
A Formally Verified Automatic
Verifier for Concurrent Programs

Master Thesis

Ellen Arlt

May 17, 2023

Advisors: Prof. Dr. Peter Müller, Thibault Dardinier, Gaurav Parthasarathy

Department of Computer Science, ETH Zürich

Abstract

Writing correct concurrent programs is challenging, because one often
has to consider a large number of possible orders of execution due
to the unpredictability of how the concurrent sections will interleave.
The same applies when verifying concurrent programs. Concurrent
separation logic (CSL) provides a program verification technique that
allows one to elegantly prove that a concurrent program is indeed
correct. However, writing CSL proofs manually is time consuming. As
a result, a variety of tools have been developed to automate CSL proofs.
Among such tools some are based on the Viper infrastructure. These
are Viper front-ends.

Viper front-ends are verifiers for real-world programming languages
which translate input programs and their specifications into Viper. A
front-end is considered sound if the correctness of the translated pro-
gram implies the correctness of the input program with respect to its
specifications. Proving a front-end sound is non-trivial, especially if that
front-end supports concurrency. There are Viper front-ends supporting
concurrency for which the translation into Viper has been formally
proven correct on paper. Nevertheless, none of such correctness proofs
have so far been fully mechanized in an interactive theorem prover.

In this thesis, we provide a mechanically formalized Viper front-end for
a programming language that supports concurrency. Our front-end is
the first such front-end that has been formally proved to be sound in
the Isabelle theorem prover.

i

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisors
Thibault Dardinier and Gaurav Parthasarathy for their support, valuable
feedback and for providing me with new insights during our meetings.
Furthermore, I am very grateful to Prof. Dr. Peter Müller for the opportunity
to work on this project.

Many thanks also to my family for always being there for me.

ii

Contents

Acknowledgements ii

Contents iii

1 Introduction 1
1.1 Outline . 4

2 The ImpCon Language 5
2.1 The Syntax . 5

2.1.1 Expressions . 6
2.1.2 Assertions . 6
2.1.3 Commands . 7
2.1.4 The Type Context . 8

2.2 The ImpCon State Model . 9
2.3 The Semantics . 10

2.3.1 Expressions . 10
2.3.2 Assertions . 10
2.3.3 Commands . 12

2.4 Correctness of ImpCon Programs 14

3 Translating ImpCon into Viper 17
3.1 The Translation Function . 17

3.1.1 Expressions . 17
3.1.2 Assertions . 18
3.1.3 Commands . 19
3.1.4 The Type Context . 23

4 Soundness of the Translation 25
4.1 Expressing Soundness . 25
4.2 Forward and Backward State Translation 28
4.3 Proving Soundness . 36

iii

Contents

4.3.1 The Proof Strategy . 37
4.3.2 Proving Sound the Translation of Commands (Except

Parallel Commands) . 43
4.3.3 Proving Sound the Translation of Parallel Commands . 48

5 Lessons Learnt 55
5.1 Alternative ImpCon Heap Definition 55
5.2 Defining an Explicit Frame to Show Soundness of Parallel

Commands . 59

6 An Executable for the ImpCon Front-end 64
6.1 The Extraction Process . 65
6.2 Connecting an ImpCon Text File to the Viper Implementation . 66
6.3 Trusted Code Base . 67
6.4 Evaluation . 69

7 Conclusion 72
7.1 Future Work . 72

Bibliography 75

A Appendix 77
A.1 Evaluated Code Samples . 77

iv

Chapter 1

Introduction

Ridding software of bugs has always been an issue in programming. Yet,
showing that a piece of software is bug-free is an even more challenging
thing to do. That holds true especially when that piece of software uses
concurrency. When verifying concurrent programs one often has to consider
a large number of possible orders of execution due to the unpredictability
of how the concurrent sections will interleave. For that reason concurrent
programs are quite prone to bugs due to issues such as race conditions. So
how can one ensure that a piece of concurrent software correctly does what
it is supposed to do?

One approach to resolve this is via concurrent separation logic (CSL) [1,
2], a logic used to reason about heap-manipulating concurrent programs.
Concurrent separation logic provides a way to prove Hoare triples {P} c {Q},
where P is a precondition, c is code to be executed and Q is a postcondition.
A Hoare triple {P} c {Q} holds if whenever P holds before execution, then
Q holds after execution of c. Concurrent separation logic uses the notion of
exclusive ownership of parts of the heap to avoid explicitly reasoning about all
possible interleavings of concurrently executed code.

One of the main rules from concurrent separation logic to reason about
concurrent sections specifically is the parallel rule. It can be stated as follows1.

{P1} c1 {Q1} {P2} c2 {Q2}

{P1 ∗ P2} c1 ∣∣ c2 {Q1 ∗ Q2}

Here the operator ∗ denotes the separating conjunction. That is, for two
assertions A1 and A2 the separating conjunction A1 ∗ A2 holds if the heap

1The parallel rule actually requires as another premise that the set of variables written
to in c1 is disjoint from the set of variables freely occurring in P2, c2 and Q2 and the set of
variables written to in c2 is disjoint from the set of variables freely occurring in P1, c1 and Q1.
That is, variable writes should not interfere with the execution of the other thread.

1

1 x := alloc(f);

2 y := alloc(f);

3 x.f := 2 ∥ y.f := 3

Listing 1: Example of a concurrent program.

1 {True}
2 x := alloc(f);

3 {x. f ↦ }

4 y := alloc(f);

5 {(x. f ↦) ∗ (y. f ↦)}

6 {(x. f ↦)} {(y. f ↦)}

7 x.f := 2 ∥ y.f := 3

8 {(x. f ↦ 2)} {(y. f ↦ 3)}
9 {(x. f ↦ 2) ∗ (y. f ↦ 3)}

Listing 2: Proof outline of a concurrent program in Listing 1.

can be divided into two disjoint sections such that A1 holds having access to
only the first section and A2 holds when having access to only the second
section of the heap. In other words, each assertion can be proved to hold
when only retaining the information from their section of the heap and
disregarding the rest of the heap. The parallel rule therefore states that
if Hoare triples {P1} c1 {Q1} and {P2} c2 {Q2} hold, then we can conclude
that if preconditions P1 and P2 hold on disjoint parts of the heap then after
concurrently executing c1 and c2 postconditions Q1 and Q2 hold on disjoint
parts of the heap. On a high level that means that if c1 and c2 operate on
disjoint parts of the heap, then their executions do not interfere with each
other.

Consider as an example the code snippet in Listing 1. The code snippet shows
an example where we allocate the field f for each of two reference variables
(i.e. they are Null or point to a memory address), and then concurrently set
the field f of one variable to 2 and the other to 3. Listing 2 gives a proof
outline for the Hoare triple

{True} c {(x. f ↦ 2) ∗ (y. f ↦ 3)},

where c is the code from Listing 1, via the annotations shown in orange. The
poinst-to assertion (x. f ↦ 2) expresses that the current process or thread owns
the heap location associated with x. f , i.e it may access and change it, and
that heap location contains value 2. The notation (x. f ↦) expresses only
ownership.
We start with the precondition in line 1. After the first allocation we know
that x. f is allocated. That also means the execution process gains ownership
of the heap location associated with x. f . Thus, after the first allocation

2

(x. f ↦) holds. With the second allocation the process also gains ownership
of the heap location associated with y. f . By the semantics of allocation we are
using it is ensured that both heap locations are different. Thus, the separating
conjunction in line 5 holds after the two allocations.
It is easy to see that the Hoare triples {x. f ↦ } x. f ∶= 2{x. f ↦ 2} and
{y. f ↦ } y. f ∶= 3{y. f ↦ 3} hold. Hence we can use the parallel rule to obtain
the Hoare triple

{(y. f ↦) ∗ (x. f ↦)} x. f ∶= 2 ∥ y. f ∶= 3{(x. f ↦ 2) ∗ (y. f ↦ 3)}.

As we have established that before the concurrent sections (y. f ↦) ∗ (x. f ↦
) holds, we obtain that after execution of the concurrent sections the desired

postcondition (x. f ↦ 2) ∗ (y. f ↦ 3) holds.

The proof for Listing 1 is simple, but for more complex programs such proofs
become very hard to do manually. Therefore there is a lot of merit in automat-
ing this process. One tool that performs automatic verification is Viper [3].
Viper [3] is a verification infrastructure for permission-based reasoning and
includes the Viper intermediate verification language (IVL), which is based
on separation logic, and an automatic verifier to check the correctness of
Viper IVL programs with respect to user-provided specifications (e.g., pre-
and postconditions).

The Viper infrastructure has been used as a foundation to develop quite a
few verifiers for real-world programming languages. This has been achieved
by developing Viper front-ends which translate input programs and their
specifications into Viper IVL programs so that correctness of the Viper pro-
gram implies correctness of the input program. There already exist multiple
Viper front-ends, examples of which include Gobra [4] for Go, Nagini [5] for
Python, Prusti [6] for Rust, and VerCors [7] to verify Java Programs.

During translation, there will usually be non-trivial gaps between the front-
end program and the encoding into the Viper IVL. For example, Viper itself
does not directly support concurrency. One can encode the proof obligations
arising from the rules in CSL in the Viper IVL, but even so there will still
be a gap between the Viper encoding and CSL. Due to such gaps in the
encoding it is a non-trivial task to prove such an encoding correct. In the case
of the aforementioned Viper front-ends it has never been formally proven
that the translations into Viper performed by these front-ends are correct. It
could therefore very well be that there are bugs in said translations leading
to incorrect verification results. That means we have no formal guarantees on
the correctness of the verification results of these front-end verifiers. There
are some other Viper front-ends also supporting concurrency for which
the encoding into Viper has been formally proven correct on paper [8, 9].
However, none of these correctness proofs have ever been mechanized in an
interactive theorem prover.

3

1.1. Outline

In this thesis, we provide the first mechanically formalized Viper front-end in
the Isabelle theorem prover [10]. Our front-end takes as input programs in a
language ImpCon which we defined ourselves and supports concurrency via
parallel branching. We formally prove in Isabelle that if the Viper program
resulting from the encoding is correct, based on an existing formalization
for a subset of the Viper language, then the input program satisfies its
specification (which includes the absence of data races). Finally, we create an
executable of our front-end.

1.1 Outline

In Chapter 2 we introduce the syntax and semantics of the programming
language ImpCon, which is the front-end language that we designed. In
Chapter 3 we then define and discuss the translation function from ImpCon
into the Viper IVL. We formally prove the soundness of that translation func-
tion in Chapter 4. In Chapter 5 we show some initial alternative approaches
we took in defining ImpCon and in the soundness proof and discuss why
they were sub-optimal and what we learned from them. In Chapter 6 we
explain how we created a front-end executable with formal guarantees for
ImpCon using our translation function. Finally, in Chapter 7 we conclude
this thesis.

4

Chapter 2

The ImpCon Language

This chapter introduces the programming language ImpCon (where ”Imp”
stands for imperative and ”Con” stands for concurrent) that we have defined
and formalised in Isabelle.

In Section 2.1 we describe ImpCon’s syntax. After defining the ImpCon state
in Section 2.2, we show the semantics of ImpCon in Section 2.3. Finally we
define what it means for an ImpCon program to be correct in Section 2.4.

2.1 The Syntax

When defining the syntax of the ImpCon language we had to decide what
kinds of commands and functionalities should be supported and which
ones could be considered out of scope for our project. One big factor in this
decision was that we tried to keep the ImpCon language as simple as possible
in order to avoid unnecessary complications when proving soundness of the
translation in chapter 4. On the other hand, of course, it was also important
to achieve a good level of expressivity. The notions we wanted to support at
the very least were heap operations and concurrency. The definition of the
syntax proceeds accordingly.

In order to define ImpCon commands we need to start with their most
elementary building block, ImpCon expressions. Only after we have properly
defined ImpCon expressions we can formally define ImpCon assertions
which partly consist of ImpCon expressions. And after we have defined
both ImpCon expressions and ImpCon assertions it becomes possible to
define the syntax of ImpCon commands. Therefore, let us start with ImpCon
expressions.

5

2.1. The Syntax

2.1.1 Expressions

ImpCon expressions can consist of integer or boolean literals, the Null-literal
and local variables. In terms of operations on these objects we support
the unary negation operator and the binary operations for equality (==),
comparison via <, logical conjunction and disjunction, addition, subtraction
and multiplication.

E ∶∶= Int integer ∣ Bool boolean ∣ Null
∣ x
∣ ¬ E
∣ E == E ∣ E ∧ E ∣ E ∨ E ∣ E < E ∣ E + E ∣ E − E ∣ E ∗ E

This set of operations already offers enough functionality to build most
common expressions not involving division or modulo operations, albeit
it might be slightly more tedious to build them without a direct operator.
E.g. e1 > e2 can be expressed as ¬(e1 < e2 ∨ e1 == e2) using the expression
syntax above. Hence adding more expressions would have resulted in more
work when proving our translation correct without adding much more
functionality.

One decision to keep it simple caused us to forgo heap-dependent expres-
sions. Hence, while ImpCon does support heap operations as we will see in
Section 2.1.3, it is with the above expression syntax impossible to make any
expressions involving the heap. Our expressions are heap-independent.

Remark 2.1 While we defined the syntax of expressions to to use the prefixes Int
and Bool for integer and boolean literals, we will throughout the thesis leave that
prefix out if it can be clearly derived from context.

2.1.2 Assertions

As we want to not only be able to write programs using ImpCon but also
reason about their correctness we need to also be able to specify properties
on the program state, which we do via assertions.

A ∶∶= E
∣ x. f ↦ E
∣ x. f ↦
∣ E⇒ A
∣ A ∗ A

ImpCon expressions that evaluate to True or False can be ImpCon assertions.
ImpCon assertions also include points-to assertions where x. f ↦ e means
that the field f of local variable x contains the value obtained from evaluating

6

2.1. The Syntax

expression e while x. f ↦ means that the field f of local variable x exists.
points-to assertions also represent ownership in the sense that if they hold
in the current thread of a concurrent execution or the process currently
performing the execution of the program, then that thread or process owns
the associated heap locations. Hence we also do not support fractional
permissions to heap locations. Heap locations are always either fully owned
or not at all.

Note that due to heap-independence of expressions points-to assertions of
the form x. f ↦ e cannot relate the value of a field to another field. This will
not hurt us in terms of expressiveness though, as we could simply create a
local dummy variable to which we assign the value of the field we wish to
mention in e.

Furthermore, ImpCon assertions include implications, and separating con-
junctions via the binary operator ∗. We only support implications whose
premises are expressions. The reason we do not support implications whose
premises are other types of assertions and also the reason why we do not
support usual logical conjunction of assertions alongside separating conjunc-
tions is that these are not supported in Viper either. That is because they
present fundamental challenges for automation.

2.1.3 Commands

The commands ImpCon supports are the following.

C ∶∶= SKIP
∣ Assert A
∣ x ∶= E
∣ x. f ∶= E
∣ x ∶= y. f
∣ x ∶= alloc(f1, f2, . . . , fn)

∣ C ; C
∣ If E then C else C
∣ {A} C {A} ∣∣ {A} C {A}

∣ C ∣∣ C

Let us go through the meanings of these commands. The command SKIP
denotes the empty command, i.e. a code block without any instructions.
Assert-commands simply query whether a given assertion holds in the cur-
rent program state.
The commands x ∶= e, x. f ∶= e, x ∶= y. f and x ∶= alloc(f1, f2, . . . , fn) are all
different kinds of assignments. x ∶= e is a local assignment of the value of an
expression e to a local variable x.

7

2.1. The Syntax

The next command, x. f ∶= e, performs an assignment of the value of an
expression e to the field f of a local reference variable x.
The third kind of assignment we have is the command x ∶= y. f , where x and
y are local variables with the value of y being a reference and f is a field
name. This command assigns the value of the field access y.f to x. The reason
we included a command to specifically assign heap values to local variables
lies in the fact that ImpCon expressions are heap-independent. Hence local
variable assignment from expressions is insufficient to express what this
command does. Moreover, without this command we cannot assign values
from fields to other fields, again due to heap-independence of expressions.
Hence, to express the assignment x.f ∶= y.f , which ImpCon does not support,
we can use another local variable temp and write temp ∶= y. f ; x. f ∶= temp.
The last type of assignment, x ∶= alloc(f1, f2, . . . , fn), exists to allocate fresh
memory on the heap for a local reference variable x and its fields f1 to fn.
The reason we also call it an assignment is that it assigns a new reference
value pointing to an unused memory address when executed.
The next two commands are ones one is usually familiar with from other pro-
gramming languages; Sequential composition of commands and If-statements.
For the sake of simplicity we decided not to include While-loops, although
adding support for them should not pose any fundamental challenges.
The most important command we included is the parallel command. The
command {Pre1} c1 {Post1} ∣∣ {Pre2} c2 {Post2} executes the ImpCon com-
mands c1 and c2 in parallel. Through the parallel command we achieve our
objective of supporting concurrency.
Note that, next to the two commands to be executed in parallel, the parallel
command also takes four ImpCon assertions as arguments. These assertions
are expected to be the pre- and postconditions of the respective commands.
While these assertions do not have any impact on the semantics of ImpCon
they will be needed for verification.
The final command listed in grey is the annotation-free parallel command
and is only formally defined as a command. This command should never
be part of an ImpCon program and exists solely for the purpose of defining
the semantics of the parallel command as we will see in Section 2.3. The
annotation-free parallel command is only supposed to signify the current
state of execution while executing the parallel command step by step. We call
an ImpCon program user-writable if it does not contain any annotation-free
parallel commands.

2.1.4 The Type Context

What we have not mentioned yet is how local variables are declared. Note
that there is no ImpCon command to that effect. Instead of declaring variables
within the command we decided to have the user declare all local variables
in the beginning before the actual top-level command starts. The information

8

2.2. The ImpCon State Model

on the declared local variables together with their types is then collected into
what we call an ImpCon type context.

Remark 2.2 To denote a partial map f from its domain X to another set Y we use
the notation

f ∶ X ⇀ Y.

Definition 2.3 An ImpCon type context T is a partial map

T ∶ variable name ⇀ {Int, Bool, Ref},

which maps each declared local variable to its declared type.

2.2 The ImpCon State Model

Our ImpCon state consists of a store, which maps local variables to values,
and a heap which maps pairs of addresses and field identifiers to values.

Definition 2.4 An ImpCon state is a pair (s, h) consisting of a store s and a heap
h which are defined as partial functions

s ∶ variable name ⇀ valuesI ,
h ∶ (address, f ield) ⇀ valuesI .

We also refer to pairs (a, f) ∈ address × f ield as heap locations.

ImpCon values can be integers, booleans or references, where references can
either be Null or an address a which stands for a memory location. Thus
valuesI is defined as follows.

valuesI ∶∶= Int integer ∣ Bool boolean ∣ Null ∣ Ref address

Having defined ImpCon states, we would also like to define addition of states
at this point, as it will play a role in the semantics of our assertion language.

Definition 2.5 (Addition of ImpCon states) For two ImpCon states ϕ1 and ϕ2,
we say that ϕ1 and ϕ2 are joinable if they have the same store and the domains of
their heaps are disjoint.

If states (s1, h1) and (s2, h2) are joinable, then

(s1, h1)⊕I(s2, h2) ≜ (s1, h1 ⊎ h2)

where we define h1 ⊎ h2 to be the heap obtained by joining the heaps h1 and h2.
Otherwise we say that (s1, h1)⊕I(s2, h2) is undefined.

Furthermore, we say that ImpCon state ϕ is greater than or equal to ImpCon state
ϕ′ if there exists an ImpCon state ϕ′′ such that

ϕ′⊕I ϕ′′ = ϕ.

9

2.3. The Semantics

2.3 The Semantics

Now that we have defined the syntax of ImpCon and ImpCon states we can
now move on to the semantics, which formally tell us the effect on the state
of each command. Again we start on the level of expressions and then go on
to assertions and commands.

2.3.1 Expressions

On the level of expressions we define what it means for an expression to
evaluate to some value.

Definition 2.6 Given an ImpCon expression e, an ImpCon state ϕ and v ∈ valuesI ,
we say that e evaluates to value v in state ϕ if and only if

⟨e, ϕ⟩ ⇓ v.

The semantics of expression evaluation are given in Figure 2.1.

As we can see in Figure 2.1 expression evaluation is quite intuitive. Local
variables evaluate to the value they are mapped to in the store of the current
state and all logical and arithmetic operations operate on the expected types
and lead to the expected result regarding the usual interpretation of these
operators. Furthermore, in the case of logical conjunction and disjunction we
have also added the rules (OrLazy) and (AndLazy) which directly evaluate
a logical conjunction and disjunction if the value is already clear from the
left-hand-side of the operator. Also, in the case of equality, it is worth noting
that we decided to allow comparison of any two types of values. If the types
of the values of the operands differ the result will be False.

2.3.2 Assertions

Using expression evaluation we can proceed towards the semantics of our
assertion language. That is, we define formally what is needed for an ImpCon
assertion to hold.

Definition 2.7 Given an ImpCon assertion A and an ImpCon state ϕ a, we say
that A holds in state ϕ if and only if

ϕ ⊧ A.

