of
subtyping, inheritance and polymorphism.

The Typed Node Handle resolves all forces stated:

• Using Typed Node Handle, refering to remote nodes is type-safe. If the
wrong type is used, this can already be detected by the compiler.

• Additional information for special types of nodes can be included in the
corresponding Typed Node Handle.

The solution has the following favorable qualities:

• Type-safety: Instead of refering to general Node Types, using Typed Node
Handle, the correct node type can always be specified. This makes it type-
safe, and wrong assignments can already be detected by the compiler.

• High cohesion: All information about the specific type of a node are grouped
together using Typed Node Handle, which leads to high cohesion.

• Encapsulation: The data and behavior of a specific type of node is encapsu-
lated in the Typed Node Handle.

• Abstraction: Typed Node Handle is the right abstraction for different nodes
with different roles.

• Clarity: Because of the explicit type of a Node Handle, it is made very clear
which remote node type is refered to.

119

• Understandability: Using Typed Node Handle makes it much easier to un-
derstand the source code than if all nodes were refered to in the same way.

Known Uses

Subtyping and polymorphism are employed in all object-oriented software sys-
tems. Unfortunately, however, I have not seen this ’pattern’ being used in overlay
networks for the specific purpose of type-safe Node Handles.

Type

Standard design solution (S).

7.7.3 Node Handle Proxy

Context

You are using Node Handle or Typed Node Handle to refer to a remote node in
the overlay network. Whenever a message is sent using the underlying network, it
is sent to one of the Node Handles, which means that Extended Overlay Facade is
not applied. You want to make it transparent whether the node resides locally or
remotely.

Problem

How can you refer to nodes in the same way, whether they reside locally or re-
motely, thus making the underlying transmission of a message transparently?

Forces

• Higher abstractions can lead to better designs.

• Referring to local nodes in the same way as remote nodes can be nice.

• Sometimes, however, it can also be good to make the distinction between
local and remote nodes explicit.

• Not all aspects can be made transparent, the different latency when contact-
ing local or remote nodes being one example.

120

Solution

getId()
getInternetAddress()

receive(Message)

NodeHandleProxy

Use a Node Handle Proxy, which can represent both, a remote or a local node.
It provides a method receive(Message message) which either lets the Local Node
process the message or sends the message using the underlying network to the
remote node.

If the Node Handle Proxy refers to a Local Node, it stores a reference to
that object. If so, receive(Message message) will simply call the handle(Message
message) method of the Local Node object. If not, it will transmit the message
to the remote node that it represents (since it stores its identifier as well as its
Internet address, it can simply send a message to it).

Using Node Handle Proxy, the Router for example does not need to know
whether a node is hosted locally or not.

Resulting Context

The Node Handle Proxy is responsible for transmitting messages to the node it
represents. To do so, it will require the service provided by the underlying network
layer. In this case, the Node Handle Proxy represents a Network Gateway. There-
fore, a Network Stub can be plugged in if needed for testing, and a Traffic Monitor
can be informed of each message that is sent using the underlying network.

When using Specialized Message Types and Source Sink Marker, the Node
Handle Proxy’s receive() method could check (e.g. using assertions) whether the
sink node type corresponds to the actual Node Handle Proxy type.

Rationale

Node Handle Proxy provides a nice abstraction to communicate with remote
nodes, because it hides the underlying transmission of messages. However,
compared to remote proxies in other systems, it does not hide the fact that the
communication is based on messages, and is therefore a much lower abstraction
than other remote proxies. In fact, there are a number of points to consider, which
make it arguable whether to use Node Handle Proxy in the first place. First, local

121

and remote nodes should often not be treated alike. Local nodes, for instance, do
not need to be maintained and also do not need to be added to the routing table.
Second, it is often necessary to make it explicit, whether a message needs to be
transmitted, because it results in message communication, uses bandwidth and
has an intrinsic latency. Third, when using Extended Overlay Facade, a Network
Gateway is needed anyway, so that using it also to send messages to remote nodes
results in a more consistent design.

