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Introduction

Runtime assertions are useful for identifying bugs in programs and thus increase
confidence in the program’s correctness. Runtime assertions are predicates that
reason about a given program’s state at some point of the execution. If an
assertion does not hold, the program is deemed to be in a faulty state. In com-
parison to unit tests that consider only function outputs, assertion-based tests
allow for checks on arbitrary points in the program. In the right circumstances,
this enables a programer to find the sources of errors faster than with unit tests.

Guarantees obtained through assertion-based testing reason only about a
given program execution. Conversely, formal verification provides guarantees,
which are even stronger because they hold for all inputs, thread schedules, and
program environments. The verification tool Gobra [2] proves correctness of
programs written in Go [15]. In our work we develop an assertion-based testing
framework based on the same specification language used by Gobra. We do not
aim to replace deductive verification, but instead supplement it. Concretely, we
aim to solve the following challenges:

• Verification requires very thorough specifications which are hard to write
for programers without experience in formal methods. Specifications for
assertion-based testing are typically simpler as they reason about specific
runtime values and also give weaker guarantees by only specifying certain
properties. E.g. permissions are normally not used and also aliasing is of-
ten not expressed. Even though they are easier to formulate, they can still
provide a valid basis for specification used during verification. Therefore,
we intend to use the same formal language to express Gobra specifications
and Go assertions. The goal is to reuse some of the runtime specifications
for later verification.

• An unsuccessful assertion check at runtime provides an immediate counter
example, which can be used for inspection of both the program and the
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specification. Hence, rigorous testing before applying verification not only
decreases the likelihood of bugs but also gives programmers confidence in
the specification. After testing, if verification fails against a specification
that reuses some of the runtime assertions, a user can be more certain that
either the program is erroneous or the specification does not yet express
strong enough properties for formal verification, than that verification is
based on a faulty specification.

In summary, assertion-based testing of Go programs is a helpful supplement
to verification with Gobra. The goal of this thesis is to provide such a testing
framework, which motivates Go programmers to write assertions that enable
synergies with the Gobra verifier. The thesis thus contributes to bridging the
gap between programming and verification.

Preliminaries

Different ways to write the specification of a program exist. The approaches we
will deal with in this thesis are pre- and postconditions, assert-statements and
invariants. A precondition is a predicate that should evaluate to true when en-
tering a function. It formulates constraints on the function’s input parameters
or the program state before executing the function. A postcondition is a predi-
cate that should hold after exiting a function. It expresses the conditions that a
function should ensure for its return values and the resulting program state. An
assert-statement is a predicate that can be checked at any program point and
reasons about the current program state. Two types of invariants need to be
distinguished: class and loop invariants. A class invariant is a condition that all
objects of a class must satisfy at every program point that can be observed from
outside the class. A loop invariant is a condition that is true at the beginning
and end of every loop iteration. Note that it also has to hold if the loop body
is executed zero times. We will only consider loop invariants in this thesis.

Finally, it is important to discuss static versus dynamic verification: Static
verification refers to verification of a program without it being executed. Using
static verification, program correctness can be established. Dynamic verification
checks program correctness during its execution. It finds errors at runtime. In
our case, Gobra performs static verification whereas the assertion-based testing
framework that is designed in this thesis accomplishes dynamic verification.

Related Work

The term “assertion” was first introduced by Goldstine’s and von Neumann’s
work on reasoning about programs [8]. Later, assertions were included directly
into programming languages with Eiffel [19] being the first object-oriented lan-
guage “to support and strongly advocate the use of assertions” [8]. Eiffel is
most known for implementing the concept of design-by-contract through invari-
ants, pre- and postconditions. Many programming languages have adopted the
design-by-contract paradigm and provide extensive runtime assertion testing
frameworks that check invariants and pre- and postconditions at runtime, some
of which can be joined with program verifiers. SPARK [3] defines a subset of
the Ada programming language and includes code contracts that support both
dynamic and static verification. Spec# [4] extends C# with a specification

2



language and a verifier. For Spec#, efforts have been made to supply program-
mers with meaningful counter examples when verification using Spec# fails [20].
Specification for Java programs is often written in the Java Modeling Language
(JML) [17]. A variety of tools that rely on JML test or verify Java programs.
Examples include, but are not limited to, the jmlc compiler [18] and the Ex-
tended Static Checker for Java (ESC/Java2) [9]. The jmlc compiler translates
JML assertions into runtime checks while ESC/Java2 analyzes Java programs
at compile time.

