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Abstract

Runtime checking based on assertions can identify erroneous executions of a pro-
gram. It is thus complementary to static verification that proves the absence of
errors. We develop an assertion-based testing framework for the Go programming
language. Our work comprises the design of a specification language that takes Go
idiosyncrasies into consideration. We further develop a tool to generate runtime
checks for the specification annotations. The tool is enhanced with a prototype for
test input generation which allows for testing programs against a specification. Our
work concludes with an extensive evaluation on the performance and effectiveness of
the implemented framework. The evaluation shows that the assertion-based testing
framework is a useful supplement to the Go verifier Gobra. Since both tools use a
similar specification syntax, we can reuse annotations from runtime checking for
verification. Thus, the thesis contributes toward both assuring program correctness
and bridging the gap between runtime checking and verification.
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1Introduction

1.1 Motivation

Runtime assertions are useful for identifying bugs in programs and thus increase
confidence in the correctness of a program [25, 44]. Runtime assertions are predi-
cates that reason about a given state of the program at some point of the execution
[8]. If an assertion does not hold, the program is deemed to be in a faulty state. In
comparison to unit tests that consider only function outputs, assertion-based tests
allow for checks on arbitrary points in the program [23]. In the right circumstances,
this enables a programmer, i.e. a person implementing a program, to find the sources
of errors faster than with unit tests.

Consider the program given in Figure 1.1. The function binarySearch is in-
tended to decide whether a given value s exists in a slice. In Go, a slice is a
dynamically-sized view at a particular offset into an underlying array [14]. The
function returns the position pos of the value, or -1 if the value is not in the slice.
The binary search algorithm relies on the fact that the input slice is sorted in in-
creasing order [26]. With sorted input, the function works as exptected: Calling
binarySearch([]int{1,2,3,4}, 3) returns 2 and calling binarySearch([]int{},
42) or binarySearch([]int{1,2,3,4}, 42) both correctly return -1. However,

1 func binarySearch ( s [] in t , x i n t ) ( pos i n t ) {
2 low := 0
3 high := len ( s )
4 pos = −1
5

6 f o r low < high {
7 mid := ( low + high ) / 2
8 i f s [mid] == x {
9 pos = mid

10 break
11 } e l s e i f s [mid] < x {
12 low = mid + 1
13 } e l s e {
14 high = mid − 1
15 }
16 }
17

18 re turn
19 }

Fig. 1.1: Binary search [26] implementation in Go
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when the function is called with an slice that is not sorted in increasing order, the
algorithm returns faulty results. E.g. binarySearch([]int{4,3,2,1}, 3) returns
-1 even though 3 is in the slice at position 1. The requirement, that the function
should only be used with sorted slices, is not checked. Thus, nothing prevents a client
of the function, i.e. a person that uses the function, from calling it with malformed
input.

Established software engineering principles advocate that a client of a function, i.e.
a person that uses the function, should not need to worry about an implementation
but should be able to fully rely on the function’s signature and documentation [41].
As documentation might not exist or be separated from the code, it can easily happen
that a client violates certain properties when calling a function. Formal specification
tries to address this issue by avoiding ambiguities in natural language and enabling
conformity checking against the specification at the call site [19]. In this thesis,
specification is given in form of runtime assertions. This specification can be used
for runtime assertion checking or verification. It could also simply serve as a more
precise description of the program opposed to using natural language.

Figure 1.2 has added specification to the implementation of the binarySearch
function. The specification states that the input slice s for the binary search function

1 //@ r e q u i r e s f o r a l l i , j i n t : : 0 <= i < len ( s ) && 0 <= j < i
2 //@ ==> s [ i ] <= s [ j ]
3 //@ ensures 0 <= pos && pos < len ( s ) && s [ pos ] == x
4 //@ || pos == −1 && ! ( e x i s t s i i n t : : i in range s && s [ i ] == x )
5 func binarySearch ( s [] in t , x i n t ) ( pos i n t ) {
6 low := 0
7 high := len ( s )
8 pos = −1
9

10 //@ i n v a r i a n t 0 <= low && low <= high && high <= len ( s )
11 f o r low < high {
12 mid := ( low + high ) / 2
13 i f s [mid] == x {
14 pos = mid
15 break
16 } e l s e i f s [mid] < x {
17 low = mid + 1
18 //@ a s s e r t f o r a l l i i n t : : 0 <= i < low ==> s [ i ] != x
19 } e l s e {
20 high = mid − 1
21 //@ a s s e r t f o r a l l i i n t : : high < i < len ( s ) ==> s [ i ] != x
22 }
23 }
24

25 re turn
26 }

Fig. 1.2: Binary search [26] implementation annotated with runtime assertions

1.1 Motivation 2



has to be sorted in increasing order (lines 1-2). For the output of the function is
is ensured that either the position of value x is returned, or -1 if the value x does
not exist in slice s (lines 3-4). In addition to the specification given as part of the
function signature, the function’s body includes specification as well: It is specified
that the helper variables low and high are always valid indices for the slice before
and after each loop iteration (line 10). Additionally, whenever low is adjusted, no
value left of low, precisely no value at a strictly smaller index than low, is equal to
the value we search for (line 18). Similarly, whenever high is adjusted, no value
right of high, i.e. no value at strictly greater index than high, is equal to x. The
runtime checks generated for these assertions catch invalid inputs and report them
to the user. Thus, the runtime assertions warrant safe usage and correct results of
the function provided that the specification is correct and precise.

1.2 Supplementing Verification

The verification tool Gobra [2] proves correctness of programs written in Go [18].
Verification requires very thorough specifications to prove properties that hold for
all inputs, thread schedules, and program environments. Thus, specification for
verification is hard to write for programmers without experience in formal methods
[19]. Nevertheless, we can facilitate verification of Go programs with the aid of
runtime assertions:

Runtime assertions are typically easier to formulate as they reason about specific
runtime values and also give weaker guarantees by only specifying certain properties.
E.g. permissions are normally not used and also aliasing is often not expressed [23].
When invoking a program with different inputs, successful runtime assertion checks
guarantee that the specified properties hold for exactly these program executions.
The guarantees do not imply correctness of the program when run with other inputs
or in different environments. In this regard, runtime assertion checking is similar to
unit testing. Even though runtime assertions do not provide as strong guarantees for
program correctness as verification, they can still provide a solid basis of specification
that can be employed for verification [7].

Typically, a verification is performed after the implementation of a program. In
addition, verification is often attempted as a collective effort of multiple people.
The process of iteratively writing specification and attempting a verification can
be accelerated if the code base provides clear assumptions and guarantees about a
program’s behavior that can be transformed into specification. Hence, a programmer
should be encouraged to explicitly state these assumptions and guarantees when
implementing a program, e.g. by means of runtime assertions. Runtime assertions

1.2 Supplementing Verification 3



give a programmer immediate benefit by enabling a programmer to test conformity
of the program with the assumptions and guarantees that were made.

Furthermore, runtime assertion checks facilitate validation of a specification: an
unsuccessful assertion check at runtime provides an immediate counter example,
which can be used to inspect the specification [31]. Hence, rigorous runtime checking
before applying verification not only decreases the likelihood of bugs in the program
but also gives programmers confidence in the specification. Thus, we conclude that
runtime checking can supplement verification [19, 44].

1.3 Contributions

In our work we develop an assertion-based runtime checking framework for Go
programs which supplements verification with Gobra. Specifically, we solve the
following challenges:

• Development of a specification language for runtime assertion checking based
on the Gobra specification syntax.

• Runtime check generation for specification annotations such that assertions
specified in a program are checked while executing the program.

• Evaluation of the performance of the assertion-based runtime checking frame-
work and its effectiveness in assisting verification with Gobra.

• Test input generation to check a program against its specification using different
inputs.

In summary, the goal of this thesis is to provide a runtime assertion checking
framework, which motivates Go programmers to write specification that serves as
a basis for verification with Gobra. The thesis thus contributes to bridging the gap
between programming and verification.

The framework that is developed during this thesis is called GoRAC; Go Runtime
Assertion Checker. The thesis is structured as follows: Related work is presented
in Chapter 2. Chapter 3 describes the specification languages of GoRAC. The
translation of the specification language to runtime checks is detailed in Chapter
4. The implementation of GoRAC is discussed in Chapter 5. Chapter 7 evaluates
GoRACin terms of performance, expressiveness of its language, and its potential
for verification. Test input generation for GoRAC, taking certain specification into
account, is explained in Chapter 6. Chapter 8 concludes the thesis and gives an
outlook for potential future work.

1.3 Contributions 4



2Related Work

Native vs. third party runtime assertion checking. Various programming lan-
guages allow for runtime assertion checking. While some programming languages
natively support assertions as part of their syntax, others can be checked using
third party tools. Eiffel [29] is an object-oriented programming language which
natively supports the concept of design-by-contract through invariants, pre- and
postconditions. Similar concepts can be found in Spec# [4]. The Spec# program-
ming system extends C# with a specification language and includes several features
such as a compiler which can generate runtime checks for specification annota-
tions, or a programming methodology that gives rules for structuring programs and
for using specifications [4]. Ada [38] and SPARK [3], which defines a subset of
the Ada programming language, also have built-in language support for design-
by-contract. Ada is designed to improve code safety: It has a strong type system,
supports compile-time checks based on e.g. named closing of blocks, and also
enables runtime checking to prevent buffer overflows or range violations. Third
party tools for runtime assertion checking exist for Java: Jahob [44] is a verification
system for programs written in a subset of Java which i.a. can be used for runtime
checking. The Java Modeling Language (JML) [23] is a specification language for
Java programs. Besides a runtime assertion checker for JML [24], several other
tools build on JML annotations such as a unit test generator [45] which generates
JUnit test code from JML annotations. C# and other .NET languages integrate Code
Contracts [13] for runtime assertion checking. A third party runtime checker for
C++ is Boot.Contract [9]. Furthermore, [34] details runtime checking of pre- and
postconditions for Scala.

Synergies between runtime checking and verification. Various work has explored
how runtime checking can supplement verification [7, 19]. Many programming
languages can be annotated with the same specification language for both runtime
assertion checking and verification. For Java, both the jmlc compiler [24] and the
Extended Static Checker (ESC/Java2) [11] are based on JML. The jmlc compiler
translates JML assertions into runtime checks while ESC/Java2 verifies a program
against its JML specification. The Jahob verification system provides both a verifier
and a runtime assertion checker for its subset of Java. Likewise, Spark supports both
static and dynamic verification [3]. Besides the compiler that generates runtime
checks from annotations, the Spec# programming system also includes a static
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program verifier [4]. Moreover, efforts have been made to supply programmers with
meaningful counter examples when verification using Spec# fails [31].

Runtime assertion checking for Go. To the best of our knowledge no comprehen-
sive assertion package for Go exists that is compatible with the expressive specifica-
tions of Gobra. Existing testing tools for Go are not compatible with Gobra because
the assertion language typically used by runtime checkers is less expressive than the
language used by deductive verifiers. The packages go-contracts [6], gocontracts
[39] and godbc [1] provide only pre- and postcondition checks, the package dbc
[42] further includes invariants, assertions and assumptions. No package supports
advanced specification constructs such as quantifiers, old expressions, predicates,
framing or purity assertions. The packages expect the specification to be written
as Go code, either by passing the specified properties directly to Go functions that
perform the checks [1, 6, 42] or as comments in Go syntax [39]. Hence none of
these Go packages can be used as an assertion-based testing supplement to the Gobra
verifier.

Comparison to our work. The assertion-based testing tool GoRAC that is imple-
mented as part of this thesis supports specification constructs such as quantifiers and
old expressions which are common features of runtime checkers [23, 44]. Quan-
tifiers are used to reason about a range of elements. In GoRAC, only bounded
quantifiers are supported. To the best of our knowledge, there exists no runtime
assertion checker without this limitation. GoRAC includes certain optimizations
for the runtime checks of quantifiers. Similar optimizations can be found for the
runtime checker of the Jahob verification system [44]. Old expressions are used to
reason about previous program states. GoRAC distinguishes whether an old expres-
sion includes a variable that is on the heap or not, and handles the old expression
correspondingly. This distinction is not made for other tools such as JML [23] or
Jahob [44].
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3Specification Language

„Excellence isn’t about meeting the spec, it’s about
setting the spec.

— Seth Godin
(Author and Dot-Com Business Executive)

This chapter describes the specification language of the assertion-based testing
framework GoRAC that was developed during this thesis. The objective of this
chapter is to enable readers to write specification in form of GoRAC annotations on
their own.

GoRAC annotations are stated as comments inside a Go program. GoRAC’s annota-
tion syntax was influenced by established syntax in e.g. VeriFast [21] or Javadoc tags
[30]. Annotions are either prefixed by //@ for a single line annotation or surrounded
by /*@ ... */ for multi-line annotations. This syntax coincides with Go’s syntax
for comments, such that a GoRAC annotation is always also a Go comment. As a
consequence, GoRAC can be used together with existing development tools for Go.
This is crucial for the application of GoRAC in a real-world setting.

Single line GoRAC annotations can contain multiple specification clauses. Likewise,
multi-line specification annotations can contain multiple specification clauses that
can also be split over several lines. Figure 3.1 exemplifies the different kinds of
specification annotations: An annotation consisting of the specification clauses
requires x > 0 && x < 42 and ensures x != 0 is first written as a single line
comment, then as multiple consecutive single line comments, and then as a multi-line
comment.

//@ r e q u i r e s x > 0 && x < 42 ensures x != 0

//@ r e q u i r e s x > 0 &&
//@ x < 42 ensures x != 0

/*@ r e q u i r e s x > 0
* && x < 42 ensures
* x != 0
*/

Fig. 3.1: Single- and multi-line specification annotations
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The goal of this chapter is to introduce GoRAC’s annotation syntax. Section 3.1 gives
an overview of the different specification constructs that define the GoRAC specifi-
cation language. In the remaining sections, we explain some of the specification
constructs in more depths.

3.1 Syntax

In order to declare the syntax used for specification in GoRAC, we differentiate
between specification clauses 〈s〉 and auxiliary declarations used in the specification
〈d〉. Furthermore, we use 〈a〉, 〈e〉, 〈l〉, 〈x〉, 〈T〉, 〈q〉, 〈p〉 and 〈L〉 to refer to assertions,
expressions, literals and constants, variables, types, quantifiers, predicates and label
names, respectively. The following four rules define a left-recursive grammar for the
specification syntax recognized by GoRAC:

〈s〉 ::= assert 〈a〉 | assume 〈a〉 | requires 〈a〉 | ensures 〈a〉 | invariant 〈a〉

GoRAC supports five different specification clauses. A specification clause consists of
a keyword and an assertion 〈a〉. The keyword determines the program state in which
the condition expressed by the assertion holds. We elaborate further on specification
clauses in Section 3.2. The following rules explain the syntax of assertions.

〈a〉 ::= 〈e〉 | (〈a〉) | !〈a〉 | 〈a〉 && 〈a〉 | 〈a〉 || 〈a〉

The assertion that is part of a specification clause can be an expressions 〈e〉, a negated
assertion, or a conjunction or disjunction of assertions. In the next rule, we specify
the syntax of expressions that are part of the Go language [14] and can be used in
GoRAC’s annotations.

〈e〉 ::= 〈l〉 | 〈x〉
| *〈e〉 | +〈e〉 | -〈e〉 | !〈e〉
| 〈e〉 * 〈e〉 | 〈e〉 / 〈e〉 | 〈e〉 % 〈e〉 | 〈e〉 + 〈e〉 | 〈e〉 - 〈e〉
| 〈e〉 < 〈e〉 | 〈e〉 <= 〈e〉 | 〈e〉 > 〈e〉 | 〈e〉 >= 〈e〉 | 〈e〉 == 〈e〉 | 〈e〉 != 〈e〉
| 〈e〉 && 〈e〉 | 〈e〉 || 〈e〉
| 〈e〉[〈e〉] | 〈e〉.〈e〉 | 〈T〉{〈e〉*} | 〈e〉(〈e〉*)

Goracs expressions includes most of Go’s expressions, namely literals, constants,
and variables (line 1); arithmetic operations (line 2,3); comparison operators (line
4); boolean operations (line 5); and finally index, dot, and call expressions, and
composite literals (line 6). For readers that are not familiar with the Go expressions
from line 6, we quickly illustrate their use with the following examples:

3.1 Syntax 8



• Index expressions 〈e〉[〈e〉]: For an array or slice a, a valid index expression is
a[42]. For a map m, an example of an index expression is m["key"].