Node Handle Proxy resolves some of the forces stated:

• Node Handle Proxy builds a higher abstraction about remote nodes. It is not
necessary to send messages to remote nodes anymore, but they can actually
receive them.

• This allows to treat remote nodes and local nodes alike, making the routing
algorithm much more transparent.

• However, this can also have some disadvantages, because accessing local
nodes is much cheaper than remote nodes.

• This is very obvious when sending messages to remote nodes, which inher-
ently involves a much longer latency than calling a method on the local node
object.

The solution has the following favorable qualities:

• Abstraction: Node Handle Proxy is a convenient abstraction to communicate
with remote nodes.

• Encapsulation: Node Handle Proxy encapsulates all logic about the remote
nodes properly.

Known Uses

Proxies are used in lots of software systems. Distributed systems often profit
from proxy objects because they allow building a higher abstraction and hide
the underlying transmission completely (even though not all aspects can be made
transparent of course, such as for instance the longer latency when sending mes-
sages as opposed to local method calls). However, it is important to note that
the abstraction provided by remote proxies is much higher than in Node Handle
Proxy, because there methods can be called directly on remote objects, as opposed
to sending messages.

122

Alternative Patterns

If you are using Extended Overlay Facade to also send messages to a known address
directly, then a Network Gateway needs to be applied. In this case, it might be
more consistent to only use the Network Gateway, instead of Node Handle Proxies.

Type

Adaptation of an existing pattern (A): Proxy.

References

This pattern is very similar to the Proxy pattern described in ’Design Patterns’
[19], hence the name. A closely related implementation is used in different distrib-
uted systems, such as the built-in remote proxy objects of programming languages
such as Java or C#.

7.8 Network Interaction

The overlay network uses the underlying network layer to send and receive mes-
sages in a scalable way. This section contains patterns describing the interaction
of the overlay network layer with the underlying network layer.

7.8.1 Network Gateway

Context

Incoming messages all enter the overlay network through the single Message Dis-
patcher. Outgoing messages, on the other hand, leave the overlay network usually
from all over the place, simply by calling the send operation provided by the un-
derlying network layer. This has a number of disadvantageous. First, it creates a
strong dependence on the underlying network layer. High coupling should prefer-
ably be avoided, because changes in the network layer potentially affect many
places in the code. Swapping the network layer completely with another one will
certainly cause a lot of changes in the overlay network. Second, it is hard to put
in control mechanisms needing to be executed whenever a message is sent. Such a
control mechanism could be a Traffic Monitor that should be informed whenever
a messages leaves the overlay network. Doing this at the network layer is not a
good idea because first, the network layer does not understand the different mes-
sage types, and second, it can not be presumed that one can make changes to the
network layer (e.g. if using a library).

123

Problem

How do you remove strong dependence on the network layer and allow to put in
control mechanisms for outgoing messages?

Forces

• Sending messages using the underlying network layer is very simply, so that
it can easily be done wherever a message needs to be sent.

• Different messages need to be sent throughout the overlay network (e.g.
router, protocols, and requests by the application).

• Send operations spread throughout the overlay network make it hard to put
in control mechanisms that affect all messages that need to be sent, especially
if one cannot make changes at the network layer source code.

• The network layer only knows raw bytes and is not the place to reason about
message types.

• The network layer may be exchanged by another one, which should not affect
a lot of places in the code.

• Testability: Testing the overlay network even without the underlying network
layer is not possible of different places in the code rely on a certain send
operation. Simulating the network is therefore not that easy.

Solution

Node

Network
Gateway NetworkRouter

OverlayFacade

send(address, message)

NetworkGateway

Use a Network Gateway, which encapsulates access to the underlying network
gateway.

124

The Network Gateway exposes a send() method, which simply calls the appro-
priate method of the underlying network layer. This allows controlling all outgoing
messages at a single place, by adding code to this method. It also allows to change
the network layer very easily, because then only the Network Gateway is affected
by the change, but not all places where messages are actually sent.

