
Extended Place Capabilities Summaries for Rust Programs

Dylan Wolff

Abstract— The advent of the Rust programming language
and its borrowing and ownership model have created new
opportunities in Program Analysis and Verification. In order
to take advantage of Rust’s advanced type system, however,
it is necessary to extract detailed information from both the
Rust compiler and borrow checker. Once this data has been
collected, it then must be assembled into a meaningful format.
The Extended Place Capabilities Summary (EPCS) presents
type and borrow checking data in just such a format for a
meaningful subset of the Rust language, while also performing
analysis steps to provide an enriched summary of the data.
Furthermore, the EPCS API implementation allows verification
and analysis tool developers to depend on a centralized, stable
API rather than relying on various internal compiler or borrow
checker functions and data structures.

I. INTRODUCTION

The Rust programming language is primarily characterized
by its unique approach to static compiler checks and mem-
ory management. By enforcing ownership and borrowing
restrictions for memory locations, the type-system of Rust
precludes whole classes of memory saftey issues common
in other languages that do not utilize a garbage collector.
The recent popularity of Rust has created new opportunities
to build analysis and verification tools that take advantage of
the information and guarantees provided by its type system,
such as the Prusti project [3].

However, while the Rust compiler provides descriptive
negative information for programs that do not compile, there
is no canonical way to extract positive information for a
correct Rust program (i.e. why it type-checks in the first
place). This kind of information is crucial for verification
tools like Prusti [3] and may have other applications for
visualization and analysis of Rust programs.

Prior work utilizing any such “positive information” re-
quired direct interaction with the Rust compiler’s internals.
The Rust compiler project, however, is under active de-
velopment and its internal API’s have not been stabilized
(with no immediate plans to do so). As a result, whenever
changes are made to the Rust compiler, which is on a
nightly release schedule, they propagate as breakages in
the dependent projects. Compounding the problem, these
changes are considered1 “non-breaking” because the internal
compiler API’s have not been stabilized. This constant churn
requires extreme diligence from tool maintainers to fix issues
scattered throughout the codebases of any projects depending
on this information.

1This is not to suggest that the maintenance issues are the fault of the
Rust compiler team. The API’s used by Prusti are internal for good reasons,
and it is, and absolutely should be up to the individual project owners to
adjust to frequent changes in the API’s.

To alleviate this concern, we developed a comprehensive
summary of the information needed by Prusti and other tools
as a separate library. This localizes breaking changes to a
single, separated component and allows for many applica-
tions to utilize the curated, stable API rather than needing to
massage internal compiler data into a usable format.

The term “Place Capability Summary” (PCS) was initially
coined in the Prusti paper [3], but was not precisely defined
nor fully described. Generally, it is a summary of the capa-
bilities a Rust program has to memory locations (“places”)
at various points throughout its execution.

For example, initializing and assigning to a variable would
result in adding the corresponding place to the PCS, as that
variable now has permissions to access the memory location
it refers to. While initially, it may exclusively refer to that
place (and thus be mutable2), if that place is later borrowed
by another variable, its capabilities may change based on the
characteristics of the borrow.

So far, there have been several efforts towards formalizing
the semantics of Rust (e.g. [11], [12], [7], [8]), but none have
precisely outlined the notion of a PCS, nor implemented a
way to extract this information from a Rust program. The
primary goal of this project was to expand on these prior
works in this area.

II. CONTRIBUTIONS

1) Precisely defined the notion of a “Place Capabil-
ity Summary” (PCS) and “Extended Place Capability
Summary” (EPCS) for a given line of a Rust program
at the Mid-level Intermediate Representation (MIR)
level of abstraction

2) Developed a plan for extracting this information from
MIR code and the Rust compiler/borrow checker

3) Implemented a tool that can derive the EPCS for a
small subset of MIR as a proof of concept for a
complete implementation of an EPCS API for Rust
as a whole

III. APPROACH

At a high level, we define an Extended Place Capability
Summary (EPCS) to be the combination of accessibility
information from the PCS with additional data regarding
borrows at that program point. Thus an EPCS is a represen-
tation of part of the program state before or during a given
statement in a Rust program. This state is evolved by a set of

2As in [12], we treat mutability of a place as being determined by whether
or not a single variable has exclusive access to it, not by the “mut” keyword.
This keyword merely allows Rust programmers to be explicit about the
exclusivity of access to places

inference rules, expanded upon in Section V. Most of these
rules dictate how each kind of statement changes an EPCS.
Some, however, such as the “unpack” and “pack” rules rules
defined in Section V-A, prepare an EPCS such that it is in a
proper state for the statement rules to take effect. These rules
are dubbed “Ghost Rules”, and when/how to apply them is
determined by the algorithms given in Section V. Ghost rules
transform an EPCS to another EPCS with a different, but
equivalent representation of the state at that program point.