• Dot expressions 〈e〉.〈e〉: For a struct s, a dot expression s.f denotes an access
to some field or function f with s as receiver of f. Dot expressions can also be
used for package accesses, e.g. package.instance.

• Call expressions 〈e〉(〈e〉∗): Assuming some function fooFunc(x int) exists,
then the expression fooFunc(1337) is a call expression.

• Composite literals 〈T〉{〈e〉∗} : For instance, foobar: 42 defines a struct
literal of type foo whose field bar is set to 42. Another example is the array
literal []int1,3,3,7.

Note that call expressions are permitted only if the function called satisfies additional
constraints discussed in Section 3.7. Moreover, a call expression can also be used to
declare a predicate call. Predicate calls are no Go expressions. Their use is detailed
in Section 3.6. The next rules detail further assertions and expressions that are
specific to GoRAC and not part of the regular Go syntax:

〈a〉 ::= 〈qu〉 | acc(〈e〉)

GoRAC introduces further constructs that aid with specifying the behavior of code:
Additional to the assertions stated above, universal quantifiers 〈qu〉 facilitate speci-
fying properties of elements in a data structure. Their exact syntax is described in
Section 3.3. Assertions can also be access permissions acc(〈e〉) that allow reasoning
about accessible heap locations. These permissions are addressed in more detail in
Section 3.5.

〈e〉 ::= old(〈e〉) | old〈L〉(〈e〉)
| 〈e〉 ? 〈e〉 : 〈e〉

Additional to Go’s expressions, GoRAC also supports old expressions (line 1) that can
capture program states at previous program points. The exact syntax and semantics
of old expressions is discussed in Section 3.4. Lastly, GoRAC’s specification language
includes the ternary operator (line 2) that enables writing conditionals within an
expression. Unlike in other programming languages, the ternary operator is not
supported by Go.

The above rules describe specification clauses and their assertions. Besides these
specification constructs, GoRAC also permits auxiliary declarations:

〈d〉 ::= pure | 〈p〉 | 〈L〉: | shared: 〈x〉*| exclusive: 〈x〉*
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Auxiliary declarations can consist of the keyword pure whose usage is explained in
Section 3.7, or definitions of parameterized assertions 〈p〉 detailed in Section 3.6.
Furthermore, GoRAC provides an annotation 〈L〉 to label program points. Labels
inside specification are necessary even though the Go language also supports the
declaration of labels. However, a label that is declared and only used in specification
annotations, i.e. in comments, will be deemed as unused by the Go compiler. Unused
labels are not permitted in Go, hence, the need for specification labels arises. The
two auxiliary declarations shared and exclusive determine that the variables 〈x〉∗

are shared or, respectively, exclusive, and therefore treated differently. This distinction
is discussed in detail in Section 3.4.

As mentioned above, further sections will go into detail on the different specification
constructs. The remainder of Chapter 3 has the following structure: First, we address
the different specification clauses in Section 3.2. Then, we declare the exact syntax
of quantifiers, old expressions and access permissions in Sections 3.3 - 3.5. The last
two sections of Chapter 3 concern predicate declarations and purity annotations. As
a reminder, in this chapter we focus on syntax and semantics. The generation of
runtime checks is covered in Chapter 4.

3.2 Specification Clauses

Specification clauses express that certain assertions must hold at specific times during
program execution. For example, a user wants to express that an assertion holds
before a function execution or during each iteration of a loop. The next sections
deal with the different specification clauses that GoRAC supports and explain where
they should be used.

3.2.1 Assert Statements & Assumptions

An assert statement assert 〈a〉 states that the assertion 〈a〉 holds at the program
point where the statement is placed. Assert statement can be declared at arbitrary
program points inside a function. An example of an assert statement is given in the
following Go code. We assert that a divisor used in a division is not equal to zero:

//@ a s s e r t d i v i s o r != 0
r e s u l t := 42 / d i v i s o r

GoRAC also supports assumptions assume 〈a〉 that behave like assertions. The
reason why seemingly redundant assumptions are supported stems from verification:
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Assumptions in verification express conditions which are assumed to be true. They
are not checked by the verifier but instead used to provide the verifier with more
information for the proof. If an assumptions contradicts existing knowledge, a
verifier enters an inconsistent state in which every property holds trivially. Since we
cannot model this behavior for runtime checking, we decided to treat assumptions
like assertions that check at runtime whether the assumed assertion is satisfied.

3.2.2 Preconditions & Postconditions

A precondition states assumptions about arguments of a function. Because the
implementation of a function can rely on these assumptions, they should always hold
when the function is called [29]. Preconditions are declared as part of a function’s
signature; as an annotation above a function declaration. We express preconditions
in GoRAC annotations using the keyword requires.

A postcondition expresses guarantees about the results of a function. The caller
of a function has to be able to rely on these guarantees [29]. Like preconditions,
postconditions are also declared as part of a function’s signature. The keyword
ensures is reserved for postconditions.

We illustrate preconditions and postconditions in the Go code below. A precondition
states that the divisor parameter of a division function cannot to be zero. A postcon-
dition ensures that the division function returns the value of the input parameter x
divided by the divisor.

//@ r e q u i r e s d i v i s o r != 0
//@ ensures re s == x / d i v i s o r
func d iv ide (x , d i v i s o r i n t ) ( re s i n t ) {

re turn x / d i v i s o r
}

3.2.3 Invariants
Invariants (also called loop invariants) express conditions about the program state
that hold before and after each iteration of a loop [12]. In particular, an invariant
holds upon entry to and exit from a loop. Loop invariants in GoRAC are expressed
using the keyword invariant. They need to be placed before for-loop or range
declarations. An example of an invariant is given on the next page; the invariant
states that the sum of two variables i and j is always equal to 9. The invariant holds
because when simultaneously increasing i while decreasing j, the two variables
always add up to the initial value of j:
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j := 9
//@ i n v a r i a n t i + j == 9
f o r i := 0; i < 10; i++ {

j− −
}

3.3 Quantifier

GoRAC supports both existential and universal quantifiers. Different from Gobra,
where we can express unbounded quantifiers, the quantified expressions allowed
by GoRAC need to be bounded. This is due to the fact that we want to precisely
guarantee that a quantified assertion holds on all instances of the quantified domain.
However, checking an assertion on all instances of an unbounded domain is not
possible at runtime1. Similar restrictions are imposed for existing runtime checking
tools [44, 23]. The exact syntax of bounded quantifiers is the following:

〈qu〉 ::= forall 〈X〉 :: 〈D(X)〉 ==> 〈a(X)〉

〈qe〉 ::= exists 〈X〉 :: 〈D(X)〉 && 〈e(X)〉

〈X〉 ::= (〈x〉 〈t〉)(〈x〉 〈t〉)*

We require quantifiers to have at least one quantified variable. The quantified
variables denoted by 〈X〉 are used in the body of the quantifier 〈a(X)〉, 〈e(X)〉, 〈D(X)〉.
Quantifiers need to have a domain 〈D(X)〉 that expresses the bounds of the quantified
variables. Universal quantifiers state that all quantified variables that satisfy the
domain 〈D(X)〉 also satisfy the assertion 〈a(X)〉. Existential quantifiers state that
at least one quantified variable that satisfies the domain 〈D(X)〉 also satisfies the
expression 〈e(X)〉. All domains need to be stated on the left side of the implication in
a universal quantifier or, respectively, the conjunction in an existential quantifier.

Bounds for quantified variables can be Go data structures like arrays, slices or
maps which are always finite, or finite numerical ranges. We express the bound
of a quantified variable with a domain constraint 〈c(x)〉. The whole domain of a
quantifier is a formula of conjunctions and disjunctions of domain constraints:

〈D(X)〉 ::= (〈D(X)〉)
| 〈D(X)〉 && 〈D(X)〉

1There exist imprecise techniques such as sampling for checking unbounded quantifiers at runtime.
However, sampling might yield scenarios where GoRAC would deem a quantifier to hold due to a
lucky choice of instantiations of the quantified variables, whereas verification with Gobra would
fail on the same quantifier. Therefore, it seems to be a more sustainable approach to restrict the
use of quantifiers in GoRAC to bounded ones.
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| 〈D(X)〉 || 〈D(X)〉
| 〈c(x)〉

〈c(x)〉 ::= 〈e〉 < 〈x〉 < 〈e〉
| 〈e〉 <= 〈x〉 < 〈e〉
| 〈e〉 < 〈x〉 <= 〈e〉
| 〈e〉 <= 〈x〉 <= 〈e〉
| 〈x〉 in range 〈e〉
| _ , 〈x〉 in range 〈e〉
| 〈x〉 , 〈x〉 in range 〈e〉

The syntax of domain constraints is only allowed in domains. It is required that
the domain holds constraints for each of the quantified variables. An exception is
made for boolean quantified variables which are natively bound to a domain of two
truth values. Thus, we can omit the domain for quantifiers that have only boolean
quantified variables.

Figure 3.2 illustrates the use of quantifiers. At the top, the function median returns
the median of a given integer slice. The input slice is required to be sorted, which is
specified using a universal quantifier. For a sorted slice, the position of the median
is computed by differentiating between an odd and even length of the slice. At the
bottom, the function position returns the index at which a given value exists in the

/*@ r e q u i r e s f o r a l l i , j i n t : : i in range nums && 0 <= j < i
* ==> nums[ j ] <= nums[ i ]
*/
func median (nums [] i n t ) i n t {

n := len (nums)
i f n % 2 == 1 {

re turn nums[(n − 1) / 2]
} e l s e {

re turn ( nums[n / 2] + nums[(n / 2) − 1] ) / 2
}

}

//@ r e q u i r e s e x i s t s k i n t : : _ , k in range nums && k == value
func p o s i t i o n (nums [] in t , value i n t ) ( pos i n t ) {

f o r p , v := range nums {
i f v == value {

pos = p
break

}
}
re turn

}

Fig. 3.2: Examples of a universal quantifier (at the top) and an existential quantifier (at the
bottom)
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slice. The precondition of the function expresses that the given value is contained in
the slice with the help of an existential quantifier.

3.4 Old expressions

GoRAC supports the use of old expressions [44, 23] to reason about the state of
previous program points. With old[L](e) we refer to the value which expression
e had at program point L. L is either a specification label or a Go label as used for
gotos. The expression old(e) denotes the value of e before the execution of the
function f in whose specification old(e) occurs. Thus old(e) can be interpreted as
a special case of old[L](e), where the label is placed right at the beginning of the
body of f . We call old[L](e) and old(e) a labeled and an unlabeled old expression,
respectively.

3.4.1 Semantics

The semantics we define for old expressions are motivated by old semantics of
existing tools such as Dafny [27] or Viper [32]. Dafny and Viper distinguish between
the heap and the variable store. In both tools, variables are saved in the variable
store, i.e. variables in old expressions are always evaluated to their current value.
However, these old semantics for variables do not accurately model variables in Go.
In Go, variables can be on the heap, too. Thus, the Go verifier Gobra introduced
the distinction between exclusive variables, which are not on the heap and behave
like variables in Dafny and Viper, and shared variables, which are on the heap. This
classification determines our semantics of old.

We adopt Gobra’s distinction between shared and exclusive variables for GoRAC. The
syntax of GoRAC’s specification language detailed in Section 3.1 includes the decla-
rations "shared:" and "exclusive:" which declare whether a variable is shared or
exclusive, respectively. Every variable used in an old expression has to be annotated
as either shared or exclusive. Non-annotated variables are treated as exclusive by
default.

Since we want to define the semantics of old expressions in which variables are
evaluated in old states of the heap, we need to (1) define the program state. This
includes the variable store and heap snapshot functions for looking up values of
addresses in the heap. We further need to (2) define an evaluation function that
evaluates old expressions in a program state. Using these definitions, we can describe
the semantics of old expressions. We start by introducing heap snapshots:
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Definition 1. Let V be the set of values, A ( V the set of addresses, and L a label for
some program point. Then, the mapping

~L : A → V

designates a snapshot of the heap which captures the state of the heap at the program
point labeled with L.

We want to highlight that A is a subset of V, i.e. that an address is also a value. We
model program states such that they include both a store for local variables and a
map of labels to heap snapshots of previous program points.

Definition 2. Let s denote a store, i.e. a map from local variables to values, and m
a map of labels to heap snapshots of previous program points. Then, we define the
program state ρ as a tuple of store and heap snapshot map:

ρ = (s,m)

In addition, we define the function s(x) to lookup the value of a local variable x, and
m(L) := ~L to receive the heap snapshot at a program point with label L .

Now we define an evaluation function for old expressions. We can model the
evaluation with a function instead of a relation, since specification annotations
always behave deterministically.

Definition 3. Let Es denote the set of old expressions from the specification, P the set
of program points and V the set of values. Then, we define the evaluation function

eval : Es × P → V, (e, ρ) 7→ v

that evaluates an old expression e at a given program point ρ.

Old expressions can take any pure expression as an argument. Instead of reasoning
about all of these expressions individually, we want to present a first important
observation. We start with the following definition:

Definition 4. A function is called heap-independent if its evaluation does not rely on a
state of the heap.

For example, the expression *x is not heap-independent, i.e. heap-dependent, due
to the fact that the dereferencing operation requires a heap lookup, whereas the
expression x == 5 is heap-independent [33].
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We observe that we can exchange the evaluation order of any heap-independent
function f with old. This means that the following implication holds:

f heap-independent ⇒

old[L0](f(old[L1](e1), ..., old[Ln](en), e1′, ..., em′)) ≡

f(old[L1](e1), ..., old[Ln](en), old[L0](e1′), ..., old[L0](em′))

The right side of the implication is a semantic equivalence between two expressions
containing old expressions. On the left side of the equivalence, the old value of some
expression that includes a function call of a heap-independent function f at some
label L0 is looked up. The parameters of the function call are either old expressions
old[L1](e1), ..., old[Ln](en) or regular expressions e1′, ..., em′ . On the
left side of the equivalence, the evaluation of the function f is performed using
the old values of the parameters. The values of the parameters that are not old
expressions are looked up at label L0 before being passed to the function. For a
parameter that itself is an old expression at some label Li, no further old value
lookup at label L0 is performed. This is due to the fact that for arbitrary labels A and
B, we have

old[A](old[B](e)) ≡ old[B](e)

Thus, the equivalence shows the possibility to exchange the evaluation order of
a heap-independent function with old. Intuitively, the equivalence allows us to
postpone the evaluation of old after the evaluation of a heap-independent function.

We want to underline that a lot of Go’s operations satisfy heap-independence. For
instance, any arithmetic operation is heap-independent: Consider the addition
function with two parameters f : (x, y) 7→ x + y, then the equality from above
holds:

old[L](e1 + e2) = old[L](e1) + old[L](e2)

An example of a function where the equation does not hold is the dereferencing
function because it depends on the heap.

old[L](*e) 6= *old[L](e)

This inequality arises from the fact that the object e points to might change in
between the program point of the label L and the program point the old expression
is evaluated at.

With the distinction between shared and exclusive variables, the introduction of
an evaluation function for old expressions, and the definition of heap-independent
functions, we have covered all preliminaries necessary to define the semantics of old
expressions. We begin with the old semantics of variables:
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Definition 5. Let X be the set of variables, eval the evaluation function and old[L](x)
an old expression at program point ρ = (m, s) where m(L) = ~L. Then, we define the
following old semantics for variables:

eval(old[L](x), ρ) :=

~L(x) x shared

s(x) x exclusive
∀ x ∈ X

The definition states that shared variables are evaluated in the heap snapshot of
the program point labeled with L, i.e. they evaluate to their old value at the
corresponding label. Exclusive variables are evaluated in the store of the program
point where the old expression is stated, i.e. they always evaluate to their current
value. An example for the semantics difference between shared and exclusive
variables is given in Figure 3.3. Two variables x and y are defined that initially hold
the same value 42. Variable x is shared and y is exclusive. After program point
L, both values are assigned the same new value 1337. The assertion that holds
afterwards, demonstrates that the old value of the shared variable x is 42 while the
exclusive variable y evaluates to its current value 1337.