The inference rules of ⊧ are given in Figure 2.2.

The inference rules in the cases in which the assertion is an expression are
again quite intuitive. For points-to assertions of the form x. f ↦ e we require
two things. Firstly, the heap location indicated by x. f has to to exist, that is
x has to be a local variable denoting a reference which contains an address

10

2.3. The Semantics

⟨Int i, ϕ⟩ ⇓ (Int i) (Int)
⟨e1, ϕ⟩ ⇓ (Bool True)

⟨e1 ∨ e2, ϕ⟩ ⇓ (Bool True)
(OrLazy)

⟨Bool b, ϕ⟩ ⇓ (Bool b) (Bool)
⟨e1, ϕ⟩ ⇓ (Bool b1)

⟨e2, ϕ⟩ ⇓ (Bool b2)

⟨e1 ∧ e2, ϕ⟩ ⇓ (Bool (b1 ∧ b2))

(And)

⟨Null, ϕ⟩ ⇓ Null (Null)
⟨e1, ϕ⟩ ⇓ (Bool False)

⟨e1 ∧ e2, ϕ⟩ ⇓ (Bool False)
(AndLazy)

⟨x, (s, h)⟩ ⇓ s(x) (Var)
⟨e1, ϕ⟩ ⇓ (Int i1)
⟨e2, ϕ⟩ ⇓ (Int i2)

⟨e1 < e2, ϕ⟩ ⇓ (Bool (i1 < i2))
(Lt)

⟨e, ϕ⟩ ⇓ (Bool b)

⟨¬ e, ϕ⟩ ⇓ (Bool ¬b)
(Not)

⟨e1, ϕ⟩ ⇓ (Int i1)
⟨e2, ϕ⟩ ⇓ (Int i2)

⟨e1 + e2, ϕ⟩ ⇓ (Int (i1 + i2))
(Add)

⟨e1, ϕ⟩ ⇓ v1
⟨e2, ϕ⟩ ⇓ v2

⟨e1 == e2, ϕ⟩ ⇓ (Bool (v1 == v2))

(Eq)
⟨e1, ϕ⟩ ⇓ (Int i1)
⟨e2, ϕ⟩ ⇓ (Int i2)

⟨e1 − e2, ϕ⟩ ⇓ (Int (i1 − i2))
(Sub)

⟨e1, ϕ⟩ ⇓ (Bool b1)

⟨e2, ϕ⟩ ⇓ (Bool b2)

⟨e1 ∨ e2, ϕ⟩ ⇓ (Bool (b1 ∨ b2))

(Or)
⟨e1, ϕ⟩ ⇓ (Int i1)
⟨e2, ϕ⟩ ⇓ (Int i2)

⟨e1 ∗ e2, ϕ⟩ ⇓ (Int (i1 ∗ i2))
(Mul)

Figure 2.1: Expression evaluation for ImpCon expressions.

⟨e, ϕ⟩ ⇓ (Bool True)

ϕ ⊧ e
(Exp)

⟨e, ϕ⟩ ⇓ (Bool True) Ô⇒ ϕ ⊧ A

ϕ ⊧ e Ô⇒ A
(Imp)

⟨e, (s, h)⟩ ⇓ v
s(x) = Re f a
h(a, f) = v

(s, h) ⊧ x. f ↦ e

(PointsTo)

ϕ1 ⊧ A1
ϕ2 ⊧ A2

ϕ1⊕I ϕ2 = ϕ

ϕ ⊧ A1 ∗ A2

(SepCon)

s(x) = Re f a
(a, f) ∈ dom(h)

(s, h) ⊧ x. f ↦
(PointsToSth)

Figure 2.2: Satisfaction of ImpCon assertions.

11

2.3. The Semantics

and the heap location corresponding to that address and the chosen field
f has to be in the domain of the heap. Secondly, we require the heap to
map that heap location to the value of e. For points-to assertions of the form
x. f ↦ we only require the heap location indicated by x. f to exist. Lastly, if
the assertion is a separating conjunction of two ImpCon assertions A1 and
A2, we need both assertions to hold using disjoint parts of the heap.

2.3.3 Commands

Having defined what it means for an ImpCon assertion to hold and how
to evaluate expressions we now possess all tools to define the semantics of
the ImpCon programming language. We use a small-step semantics rather
than a big-step semantics, as there is no easy way of defining a big-step
semantics for concurrent programs. That is because for concurrently executed
code we need to consider each possible interleaving of steps executed in
concurrent sections and that leads to a large amount of possible final states
upon finishing execution.

Definition 2.8 Given ImpCon commands c and c′, ImpCon states ϕ and ϕ′, and
an ImpCon type context T we say that configuration (c, ϕ) results in configuration
(c′, ϕ′) when executing a single step of c in state ϕ with respect to T if and only if

(c, ϕ)→T (c′, ϕ′).

The inference rules of these small-step semantics are given in Figure 2.3.

There are some things worth noting about these small-step semantics.
Firstly, assignments to and from fields can only be executed if the heap
location indicated by the field access exists, i.e. it lies within the domain of
the heap.
Secondly, we only perform local variable assignments if the state resulting
from this assignment will not cause a conflict with the type context. This can
be seen in in the rules (Assign), (AssignFromField) and (Alloc).

The (Alloc)-rule we discuss in more detail. The alloc command non-determi-
nistically chooses and assigns a new, fresh address to the reference variable
we wish to allocate. By fresh address we mean here that this address has not
been used yet, meaning that no memory on the heap associated with that
address has been allocated so far. Freshness of an address a we ensure by
checking that there exists no field f such that the heap location (a, f) exists
on the heap. While assigning that fresh address to the reference variable we
wish to allocate we also set the values of the heap locations corresponding
to that address and the fields we wish to allocate to Null. Hence these heap
locations are then part of the domain of the heap. In ImpCon it does not
matter that the type of the value we initially assign to those fields is Re f ,
as ImpCon does not fix the types of fields. Note that the command for

12

2.3. The Semantics

ϕ ⊧ A

(Assert A, ϕ)→T (SKIP, ϕ)
(Assert)

(SKIP ; c2, ϕ)→T (c2, ϕ)
(SeqS)

⟨e, (s, h)⟩ ⇓ v
T(x) = type(v)

(x ∶= e, (s, h))→T (SKIP, (s[x ∶= v], h))
(Assign)

(c1, ϕ)→T (c′1, ϕ′)

(c1 ; c2, ϕ)→T (c′1 ; c2, ϕ′)
(Seq1)

⟨e, (s, h)⟩ ⇓ v
s(x) = Re f a

(a, f) ∈ dom(h)

(x. f ∶= e, (s, h))→T (SKIP, (s, h[(a, f) ∶= v]))

(AssignToField)
⟨e, ϕ⟩ ⇓ (Bool True)

(If e then c1 else c2, ϕ)→T (c1, ϕ)
(I f 1)

s(y) = Re f a
h(a, f) = v

T(x) = type(v)

(x ∶= y. f , (s, h))→T (SKIP, (s[x ∶= v], h))

(AssignFromField)
⟨e, ϕ⟩ ⇓ (Bool False)

(If e then c1 else c2, ϕ)→T (c2, ϕ)
(I f 2)

∀ f , (a, f) ∉ dom(h)
T(x) = Re f

f1, f2, . . . , fn pairwise distinct

(x ∶= alloc(f1, f2, . . . , fn), (s, h))→T (SKIP, (s[x ∶= Re f a], h[(a, f1) ∶= Null, . . . , (a, fn) ∶= Null]))

(Alloc)

({P1} c1 {Q1} ∣∣ {P2} c2 {Q2}, ϕ)→T (c1 ∣∣ c2, ϕ)
(Par)

(c1, ϕ)→T (c′1, ϕ′)

(c1 ∣∣ c2, ϕ)→T (c′1 ∣∣ c2, ϕ′)
(EPar1)

(c2, ϕ)→T (c′2, ϕ′)

(c1 ∣∣ c2, ϕ)→T (c1 ∣∣ c′2, ϕ′)
(EPar2)

(SKIP ∣∣ SKIP, ϕ)→T (SKIP, ϕ)
(EParS)

Figure 2.3: Small-step semantics for ImpCon commands.

assignment to fields does not check the type of the former value of the field
we assign to.

Other rules we wish to discuss in more detail are the semantics for parallel
and annotation-free parallel commands. Starting from a configuration con-
sisting of a parallel command and some ImpCon state the only applicable
inference rule is the (Par)-rule. The (Par)-rule ignores all assertions that are
part of the parallel command and lets us transition directly from the parallel
command to the corresponding annotation-free parallel command. Hence
the assertions that are part of the parallel command do not play any role in
the ImpCon semantics. They only become important when we translate the
parallel command to Viper in Section 3.1.
After executing the step that results in the configuration containing the
annotation-free parallel command we actually start executing the parallel
sections using the rules (EParS), (EPar1) and (EPar2). In order to simulate
concurrent execution of both parallel sections, at each step it will be decided

13

2.4. Correctness of ImpCon Programs

non-deterministically whether to execute the next step on the left parallel
section by applying rule (EPar1) or the right parallel section by applying rule
(EPar2). To be able to make that non-deterministic choice at each step was the
reason to use small-step semantics rather than big-step semantics. Only if
both parallel sections have finished executing, i.e. we reached a configuration
involving an annotation-free parallel command in which both parallel sec-
tions are empty (SKIP), then we finish the execution of the annotation-free
parallel command trough rule (EParS).

The rules in figure 2.3 only formalize a single execution step. To reason about
multiple steps of execution, we introduce the following definition.

Definition 2.9 Given ImpCon commands c and c′, ImpCon states ϕ and ϕ′, and
an ImpCon type context T we say that configuration (c′, ϕ′) can be reached from
configuration (c, ϕ) with respect to T if and only if

(c, ϕ)→∗
T (c′, ϕ′),

which expresses that we can end up in configuration (c′, ϕ′) starting from con-
figuration (c, ϕ) with respect to T via zero or a finite number of transitions via
→.

2.4 Correctness of ImpCon Programs

Now that we have defined the syntax and semantics of ImpCon, let us return
to the bigger picture of ImpCon programs.

Definition 2.10 An ImpCon program is a pair (T, c) of an ImpCon type context
T and an ImpCon command c.

Considering our goal is to prove soundness of the translation of ImpCon into
Viper and this involves proving correctness of ImpCon programs it is not
sufficient to only know how to write and execute ImpCon programs. We also
need to formally define what it means for an ImpCon program to be correct.
For that purpose we also have to define what it means for the execution of
an ImpCon command to abort.

Definition 2.11 We say that an ImpCon command c aborts in the next step from
ImpCon state ϕ with respect to a type context T if and only if

(c, ϕ)→T ABORT.

The semantics involving ABORT are given in Figure 2.4.

We consider the execution of a command to abort when either an assertion
does not hold or we are trying to read or write to unallocated heap memory.
That is, either there is no heap location associated with the field access due to

14

2.4. Correctness of ImpCon Programs

ϕ ⊭ A

(Assert A, ϕ)→T ABORT
(AssertA)

s(y) = Re f a
(a, f) ∉ dom(h)

(x ∶= y. f , (s, h))→T ABORT
(AFFA2)

∄ a, s(x) = Re f a

(x. f ∶= e, (s, h))→T ABORT
(ATFA1)

(c1, ϕ)→T ABORT

(c1 ; c2, ϕ)→T ABORT
(SeqA)

s(x) = Re f a
(a, f) ∉ dom(h)

(x. f ∶= e, (s, h))→T ABORT
(ATFA2)

(c1, ϕ)→T ABORT

(c1 ∣∣ c2, ϕ)→T ABORT
(EParA1)

∄ a, s(y) = Re f a

(x ∶= y. f , (s, h))→T ABORT
(AFFA1)

(c2, ϕ)→T ABORT

(c1 ∣∣ c2, ϕ)→T ABORT
(EParA2)

Figure 2.4: Abortion criteria for ImpCon commands.

the absence of an address or the heap location does not exist. Note that we do
not abort when trying to assign a value of the wrong type to a local variable.
In these situations the execution only gets ”stuck” in the sense that there is
no inference rule that can be applied in such a configuration. The reason
is that in ImpCon such typing errors are independent from the concept of
aborting. The absence of typing errors can be checked independently so
that we can restrict ourselves to ImpCon programs in which we never try to
assign values of the wrong type to local variables, that is, we uphold the type
context.

Definition 2.12 We say that an ImpCon state ϕ = (s, h) upholds a type context T
if for all variable names x,

• if x ∉ dom(T) then x ∉ dom(s), and

• if x ∈ dom(T) then type(s(x)) = T(x).

Using the concept of aborting we can now define what it means for an
ImpCon program to be correct given some pre- and postcondition.

Definition 2.13 Let P, Q be ImpCon assertions. We say that an ImpCon program
(T, c) satisfies a Hoare triple with precondition P and postcondition Q, or short

T ⊧ {P} c {Q},

if and only if for all ImpCon states ϕ upholding type context T such that ϕ ⊧ P we
have that for all c′, ϕ′ such that (c, ϕ)→∗

T (c′, ϕ′), it is true that

• (c′, ϕ′)→T ABORT does not hold, and

• c′ = SKIP Ô⇒ ϕ′ ⊧ Q

15

2.4. Correctness of ImpCon Programs

To state this definition in other words, we have that T ⊧ {P} c {Q} if for all
ImpCon states ϕ that uphold T and satisfy precondition P, we never abort
when starting from configuration (c, ϕ) and if we finish the execution of c
we end up in a state that satisfies the postcondition Q.

16

Chapter 3

Translating ImpCon into Viper

The translation function from ImpCon into Viper is the main building block
connecting ImpCon and Viper. The main goal of this project was to define
a translation that is completely sound and prove this fact. Hence, in this
chapter we will present, and provide an intuition for, our translation function,
which we will then prove sound in chapter 4.

Just like ImpCon we have implemented the translation function in Isabelle.
We are doing so by connecting to an existing Isabelle implementation of
Viper.

3.1 The Translation Function

Similarly to ImpCon programs we let Viper programs consist of a Viper state-
ment and a Viper type context. Therefore in this section we define translation
functions from ImpCon commands to Viper statements and ImpCon type
contexts into Viper type contexts.

When translating ImpCon programs into the Isabelle Implementation of
Viper, we have to consider that ImpCon commands are incrementally built
from assertions and expressions. Consequently, we also have to define trans-
lation functions for expressions and assertions before translating ImpCon
commands.

3.1.1 Expressions

The translation function for expressions is actually quite trivial, due to the
fact that ImpCon expressions form a subset of the set of Viper expressions.
For each ImpCon expression, the same expression also exists in the Viper
formalisation and is also evaluated in the exact same way. For that reason the
translation function for expressions is essentially an identity function other
than having to translate an expression from the ImpCon Abstract Syntax Tree

17

3.1. The Translation Function

JeK ∶= JeK
Jx. f ↦ eK ∶= acc(x. f) && x. f == JeK
Jx. f ↦ K ∶= acc(x. f)
Je⇒ AK ∶= JeK⇒ JAK
JA1 ∗ A2K ∶= JA1K && JA2K

Figure 3.1: Translation of assertions.

(AST) to the Viper AST. Thus, for the purposes of this thesis the translation
function for expressions is simply

JeK ∶= e,

although in this thesis we will not simplify the use of the translation function
away in order to distinguish between when we are viewing an expression as
an ImpCon expression or as a Viper expression.

3.1.2 Assertions

For ImpCon there does not always exist a close to syntactically identical
equivalent assertion in the Viper formalisation, unlike for ImpCon expres-
sions. That is why we list the recursive definition of our translation function
in full in Figure 3.1.

In the case where our assertion is simply a boolean expression or our assertion
is an implication, there is semantically equivalent Viper assertion syntax
which uses the same notation.

In Viper’s assertion language points-to assertions as we have defined for
ImpCon do not exist. Instead Viper contains the accessibility predicate acc(x. f),
which expresses exclusive ownership of heap location x. f for the current
thread or process and therefore has the same interpretation as x. f ↦ does
in ImpCon. Thereby, as, unlike ImpCon, Viper does support heap-dependent
expressions, we can also express points-to assertions of the form x. f ↦ e
as acc(x. f) && x. f == JeK, where && denotes the separating conjunction
operator in Viper.

Separating conjunctions in ImpCon can simply be translated into separating
conjunctions in Viper. However, separating conjunctions in Viper do not
quite have the same semantics as separating conjunctions in ImpCon. That is
because Viper supports fractional permissions [11]. That will, however, not
cause any problems for our translation. That is because the subset of Viper
assertions that ImpCon assertions translate to does not include any assertions
with non-integral amounts of ownership. Thus, the separating conjunctions

18

3.1. The Translation Function

JSKIPKMain ∶= SKIP

JAssert AKMain ∶= Assert JAK

Jx ∶= eKMain ∶= x ∶= JeK

Jx. f ∶= eKMain ∶= x. f ∶= JeK

Jx ∶= y. f KMain ∶= x ∶= y. f

Jx ∶= alloc(f1, f2, . . . , fn)KMain ∶= Havoc x ; Inhale acc(x.f1) &&
acc(x.f2) && . . . && acc(x.fn)

Jc1 ; c2KMain ∶= Jc1KMain ; Jc2KMain

JIf e then c1 else c2KMain ∶= If JeK then Jc1KMain else Jc2KMain

J{Pre1} c1 {Post1} ∣∣ {Pre2} c2 {Post2}KMain ∶= Exhale JPre1K ; Exhale JPre2K ;
Inhale JPost1K ; Inhale JPost2K

Figure 3.2: Main proof obligation resulting from translation of commands.

in ImpCon and Viper behave the same way for ImpCon assertions and their
translated counterparts. We will show this in more detail in Section 4.2.

3.1.3 Commands

Using the translation functions for expressions and assertions we can define
our translation function from ImpCon commands to Viper statements.

The translation function for commands consists of two parts. The first part
is a function J⋅KMain which maps an ImpCon command to its main proof
obligation. By proof obligation we mean here a Viper statement that has to be
verified with respect to the same type context as the given ImpCon command.
The second part is a function J⋅KEPO

T which maps an ImpCon command to
the set of extra proof obligations (also expressed as Viper statements) that
have to verify alongside the main proof obligation. The definitions of these
functions are given in Figures 3.2 and 3.3. For most ImpCon commands it
suffices to take a Viper statement with very similar semantics and define
that statement to be the main proof obligation. In the case of the parallel
command, however, we have to define some extra proof obligations. The
reason we will motivate later.

Apart from parallel commands the only ImpCon command for which there
is no direct equivalent is allocation of reference variables1. This command

1The full Viper subset does support allocation of references via the ”new” statement but
this statement does not exist in the Isabelle formalisation.

19

3.1. The Translation Function

JSKIPKEPO
T ∶= {}

JAssert AKEPO
T ∶= {}

Jx ∶= eKEPO
T ∶= {}

Jx. f ∶= eKEPO
T ∶= {}

Jx ∶= y. f KEPO
T ∶= {}

Jx ∶= alloc(f1, f2, . . . , fn)KEPO
T ∶= {}

Jc1 ; c2K
EPO
T ∶= Jc1K

EPO
T ∪ Jc2K

EPO
T

JIf e then c1 else c2K
EPO
T ∶= Jc1K

EPO
T ∪ Jc2K

EPO
T

J{Pre1} c1 {Post1} ∣∣ {Pre2} c2 {Post2}KEPO
T ∶= Jc1K

EPO
T ∪ Jc2K

EPO
T ∪

{Inhale JPre1K ; Jc1K
Main ; Exhale JPost1K,

Inhale JPre2K ; Jc2K
Main ; Exhale JPost2K}.

Figure 3.3: Extra proof obligations resulting from translation of commands.

and the parallel command do not exist at all in the Viper version we are
connecting to.

Recall that in ImpCon the command x ∶= alloc(f1, f2, . . . , fn) links reference
variable x to a nondeterministically chosen fresh address a for which no
fields have been allocated on the heap, and allocates the fields f1, f2, . . . , fn
for a. In Viper we try to simulate that behaviour through a havoc statement
followed by an inhale statement.
The havoc statement in Viper takes a local variable as argument and nonde-
terministically assigns a new value to the specified local variable which is of
the same type as the local variable. As in the translation havoc statements are
only introduced by alloc commands the havoced local variable will always
be of type reference.
The inhale statement in Viper takes an assertion as argument and adds
all permissions in that assertion to the current permissions and then as-
sumes the constraints in the assertion to hold. Hence we simulate the
allocation of the fields f1, f2, . . . , fn for reference variable x by inhaling
(acc(x.f1) && acc(x.f2) && . . . && acc(x.fn)). That is, we are adding full per-
mission to each of the heap locations indicated by x. f1, x. f2, . . . , x. fn.
Note that this translation is actually less restrictive than the alloc command,
because the havoc statement nondeterministically chooses one of all possible
addresses, while ImpCon only considers fresh address a for which no fields
have been allocated on the heap. Thus, while this is a sound translation as
we will see in Chapter 4 (intuitively, because the translation models at least
all possible choices taken by the alloc), the aforementioned fact can lead to
incompletenesses, where the Viper program cannot be verified while the

20

3.1. The Translation Function

{P1} c1 {Q1}

{P2} c2 {Q2}

fv(P1, c1, Q1)∩wr(c2) = ∅

fv(P2, c2, Q2)∩wr(c1) = ∅

{P1 ∗ P2} c1 ∣∣ c2 {Q1 ∗ Q2}

(parallel rule)
{P} c {Q}

fv(F)∩wr(c) = ∅

{P ∗ F} c {Q ∗ F}
(f rame rule)

Figure 3.4: The parallel rule and frame rule.