The inference rules are applied from an initial empty EPCS
state for each entrypoint into the Rust program, following
the Control Flow Graph (CFG) statement by statement until
a fixed point is reached. In practice, this is achieved with a
single iteration given the design choice outlined in Section
VI-C. With this fixed point, the EPCS API can be queried at
any statement within the CFG and give a sound summary of
the type and borrow checking information at that program
point.

IV. (E)PCS DEFINITIONS

In the Rust lexicon, a place corresponds to a memory
location [1]. Places can be represented as place expressions,
which are paths that contain local variables, static variables,
dereferences (*expr), fields etc. Rust’s type system also has
a notion of ownership and a notion of borrowing. Because of
borrowing, the “owning” place expression may not actually
be able to access its underlying memory location at a given
program point. To capture this feature, the Prusti [3] authors
distinguish the right of a place expression to access the value
stored at its underlying place as a “Place Capability”. Thus,
the “Place Capabilities Summary” or “Place Capability Set”
(PCS) of a program at point p is the set of all usable place
expressions at p, along with their associated capabilities.

However, it is impossible to accurately present this infor-
mation without accounting for borrowed values. For exam-
ple:

Listing 1: A Simple Rust Program
1 l e t mut x = 4 ;
2 l e t r = &mut x ;
3 / / p r i n t ! (" { } " , x) ;
4 ∗ r = 3 ;
5 p r i n t ! (" {} " , x) ;

At line 1, the PCS includes an exclusive capability to use x.
However, when the place described by x is mutably borrowed
in line 2, this capability is temporarily lost. This loss occurs
because the mutable borrow guarantees the borrower, in this
case r, exclusive access to that place for the lifetime of the
borrow. Thus, if line 3 were not commented, the compiler
would throw an error, as the borrow must maintain this
exclusive capability until at least line 4, where it modifies
the place. By line 5, the borrow has expired, which restores
the initial capabilities of x and allows the final statement to
compile with no errors. These two aspects, temporary reduc-
tion in capabilities due to a loan and subsequent restoration
of those capabilities, are thus key components in forming a
sound PCS.

Prusti handles loans separately from computing a limited
PCS, but, to provide an accurate PCS as a separate com-
ponent, this analysis must be done together with the classic
PCS enumeration. We define this additional information con-
cerning which loans block/restore which capabilities as the
Reference Capabilites Summary (RCS). Ultimately, because
it is already necessary to compute the RCS to obtain a
complete PCS, and also because we predict that it will often
also be used in combination with the vanilla PCS, we include
both the RCS and PCS together in what we call the Extended
Place Capabilities Summary (EPCS).

The EPCS at program point p is defined by the following
grammar:

ECPS are split into a PCS, Γ, and an RCS, Σ:

EPCSp ::= Γ Σ (1)

PCS are composed of a set of place expressions:

Γ ::= {} | {Π} (2)

RCS are composed of a set of references:

Σ ::= {} | {Λ} (3)

Place expressions, π, have a type, τ , and capability, ω:

Π ::= π : τ : ω | π : τ : ω, Π (4)

Place expressions are composed of variables and their sub-
places (fields and dereference operations):

π ::= x | π.f | ∗ π (5)

References are place expressions leading to other place
expressions (π → π), or indefinite regions % :

Λ ::= λ | λ, Λ (6)

λ ::= π → π : τ : ω | π → % (7)

Regions are a set of place expressions blocked by the
corresponding reference:

% ::= region[] | region[Π] | subplace[π : τ : ω] (8)

Capabilites are either shared or exclusive:

ω ::= e | s (9)

Note that, for concision, τ and ω are often omitted
throughout this paper for contexts in which they are obvious
or irrelevant. Additionally, for readability, the RCS set is
written with parenthesis, rather than curly braces, to distin-
guish it visually from the PCS.