Resulting Context

Using the Network Gateway facilitates the use of a Traffic Monitor, because there
is a single place which all outgoing messages need to pass. The Network Gateway
is also the ideal place to plug in a Network Stub to simulate the network layer.

When using Node Handle Proxy, it can take over the responsibility of a Network
Gateway. However, even in this case it might be better to separate the Network
Gateway out as an own entity. Even more if Extended Overlay API is applied, in
which case not all messages can be sent to known Node Handles, but need to be
sent to Abstract Address Handles directly as well.

Rationale

The solution is very simple, but provides a number of benefits. It avoids high
coupling between the overlay network and the network layer and provides a single
place to extend control mechanism that need to be applied whenever a message is
sent through the network (e.g. Traffic Monitor, logging). Additionally, it allows
using a Network Stub to plug in a test network layer.

Network Gateway resolves most forces stated:

• Sending messages using the Network Gateway is as simple as calling the
underlying network layer directly, once the Network Gateway is properly set
up.

• All the different messages can be sent by a simple call to the Network Gate-
way.

• Using Network Gateway as a single place where messages pass before they
are sent off, makes it easy to include control mechanism, such as for instance
applying a Traffic Monitor.

• Because the Network Gateway sends message objects rather than raw bytes,
it is still possible to deduce message type information.

• Using a Network Gateway makes it trivial to replace the underlying network
layer, because only the Network Gateway, but no other place in the code,
needs to be adapted.

125

• The Network Gateway is the ideal place to simulate the sending of messages.
This can be done by plugging in a Network Stub at the Network Gateway.

The solution has the following favorable qualities:

• Low coupling: Using a Network Gateway results in minimal coupling be-
tween the overlay network layer and the underlying network layer. Only the
Network Gateway references the underlying network layer.

• High cohesion: All the logic about accessing the network layer is contained
in the Network Gateway, which leads to a highly cohesive architecture.

• Encapsulation: The Network Gateway completely encapsulates the logic
about how to access the network layer.

• Extendibility: Besides only sending a message using the underlying network
layer, the Network Gateway can also be extended for instance to include a
control mechanism before a message is sent (e.g. Traffic Monitor).

• Understandability: It is very easy to understand where messages leave the
overlay network.

• Simplicity: Using a Network Gateway, which conforms to the programming
style of the whole overlay network, is much simpler than using an external
network layer / library directly.

Known Uses

A lot of software systems use gateways when accessing other components, espe-
cially if they are provided by third-parties.

In overlay networks, however, Network Gateways are not used that often. In-
stead, network and the overlay network layer are often melted together. I think
that this has a number of drawbacks, because it results in high coupling and a
mix of different semantics. Separation of concerns leads to a clearer design which
is easier to maintain. The UdpSocketManager in Dijjer, however, can be regarded
as a variant of a Network Gateway. The Node Handle Proxy approach taken in
FreePastry is also a variant of a Network Gateway.

Type

Existing pattern (E): Gateway.

126

References

Network Gateway is a variant of the Gateway pattern by Martin Fowler, described
in ’Patterns Of Enterprise Application Architecture’ [37]. Of course, Gateway is
similar to other patterns such as Adapter and Facade, described in ’Design Pat-
terns’ [19]. However, there are some differences which make Gateway stand as
its own pattern; a Facade is usually written by the programmer of the external
component to simplify its API for general use, while Adapter is altering an imple-
mentation’s interface to match another one.

7.8.2 Network Stub

Context

Testing the overlay network is not easy, because it involves a lot of nodes, which
may not be available at testing time. Research networks such as PlanetLab exist
for exactly this purpose; to provide a test environment for large-scale distributed
systems. However, not everyone does have access to such a network, and even
if, setting up the environment and deploying the latest source code takes some
effort, so that it is not the most practical solution for small changes and frequent
tests during (early-stage) development process. Furthermore, the overlay network
is dependent on the network layer, so that parallel development of both layers is
hindering the testing of the overlay network. Additionally, monitoring the distrib-
uted nodes can be very hard if they reside on different computers. In all these
cases, it would be beneficial to have a simulated network layer, which can be used
whenever one wants to run a test on a small test environment.