ImpCon program is correct.

Moving on to parallel commands, the principal motivation in defining our
translation the way we did are the parallel and frame rule from concurrent
separation logic. These rules can be written as in Figure 3.4, where fv(⋅)
denotes the set of free local variables in an assertion or command and wr(⋅)
denotes the set of local variables written to in a command. The intuition
behind wanting to use the parallel rule for parallel commands is that it
allows one to check properties on each branch independently rather than
having to consider both branches at once. The frame rule, on the other hand,
intuitively says that we can frame information on parts of the state which are
not mentioned or altered in the Hoare triple around it such that we can retain
that information for the remainder of the commands to be executed. We
want to use to frame to retain all information on heap locations not accessed
in parallel sections that will be necessary for the remainder of the execution
around the parallel command. As therefore, when checking the correctness
of parallel commands, we want both to apply the parallel rule and frame
around it, we use the following rule which we obtain from merging both
rules.

{P1} c1 {Q1}

{P2} c2 {Q2}

fv(P1, c1, Q1)∩wr(c2) = ∅

fv(P2, c2, Q2)∩wr(c1) = ∅

fv(F)∩wr(c1, c2) = ∅

{P1 ∗ P2 ∗ F} c1 ∣∣ c2 {Q1 ∗ Q2 ∗ F}

To be able to apply this rule we hence need to specify pre- and postconditions
for each of the two commands executed in parallel. Recall that we require
the user to input pre- and postconditions for the two parallel sections as
part of the parallel command even though they were unnecessary in terms
of the ImpCon semantics. The reason that we ask the user to input them
rather than inferring them is that inferring suitable instantiations of pre- and
postconditions is not trivial to do in general.

Given an ImpCon command {Pre1} c1 {Post1} ∣∣ {Pre2} c2 {Post2}, the first
two premises of our merged rule we require to hold by defining our extra
proof obligations as the encoding of the translated versions of the Hoare

21

3.1. The Translation Function

triples {Pre1} c1 {Post1} and {Pre2} c2 {Post2}. That is, we encode the trans-
lated version of a Hoare triple {P} c {Q} in Viper as

Inhale JPK ; JcKMain ; Exhale JQK.

Recall that the inhale statement in Viper takes an assertion as argument and
adds all permissions in that assertion to the current permissions and then
assumes the constraints in the assertion to hold. The exhale statement in Viper
takes an assertion as input and first asserts whether the given assertion holds
and then, while that is irrelevant for this particular encoding, removes the
permissions that are necessary to satisfy the assertion. Hence this encoding
verifies from an empty state if and only if given that the precondition holds
then the postcondition follows after execution of the statement JcKMain, as
desired.

Disregarding the constraints on the free variables and the variables written
to, the extra proof obligations essentially ensure the premises of the merged
frame and parallel rule hold. Hence we can derive the rule’s conclusion that

{Pre1 ∗ Pre2 ∗ F} c1 ∣∣ c2 {Post1 ∗ Post2 ∗ F}.

The main proof obligation we defined such that we can apply the above
conclusion. If we can exhale both preconditions in sequence, then, as we
subtract permissions with each exhale and translated assertions only assert
integral permissions, the preconditions must operate on disjoint parts of
the heap and so (Pre1 ∗ Pre2 ∗ F) holds for a well-chosen frame. Then the
motivation is that through the derived Hoare triple we can after execution
of the parallel command assume both postconditions and the frame to hold.
Thus, we inhale the postconditions so that all information derivable from
them can be used to verify the commands that follow after the parallel
command.

Let us get back to the premises about local variables in the merged rule. When
proving soundness in Chapter 4 we will make the additional assumption that
there will be no assignments to local variables within parallel sections. Our
executable presented in Chapter 6 will also abort execution if that condition
is not met. The assumption means that both of the parallel blocks can read
from the store but neither can write to it. Hence the set of variables written
to in both parallel blocks will be empty, and so the premises about local
variables in the merged rule will be satisfied.

Moreover, without the assumption that there will be no assignments to local
variables within parallel sections the main proof obligation obtained from
the parallel command would actually be incorrect. Consider the ImpCon
program in Listing 3. This program would clearly not be correct in ImpCon
but the extra proof obligations and main proof obligation resulting from its

22

3.1. The Translation Function

1 x : Int

2 x := 4;

3 Parallel {

4 {True} {True}

5 x := 2 ∥ x := 3

6 {True} {True}

7 };

8 Assert (x == 4);

Listing 3: Incorrect ImpCon program with verifying translation.

1 x : Ref

2 y : Ref

3 x := alloc(f);

4 y := alloc(f);

5 Parallel {

6 {x.f ↦ _} {y.f ↦ _}

7 x.f := 2 y.f := 3

8 {x.f ↦ 2} {y.f ↦ 3}

9 }

10 Assert (x.f ↦ 2) * (y.f ↦ 3)

Listing 4: Example ImpCon command.

translation would verify in Viper. Without our additional assumption this
would have to be resolved for example by havocing all local variables that
are modified in parallel sections before inhaling the postconditions in the
main proof obligation.

To give an example of our translation function in action consider again the
example from Chapter 1 which we have converted into a proper ImpCon
program in Listing 4. The translation of this ImpCon program can be seen in
Listing 5. Here we encoded the extra proof obligations in the form of Viper
methods left and right with pre- and postconditions and the translated Viper
statement as body, for better readability. The main proof obligation is given
in the main method.

3.1.4 The Type Context

Viper type contexts are defined just like ImpCon type contexts except that
ImpCon’s types are only a subset of IViper’s types. Hence, to obtain the
correct Viper type context when translating an ImpCon program it suffices to
use the ImpCon type context as is. Since we will only ever talk about ImpCon
type contexts and their translations, in the remainder of this thesis, for any
ImpCon type context T we write T to denote the ImpCon type context itself
as well as its translation into Viper.

23

3.1. The Translation Function

1 method left(x : Ref)

2 requires acc(x.f)

3 ensures acc(x.f) && x.f == 2

4 {

5 x.f := 2

6 }

7

8 method right(y : Ref)

9 requires acc(y.f)

10 ensures acc(y.f) && y.f == 3

11 {

12 y.f := 3

13 }

14

15 method main(){

16 var x : Ref

17 var y : Ref

18

19 havoc x;

20 inhale acc(x.f);

21

22 havoc y;

23 inhale acc(y.f);

24

25 exhale acc(x.f);

26 exhale acc(y.f);

27 inhale acc(x.f) && x.f == 2;

28 inhale acc(y.f) && y.f == 3;

29

30 assert acc(x.f) && x.f == 2

31 && acc(y.f) && y.f == 3

32 }

Listing 5: Viper Translation of ImpCon command in Listing 5.

24

Chapter 4

Soundness of the Translation

Now that we have defined our translation function, which is the heart
of our front-end, we are getting to the core of this thesis; the proof that
this translation is sound. In this chapter we describe how we proved the
soundness of the ImpCon front-end. By formalising the proof in Isabelle we
have proven the ImpCon front-end sound once-and-forall.

In Section 4.1 we state the soundness theorem and our assumptions for the
soundness proof. In Section 4.2 we introduce the notions of forward and
backward translations between ImpCon and Viper states, which will prove
very useful in our soundness proof. Finally, in Section 4.3, we prove the
soundness theorem.

4.1 Expressing Soundness

In practice, we would like that if our front-end outputs a positive verification
result then the input program is actually correct. Considering the structure

Figure 4.1: Overview of the Interaction between our Front-End and Viper.

25

4.1. Expressing Soundness

of our front-end as seen in Figure 4.1, this means the following. If we take an
ImpCon program c, let our Viper front-end translate it into a Viper statement
sV and then verify sV using the Viper verifier, then Viper outputting a positive
verification result implies that c must have been a correct ImpCon program.
This can informally be expressed as

For any ImpCon program PrI , if translate(PrI) is correct with respect to
Viper’s semantics, then PrI is correct with respect to ImpCon’s semantics.

Recall that in Definition 2.13 we have defined what it means for an ImpCon
program to be correct given some pre- and postconditions. Now we have to
do the same for Viper.

Definition 4.1 We write that a statement sV verifies in Viper with respect to a
Viper type context T and a Viper state ω if and only if sV reduces to some set of states
S when starting in state ω and with respect to type context T, according to IViper’s
semantics. We use the notation RedT(sV , ω) ⇓ S to express that sV reduces to the
set of states S when starting in state ω with respect to type context T. Moreover,
use the notation VerT(sV , ω) to denote that it verifies, that is, there exists some set
of states that sV reduces to when starting in state ω with respect to type context T,
or in short

VerT(sV , ω) ≜ (∃S. RedT(sV , ω) ⇓ S) .

Just like we did when defining the encoding of our extra proof obligations
in Section 3.1.3 we encode the translation of a Hoare triple {P} c {Q} for
ImpCon assertions P, Q and an ImpCon command c as the Viper statement

Inhale JPK ; JcKMain ; Exhale JQK.

But in which Viper state should this Viper statement verify? To answer that
question let us first properly define the Viper state.

Definition 4.2 Let valuesV be the set of values in Viper. A Viper permission
heap is a pair (m, h) consisting of a permission mask m and a Viper heap h
which are defined as total and partial functions

m ∶ (address, f ield) → [0, 1], and
h ∶ (address, f ield) ⇀ valuesV ,

such that for all heap locations hl we have that

m(hl) > 0 Ô⇒ hl ∈ dom(h).

A Viper state is then defined as pair (s, vs)1 consisting of a Viper store s, where

s ∶ variable name ⇀ valuesV ,

1Actually a Viper state is defined as a triple (s, t, vs) where t is a trace. We, however, never
need to consider the trace throughout this thesis. Hence we leave it out when talking about
Viper states.

26

4.1. Expressing Soundness

and a permission heap vs.

Ideally we would like to verify an encoded Hoare triple starting from an
empty state, i.e. a state in which no local variables have been declared and
no memory has been allocated on the permission heap. That is, however, not
possible in our case. Note that Viper statements resulting from translation
of ImpCon commands do not contain local variable declarations, while they
may contain operations on local variables. Furthermore, inhale statements
in Viper do not declare local variables as a side effect, but can only allocate
and add permission to the permission heap. Therefore, when verifying the
encoding of the Hoare triple we wish to prove correct, we need to start from a
Viper state in which all necessary local variables have already been declared.
The necessary local variables and their types can be derived from the type
context of the ImpCon program we want to prove correct. Hence the state we
verify our encoding in will be any minimal state such that all local variables
given in the ImpCon type context (and therefore also the corresponding Viper
type context) are declared and of the correct type. The state will be minimal
in the sense that no unnecessary store or heap locations lie in the domains of
the store or permission heap. Such states we formally define as follows.

Definition 4.3 A Viper state ω = (s, (m, h)) models a type context T if

• (m, h) is the empty permission heap, i.e. dom(h) = ∅ and for all heap locations
hl we have m(hl) = 0, and

• for all variable names x,

– if x ∉ dom(T) then x ∉ dom(s), and

– if x ∈ dom(T) then type(s(x)) = T(x).

Thus, for an ImpCon program (T, c), precondition P and postcondition Q, we
define the main proof obligation resulting from the translation of (T, c) to be
correct with respect to P and Q if VerT(Inhale JPK ; JTKMain ; Exhale JQK, ω)

for all states ω modelling type context T.

As presented in Section 3.1.3 the translation of an ImpCon program (T, c)
does not only give a main proof obligation but also extra proof obligations in
the case that c contains a parallel command. Therefore, to show correctness of
the translation of (T, c), we also need to verify that the extra proof obligations
emitted by the translation verify. This should also be done from a state
modelling T for the same reasons.

We can now formally express the informal property stated at the start of this
subsection.

Theorem 4.4 (Soundness) Let c be an ImpCon command and T be an ImpCon
type context, such that the pair (T, c) is a user-writable ImpCon program and c
contains no assignments to local variables within parallel sections. Furthermore, let

27

4.2. Forward and Backward State Translation

P and Q be ImpCon assertions. Assume that for all Viper states ω modelling T we
have that

• VerT(InhaleJPK ; JcKMain ; ExhaleJQK, ω), and

• for all Viper statements stmt ∈ JcKEPO
T we have that VerT(stmt, ω).

Then we have that T ⊧ {P} c {Q}.

Here we added one further restriction on the ImpCon command. The restric-
tion is that the initial ImpCon command does not contain any assignments
to local variables within parallel sections. That includes normal assignments,
assignments to local variables from fields, and allocation. This assumption
saved us quite a bit of work when using the parallel rule and frame rule from
separation logic, as we will see later. Also, it is the reason we do not have
to havoc any local variables in the main translation of a parallel command.
That is because if there are no assignments to local variables of any kind in
the parallel blocks the values of all local variables are guaranteed to stay the
same throughout the parallel section.

It is also important to note that, albeit it greatly simplifies the proof, this
assumption does not really affect the number of programs we can express. It
may forbid the user to assign to a local variable in a parallel block, but it does
not disallow the user from assigning to the heap. Therefore if the user wants
to modify a local variable in a parallel block they could instead write the
result to a dedicated heap location and after conclusion of the parallel block
write the value of the dedicated heap location back to the local variable.

4.2 Forward and Backward State Translation

Before we look at the proof strategy there is one more concept we need to
introduce. We have already described how to translate expressions, assertions,
commands and type contexts, but not how to translate between ImpCon and
Viper states. The idea of the proof we will describe in the next section is to
relate between the ImpCon program and its Viper encoding by establishing a
relationship between the states reached during their reduction. To do so, in
this section we introduce translation functions from ImpCon states to Viper
states and from Viper states to ImpCon states.

Recall from Definition 2.4 that an ImpCon state is defined as a pair (sI , hI)

of an ImpCon store sI and an ImpCon heap hI and from Definition 4.2 that
a Viper state is defined as a pair (sV , (m, hV)) of a Viper store sV and a
well-defined permission heap (m, hV) consisting of a permission mask m and
a Viper heap hV .

In terms of structure the only difference between ImpCon states and Viper
states is the existence of the permission mask. Hence, when translating

28

4.2. Forward and Backward State Translation

ImpCon states to Viper states we need to define the correct permission mask
such that we can obtain a well-formed permission heap. One can view
the ImpCon state as a binary permission model. If a heap location exists
in an ImpCon state we have full permission to it, otherwise we have no
permission. Hence, when translating an ImpCon state into Viper we simply
set the permission mask to 1 for all existing heap locations and to 0 otherwise.

The only other difference between both state definitions lies in the sets of
values the languages support. The set of values supported by Viper is the
following.

valuesV ∶∶=Int integer
∣ Bool boolean
∣ Null
∣ Ref address
∣ Perm permission
∣ Domain domain

Viper supports all values ImpCon does and additinally supports permissions,
which are non-negative rationals, and domains, which are used to define
one’s own first-order theories in Viper [3]. Thus, the values ImpCon supports
form a subset of the values Viper supports. Therefore, the ImpCon heap can
also be interpreted as a Viper heap.

Hence we define the translation function from ImpCon states into Viper
states, which we henceforth refer to as forward translation, as follows.

Definition 4.5 The forward translation of an ImpCon state, f tr(⋅) is defined as

f tr∶StateI → StateV

(s, h)↦ (s, (m, h)), where

m(hl) = {
1 if hl ∈ dom(h)
0 if hl ∉ dom(h)

The permission heap of the forward translated state can be easily seen to be
well-formed, as for all heap locations the permission mask maps to a value
greater than 0 if and only if that heap location lies in the domain of the heap.
Thereby forward translation gives a well-defined Viper state.

We, however, not only need to switch from ImpCon to Viper states in the
proof, but also the other way around. That is because in our soundness proof
we want to be able to derive the postcondition in the final ImpCon state
after execution of an ImpCon command, from the fact that the exhale in the
Viper encoding of the corresponding Hoare triple reduces in some particular
Viper state. Hence we also need to define backward translation of states.

29

4.2. Forward and Backward State Translation

This is not as straightforward, as we now have to consider the situation that
we want to translate a Viper state which contains permission- or domain
values on the heap or store into an ImpCon state, which does not support
these types of values. What should we map these store and heap locations
to? Our solution is to simply delete these store and heap locations during
backward translation. That is a sufficient solution for our purposes, because
we actually never need to consider Viper states containing permission or
domain values. In any Viper encoding we wish to verify we start from a
state upholding an ImpCon type context, implying it only contains integers,
booleans or references as values. From these states we only reduce Viper
statements emitted by translations from ImpCon commands, and exhale and
inhale statements operating on translated ImpCon assertions. None of these
statements introduce domain or permission values in the state explicitly.
Only inhale statements might implicitly introduce domain or permission
values on the heap when gaining permission to an empty heap location, as
on an intuitive level it non-deterministically chooses a value for that heap
location if there is no constraint on its value. But in those cases we can
safely ignore the executions where it non-deterministically chooses domain
or permission values.
We also need to consider the Viper permission mask when backward trans-
lating. Of course, in the backward translated ImpCon state we have to map
heap locations with full permission to existing values and heap locations
with no permission we delete, as our ImpCon’s binary permission model
suggests. For all permissions between 0 and 1 exclusive we are left with
a choice whether to round up to full permission, mapping to an existing
heap value in the translation, or round down to 0 permission and delete
the heap location. We chose to do the latter for all permissions between
0 and 1 exclusive. The reason is that in all translated assertions we only
ever query whether we have full permission to a heap location by asserting
access predicate acc(x. f) for some field access x. f corresponding to that heap
location. That is due to the absence of fractional permissions in ImpCon.
Hence deleting heap locations with less than full permission never changes
the truth value of a translated assertion to False. Rounding up permissions
on the other hand could change the truth value of a translated assertion from
False to True.

Eventually this leads to the following definition of backward translation.

Definition 4.6 The backward translation of a Viper state, btr(⋅) is defined as

btr∶StateV → StateI

(s, (m, h))↦ (s∣S , h∣H), where
S = {v ∈ varName ∣ s(v) ∈ valuesI}, and
H = {hl ∈ Adresses × Fields ∣ h(hl) ∈ valuesI and m(hl) = 1}.

30

4.2. Forward and Backward State Translation

One can show some interesting properties of forward- and backward transla-
tion and their relationship, some of which are the following.

Lemma 4.7 Let ϕ1 ≜ (s1, h1), ϕ2 ≜ (s2, h2) be ImpCon states such that dom(h1)∩

dom(h2) = ∅. Then the domains of the heaps of f tr(ϕ1) and f tr(ϕ2) are disjoint as
well.

Lemma 4.8 Let ϕ be an ImpCon state. Then btr (f tr(ϕ)) = ϕ.

Some properties of forward- and backward translation are about addition of
states. Due to the different structure of the states addition of Viper states is
also defined slightly different. Recall that in order for ϕ1⊕I ϕ2 to be defined
for two ImpCon states ϕ1 and ϕ2, the states must have the same store and
the domains of their heaps must be disjoint. For Viper states ω1 and ω2 on
the other hand in order for ω1⊕V ω2 to be defined, the domains of ω1 and
ω2’s permission heap need not be disjoint. Instead their heaps need to agree,
that is, if a heap location lies in the domain of both heaps, it must map to
the same value in both heaps. Moreover the sum of the permissions to that
heap locations in both states must not add up to more than full permission.
If these criteria are met we call their permission heaps compatible. Also just as
for ImpCon states in order to be joinable both states need to have the same
store.

We summarize this as part of the following definition.

Definition 4.9 For two Viper states ω1 ≜ (s1, (m1, h1)) and ω2 ≜ (s2, (m2, h2)),
we say that ω1 and ω2 are joinable if

• s1 = s2, and

• the permission heaps (m1, h1) and (m2, h2) are compatible, i.e.

– for all heap locations hl, m1(hl)+m2(hl) ≤ 1, and

– for all heap locations hl, if hl ∈ dom(h1) and hl ∈ dom(h2), then h1(hl) =
h2(hl).

If Viper states (s1, (m1, h1)) and (s2, (m2, h2)) are joinable, then

(s1, (m1, h1))⊕V(s2, (m2, h2)) ≜ (s1, (m1 +m2, h1 ⊎ h2))

where m1 +m2 is the permission mask obtained by adding the permissions in m1 and
m2, and h1 ⊎ h2 is the heap obtained by joining the heaps h1 and h2.
Otherwise we say that (s1, (m1, h1))⊕V(s2, (m2, h2)) is undefined.

Furthermore, we say that Viper state ω is grater than or equal to ImpCon state ω′ if
there exists an ImpCon state ω′′ such that

ω′
⊕V ω′′ = ω.

31

4.2. Forward and Backward State Translation

We can then proceed to state some more results about forward- and backward
translation.