Each λ corresponds to a reference that is live at program
point p. These references can be concrete, referring to only a
single place (π → π) or indefinite referring to either a region,
or a subplace of some known place π.3. Because regions are

3In the typical Rust terminology, the term lifetime is used to refer to this
property. However, in the Polonius borrow checker implementation utilized
by this paper ([4]), lifetimes have been re-dubbed “regions” and thus will
be referred to as such

not typically used by tools outside of the borrow checker,
and not particularly informative on their own, the regions as
presented in the PCS include information about the variables
that are blocked by them.

Thus the→ operator as defined above can also be thought
of as the “magic wand” operator (−∗) as described in [5].
The elements on the right are blocked by the referrer on the
left until that reference is no longer live, at which point, when
the left element is released (e.g. the corresponding borrow
expires), the elements on the right are restored.

The analysis performed to calculate the EPCS is sound
with respect to capabilities held at a given program point.
That is, a program never holds less capabilities for a place
than presented by the EPCS at that point. The soundness of
the EPCS is discussed further in Section V-G.2.

The notation can be seen in the previous example in
Listing 1, now annotated with the EPCS after each line (with
types elided for concision):

Listing 2: An Annotated Simple Rust Program
1 l e t mut x = 4 ; / / { x : e } ()
2 l e t r = &mut x ; / / { r : e } (r −> x : e)
3 . . .
4 ∗ r = 3 ; / / { x : e } ()
5 p r i n t ! (" {} " , x) ; / / { x : e } ()

The reference created at the second line removes the capa-
bilities of x, but tracks these capabilities with the reference
r : e → x : e. This reference indicates that r is blocking
some capabilities for x. Thus these capabilities on the right
side of the arrow can be restored after line 4, simply by
placing them directly back into the curly brackets of the PCS.
In this case, by looking at the code snippet, it is evident that
r always points directly to x. This is indicated by the right
side of the reference being a concrete place expression rather
than a region such as r[x : e].

The above definition and explanation is sufficient for a
path-independent EPCS. For a path-dependent EPCS, the
summary at a given program point is composed of a set of
sub-EPCS, one for each unique path through the program’s
control flow graph. The path dependent EPCS also be
extended to contain metadata about which conditions cor-
respond to which version of the EPCS (i.e. path constraints).

V. PCS RULES

A. Packing and Unpacking Fields
Capabilities to a given place also imply the same capabil-

ities to its sub-places (defined by the grammar in Equation
5). However, capabilities to sub-places can be acquired and
given up throughout the program. Thus it is necessary to
track these capabilities in such a way that they can be
accurately reassembled into their parent places as required.4

To track this information, the EPCS can be transformed
with “pack” and “unpack” operations into the state required
by the current point. For example:

4A “parent place” of π is a place expression π′ for which pi is a subplace
of π′

Listing 3: Packing and Unpacking
1 s t r u c t Simple {
2 f : u8 ,
3 g : u8 ,
4 }
5
6 fn s u b p l a c e s () {
7 l e t mut c = Simple { 3 , 4 } ; / / { c } ()
8 c . f = 2 ; / / { c . f , c . g } ()
9 l e t d = c ; / / { c } ()

10 }

The above snippet contains one instance of unpacking,
from c into c.f, c.g at line 8. This unpacking is necessary
because the assign statement at line 8 requires capabilities
to c.f to be able to assign to it. At line 9, the assign
statement needs a shared capability to the whole of the struct
stored in c, so the sub-places are packed back into c in the
PCS. Packing and unpacking can be applied recursively to
nested structures to disassemble/reassemble their capabilities
appropriately.