Problem

How can you include a simulation environment for your overlay network?

Forces

• Switching between simulation and real mode should be easy.

• Dependence on the network layer hinders the development process if it is not
available.

127

Solution

Node

Network
Gateway NetworkStubRouter

OverlayFacade

Use a Network Stub, which uses the same interface as the network layer, but
behaves differently, for instance simulating the sending and receiving of messages.

If you are using Network Gateway, this is the ideal setup to plug a simulation
environment into the overlay network. If the Network Stub has the same interface
as the network layer, switching between the two modes is easy and possible without
affecting the overlay network or the network layer.

Resulting Context

In order to use Network Stub efficiently, the Network Gateway pattern should be
applied.

Rationale

Using a Network Stub, it easy to simulate the overlay network with lots of nodes
even on a single computer. No changes need to be made to the overlay network,
which allows testing the real system as if message were sent using the network layer.

The Network Stub resolves the forces stated:

• Using a Network Stub instead of including the simulation code directly in
the Network Gateway, makes it very easy to switch between simulation and
real mode.

128

• The overlay network can be developed even without a network layer in place,
because the Network Stub can simulate its functionality.

The solution has the following favorable qualities:

• Encapsulation: The Network Stub encapsulates the simulation logic com-
pletely.

• High cohesion: The Network Stub includes all simulation logic, resulting in
high cohesion for both, the Network Gateway and the Network Stub.

• Abstraction: The Network Stub is a nice abstraction for a simulated network
layer.

• Understandability: It is easy to understand the code and the purpose of the
Network Stub.

Known Uses

Stubs are frequently used in software systems which need to access other compo-
nents. In overlay networks, stubs are for instance used in FreePastry. Although
they provide stubs by using special sub types of classes, the basic mechanism
remains the same.

Type

Existing pattern (E): Service Stub.

References

Network Stub is simply an example of the Service Stub pattern by David Rice,
described in ’Patterns Of Enterprise Application Architecture’ [37].

7.8.3 Traffic Monitor

Context

Incoming and outgoing messages often need to be monitored for testing and sta-
tistical purposes. Interesting measures include how much bandwidth is used by
which message type, how many messages of each type are being sent and received,
and many more. This implies that it is often not sufficient to do this monitoring
at the network layer, where each message is only considered raw bytes and as such,
less semantic information can be extracted.

129

Problem

How can all incoming and outgoing messages easily be monitored?

Forces

• To do interesting measurements, one often needs to have access to the mes-
sage objects. Therefore, it needs to be done in the overlay network layer.

• The monitoring should be done at a central place, so that changes only affect
one place in the source code.

Solution

monitorIncoming(sender, message)
monitorOutgoing(receiver, message)

TrafficMonitorMessage
Dispatcher

Network Gatway

Use a Traffic Monitor at the overlay network layer, which is informed of all
incoming and outgoing messages, interprets them and updates its statistics.

Whenever a message is received or sent, the Traffic Monitor needs to be in-
formed. Receiving messages arrive at the Message Dispatcher. After the Message
Factory creates the message object, the Traffic Monitor can be informed of the
incoming message (monitorIncoming() method). In order to do the same for out-
going messages (monitorOutgoing() method), a Network Gateway should best be
applied. Another possibility would be to call the appropriate method when a mes-
sage object is being constructed. This presumes two things. First, there need to be
two constructors, one for incoming and one for outgoing messages. Fortunately,
this is often given by the fact that one constructor takes parameters while the
other one takes raw bytes, creating the object by demarshalling them. Second, all
the constructors need to call their super type constructor, so that the call to the
Traffic Monitor only needs to be written once. If these requirements are fulfilled,
the Traffic Monitor can as well be called by the message constructors. However,
it might still be better to do it at the Message Dispatcher and Network Gate-
way level, because it is the natural place to look and additionally, like that the
constructors remain side-effect free.