Lemma 4.10 Let ω be a Viper state that only contains values in valuesI . Then ω
is greater than or equal f tr (btr(ω)) = ϕ.

Lemma 4.11 Let ϕ1, ϕ2 and ϕ be ImpCon states such that

ϕ1⊕I ϕ2 = ϕ.

Then
f tr(ϕ1)⊕V f tr(ϕ2) = f tr(ϕ).

Lemma 4.12 Let ω1, ω2 and ω be Viper states such that

ω1⊕V ω2 = ω.

Then btr(ω1)+I btr(ω2) is defined and btr(ω) is greater than or equal to btr(ω1)+I
btr(ω2).

Forward- and backward translation also has some interesting properties in
connection with evaluation of expressions and assertions which were very
helpful during the soundness proof of the translation. We present and prove
the most important ones in the remainder of this section.

We first relate the evaluation of expressions.

Proposition 4.13 Let e be an ImpCon expression, ϕ an ImpCon state and v ∈

valuesI . Then
⟨e, ϕ⟩ ⇓ v ⇐⇒ ⟨JeK, f tr(ϕ)⟩ ⇓ v.

Proof Let e be an ImpCon expression, ϕ an ImpCon state and v ∈ valuesI .

Recall that by our translation JeK is the same as e and we only write JeK
to distinguish that we interpret it as a Viper expression. Also note that by
definition of forward translation ϕ and f tr(ϕ) have the same store. Therefore,
as ImpCon expressions (and so also their translations) are heap-independent,
we must have that ⟨e, ϕ⟩ ⇓ v ⇐⇒ ⟨JeK, f tr(ϕ)⟩ ⇓ v. ◻

Moving on to assertions, however, we need to account for the non-existence
of a direct equivalent of most ImpCon assertions in Viper due to the forward
translation being injective but not surjective. Consequently, proving a similar
result for satisfaction of assertions is more intricate. Hence we first prove
only one direction.

Proposition 4.14 Let A be an ImpCon assertion and ϕ an ImpCon state. Then

ϕ ⊧ A Ô⇒ f tr(ϕ) ⊧ JAK.

32

4.2. Forward and Backward State Translation

Proof Let A be an ImpCon assertion and ϕ an ImpCon state. Assume that
ϕ ⊧ A. We prove the desired result by structural induction on A, starting
with the base cases.

Base Case 1: A = e.
In this case

ϕ ⊧ A ⇐⇒ ⟨e, ϕ⟩ ⇓ Bool True (by definition)
⇐⇒ ⟨JeK, f tr(ϕ)⟩ ⇓ Bool True (by Proposition 4.13)
⇐⇒ f tr(ϕ) ⊧ JAK (by definition).

Base Case 2: A = (x. f ↦ e).
By the ImpCon assertion language we have that ϕ ⊧ A if and only if
there exists an address a and a value v ∈ valuesI such that ⟨e, ϕ⟩ ⇓ v, the
store of ϕ maps x to Re f a and the permission heap of ϕ maps (a, f) to v.
Then by Proposition 4.13 we have ⟨JeK, f tr(ϕ)⟩ ⇓ v and by the definition
of forward translation the store of f tr(ϕ) maps x to Re f a as well and
the heap of f tr(ϕ) maps (a, f) to v with full permission. Therefore
f tr(ϕ) ⊧ x. f = JeK. Considering that JAK = Acc(x. f) ∗ x. f = JeK,
to see that f tr(ϕ) ⊧ JAK we can split f tr(ϕ) into two states ω1 and
ω2 where ω1 consists of the store of f tr(ϕ) and the permission heap
which maps (a, f) to v with full permission and contains no other
heap locations in its domain. ω2 consists of the store and permission
heap of f tr(ϕ) except that it maps (a, f) to v with zero permission.
We can then see that ω1⊕V ω2 = f tr(ϕ), that ω1 ⊧ Acc(x. f) and that
ω2 ⊧ x. f = JeK as this expression does not require permissions and albeit
having no permission to it ω2’s permission heap maps (a, f) to v. Thus
f tr(ϕ) ⊧ JAK.

Base Case 3: A = (x. f ↦).
By the ImpCon assertion language have that ϕ ⊧ A if and only if there
exists an address a and a value v ∈ valuesI such that the store of ϕ maps
x to Re f a and the heap of ϕ maps (a, f) to v. Then by the definition
of forward translation the store of f tr(ϕ) maps x to Re f a as well
and the heap of f tr(ϕ) maps (a, f) to v with full permission. Hence
f tr(ϕ) ⊧ Acc(x. f), which by our translation function is equivalent to
f tr(ϕ) ⊧ JAK.

Next we show the inductive cases.

Inductive Case 1: A = (e⇒ AImp).
In this case our inductive assumption is that

(IH) for all ImpCon states γ, γ ⊧ AImp Ô⇒ f tr(γ) ⊧ JAImpK.

We have that

ϕ ⊧ A ⇐⇒ (⟨e, ϕ⟩ ⇓ Bool True Ô⇒ ϕ ⊧ AImp) (by definition).

33

4.2. Forward and Backward State Translation

Hence, if ⟨JeK, f tr(ϕ)⟩ ⇓ Bool True, then by Proposition 4.13 ⟨e, ϕ⟩ ⇓

Bool True and so ϕ ⊧ AImp. By our inductive assumption then f tr(ϕ) ⊧

JAImpK. Thus ⟨JeK, f tr(ϕ)⟩ ⇓ Bool True Ô⇒ f tr(ϕ) ⊧ AImp, which by
definition is equivalent to f tr(ϕ) ⊧ JAK.

Inductive Case 2: A = (A1 ∗ A2).
This time our inductive assumption is that for i = 1, 2,

(IH) for all ImpCon states γ, γ ⊧ Ai Ô⇒ f tr(γ) ⊧ JAiK.

We have that

ϕ ⊧ A ⇐⇒ there exist ImpCon states ϕ1, ϕ2 such that
ϕ1 ⊧ A1, ϕ2 ⊧ A2 and ϕ1⊕I ϕ2 = ϕ.

Hence by our assumption that ϕ ⊧ A and (IH) we have that f tr(ϕ1) ⊧

JA1K and f tr(ϕ2) ⊧ JA2K. Moreover, since ϕ1⊕I ϕ2 = ϕ, by Lemma
4.11 we have that f tr(ϕ1)⊕V f tr(ϕ2) = f tr(ϕ). Ultimately f tr(ϕ) ⊧

JA1K && JA2K which is equivalent to f tr(ϕ) ⊧ JAK. ◻

That takes care of the case in which we are moving from ImpCon to Viper.
For the other direction we prove a slightly more general statement from
which we then derive the desired result.

Proposition 4.15 Let A be an ImpCon assertion and ω a Viper state such that all
values in the range of its store and heap lie in valuesI . Then

ω ⊧ JAK Ô⇒ btr(ω) ⊧ A.

When proving this result and also some others in later sections we will need
a very useful result called monotonicity of assertions, which holds in ImpCon
as well as for translated assertions in Viper.

Lemma 4.16 (Monotonicity of Assertions - ImpCon) Let ϕ+ and ϕ be Imp-
Con states such that ϕ+ is greater than or equal to ϕ and let A be an ImpCon
assertion. Then

ϕ ⊧ A Ô⇒ ϕ+ ⊧ A

Lemma 4.17 (Monotonicity of Translated Assertions - Viper) Let ω+ and ω
be Viper
states such that ω+ is greater than or equal to ω and let A be an ImpCon assertion.
Then

ω ⊧ JAK Ô⇒ ω+ ⊧ JAK

The intuition behind this result is that if we have enough information to show
an assertion holds using only part of the heap resp. permission heap then
that assertion also holds when we gain even more information by considering
the full state.

We now prove Proposition 4.15.

34

4.2. Forward and Backward State Translation

Proof Let A be an ImpCon assertion and ω a Viper state such that all values
in the range of its store and heap lie in valuesI . Assume that ω ⊧ JAK. Again
we prove the desired result by structural induction on A, starting with the
base cases.

Base Case 1: A = e.
In this case

ω ⊧ JAK ⇐⇒ ⟨JeK, ω⟩ ⇓ Bool True (by definition).

As ω is not a forward translated state in general, we cannot use Propo-
sition 4.13 here. But since JeK = e and all ImpCon expressions are
heap-independent it is sufficient to observe that since all values in the
range of ω’s store lie in valuesI , ω and btr(ω) have the same store
and so we can deduce that ⟨e, btr(ω)⟩ ⇓ Bool True as well. Therefore
btr(ω) ⊧ A.

Base Case 2: A = (x. f ↦ e).
We have that

ω ⊧ JAK ⇐⇒ there exist Viper states ω1, ω2 such that
ω1 ⊧ Acc(x. f), ω2 ⊧ x. f = JeK and
ω1⊕V ω2 = ω

by definition. As ω is greater than or equal to both ω1 and ω2 we then
have that ω ⊧ Acc(x. f) and ω ⊧ x. f = JeK. Hence ω’s store maps x
to Re f a for some address a and its store maps (a, f) to some value
v ∈ valuesV with full permission by the former and also ⟨JeK, ω⟩ ⇓ v
by the latter. Consequently, as all values in the range of ω’s store and
heap lie in valuesI , v must be in valuesI and by the same reasoning as
in Base Case 1 ⟨e, btr(ω)⟩ ⇓ v. Now noting that since ω’s store maps
x to Re f a and its permission heap maps (a, f) to v ∈ valuesI with full
permission we obtain that btr(ω)’s store maps x to Re f a and its heap
maps (a, f) to v as well. Thus, eventually, btr(ω) ⊧ A.

Base Case 3: A = (x. f ↦).
Here by definition

ω ⊧ JAK ⇐⇒ ω ⊧ Acc(x. f).

Therefore ω’s store maps x to Re f a for some address a and its store
maps (a, f) to some value v ∈ valuesV with full permission. Conse-
quently, as all values in the range of ω’s store and heap lie in valuesI , v
must be in valuesI and so btr(ω)’s store maps x to Re f a and its heap
maps (a, f) to that value v as well. Hence btr(ω) ⊧ A.

Next we show the inductive cases.

35

4.3. Proving Soundness

Inductive Case 1: A = (e⇒ AImp).
In this case our inductive assumption is that

(IH) for all Viper states ρ such that all values in the range of its store
and heap lie in valuesI , ρ ⊧ JAImpK Ô⇒ btr(ρ) ⊧ AImp.

We have that

ω ⊧ JAK ⇐⇒ (⟨JeK, ω⟩ ⇓ Bool True Ô⇒ ω ⊧ JAImpK) (by definition).

Again by the same reasoning as in Base case 1 if we assume that
⟨JeK, ω⟩ ⇓ Bool True, then ⟨e, btr(ω)⟩ ⇓ Bool True and so ω ⊧ JAImpK.
By our inductive assumption then btr(ω) ⊧ AImp. Thus ⟨JeK, ω⟩ ⇓

Bool True Ô⇒ btr(ω) ⊧ AImp, which by definition is equivalent to
btr(ω) ⊧ A.

Inductive Case 2: A = (A1 ∗ A2).
This time our inductive assumption is that for i = 1, 2,

(IH) for all Viper states ρ such that all values in the range of its store
and heap lie in valuesI , ρ ⊧ JAiK Ô⇒ btr(ρ) ⊧ Ai.

ω ⊧ JAK ⇐⇒ there exist Viper states ω1, ω2 such that
ω1 ⊧ JA1K, ω2 ⊧ JA2K and ω1⊕V ω2 = ω.

Observing that since ω1⊕V ω2 = ω all values in the range of ω1’s
and ω2’s stores and heaps must lie in valuesI as well, we can use
(IH) to deduce that btr(ω1) ⊧ A1 and btr(ω2) ⊧ A2. Also because
ω1⊕V ω2 = ω there cannot be any heap locations which both ω1 and
ω2 have full permission to, so by the definition of btr(⋅) the heaps of
btr(ω1) and btr(ω2) must be disjoint, making them joinable in ImpCon.
Thus btr(ω1)⊕I btr(ω2) ⊧ A. Moreover, as ω1⊕V ω2 = ω, by Lemma
4.12 we have that btr(ω) is greater than or equal to btr(ω1)⊕I btr(ω2).
Thus, by monotonicity of assertions we get that btr(ω) ⊧ A as desired.
◻

By considering Lemma 4.10, monotonicity of assertions, and the fact that
forward translated states are Viper states such that all values in the range of
its store and heap lie in valuesI , we can put Proposition 4.14 and Proposition
4.15 together to obtain the following corollary.

Corollary 4.18 Let A be an ImpCon assertion and ϕ an ImpCon state. Then

ϕ ⊧ A ⇐⇒ f tr(ϕ) ⊧ JAK.

4.3 Proving Soundness

In this section we finally prove the soundness theorem. For that purpose we
first discuss the overall proof strategy.

36

4.3. Proving Soundness

4.3.1 The Proof Strategy

To prove the soundness theorem we want to use structural induction on the
ImpCon command. Yet, Theorem 4.4 does not give rise to a very helpful
inductive hypothesis. That is why our proof strategy is to split the theorem
into three lemmas. One lemma should give rise to the needed inductive
hypothesis and the other two should tie up the ends.

Recall the soundness theorem given in Theorem 4.4. As is done in the
theorem, we assume (T, c) to be a user-writable ImpCon program, where c
does not contain any local variable assignments within parallel sections, and
we let P and Q be ImpCon assertions. We also assume the following.

(AV1) For all Viper states ω modelling TViper,
VerT(Inhale JPK ; JcKMain ; Exhale JQK, ω).

(AV2) For all Viper states ω modelling TViper, for all Viper statements stmt ∈
JcKEPO

T we have that VerT(stmt, ω).

We are trying to prove that T ⊧ {P} c {Q}. In Definition 2.13 we defined
T ⊧ {P} c {Q} to mean that for all ImpCon states ϕ upholding type context
T such that ϕ ⊧ P, for all ImpCon commands c′ and ImpCon states ϕ′ such
that (c, ϕ)→∗

T (c′, ϕ′) we have that c′ does not abort in the next step from ϕ′,
ϕ′ upholds type context T, and c′ = SKIP Ô⇒ ϕ′ ⊧ Q. Thus, we fix ImpCon
states ϕ, ϕ′, ImpCon command c′ and assume

(A1) ϕ upholds type context T,

(A2) ϕ ⊧ P, and

(A3) (c, ϕ)→∗
T (c′, ϕ′).

What we then have to show is that

(R1) (c′, ϕ′)→T ABORT does not hold,

(R2) c′ = SKIP Ô⇒ ϕ′ ⊧ Q.

To show (R2) want to somehow tie (AV1) to our reduction of configuration
(c, ϕ) in ImpCon. That we do by finding a relationship between ϕ, ϕ′ and
the Viper states reached during verification of the statement in (AV1).

The formal semantics of sequential composition, inhale and exhale statements
are given in Figure 4.2. The semantics for sequential composition say that
we need the first part to reduce and we need the second part to reduce from
each state in the set of states the first part reduces (f here is the function
mapping each starting state to a2 set of states the second part reduces to from

2By following different paths in the reduction process we can in some cases reduce to
different sets. This sequential rule actually gives us the option to choose one of these sets for
the set the first statement reduces to and for each reduction of the second statement.

37

4.3. Proving Soundness

RedT(s1, ω) ⇓ S1
∀ω1. ω1 ∈ S1 Ô⇒ RedT(s2, f (ω1)) ⇓ ω1

RedT(s1 ; s2, ω) ⇓ ⋃
ω1∈S1

f (ω1)
(SeqV)

A well-defined in ω

RedT(Inhale A, ω) ⇓ {ω′ ∣ (∃ωInh. ω′ = ω⊕V ωInh ∧ωInh ⊧ A)}
(Inhale)

ω′ ⊧ A
ωExh⊕V ω′ = ω

ωExh stable

RedT(Exhale A, ω) ⇓ {ωExh}

(Exhale)

Figure 4.2: Semantics for Viper statements: Inhale, Exhale and sequential composition.

that starting state). Sequential composition reduces to the union of sets of
states that we reduce to by reducing both parts in sequence, first reducing
the first part to some set of states and then reducing the second part from
each of the states in that set of states.
The semantics for inhale statements require that the assertion to inhale is
well-defined with respect to the store. That is, e.g. we cannot inhale the
assertion x == 5 from a state where store variable x does not exist. An inhale
statement reduces to the set of states that can be obtained by adding a state
which satisfies the assertion to the current one. As the state to be added must
satisfy the assertion, it must also satisfy all access predicates contained in it,
and so by adding that state we gain all permissions required in the assertion
(and possibly more). By monotonicity of assertions in Viper the fact that the
state to be added satisfies the assertion also implies that each state in the
set of states we reduce to satisfies the assertion, so the inhale statement also
assumes the assertion.
The semantics for exhale statements require that the assertion holds in the
current state, i.e. that the assertion can be asserted in the current state.
It then splits the current state into two states, one which satisfies the as-
sertion and which so contains a least all permissions required in it, and
one state containing all other permissions. The second state is required to
be stable, which means that it does not contain heap locations which are
mapped to values but without any permission. The exhale statement then
discards all permission required in the assertion (and possibly more) by
reducing to only the second state which is what is left when all permissions
from the first state satisfying the assertion are removed from the current state.

Let us get back to (AV1) and its implications. For visualisation purposes
consider Figure 4.3, which gives a rough sketch of how the set of states

38

4.3. Proving Soundness

ω SInh
Inhale JPK

SExh
JcKMain

S f inal
Exhale JQK

Figure 4.3: Reduction from (AV1).

evolves as we verify the statement

Inhale JPK ; JcKMain ; Exhale JQK

for some starting state ω. Due to (AV1) we know that this statement verifies,
therefore we know it reduces to some set of states S f inal . Let us look at
the intermediate states as we process the three main sub-statements of this
statement starting in ω. After the Inhale, due to (Inhale) we end up in a
set of states SInh consisting of all Viper states ω′ such that there exists a
state ω+ such that ω⊕V ω+ = ω′ and ω+ ⊧ JPK. Then, by (SeqV), we must
have that for each ω′ ∈ SInh the Viper statement JcKMain must reduce to some
set of states Sω′ and that SExh = ⋃ω′∈SInh Sω′ . Then, also by the semantics of
sequential composition, the Exhale must also verify in all states ω′′ ∈ SExh.
The exact composition of S f inal is irrelevant for our proof, but the observation
here that will be important is that if the Exhale verifies from a state ω′′, then
by the Viper semantics and monotonicity of assertions we must have that
ω′′ ⊧ JQK.

Now, how will this relate to the result we would like to prove? We show
that for some well-chosen ω the forward translation of ϕ is in SInh and, if
c′ = SKIP, i.e. (c, ϕ) reduces to (SKIP, ϕ′) with respect to T, then the forward
translation of ϕ′ is in SExh. That is, we want to obtain the following diagram.

Figure 4.4: Relating the reduction from (AV1) to the reduction in ImpCon.

To obtain this diagram, by (AV1) there are three parts we need to prove.

(P1) There is some Viper state ω modelling T such that f tr(ϕ) ∈ SInh.

39

4.3. Proving Soundness

(P2) JcKMain reduces in Viper with respect to f tr(ϕ) and T to a set of states
S f tr(ϕ) such that f tr(ϕ′) ∈ S f tr(ϕ). (Note that this implies f tr(ϕ′) ∈ SExh)

(P3) If the Exhale reduces from state f tr(ϕ′), then we must have that ϕ′ ⊧ Q.

Once we have proven these three results the diagram essentially proves (R2).
The following three lemmas state the three parts formally together with all
assumptions we need to prove them. In the case of (P1) and (P3) we give the
proof right away. The lemma corresponding to (P2) we will prove in the next
subsection.

Lemma 4.19 (Inhaling the Precondition) Let P be an ImpCon assertion, T be
an ImpCon type context and ϕ an ImpCon state. Assume that ϕ ⊧ P and the store
of ϕ upholds T. Furthermore, assume that for all Viper states ωInh modelling T, we
have that VerT(Inhale JPK, ωInh)

3. Then there exists a Viper state ω and a set of
Viper states S such that

• ω models T,

• RedT(Inhale JPK, ω) ⇓ S, and

• f tr(ϕ) ∈ S.

Proof Let P be an ImpCon assertion, T be an ImpCon type context and ϕ an
ImpCon state. Assume that ϕ ⊧ P and the store of ϕ upholds T. Furthermore,
assume that for all Viper states ωInh modelling T VerT(Inhale JPK, ωInh).

Let ω be the Viper state consisting of the store of ϕ and a permission heap
constructed from an empty heap (i.e. the domain of the heap is the empty
set) and an empty permission mask (i.e. all heap locations map to 0). As the
store of ϕ upholds T, we have that ω models T.

Furthermore, let S be the set of all Viper states ω′ that have the same store
as ω and are such that ω′ ⊧ JPK. As the heap and permission mask of ω
are empty, we have that ω⊕V ω′ = ω′ and so S is exactly the set of states
such that if the Inhale reduces then RedT(Inhale JPK, ω) ⇓ S. Thus, as
VerT(Inhale JPK, ωInh) since ω models T, we get that RedT(Inhale JPK, ω) ⇓

S.