More formally, for a place π of type τ with fields fi, ..., fn
unpacking of a capability ω in from the initial PCS, Γ, to
the required PCS, Γ′, is defined by the following rule:

UNPACK:

π : τ : ω ∈ Γ fields(τ) = f1 : τ1, ... , fn : τn
Γ,Σ→ Γ[π / π.f1 : τ1 : ω, ... , π.fn : τn : ω],Σ

(10)

Here Σ corresponds to the RCS as in Equation 1. Similarly,
packing, the inverse operation, is defined by:

PACK:

π.f1 : τ1 : ω, ... , π.fn : τn : ω ∈ Γ
π : τ fields(τ) = f1 : τ1, ... , fn : τn

Γ,Σ→ Γ[π.f1, ... , π.fn / π : τ : ω],Σ
(11)

It should be noted that the “fields” of a type τ in this context
are its actual fields if it is a struct type, but this is not always
the case. Reference types are considered to have a single
“field”, *, corresponding to a dereference. Aggregate types,
like tuples or enums have “fields” corresponding to their
indices. This uniformity in notation allows for definitions
to be more concise.
The algorithms for packing and unpacking are given in
pseudo-code below:

Listing 4: Unpacking Algorithm
1 fn pack (pcs p l a c e) −> o p t i o n <new−pcs > ;
2 i f p l a c e in pcs :
3 re turn pcs
4
5 l o n g e s t−e x t e n s i o n = l o n g e s t
6 (f i l t e r (e x t e n s i o n s p l a c e) in pcs)
7 l o n g e s t−p r e f i x = l o n g e s t−e x t e n s i o n [0 . . −1]
8
9 f o r f i e l d in (f i e l d s l o n g e s t−p r e f i x) :

10 pcs = t r y
11 (pcs remove l o n g e s t−p r e f i x . f i e l d)
12 pcs = pcs add l o n g e s t−p r e f i x
13
14 re turn (pack pcs p l a c e)

Listing 5: Packing Algorithm
1 fn unpack (p r e f i x pcs p l a c e) −> new−pcs
2 i f p l a c e in pcs :
3 re turn pcs
4
5 pcs = t r y (pcs remove p r e f i x)
6 pcs = pcs add p r e f i x . f i e l d
7 f o r f i e l d in (f i e l d s p r e f i x)
8
9 p r e f i x = p l a c e [0 . . l e n (p r e f i x) + 1]

10 re turn (unpack p r e f i x pcs p l a c e)

Whether or not to pack or unpack can be determined by
checking if the current expression requires a place that is not
in the EPCS. If so, and if that place is a prefix or extension5

of a place in the PCS, then packing or unpacking can be
attempted accordingly to acquire the required capabilities:

Listing 6: Unpacking When Required
1 . . .
2 f o r p l a c e r e q u i r e d−by e x p r e s s i o n :
3 i f p l a c e n o t in epcs
4 and one−of (p r e f i x e s −of p l a c e) in epcs :
5 t r y (unpack p r e f i x epcs p l a c e)
6 . . .

Listing 7: Packing When Required
1 . . .
2 f o r p l a c e r e q u i r e d−by e x p r e s s i o n :
3 i f p l a c e n o t in epcs
4 and one−of (e x t e n s i o n s−of p l a c e) in epcs :
5 t r y (pack epcs p l a c e)
6 . . .

Note that the try statement here indicates that the operation
may not succeed. In essence, if the place cannot be packed
or unpacked from the current EPCS, then there is an error
in the program. In practice, however, because the EPCS is
assembled after most of the Rust compiler analysis steps,
these errors will be caught by the compiler before they have
a chance to occur here.

B. Copy and Move Assignments

In Rust, Rvalue operands can be either moved out or copied,
depending on whether or not they implement the Copy
trait. In the case of a copy assignment the PCS is adjusted
accordingly:

COPY: π′ = Rvalue(π)

π : τ : ω ∈ Γ copyable(τ)

Γ,Σ→ Γ ∪ {π′},Σ
(12)

5A prefix of a place π is a place π′ such that π is a sub-place, as defined
in Equation 5, of π′. An extension of π is a sub-place of π

COPY (REF): π′ = Rvalue(π)

π : τ : ω ∈ Γ copyable(τ) π → λ ∈ Σ

Γ,Σ→ Γ ∪ {π′}, Σ ∪ {π′ → λ}
(13)

For values that are moved out, the transformation is as
follows:

MOVE: π′ = Rvalue(π)

π : τ : e ∈ Γ noncopyable(τ)

Γ→ Γ[π / π′]
(14)

MOVE (REF): π′ = Rvalue(π)