130

Resulting Context

The Traffic Monitor does not operate at the network layer and is therefore de-
pendent on other objects to inform it about incoming and outgoing messages.
Whenever a message enters the overlay network, the monitorIncoming() method
needs to be called with the appropriate message object. This can best be done
at the Message Dispatcher, after creating the message object using the Message
Factory. The same is true for outgoing messages. Whenever a message leaves the
overlay network, the monitorOutgoing() method needs to be called. If messages
can leave at different places, the Traffic Monitor needs to be called everywhere.
In order to allow for changes, it is best to apply a Network Gateway and inform
the Traffic Monitor from this single place where messages can leave the overlay
network.

Rationale

This ’pattern’ is straightforward so that it is merely not worth mentioning.
However, some overlay networks measure traffic only at the networking layer or
do it at different places, so that it is stated here as a ’pattern’ simply to document
a best practice used in most overlay networks.

The Traffic Monitor resolves all forces stated:

• Because the Traffic Monitor is applied in the overlay network, it is possible
to access all message information, such as type, etc.

• The Traffic Monitor centralizes all monitoring activity.

The solution has the following favorable qualities:

• High cohesion: When using a Traffic Monitor, all monitoring logic is put
into the corresponding object, instead of having monitoring logic at different
places.

• Low coupling: Because the Traffic Monitor takes message objects as argu-
ments and evaluates them autonomously, it results in low coupling between
the Traffic Monitor and the rest of the overlay network.

• Avoids code duplication: Because it does the monitoring at a central place,
duplicating monitoring logic is not necessary anymore.

• Abstraction: The Traffic Monitor is the right abstraction for all monitoring
activity.

131

• Simplicity: Using the Traffic Monitor is very simple.

• Encapsulation: The Traffic Monitor encapsulates all monitoring logic.

• Understandability: The Traffic Monitor makes it very easy to understand
what it does and where the monitoring takes place.

• Clarity: The Traffic Monitor leads to a very clear structure, because it factors
the monitoring logic out into a separate entity.

• Reusability: The Traffic Monitor can potentially be reused even for other
applications, if it is implemented generically. However, it is arguable whether
the needed effort for genericity is justified.

• Extendibility: The Traffic Monitor can be extended easily, if more monitoring
capabilities are needed.

• Modularity: The Traffic Monitor leads to a modular structure, which is easy
to maintain.

Known Uses

A lot of overlay networks use a solution very similar to Traffic Monitor. P-Grid
for instance uses a Statistics class for the same purpose.

Type

Standard design solution (S).

132

8 Example

In the last section, each pattern has been described in isolation. In this section, I
want to put the patterns together to present a complete example. Where several
patterns could be applied to solve a very similar problem, the example has chosen
one of the alternatives.

The example is illustrated as a UML class diagram. Together with the ex-
planations in the last section, this should be enough to understand the software
architecture in detail. If a class directly corresponds to a pattern, it is highlighted
in color. If a pattern is involved which is not described by the class name, a note
(also highlighted in color) has been attached to the corresponding class.

Note that the UML class diagram does not completely conform to the standard
notation, but is meant as a sketch that illustrates the important information in
the simplest form. Of course, the UML class diagram does not show all classes
necessary for a running overlay network, but simply represents the classes relating
to the patterns, building the skeleton of a software architecture which could be
implemented and extended for a real-world project.

133

send(InternetAddress,
Message)

Network Gateway

MessageDispatcher

isAtTarget(Message)
route(Message)

Router

Machine

deliver(IAddressHandle,
IMarshallableMessage)

IApplicationDelivery

disconnected()
ready()

IApplicationNotification

route(Key,
IMarshallableMessage)

send(Endpoint,
IMarshallableMessage)

Overlay Facade

MessageFactory

dispatch(InternetAddress, ByteBuffer)

INetworkDispatch

IAbstract
AddressHandle

TrafficMonitor

Key

Extended Overlay Facade

Network Stub

Internal

Network Layer

API

marshall(ByteBuffer)

IMarshallableMessage

Abstract Address Handle

Seeds

Id

InternetAddress

Node

RoutingTableNeighborhood

Local Node /
Self Maintenance

Local Node For
Each Type

...