Now we only need to show that f tr(ϕ) ∈ S. By assumption ϕ ⊧ P and so by
Proposition 4.14 f tr(ϕ) ⊧ JPK. Therefore as ω and ϕ and hence also f tr(ϕ)

have the same store, by construction of S we have that f tr(ϕ) ∈ S.

This concludes the proof. ◻

3This assumption is actually not needed to reach the conclusions of this lemma and is
also not an assumption in our Isabelle formalisation. The reason we added it here is that it
allows us to skip some low-level details and it can also easily be deduced from an assumption
of the soundness theorem.

40

4.3. Proving Soundness

Lemma 4.20 (Reducing the Command) Let c be an ImpCon command and T
be a type context, such that the pair (T, c) is a well-formed user-writable ImpCon
program and c contains no assignments to local variables within parallel sections.
Additionally, let ϕ be an ImpCon state upholding T and let S be a set of Viper states.
Assume that

• for all Viper states ω modelling the type context T and Viper statements
sV ∈ JcKEPO

T we have that VerT(sV , ω), and

• RedT(JcKMain, f tr(ϕ)) ⇓ S.

Then for all ImpCon commands c′ and ImpCon states ϕ′ such that (c, ϕ)→∗
T (c′, ϕ′)

we have that

• (c′, ϕ′)→T ABORT does not hold, and

• c′ = SKIP Ô⇒ f tr(ϕ′) ∈ S.

Lemma 4.21 (Exhaling the Postcondition) Let Q be an ImpCon assertion, T be
a Viper type context and ϕ an ImpCon state. Assume that VerT(Exhale JQK, f tr(ϕ)).
Then ϕ ⊧ Q.

Proof Let Q be an ImpCon assertion, T be a Viper type context and ϕ an
ImpCon state. Assume that VerT(Exhale JQK, f tr(ϕ)). Then there exists a set
of Viper states S such that RedT(Exhale JQK, f tr(ϕ)) ⇓ S. Therefore by the
Viper semantics and monotonicity of assertions we must have f tr(ϕ) ⊧ JQK.
Thus, the result follows from Proposition 4.18. ◻

Note that in Lemma 4.20 (R1) was added as a conclusion. Hence after we
have proven Lemma 4.20 the proof of (R1) will follow. Using all three lemmas
together we obtain (R2). Thus we will obtain soundness once we have proven
Lemma 4.20, which we do in the rest of this chapter.

At first glance Lemma 4.20 might not seem simpler to prove than the sound-
ness theorem itself, but the advantage of this formulation is that it gives rise
to an inductive assumption that albeit long offers all information needed
when proving the Lemma by structural induction on c. That is exactly what
we wanted to achieve. The proof of Lemma 4.20 we will discuss from Section
4.3.2 onward.

We wrap up this subsection by formally proving Theorem 4.4 using the
lemmas we just stated.

Proof Assume (T, c) to be a user-writable ImpCon program, where c does
not contain any local variable assignments within parallel sections, and we
let P and Q be ImpCon assertions. Furthermore assume the following.

(AV1) For all Viper states ω modelling T,
VerT(Inhale JPK ; JcKMain ; Exhale JQK, ω).

41

4.3. Proving Soundness

(AV2) For all Viper states ω modelling T, for all Viper statements sV ∈ JcKEPO
T

we have that VerT(sV , ω).

Fix ImpCon states ϕ, ϕ′ and ImpCon command c′ such that

(A1) ϕ upholds type context T,

(A2) ϕ ⊧ P, and

(A3) (c, ϕ)→∗
T (c′, ϕ′).

From (AV1) and the semantics of sequential composition we can derive that
for all Viper states ωInh modelling T, we have that VerT(Inhale JPK, ωInh).
From that, (A1) and (A2) we obtain all premises in order to use Lemma 4.19.
Thus, we obtain a state ω and a set of states S such that

• ω models T,

• RedT(Inhale JPK, ω) ⇓ S, and

• f tr(ϕ) ∈ S.

We then obtain by (AV1) and the semantics of sequential composition that
for some set of states S f inal ,

RedT(JcKMain ; Exhale JQK, f tr(ϕ)) ⇓ S f inal .

Then again by applying the rule for sequential composition backwards we
get a set of states SExh such that

• RedT(JcKMain, f tr(ϕ)) ⇓ SExh, and

• for all states ωExh ∈ SExh we have that VerT(Exhale JQK, ωExh).

Using the first of these properties, (AV2), (A3) and our initial assumptions
on (T, c) and ϕ we can use Lemma 4.20 to derive that

• (c′, ϕ′)→T ABORT does not hold, and

• c′ = SKIP Ô⇒ f tr(ϕ′) ∈ SExh.

The first of these properties gives the first part we had to show in order for
T ⊧ {P} c {Q} to hold. For the second part assume c′ = SKIP. Then we know
that f tr(ϕ′) ∈ SExh and so by the fact that for all states ωExh ∈ SExh we have
that VerT(Exhale JQK, ωExh), then

VerT(Exhale JQK, f tr(ϕ′)).

Thus, by Lemma 4.21 we obtain that ϕ′ ⊧ Q and we are done. ◻

42

4.3. Proving Soundness

4.3.2 Proving Sound the Translation of Commands (Except Parallel
Commands)

Recall Lemma 4.20:

Lemma (Reducing the Command) Let c be an ImpCon command and T be a
type context, such that the pair (T, c) is a well-formed user-writable ImpCon program
and c contains no assignments to local variables within parallel sections. Additionally,
let ϕ be an ImpCon state upholding T and let S be a set of Viper states. Assume that

• for all Viper states ω modelling the type context T and Viper statements
sV ∈ JcKEPO

T we have that VerT(sV , ω), and

• RedT(JcKMain, f tr(ϕ)) ⇓ S.

Then for all ImpCon commands c′ and ImpCon states ϕ′ such that (c, ϕ)→∗
T (c′, ϕ′)

we have that

• (c′, ϕ′)→T ABORT does not hold, and

• c′ = SKIP Ô⇒ f tr(ϕ′) ∈ S.

As foreshadowed at the end of the previous subsection, we prove this lemma
by structural induction on the ImpCon command. In this subsection we cover
all the structural induction cases but the case for parallel commands. The
case for parallel commands will be proven separately in the next subsection,
as it is quite involved.

Proof Let c, c′ be ImpCon commands, T an ImpCon type context, ϕ, ϕ′

ImpCon states and S a set of Viper states. We assume the following.

(A1) (T, c) is a user-writable ImpCon program.

(A2) c contains no assignments to local variables within parallel sections.

(A3) ϕ upholds type context T.

(A4) RedT(JcKMain, f tr(ϕ)) ⇓ S.

(A5) For all Viper states ω modelling T and for all Viper statements sV ∈

JcKEPO
T , we have that VerT(sV , ω).

(A6) (c, ϕ)→∗
T (c′, ϕ′).

We need to prove the following.

(R1) (c′, ϕ′)→T ABORT does not hold, and that

(R2) c′ = SKIP Ô⇒ f tr(ϕ′) ∈ S.

We start with the base cases; SKIP, assert commands and assignments.

43

4.3. Proving Soundness

Base Case SKIP : c = SKIP.
In this case we have that JcKMain = Skip and so by the Viper semantics
and (A4) S = { f tr(ϕ)}. Furthermore by the ImpCon semantics and (A6),
as there is no step we can take from SKIP, we are able to reach (c′, ϕ′)
from (c, ϕ) in zero steps. Therefore (c′, ϕ′) = (c, ϕ) and so c′ = SKIP
and ϕ′ = ϕ. Hence as we never abort after SKIP (R1) holds. Also, by
the above f tr(ϕ′) = f tr(ϕ) ∈ { f tr(ϕ)} = S, giving (R2).

Base Case Assert : c = Assert A.
In this case we have that JcKMain = Assert JAK and so again by the Viper
semantics and (A5), we get that S = { f tr(ϕ)} and that f tr(ϕ) ⊧ JAK,
as an assertion does not change the state. Considering the ImpCon
semantics and (A6) there are only two cases for (c′, ϕ′). Either we can
reach (c′, ϕ′) from (c, ϕ) in zero steps, or we execute at least one step
which must lead to c′ = SKIP.

In the first case by Corollary 4.18, since f tr(ϕ) ⊧ JAK, we have that
ϕ ⊧ A, implying (R1). As c′ ≠ SKIP we get (R2) for free.

In the second case, where we reach (c′, ϕ′) by executing a step, by the
ImpCon semantics of Assert we must have that c′ = SKIP and ϕ′ = ϕ.
Hence, again, as we never abort after SKIP (R1) holds. And by the
above f tr(ϕ′) = f tr(ϕ) ∈ { f tr(ϕ)} = S, giving (R2).

Base Case Assign Local : c = (x ∶= e).
By the same line of argumentation as in the Assert case, either we
can reach (c′, ϕ′) from (c, ϕ) in zero steps, or we execute at least one
step which must lead to c′ = SKIP. As local assignments never abort
the first case is trivial after obtaining that c′ = (x ∶= e) ≠ SKIP. In the
second case we again need to show f tr(ϕ′) ∈ S to finish the proof. For
that we leverage (A4) again. As JcKMain = (x ∶= JeK) and so by the Viper
semantics and (A4) there exists a value v such that ⟨JeK, f tr(ϕ)⟩ ⇓ v and
S = {ω} where ω is the same as f tr(ϕ) except that the store of ω maps
x to v. We can then use that ⟨JeK, f tr(ϕ)⟩ ⇓ v together with Proposition
4.13 to obtain that ⟨e, ϕ⟩ ⇓ v so that by the ImpCon semantics ϕ′ is the
same as ϕ except that the store of ϕ′ maps x to v. Then by observing
that ω = f tr(ϕ′) we obtain the desired result that f tr(ϕ′) ∈ S.

Base Case Assign to field: c = (x. f ∶= e).
By the same line of argumentation as in the Assert case, either we can
reach (c′, ϕ′) from (c, ϕ) in zero steps, or we execute at least one step
which must lead to c′ = SKIP.

This time to show (R1) in the first case we need to prove that the store
of ϕ maps x to a reference value containing some address a and that
(a, f) lies in the domain of the heap of ϕ, by definition of abort. All

44

4.3. Proving Soundness

this can be obtained through the fact that JcKMain = (x. f ∶= JeK) and
RedT(JcKMain, f tr(ϕ)) ⇓ S.

The second case follows the same line of arguments as the Assign Local
case, only that this time we update the heap instead of the store.

Base Case Assign from field : c = (x ∶= y. f).
We perform the usual case split.

To show (R1) in the first case we need to prove that the store of ϕ maps
y to a reference value containing some address a and that (a, f) lies
in the domain of the heap of ϕ, by definition of abort. Once more,
all this can be obtained through the fact that JcKMain = (x ∶= y. f) and
RedT(JcKMain, f tr(ϕ)) ⇓ S.

In the second case we again need to show f tr(ϕ′) ∈ S to finish the
proof. For that we leverage (A4) again. As JcKMain = (x ∶= y. f) and so
by the Viper semantics and (A4) there exists a value v such that the
heap of f tr(ϕ) maps (a, f) to v and its permission mask maps (a, f)
to 1. As f tr(ϕ) is a forward-translated state that implies the heap of ϕ
must map (a, f) to v as well. Hence by the ImpCon semantics ϕ′ is the
same as ϕ except that the store of ϕ′ maps x to v. Furthermore by the
reduction we have that S = {ω}, where ω is the same as f tr(ϕ) except
that the store of ω maps x to v. Thus we again observe that ω = f tr(ϕ′)
and obtain the desired result that f tr(ϕ′) ∈ S.

Base Case Alloc : c = (x ∶= alloc(f1, f2, . . . , fn)).
We perform the usual case split.

As alloc commands never abort the first case is trivial after obtaining
that c′ = (x ∶= alloc(f1, f2, . . . , fn)) ≠ SKIP.

Hence we only need to show (R2) in the second case. We know in this
case that (c, ϕ)→T (SKIP, ϕ′). From this we can derive the following
side-conditions through the ImpCon semantics of allocation.

(D1) f1, f2, . . . , fn are distinct,

(D2) T maps x to a reference type,

and for some address a

(D3) (a, fi) does not lie in the domain of the heap of ϕ for i = 1, . . . , n.

(D4) ϕ′ is the same as ϕ except that the store of ϕ′ maps x to Re f a and
the heap ϕ′ maps (a, fi) to Null for i = 1, . . . , n.

As JcKMain = (Havoc x ; Inhale Acc(x.f1) && Acc(x.f2) && . . . && Acc(x.fn)),
we know by (A4) that Havoc x reduces in Viper w.r.t T and f tr(ϕ) to
some set SHavoc. By the semantics of Havoc, by (D2) as Re f a is of

45

4.3. Proving Soundness

type reference, SHavoc contains the state ω which is the same as f tr(ϕ)

except that the store of ω maps x to Re f a.

Then by the semantics of sequential composition the Inhale reduces
w.r.t. T and ω to some set SInh and SInh ⊆ S. Let ωInh be the state
which is the same as ω except that the heap of ωInh maps (a, fi) to
Null for i = 1, . . . , n. Now if we can show that SInh contains the state
ωInh, then we are done, because then by (D4) and the definition of ω,
f tr(ϕ′) = ωInh ∈ SInh ⊆ S.

To see that SInh contains ωInh we need to show that there exists some
Viper state ω+ such that ωInh = ω⊕V ω+ and

ω+ ⊧ Acc(x. f1) && Acc(x. f2) && . . . && Acc(x. fn).

That is due to the semantics of Inhale in Viper, which adds states
joinable with the current state and satisfying the assertion to the current
state. We can take ω+ to be the state consisting of the store of ω and
the permission heap that maps (a, fi) to Null with full permission for
i = 1, . . . , n. Since by (D3) (a, fi) does not lie in the domain of the heap
of ϕ for i = 1, . . . , n, the same holds true for f tr(ϕ) and so also for ω.
Hence we can add ω and ω+. It is then easy to see that ωInh = ω⊕V ω+.
Moreover, clearly ω+ ⊧ Acc(x. f1) && Acc(x. f2) && . . . && Acc(x. fn) as
by (D1) the right-hand-side cannot evaluate to false. Thus ωInh ∈ SInh
and we are done.

Thus we have shown all the base cases. Now we move on to the structural
commands; Sequential Composition, If-statements, and parallel commands.
Note that by (A1) we do not need to consider the case c = (c1 ∣∣ c2). For
all structural commands we additionally have our inductive assumption at
our disposal. That is for each command ci that c consists of (e.g. c = c1 ; c2
consists of c1 and c2) we get the following assumption.

(IH) For any ImpCon states ϕi, ϕ′i, and ImpCon command c′i, set of Viper
states Si such that

– (ci, ϕi)→
∗
T (c′i , ϕ′i),

– ϕi upholds type context T,

– RedT(JciKMain, f tr(ϕi)) ⇓ Si,

– For all Viper states ω modelling T, for all Viper statements sV ∈

JciKEPO
T we have that VerT(sV , ω),

– ci contains no assignments to local variables within parallel sec-
tions, and

– (T, ci) is a user-writable program

46

4.3. Proving Soundness

we have that c′i does not abort in the next step from ϕ′i, and that
c′i = SKIP Ô⇒ f tr(ϕ′i) ∈ Si.

Note that the last two bullet points only depend on ci and are always true.
That is because by (A1) and (A2) both statements hold for c and as the
properties in both statements are defined inductively they can easily be
shown to be true for each command ci that c consists of. Hence whenever
we use (IH) we will omit the last two criteria. The third to last criterion can
also be shown to hold in general for all structural commands c by noting
that JciKEPO

T ⊆ JcKEPO
T by the definition of J⋅KEPO

T and so the criterion holds by
(A5). Thus whenever we wish to use the inductive hypothesis we only need
to show the first three criteria.

Inductive Case Seq : c = (c1 ; c2).
Note that by the ImpCon semantics of sequential composition and
(A6) there can only be two cases; Either there exists c′1 such that
(c1, ϕ) →∗

T (c′1, ϕ′) and c′ = (c′1 ; c2) or there exists ϕ′1 such that
(c1, ϕ)→∗

T (SKIP, ϕ′1) and (c2, ϕ1)→
∗
T (c′, ϕ′). That is, when reaching

(c′, ϕ′) we are either still executing c1 or we finished executing c1 and
are executing c2.

Subcase: Still executing c1. Fix c′1 such that (c1, ϕ) →∗
T (c′1, ϕ′1) and

c′ = (c′1 ; c2). As c′ = (c′1 ; c2) ≠ SKIP we get (R2) for free. For (R1)
we use (IH) to obtain that c′1 does not abort in the next step from
ϕ′ which implies (R1) by the definition of abort for Seq commands.
Choosing ϕ1 ≜ ϕ and ϕ′1 ≜ ϕ′ we obtain the first two criteria through
the above and (A3). Moreover we get the fourth criterion by (A4) as
JcKMain = Jc1KMain ; Jc2KMain and so VerT(Jc1KMain, f tr(ϕ1)). Thus we
can use (IH) and conclude this case.

Subcase: Executing c2.Now fix ϕ′1 such that (c1, ϕ) →∗
T (SKIP, ϕ′1)

and (c2, ϕ1) →
∗
T (c′, ϕ′). Then by choosing ϕ1 ≜ ϕ and c′1 ≜ SKIP and

S1 such that RedT(Jc1KMain, f tr(ϕ1)) ⇓ S1, by a similar argument as in
the first case we can use (IH) to this time obtain that f tr(ϕ′1) ∈ S1 since
c′1 = SKIP. Because f tr(ϕ′1) ∈ S1 and RedT(Jc1KMain, f tr(ϕ)) ⇓ S1 by the
Viper semantics for sequential composition and (A5) there must exist a
set S2 that Jc2KMain reduces to w.r.t. T and f tr(ϕ′1), and that S2 ⊆ S. By
noting that executing a step in the ImpCon semantics from a state which
upholds type context T and for which only finitely many addresses are
allocated on the heap can only result in a state for which both of these
criteria hold as well, we can derive that both of these criteria hold for
ϕ1 since they held for ϕ. Hence we have all we need to use (IH) for c2
with ϕ2 ≜ ϕ′1, ϕ′2 ≜ ϕ′, c′2 ≜ c2. Using (IH) we conclude that c′ does not
abort in the next step from ϕ′, and that c′ = SKIP Ô⇒ f tr(ϕ′) ∈ S2 ⊆ S.

Inductive Case If : c = If e then c1 else c2.
By the ImpCon semantics of If-statements, (A6) and well-formedness of

47

4.3. Proving Soundness

c there can only be two cases, other than the trivial case in which c = c′;
Either ⟨e, ϕ⟩ ⇓ Bool True and (c1, ϕ) →∗

T (c′, ϕ′) or ⟨e, ϕ⟩ ⇓ Bool False
and (c2, ϕ)→∗

T (c′, ϕ′). That is, either the If-condition is true or false.
As the proofs of both cases are very similar we only prove the first case
here.

Assume that ⟨e, ϕ⟩ ⇓ Bool True and (c1, ϕ) →∗
T (c′, ϕ′). Then by

Proposition 4.13 ⟨JeK, f tr(ϕ)⟩ ⇓ Bool True and so by the Viper semantics
of If-statements as JcKMain = If JeK then Jc1KMain else Jc2KMain, we have
that RedT(Jc1KMain, f tr(ϕ)) ⇓ S. By this fact, (A3) and our assumption
that (c1, ϕ)→∗

T (c′, ϕ′) using (IH) for c1 concludes the proof. ◻

The last case we need the prove is that of c being the parallel command. As
this is by far the most challenging case we decided to devote the entire next
subsection to it.

4.3.3 Proving Sound the Translation of Parallel Commands

Now we prove the last inductive case.

Throughout this subsection let c ≜ ({Pre1} c1 {Post1} ∣∣ {Pre2} c2 {Post2}). We
show that in this case as well (R1) and (R2) hold.

For this proof we leverage the parallel rule and frame rule from separation
logic. For that purpose we have formally proven the equivalence between
our definition of Hoare triples in ImpCon and that of Viktor Vafeiadis in
[12] to ensure that these rules are valid for ImpCon. We have, however, not
reproven the rules themselves in Isabelle. For context we repeat the adapted
parallel rule and frame rule from [12] here.

T ⊧ {P1} c1 {Q1}

T ⊧ {P2} c2 {Q2}

f v(P1, c1, Q1)∩wr(c2) = ∅

f v(P2, c2, Q2)∩wr(c1) = ∅

T ⊧ {P1 ∗ P2} c1 ∣∣ c2 {Q1 ∗ Q2}

(parallel rule)
T ⊧ {P} c {Q}

f v(F)∩wr(c) = ∅

T ⊧ {P ∗ F} c {Q ∗ F}
(f rame rule)

To give a rough sketch of the proof, we will show that T ⊧ {Pre1} c1 {Post1}

and T ⊧ {Pre2} c2 {Post2} using the inductive hypothesis and then proceed
to use the parallel rule to obtain T ⊧ {Pre1 ∗ Pre2} c1 ∣∣ c2 {Post1 ∗ Post2}.
From that we will show (R1) via the Hoare triple definition. To show (R2),
we will use the frame rule as well to get that

T ⊧ {Pre1 ∗ Pre2 ∗ F} c1 ∣∣ c2 {Post1 ∗ Post2 ∗ F}

for a well-chosen frame F, as described in Section 3.1.3, and use this together
with (A4) to conclude the desired result.