π : τ : e ∈ Γ noncopyable(τ) π → λ ∈ Σ

Γ, Σ→ Γ[π / π′], Σ[π → λ /π′ → λ]
(15)

It should be noted that, for Rvalues that contain dereferences
(*), those operations are carried out in the context of the
EPCS before applying these transforms. See V-F

C. Concrete Borrows

Concrete borrows refer to variables assigned borrows at most
once at any given program point. In essence, this means
borrow assignments that are not dependent on control flow.
This allows the EPCS to track exactly what the reference
points to for the lifetime of that borrow.
The rules for borrowing are similar for those of copy/move
assignments. Indeed, moves can be modeled as exclusive
borrows that are never returned, as in [3]. For the purposes
of this paper, however, moves, copies, shared borrows, and
exclusive borrows are all treated as separate operations.
A shared borrow downgrades the place π to a shared capa-
bility, and adds the corresponding reference to the RCS:

SHARED CONCRETE BORROW: π′ = &π

π : τ : ω ∈ Γ

Γ,Σ→ Γ[π : τ : ω /π : τ : s] ∪ {π′}, Σ ∪ {π′ → π}
(16)

An exclusive borrow (e.g. x = &mut y) removes the
place π being borrowed from the PCS, and also adds the
corresponding reference to the RCS:

EXCLUSIVE CONCRETE BORROW: π′ = &mut π

π : τ : e ∈ Γ

Γ,Σ→ Γ[π : τ : e / π′ : τ : e], Σ ∪ {π′ → π}
(17)

D. Borrow Expiry

To determine the liveness of borrows, we assume
there exist oracle functions borrow_is_live(p, λ) and
region_is_live(p, %) that return true iff the borrow λ or
region % is live at program point p. Here we define a borrow
to be “live” if it may be used to access the underlying place
later in the program. Similarly, we definte a region to be live
if all of the borrows it encompasses are live. Both indefinite
and definite references are assumed to be transferred to the
Lvalue during assign statements, unless the borrow or region

would naturally expire for other reasons (e.g. the borrow is
no longer used afterwards).6 This liveness check is computed
at each statement for each reference, such that if a borrow
has expired, the removal of it and/or restoration of according
capabilities are carried out before the next statement.

CONCRETE BORROW EXPIRY:

!borrow_is_live(p, λ) λ = π′ → π λ ∈ Σ

Γ,Σ→ Γ ∪ {π},Σ \ λ
(18)

INDEFINITE BORROW EXPIRY:

!region_is_live(p, %) % = r[Π] π′ → % ∈ Σ

Γ,Σ→ Γ ∪ {Π},Σ \ λ
(19)

E. Indefinite References

When the target of a reference is not constant at a given
program point because it occurs, for example, within the
body of a loop, it is approximated in the RCS by a reference
invariant. This reference invariant is a weakening of the value
on the right-hand-side of an indefinite borrow assignment,
and holds at entry in addition to inductively throughout the
body of the loop. For example:

Listing 8: Indefinite References
1 Node < ’ a> {
2 v a l : u8 ,
3 n e x t : &’a Node < ’ a > ,
4 }
5
6 fn s i m p l e _ l o o p (m: Node) −> u8 {
7 l e t mut n = &m;
8 l e t mut v = &m. v a l ;
9 whi le (n . v a l > 0) {

10 n = n . n e x t ;
11 v = &n . v a l ;
12 }
13 re turn ∗v ;
14 }

In the listing above, while n initially concretely references
the input Node m, through the body of the loop, that
reference becomes indefinite; at line 11, n could refer to
m.next, or m.next.next etc. The weakenings of a definite
reference targeting y, in decreasing specificity are listed
below.

y ⊆ subplace[y] ⊆ region[y, ...] (20)

Note that the differentiation between subplace[y] and
region[y] is purely semantic, as they have no particular
difference in meaning in the context of the EPCS itself.
Indeed, the implementation discussed in Section VI-C does

6It should be noted that these assumptions may be violated by the
implementation of the borrow checker facts. Indeed, preliminary testing of
the EPCS API has shown that the borrow checker does not hold to these
assumptions. See the issues in the supplementary Gitlab Repository [13] for
details.