Nodes

Message

BasicMessage ControlMessage RoutedMessage

SuperClientAlive...

IClientNodeSinkIClientNodeSource ISuperNodeSource...

CertifiedControl
Message

ClientSuperJoin Source Sink Marker

Messages

...

Node Handles
NodeHandle

ClientNodeHandle StorageNodeHandle SuperNodeHandle

Typed Node Handle

...

MessageVerifier

ClientNode StorageNode SuperNode

Specialized Message Type

handle(Message)

IMessageHandler

134

9 Conclusions

In this paper, I have presented a pattern language for overlay networks. A lot
of these patterns are known from other software systems, and have simply been
adapted to the specific requirements of overlay networks. However, instead of
focusing only on new patterns, I have tried to cover the full breadth of design
issues in overlay networks. Therefore, I trust that this pattern language can be
helpful for both, software designers and programmers new to peer-to-peer systems,
as well as for experienced peer-to-peer programmers who will find a collection of
familiar ideas generalized as patterns.

The patterns are trying to solve some of the design issues listed in section
5. Therefore, I want to briefly analyze which issues have been solved, and which
either still remain open, or have not shown to be actual software design, but rather
implementation or system design issues.

• Interaction with the application: The application interacts with the
overlay network by using an Overlay Facade, or an Extended Overlay Facade.
Messages are delivered to the application using Application Delivery, and
events are propagated to the application using Application Notification.

• Routing: The Router is responsible to encapsulate the routing algorithm.
It routes Routed Messages and interacts with the Message Dispatcher. Most
of the issues around routing are solved by these patterns.

• Direct messages: These problems are addressed by the Extended Over-
lay Facade, which extends the interface of the overlay network by a send
operation.

• Roles: Roles are properly introduced by Local Node For Each Type. To refer
to a specific remote node, Typed Node Handle should be used. Specialized
Message Type introduces a new message type between each pair of nodes,
which bloats the message hierarchy. For that reason, Source Sink Marker
helps to improve readability and lets the Message Dispatcher still remain
very simple.

135

• Firewall, NAT: If computers behind firewalls or NATs need to be con-
tacted, different algorithms are implemented. However, Abstract Address
Handle can be a good abstraction to refer to remote computers, no matter
whether they are behind NATs or not.

• Message integrity: Message integrity can be verified by using a Message
Verifier. However, other security issues are mostly not a software design, but
a system design issue.

• Message hierarchy: The complex message hierarchy of overlay networks
can be structured into Basic and Control Messages. Routed Message pro-
vides a wrapper to route a message in the network. Specialized Message
Type increases the number of messages, but allows structuring the message
hierarchy more explicit.

• Message handling: Several patterns are involved in message handling, such
as Message Dispatcher, Message Handler, Autonomous Message, Source Sink
Marker, Router and Application Delivery. Most issues regarding message
handling are successfully solved by these patterns.

• Local node: Local Node and Local Node For Each Type make the notion
of local nodes visual and explicit, and allow integrating virtual nodes very
easily.

• Protocol: Protocols are either implemented by Separate Protocol, or by
Local Node together with Self Maintenance.

• Remote nodes: Remote nodes in the system are represented by Node
Handle, or Typed Node Handle. An even higher abstraction can be applied
by using Node Handle Proxy.

• Execution flow: The execution flow is made more tractable by different
patterns, such as Source Sink Marker, together with an explicit Message
Dispatcher, and Self Maintenance. Also Network Gateway helps tracing the
execution flow in that it acts as a funnel for all outgoing messages.

• Testing: The overlay network can be simulated when using a Network Stub
in combination with a Network Gateway. However, testing overlay networks
is still complicated. Logging mechanisms and Traffic Monitor can also help
for that task.

• Dynamics: Using Local Node together with Self Maintenance makes it very
clear, where and when the maintenance protocol is executed. Local Node

136

makes it easy to see the state of the local node and its connectivity. Another
way to implement the dynamics is by using Separate Protocol.