We continue with the old semantics of literals and constants. Literals and constants
have the same values at any program point and can be seen constants as heap-
independent functions with arity 0. Thus, old does not affect them:

Definition 6. Let L be the set of literals and constants, eval the evaluation function
and old[L](y) an old expression at program point ρ. Then, we define the following
old semantics for literals and constants:

eval(old[L](y), ρ) := eval(y, ρ) ∀ y ∈ L

Next, dereferences and lookups in slices or maps, which can be interpreted as
pointers to the underlying data structures, depend on the heap. Their evaluation is
thus performed in the heap snapshot of the labeled program point. The evaluation
of the old expression is relayed onto the respective data structure, i.e. the pointer,
slice or map object. Hence, slices and maps evaluated to slice and map values in the
old heap, respectively.

x , y := 42 , 42 //@ shared : x e x c l u s i v e : y
//@ L :
x , y := 1337 , 1337
//@ a s s e r t old [L ]( x ) == 42 && old [L ]( y ) == 1337

Fig. 3.3: Specification annotations demonstrating the old semantics of shared vs. exclusive
variables (The assertion on line 4 holds)
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Definition 7. Let P be the set of pointers, A∗ the set of slices, M the set of maps,
eval the evaluation function, and old[L](*e) and old[L](e1[e2]) old expressions
at program point ρ = (m, s) where m(L) = ~L. Then, we define the following old
semantics for pointers, slices and maps:

eval(old[L](*e), ρ) := ~L(eval(old[L](e), ρ)) ∀ e ∈ P (3.1)

eval(old[L](e1[e2]), ρ) :=

~L(eval(old[L](e1), ρ)) [eval(old[L](e2), ρ)] ∀ e1 ∈ A∗ ∪ M

Unlike in other programming languages where arrays are object references or act
like pointers, arrays in Go are values. Therefore, array lookups are heap-independent
and hence treated differently than lookups on slices or maps. Array lookups are
executed on both the old values of the data structure and the index. No direct heap
lookup is required for arrays since the lookup occurs when evaluating old on the
array and the index. Field accesses of structs are also heap-independent and treated
like arrays.

Definition 8. Let A be the set of arrays, S the set of structs, F the set of struct fields,
eval the evaluation function, and old[L](e1[e2]) and old[L](e.f) old expressions
at program point ρ. Then, we define the following old semantics for arrays and structs:

eval(old[L](e1[e2]), ρ) = eval(old[L](e1)[eval(old[L](e2), ρ)], ρ) ∀ e1 ∈ A

eval(old[L](e.f), ρ) := eval(old[L](e).f, ρ) ∀ e ∈ S, f ∈ F

All unary operations except for dereferences, whose semantic with old is defined
in Equation 3.1, that are part of the GoRAC specification language, are heap-
independent. Hence, an old expression containing a unary expression is evaluated
on the operand of the unary expression.

Definition 9. Let ◦ ∈ {!, +, -}, eval the evaluation function, and old[L](◦ e1) an
old expression at program point ρ. Then, we define the following old semantics for
unary operations:

eval(old[L](◦ e1), ρ) = eval(◦ old[L](e1), ρ)

We handle binary operations in a similar fashion since GoRAC supports only heap-
independent binary expressions.

Definition 10. Let ◦ ∈ {+, -, *, %, \, >, <, >=, <=, ==, !=, &&, ||}, eval the evaluation
function, and old[L](e1 ◦ e2) an old expression at program point ρ. Then, we define
the following old semantics for binary operations:

eval(old[L](e1 ◦ e2), ρ) = eval(old[L](e1) ◦ old[L](e2), ρ)
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This concludes the definition of the old semantics for all specification constructs sup-
ported by GoRAC. We continue with remarks about characteristics of old expressions
that follow from the semantics. Then, Section 3.4 concludes with a short explanation
on the placement of old expressions in specification annotations.

3.4.2 Remarks

The semantics of old expressions as defined above have certain implications. Since
some of these implications are quite subtle, we want explicitly point them out in the
following two remarks.

Syntactic sugar in Go
Go provides syntactic sugar to allow the same notation for accessing an array and a
pointer to an array, and for accessing a field of a struct and a struct pointer. That
means, we can abbreviate (*arrPtr)[42] with arrPtr[42], and (*structPtr)
.field with structPtr.field. When using these expressions in old, it is important
to differentiate whether we are dealing with an array (struct) or with a pointer to an
array (struct). Figure 3.4 illustrates this problem for arrays. Both functions defined
in the figure have syntactically equivalent bodies and old expressions. However, in
the first case old(a)[0] is an access to the array in the beginning of the function,
and consequently evaluates to the original value 42. Whereas in the second case
old(a)[0] is a lookup on the reference to the array, which evaluates to the modified
value 1337. Note that if array a was exclusive, old(a)[0] would evaluate to 1337 in
both cases.

Old values of indices
For index expressions on arrays or slices, we need to pay special attention to the fact
that the old value of an index is used. For instance, consider that we want to express

//@ requ i r e a [0] == 42
func array (a [3] i n t ) { // shared : a

a [0] = 1337
//@ a s s e r t old (a )[0] == 42

}

//@ requ i r e a [0] == 42
func po in te r (a *[3] i n t ) { // shared : a

a [0] = 1337
//@ a s s e r t old (a )[0] == 1337

}

Fig. 3.4: Specification annotations demonstrating the different semantics of syntactically
equivalent old expressions for array and pointer to an array
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the following condition: The first value of array a equals the old value of the array
at the current index i. We propose to specify this using the formulation

a[0] == old(a[i])

where variable i is shared. However, with this formulation, the old value of the
array at the old index i would be used instead of the required current index. We
need to make i exclusive or write

a[0] == old(a)[i]

For slices or maps in index expressions, if the variable referring to the respective
data structure is exclusive, it is important to remember that the evaluation of the
old expression on the data structure evaluates to its current value. E.g. for an old
expression s[i] used at some program point P where s is an exclusive variable
referring to some slice, we have the following evaluation:

P: old[L](s[i]) = ~L(old[L](s)[old[L](i)])

= ~L( ~(s)︸︷︷︸
At program point P

[old[L](i)])

︸ ︷︷ ︸
At program point L

This demonstrates that the lookup at the i-th slice index is performed at an earlier
program point L than the program point P at which we can lookup the current value
of s. We will discuss problems arising from such situations in Section 4.6.

3.4.3 Placement

Old expressions are allowed to be used in assertions, assumptions, invariants and
postconditions. Their use is not permitted in preconditions. This is due to the
fact that a precondition needs to hold before a function execution starts but old
expressions always refer to program points within the execution of that function.

3.5 Permissions

In verification with Gobra, the program heap is modeled and access to it is governed
by means of permissions. An access permission states that a heap location may be
read or written to. Even though GoRAC does not have a similar heap model due to
the significant runtime overhead it would entail, we still support access permissions
so that GoRAC annotations can be more easily reused as specification for Gobra.

Access permissions can be stated for the following constructs:
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• Pointers: If p is a pointer, e.g. a variable of type *int, then the expression
acc(p) declares the access permission on p. Moreover, for an expression e, an
access permission acc(&e) on a reference of the expression can be declared.

• Slices: If s is a slice, e.g. a variable of type []int, then we can declare an
access permission acc(s) for it. This grants access to all elements in the slice.
(Note that in Gobra, access on each member needs to be defined separately.)

• Maps: If m is a map, e.g. a variable of type map[string]bool, then we permit
access for it with acc(m). As for slices, this grants access to all elements in the
map.

• Indirect field accesses: Given a struct pointer foo that has a field named bar,
an access permission acc(foo.bar) can be stated.

Note that for acc(&e), it must be possible to refer to the memory address of expres-
sion e. Moreover, taking the address of e needs to be a pure operation. If e is a
composite literal, stating a reference to it results in the allocation of the object. Tak-
ing the address of a newly allocated value is not deterministic; a different address can
be returned each time the program is executed. Thus, referring to a composite literal
is a non-deterministic and thereby impure operation. This restricts acc(&e) to be
used only with expressions that are not composite literals. If an access permission is
stated that does not abide by all these restrictions, the execution of GoRAC will result
in an error. The functions in Figure 3.5 give examples of different access permissions:

//@ r e q u i r e s acc (X)
func add( x * in t , y i n t ) {

*x += y
}

//@ r e q u i r e s acc ( s l i c e )
//@ ensures acc ( s l i c e )
func sum( s l i c e [] i n t ) i n t {

sum := 0
fo r _ , i := range s l i c e {

sum += i
}
re turn sum

}

type foo s t r u c t {
bar i n t

}

//@ r e q u i r e s acc ( foo . bar )
func se tBar ( f * foo , value i n t ) {

f . bar = value
}

Fig. 3.5: Examples of access permissions
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Function add adds a value to an integer pointer. The access to the pointer is required.
Function sum returns the sum over all members of a slice whose access is declared
in the precondition. The function also transfers ownership of the slice back to the
caller after termination of the function. Finally, the function setBar acts as a setter
for the field bar of a foo struct. The access permission to the struct field is specified
in the precondition of the function.

Note that in GoRAC, differently from Gobra, it is not required to declare access
permissions for heap locations that are used inside functions or specification. For
instance, an assertion assert slice[i] == 42 can be checked without an access
permission acc(slice) being given.

3.6 Predicates

GoRAC supports the use of parameterized assertions called predicates. Their use
consists of the support for two separate syntax entities: predicate declarations and
predicate calls. Predicate calls can occur in an assertion of a specification statement
and refer to exactly one predicate declaration. The next two subsections address
predicate declarations and predicate calls:

We declare predicates as part of the specification in GoRAC following the syntax

〈p〉 ::= predicate 〈P〉 (〈X〉) { 〈a〉 }

〈X〉 ::= (〈x〉 〈t〉)*

Predicate declarations need to start with the keyword predicate. Predicate decla-
rations are well-defined if they have a unique name 〈P〉 that can also not be equal
to the name of a function in the program. Predicates can (but do not need to)
have parameters 〈X〉 which are each defined as a tuple of a variable name and its
type. The body of a predicate consists of a single assertion. Old expressions are
disallowed to be used in the assertion of predicates. Since a predicate can be called
in the specification of multiple functions, it would be unclear to which previous
program point an old expression refers to. Additionally, predicate declarations that
range over multiple lines need to be declared using multiple single line specification
comments.

The GoRAC syntax described in the beginning of this chapter includes call expres-
sions:

〈e〉 ::= 〈e〉(〈e〉*)
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Call expressions cover both calls to Go functions and to predicates. The expression
in front of the parentheses determines whether the call expression is a function or
predicate call. A predicate call is well-defined if the referred predicate declaration
exists in scope of the predicate call, and the number and types of parameters of the
call and the declaration match. Hence, if 〈P〉 is the unique name of some predicate,
then the syntax of a corresponding predicate call is

〈e〉 ::= 〈P〉(〈e〉*)

Figure 3.6 exemplifies how predicates are used:

//@ pred i ca t e sor ted (nums [] i n t ) {
//@ acc (nums) && f o r a l l i , j i n t : : i in range nums && 0 <= j < i
//@ ==> nums[ j ] <= nums[ i ]
//@ }

//@ r e q u i r e s sor ted ( x )
//@ ensures f o r a l l k i n t : : _ , k in range x ==> k >= min
func minimum( x [] i n t ) (min i n t ) {

re turn x [0]
}

//@ r e q u i r e s sor ted ( x )
//@ ensures f o r a l l k i n t : : _ , k in range x ==> k <= max
func maximum( x [] i n t ) (max i n t ) {

re turn x[ len ( x ) − 1]
}

Fig. 3.6: Examples of predicate declarations and predicate calls

A predicate is declared that asserts that a given integer slice can be accessed and it
is sorted in increasing order. In the specification of the two function minimum and
maximum, the predicate is called. Since this requires any input of the functions to be
sorted, the minimum of a slice is always the first, and the maximum of the slice is
always the last element.

3.7 Purity
Specification annotations are not allowed to change the behavior of the program,
i.e. they must be side-effect free. To illustrate this requirement, we consider the
following scenario:

func increment ( x * i n t ) i n t {

*x++
return *x

}
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// This pos t cond i t i on f a i l s :
//@ ensures old (* x ) == increment ( x )
func decrement ( x * i n t ) i n t {

*x− −
re turn *x

}

The scenario shows an increment and a decrement function for an integer pointer.
The increment function is called in the postcondition of the decrement function.
Thus, the integer pointer is incremented in the postcondition, hence, the specification
influences the program’s behavior.

We require a specification to be deterministic and free of side-effects as demonstrated
above. Expressions satisfying these two properties are called pure. For GoRAC, we
introduce the following purity definition:

Definition 11. Let e be an expression. Then, e is considered pure if it matches one of
the following cases:

• e is a constant, (composite) literal or a variable

• e is a dot expression e1.field and its base e1 is pure

• e is an index expression e1[e2] and its base e1 is a unary or binary expression
with pure operands

• e1 is a call to a pure function

As stated in the last case, only pure function can be called in a specification. We
decide to include a purity annotation in GoRAC’s syntax such that users need to
explicitly declare a function as pure:

〈d〉 ::= pure

Purity annotations are only permitted in a function’s documentation, i.e. as specifi-
cation comments above a function declaration. A function annotated to be pure has
to satisfy the following properties:

Definition 12. Let f be a function. It satisfies a purity annotation if

• f has exactly one return parameter

• the body of f consists of only a single return statement

• the return statement returns a pure expression

• any assertion of a postcondition for f is a pure expression
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The built-in functions len and cap from the Go standard library are both considered
pure without a corresponding annotation. This enables their use in specification and
ultimately permits meaningful reasoning about properties of e.g. arrays or slices.

This concludes the chapter on the GoRAC specification language. The chapter
provided a detailed description of the syntax of specification annotations for GoRAC.
It is supposed to serve as a guideline when writing specification for programs that
are runtime checked with GoRAC.

We would like to add a final remark that should be taken into consideration when
including specification for a program. Go enforces that everything a programmer
declares or imports needs to be used in the scope it was declared or imported in [14].
This has the effect that if an object is declared which is used only in specification,
the program will not compile. However, we circumvent this problem with empty
assignments. E.g. if a variable x is used only in specification, we can add the
assignment "_= x" in the scope of the variable’s declaration.

The next chapter will deal with the runtime check generation of specification anno-
tations. It thus provides a deeper understanding of how GoRAC is constructed.
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4Runtime Check Generation

We generate runtime checks by translating specification annotations to Go code and
including the code into the program that the specification reasons about. Go code
that is generated for a specification annotation is called the runtime check for the
annotation. A runtime check tests whether a condition expressed by a specification
annotation holds. For GoRAC, if the condition is not satisfied, the program terminates
with a respective error. We then denote the runtime check as failed. When a program
with runtime checks runs on some input and no checks fail, we deduce that this
particular program execution meets the program’s specification.

Each section in this chapter details the runtime check generation for a specification
construct of GoRAC. Runtime check generation is defined using encoding functions.
An encoding of a specification constructs determines how the construct is translated
to Go code. An encoding of a Go instance, e.g. a function or statement, determines
how the code of a program is transformed to include runtime checks.

An encoding function thus establishes relations between sets of specification con-
structs and Go constructs. Recall that in Chapter 3 we detail specification clauses,
assertions, and expressions as part of the specification language. In this chapter,
we use Sc, Sa, and Se to refer to the set of specification clauses, the set of specifica-
tion assertions and the set of specification expressions, respectively. Moreover, we
distinguish the set of Go expressions Ge and the set of Go statements Gs as defined
in the Go Language Specification [14]. Now, we can introduce the following three
encoding functions that define the encoding of specification clauses, specification
assertions, and Go statements, respectively.