Now, let us get started with the proof.

48

4.3. Proving Soundness

Obtaining the Hoare triple from the parallel rule.Since the proofs of T ⊧

{Pre1} c1 {Post1} and T ⊧ {Pre2} c2 {Post2} are analogous we only prove
T ⊧ {Pre1} c1 {Post1} here. Fix ImpCon states ϕ1, ϕ′1 and ImpCon command
c′1. Assume that (c1, ϕ1) →

∗
T (c′, ϕ′1), ϕ1 upholds type context T, ϕ1 ⊧ Pre1

and only finitely many addresses are allocated on the heap of ϕ1.
Then in order to use (IH) for c1 all we have left to show is that Jc1KMain

reduces to some set S1 w.r.t. T and f tr(ϕ1). This we do using (A5), that is,
using that the extra proof obligation emitted when translating the parallel
command verifies. By definition of J⋅KEPO

T we have that

(InhaleJPre1K ; Jc1KMain ; ExhaleJPost1K) ∈ JcKEPO
T .

Therefore by (A4) we have that InhaleJPre1K ; Jc1KMain ; ExhaleJPost1K re-
duces in Viper w.r.t. T and any state that models T. As we assumed that
ϕ1 upholds type context T and ϕ1 ⊧ Pre1, we can use Lemma 4.19 to obtain
such a state ω and a set of states SInh1 for which Inhale JPK reduces to SInh1
in Viper with respect to TViper and ω, and f tr(ϕ1) ∈ SInh1. Then, using that
InhaleJPre1K ; Jc1KMain ; ExhaleJPost1K reduces in Viper w.r.t. T and ω, by
the Viper semantics of sequential composition there exists a set S1 such that
Jc1KMain reduces to S1 w.r.t. T and f tr(ϕ1) and ExhaleJPost1K reduces w.r.t.
T and all states ωS ∈ S1. From this we have what we wanted in order to use
(IH).
Using (IH) for ϕ1, ϕ′1, c′1 and S1 we obtain that c′1 does not abort in the next
step from ϕ′1, and that c′1 = SKIP Ô⇒ f tr(ϕ′1) ∈ S1. What we need to show in
order to conclude the proof is that c′1 does not abort in the next step from ϕ′1,
ϕ′1 upholds type context T, and c′1 = SKIP Ô⇒ ϕ′1 ⊧ Post1, the first of which
we have already shown. To show the third part recall that ExhaleJPost1K re-
duces w.r.t. T and all states ωS ∈ S1 and c′1 = SKIP Ô⇒ f tr(ϕ′1) ∈ S1. Thus we
are able to apply Lemma 4.21 to obtain that c′1 = SKIP Ô⇒ f tr(ϕ′1) ⊧ Post1.
For the second part, just as we did in Section 4.3.1, we note that since
(c1, ϕ1) →

∗
T (c′1, ϕ′1) and ϕ1 upholds T by the ImpCon semantics ϕ′1 must

uphold T as well. This concludes the proof that T ⊧ {Pre1} c1 {Post1}.

Noting that by (A2) the set of local variables written to in c1 resp. c2 is empty,
we are now all set to use the parallel rule from separation logic. From the
proven fact that T ⊧ {Pre1} c1 {Post1} and T ⊧ {Pre2} c2 {Post2} we derive
that T ⊧ {Pre1 ∗ Pre2} c1 ∣∣ c2 {Post1 ∗ Post2}.

Proving (R1). This Hoare triple is already sufficient to prove (R1). We will
simply show that we can without loss of generality assume (c1 ∣∣ c2, ϕ) →∗

T
(c′, ϕ′) and ϕ ⊧ Pre1 ∗ Pre2, so that by (A3) and the established fact that
T ⊧ {Pre1 ∗ Pre2} c1 ∣∣ c2 {Post1 ∗ Post2} we can use our Hoare triple
definition to obtain (R1).
The reason that we can w.l.o.g. assume that (c1 ∣∣ c2, ϕ) →∗

T (c′, ϕ′) is
because of the ImpCon semantics of the parallel command. By (A6) either

49

4.3. Proving Soundness

we do not execute a step and (c, ϕ) = (c′, ϕ′) or we do execute at least one
step, the first of which can only lead to (c1 ∣∣ c2, ϕ), so that we must have
(c1 ∣∣ c2, ϕ)→∗

T (c′, ϕ′) as desired. As we never abort on a parallel command
(R1) is trivially true in the first case and so is (R2) since c ≠ SKIP. Thus we
can w.l.o.g. assume that (c1 ∣∣ c2, ϕ)→∗

T (c′, ϕ′).
To show that ϕ ⊧ Pre1 ∗ Pre2 we will use (A4). For

c = ({Pre1} c1 {Post1} ∣∣ {Pre2} c2 {Post2})

we have that

JcKMain = Exhale JPre1K ; Exhale JPre2K ; Inhale JPost1K ; Inhale JPost2K.

So by (A4) we have that

RedT(Exhale JPre1K ; Exhale JPre2K ; Inhale JPost1K ; Inhale JPost2K, ftr(ϕ)) ⇓ S.

We can rewrite this to say that

RedT(Exhale JPre1K && JPre2K ; Inhale JPost1K && JPost2K, f tr(ϕ)) ⇓ S.

Then through the Viper semantics of Exhale we can derive that f tr(ϕ) ⊧

JPre1K && JPre2K which is by definition of J⋅K equivalent to saying f tr(ϕ) ⊧

JPre1 ∗ Pre2K. Thus Proposition 4.18 gives us that ϕ ⊧ Pre1 ∗ Pre2 as desired.
Hence we have all we need in order to use our Hoare triple definition to
show (R1).

Proving (R2). Proving (R2) for the parallel command will be a bit trickier.
Assume c′ = SKIP. We need to show that

Exhale JPre1K && JPre2K ; Inhale JPost1K && JPost2K

reduces to a set containing f tr(ϕ′) in Viper w.r.t. T and f tr(ϕ). From the
Viper semantics of Exhale, introduced in Figure 4.2, and monotonicity of
assertions we obtain Viper states ω, ωExh and the following properties.

(P1) f tr(ϕ) ⊧ JPre1 ∗ Pre2K,

(P2) the Exhale reduces to the set {ωExh},

(P3) ω ⊧ JPre1 ∗ Pre2K,

(P4) f tr(ϕ) = ωExh⊕V ω, and

(P5) ωExh is a stable state (i.e. there are no heap locations that are mapped
to some value with zero permission).

Ultimately by (P2), to show that

Exhale JPre1K && JPre2K ; Inhale JPost1K && JPost2K

50

4.3. Proving Soundness

reduces to a set containing f tr(ϕ′) in Viper w.r.t. T and f tr(ϕ), we need to
show that f tr(ϕ′) lies among the states we can reach by inhaling JPost1K ∗
JPost2K from ωExh. By the Viper semantics of Inhale that translates to having
to show that there exists some Viper state ωInh such that

(RI1) f tr(ϕ′) = ωExh⊕V ωInh, and

(RI2) ωInh ⊧ JPost1K && JPost2K.

Therefore once we have shown (RI1) and (RI2) we are done.

Before we dive into the proof, let us get a clearer picture of what we are trying
to do here. We want to get from ωExh to f tr(ϕ′) by adding another state.
Due to (A2) we need to only consider the changes to the permission heap
here. As there are no assignments to local variables in c1 and c2, the store
will not change when we execute (c1 ∣∣ c2) and so as (c1 ∣∣ c2, ϕ)→∗

T (c′, ϕ′),
ϕ and ϕ′ must have the same store. By definition of forward translation this
implies f tr(ϕ) and f tr(ϕ′) must have the same store as well. Then due to
(P4) f tr(ϕ′) and ωExh must also have the same store.

As mentioned before we want to leverage the frame rule. The intuition is that
we want our frame to ensure that f tr(ϕ′) is greater than or equal to ωExh,
which implies by definition that we can add some Viper state ωInh. Therefore
it is not too far-fetched to incorporate ωExh directly into our frame. That is,
by showing that the frame holds in f tr(ϕ′) we can directly deduce that ωExh
is a part of f tr(ϕ′).

The frame has to be defined on ImpCon states. The first naive idea that
comes to mind here might be to use pur notion of forward translation and
set our ImpCon frame to be F′(γ) ≜ (f tr(γ) = ωExh)

4. But that would give
rise to the following problem.

Consider for example the case where JPre1K ≜ acc(x. f) and JPre2K ≜ acc(y. f)
and f tr(ϕ) has full permission to exactly the three heap locations associated
with x. f , y. f and z. f . So (P1) holds which implies there is a state ω satisfying
(P3) and (P4). It could then be the case that ω is the state that has full
permission to access the fields x. f , y. f and 2

3 permission to access z. f , which
would make it a sub state of f tr(ϕ) and ensure that (P3) holds. Therefore by
(P4), ωExh must be the state having exactly permission 1

3 to the heap location
associated with z. f and no other heap locations. But forward translation
always results in integral permissions! Hence there is no ImpCon state which
could satisfy the frame F′.

Recall that we want our frame to ensure that f tr(ϕ′) is greater than or equal
to ωExh. Hence, sticking to our previous example we would need the ImpCon

4Note that this is not an ImpCon assertion, but rather a function from ImpCon states to
booleans. We interpret this function as an assertion by saying that it is satisfied by a state if it
maps that state to True.

51

4.3. Proving Soundness

frame to ensure that f tr(ϕ′) has at least permission 1
3 to the heap location

associated with z. f . Hence we also cannot define the frame via our back
translate function from Section 4.2. That is, we cannot simply define our
frame as F′′(γ) ≜ (γ = btr(ωExh)). In our example, as ωExh has less than full
permission to access z. f , and no other permissions, the back translation of
ωExh is a state with an empty heap. Thus, the frame does not ensure that
z. f is allocated in ϕ′ and so it does not help us in determining if f tr(ϕ′) is
greater than or equal to ωExh.

Therefore, naturally, we want our ImpCon frame to ensure instead that
z. f is allocated in ϕ′, so that f tr(ϕ′) has more permission to z. f than ωExh.
Our definition of back translation effectively rounded down permissions by
deallocating all heap locations with less than full permissions. Hence for our
frame we define a similar notion which effectively rounds up permissions by
making sure all heap locations with non-zero permission stay allocated.

Definition 4.22 The backward translation over-approximating permissions of
a Viper state, btrover(⋅) is defined as

btrover∶StateV → StateI

(s, (m, h))↦ (s∣S , h∣H), where
S = {v ∈ varName ∣ s(v) ∈ valuesI}, and
H = {hl ∈ Adresses × Fields ∣ h(hl) ∈ valuesI and m(hl) > 0}.

The function btrover(⋅) also has some interesting properties in connection with
forward translation and usual backward translation.

Lemma 4.23 Let ϕ be an ImpCon state. Then btrover (f tr(ϕ)) = ϕ.

Lemma 4.24 Let ω be a Viper state that only contains values in valuesI . Then
f tr (btrover(ω)) is greater than or equal to ω.

Lemma 4.25 Let ω1,ω2 be a Viper states, and ϕ an ImpCon state. Assume that

ω1⊕V ω2 = f tr(ϕ).

Then
btr(ω1)⊕V btrover(ω2) = ϕ.

The first two lemmas can easily be seen to hold by inspecting heap locations
cases by case. The third lemma can be shown as follows.

Proof Let ω1,ω2 be a Viper states, and ϕ an ImpCon state. Assume that
ω1⊕V ω2 = f tr(ϕ). Then the heaps of btr(ω1) and btrover(ω2) must be
disjoint for otherwise there must be a heap location for which we have full
permission in ω2 and non-zero permission in ω1 resulting in more than

52

4.3. Proving Soundness

full permission in f tr(ϕ), which is impossible. Moreover, as ω1⊕V ω2 =

f tr(ϕ), all three Viper states must have the same store. Therefore btr(ω1)

and btrover(ω2) also have the same store. Thus, btr(ω1) and btrover(ω2) are
joinable.

Now we show btr(ω1) and btrover(ω2) must add up to ϕ. As f tr(ϕ) has full
permission to all heap locations allocated in ϕ, either both ω1 and ω2 have
fractional permissions to such a heap location with the same value so that
btrover(ω2) carries the correct value, or one of ω1 and ω2 has full permission
with the correct value while the other has zero permission. In that case
the corresponding state of ϕ2 and ϕ1 carries the same value. For all heap
locations not allocated in ϕ, f tr(ϕ) has zero permission and hence so do ωExh
and ω ensuring the heap location exists in neither of btr(ω1) and btrover(ω2).
Thus, btr(ω1)⊕V btrover(ω2) = ϕ. ◻

Using this version of backward translation we then define our frame choice
as

F(γ) ≜ (γ = btrover(ωExh)) .

Just like for the previous frame choice, as the set of local variables written
to in c1 ∣∣ c2 is empty, we may use the frame rule on the Hoare triple T ⊧

{Pre1 ∗ Pre2} c1 ∣∣ c2 {Post1 ∗ Post2} that we have shown before and thus
obtain the Hoare triple

T ⊧ {Pre1 ∗ Pre2 ∗ F} c1 ∣∣ c2 {Post1 ∗ Post2 ∗ F}.

To be able to derive any information from this Hoare triple we need to first
formally show that ϕ ⊧ Pre1 ∗ Pre2 ∗ F. Recall the definition the separating
conjunction for ImpCon states.

γ ⊧ A1 ∗ A2 ⇐⇒ there exist ImpCon states γ1, γ2 such that
γ1 ⊧ A1, γ2 ⊧ A2 and γ1⊕I γ2 = γ.

Hence we need to show there exist ϕ1, ϕ2 such that ϕ1 ⊧ Pre1 ∗ Pre2, F(ϕ2)

holds, and ϕ1⊕I ϕ2 = ϕ. We choose ϕ1 ≜ btr(ω) and ϕ2 ≜ btrover(ωExh). It
is clear that F(ϕ2) holds. To see that ϕ1 ⊧ Pre1 ∗ Pre2 recall that by (P3)
ω ⊧ JPre1 ∗ Pre2K. Hence, as ω by (P4) is part of a translated state and
therefore contains only values in valuesI , we can use Proposition 4.15. That
ϕ1⊕I ϕ2 = ϕ we obtain from Lemma 4.25 and (P4). Thus ϕ ⊧ Pre1 ∗ Pre2 ∗ F.

Then finally by (A3) and (A6) we can use our Hoare triple to obtain that
ϕ′ ⊧ Post1 ∗ Post2 ∗ F and so by definition there exist ImpCon states ϕ′1 and
ϕ′2 such that ϕ′1 ⊧ Post1 ∗ Post2, F(ϕ′2) holds, and ϕ′1⊕I ϕ′2 = ϕ′.

We use this to find a Viper state ωInh such that

(RI1) f tr(ϕ′) = ωExh⊕V ωInh, and

53

4.3. Proving Soundness

(RI2) ωInh ⊧ JPost1K && JPost2K.

Recall that this is what we want to prove.

As ϕ′1⊕I ϕ′2 = ϕ′, by Lemma 4.11 we can derive that

(D) f tr(ϕ′1)⊕V f tr(ϕ′2) = f tr(ϕ′).

Furthermore, by Proposition 4.14, since ϕ′1 ⊧ Post1 ∗ Post2, we have that
f tr(ϕ′2) ⊧ JPost1 ∗ Post2K. Moreover, because F(ϕ′2) holds, we have that
ϕ′2 = btrover(ωExh). As ωExh is by (P4) a part of f tr(ϕ), a forward translated
state, ωExh can only have values in valuesI . Hence by Lemma 4.24 f tr(ϕ′2) =
f tr(btrover(ωExh)) is greater than or equal to ωExh.

We now know that f tr(ϕ′2) is greater than or equal to ωExh and that we can
add f tr(ϕ′1) such that f tr(ϕ′1) ⊧ JPost1 ∗ Post2K to f tr(ϕ′2) to obtain f tr(ϕ′)
by (D). Hence choosing ωInh to be f tr(ϕ′1) plus the difference between f tr(ϕ′2)
and ωExh works as then ωInh satisfies (RI1) and by monotonicity of assertions,
because ωInh is then greater than or equal to f tr(ϕ′1), it also satisfies (RI2), as
required.

54

Chapter 5

Lessons Learnt

When proving soundness not everything fell into place right away. In this
chapter we go through some choices we initially made that ended up being
sub-optimal and were therefore not used in the final version of the proof.

In Section 5.1 we will talk about how we initially defined the ImpCon states
differently and in Section 5.2 we will present an alternative proof of the final
part of the Parallel-command case of Theorem 4.4 by constructing a frame
explicitly, instead of reusing the one derived from the Viper semantics.

5.1 Alternative ImpCon Heap Definition

Recall that in Definition 2.4 we defined an ImpCon heap as a partial map
from heap locations to values. That is,

h ∶ (address, f ield) ⇀ valuesI .

This was in fact not our first attempt at defining the heap. Initially we defined
an ImpCon heap as a partial map from addresses to partial maps from field
identifiers to values, that is

halt ∶ address ⇀ (f ield ⇀ valuesI) .

Here a heap location (a, f) exists if both a ∈ dom(halt) and f ∈ dom(halt(a)).
The value of that heap location is then (halt(a))(f).

This heap definition was due to what we defined allocation to mean in
ImpCon. Recall that alloc commands assign a fresh address that has not
already been used to a reference variable. Hence, using this heap definition we
wanted to be able to express the situation that an address had already been
used to allocate memory for some reference variable but all its fields had been
deallocated. That is, the address exists on the heap but there are currently no

55

5.1. Alternative ImpCon Heap Definition

allocated fields using that address. In that case the address is not considered
fresh and we would not like to choose that address during allocation. Using
our alternative heap definition, we can check if some address a already exists
simply by observing if a ∈ dom(halt).

However, this alternative heap definition caused some extra complications
during the process of proving soundness of our translation. The root of some
of these complications lies in the mismatch it caused between the ImpCon
state and the Viper state. When forward translating an ImpCon state into a
Viper state multiple ImpCon heaps would translate to the same Viper heap.
From Definition 4.2 recall that a Viper heap was defined as a partial map
from heap locations to values. Thus, using our alternative heap definition,
forward translation would be defined as follows.

f tralt∶StateI → StateV

(s, halt)↦ (s, (m, h)), where
(a, f) ∈ dom(h) ⇐⇒ a ∈ dom(halt) and f ∈ dom(halt(a)), and
(a, f) ∈ dom(h) Ô⇒ h ((a, f)) = halt(a)(f), and

m(hl) = {
1 if hl ∈ dom(h)
0 if hl ∉ dom(h)

Due to the mismatch between state definitions, both when an address does
not lie in the domain of the ImpCon heap, and when an address is mapped
to the empty map (i.e. the domain of the map the address is mapped to is
empty), the heap of the resulting state would not contain any heap locations
involving that address in its domain. That is, both cases have the same effect
on the resulting forward translated state. This is visualised in Figure 5.1.

Hence we defined equivalence classes of ImpCon heaps, where two ImpCon
heaps are in the same equivalence class if they give rise to the same Viper heap
during forward translation. That also meant that when considering backward
translation, on the other hand, on top of dealing with fractional permissions,
we had to decide which particular ImpCon heap from an equivalence class
of ImpCon heaps should be taken as the heap of the back translated state.
Moreover, no matter which ImpCon heap we choose from each equivalence
class when defining the back translation btralt(⋅), it will, among other things,
never be the case that btralt (f tralt(halt)) = halt in general. If in Figure 5.1 we
choose the first ImpCon heap to back-translate to, then this result does not
hold for the other ImpCon heap and vice versa. In the context of the heap
definition as in Definition 2.4 we have stated that result in Lemma 4.8 and
used it to show Corollary 4.18.

Given that we could not prove that property, proving the backward direction
of Corollary 4.18 turned out to be very fiddly. The backward direction of

56

5.1. Alternative ImpCon Heap Definition

Figure 5.1: Multiple ImpCon heaps mapping to the same Viper heap during forward translation.

Corollary 4.18 states that for an Impcon assertion A and an Impcon state ϕ

ϕ ⊧ A ⇐Ô f tralt(ϕ) ⊧ JAK

In the absence of a lemma analogous to Lemma 4.8 we tried to prove the
result directly by structural induction. The fiddliness was mostly due to the
case where A is a separating conjunction A1 ∗ A2.

By the assumption in that case were are given two Viper states ω1, ω2 such
that

ω1 ⊧ JA1K,
ω2 ⊧ JA2K and,
ω1⊕V ω2 = f tralt(ϕ).

In order for the inductive assumption for this inductive case to be helpful we
would have then needed two states ϕ1, ϕ2 such that

f tralt(ϕ1) = ω1,
f tralt(ϕ2) = ω2 and,
ϕ = ϕ1⊕I ϕ2.