According to this list, most of the design issues presented in section 5 are solved
by the patterns presented in this paper. However, this list is not comprehensive
and other design issues may arise in specific contexts. Furthermore, the patterns
only focus on overlay networks, and other patterns may be discovered in a broader
scope of peer-to-peer systems.

The contributions of this paper are twofold: First, the pattern language doc-
uments all existing and adpated design patterns for most aspects of overlay net-
works. Second, it presents a number of suggested proto-pattern, which remain to
be scrutinized by others.

As future work, more projects need to be investigated to find real evidence
for these patterns, and the pattern style needs to be improved. For this reason,
it would also be interesting to take part in a workshop for pattern writers and
incorporate feedback by others.

137

Bibliography

[1] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications. Technical
Report TR-819, MIT, 2001.

[2] P. Druschel and A. Rowstron. Pastry: Scalable, Distributed Object Location
and Routing for Large-Scale Peer-to-Peer Systems. In Proceedings of the 18
IFIP/ACM International Conference on Distributed Systems Platforms, 2001.

[3] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubi-
atowicz. Tapestry: A Resilient Global-Scale Overlay for Service Deployment.
IEEE Journal on Selected Areas in Communications, 2003.

[4] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information sys-
tem based on the XOR metric. In Proceedings of IPTPS02. Cambridge, USA,
March 2002.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable
Content-Addressable Network. In Proc. ACM SIGCOMM, 2001.

[6] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Soft-
ware Architecture, Vol. 2, New York: John Wiley, 2000.

[7] Project JXTA. http://www.jxta.org/

[8] A. Langley. The Trouble with JXTA, O’Reilly OpenP2P.com:
http://www.openp2p.com/pub/a/p2p/2001/05/02/jxta trouble.html, May
2001.

[9] D. Lea. Patterns-Discussion FAQ. http://gee.cs.oswego.edu/dl/pd-FAQ/pd-
FAQ.html, November 2000.

[10] C. Shirky. What Is P2P...And What Isn’t? O’Reilly OpenP2P.com:
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html,
November 2000.

138

[11] Skype. http://www.skype.com/.

[12] Jabber. http://www.jabber.org/

[13] Gnutella. http://www.gnutella.org/

[14] J. Ritter. Why Gnutella Can’t Scale. No, Really.
http://www.darkridge.com/ jpr5/doc/gnutella.html, February 2001.

[15] K. Aberer, and M. Hauswirth. An Overview on Peer-to-Peer Information Sys-
tems. Workshop on Distributed Data and Structures, Paris, France, 2002.

[16] D. S. Milojicic, V. Kalogeraki, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins,
and Z. Xu: Peer-to-Peer Computing. HP White paper, March 2002.

[17] A. Oram: Peer-to-Peer: Harnessing the Power of Disruptive Technololgies.
O’Reilly, February 2001.

[18] L. Rising. Pattern Mining. CRC Handbook of Object Technology, found at
http://members.cox.net/risingl1/articles/mining.htm, 1997.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[20] Hillside.net. http://www.hillside.net/.

[21] C. Alexander, S. Ishikawa, M. Silverstein with M. Jacobson, I. Fiksdahl-King,
S. Angel: A Pattern Language - Towns-Buildings-Constructions. Oxford Uni-
versity Press, 1977.

[22] C. Alexander. The Timeless Way of Building. Oxford University Press. New
York, 1979.

[23] B. Appleton. Patterns and Software: Essential Concepts and Terminology.
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html, 1998.

[24] EuroPlop. http://www.hillside.net/europlop/.

[25] E. Chtcherbina, and M. Völter: P2P Patterns - Results from the EuroPlop
2002 Focus Group. http://www.voelter.de/data/pub/P2PSystems.pdf, Decem-
ber 2002.

[26] S. Herden, and A. Zwanziger. A Pattern-Language for Peer-to-Peer Networks.
Focus Group at EuroPlop 2005, found also directly at http://finglas.cs.uni-
magdeburg.de/europlop/, May 2005.