Definition 13. Let Sc denote the set of specification clauses and Gs the set of Go
statements as described in the Go Language Specification [14]. Then we can define the
function

⦃ ⦄ : Sc → Gs, c 7→ s

that encodes a specification clause c into a Go statement s.

Definition 14. Let Sa denote the set of specification assertions and Ge the set of Go
expressions as described in the Go Language Specification [14]. Then we can define the
function

L M : Sa → Ge, a 7→ e

that encodes a specification assertion a into a Go expression e.
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Definition 15. Let Gs denote the set of Go statements as described in the Go Language
Specification [14]. Then we can define the function

J K : Gs → Gs, s 7→ s′

that encodes a Go statement s into another Go statement s′.

All three encoding functions can generate more Go members, e.g. structs or functions.
We could make the generation of Go members explicit by adding more return
values to the encodings. However, we decided against this in order to simplify the
formalism.

We follow the structure of Chapter 3 and first address runtime check generation
for specification clauses. Section 4.4 deals with quantifiers and Sections 4.5 - 4.7
concern the runtime check generation of old expressions. Permissions, predicates
and purity runtime checking is explained in Sections 4.8 - 4.10.

4.0.1 Soundness

All encodings need to be defined such that if a runtime check succeeds, the program
satisfies the assertion expressed by the specification. An encoding that meets this
requirement is called sound. The following proposition states properties that are
sufficient to prove soundness of an encoding:

Proposition 1. Let s be a specification annotation, p, q and q′ program states, and
panic the aborted program state that results from a panic. The execution of a runtime
check for a specification annotation s is performed in a program state p. Furthermore,
the execution of the runtime check results in program state q. If the program is run
without runtime checks, the program state that is reached from p is q′. Now, we make
the following proposition:

The encodings for the runtime check of s are sound

⇔(
q 6≡ panic ⇒ p |= s

)
∧
(
q′ ≡ q \ qaux

)

In other words, for soundness of the encodings, it is sufficient to show that the following
two requirements are fulfilled:

• If the execution of the runtime check for s does not result in a panic, program
state p satisfies s, i.e. the specified condition holds in p.

• If the program was executed without runtime checks, the program state q′ that
is reached after p is equivalent to the program state q without auxiliary state

27



information. This condition can be summarized by the statement that sound
runtime checks do not change a program’s behavior.

In order to prove soundness of the runtime check generation, the proposition must
be proven for each encoding. However, since formal proofs of soundness are beyond
the scope of this thesis, we instead provide informal arguments about the correctness
of an encoding.

4.1 Specification Clauses

We show the runtime check generation for each kind of specification clause in a
separate subsection. Note that all code illustrations of the runtime checks state
only exemplary error messages. The actual error messages implemented in GoRAC
include further information on e.g. the line number of the original specification.

4.1.1 Assert Statements & Assumptions

Encoding 1. Assert statements (or assumptions) stated with the keyword assert (or
assume) are translated to Go code using the following encoding:

⦃assert 〈a〉 ⦄  if !L〈a〉M { "ERROR" }

Assert statements (and assumptions) are checked using an if-statement. The condi-
tion of the if-statement is a negation of the encoded assertion. Thus, if the asserted
assertion does not holds, the condition of the if-statement is true and the program
aborts with an error message about the failed assertion. If the asserted assertion
holds, the negation will be false and the program continues.

Figure 4.1 illustrates the runtime check generation for an assert statement. At the
top, a program part that includes an assert statement is given. At the bottom, the
code that GoRAC generates shows the runtime check for the statement. The error

//@ a s s e r t d i v i s o r != 0
r e s u l t := 42 / d i v i s o r

i f ! ( d i v i s o r != 0) {
panic ( " As se r t i on v i o l a t e d " )

}
r e s u l t := 42 / d i v i s o r

Fig. 4.1: Runtime check for an assert statement
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that occurs if the assertion does not hold is realized using panic. Thus, the program
terminates upon failure of a runtime check.

4.1.2 Preconditions & Postconditions

Preconditions and postconditions state expectations on a function’s arguments and
return values. They are always part of the documentation for a function, i.e. stated
in a specification comment above the function. Thus, before stating the encoding
of preconditions and postconditions, we first define an encoding of functions that
shows that runtime checks for preconditions and postconditions are inserted at the
beginning of a function’s body.

Encoding 2. Let name denote an arbitrary function name, args the arguments of the
function, rets the return values of the function and s the body of the function. Then,
we encode the function as follows:
u

wwwwww
v

//@ requires 〈a〉
//@ ensures 〈a〉
func name(args) (rets) {

s
}

}

������
~

 

func name(args) (rets) {
⦃requires 〈a〉 ⦄
⦃ensures 〈a〉 ⦄
Js K

}

For simplicity, we have left out potential function receivers. The encoding of methods is
identical to the encoding of functions.

We encode preconditions analogously to assert statements. Since encoded precon-
ditions are executed before any other statement of a function’s body, as shown in
Encoding 2, the encoding of precondition thus checks the program state at entry to
the function.

Encoding 3. Preconditions are translated to Go code using the following encoding:

⦃requires 〈a〉 ⦄  if !L〈a〉M { "ERROR" }

For postconditions, we delay the runtime check for a postcondition until the end of
a function execution using Go’s defer statement. The actual runtime check that is
deferred is the same if-statement as for an encoded assert statement. Encoding 2
states that postcondition runtime checks are inserted at the beginning of a function’s
body. However, the defer-statement delays the execution of the runtime check until
the function terminates. It would not be adequate to insert the runtime check as the
last statement of the function’s body instead of using defer. If the function exits
before reaching the end of its body, the check would not be performed. The defer
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statement evaluates after the execution regardless of where the program flow leaves
the function.

Encoding 4. Postconditions are translated to Go code using the following encoding:

⦃ensures 〈a〉 ⦄  defer func() {
if !L〈a〉M { "ERROR" }

}

Golang initializes named return parameters with zero values and returns them only
on bare returns, i.e. return statements without values. If a function with named
return parameters returns explicit values, the named return parameters will still
be initialized with zero values (or the value they were last changed to inside the
function), thus resulting in a failing postcondition. Therefore, we explicitly assigns
named return parameters the returned values. Such an assignment does not change
the program’s behavior and ensures that the named parameters hold the values
that are actually returned. The following encoding of return statements realizes the
assignments:

Encoding 5. Let return values be a return statement returning values values in a
function with the named parameters rets. Then, we encode the return statement as
follows:

⦃return values ⦄  rets = values
return rets

In the encoding makes use of the fact that, in Go, multiple values can be assigned
to multiple parameters in one lines. Thus, if the returned values are 1, "2", 3.4
and the named return parameters i int, s string, f float32, then we add the
assignment i, s, f = 1, "2", 3.4 when encoding a return statement.

In Figure 4.2 on the next page we find the example code discussed in Section 3.2.2 at
the top and the code for runtime checking the given precondition and postcondition
at the bottom. The example also demonstrates that the returned value is assigned to
the named return parameter.

4.1.3 Invariants

Loop invariants express conditions that are maintained from one loop iteration
to the next. In particular, a loop invariant holds upon entry to and exit from a
loop. In order to ensure that the invariant holds before, during and after the loop
execution, it needs to be checked at all of these program points. As invariants reason
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//@ r e q u i r e s d i v i s o r != 0
//@ ensures re s == x / d i v i s o r
func d iv ide (x , d i v i s o r i n t ) ( re s i n t ) {

re turn x / d i v i s o r
}

func d iv ide (x , d i v i s o r i n t ) ( re s i n t ) {
i f ! ( d i v i s o r != 0) {

panic ( " Precond i t ion v i o l a t e d " )
}
de fe r func () {

i f ! ( r e s == x / d i v i s o r ) {
panic ( " Pos t cond i t i on v i o l a t e d " )

}
}()
re s = x / d i v i s o r
re turn

}

Fig. 4.2: Runtime checks for a precondition and a postcondition

about variables that might be declared inside the initialization statement of the loop,
we define an encoding of loops that extracts the declaration of looping variables
simultaneously to adding runtime checks for invariants. This establishes visibility of
the variables in the scope of invariant checks before or after the loop.

Encoding 6. Let init denote an initialization statement that is part of a for-loop, and
cond, post and s the condition, post statement and body of the loop, respectively. Then,
we encode the loop as follows:

u

wwww
v

//@ invariant 〈a〉
for init; cond; post {

s
}

}

����
~

 

init
⦃invariant 〈a〉 ⦄
for ; cond; post {

⦃invariant 〈a〉 ⦄
Js K

}
⦃invariant 〈a〉 ⦄

For-loops with empty initialization or post statements are treated analogously. Range
declarations are encoded similarly with the difference that instead of extracting an
initialization statement, declarations of the looping variables are placed before the first
invariant check.

The encoding demonstrates that encoded loop invariants are placed before and after
a loop, and at the beginning of the loop body. Checking the assertion of the invariant
at each of these places ensures that the loop invariant is maintained throughout the
loop execution. This placement also allows us to include information about whether
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the invariant failed before, during or after the loop in the panic error message of
the runtime check. The disadvantage of this approach is a runtime overhead due to
the two checks before and at the beginning of the loop (or after the loop if the loop
is not executed) checking the same program state. Instead of the three checks, we
could place one check before the loop and one at the end of the loop body. However,
a check at the end of the loop body could be skipped with a continue or break
statement. Consequently, we decide to use the three checks as defined in Encoding 6
despite the runtime overhead. This leaves only the encoding of invariants themselves
to be defined:

Encoding 7. Invariants are translated to Go code using the following encoding:

⦃invariant 〈a〉 ⦄  if !L〈a〉M { "ERROR" }

Figure 4.3 depicts the runtime check generation for the sample program introduced
in Section 3.2.3. At the top, the program with specification annotation is shown. At
the bottom the runtime checking code that GoRAC generates is given. The example
also shows the extraction of the initialization statement.

j := 9
//@ i n v a r i a n t i + j == 9
f o r i := 0; i < 10; i++ {

j− −
}

j := 9
i := 0
i f ! ( i + j == 9) {

panic ( " I n v a r i a n t v i o l a t e d before loop execut ion " )
}
f o r ; i < 10; i++ {

i f ! ( i + j == 9) {
panic ( " I n v a r i a n t v i o l a t e d during loop execut ion " )

}
j− −

}
i f ! ( i + j == 9) {

panic ( " I n v a r i a n t v i o l a t e d a f t e r loop execut ion " )
}

Fig. 4.3: Runtime check for a loop invariant

This concludes the runtime check generation for specification clauses. Note that all
encodings integrate encoded assertions of the specification clauses. The encoding of
these assertions is explained in the next section.
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4.2 Assertions

An assertion, which is part of a specification clause, is translated to a condition for
the if-statement of the runtime check of the specification clause. Before assertions
are translated, GoRAC collects additional information for each of the constructs
that are part of the assertion. This process is called desugaring. During desugaring,
several actions take place:

• We save typing information of objects that are referred to in the assertion.

• We distinguish whether a call expression is a function or a predicate call.

• We transform implicit pointer dereferences such that the dereferences are
explicitly stated. E.g. for a struct pointer foo, we can define the access to
a field bar with an implicit dereference: foo.bar. When this expression is
desugared, the struct pointer is explicitly dereferenced: (*foo).bar. Likewise,
an implicit dereference of an array pointer that is used in an index expression
a[42] is desugared into the expression with an explicit dereference (*a)[42].

The information obtained by desugaring a specification assertion is used in the
runtime check generation for assertions. After an assertion is desugared, its encoding
is the exact translation of the specification expression into the Go language. This is
defined below in Encoding 8.

Encoding 8. Assertions that have equivalent Go expressions are encoded as follows:

L 〈x〉 M  x
L 〈l〉 M  l
L *〈e〉 M  * L 〈e〉 M
L +〈e〉 M  + L 〈e〉 M
L -〈e〉 M  - L 〈e〉 M
L !〈e〉 M  ! L 〈e〉 M
L 〈e〉 + 〈e〉 M  L 〈e〉 M + L 〈e〉 M
L 〈e〉 - 〈e〉 M  L 〈e〉 M - L 〈e〉 M
L 〈e〉 * 〈e〉 M  L 〈e〉 M * L 〈e〉 M
L 〈e〉 / 〈e〉 M  L 〈e〉 M / L 〈e〉 M
L 〈e〉 % 〈e〉 M  L 〈e〉 M % L 〈e〉 M
L 〈e〉 < 〈e〉 M  L 〈e〉 M < L 〈e〉 M

L 〈e〉 <= 〈e〉 M  L 〈e〉 M <= L 〈e〉 M
L 〈e〉 > 〈e〉 M  L 〈e〉 M > L 〈e〉 M
L 〈e〉 >= 〈e〉 M  L 〈e〉 M >= L 〈e〉 M
L 〈e〉 == 〈e〉 M  L 〈e〉 M == L 〈e〉 M
L 〈e〉 != 〈e〉 M  L 〈e〉 M != L 〈e〉 M
L 〈e〉 && 〈e〉 M  L 〈e〉 M && L 〈e〉 M
L 〈e〉 || 〈e〉 M  L 〈e〉 M || L 〈e〉 M
L 〈e〉[ 〈e〉 ] M  L 〈e〉 M[ L 〈e〉 M ]
L 〈e〉. 〈e〉 M  L 〈e〉 M. L 〈e〉 M
L 〈T〉{ 〈e〉∗ } M  L 〈T〉 M{ L 〈e〉 M∗ }
L 〈e〉( 〈e〉∗ ) M  L 〈e〉 M( L 〈e〉 M∗ )

Now we have defined the encoding of all specification constructs for which an
equivalent construct exists in the Go programming language. In addition, GoRAC
includes specification constructs that are not part of Golang. Each of the next sections
is dedicated to the runtime check generation of one of these additional specification
constructs.
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4.3 Ternary Operator

The ternary operator is used to express an if-then-else statement. Since the ternary
operator as an assertion cannot be encoded as a statement but needs to be a
Go expression, we encapsulate a corresponding if-then-else statement inside an
anonymous function call [14].

Encoding 9. Ternary expressions are encoded to Go code as follows:

L〈e1〉 ? 〈e2〉 : 〈e3〉 M  func() bool {
if L〈e1〉M {

return L〈e2〉M
} else {

return L〈e3〉M
}

}()

Figure 4.4 demonstrates the runtime check generation for ternary operators. The
code at the top of the figure shows a function that computes the absolute value of
a given integer. A postcondition ensures with the help of a ternary operator that

//@ ensures x >= 0 ? res == x : re s == −x
func abso luteValue ( x i n t ) ( re s i n t ) {

i f x >= 0 {
res = x

} e l s e {
re s = −x

}
re turn

}

func abso luteValue ( x i n t ) ( re s i n t ) {
de fe r func () {

i f ! func () {
i f x >= 0 { re turn re s == x }
e l s e { re turn re s == −x }

}() {
panic ( " Pos t cond i t i on v i o l a t e d " )

}
}()
i f x >= 0 {

res = x
} e l s e {

re s = −x
}
re turn

}

Fig. 4.4: Runtime check for a ternary operator
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the output of the function is the value of the input without regard to its sign. The
generated runtime check as shown at the bottom of Figure 4.4 consists of a defer-
statement that delays the postcondition check until function termination. Inside the
defer-statement, the anonymous function call holds the encoded ternary operator
that checks the assertion of the postcondition with an if-statement.

4.4 Quantifier

Similar to ternary operators, we also encode quantifiers using anonymous function
calls. The anonymous function checks the condition expressed by the quantifier and
returns true if the quantifier holds. We first address runtime checking of universal
quantifiers and afterwards of existential quantifiers.

4.4.1 Universal Quantifier

Intuitively, a universal quantifier expresses that a given assertion holds for all
quantified variables. Recall that our universal quantifier are bound by a domain.
We evalute the quantified predicate on all values of the domain. When a witness is
found that invalidates the predicate, false is returned. After all values are iterated,
we know that no witness was found, thus the predicate holds for all values of the
domain and we return true.