But such states ϕ1, ϕ2 might not even exist, as ω1, ω2 might contain fractional
permissions and hence not be forward-translated states.

Hence, by shifting permissions between states, we attempted to rebalance the
permission heaps of states ω1 and ω2 into forward translated states ω′

1 and

57

5.1. Alternative ImpCon Heap Definition

Figure 5.2: Choosing states ϕ1, ϕ2 given states ω′1 and ω′2.

ω′
2 such that

ω′
1 ⊧ JA1K,

ω′
2 ⊧ JA2K and,

ω′
1⊕V ω′

2 = f tralt(ϕ).

Then we would attempt to find states ϕ1, ϕ2 such that f tralt(ϕ1) = ω′
1,

f tralt(ϕ2) = ω′
2 and ϕ = ϕ1⊕I ϕ2 to use the inductive hypothesis.

Showing the existence of such states ϕ1, ϕ2 given ω′
1 and ω′

2 is also non-trivial.
Due to the mismatch between Viper states there can by numerous states
ϕ1, ϕ2 such that f tralt(ϕ1) = ω′

1 and f tralt(ϕ2) = ω′
2, but only a fraction of

choices will be such that ϕ = ϕ1⊕I ϕ2. That is because in forward translation
both addresses without allocated fields and non-existent addresses lead to
non-existent heap locations. Figure 5.2 shows an example where we choose
such states ϕ1, ϕ2 given states ω′

1 and ω′
2.

As can be seen from this proof sketch the proof we have given in Section 4.2
using the original heap definition involving back translation was quite a lot
cleaner. That is because, since it did not involve rebalancing states, which in
Isabelle must be carefully defined, or choosing ImpCon states that add up to
a given sum explicitly.

Switching the ImpCon heap definition made some proofs quite a bit easier
and cleaner. That is mostly due to the state models being much better aligned
for the state model we chose in the end. Because of that forward translation
f tr(⋅) for the final state model is injective, so that backward translation can

58

5.2. Defining an Explicit Frame to Show Soundness of Parallel Commands

be properly defined as we did in Definition 4.6. The drawback, on the other
hand, is that we cannot express the case where an address has already been
used but does not have any allocated fields. Hence such addresses might
be reused by our alloc command. In the end, though, as ImpCon does not
support deallocation, this fact did not matter that much to us in the scope of
this project.

5.2 Defining an Explicit Frame to Show Soundness of
Parallel Commands

Recall that in Section 4.3.3 we have proven the inductive case of parallel
commands by applying the frame rule from separation logic. There we chose
an ImpCon frame by leveraging the frame computed by the exhale command
in Viper. In this section we sketch another proof that we also implemented in
Isabelle, which uses an explicitly defined ImpCon frame instead. That is, will
explicitly define the set of heap locations which should be part of our frame.
We do so by computing the set of heap locations that are needed in the pre-
and postcondition of the Hoare triple and defining our frame to contain all
information on heap locations that do not lie in these computed sets.

Before we start the proof sketch, let us re-state some of the assumptions and
derived facts from Section 4.3.3 up to the point where we used the frame
rule, and what we were trying to prove.

We assumed for an ImpCon type context T, an ImpCon command c ≜

({Pre1} c1 {Post1} ∣∣ {Pre2} c2 {Post2}), ImpCon command c′ and ImpCon
states ϕ, ϕ′ that

• c contains no assignments to local variables within parallel sections,

• (c, ϕ)→∗
T (c′, ϕ′).

We obtained Viper states ω, ωExh such that

(E1) f tr(ϕ) ⊧ JPre1 ∗ Pre2K,

(E2) ω ⊧ JPre1 ∗ Pre2K,

(E3) f tr(ϕ) = ωExh⊕V ω, and

We had also established that the Hoare triple

T ⊧ {Pre1 ∗ Pre2} c1 ∣∣ c2 {Post1 ∗ Post2}

holds.

What we want to show is that there exists some Viper state ωInh such that

(RI1) f tr(ϕ′) = ωExh⊕V ωInh, and

59

5.2. Defining an Explicit Frame to Show Soundness of Parallel Commands

Figure 5.3: Dividing the heaps of ωExh and f tr(ϕ′) into regions.

(RI2) ωInh ⊧ JPost1K ∗ JPost2K.

In this proof we will explicitly compare states f tr(ϕ′) and ωExh to find such
a state ωInh. First we only consider (RI1). To find a Viper state ωInh such
that (RI1) holds it is sufficient to show that f tr(ϕ′) is greater than or equal to
ωExh. As c does not contain any local variable assignments we know from
the fact that (c, ϕ)→∗

T (c′, ϕ′), that ϕ and ϕ′ have the same store. Through
(E1) this implies that ωExh and f tr(ϕ′) have the same store. Hence, to see
whether f tr(ϕ′) is greater than or equal to ωExh it suffices to compare their
permission heaps.

We want to show that f tr(ϕ′) is greater than or equal to ωExh. That means
we want that for all heap locations f tr(ϕ′) has at least as much permission as
ωExh and for all heap locations that ωExh has non-zero permission to we need
the heap values of f tr(ϕ′) and ωExh to have the same value. Our assumptions
do not give us any direct relationship between ωExh and f tr(ϕ′). But both
states have a relationship with state ϕ. Hence we will derive the relationship
between ωExh and f tr(ϕ′) by considering state ϕ.

In Figure 5.3 we can see a visualisation of the permission heaps of f tr(ϕ′)
and ωExh. Here the regions represent different sets of heap locations. These
are listed in the following

• Region (I) represents the set of heap locations that are needed to satisfy
Pre1 ∗ Pre2.

• Region (II) represents the set of heap locations that are needed to satisfy
Post1 ∗ Post2.

• Region (III) represents the set of heap locations that do not exist in ϕ.

• Region (IV) represents the set of heap locations that do not lie in region
(I) or region (III).

Note that these regions cover the entire set of heap locations.

60

5.2. Defining an Explicit Frame to Show Soundness of Parallel Commands

Figure 5.4: Derived information about the heaps of ωExh and f tr(ϕ′).

The reason we chose regions (I) to (III) is that for these sets of heap locations
we can derive exactly what their permissions are in at least one of f tr(ϕ′)
and ωExh.
For region (I) we can derive that we must have zero permission to these heap
locations in ωExh using (E2) and (E3).
For region (II) we can derive that f tr(ϕ′) has full permission using our Hoare
triple (and the fact that we do not allow local variable assignments in parallel
regions).
For region (III) we can derive that both ωExh and f tr(ϕ′) have zero permission.
For ωExh that is due to (E3). For f tr(ϕ′) the derivation also relies on the fact
that we do not allow local variable assignments in parallel regions.

The fact that we do not allow local variable assignments is critical here. Local
variable assignments also include alloc commands. Hence, as (c, ϕ) →∗

T
(c′, ϕ′) there cannot be any heap locations that are allocated in ϕ′ that are
not allocated in ϕ already. Hence if a variable is not allocated in ϕ it cannot
be allocated in ϕ′ either. Thus, f tr(ϕ′) has no allocated heap locations in
region (III).

What we derived so far is summarized in Figure 5.4. The grey regions we
know we have zero permission for in the respective states and in the green
region we know we have full permission in f tr(ϕ′). The red region we do
not know anything about. Here we see that in regions (I) and (III) f tr(ϕ′) is
greater than or equal to ωExh.

We still need to show f tr(ϕ′) is greater than or equal to ωExh in region (IV),
which is the rest of the heap. This is where our frame comes into play. We
use our frame to show that in region (IV) we must have full permission in
f tr(ϕ′) and that if ωExh has non-zero permission then the heap values of
f tr(ϕ′) and ωExh must have the same value, which is all we need to ensure
that f tr(ϕ′) is greater than or equal to ωExh in region (IV).

The frame can be chosen to be exactly what we know to hold in region (IV)
for ϕ. Then by applying the frame rule with this frame to our Hoare triple

61

5.2. Defining an Explicit Frame to Show Soundness of Parallel Commands

we can derive that the heaps of ϕ and ϕ′ are the same in region (IV). That
can be shown to imply that f tr(ϕ′) is greater than or equal to ωExh in region
(IV) using our assumptions. Then we obtain that f tr(ϕ′) is greater than or
equal to ωExh on the entire heap. That means there exists a state ωInh that
satisfies (RI1).

This proof relies on the fact that this frame can properly be defined. That
is, we can define a function heapLocsγ(A) which for an ImpCon assertion A
and an ImpCon state γ explicitly computes exactly the set of heap locations
needed for A to hold in γ. Using that definition we define our frame F(γ)

to say that for all heap locations hl that are allocated in ϕ (i.e. do not lie in
region (III)) that do not lie in the set heapLocsϕ(Pre1 ∗ Pre2) (i.e. do not lie
in region (I)) γ’s heap maps hl to the same value as ϕ does, which is exactly
the frame we want to define.

Using our approach so far we can show there is a state ωInh that satisfies (RI1).
Yet, we also need to show that there exists such an ωInh that also satisfies
(RI2). For ωInh ⊧ JPost1K ∗ JPost2K to hold, ωInh must have full permission
to all heap locations in heapLocsϕ′(Post1 ∗ Post2), which can be shown to
correspond to region (II). That is because translated ImpCon assertions only
contain access predicates requiring full permissions. In order for such a state
ωInh to be joinable with ωExh, ωExh must have zero permission to all heap
locations in heapLocsϕ′(Post1 ∗ Post2). But we can only be sure of that in
regions (I) and (III).

This problem goes away, however, when we show that actually region (II)
represents a subset of region (I). That is, using our heap-locs function we
have

heapLocsϕ′(Post1 ∗ Post2) ⊆ heapLocsϕ(Pre1 ∗ Pre2).

Using that result one can then derive the existence of a state ωInh that satisfies
both (RI1) and (RI2), as desired.

The reason the above result holds is again that we disallow local variable
assignments and therefore also allocations in concurrent sections. Recall that

T ⊧ {Pre1 ∗ Pre2} c1 ∣∣ c2 {Post1 ∗ Post2}.

Hence, as Post1 ∗ Post2 follows from Pre1 ∗ Pre2 after execution of c1 ∣∣ c2,
which cannot perform allocations, the postcondition cannot reference heap
locations that are not referenced in the precondition of the Hoare triple. To
illustrate this on an example, say P was the assertion True and Q was the
assertion (x. f ↦) and were given that T ⊧ {P} c {Q}. Say, we execute c from
a state ϕ wich upholds T and whose heap is empty. This state ϕ satisfies P
and so by the Hoare triple, after execution of c, Q must hold. So by executing
c from ϕ we reach a state in which a heap location is allocated. Hence if c
does not contain any allocations, it cannot be true that T ⊧ {P} c {Q}.

62

5.2. Defining an Explicit Frame to Show Soundness of Parallel Commands

That concludes our proof sketch.

The approach presented in this section required a much longer proof than the
one shown in Section 4.3.3. That is because, by defining the frame explicitly
as we did here, we implemented a computation that is quite similar to how
the part of the state to be exhaled is chosen by Viper. When exhaling an
assertion Viper computes a state ω such that the assertion holds in ω and ω
is a part of the current state. To do this, Viper computes all states in which
the assertion holds and chooses one that is part of the current state. Using
the function heapLocsγ(A) we explicitly compute exactly the set of heap
locations needed to satisfy assertion A and from that essentially derive the
smallest state in which the assertion holds. Hence that is analogous to Viper
computing ω except that we choose the smallest possible state. The proof
presented in Section 4.3.3 leverages Viper’s computation instead of using our
own, causing the proof to be much shorter.

Furthermore, this proof is hard and in some cases even impossible to extend
in case of changes to our assertion language. The current approach only
works because of our currently very limited assertion language in ImpCon. If
we add features to the assertion language such as logical disjunctions between
points-to assertions, e. g. (x. f ↦) ∨ (y. f ↦), there would not even be a
unique smallest state such that (x. f ↦)∨ (y. f ↦) holds. In the example
given we have that both states where exactly one of the corresponding heap
locations (assuming they are distinct) exists would satisfy the assertion. Then,
if this assertion was our precondition, no matter which set of heap locations
we map our heap-locs function to, it cannot be guaranteed that all heap
locations in this set are needed for the precondition to hold. In our example
say we map to the set containing only the heap location corresponding to
x. f , then the heap location corresponding to x. f , which lies in the set, would
not really be needed to satisfy the precondition as the state might satisfy the
precondition through existence of the heap location corresponding to y. f .
Hence, if the heap location in the set is also not needed in the postcondition,
it would have to be part of our frame. Hence we cannot deterministically
define the frame using our heap-locs function.

Apart from extensions to the assertion language there is also the problem
that this approach heavily builds on the fact that allocation is disallowed
in parallel branches. Our proof in Section 4.3.3, on the other hand, only
needs this assumption to ensure equality of stores, which is only necessary
because we defined our encoding of the parallel command relying on this
assumption.

To conclude, it is quite clear that the approach presented in Section 4.3.3 is
the better one. It is shorter, cleaner, and easier to extend.

63

Chapter 6

An Executable for the ImpCon
Front-end

In the previous chapter we have defined and proved the soundness of the
translation function of our front-end once-and-forall, which was the main
goal of this project. The syntax and semantics of ImpCon, the translation
function and the formalisation of Viper we are translating to have all been
defined in Isabelle. However, if one wishes to translate concrete ImpCon
programs, then directly using the front-end translation within Isabelle would
be quite cumbersome. For that reason we would instead like to have an
executable version of our front-end, which parses an ImpCon program from
a text file, passes the translated Viper program to the Viper verifier, and
finally outputs the Viper verifier’s verification result. This chapter will
talk about how we created such an executable for our front-end using the
translation function we defined and proved correct once-and-forall in the
Isabelle Theorem Prover.

Our executable consists of three components as shown in Figure 6.1. One
is the text file containing the ImCon program. The next one is the ImpCon
AST, the Isabelle formalization of a Viper AST and the translation function
all defined in Isabelle and the third component is the Scala Viper implemen-
tation [13] consisting of the intermediate verification language written in
Scala and its verifier. To create our executable we need to connect these three
components.

Remark 6.1 To disambiguate the two, we will in this chapter refer to the Isabelle
formalization of Viper as IViper.

In Section 6.1 we explain how we extract the code needed for the translation
function from Isabelle to be able to use it in our executable. Section 6.2 will
then be about how we connect the extracted code to Viper. In Section 6.3 talk
about the trust assumptions we have for our executable. Finally, in Section
6.4 we check whether our executable behaves as expected on some examples.

64

6.1. The Extraction Process

Figure 6.1: Components of the front-end.

6.1 The Extraction Process

As mentioned before, the translation function as well as the syntax of both
ImpCon and IViper were all defined in Isabelle. Executing the translation
function directly in Isabelle, however, is quite slow. Hence we make use
of the fact that Isabelle provides a way to extract functions to executable
code in a selection of other languages. These languages include, for example,
Haskell, OCaml, Scala and SML. Since the Viper IVL was implemented in
Scala and we need to connect the output of the translation function to the
Viper implementation, we choose to extract the translation function to Scala1.

Isabelle offers the functionality to extract code into Scala via the following
command.

export code [f unctions to be extracted] in Scala

As input for the above command we gave the translation function. Isabelle
then extracts that function and all functions and definitions needed directly
or indirectly by the translation function. Hence by supplying the translation
function as a command we extract the definitions of the ImpCon and IViper
syntax as well.

In some cases for code extraction from Isabelle to succeed one has to write al-
ternative definitions and prove equivalence of these. Luckily, in our case code
extraction of the translation function worked without further adjustments.

After code extraction we obtain a Scala file with Scala versions of the ImpCon
and IViper ASTs and a translation function between both ASTs. The extracted
module was almost ready to use right after extraction. Only some classes were
given the same names in different capitalization, which caused compilation
problems. Thus, after changing these names the module compiled without
errors.

Having obtained the Scala module our situation is now as in Figure 6.2.

1It would have also been possible to use another language than Scala to extract to and then
interact with the Viper implementation by passing a Viper text file, but it is more convenient
to access the Viper API directly via Scala.

65

6.2. Connecting an ImpCon Text File to the Viper Implementation

Figure 6.2: Exporting Isabelle code into Scala.

6.2 Connecting an ImpCon Text File to the Viper Im-
plementation

Now that we have a version of the ImpCon and IViper ASTs and a translation
function between both ASTs written in Scala we are in good shape to complete
our front-end executable. First, we implement a parser so that we can convert
ImpCon text files into Scala ImpCon ASTs. Then applying the translation
function we obtain an IViper AST containing the main translation as well as a
set of IViper ASTs giving the extra proof obligations. Eventually, to complete
the front-end all that is left to do is to convert the IViper ASTs into ASTs of
Viper’s IVL, pass those to the verifier and return the verifier’s output.

We have to write a translation function from IViper ASTs to Viper IVL ASTs.
For most components of IViper ASTs there is a direct equivalent among the
Viper IVL AST components. The only2 exception is havocing local variables,
which is currently not implemented in the Viper IVL. In the case of a havoc
we therefore translate that component of the IViper AST to a Viper method
call of the following abstract method, which fulfills the same purpose as
havocing a reference variable.

method havocRef() returns (x : Ref)

Note that type-correct code translated from ImpCon only havocs variables of
type reference as Havoc only comes up when translating Alloc-commands.
Hence a method encoding the havocing of a reference variable is sufficient.

A slight annoyance when translating into the Viper IVL AST and also when
writing the parser was about elementary datatypes. As both ImpCon and
IViper use natural numbers (e.g., for variable names), strings (e.g., for field
names), and integers (e.g. for integer literals) in the Isabelle implementation,

2The only exception among possible translated IViper ASTs

66

6.3. Trusted Code Base

these data types are also needed in the Scala version. Isabelle explicitly
defines them via their bit-representations. That leads to the Scala versions
of the ASTs needing versions of these elementary datatypes in Scala that
are also created as Scala classes during the extraction. For example chars
are redefined as a class taking eight booleans as input. Therefore we had to
write functions which convert usual chars to this version of chars and back in
order to be able parse a written ImpCon program into the ImpCon AST and
work with the IViper AST. The same goes for the other elementary datatypes
mentioned.

In order to feed the Viper Scala ASTs obtained from the IViper AST to the
verifier we need to convert all the ASTs into a single Viper program. We
obviously include our havoc method. The body of the main method will be
the Viper IVL AST resulting from the main translation and the extra proof
obligations will be the bodies of other individual methods. None of these
methods need any pre- or postconditions, but all the local variables have to
be declared beforehand, as they are not declared in the translated ImpCon
code itself. Hence we list all local variables with their types as return values
for each of these methods using the type context we receive from parsing our
ImpCon program.
Moreover as part of a Viper program all field names and their types have
to be listed at the beginning of a Viper program. We can easily collect all
field names from the IViper AST but as field types are dynamic in ImpCon
it is a non-trivial task to infer their types. Thus, for the sake of simplicity
we decided to for now only support fields to be of type Int and therefore
list all occurring fields to be of type Int at the beginning of a Viper program.
Through careful implementation this restriction of only accepting integer
field types could theoretically be lifted.
Finally, through the described transformation we obtain the Viper program
to verify.

The complete outline of the process is visualized in Figure 6.3. Note that we
also included checks whether the obtained ImpCon AST fulfills all the extra
assumptions we made in the soundness theorem (Theorem 4.4).

6.3 Trusted Code Base

The goal of this thesis is to create a Viper front-end which is formally
guaranteed to be sound. While we have formally proved the translation
between ImpCon and Viper correct in Isabelle, the complete executable itself
contains various other components that must be trusted in order to ensure
end-to-end soundness of the executable. The trust assumptions include the
following:

• CSL: We based the proof in the case of the parallel command on the

67

6.3. Trusted Code Base

Figure 6.3: The front-end.

correctness of the CSL parallel rule and frame rule phrased in terms of
the ImpCon semantics, which we have not proven formally in Isabelle.
However it should be possible to prove them using the technique devel-
oped by Viktor Vafeiadis [12]. We have already proven the equivalence
between our and Viktor Vafeiadis’ definition of Hoare triples in the
absence of resource invariants. Though here we also have to trust in
our re-implementation of Viktor Vafeiadis’ definition in Isabelle.

• Isabelle: We also trust in the correctness of Isabelle itself, as we base our
trust in the soundness of the translation in the fact that we have proven
the result in Isabelle.

• Extraction into Scala: Similarly we have to trust also in the extraction
process of the Isabelle code into Scala.

• ImpCon semantics: Another basic component we are trusting here is the
correctness of the ImpCon semantics, which we implemented ourselves.

• IViper semantics: We are also trusting that the IViper semantics are
correct.

• Viper: We also trust that the Viper verifier correctly evaluates correctness
of a given program written in the Viper IVL.

