
Verification of Python Code with a Dynamic Object Model
Master’s Thesis Project Description

Edgars Vitolins
Supervisors: Dr. Marco Eilers, Prof. Dr. Peter Müller

October 2023

1 Introduction

One of the reasons why Python has become so popular is its expressiveness. Functionality that might
be fixed in other languages is often highly customizable in Python. One great example of this is
Python’s dynamic object model, which allows to redefine basic operations such as attribute access and
object creation through the use of “magic methods”. However, this flexibility makes it difficult to
verify various properties about Python programs, since something as simple as an attribute access can
have arbitrary effects.

1.1 Python’s object model and magic methods

class Dynamic:

def __getattr__(self , name):

return "access to nonexistent field " + name

d = Dynamic ()

print(d.hello)

prints "access to nonexistent field hello"

Listing 1: Access to nonexistent field

class Dynamic:

ignore setting attr

def __setattr__(self , name , val):

print(f"create foo_{name} = {val}")

self.__dict__[f"foo_{name}"] = val

d = Dynamic ()

d.i = 300 # prints "create foo_i = 300"

print(d.foo_i) # prints "300"

print(d.i) # AttributeError : ’Dynamic ’ object has no attribute ’i’

Listing 2: Setting a field

In Python, classes can be customized using special methods called “magic methods”. These are
methods with special names, listed in the Python documentation [1], that allow to implement operator
overloading, customizing attribute access and class creation, and others.
Listing 1 shows a simple example of how customizable attribute access in Python is. In other lan-
guages, just looking at a class definition might be enough to determine whether an access to a certain
attribute will succeed. However, in Python, an access to an attribute can be intercepted, with poten-
tially arbitrary functionality.
The way attribute access customization in Python works is that first Python will try to call the method
getattribute with the name of the attribute as a string argument. If getattribute raises an

AttributeError, or if no such method is defined, and the attribute name is not found in dict (the
so-called instance directory, which is the data structure Python uses to store attributes), then Python

1

will try to call getattr . In Listing 1, since there is no getattribute defined and since hello

has not been created, Python will call getattr . So even though the attribute hello was never
created, an access to it did not raise an AttributeError exception.

Listing 2 shows how setting an attribute can be customized as well. In the example, setattr

creates an attribute, but with “foo ” prepended to its name.
In principle, getattribute , getattr and setattr allow attribute access and manipulation
to execute arbitrary computation and manipulate state since there are no restrictions on what can be
done in those methods.

1.2 Viper and Nagini

Nagini [2] is a Python verifier based on the Viper [3] verification infrastructure. It works by encoding
Python programs into the Viper intermediate language, and then uses existing Viper infrastructure
to verify those programs. Viper is a tool-chain on which several frontends have been built, that takes
programs encoded in the Viper intermediate language and verifies them using an SMT solver.
Currently, Nagini only allows the customization of some magic methods, and it does not allow the
modification of getattribute , getattr and setattr . Instead of implementing attribute
access the way its done in Python with a dict instance directory lookup, Nagini models instance at-
tribute access as a simple value lookup of a fixed memory location. Since getattr and setattr

definitions are currently not allowed in Nagini, Listing 1 and 2 cannot be verified.

For verification purposes, correct modeling of instance attribute access in Python is difficult because
a field read involves several method invocations with arbitrary computations and state modifications,
which adds a lot of complexity, potentially requires writing much more complex specifications, and
comes at a significant performance cost.
More information on how Nagini implements the Python object model and the reasons behind it can
be found in section 2.2.4 of [2].

2

2 Thesis Statement

The purpose of this thesis is to define and implement a more accurate Python object model specification
in Nagini that would allow some instance attribute customization. More concretely, this will mean
allowing Nagini to verify programs that make use of getattribute , getattr and setattr

“magic methods”.

3 Core goals

3.1 Collect examples

Collect some examples of how magic methods are used in popular Python libraries. Condense these
examples into compact code snippets that serve as the focus of the thesis.