Encoding 10. A universal quantifier 〈qu〉 with quantified variables 〈X〉, domain 〈D(X)〉
and assertion 〈a(X)〉 is translated to Go code using the following encoding:

L〈qu〉M = Lforall 〈X〉 :: 〈D(X)〉 ==> 〈a(X)〉M  

func() bool {
Range(〈D(X)〉, 〈X〉)(

if !( L〈a(X)〉M ) {
return false

}
)
return true

}()

The encoding includes a call to an encoding function Range(〈D(X)〉,X) that deter-
mines how the domain 〈D(X)〉 of the quantified variables 〈X〉 is traversed. The range
function iterates over all values of the domain and executes for each such value the
statement provided as an argument. In the encoding above, the if-statement that
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composes the assertion check is input to the range function call. Let us illustrate the
use of the range function by an example. The following quantifier, which states that
all values of an array are positive, serves as an example.

//@ a s s e r t f o r a l l x i n t : : _ , x in range ar r ==> x > 0

The statement that checks for each quantified variable whether the quantifier condi-
tion holds is:

i f ! ( x > 0) { re turn f a l s e }

This statement is input to the range function which then wraps it into a for-loop that
iterates over the array such that all values of the specified domain are checked:

f o r _ , x := range ar r {
i f ! ( x > 0) {

re turn f a l s e
}

}

The complete runtime check for the assertion is thus:

i f func () bool {
f o r _ , x := range ar r {

i f ! ( x > 0) {
re turn f a l s e

}
}
re turn t rue

}() {
panic ( " As se r t i on v i o l a t e d " )

}

Recall that a quantifier domain is a formula of conjunctions and disjunctions of
multiple domain constraints. The example above shows a quantifier with just a
single domain constraint. We will first define an iteration function that handles single
domain constraints. Afterwards, we proceed with the definition of a range function
that can handle conjunctions and disjunction of multiple domain constraints.

For a given domain constraint, the iteration function generates code that iterates
over the domain. This is realized by translating a single domain constraint in a loop
declaration. The body of the loop consists of a statement that is passed into the
iteration function.
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Definition 16. Let Gs be the set of Go statements as described in the Go Language
Specification [14] and 〈c(X)〉 a constraint of a quantifier domain. Then, we can define
the following iteration function:

iterate(〈c(X)〉) : Gs → Gs

For a statement s, we define:

iterate(〈e1〉 < 〈x〉 < 〈e2〉)(s) =

for x := 〈e1〉+ 1; x < 〈e2〉; x++ { s }

iterate(〈e1〉 <= 〈x〉 < 〈e2〉)(s) =
for x := 〈e1〉; x < 〈e2〉; x++ { s }

iterate(〈e1〉 < 〈x〉 <= 〈e2〉)(s) =
for x := 〈e1〉+ 1; x <= 〈e2〉; x++ { s }

iterate(〈e1〉 <= 〈x〉 <= 〈e2〉)(s) =
for x := 〈e1〉; x <= 〈e2〉; x++ { s }

iterate(〈x〉 in range 〈e〉)(s) =
for x := range 〈e〉 { s }

iterate(_, 〈x〉 in range 〈e〉)(s) =
for _, x := range 〈e〉 { s }

iterate(〈x1〉 , 〈x2〉 in range 〈e〉)(s) =
for x1 , x2 := range 〈e〉 { s }

The definition above describes how single terms of a conjunction or disjunction that
makes up a quantifier domain are translated to Go code. Let us now look at an
example of a quantifier with conjunct domains:

//@ a s s e r t f o r a l l x , y i n t : : 0 <= x < 10 && 0 <= y < 10 ==> x * y < 100

The quantifier states that the product of two positive integers which are smaller than
ten is always less than one hundred. In order to check the quantifier assertion on
the right side of the implication, both quantified variables need to be instantiated.
This is realized by nesting the loops that iterate over the two domains:

f o r x := 0; x < 10; x++ {
fo r y := 0; y < 10; y++ {

i f ! ( x * y < 100) {
re turn f a l s e

}
}

}

The example implies that translating domains which are conjunctions of multiple
constraints results in multiple nested loops. This nesting is performed by the range
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function that was used in the encoding of universal quantifiers. In order to define
the range function, we need to introduce the terms of free and bound variables. A
variable is free if no domain for the variable has been declared yet. In contrast, a
variable is bound if a domain has been declared for it. In other words, a variable
is bound if a corresponding has been iterated by the iteration function. With the
notation of free and bound variables, the range function is defined as follows:

Definition 17. Let Gs be the set of Go statements as described in the Go Language
Specification [14], 〈D(X)〉 a domain of a quantifier, and R a set of free quantified
variables. Then we can define a range function

Range(〈D(X)〉, R) : Gs → Gs

which takes a statement s as input and outputs the original statement wrapped into
the range traversal of the given domain. For conjunctions we define

Range(〈D1(X)〉 && 〈D2(X)〉, R)(s) =

Range(〈D1(X)〉, R)(Range(〈D2(X)〉, R\bound(D1))(s))

where bound(D1) is the set of variables that are bound by any sub-domain of D1(X).

Before defining the range function case for disjunctions, we again first look at an
example.

//@ a s s e r t f o r a l l x i n t : : 0 <= x <= 41 || 43 <= x <= 1337 ==> x != 42

The quantifier reasons about integers of disjunct intervals. When checking the
quantifier assertion for the quantified integer variables, we can first test all variables
bound by the first domain constraint and afterwards proceed with all variables bound
by the second constraint. This results in two consecutive loops for the disjunction of
the domain constraints:

f o r x := 0; x <= 41; x++ {
i f ! ( x != 42) {

re turn f a l s e
}

}
f o r x := 43; x <= 1337; x++ {

i f ! ( x != 42) {
re turn f a l s e

}
}

We can thus add the second case for the range function:
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Definition 18. Additionally to the cases of the range function defined in Definition 17,
we declare the following case of the range function for disjunctions:

Range(〈d1(X)〉 || 〈d2(X)〉, R)(s) =

Range(〈d1(X)〉, R)(s) ; Range(〈d2(X)〉, R)(s)

We have not yet defined how the range function declared in Definitions 17 and 18
makes use of the iteration function from Definition 16. Essentially, the range func-
tion calls the iteration function whenever a single domain constraint is encountered.
However, we need to define an exceptional case when multiple domains reason about
the same quantified variable, i.e. when a quantified variable is bound by multiple
domains. We demonstrate this using a quantifier that imposes the restriction on an
array that the first 10 elements need to be less than 100.

//@ a s s e r t f o r a l l x i n t : : 0 <= x < 10 && x in range ar r ==> arr [x ] < 100

If we translate the quantifier according to our range function and call the iteration
function for each domain constraint, we obtain the following Go code:

f o r x := 0; x < 10; x++ {
fo r x := range ar r {

i f ! ( a r r [ x ] < 100) {
re turn f a l s e

}
}

}

This translation is not valid in Go since the variable x is defined twice, once in the
outer and once in the inner loop. Therefore, we use a different looping variable for
the inner loop and perform the check whether arr[x] < 100 only when the inner
looping variable is equal to the outer looping variable:

f o r x := 0; x < 10; x++ {
fo r y := range ar r {

i f y == x {
i f ! ( a r r [ x ] < 100) {

re turn f a l s e
}

}
}

}

Motivated by this example, we distinguish three cases for the range function when a
single domain constraint is encountered: (i) If all quantified variables of the domain
constraint are free, the domain is iterated. (ii) If the domain constraint reasons
about at least one variable that has already been bound, the domain is filtered
for this variable as demonstrated in the example above. (iii) If all variables that
the domain constraint reasons about are bound, the domain is filtered for all of
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these variables. Note that a domain constraint can reason about a maximum of two
quantified variables.

Definition 19. Let 〈C(X)〉 be a domain constraint of a quantifier that bounds the
quantified variables in the set X, R a set of free quantified variables, and s a statement.
Then we can add the following cases to the range function defined in Definition 17:

Range(〈c(X)〉, R)(s) =
iterate(〈c(X)〉)(s) if X ⊆ R

iterate(〈c(X \ {x} ∪ {y})〉)( if y == x { s }) if X 6⊂ R ∧ X ∩ R 6≡ ∅

iterate(〈c({y1, y2})〉)( if y1 == x1 && y2 == x2 { s }) if X ∩ R ≡ ∅

As mentioned in Section 3.3, boolean quantified variables can but do not need
to be bounded explicitly by stating a domain. Therefore, a last case is added to
the definition of the range function. In this case, the domain is empty but there
are still boolean quantified variables left in the set of free variables R. The range
function generates a loop that iterates over both possible truth values of the boolean
quantified variable.

Definition 20. Let bi be a boolean variable, s a statement and _ an empty parameter.
Then, we can add the following case to the range function from Definition 17:

Range(_, {〈b1〉, ..., 〈bn〉})(s) =

for b1 := range [2]bool{true, false} {

Range(_ {〈b2〉, ..., 〈bn〉})(s)

}

With this being the last case of the range function definition, we conclude the
encoding of universal quantifiers. Before proceeding with the encoding of existential
quantifiers, we demonstrate the translation of quantifiers with boolean variables
in Figure 4.5. The figure shows a quantifier with two quantified variables: one

//@ a s s e r t f o r a l l x in t , b bool : : 42 < x < 1337 ==> ( x > 0 && b)

i f ! func () bool {
f o r x := 42 + 1; x < 1337; x++ {

f o r _ , b := range [2] bool { true , f a l s e } {
i f ! ( x > 0 && b) { re turn f a l s e }

}
}
re turn t rue

}() { panic ( " A s se r t i on . . . v i o l a t e d . " ) }

Fig. 4.5: Runtime check for a universal quantifier with a boolean quantified variable
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integer variable in between 42 and 1337, and one boolean variable. The code at the
bottom depicts the code that GoRAC generates when translating the quantifier into a
runtime check. Since the boolean variable is not explicitly bounded, a loop ranging
over the two possible truth values is generated.

4.4.2 Existential Quantifier
An existential quantifier states that a given expression holds for at least one variable
from the domain of the quantifier. As for universal quantifiers, the approach for
runtime checking existential quantifiers is to iterate over all quantified variables of
the domain. The encoding again uses the range function declared in Definition 17.

Encoding 11. An existential quantifier 〈qe〉 with quantified variables 〈X〉, domain
〈D(X)〉 and assertion 〈a(X)〉 is translated to Go code using the following encoding:

L〈qu〉M = Lexists 〈X〉 :: 〈D(X)〉 && 〈a(X)〉M  

func() bool {
Range(〈D(X)〉, X)(

if L〈a(X)〉M {
return true

}
)
return false

}()

For each of the quantified variables the quantifier assertion is checked. However,
contrary to universal quantifiers, the encoding of an existential quantifier returns
true as soon as the expression is satisfied by a variable. In this case the quantifier
holds. If this is never the case, the encoding returns false because the quantifier does
not hold. Figure 4.6 exemplifies the runtime check of an existential quantifier. The

//@ a s s e r t len ( s1 ) >= 10 && len ( s2 ) >= 10 &&
//@ e x i s t s x i n t : : _ x in range s1 || _ , x in range s2 && x == 42

i f ! ( len ( s1 ) >= 10 && len ( s2 ) >= 10 && func () bool {
f o r _ , x := range s1 {

i f x == 42 { re turn t rue }
}
fo r _ , x := range s2 {

i f x == 42 { re turn t rue }
}
re turn f a l s e

} ( ) ) { panic ( " A s se r t i on v i o l a t e d . " ) }

Fig. 4.6: Runtime check for an existential quantifier
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given assertion checks whether there is an element that is equal to 42 in any of two
given slices that each need to hold at least 10 integers. The figure further shows that
quantifiers can be embedded into longer assertions.

4.4.3 Optimizations

The encoding of a quantifier with a conjunction as its domain can result in deeply
nested loops. Such nested loops lead to expensive run times. Therefore, it is desirable
to optimize the generated code of the runtime checks for quantifiers. This subsection
motivate and illustrate several optimizations that are realized in GoRAC.

Let us consider the following code that might be produced when generating a run-
time check for some quantifier.

f o r x := 0; x < n ; x++ {
fo r y := 0; y < m; y++ {

i f y == x {
i f x < 0 {

re turn t rue
}

}
}

}

The nested loops have a runtime of O(n× m). However, for every execution of the
outer loop, the if-condition y == x only holds at most n times. Thus, the inner check
whether x < 0 is executed at most n times. This means that there are n × (m− 1)
superfluous executions of the inner loop.

Since this is not efficient, we aim to optimize certain nested loops. In the example
above, we replace the inner loop together with the filtering condition y == x by
a simple check whether x is in the range defined by the loop header. The opti-
mized code given below runs in O(n) which is a significant improvement to the
non-optimized version.

f o r x := 0; x < n ; x++ {
i f x >= 0 && x < m {

i f x < 0 {
re turn t rue

}
}

}

We define an optimization function in order to transform runtime checks of quanti-
fiers into their optimized versions:
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Definition 21. Let Gs denote the set of Go statements as described in the Go Language
Specification [14]. Then the function

b c : Gs → Gs, s 7→ bs′c

translates the Go statement s into an optimized statement s′ with respect to a faster
runtime.

In the following, we give a list of optimizations. Each optimization is defined for
a loop that contains a filtering condition. The placeholder s denotes an arbitrary
statement that makes up the body of the if-condition. The left side shows the original
code, the right side the corresponding optimized code.

Optimization 1. Let a be an array or slice, and x an integer variable. Then filtering
index i for the value of variable x is optimized as follows:

for i := range a {
if i == x {

s
}

}


 

if x >= 0 && x < len(a) {
s

}

Optimization 2. Let a be an array or slice, and x and y integer variables. Then filtering
index i and value v for the values of variables x and y is optimized as follows:

for i, v := range a {
if i == x && v == y {

s
}

}


 

if x >= 0 && x < len(a)
&& a[x] == y {
s

}

Optimization 3. Let m be a map and x a variable. Then filtering key k for the value of
variable x is optimized as follows:

for k := range m {
if k == x {

s
}

}


 

if _, ok := m[x]; ok {
s

}
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Optimization 4. Let m be a map and x and y variables. Then filtering key k and value
v for the values of variables x and y is optimized as follows:

for k, v := range m {
if k == x && v == y {

s
}

}


 

if v, ok := m[x]; ok
&& v == y {
s

}

Optimization 5. Let x be a variable. Then filtering a numeric loop with loop variable
i for the value of variable x is optimized as follows:

for i := e1; i ◦2 e2; i++ {
if i == x {

s
}

}


 

if e1 ◦1 x && x ◦2 e2 {
s

}

where the domain constraint is e1 ◦1 i ◦2 e2 with ◦1, ◦2 ∈ {<, <=}.

When a runtime check is generated for a domain constraint, it is first checked
whether an optimization can be applied. If so, the optimized code is returned. Note
that filtering for values in data structures without specified indexes or keys cannot
be optimized. This is due to the fact that we would need to guess the key that
belongs to the filtered value in order to shorten the iteration over all values in the
data structure, which is not possible.

In theory, we can think of even more quantifier optimizations. For instance, all
numeric ranges for the same quantified variable can be summarized into one:

for i = a; i < b; i++ { for i = c; i < d; i++ { s }}

is optimized into

for i = math.Max(a, c); i < math.Min(b, d); i++ { s }

In practice, we implemented only optimizations that we assumed to happen fre-
quently in order to reduce the complexity of the generated code.

The presented strategy for runtime check generation of quantifiers has the benefit
that every element that satisfies the given constraints, e.g. every element of a data
structure or in a numeric range, is tested against the quantifier’s assertion. This is a
very safe strategy for checking quantifiers that does not leave room for doubt whether
the quantifier holds as long as the implementation succeeds. On the other hand,
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the strategy also has the weakness that for very large ranges it is not so efficient.
Under the assumption that the original program declares only meaningful data
structures, iterating all of their values will always be rational. However, quantifier
with integer bounds might result in very large ranges to be iterated that lead to a
significant decrease in efficiency when executing the program with runtime assertion
checks in comparison to the original program. In such a case, a different strategy for
checking quantifiers could be sampling of numeric values to check the quantifier’s
assertion. We have not implemented a sampling strategy but still wanted to address
this problem as part of the thesis and provide a solution idea for it.