To the best of our knowledge no comprehensive assertion package for Go
exists that is compatible with the expressive specifications of Gobra. Existing
testing tools for Go are not compatible with Gobra because the assertion lan-
guage typically used by runtime checkers is less expressive than the language
used by deductive verifiers. The packages go-contracts [6], gocontracts [21]
and godbc [1] provide only pre- and postcondition checks, the package dbc [23]
further includes invariants, assertions and assumptions. All checks are purly
functional and do not support e.g. predicates, framing or purity assertions as
defined in the Section Specification Language. The packages expect the spec-
ification to be written as Go code, either by passing the specified properties
directly to Go functions that perform the checks [1,6,23] or as comments in Go
syntax [21]. Hence none of these Go packages can be used as a assertion-based
testing supplement to the Gobra verifier.

Core Goals

The Master’s thesis results in a Go package that gives users the opportunity
for assertion-based testing of their programs. We subdivide the work into the
following core goals:

Specification Language

We plan that the specification language used as part of the assertion-based
testing framework will be comparable to the specification language of Gobra.
Currently, Gobra extends the Go syntax with specification constructs such as
invariants or pre- and postconditions. In the future, the Go team wants to

1 // r e qu i r e n >= 0
2 // ensure r e s == n ∗ (n + 1) / 2
3 func sum(n i n t ) ( r e s i n t ) {
4 r e s = 0
5 i := 0
6 f o r i <= n {
7 // a s s e r t i <= n && re s == i ∗ ( i − 1) / 2
8 r e s += i
9 i++

10 }
11 re turn
12 }

Figure 1: Example of functional specifications for a function computing the
sum of the first n natural numbers
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support the verification of standart Go files, where annotations are written
in comments. Our testing framework realizes a first step of this support by
introducing the specifications in comments that are going to be used for Gobra.

We do not intend to support the full Gobra syntax. The primary focus
is the development of a prototype framework that enables testing functional
specifications. For an example of functional specifications see Figure 1 that
contains an assertion and a pre- and postcondition for a function computing
the nth partial sum of the series of natural numbers. This subset of the Gobra
syntax can further be improved with support for purity assertions. A function
is called pure if it does not change the program’s state, i.e. if it does not have
any side effects. Only pure functions are permitted in assertions. It has to be
decided whether to extend the specification syntax with a “pure”-keyword in
order to distinguish such functions. We refer the reader to section Runtime
Check Generation for a detailed explanation on how to check for purity.

Furthermore, the extraction of functional properties from predicates is ex-
plored. A predicate is an parameterized assertion. It also needs to be estab-
lished whether and how we will support exceptional postconditions. In contrast
to other programming languages, e.g. Java, recoverable exceptions are imple-
mented using appropriate return values instead of throwing exceptions. Hence,
we estimate that no extra syntax is necessary to specify a postcondition in case
a recoverable exception occurs. Nevertheless, we will evaluate whether there is
a need to specify a postcondition in case a non-recoverable exception (panic)
occurs. Finally, we plan to include more non-standard specifications for testing
frameworks such as labeled old statements and quantifiers. A labeled old state-
ment allows specification with respect to some previous state of the program.
Quantifiers reason about elements from a domain, e.g. about all member of a
given list. However, unbounded quantifiers will not be considered for runtime
checking because one cannot infinitely often instantiate the quantified variable
at runtime. Broader Gobra syntax support is later discussed as a possible ex-
tension goal, see Section Extended Gobra Syntax Support.