3.2 Design and implement prerequisites in Nagini

Add or extend features in Nagini that will be required to encode a more accurate object model.
For example, the current implementation of Nagini does not handle strings well. Rework or otherwise
adjust the way strings are implemented in Nagini for the purposes of this thesis (in particular, attribute
names, stored as strings, are used as keys in instance dictionaries).
Change the way Nagini handles multiple concurrent accesses to dict data structures, given how Python
implements attribute accesses in instance dictionaries.

3.3 More accurate Python model specification

Define a new Python object model encoding to Viper that more accurately reflects Python’s actual se-
mantics, for the purpose of implementing instance attribute access customization using getattribute ,
getattr and setattr (focusing on attribute accesses and not function calls). This could in-

volve adding more specification constructs if needed, or redesigning currently existing specifications.
Define requirements for what magic methods are allowed to do, for example, that they should be pure
functions with no side effects.

3.4 Explore switch between current and complex versions

Explore various approaches as to how the new functionality of verifying magic methods could be
combined with the existing Nagini model. One way of combining these two verification approaches is
by processing classes without magic methods with the current simplified model, and only applying the
more complex magic method model when it is necessary, as well as allowing the user to switch between
the two using ghost code.
Explore how using the more complex model conflicts with Nagini’s reliance on enforcing and assuming
behavioral subtyping.
This goal also involves designing annotations in such a way that would allow switching between the
more complex magic method model and the current simplified model as easily as possible.
The expected outcome for this goal is either a specification mechanism and an encoding for combining
and switching between the existing view and the more complex view from Core Goal 3.3 or a detailed
description of what makes such a dynamic switch impossible, impractical, or outside the scope of a
Master’s Thesis.

3.5 Implementation in Nagini

Implement functionality from Core Goal 3.3 and 3.4 in Nagini, focusing on verifying concrete code
snippets from Core Goal 3.1.

3

4 Extension goals

4.1 Metaclasses

Explore if and how verifying magic methods as discussed in Core Goal 3.3 relates to verifying Python
Metaclasses. Discuss what functionality would still need to be implemented or implement said func-
tionality in Nagini to allow it to verify some Python Metaclasses.

4.2 Different simplified models

Core Goal 3.3 will involve defining some simplified Python Object model, but there might be other
approaches that could have been taken. Discuss what those other approaches are, and how they
compare to the approach taken in Core Goal 3.3.

4.3 Method calls based on dynamic lookups

This goal can be seen as the function side to the attribute overriding from Core Goal 3.3. Like with
attribute accesses, Python has a very flexible function calling mechanism. Explore what is necessary in
order to implement verification of a more accurate model of this function calling mechanism in Nagini.
Consider using the results from [4].

4.4 Other magic methods

Implement verification or more “magic methods” beyond getattribute , getattr and setattr

from Core Goal 3.3 and what is already part of Nagini.

References

[1] Python’s data model documentation. https://docs.python.org/3/reference/datamodel.html.
Last accessed: 15.10.2023.

[2] Marco Eilers. Modular Specification and Verification of Security Properties for Mainstream Lan-
guages. PhD thesis, ETH Zurich, Zürich, Switzerland, 2022.

[3] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A verification infrastructure for
permission-based reasoning. In Barbara Jobstmann and K. Rustan M. Leino, editors, Verification,
Model Checking, and Abstract Interpretation - 17th International Conference, VMCAI 2016, St.
Petersburg, FL, USA, January 17-19, 2016. Proceedings, volume 9583 of Lecture Notes in Computer
Science, pages 41–62. Springer, 2016.

[4] Benjamin Weber. Automating modular reasoning about higher-order functions, Novem-
ber 2017. Available at https://ethz.ch/content/dam/ethz/special-interest/infk/

chair-program-method/pm/documents/Education/Theses/Benjamin_Weber_MA_report.pdf.

4

https://docs.python.org/3/reference/datamodel.html
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Benjamin_Weber_MA_report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Benjamin_Weber_MA_report.pdf

	Introduction
	Python's object model and magic methods
	Viper and Nagini

	Thesis Statement
	Core goals
	Collect examples
	Design and implement prerequisites in Nagini
	More accurate Python model specification
	Explore switch between current and complex versions
	Implementation in Nagini

	Extension goals
	Metaclasses
	Different simplified models
	Method calls based on dynamic lookups
	Other magic methods