4.5 Old Expressions

Since there are different semantics for shared and exclusive old variables, the
runtime check generation for old expressions differs depending on whether the
expression contains shared or exclusive old variables. In the following, we use the
word exclusive old expression if we refer to an expression used in old that contains
an exclusive variable. E.g. if foo is an exclusive struct variable, then foo.bar
is an exclusive expression. Similarly, the word shared old expression is used
for expressions that contain a shared variable. Any complex expression can be
divided into subexpressions that are either shared or exclusive. We will first address
the runtime checking of shared old expressions and afterwards deal with runtime
check generation for exclusive old expressions. Since runtime checking of exclusive
old expressions is more complex than generating runtime checks for shared old
expressions, we have dedicated the whole next section to exclusive old expressions
while runtime checking shared old expressions is described in the next subsection.

4.5.1 Shared Variables in Old Expressions

Intuitively, we convert a shared old expression into a Go expression by replacing it
with a variable that stores the old value of the expression. Consider the Go program
in Figure 4.7: Two integers x and y given. A pointer p is declared which points to

x , y := 0 , 1
p := &x //@ shared : p
L :
p = &y
x , y := 2 , 3
P :
//@ a s s e r t old [L ](* p) == 0

Fig. 4.7: Example of a shared variable used in an old expression
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x at label L and afterwards to y at label P. In between the two labels, the values of
the two integers also change. An assert statement after program point P uses an
old expression. The old expression reasons about the old value of *p at label L. As
the variable p is shared, the old expression old[L](*p) is evaluated in the heap at
program point L. At this program point, the pointer holds the address of x whose
value is zero. Hence, the assert statement should succeed. For checking the assertion
at runtime, we make use of a helper variable that saves the old value of *p and is
later used instead of the shared old expression in the encoded assert statement. The
following figure shows the code that GoRAC generates for the example in Figure 4.7:

var oldP i n t // he lper v a r i a b l e
x , y := 0 , 1
p := &x
L :
oldP = *p // as s i gn old value
p = &y
P :
i f ! ( oldP == 0)) { panic ( " . . . " ) } // uses he lper v a r i a b l e

Fig. 4.8: Runtime check for the old expression with a shared variable of Figure 4.7

The helper variable is called oldP and has the same type as the operand of the old
expression. At label L, to which the old expression refers, the value of the shared old
expression is assigned to the helper variable. Finally, the helper variable replaces the
shared old expression in the assertion.

The example illustrates how we generate runtime checks for shared old expressions.
Now, we describe a general approach with the help of a function that maps any
shared old expression to a distinct variable:

Definition 22. Let Se be the set of specification expressions, L the set of labels and X
the set of Go variables. Then, we can define the following function

oldVariable : Se × L → X, (e, L) 7→ x(e, L)

returning a variable corresponding to expression e at label L.

The variable x(e, L) saves the value of the specification expression e at label L. We
call this variable the old variable for old expression e. After declaring the old variable,
the encoding of shared old expressions is simply a replacement of the old expression
by the corresponding old variable.

Encoding 12. Shared old expressions are translated to Go code using the following
encoding:

Lold[L](〈e〉) M  oldVariable(e, L) = x(e, L)
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In order to include the declaration of an old variable at the beginning of a function,
we need to define an encoding of functions additionally to Encoding 2 that handles
functions with preconditions and postconditions. The declaration of an old variable
that has type Te is included at the beginning of a function whose specification uses
the shared old expression old[L](e). At the label L, the value of e is assigned to
the variable x(e, L). Note that for unlabeled old expressions, this assignment is
performed directly after the variable declaration at the beginning of the function.

Encoding 13. Let name denote an arbitrary function name, args the arguments of the
function, rets the return values of the function, and s1 and s2 lists of statements. Let
further old[L](e) be an old expression that is used in the specification for the function,
where L denotes a label, e a shared old expression, and we have Lold[L](〈e〉) M =
x(e, L). Then, we encode the function as follows:

u

wwwwww
v

func name(args) (rets) {
s1

L:
s2

}

}

������
~

 

func name(args) (rets) {
var x(e, L) Te
Js1 K
L:
x(e, L) = ⦃〈e〉⦄
Js2 K

}

For simplicity, we have left out potential function receivers. The encoding of methods
with old expressions in their specification is identical to the encoding of functions.

Hereby, we have finished the runtime checking for shared old expressions. The
runtime check generation of shared old expressions has been fully implemented
in GoRAC . The tool supports the use of shared old expressions in post-conditions,
assert statements, assumptions, and invariants as mentioned in Section 3.4.3 with
only a minor restriction that is further discussed in Section 4.7.2.

4.6 Exclusive Variables in Old Expressions

Generating runtime checks for exclusive old expressions requires a more elaborate
approach than the generation for shared old expressions. As for shared old expres-
sions, we make use of the preliminary definitions given in Section ??. We will start
with an example to point out the difficulties of checking exclusive old expressions.
The example is translated to Go code in order to illustrate the idea of the runtime
check generation. Afterwards, multiple sections will build up the general approach.
In the end, Section 4.6.6 presents the final encoding.
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x , y := 0 , 1
p := &x //@ e x c l u s i v e : p
L :
p = &y
x , y := 2 , 3
P :
//@ a s s e r t old [L ](* p) == 1

Fig. 4.9: Program with a heap-dependent exclusive old expression

Recall the semantics of exclusive variables and the definition of heap-independent
and heap-dependent as introduced in Section 3.4.1: Exclusive variables in old
expressions always evaluate to their current value. For any heap-independent
expression used in an exclusive old expression, this means that we can simply
replace the exclusive old expression by the expression itself. The expression will thus
be evaluated at the point of the old expression and result in its current value. This
section describes the encoding of exclusive old expressions with heap-dependent
expressions. We will start with an example to demonstrate the challenges we face
when runtime checking heap-dependent exclusive old expressions.

Figure 4.9 illustrates a similar scenario as the example of shared old expressions
given in Figure 4.7. The difference between the two programs is that the pointer
variable p is now exclusive. This also results in a different assertion at the end of the
program because of the different semantics for shared and exclusive variables. The
old expression used in the assertion at label P reasons about the old value of *p at
label L. Since p is exclusive, p evaluates to its current value which is the address of y
at program point P. Dereferencing this address at label L yields 1.

For the runtime check generation of the assertion given above, a natural assumption
is to proceed similarly to heap-independent expressions and simply evaluate e at
program point P. However, Figure 4.9 shows that this is not possible since evaluating
*p at label P reflects the change that has been made to y in between L and P. Hence,
the expression *p is equal to 3 at label P instead of 1 as required by the exclusive old
semantics.

To correctly reflect the desired semantics, a heap lookup at program point L for the
pointer stored in p has to be performed. However, for this lookup, the pointer value
at program point P should be used which is not known yet at program point L. In
other words, at program point L the value that p will have at program point P has to
be predicted.

The example thus shows that for an exclusive variable, we need to already predict in
the old state which values can be assigned to the variable in the future. We model
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this prediction using maps which save all potential future values of variables. I.e.
we do not precisely determine the future value of a variable but over-approximate
the problem and store all values that could potentially be assigned to it. The maps
are used to lookup the value an old expression had at an earlier program point.
The keys of the lookup maps are the addresses of the values which are saved. An
address uniquely identifies variables over all program points even if the variable’s
value changes. Therefore, we can lookup a value that a variable had at a previous
program point using the address of the variable.

Let us outline the approach using the example given in Figure 4.9. We save all
addresses of values that can potentially be assigned to the old expression in a set
called candidates. Since the operand of the expression *p is of type integer, all
integer variables are potential candidates. Thus, we save the addresses of x and y
in the set candidates. At label L, the current values of all candidates from this set
are saved in a map called lookup. The keys of this lookup map are the candidate
addresses &x and &y. They are mapped to the values that x and y have at program
point L, respectively. For the runtime check of the assertion, we replace the old
expression by a map lookup using p as the key. Since the evaluation of p at program
point P yields the address of y, we lookup the value belonging to the address of y
in the lookup map. The lookup returns 1 which is the value of y at label L. The
generated code for this example is given in Figure 4.10. The candidate set is
modeled as a map of addresses to boolean values which are always true because Go
does not have built-in sets.

We can proceed with the description of a general approach of runtime checking an
exclusive old expression es. The approach can be divided into four steps:

• Candidate map declaration: We determine all types of subexpressions of es

and declare a candidate map for each of these types. We refer to these types as
candidate types. A value that es could evaluate to is called a candidate value.

candidates := map[* i n t ] bool {}
lookup := map[* i n t ] i n t {}
x , y := 0 , 1
candidates [&x] = true
candidates [&y ] = true
p := &x
L :
f o r c := range candidates {

lookup [ c ] = *c
}
p = &y
x , y := 2 , 3
P :
i f ! ( lookup [p] == 1) { panic ( " . . . " ) }

Fig. 4.10: Program from Figure 4.9 with runtime checks
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• Retrieving candidates: We inspect all Go expressions that are part of the
function in which the old expression es occurs and decide which ones hold
candidate values for es. These expressions are called candidates and are saved
in the respective candidate map.

• Lookup map declaration: We declare a lookup map for es and fill it with the
values that the respective candidates have at the label es refers to.

• Performing lookups: The exclusive old expression es is replaced by a lookup
in the appropriate lookup map.

Note that if es contains a nested old expression, we need to apply the four steps
above to the nested old expression as well. The next subsections each deal with
one of the four steps outlined above: Section 4.6.1 describes how to decide which
types are candidate types for a given old expression. Subsection 4.6.2 explains
how candidates for an old expression are retrieved. Subsection 4.6.3 shows the
declaration of lookup maps, and Subsection 4.6.4 defines a lookup function for the
exclusive old expression. The last part, Subsection 4.6.5, completes the general
procedure by combining the presented functions.

4.6.1 Candidate Types

We define a function candidateTypes that returns all subexpressions with their
respective type for a given old expression. The function candidateTypes takes
the old expression es as input and returns a set of triples that each consist of a
subexpression ei of es, a type Ti, and a label L. The type Ti is the (candidate) type
for subexpression ei. In other words, all candidate values for the expression ei at the
label L will be of type Ti. The label L corresponds to the label of the old expression
the subexpression is a part of. Since nested old expressions with different labels are
allowed, not all subexpressions need to have the same corresponding label.

Definition 23. Let Se be the set of specification expressions, L the set of labels and T
the set of Go types. Then, we can define the following function

candidateTypes : Se × L → T × Se × L

(es, L) 7→ {(T1, es1’, L1), ..., (Tn, esn’, Ln)}

that maps a given tuple of specification expression and label to a set of triples each
containing a candidate type, subexpression, and label. The definition of the function is
split into multiple cases:
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candidateTypes(es, L) =

{} if es ∈ X × L

{ (Tes, es, L) } ∪ candidateTypes(es’, L)

if es ≡ *es’

candidateTypes(es’, L)

if es ≡ es’.f

candidateTypes(es’, L’)

if es ≡ old[L’](es’)

candidateTypes(es’, L) ∪ candidateTypes(es”, L)

if es ≡ es’[es”], es’ array

{ (Tes, es, L) } ∪ candidateTypes(es’, L) ∪ candidateTypes(es”, L)

if es ≡ es’[es”], es’ slice

{ (Te’s, es, L) } ∪ candidateTypes(es’, L) ∪ candidateTypes(es”, L)

if es ≡ es’[es”], es’ map

The definition of the candidate types function exploits the fact that a constant,
literal or variable used in an exclusive old expression has to evaluate to its constant
and current value, respectively. Hence, for constants and variables we do not
add any candidate types. For a dereference *es’, a candidate type is the type
of the value to which the dereferenced pointer refers, i.e. the type of es. This
type Tes is returned in a triple with the current specification expression, to denote
the origin of this candidate type, and the current specification label. Since we
might have to save further candidate types for nested exclusive expressions, we
afterwards recurse the expression that is dereferenced. For dot expressions es’.f,
we recursively call candidateTypes on the structure es’. As mentioned in Section
4.2, desugaring removes implicit dereferences. Hence, the recursive call will either
return no candidate types if the structure is a variable that evaluates to its current
value, or return a candidate type for the dereference. If we encounter a nested
old expression old[L’](es’), the label is updated in the next recursive step to the
label L’ of the inner old expression. For index expressions es’[es”], we need to
differentiate whether an array, slice or map is indexed: Since arrays are values in Go
and therefore not treated as pointers, we simply call the candidateTypes function
on the array es’ and the index of the expression es”. In contrast, slices are treated
as pointers. Thus, for slices, we return a candidate type that is the type of the index
expression and also recurse the slice and the index. Maps are treated likewise, except
that the candidate type is the map type such that information on the types of both
the keys and the values of the map are returned. In the next section, candidate types
are used to retrieve candidates. In Section 4.6.3, candidate types are needed to
declare correct lookup maps.
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4.6.2 Candidates

In the next step of the runtime check generation for exclusive old expressions, we
collect addresses of heap locations that are potentially referred to in an exclusive
old expression. Recall that we call such a heap location a candidate for an old
expression. A candidate is an expression that evaluates to a candidate value, i.e. a
value that the exclusive old expression could evaluate to. Thus, all candidates are of
a candidate type that was described in the previous subsection. In order to determine
all candidates for an old expression es, we call a function named candidates on all
Go statements of a function before the specification annotation in which es occurs.

Definition 24. Let T be the set of Go types, Ge the set of Go expressions and A the set
of addresses. Then, we can define the following function

candidates : T × Ge → Ak, (t, eg) 7→ {a1, ..., ak}

which determines the set of addresses of all candidates for a single Go expression es and
candidate type t. An address from this set is denoted as ai.

For every statement, the candidates function is called with each unique candidate
type that is part of any triple returned by candidateTypes. The function candidates
returns for a given Go statement or expression eg and type t all addresses of
addressable subexpressions of eg that are of type t. The Go Language Specification
defines an expression as addressable if it is "either a variable, pointer indirection,
or slice indexing operation; or a field selector of an addressable struct operand;
or an array indexing operation of an addressable array" [14]. Note that a call of
the candidates function on a single Go expression can return several addresses:
Let t be an integer type and eg a struct pointer with two integer fields, then the
addresses of both fields are returned. We consider only addressable subexpressions
since candidate values of heap-dependent old expressions can either be assigned
or constructed from addressable expressions. E.g. for an expression 5 + *a, the
candidates function would not return the address of the entire expression but only
the address of a. After having called the candidates function with type t on all Go
statements before the specification annotation in which es occurs, we receive the
addresses {a1, ..., ak} of all candidate values for es.

In the following, we adopt the naming convention for statements and expressions of
the Go Language Specification [14]. Any statement or expression which is not han-
dled by a case stated below results in the candidates function returning the empty
set. Because Go consists of a variety of different kinds of statements or expressions,
we split the definition of candidates into several parts: Subsection 4.6.2 starts by
determining candidates from expressions which are operands. Then, Subsection
4.6.2 addresses the candidate retrieval of primary expressions. Subsection 4.6.2
concludes the definition of the candidates function by dealing with Go statements.
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Operand Candidates

We first define the candidates function for operands, the most basic building blocks
of expressions. An operand can be a literal, an identifier denoting a constant, variable
or function, or a parenthesized expression. A qualified identifier is an identifier with
a package name prefix[14]. Note that we do not consider basic or function literals
since they are not addressable.