139

[27] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a
Common API for Structured P2P Overlays. IPTPS’03, Berkeley, CA, Febru-
ary 2003.

[28] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-Area
Cooperative Storage with CFS. In Proc. 18th ACM Symposium on Operating
Systems Principles, 2001.

[29] P. Druschel, and A. Rowstron. PAST: A large-scale, persistent peer-to-peer
storage utility. HotOS VIII. Schoss Elmau, Germany, May 2001.

[30] A. Rowstron, A-M. Kermarrec, M. Castro, and P. Druschel. Scribe: The
design of a large-scale event notification infrastructure. NGC2001, UCL, Lon-
don, November 2001.

[31] J. Kubiatowicz, et al. OceanStore: An Architecture for Global-Scale Persistent
Storage. ASPLOS, 2000.

[32] J. Liebeherr, J. Wang, and G. Zhang. Programming Overlay Networks with
Overlay Sockets. NGC 2003 proceeding, Munich, Germany, September 2003.

[33] HyperCast. http://www.cs.virginia.edu/ mngroup/hypercast/.

[34] D. Lea, Concurrent Programming in Java: Design Principles and Patterns,
Second Edition, Addison-Wesley, 2000.

[35] G. Hohpe, and Bobby Woolf. Enterprise Integration Patterns. Addison-
Wesley, October 2004.

[36] W. Cunningham. Portland Pattern Repository. http://www.c2.com/cgi/wiki

[37] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
2003.

[38] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture: A Pattern System. Addison-Wesley, Boston,
1996.

[39] D. Grolimund, and L. Meisser. Kangoo - A Simple, Robust, and Efficient
DHT for Large Amounts of Data. Semester Project, Distributed Systems, ETH
Zurich, February 2005.

[40] FreePastry. http://freepastry.rice.edu/FreePastry/

[41] Tapestry. http://www.cs.ucsb.edu/ ravenben/tapestry/

140

[42] Bamboo. http://bamboo-dht.org/.

[43] P-Grid. http://www.p-grid.org/.

[44] A Viceroy implementation. http://www.ece.cmu.edu/ atalmy/viceroy/.

[45] LimeWire. http://www.limewire.org/.

[46] jMule. http://jmule.sourceforge.net/.

[47] Dijjer. http://dijjer.org/.

[48] OogP2P. http://www.duke.edu/ cmz/p2p/.

[49] GISP. http://gisp.jxta.org/.

[50] Azureus. http://azureus.sourceforge.net/

[51] JTorrent. http://sourceforge.net/projects/jtorrent/.

[52] Meteor. http://meteor.jxta.org/.

[53] Chord. http://pdos.csail.mit.edu/chord/.

[54] Pastry web-site. http://research.microsoft.com/ antr/Pastry/.

[55] eMule. http://www.emule.org/.

[56] Bunshin. http://ants.etse.urv.es/bunshin/index.html.

[57] OpenDHT. http://www.opendht.org/.

[58] Pattern Forms. http://c2.com/cgi-bin/wiki?PatternForms, April 2005.

[59] Hillside Group. Writing Patterns. http://www.hillside.net/patterns/writing/
writingpatterns.htm, 2005.

[60] G. Meszaros, and J. Doble. A Pattern Language for Pattern Writing.
http://hillside.net/patterns/writing/patternwritingpaper.htm,

[61] P2P Sockets for JXTA. http://p2psockets.jxta.org/.

[62] B. King. Simplify Distributed System Design Using the Com-
mand Pattern, MSMQ, and .NET. MSDN Mag, found at
http://msdn.microsoft.com/msdnmag/issues/04/09/CommandPattern/,
September 2004.

141

[63] M. Fowler. Layering Principles. http://www.martinfowler.com/bliki/ Layer-
ingPrinciples.html.

[64] Marker Interface Pattern. Wikipedia: http://en.wikipedia.org/wiki/
Marker interface pattern.

[65] Anti-Pattern. http://en.wikipedia.org/wiki/Antipattern.

[66] PlanetLab. http://www.planet-lab.org/.

142