not distinguish between the two. Still, it is possible that dif-
ferentiating between them may be important to downstream
tools, and thus it is included here.
The EPCS transform assumes an oracle that calculates the
reference invariant of a particular variable x at program point
p in program P : ref_invariant(P, p,EPCS, x). Thus the
transformation rules are the same as in Section V-C, but,
instead of referring to π directly, π′ refers to a region
including π given by the ref_invariant oracle function.
The rule for shared indefinite borrows is given below as an
example:

SHARED INDEFINITE BORROW: π′ = &π

π : τ : ω ∈ Γ % = ref_invariant(P, p, (Γ,Σ), π′)

Γ,Σ→ Γ[π : τ : ω /π : τ : s] ∪ {π′}, Σ ∪ {π′ → %}
(21)

F. Reborrows and Dereferencing

Reborrows are not a special case of EPCS transform. They
behave identically to their indefinite/concrete borrow coun-
terparts, adding a new reference to the RCS and adjusting
capabilities as necessary. However, it should be noted that,
even if b is a reference, the following is NOT a reborrow,
because of Rust’s auto-dereferencing:

Listing 9: Not a Reborrow
1 l e t a = & b . f / / a . k . a . l e t a = &(∗b) . f

This is important for tracking the EPCS as it continues to
evolve. If b is moved out after this line, the reference a →
(∗b).f is actually still intact.
For example:

Listing 10: Dangling Reference RCS
1 l e t mut y = &x ; / / (y −> x)
2 l e t z = &(∗y) ; / / (y −> x , z −> x)
3 y = &w / / (y −> w , z −> x)

The transform at line 2 follows the dereference of y to x
from the PCS after line 1, rather than continuing to track
the referred-to place in terms of y (i.e. z → ∗y). This
is important to avoid “dangling” references as variables
are changed throughout the program. In this example, y is
assigned a different reference at line 3. If z’s reference was
kept as z → ∗y, it would be dangling, because ∗y no longer
points to the place z refers to. In this context, z should still be
a valid reference to what y was pointing to at the second line,
x. These dereference operations are carried out insofar as is
possible given the references tracked in the RCS, possibly
multiple times if the Rvalue contains several dereferences.
Similarly, for move and copy assignments, if the Rvalue
contains dereferences, they need to be followed to prevent
dangling references as well.
This behavior is relatively clear for concrete borrows. For
indefinite borrows, following a dereference operation can
result in an indefinite result. Thus a second dereference on
such a result is perhaps non-obvious. Ultimately, the new

reference will simply be the tightest indefinite reference that
encompasses all possibilities (often a region that is a superset
of places). In the example below, r[α] and s[α] are region
and subplace weakenings as discussed in Section V-E.

Listing 11: Following Indefinite References
1 / / { . . . } (x −> r [w , y] , y −> s [a] , w −> s [b])
2 z = &(∗(∗x)) / / { . . . } (z −> r [a , b] , . . .)

The resulting region can be found by using the same refer-
ence invariant oracle as described in Section V-E.

G. Control Flow Transfers and Merges

1) Terminators: Terminator instructions (e.g. switchInt
etc.) typically result in copying the current EPCS to begin
each basic block in the control flow graph that is a target of
the instruction. A representative sample of terminator rules
are presented below.7

GOTO goto(p′)

Γ,Σ→p Γ,Σ
(22)

SWITCH INT (MOVE) switch_int(move(π), p1, ... , pn)

π ∈ Γ

Γ,Σ→p1, ... , pn
Γ \ π,Σ

(23)

CALL call(f,move(πarg_1, ... , πarg_n), πret, pret)

πarg_1...arg_n ∈ Γ
Γ,Σ→pret

Γ \ πarg_1...arg_n ∪ {πret},Σ ∪ {πret → region(πret)}
(24)

Note that the→p and→p1...pn
notation indicates a transition

to program point p or to program points p1 through pn, re-
spectively. Thus the left hand side of the transition represents
the EPCS state at the predecessor program point before the
transition, and the right hand side represents the EPCS at the
point or points transitioned to.
2) Merging: Merging is necessary to unify the EPCS at a
given point. For example, at the beginning of a basic block
with multiple incoming edges, it is necessary to merge each
incoming EPCS to obtain a single, path independent EPCS.8

Merging the EPCS of two basic blocks involves taking
the intersection of each PCS and the union of each RCS:

7There are many kinds of very similar terminators in MIR, and enumer-
ating each of them would be of little additional value to the selected sample
presented here

8Even for a path dependent EPCS, depending on the structure of the CFG,
merging operations may be required

MERGE: merge(p, p′)

Γp,Σp →p′ Γp ∩ Γp′ ,Σp ∪ Σp′
(25)

Keeping only the intersection of place capabilities is appro-
priate, as it only presents the capabilities that are definitively
held at a given program point. Verification tools, for example,
are typically interested in proving things based off of certain
capabilities. Thus if the analysis of capabilities is not sound
–if at least those capabilities listed are not held– then
verification based on those unsound capabilities may not be
sound either.
Conversely, references are taken as a union. This is primarily
to mirror the borrow checker’s soundness guarantees; a
resource is blocked so long as the responsible borrow might
be live. Again, this is conservative to ensure the soundness of
the PCS; if a reference might be blocking a certain capability,
for soundness, we must assume that it does. The union of
indefinite borrows are calculated according to the set-union
of the weakenings listed in Equation 20.

H. Closures

Closures are somewhat of a special case, and thus were not
considered for the purposes of this project.

VI. IMPLEMENTATION

The implementation is primarily documented with rustdoc
and can be found in the supplemental Gitlab Repo [13]. At a
high level, the implementation consists of three components:
a CLI, a wrapper around the Polonius borrow checker and
Non-Lexical Lifetime (NLL) compiler outputs, and the EPCS
API itself.
A few key design choices are discussed in this section,
however.

A. MIR

The EPCS API was built using Rust’s MIR rather than source
code for a number of reasons. Foremost, the borrow checker
operates at the MIR level, so performing the EPCS analysis
on MIR allowed us to directly use the borrow checker output
without mapping it back to source first. Secondly, the reduced
syntax and semantics of MIR simplified the analysis itself.
Finally, while not in the initial implementation of the API,
the Rust compiler does provide mappings back to source
Rust code in its MIR data structures and it is possible to
obtain a source level EPCS from this information.
When analyzing MIR code, however, there are many
StorageLive and StorageDead instructions generated for
the compiler’s own static analysis. Because these instructions
are known to have semantics that can be difficult to reason
about [6], we have opted to ignore them in our imple-
mentation. Liveness information can instead be determined
from the borrow checker, which contains facts for variable
liveness, in addition to borrow liveness as discussed in the
following section.

B. Borrow Checker Oracle

The oracle for determining the liveness of borrows is a
thin wrapper around the Polonius [4] experimental borrow
checker implementation. The Polonius engine takes in a
series of Datalog facts emitted by the nll-facts compiler
flag and computes several predicates relating to loan and
region liveness. The EPCS API uses the Polonius engine as
a dependency to compute and access this information.

C. Reference Invariant Oracle

For the reference invariant oracle, two proposals were con-
sidered for the implementation.
a) Option 1: Pulling the Invariant from the Borrow Checker:
Assuming that the borrow checker is sound, then any facts
output from it within the loop body should be invariant across
iterations. From lifetime/region liveness, loan-liveness, and
the mappings from variables to regions and loans, it is pos-
sible to piece together an appropriate invariant for references
in the EPCS.
Specifically, concrete borrows are determined by checking
the region the Lvalue is associated with from the nll-facts
output. The region is searched for a sub-region containing
a borrow instantiated at that program point, again using
information from the nll-facts. This allows the association of
the Lvalue with a “borrow id”, which can be used to query
the borrow checker oracle as described in Section V-C for
liveness information as necessary.
For indefinite borrows, there is no sub-region containing a
borrow at the program point in question. Thus, instead of
collecting information about a single loan, a collection of all
the variables that use each of the sub-regions in the search
space are returned as being blocked by the Lvalue’s region.
This route was ultimately chosen primarily for its simplicity.
It allowed us to forgo writing code to do an iterative
weakening fixed point analysis, even if we have slightly less
control over the kind of information we can determine.9

While not achieved in the initial version of the EPCS API,
the validity of the invariant can be checked by asserting that
it is a fixed point w.r.t. the loop execution (and that it holds
on entry).
b) Option 2: Iterative Weakening Fixed Point Approxima-
tion: Another proposed method of finding an appropriate
reference invariant is an iterative weakening of references
created inside the loop body until a fixed point is reached.
For example the first iteration of the fixed point computation
at a single line loop body might be:

// EPCS: { curr } (curr->list)
curr = curr.next;
// EPCS: { curr } (curr->list.next)

Because this is not a fixed point, the reference for the place
assigned to is weakened according to Equation 20 on the

9It is non-trivial to determine whether or not to take e.g. subplace[α] as
a reference invariant. As mentioned in section V-E, there is no difference
from the EPCS computation point of view between this and a region-based
weakening. Because of this, using the borrow checker information instead
of rolling a custom fixed point analysis seemed to be a clear win

next iteration:

// EPCS: { curr } (curr->sub-place(list))
curr = curr.next;
// EPCS: { curr } (curr->sub-place(list))

Now that a fixed point has been reached, the reference is
taken as the reference-invariant

D. Alternative Designs Considered: Datalog

This kind of program analysis tends to lend itself very
well to Datalog. Indeed, the Polonius borrow checker [4] is
implemented in Datalog via a Rust library. While we believe
a Datalog implementation would be a very clean, natural
solution, there were several practical considerations that lead
to the final decision to implement the EPCS computation
in Rust, rather than in Datalog (or a Rust library utilizing
Datalog constructs).
The primary reason for not using a Datalog implementation
was that it was an additional layer of complexity that was
ultimately unecessary for the task. More specifically, one of
the main attractions for using Datalog is that fixed-point
computations are essentially “free” and relatively perfor-
mant. The EPCS computation itself is actually relatively
lightweight, as it mostly involves gathering data from a
number of sources. And by opting against using a fixed-point
computation to find reference invariants, there was little need
to incorporate an additional layer of translation from a Rust
representation to Datalog to perform the analysis.

VII. FUTURE WORK

Completing the implementation of a tool that constructs
EPCS for a wider swath of Rust code would be the logical
continuation of this project. Also, expanding the inference
rules to include behavior for closures would be an important
extension of this work.
Additionally, because EPCS is constructed from MIR code,
adding a mapping of an EPCS back to Rust source code level
would also be helpful, as it would allow for source-level lint-
ing or visualization tools to utilize the API. Indeed, building
such analysis or visualization tools that leverages the EPCS
API to provide information to developers or researchers
would be an excellent way to exercise the possibilities the
unified interface presents. This could involve something like
the lifetime visualization ideas discussed in [10], [2] or [9].

REFERENCES

[1] The rust reference.
[2] Borrow visualizer for the Rust language service, Oct 2016.
[3] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging

Rust types for modular specification and verification. In to appear in
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA). ACM, 2019.

[4] Niko Matsakis et. al. Polonius. https://github.com/rust-lang/polonius,
2020.

[5] Samin S Ishtiaq and Peter W O’hearn. Bi as an assertion language for
mutable data structures. ACM SIGPLAN Notices, 36(3):14–26, 2001.

[6] Ralf Jung. Exploring mir semantics through miri, Jun 2017.
[7] Shuanglong Kan, David Sanan, Shang-Wei Lin, and Yang Liu. K-rust:

An executable formal semantics for rust, 2018.

[8] Eric Reed. Patina: A formalization of the rust programming language.
University of Washington, Department of Computer Science and
Engineering, Tech. Rep. UW-CSE-15-03-02, 2015.

[9] Jeff Ruffwind. Graphical depiction of ownership and borrowing in
rust, Feb 2017.

[10] Jeff Walker. Rust lifetime visualization ideas, Feb 2019.
[11] Feng Wang, Fu Song, Min Zhang, Xiaoran Zhu, and Jun Zhang.

Krust: A formal executable semantics of rust. In 2018 International
Symposium on Theoretical Aspects of Software Engineering, TASE
2018, Guangzhou, China, August 29-31, 2018, pages 44–51, 2018.

[12] Aaron Weiss, Daniel Patterson, Nicholas D. Matsakis, and Amal
Ahmed. Oxide: The essence of rust. CoRR, abs/1903.00982, 2019.

[13] Dylan Wolff. Rust-epcs. https://gitlab.inf.ethz.ch/OU-
PMUELLER/student-projects/rust-pcs/, 2020.