Go AST

Go code
+ Spec

Comment
Map

Typing
Info

Spec Spec AST

Typed
Spec AST

Go AST
+ RACs

Executable
with RACs

go/parser

go/ast

go/types

spec parser

RAC generator compiler

Figure 2: Architecture of the assertion-based testing framework

Assertion-based Testing Framework

An abstract visualization of the assertion-based testing framework’s architecture
is given in Figure 2. The flow chart shows the conversion of a Go source file
including specification annotations into an executable with runtime assertion
checks (RACs). Several intermediate steps are performed using existing Go
packages:
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1 func sum(n i n t ) ( r e s i n t ) {
2 i f n < 0 {
3 panic ( ” Precond i t ion v i o l a t e d . ” )
4 }
5 de f e r func ( ) {
6 i f r e s != n ∗ (n + 1) / 2 {
7 panic ( ” Postcond i t i on v i o l a t e d . ” )
8 }
9 } ( )

10 r e s = 0
11 i := 0
12 f o r i <= n {
13 i f i > n | | r e s != i ∗ ( i − 1) / 2 {
14 panic ( ” Asse r t i on v i o l a t e d . ” )
15 }
16 r e s += i
17 i++
18 }
19 re turn
20 }

Figure 3: Runtime checks for the specification given in Figure 1

• The Go code is parsed with go/parser [13] and go/ast [11] in order
to receive the Go abstract syntax tree (AST) and a comment map. A
comment map holds for every comment the AST node that represents the
statement the comment refers to.

• Comments in the comment map that contain specifications are each parsed
to a Spec AST.

• The Go AST’s typing information is obtained using go/types [14].

• The typing information is integrated into the Spec ASTs in order to allow
for sanity checks and afterwards to correctly transform the Spec ASTs
into RACs.

• Finally, the Go AST is modified to include new nodes that are the trans-
lated runtime checks with the help of the golang.org/x/tools/go/ast/

astutil package [12].

• The result can then be compiled into an executable that will execute the
program and perform the runtime checks.

Part of this thesis is spent on combining the existing packages to realize the
depicted work flow. Although existing packages can be reused, we estimate
that a significant amount of work will be necessary to implement the specifi-
cation parser and typing the resulting Spec ASTs. The main component of
the assertion-based testing package is the conversion of the specification AST
into runtime checks which is detailed in the next section called Runtime Check
Generation.

Runtime Check Generation

Successfully parsed and typed assertions are integrated as regular Go checks into
the Go AST..The final Go AST is compiled into an executable that performs
the checks at runtime. Generating Go code for a simple assertion like assert
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x != nil is straight forward: This assertion can be translated to a runtime
check as if (x == nil) { panic("...") } where the negation of the asserted
condition detects any violations of the assertion. Figure 3 pictures a translation
of the assertions given in the example in Figure 1. The precondition for sum is
translated to an if-statement checking the negation of n ≥ 0 at the beginning
of the function. The postcondition is translated to an if-statement whose check
is deferred until the end of the function. The assert-statement in the loop is
similarily replaced by a runtime check using a simple if-statement.

The design of the conversion from assertions to runtime checks needs to
ensure that all runtime checks are side-effect free, i.e. they should not change the
behavior of the original program. Additionally, the assertions themselvs need to
be side-effect free. This is the reason why only pure functions are permitted in
specifications as described in section Specification Language. Checking pureness
is non-trivial. We have identified the following approaches:

• The specification language could offer a “pure” keyword allowing pro-
grammers to annotate functions. One could either blindly trust such an
annotation or check whether the function’s implementation is indeed pure.

• The alternative to using pureness annotations is to infer pureness from
a function’s implementation. Not only the use of impure operations but
also determinism has to be checked. Examples for impure statements are
memory allocations or I/O operations. Determinism could be checked
using a map that stores whether the same input yields the same result at
any point in time.

Part of this thesis is to decide which approach to follow. We will also evaluate
which approach is more suitable for closing the gap between runtime checking
and verification: For instance, it could be confusing for programers to have a
function deemed pure for runtime checking but not for verification.

Finally, we plan to support different levels of testing, differentiating the kinds
of assertions that are checked at runtime. Examples of such levels can be 1)
only assertions, 2) assertions and pre- and postcondtions, 3) every assertion.
This feature is motivated by performance considerations since we expect that
including runtime checks leads to longer execution times. We will refer to these
options as RAC-generation levels.