〈Operand〉 ::= Literal | OperandName | ( Expression )

〈Literal〉 ::= CompositeLit

〈OperandName〉 ::= Identifier | QualifiedIdentifier

When calling the candidates function on an Identifier or a QuantifiedIdentifier,
we check whether it’s type is the candidate type. If so, the function returns an address
to the identifier. For parenthesized expressions we simply call candidates on the
enclosed expression:

candidates(t, eg) =
{&eg} if eg (Qualified) Identifier ∧ Teg ≡ t

∧ Teg not struct, slice, array or map type

candidates(t, eg’) if eg ≡ ( eg’ )

Next, we describe the candidates function for composite literals and identifiers
referring to variables of type struct, array, slice or map: For an expression eg of
type struct, we write eg.Fields to refer to all fields of eg. This notion applies to
both composite struct literals and struct identifiers. Since any field of a struct might
be a candidate value for an exclusive old expressions, the candidates function is
recursively called on all the struct fields when a composite struct literal or struct
identifier is encountered. In the first case, the struct identifier or literal itself is a
candidate and thus its address is saved before recursing its fields. The second case
handles struct identifiers or literals which are not candidates themselves but might
contain fields that are candidates:

candidates(t, eg) =

{&eg} ∪
⋃

f ∈ eg.Fields candidates(t, f) if Teg ≡ t ∧ eg Identifier or

CompositeLit ∧ Teg struct type⋃
f ∈ eg.Fields candidates(t, f) if Teg 6≡ t ∧ eg Identifier or

CompositeLit ∧ Teg struct type
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For identifiers or composite literals of type array or slice, we differentiate three cases:
The first case handles candidates of type array. If an array identifier or composite
literal is encountered, the address of this candidate array is saved. The second case
handles candidates of type slice. A slice is a dynamically-sized view at a particular
offset into an underlying array. When determining candidates of type slice, the
offset and size of the slice are flexible, only the type of the underlying array is
known. For a slice (or array) type t, we refer to the type of slice (or array) members
with t.memberType. Now, if an array of type Teg is encountered whose members
are of the same type as the slice members, i.e. Teg.memberType ≡ t.memberType,
any sub-section of this array is a potential candidate due to the flexible sizes and
offsets of slices. Saving all sub-sections for an array of length n would result in
O(n× n−1

2 ) = O(n2) candidates. Therefore, the candidates function is defined to
save every entry of the array instead. This results in only O(n) candidates. The
lookup of a slice will later determine the starting position and length of the slice. The
same procedure is applied if we are looking for candidate slices and encounter a slice.
The third case handles candidates which have neither array nor slice types. When
encountering an array or slice, every member is inspected for potential candidates:

candidates(t, eg) =

{&eg} if Teg ≡ t ∧ eg Identifier or

CompositeLit ∧ Teg array type⋃
i ∈ 0 ...len(eg) {&eg[i]} if eg Identifier or CompositeLit

∧ Teg array or slice type ∧ t slice type

∧ Teg.memberType ≡ t.memberType⋃
i ∈ 0 ...len(eg) if eg Identifier or CompositeLit

candidates(t, eg[i]) ∧ Teg array or slice type

∧ t not array or slice type

When looking for candidates of a map type, we refer to the key type of the candidate
map type as candidate key type and to the value type of the candidate map type as
candidate value type. Handling map identifiers or composite map literals results in
two cases of the candidates function. The first case handles a map whose types of
keys and values match the candidate key type and candidate value type, respectively.
In order to save all the map entries as candidates, we simply save the map’s address.
As later subsections will show, candidates of map type will be treated in a way that
all their entries will be considered. The second case shows that if a map is inspected
during a search for candidates of some type other than a map type, each value in
the map is recursively inspected. There is no case that inspects keys whose types
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match the candidate type t since keys cannot be candidates (neither can indices of
arrays or slices):

candidates(t, eg) =

{&eg} if eg Identifier or CompositeLit

∧ Teg map type

∧ t map type

∧ Teg.keyType ≡ t.keyType

∧ Teg.valueType ≡ t.valueType⋃
k ∈ eg.Keys candidates(t, eg[k]) if eg Identifier or CompositeLit

∧ Teg map type

∧ t not map type

Primary Expression Candidates

As a single operand is considered to be a primary expression. Primary expressions
are the most basic expressions in Go. The primary expressions we consider for the
definition of candidates are operands, index-, slice-, dot-, and call expressions:

〈PrimaryExpr〉 ::= Operand | IndexExpr | SliceExpr | DotExpr | CallExpr

〈IndexExpr〉 ::= PrimaryExpr [ Expression ]

〈SliceExpr〉 ::= PrimaryExpr [ : ]

〈DotExpr〉 ::= PrimaryExpr . Expression

〈CallExpr〉 ::= PrimaryExpr ( Expression* )

Given an array a, a valid index expression is a[42] and an example of a slice
expression is a[:]. For a struct s, a dot expression s.f denotes an access to its field
f. Examples of call expressions are function calls such as foo() or method calls such
as foo.bar().

Index-, slice- and dot expressions are handled by the following part of the candidates
definition. For index and dot expression, we first check whether the expression has
the candidate type. If so and the expression is addressable, the address of the
expression is saved. In any case, the candidates function is called on the underlying
data structure. The index of an index expression is not recursed since an array or
slice index cannot be a candidate, analogously to a map key. We have seen how
slices (respectively expressions of type slice) are handled above, now we look at
expressions that create a new slice from an existing array or slice. For these slice
expressions, we simply recurse on the data structure used to declare the slice to
search for candidates:
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candidates(t, eg) =

&eg ∪ candidates(t, eg’) if eg ≡ eg’[eg”] IndexExpr ∧ Teg ≡ t

candidates(t, eg’) if eg ≡ eg’[eg”] IndexExpr ∧ Teg 6≡ t

&eg ∪ candidates(t, eg’) if eg ≡ eg’.field DotExpr ∧ Teg ≡ t

candidates(t, eg’) if eg ≡ eg’.field DotExpr ∧ Teg 6≡ t

candidates(t, eg’) if eg ≡ eg’[:] SliceExpr

For a call expression eg we denote its input parameters with eg.InputParams. For a
method call, we further use the notation eg.Receiver to refer to the data structure
the method was called on. We know that the call expression is a method call if
the receiver is not empty. Since both function and method calls might change data
associated with parameters or the receiver data structure, we need to reinspect
the parameters and receivers for candidates after a call has returned. This results
in two cases for both function and method calls: One, in which the return type
of the call has the candidate type and is therefore saved in addition to recursing
the parameters (and receivers). And another one, in which we only execute the
candidates function on the parameters (and receivers) since the result of the call
expression is not a candidate:

candidates(t, eg) =

{&eg} ∪
⋃

p ∈ eg.InputParams candidates(t, p) if eg CallExpr

∧ Teg ≡ t ∧ eg.Receiver ≡ nil⋃
p ∈ eg.InputParams candidates(t, p) if eg CallExpr

∧ Teg 6≡ t ∧ eg.Receiver ≡ nil

{&eg} ∪ candidates(t, eg.Receiver) ∪⋃
p ∈ eg.InputParams candidates(t, p) if eg CallExpr

∧ Teg ≡ t ∧ eg.Receiver 6≡ nil

candidates(t, eg.Receiver) ∪⋃
p ∈ eg.InputParams candidates(t, p) if eg CallExpr

∧ Teg 6≡ t ∧ eg.Receiver 6≡ nil

Primary expressions can be combined into more complex expressions using unary
and binary operators:

〈Expression〉 ::= PrimaryExpr | UnaryExpr | BinaryExpr

〈UnaryExpr〉 ::= unary_op UnaryExpr

〈BinaryExpr〉 ::= Expression binary_op Expression
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We call the reader’s attention to the Go Language Specification [14] for the various
types of unary_op and binary_op. In the following, we denote an arbitrary unary
operator by ◦1 and a binary one by ◦2. Unary and binary expressions are checked for
candidates by calling the candidates function on the respective operands:

candidates(t, eg) =candidates(t, eg’) if eg ≡ ◦1 eg’

candidates(t, eg’) ∪ candidates(t, eg”) if eg ≡ eg’ ◦2 eg”

This concludes all cases of the candidates function that deal with expressions. Now,
we define the candidates function for statements that might entail candidates.

Statement Candidates

The Go Language Specification [14] details a wide variety of statements such as
BreakStmt, ContinueStmt, GoToStmt, etc. For the candidate inspection, we are
only interested in statements that either directly introduce new variables or allow
for declaration statements in their bodies. Statements that do not introduce new
variables might use candidates but these candidates would have been previously
declared and thus already saved by the candidates function. Therefore, we limit
the definition of the candidates function to the following kind of statements:

〈Statement〉 ::= Declaration | SimpleStmt | Block | IfStmt | SwitchStmt |
ForStmt | DeferStmt

〈Declaration〉 ::= VariableDecl | ShortVariableDecl

〈SimpleStmt〉 ::= ExprStmt | Assignment | ShortVariableDecl

First, we look at declarations: Both short and regular variable declarations define
one or more variables that we refer to with eg.Variables. For all the newly declared
variables, the candidates function is called in order to check whether the variable
has the candidate type and should therefore be saved:

candidates(t, eg) =
⋃

v ∈ eg.Variables candidates(t, v) if eg VariableDecl

or ShortVariableDecl

If-, switch- and for-statements allow for variable declarations or assignments in an
initial statement that is executed before the respective condition is checked. This
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statement has a SimpleStmt type and is denoted as eg.SimpleStmt. It needs to
be inspected for candidates, hence, we call the candidates function on the simple
statement for these three constructs. All other parts of an if-, switch- or for-statement
are expressions that do not introduce new variables and are hence disregarded.
Expression and defer statements may contain expressions such as function calls
which need to be checked for candidates. This is performed with a recursive call
on the (deferred) expression. If a block statement is encountered, the candidates
function is called for each statement of this block. For assignment statements, we are
only concerned with the right hand side which might introduce new candidates. The
left side of an assignment will not be a new candidate since it has been previously
declared in order to be now assigned a new value. Therefore, assignments are
ultimately handled by recursing on the right hand side of an assignment:

candidates(t, eg) =

candidates(t, eg.SimpleStmt) if eg IfStmt, SwitchStmt or ForStmt

candidates(t, eg.Expression) if eg ExprStmt or DeferStmt⋃
s ∈ eg.Statements candidates(t, s) if eg Block⋃
rhs ∈ eg.Rhs candidates(t, rhs) if eg Assignment

This concludes the definition of the different cases of the candidates function.
Having decided on the heap locations that are potentially referred to in an exclusive
old expression, i.e. the candidates, the next subsection discusses the declaration of
lookup maps that are used to save the candidate values.

4.6.3 Lookup Map Declaration

A lookup map is a Go map that is used to save candidate values. A candidate might
have different values at different labeled program points. Thus, in order to differen-
tiate values of candidates at labeled program points, we need distinct lookup maps
per label. A lookup map for a label L maps an address that represents a candidate
for an expression es to the candidate’s value at program point L. The previously
declared candidates function returns addresses corresponding to candidates. At
program point L, these addresses are inserted in the lookup maps together with their
current value. Since addresses are unique and consistent during program execution,
they serve as keys to lookup values in the lookup maps.

Intuitively, we model a partial heap by storing only relevant addresses, i.e. candidates.
In order to ensure type safety, we need distinct lookup maps for each type of
candidate value. As explained in subsection 4.6.1, the candidateTypes function
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returns for a given old expression a set of triples which each consist of a type, a
subexpression of the given old expression and a label. The triple’s type is the type of
the candidate values for the subexpression. The triple’s label is the label at which
the old value for the subexpression needs to be looked up. For each triple returned
by candidateTypes, a lookup map is defined using the following map function:

Definition 25. Let T be the set of Go types, Se the set of specification expressions, L the
set of labels, and M the set of lookup maps. Then, we can define the following function

map : T × Se × L → M, (t, es, L) 7→ map(T, es, L)

that declares a lookup map for a triple of candidate type, specification expression and
label.

A lookup map maps addresses (i.e. candidates) of type *T to values (i.e. candidate
values) of type T:

map(T, es, L) : *T → T

We would like to remind the reader of the special treatment of maps described in
the previous subsection. Now, we again define a special case for map types. Since
we want to be able to lookup values in an old map, we can simply define the lookup
map to be an exact copy of the map at the old program point:

map(T, es, L) : T.key → T.value if T map type

4.6.4 Performing Lookups

In the paragraph above, we have defined lookup maps that will be populated with
candidate values for exclusive old expressions. An open question that remains is
how these lookup maps are used to retrieve the correct old value that belongs to an
exclusive old expression. This subsection presents the function lookups that returns
a previously stored value for a given expression and a label at which point in the
program that expression should be evaluated.

Definition 26. Let Se the set of specification expressions, L the set of labels, and Ge the
set of Go expressions. Then, we can define the following function

lookups : Se × L → Ge, (es, L) 7→ eg

that defines how the exclusive old value eg of a given specification expression es at some
label L is looked up. The function definition is split into the following cases
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lookups(es, L) =

x if es ≡ x ∈ X × L

map(Tes, es, L) [ lookups(es’, L) ]

if es ≡ *es’

lookups(es’, L).f

if es ≡ es’.f

lookups(es’, L) [ lookups(es”, L) ]

if es ≡ es’[es”], es’ array

map(Tes, es, L) [ &es’[0] + size(es’[0]) ∗ lookups(es”, L) ]

if es ≡ es’[es”], es’ slice

map(Tes’, es, L) [ lookups(es”, L) ]

if es ≡ es’[es”], es’ map

The first case of the lookup function defines that no lookup occurs for constants,
literals and exclusive variables since they always evaluate to their current value. A
dereference results in a lookup in the map belonging to the type of the dereference
expression. The lookup key is the result of the recursive call of the function lookup
on the dereferenced pointer in order to allow for nested lookups. Field accesses
are performed on the lookup result of the structure. For index expressions, we
define cases for arrays, slices and maps separately. If an index expressions on an
array is encountered, we call the lookups function on both the array and the index.
The result is an index expression constructed from both these lookups. For index
expressions on slices, we first recall that for slices candidates are other slices as
well as arrays since slices are constructed from arrays. We further recall that every
member of a candidate slice or array was saved as a candidate value instead of
saving actual slices. Therefore, we need to directly lookup the candidate value at
the given index. Since the index of a slice might be shifted in regard to the index
of the underlying array, we use pointer arithmetic to find the correct index for the
lookup. The index is the address of the first slice entry shifted by the provided
index which we receive using a recursive call of the lookups function. The provided
index is multiplied by size(es’[0]) because a shift has to occur in steps equal to
the size of the slice elements. For index expressions on maps, we recollect that the
corresponding lookup map is simply a copy of the old map. Therefore, the key of the
index expression is looked up and used as a key in the lookup map which returns
the corresponding old value.

4.6.5 Exclusive Old Algorithm
The functions candidateTypes, candidates, map and lookups declared in the last
four subsections provide the functionality that we need to define an algorithm that
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performs the runtime check generation of exclusive old expressions. This algorithm
describes how the candidate and lookup maps are filled in order to be able to perform
valid lookups. We call the algorithm the exclusive old algorithm. We execute the
exclusive old algortihm once on every function of the program for which runtime
checks are generated. The exclusive old algorithm is split into three parts, namely
the initialization of auxiliary data structures, the handling of parameters and return
parameters, and the main part that traverses the body of a function. We thus start
with the first part of the exclusive old algorithm that shows how candidate sets and
lookup maps for all exclusive old expressions that are used in the function’s body
are initialized:

Exclusive Old Algorithm. Part 1: Initialization of candidate sets and lookup
maps (Subsequent parts of the algorithm will use these data structures)
Data: Function declaration f
Result: Set of candidate sets C, set of lookup maps M
C← ∅;
M← ∅;
for old[L](e) used in the body of f do

for (t, e, L) ∈ candidateTypes(e) do
M ← M ∪ {map(t, e, L)};
if ¬∃ cst ∈ C then

cst ← ∅;
C ← C ∪ {cst};

The set C holds all candidate sets and the set M all lookup maps. Both sets C and M
are initialized as the empty set. A candidate set for candidates of type t is denoted
as cst. All candidate sets are also initially empty.

The exclusive old algorithm starts by iterating over all exclusive old expressions used
in the body of the given function f. For each old expression, it computes the set of
candidate types and iterates over all triples that are returned by candidateTypes.
For each triple, a lookup map is defined and included into the set of lookup maps M.
For the returned candidate type, we check whether a corresponding initial candidate
set already exists in C. We perform this check since candidate sets are independent
of the labels; we need only one candidate set per unique candidate type. I.e. if the
triples (t, e, L) and (t, e’, L’) are returned by a call to candidateTypes, we
declare two lookup maps map(t, e, L) and map(t, e’, L’) but only a single candidate
set cst.