• Translation from IViper to Viper in Scala: We need to trust that we correctly

68

6.4. Evaluation

Filename Description Expected Outcome
testcode1.txt variable swap verification successful

testcode2.txt
concurrently setting two
distinct allocated heap lo-
cations

verification successful

testcode3.txt
concurrently allocating
and setting two distinct
heap locations

arborting process due to
attempt to write to local
variable in parallel sec-
tion

testcode4.txt if-statement verification successful

testcode5.txt

if-statement with final as-
sertion being an unsatis-
fiable separating conjunc-
tion

verification fails due to
unsatisfiable separating
conjunction

testcode6.txt
parallel command with
incorrect annotation

verification fails due to in-
correct annotation

testcode7.txt

nested parallel command:
concurrently setting three
distinct allocated heap lo-
cations

verification successful

Table 6.1: Evaluation of the front-end executable on concrete examples.

implemented the translation of the IViper ASTs into a Viper program
using Viper IVL ASTs.

• Parser: Lastly, we also have to trust that we correctly implemented the
parser which converts an ImpCon text file into a Scala ImpCon AST
and interpretes the type context.

Apart from the translation from IViper to Viper in Scala, the parser and
the ImpCon semantics, all trusted components are part of established tools
and are well-tested. The translation from IViper to Viper in Scala and the
parser been developed by us ourselves and the ImpCon semantics are not
well-tested. This we wish to alleviate in the next section.

6.4 Evaluation

As of the components of our executable the parser, the translation from IViper
ASTs to Viper IVL ASTs, and the ImpCon semantics must be trusted and are
not well-tested, we tried to gain confidence that the entire pipeline is correct
by evaluating our executable on seven concrete examples. Table 6.1 presents
our evaluation, in which the executable behaved as expected for all examples.

69

6.4. Evaluation

Input: Output:

a : Int
b : Int
x : Ref

a := 5;
b := 8;
x := alloc(f,g);
If (a < b) {

x.f := b;
x.g := a;

}
else {

x.f := a;
x.g := b;

}
Assert (x.f ↦ 8) && (x.g ↦ 5)

field f16: Int
field f15: Int

method main()
returns (x0: Int, x1: Int, x2: Ref)

{
x0 := 5
x1 := 8
x2 := havocRef()
inhale acc(x2.f16, write) &&

(acc(x2.f15, write) && true)
if (x0 < x1) {

x2.f15 := x1
x2.f16 := x0

} else {
x2.f15 := x0
x2.f16 := x1

}
assert acc(x2.f15, write) && x2.f15 == 8 &&

(acc(x2.f16, write) && x2.f16 == 5)
}

method havocRef()
returns (havoc_Out: Ref)

Verification successful.

Listing 6: Running the executable on testcode4.txt.

Two of the examples we tested will be showcased here. For the other examples
we refer the reader to Section A.1 of the appendix.

In Listing 6 you can see a simple conditional statement where we assign the
smaller of two variables to the allocated field g of a reference variable x and
the larger of the two to the allocated field f of the same reference variable x.
Then, finally we assert the fields of x have been assigned the correct values.

Listing 7 shows an example of a nested parallel command. We allocate
three fields x.f , y.f and y.g, and then concurrently set all three fields and
finally assert that the fields have been set correctly. As alloc commands in
ImpCon guarantee that x and y are assigned distinct memory addresses this
ImpCon program is correct. As expected, our front-end returns a successful
verification result.

70

6.4. Evaluation

Input: Output:

x : Ref
y : Ref

x := alloc(f);
y := alloc(f,g);
Parallel {
{x.f ↦ _} {(y.f ↦ _) * (y.g ↦ _)}

∥ Parallel {
∥ {y.f ↦ _} {y.g ↦ _}

x.f := 1 ∥ y.f := 2 ∥ y.g := 3
∥ {y.f ↦ _} {y.g ↦ _}
∥ };

{x.f ↦ 1} {(y.f ↦ 2) * (y.g ↦ 3)}
};
Assert (x.f ↦ 1) && (y.f ↦ 2)

field f15: Int
field f16: Int

method main()
returns (x0: Ref, x1: Ref)

{
x0 := havocRef()
inhale acc(x0.f15, write) && true
x1 := havocRef()
inhale acc(x1.f16, write) &&

(acc(x1.f15, write) && true)
exhale acc(x0.f15, write)
exhale acc(x1.f15, write) && acc(x1.f16, write)
inhale acc(x0.f15, write) && x0.f15 == 1
inhale acc(x1.f15, write) && x1.f15 == 2 &&

(acc(x1.f16, write) && x1.f16 == 3)
assert acc(x0.f15, write) && x0.f15 == 1 &&

(acc(x1.f15, write) && x1.f15 == 2 &&
(acc(x1.f16, write) && x1.f16 == 3))

}

method havocRef()
returns (havoc_Out: Ref)

method Extra_Proof_Obligation1()
returns (x0: Ref, x1: Ref)

{
inhale acc(x1.f15, write) && acc(x1.f16, write)
exhale acc(x1.f15, write)
exhale acc(x1.f16, write)
inhale acc(x1.f15, write) && x1.f15 == 2
inhale acc(x1.f16, write) && x1.f16 == 3
exhale acc(x1.f15, write) && x1.f15 == 2 &&

(acc(x1.f16, write) && x1.f16 == 3)
}

method Extra_Proof_Obligation2()
returns (x0: Ref, x1: Ref)

{
inhale acc(x0.f15, write)
x0.f15 := 1
exhale acc(x0.f15, write) && x0.f15 == 1

}

method Extra_Proof_Obligation3()
returns (x0: Ref, x1: Ref)

{
inhale acc(x1.f15, write)
x1.f15 := 2
exhale acc(x1.f15, write) && x1.f15 == 2

}

method Extra_Proof_Obligation4()
returns (x0: Ref, x1: Ref)

{
inhale acc(x1.f16, write)
x1.f16 := 3
exhale acc(x1.f16, write) && x1.f16 == 3

}

Verification successful.

Listing 7: Running the executable on testcode7.txt.

71

Chapter 7

Conclusion

In this thesis, we have implemented and formally verified a prototype Viper
front-end for concurrent programs using the Isabelle theorem prover [10].
As opposed to other front-ends [4, 5, 6, 7, 8, 9], our prototype has been
mechanically proven correct and formalised. Our work is a proof of concept
that it is possible to reliably prove Viper front-ends sound once-and-forall.
Therefore, future (and existing) Viper front-ends would benefit from adopting
this approach.

We have designed a simple imperative programming language ImpCon which
supports concurrency and heap operations, and defined a translation from
ImpCon programs into Viper programs. We have shown that this translation
is sound, in the following sense: If the Viper program obtained via the
translation function verify then the ImpCon program used as input is correct
with respect to its specification. The soundness of the translation we have
proved formally once-and-forall in the Isabelle theorem prover, leveraging
well-known results from concurrent separation logic [2, 12].

Eventually, using our sound translation function we have implemented an
executable of our Viper front-end for ImpCon. We did so by exporting our
translation function from Isabelle and connecting it to the Viper verifier.
When evaluating our front-end executable on a few code samples we have
seen that the output of the executable was as expected, giving us some
confidence in the correctness of the implementation of the executable.

7.1 Future Work

ImpCon, as it is now, is a very simple language which apart from concurrency
only offers conditional statements, basic heap operations and variable assign-
ments. It does not support heap-dependent expressions causing us to have
to work around this issue through additional operations. Furthermore, the

72

7.1. Future Work

absence of fractional permissions means that we cannot distinguish between
read and write permission, which implies that we cannot verify concurrent
reads by splitting permissions between threads. Hence there are a lot of
options to extend ImpCon, some of which we list here.

• Extending the ImpCon language. Currently there exist quite a few
common features which are not reflected in the syntax of ImpCon.
These features include for example while-loops and method calls. In
these cases we could leverage the already existing framework for verify-
ing while-loops and method calls in Viper in the translation. One could
also extend ImpCon expressions to allow heap-dependent expressions,
which would give the user more flexibility as they do not have to first
save a field value to a local variable to be able to use it in an expression
as they do now. Also, lifting our restriction that disallows local variable
assignments in concurrently executed code would similarly give more
flexibility to the user.

• Extending the assertion language. Adding support for heap-dependent
expressions will not only extend the ImpCon language but also its as-
sertion language. Another idea would be to add the capability to use
heap-dependent functions within assertions, a feature which already
exists in Viper. One could also add support for fractional permissions.
By adding a permission mask to the ImpCon state and allowing frac-
tional permissions we could distinguish between read access and write
access by adding assertions expressing this. That would also enable us
to be more permissive in parallel sections by allowing concurrent reads.
Currently attempting to read from the same heap location concurrently
causes verification to fail even if there is no actual data race due to none
of the parallel sections attempting to write to that heap location.
When adding a permission mask one could also go even further and
add recursive predicates to the ImpCon assertion language. Recursive
predicates are used in Viper in assertions to talk about permissions
to larger objects such as a linked list. Thus, implementing them in
ImpCon would allow us to also abstractly express and reason about
some common data structures.

• Generalizing the framework. Currently our proofs are tailored to
ImpCon’s state model and semantics. It would be ideal if we could
generalize our proof such that if we would like to prove a different
front-end correct we could reuse our proof by only proving some key
properties. That is, from these key properties we can derive that our
proof holds for this different front-end as well. To give an example,
say hypothetically our proof could be shown to hold for all front-ends
whose state model can be mapped back and forth from the Viper state
in a way that the properties we have shown for our state translation

73

7.1. Future Work

hold. Then we would like to make it sufficient to prove these properties
for another front-end in order to automatically apply our proof.

• Adding support for more advanced concurrent separation logic fea-
tures. O’Hearn [2] and Vafeiadis [12] present some more advanced
concepts of concurrent separation logic to reason about concurrent pro-
grams. These include resource invariants and named critical regions. Using
such features one can make even more fine-grained statements about
concurrent sections, making it possible to verify even more concurrent
programs which might also contain features such as locks. Thus, en-
abling the use of advanced concurrent separation logic would be highly
beneficial.

74

Bibliography

[1] J. Reynolds, “Separation logic: A logic for shared mutable data struc-
tures”, in Proceedings 17th Annual IEEE Symposium on Logic in Computer
Science, 2002, pp. 55–74. doi: 10.1109/LICS.2002.1029817.

[2] P. W. O’Hearn, “Resources, concurrency, and local reasoning”, Theoret-
ical Computer Science, vol. 375, no. 1, pp. 271–307, 2007, Festschrift
for John C. Reynolds’s 70th birthday, issn: 0304-3975. doi: https :
/ / doi . org / 10 . 1016 / j . tcs . 2006 . 12 . 035. [Online]. Available: https :
//www.sciencedirect.com/science/article/pii/S030439750600925X.

[3] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification
infrastructure for permission-based reasoning”, in Verification, Model
Checking, and Abstract Interpretation (VMCAI), B. Jobstmann and K. R. M.
Leino, Eds., ser. LNCS, vol. 9583, Springer-Verlag, 2016, pp. 41–62.
[Online]. Available: https://doi.org/10.1007/978-3-662-49122-5 2.

[4] F. A. Wolf, L. Arquint, M. Clochard, W. Oortwijn, J. C. Pereira, and
P. Müller, “Gobra: Modular specification and verification of Go pro-
grams”, in Computer Aided Verification, A. Silva and K. R. M. Leino,
Eds., Cham: Springer International Publishing, 2021, pp. 367–379, isbn:
978-3-030-81685-8.

[5] M. Eilers and P. Müller, “Nagini: A static verifier for Python”, in
Computer Aided Verification, H. Chockler and G. Weissenbacher, Eds.,
Cham: Springer International Publishing, 2018, pp. 596–603, isbn: 978-
3-319-96145-3.

[6] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers, “Leveraging Rust
types for modular specification and verification”, Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, Oct. 2019. doi: 10.1145/3360573. [Online].
Available: https://doi.org/10.1145/3360573.

75

https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/https://doi.org/10.1016/j.tcs.2006.12.035
https://www.sciencedirect.com/science/article/pii/S030439750600925X
https://www.sciencedirect.com/science/article/pii/S030439750600925X
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3360573

Bibliography

[7] S. Blom, S. Darabi, M. Huisman, and W. Oortwijn, “The VerCors tool
set: Verification of parallel and concurrent software”, in Integrated
Formal Methods, N. Polikarpova and S. Schneider, Eds., Cham: Springer
International Publishing, 2017, pp. 102–110, isbn: 978-3-319-66845-1.

[8] C. M. Gössi, “A formal semantics for viper”, Master’s thesis, Swiss
Federal Institute of Technology Zurich, 2016. [Online]. Available: https:
//ethz.ch/content/dam/ethz/special-interest/infk/chair-program-
method / pm / documents / Education / Theses / Cyrill Goessi MA
report.pdf.

[9] F. A. Wolf, M. Schwerhoff, and P. Müller, “Concise outlines for a
complex logic: A proof outline checker for TaDA”, in Formal Methods
(FM), M. Huisman, C. S. Păsăreanu, and N. Zhan, Eds., ser. LNCS,
vol. 13047, Springer, 2021, pp. 407–426. [Online]. Available: https://
link.springer.com/chapter/10.1007/978-3-030-90870-6 22.

[10] T. Nipkow, M. Wenzel, and L. C. Paulson, Eds., Isabelle/HOL. Springer
Berlin, Heidelberg, 2002, isbn: 978-3-540-43376-7. doi: https://doi.org/
10.1007/3-540-45949-9.

[11] J. Boyland, “Checking interference with fractional permissions”, in
Static Analysis, R. Cousot, Ed., Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2003, pp. 55–72, isbn: 978-3-540-44898-3.

[12] V. Vafeiadis, “Concurrent separation logic and operational semantics”,
MFPS 2011. Electronic Notes in Theoretical Computer Science, vol. 276,
pp. 335–351, 2011.

[13] Viperproject, Viperproject/silver: Definition of the viper intermediate verifica-
tion language. [Online]. Available: https://github.com/viperproject/
silver/tree/master (visited on 05/17/2023).

[14] T. Nipkow and G. Klein, Concrete Semantics: With Isabelle/HOL. Springer
Publishing Company, Incorporated, 2014, isbn: 3319105418.

76

https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Cyrill_Goessi_MA_report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Cyrill_Goessi_MA_report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Cyrill_Goessi_MA_report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Cyrill_Goessi_MA_report.pdf
https://link.springer.com/chapter/10.1007/978-3-030-90870-6_22
https://link.springer.com/chapter/10.1007/978-3-030-90870-6_22
https://doi.org/https://doi.org/10.1007/3-540-45949-9
https://doi.org/https://doi.org/10.1007/3-540-45949-9
https://github.com/viperproject/silver/tree/master
https://github.com/viperproject/silver/tree/master

Appendix A

Appendix

A.1 Evaluated Code Samples

In the following we list the code samples referred to in Table 6.1 that have not
been listed in Section 6.4 together with the output returned by our front-end
executable.

Input: Output:

x : Int
y : Int
z : Int

x := 5;
y := 8;

z := x;
x := y;
y := z;

Assert (8 == x);
Assert (5 == y);

method main()
returns (x0: Int, x1: Int, x2: Int)

{
x0 := 5
x1 := 8
x2 := x0
x0 := x1
x1 := x2
assert 8 == x0
assert 5 == x1

}

method havocRef()
returns (havoc_Out: Ref)

Verification successful.

Listing 8: Running the executable on testcode1.txt.

77

A.1. Evaluated Code Samples

Input: Output:

x : Ref
y : Ref

x := alloc(f);
y := alloc(f);
Parallel {
{x.f ↦ _} {y.f ↦ _}
x.f := 2 ∥ y.f := 3

{x.f ↦ 2} {y.f ↦ 3}
};
Assert (x.f ↦ 2) && (y.f ↦ 3)

field f15: Int

method main()
returns (x0: Ref, x1: Ref)

{
x0 := havocRef()
inhale acc(x0.f15, write) && true
x1 := havocRef()
inhale acc(x1.f15, write) && true
exhale acc(x0.f15, write)
exhale acc(x1.f15, write)
inhale acc(x0.f15, write) && x0.f15 == 2
inhale acc(x1.f15, write) && x1.f15 == 3
assert acc(x0.f15, write) && x0.f15 == 2 &&

(acc(x1.f15, write) && x1.f15 == 3)
}

method havocRef()
returns (havoc_Out: Ref)

method Extra_Proof_Obligation1()
returns (x0: Ref, x1: Ref)

{
inhale acc(x1.f15, write)
x1.f15 := 3
exhale acc(x1.f15, write) && x1.f15 == 3

}

method Extra_Proof_Obligation2()
returns (x0: Ref, x1: Ref)

{
inhale acc(x0.f15, write)
x0.f15 := 2
exhale acc(x0.f15, write) && x0.f15 == 2

}

Verification successful.

Listing 9: Running the executable on testcode2.txt.

Input: Output:

x : Ref
y : Ref

Parallel {
{True} {True}

x := alloc(f);∥ y := alloc(f);
x.f := 2 ∥ y.f := 3

{x.f ↦ 2} {y.f ↦ 3}
};
Assert (x.f ↦ 2) && (y.f ↦ 3)

Local Variable assignments in Parallel
Section detected! No guarantees on
correctness of verfication result!
Aborting...

Listing 10: Running the executable on testcode3.txt.

78

A.1. Evaluated Code Samples

Input: Output:

a : Int
b : Int
x : Ref

a := 5;
b := 8;
x := alloc(f,g);
If (a < b) {

x.f := b;
x.g := a;

}
else {

x.f := a;
x.g := b;

}
Assert (x.g ↦ _) && (x.g ↦ 5)

field f16: Int
field f15: Int

method main()
returns (x0: Int, x1: Int, x2: Ref)

{
x0 := 5
x1 := 8
x2 := havocRef()
inhale acc(x2.f16, write) &&

(acc(x2.f15, write) && true)
if (x0 < x1) {

x2.f15 := x1
x2.f16 := x0

} else {
x2.f15 := x0
x2.f16 := x1

}
assert acc(x2.f16, write) &&

(acc(x2.f16, write) && x2.f16 == 5)
}

method havocRef()
returns (havoc_Out: Ref)

Verification failed with 1 errors:
[assert.failed:insufficient.permission]
Assert might fail. There might be insufficient
permission to access x2.f16

}

Listing 11: Running the executable on testcode5.txt.

79

A.1. Evaluated Code Samples

Input: Output:

x : Ref
y : Ref
a : Int
b : Int

x := alloc(f);
y := alloc(f);
x.f := a;
y.f := b;
Parallel {
{(x.f ↦ _) * (y.f ↦ _)} {y.f ↦ _}

x := alloc(f); ∥ y := alloc(f);
x.f := 2 ∥ y.f := 3
y.f := 5 ∥

{(x.f ↦ 2) * (y.f ↦ 5)} {y.f ↦ 3}
};
a := x.f;
b := y.f;
Assert (a < b);

field f15: Int

method main()
returns (x0: Ref, x1: Ref, x2: Int, x3: Int)

{
x0 := havocRef()
inhale acc(x0.f15, write) && true
x1 := havocRef()
inhale acc(x1.f15, write) && true
x0.f15 := x2
x1.f15 := x3
exhale acc(x0.f15, write) && acc(x1.f15, write)
exhale acc(x1.f15, write)
inhale acc(x0.f15, write) && x0.f15 == 2 &&

(acc(x1.f15, write) && x1.f15 == 5)
inhale acc(x1.f15, write) && x1.f15 == 3
x2 := x0.f15
x3 := x1.f15
assert x2 < x3

}

method havocRef()
returns (havoc_Out: Ref)

method Extra_Proof_Obligation1()
returns (x0: Ref, x1: Ref, x2: Int, x3: Int)

{
inhale acc(x1.f15, write)
x1.f15 := 3
exhale acc(x1.f15, write) && x1.f15 == 3

}
method Extra_Proof_Obligation2()

returns (x0: Ref, x1: Ref, x2: Int, x3: Int)
{

inhale acc(x0.f15, write) && acc(x1.f15, write)
x0.f15 := 2
x1.f15 := 5
exhale acc(x0.f15, write) && x0.f15 == 2 &&

(acc(x1.f15, write) && x1.f15 == 5)
}

Verification failed with 1 errors:
[exhale.failed:insufficient.permission]
Exhale might fail. There might be insufficient
permission to access x1.f15

Listing 12: Running the executable on testcode6.txt

80

	Acknowledgements
	Contents
	Introduction
	Outline

	The ImpCon Language
	The Syntax
	Expressions
	Assertions
	Commands
	The Type Context

	The ImpCon State Model
	The Semantics
	Expressions
	Assertions
	Commands

	Correctness of ImpCon Programs

	Translating ImpCon into Viper
	The Translation Function
	Expressions
	Assertions
	Commands
	The Type Context

	Soundness of the Translation
	Expressing Soundness
	Forward and Backward State Translation
	Proving Soundness
	The Proof Strategy
	Proving Sound the Translation of Commands (Except Parallel Commands)
	Proving Sound the Translation of Parallel Commands

	Lessons Learnt
	Alternative ImpCon Heap Definition
	Defining an Explicit Frame to Show Soundness of Parallel Commands

	An Executable for the ImpCon Front-end
	The Extraction Process
	Connecting an ImpCon Text File to the Viper Implementation
	Trusted Code Base
	Evaluation

	Conclusion
	Future Work

	Bibliography
	Appendix
	Evaluated Code Samples