Evaluation

We will evaluate our work based on the following three criteria:

1. Performance overhead of runtime checks

2. The remaining gap between assertion checking and verification

3. Effectiveness of the supported specification language

For the first criterion we measure whether the generation and execution of the
runtime checks performs within an acceptable time and memory usage. The
perfomance should be within appropriate bounds because otherwise users are
demotivated to actually use the tool. Additionally, evaluating the performance
overhead of different RAC-generation levels, as described in Section Runtime
Check Generation, gives insight into which checks should be performed in a
particular level.
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1 type someStruct s t r u c t {
2 va l i n t
3 }
4
5 // r e qu i r e acc ( x . va l ) && n != 0
6 // ensure acc (x . va l ) && re s == x . va l / n
7 func (x ∗ someStruct ) d iv ideValue (n i n t ) i n t {
8 re turn x . va l / n
9 }

Figure 4: Specification of access permissions

With the second criterion we attempt to decide to which degree we achieved
our goal of closing the gap between assertion-based testing and deductive veri-
fication. We measure this criterion by annotating Go source code with known
bugs first with runtime assertions and then with specification for verification
with Gobra. This enables us to evaluate how many additional lines of specifi-
cation are necessary for verification given that runtime assertions are provided.
We can further measure how many lines of specification can be reused from the
assertion-based testing.

The third criterion targets the question of how expressive the chosen speci-
fication language is. We will need to find a categorization of general classes of
specification, and then differentiate which of these are supported by our tool.

Extension Goals

Extended Gobra Syntax Support

The specification language that was described as a core goal, is extended with
further Gobra constructs such as checks for framing properties. Since we want
to support the same specification language as Gobra, the properties we check
with assertion-based testing have to be consistent with and expressible in Gobra.
Therefore, it needs to be decided how to correctly handle additional constructs:
Considering the translation of the access property acc(x.val) as seen in Figure
4, we seek to answer questions such as: Is it enough to simply over approximate
the assertion by checking whether x != null or do we need auxiliary data
structures to keep track of currently acquired permissions?

SCION Build System Integration

SCION (scalability, control and isolation on next-generation networks) is a new
internet architecture that is designed to be more secure and resilient than today’s
internet [5]. Parts of SCION are implemented in Go and there already exists an
automated testing framework called scion-fuzz. It tests SCION’s robustness by
sending random and potentially malformed inputs to the architectures’s inter-
face and thereby discovering crashes or invalid program states [16]. We see the
potential of combining scion-fuzz with runtime assertion checks: By translating
the specifications, that are present in the implementation, to runtime assertions,
scion-fuzz is able to detect more invalid program states. The resulting system,
consisting of scion-fuzz and the runtime assertion generator, could be integrated

7



into the SCION build system to enable continuous testing of the implementation
and/against the specification.

Test Input Generation

Manual testing requires programmers to devise inputs for their tests. This effort
can be reduced by automatically generating test input. We can also give better
guarantees on program correctness if the runtime checks generated from asser-
tions succeed provided different inputs. A technique for generating test input
has been mentioned in the extension goal of the SCION Build System Integra-
tion: Fuzzing. This is available for Go as the package gofuzz [22]. Another
option would be to use Property-based Testing, a testing technique that tries
to falsify a given property by generating random input data and verifying the
expected behaviour [7]. An extension goal for this thesis is the assessment of
different test input generation strategies. Subsequently, we will incorporate the
best performing input generation into our testing framework. This permits an
additional evaluation of the assertion-based testing framework: Using the test-
ing framework and input generation, we can count the number of errors found
with assertion-based testing of annotated Go source code with known bugs.

Negative Testing

Similar to code, specification can also contain bugs. In particular, specifica-
tions might not capture the behavior a user intended to specify. Therefore, it is
important to test the correctness of the specification before attempting a ver-
ification. A technique that has been used for specification testing is Negative
Testing. As described in [10], Negative Testing actively introduces bugs into the
implementation to check whether the specification can detect these bugs dur-
ing verification. The same approach can be followed by our runtime assertion
framework. Hence, this extension goal is to combine the assertion-based testing
framework with a Negative Testing strategy.
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