After the initialization of the lookup maps and candidate sets, the exclusive old
algorithm 2 first checks whether any parameters or return parameters of f are
candidates for some old expression.
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Exclusive Old Algorithm. Part 2: Filling candidate sets for (return) param-
eters
Data: Function declaration f, set of initialized candidate sets C
Result: Set of updated candidate sets C
for p ∈ f.parameters ∪ f.returnParameters do

for cst ∈ C do
cst ← cst ∪ candidates{p, t};

For each parameter of f we iterate over all candidate sets and call the candidates
function. Input to the function call to candidates is the parameter and the type of
the current candidate set. The returned addresses of candidate values are then added
to the current candidate set. The same procedure is applied to return parameters as
well.

Exclusive Old Algorithm. Part 3: Filling of candidate sets and lookup maps
Data: Function declaration f, set of candidate sets C, set of lookup maps M
Result: Set of complete candidate sets C, set of filled lookup maps M
for Statement s ∈ body of f do

if s ≡ L where L is label then
for cst ∈ C do

for map(t′,e,L′) ∈ M do
if t′ ≡ t ∧ L′ ≡ L then

for addr ∈ cst do
if addr is map pointer then

for k, v ∈ *addr do
map(t′,e,L′)[k] ← v;

else
map(t′,e,L′)[addr] ← *addr;

else
for cst ∈ C do

cst ← cst ∪ candidates{n, t};

The last part of the exclusive old algorithm performs a traversal over all statements
in the body of the function f. For each statement that is encountered during the
traversal, all candidate expressions are added to the corresponding candidate set.
When encountering a label that is used in an old expression, all lookup maps for
that label are filled. Filling a lookup map means that every address in the suitable
candidate set is mapped to its current value and this mapping is inserted into the
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lookup map. The current value is the value that is obtained by dereferencing the
address at the label. An exceptional case is defined for maps as was discussed in
Subsection 4.6.3. Here, all keys and their old values are copied by iterating over all
entries of the dereferenced map pointer.

4.6.6 Encoding

After the exclusive old algorithm has been executed on a function that contains some
exclusive old expression e, the lookup map for e contains all potential old values
of this expression at runtime. Therefore, the old expression e can be translated to
Go code by replacing it with a lookup of its old value in the corresponding lookup
map.

Encoding 14. For the runtime check generation of exclusive old expressions we have
the following encoding:

Lold[L](〈e〉) M  lookups(〈e〉, L)

The encoding relies on a previous execution of the exclusive old algorithm described in
Section 4.6.5 which ensures that all auxiliary data structures will be initialized and
filled at runtime.

With this encoding we finish the description of the runtime check generation for
exclusive old expressions. The next two subsections discuss how exclusive old
expressions are handled in the implementation of GoRAC and give some remarks
on the usage of exclusive old expressions with nested expressions and with pointer
types.

4.6.7 Implementation

The current implementation of GoRAC provides partial support of exclusive old
expressions. In this section, we outline which usages of exclusive old expressions
are supported and how the support can be extended.

We first observe that exclusive variables used in postconditions behave analogously
to shared variables in postconditions. This is due to the fact that parameters in
postconditions relate to values at the beginning of a function. A shared variable in
old evaluates to the value at the corresponding label: In postconditions, this is simply
the value of the parameter. An exclusive variable in old evaluates to its current value:
In postconditions, this is also the value of the parameter. Since GoRAC provides full
support of shared old expressions, exclusive old expressions used in postconditions
are supported by treating them like shared old expressions.
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In any other specification annotation, the usage of exclusive old expressions is
currently not possible because the exclusive old algorithm wasn’t implemented in its
entirety due to time reasons. Nevertheless, we want to provide some technical details
for the existing partial implementation as well as future parts to come. The given
details show that the overall concept of the exclusive old algorithm was assessed
and that we were able to already establish certain guidelines for a future complete
implementation of the algorithm.

Slice Lookups: The lookup function that was introduced in Section 4.6.4 defines
that slice lookups are performed using pointer arithmetics: the lookup map uses
addresses of positions in the slice to refer to the old values at these positions. When a
value at an index is looked up, the address for the lookup is calculated by adding the
index to the address of the slice’s first entry. In order to perform pointer arithmetic
as required by slice lookups, we need to use Go’s unsafe package. We have sketched
a small example in Figure 4.11 that demonstrates the necessary pointer arithmetic to
calculate a slice element’s address. The original code that includes the specification
is displayed on top. The code at the bottom depicts the implementation of the

func s l i ceLookup () {
a := [5] i n t {1 , 2 , 3 , 4 , 5}
s := a [1 : ] //@ e x c l u s i v e : s
//@ L :
a [3] = 0
//@ a s s e r t old [L ]( s [2]) == 4
//@ a s s e r t s [2] == 0
_ = s // avoid complains about unused v a r i a b l e s

}

func s l i ceLookup () {
candidates := map[* i n t ] bool {}
lookup := map[ unsafe . Po in te r ] i n t {}
a := [5] i n t {1 , 2 , 3 , 4 , 5}
fo r i := range a {

candidates [&a[ i ]] = true
}
s := a [1 : ]
//@ L :
fo r c := range candidates {

lookup [ unsafe . Po in te r ( r e f l e c t . ValueOf ( c ) . Po in te r ( ) ) ] = *c
}
a [3] = 0
i f ! ( lookup [ unsafe . Po in te r ( r e f l e c t . ValueOf(&s [ 0 ] ) . Po in te r () +
u i n t p t r ( unsafe . S i zeo f ( s [0]) * 2))] ) == 4 {

panic ( " As se r t i on at l i n e 6 v i o l a t e d . " )
}
i f ! ( s [2] == 0) {

panic ( " As se r t i on at l i n e 7 v i o l a t e d . " )
}

}

Fig. 4.11: Implementation of a slice lookup
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runtime checks using the unsafe package for the pointer arithmetic during the slice
lookup.

Map Lookups: As shown in the definition of the candidates function and in
Algorithm 3, we handle map lookups using pointers to maps. This also requires the
use of the unsafe package which we demonstrate in Figure 4.12. Some more work
will be needed for map composite literals since Go does not allow to take the address
of composite literals. This could be overcome by first assigning the composite literal
to a variable and then taking the address of this variable instead.

func mapLookup () {
m := map[ i n t ] i n t {42:42}
//@ L
m = map[ i n t ] i n t {42:1337}
//@ a s s e r t old [L ](m[42]) == 42
_ = m // avoid complains about unused v a r i a b l e m

}

func mapLookup () {
candidates := map[ unsafe . Po in te r ] bool {}
lookup := map[ i n t ] i n t {}
m := map[ i n t ] i n t {42:42}
candidates [ unsafe . Po in te r ( r e f l e c t . ValueOf(&m) . Po in te r ( ) ) ] = true
//@ L
fo r c := range candidates {

f o r key , value := range *(*map[ i n t ] i n t )( c )) {
lookup [ key ] = value

}
}
m = map[ i n t ] i n t {42:1337}
i f ! ( lookup [42] == 42) {

panic ( " As se r t i on . . . a t l i n e 5 v i o l a t e d . " )
}
_ = m

}

Fig. 4.12: Implementation of a map lookup

4.7 Remarks on Old Expressions
We conclude the old expressions part of the chapter on runtime check generation
with two remarks: The first one focuses on the correct usage of pointer types in both
shared and exclusive old expressions. The second remark concerns a limitation that
is placed on nesting shared old expressions.

4.7.1 Pointer Types in Old Expressions
It is important to note that the old value of an expression whose type is a pointer
type is a copy of the pointer itself. We do not copy the object the pointer refers
to. Hence, if an object is changed in between a label and an old expression (with
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type foo s t r u c t {
bar i n t

}

//@ requ i r e foo . bar == 42
func changeBar ( x * foo ) { // x e i t h e r e x c l u s i v e or shared , same outcome

x . bar = 1337
//@ a s s e r t old ( x ) . bar == 1337
//@ a s s e r t old ( x . bar ) == 42

}

Fig. 4.13: Pointer types used in old expressions

that label) that reasons about a pointer to the object, these changes will be visible
through old.

The example from Figure 4.13 demonstrates in the first assertion the semantics of
pointer types in old expressions as explained above. In the beginning, the pointer x
passed to the function points to a foo object with field bar equal to 42. Since only
the pointer, i.e. the address it holds, is copied when computing the old value of x
and not the object itself, the old value of x points to the same object as x. Since
x.bar is changed before the first assertion, old(x) still points to the new changed
object and therefore the assignment is observable. As shown in the second assertion,
if one wants to obtain to the old value of x.bar, it is required to write old(x.bar)
instead of old(x).bar.

4.7.2 Restriction on Nested Shared Old Expressions

Consider the code provided in Figure 4.14. To be able to correctly evaluate the old
expression

old[L0](*old[L1](*x))

that is part of the assertion in Figure 4.14, we would first need to evaluate the inner
old expression old[L1](*x). Only afterwards, we could proceed with the evaluation
of the outer old expression old[L0](...). However, for runtime checking this

//@ r e q u i r e s **x == 1 && **y == 0
func nestedOld (x , y ** i n t ) { //@ shared : x , y

//@ l a b e l L0
*x = *y
**y = 2
//@ l a b e l L1
//@ a s s e r t old [L0 ](* old [L1 ](* x )) == 2

}

Fig. 4.14: Nested old expressions
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proves to be problematic since label L1 is reached after label L0, i.e. at L0 the old
expression old[L1](*x) has not yet been evaluated. Thus, we face the problem of
evaluating an outer old expression old[L0](...) that relies on the future evaluation
of its operand.

Our current support of shared old expressions cannot handle this problem. Therefore,
we impose the restriction that for nested expressions, any inner label has to occur
earlier in terms of control flow of the program before any outer label. In other words,
inner labels have to already been reached when reaching an outer label.

This situation is similar to the one that occurs for exclusive old expressions. Hence,
we could use a similar approach to the exclusive old algorithm to overcome the
presented restriction. Besides the fact that the exclusive old algorithm has not been
implemented yet, such a solution for nested old expressions would also yield space
and execution time disadvantages.

Note that the problem outlined above would also occur if we introduced a specifi-
cation construct now with the semantics that calling now on a shared variable in an
old expression results in this variable to be evaluated to its current value. I.e. now
makes a shared variable behave like an exclusive one.

4.8 Permissions

Recall that GoRAC permits the declaration of access permissions on pointers, slices,
maps, reference expressions, and implicit field accesses, i.e. field access on struct
pointers. The following encodings show how each valid type of access permission is
converted to Go code. Since we do not keep track of actual permissions at runtime,
we over-approximate the access permissions by checking whether the pointer refers
to a valid object. I.e. the specified access permission fails for null pointers.

Encoding 15. Let e be a pointer, slice or map, e1 be a struct pointer with field e2 and
e3 be an addressable expression. Then, we can encode access permissions stated on these
expressions as follows:

Lacc(〈e〉)⦄  L〈e〉⦄ != nil

Lacc(〈e1〉.〈e2〉)⦄  L〈e1〉⦄ != nil

Lacc(&〈e3〉)⦄  &L〈e3〉⦄ != nil
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The first line of the encoding shows that identifiers referring to pointers are simply
encoded by checking whether the pointer is not equal to nil. The second line of the
encoding shows that the same check is performed for structures of dot notations.
The structure must also be a pointer type. Note that the dot notation might be an
implicit dereference of the pointer. The third line of the encoding might seem a little
bit redundant since taking the address of any expression will always yield a value
that is not nil. Therefore, we could encode the access permission into a simple true
statement. However, in order to allow the type checker that is run on the generated
code to check whether the reference expression is valid, we cannot simply replace
this check by true. This has lead to the decision of encoding an access permission
for a reference with a regular check for nil.

The code in Figure 4.15 demonstrates the runtime check generation of access permis-
sion checks. The function shown at the top of the figure adds the value of an integer
pointer to the field of a struct. It has a struct pointer as receiver and an integer
pointer as a parameter, both of which are specified to be accessible. The generated
code at the bottom shows that the runtime checks test whether both pointers are
not equal to nil. If so, the parameters are deemed accessible, in the other case, the
program terminates with a panic.

type foo s t r u c t {
bar i n t

}

//@ r e q u i r e s acc ( x ) && acc ( f . bar )
func ( f * foo ) addPtr ( x * i n t ) {

f . bar += *x
}

func ( f * foo ) addPtr ( x * i n t ) {
i f ! ( x != n i l && f != n i l ) {

panic ( " Precond i t ion v i o l a t e d . " )
}
f . bar += *x

}

Fig. 4.15: Runtime checks for access permissions

4.9 Predicates

The runtime check generation of predicate calls relies on encodings of both the
predicate call itself as well as the declaration of the predicate that was called. We
first address the encoding of predicate declarations and then continue with the
runtime check generation of predicate calls.
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4.9.1 Predicate Declarations

A predicate declaration is translated into a function definition. The resulting function
is named like the predicate. This is also the reason why a predicate needs to have
a unique name as described in Section 3.6 such that we can distinguish generated
functions from existing functions. The generated function returns the encoded
assertion.

Encoding 16. A predicate named 〈P〉 with parameters 〈X〉 and assertion 〈a〉 is encoded
in Go code as follows:

⦃predicate 〈P〉 (〈X〉) { 〈a〉 } ⦄  

func 〈P〉 ( L 〈X〉 M ) bool {
return L 〈a〉 M

}

The set 〈X〉 contains parameter declarations that are tuples consisting of a parameter
name 〈x〉 and a parameter type 〈T〉. The encoding L 〈X〉 M encodes all parameter
declarations by translating the specification identifiers 〈x〉 and 〈T〉 into identical Go
identifiers x and T.

Since all named functions in Go need to be declared in the root scope of a program,
i.e. named function definitions cannot be nested, we include the generated predicate
function also into the root scope. With this remark, we conclude the runtime check
generation of predicate declarations. The next subsection proceeds with runtime
checking of predicate calls.

4.9.2 Predicate Calls

Before a predicate call is converted to Go code, the corresponding predicate decla-
ration is encoded as a function and included into the program as described in the
previous subsection. Encoding a predicate call then simply corresponds calling the
corresponding function:

Encoding 17. A predicate call of some predicate with unique name 〈P〉 is translated to
Go code using the following encoding:

L 〈P〉( 〈e〉*) M  〈P〉( paramValues(〈e〉*) )

The encoding shows that values of the parameters passed into the predicate call are
translated using a helper function:
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Definition 27. Let Se denote the set of specification expressions and Ge the set of Go
expressions as described in the Go Language Specification [14]. Then, we can define the
function

paramValues: S∗e → G∗e , 〈e〉∗ 7→ paramV alues(〈e〉∗)

that maps a list of parameter values 〈e〉* from a predicate call to a Go identifier list
expression [14] of parameter values for the corresponding predicate function using the
following recursive definition:

paramValues(〈e〉*) = paramValues(〈e1〉, ..., 〈en〉) =⦃〈e1〉⦄ if n ≡ 1

⦃〈e1〉⦄, paramValues(〈e2〉, ..., 〈en〉) otherwise

Note that during the runtime check generation of predicate calls, GoRAC checks
whether two different requirements are fulfilled: First, a predicate declaration needs
to be in scope of a corresponding predicate call. And second, the values of predi-
cate call parameters need to have the correct types as stated in the corresponding
declarations.

//@ pred i ca t e sor ted (nums [] i n t ) {
//@ f o r a l l i , j i n t : : i in range nums && 0 <= j < i
//@ ==> nums[ j ] <= nums[ i ]
//@ }

//@ r e q u i r e s sor ted ( x )
func maximum( x [] i n t ) (max i n t ) {

re turn x[ len ( x ) − 1]
}

func sor ted (nums [] i n t ) bool {
re turn func () {

f o r i := range nums {
fo r j := 0; j < i ; j++ {

i f ! ( nums[ j ] <= nums[ i ]) {
re turn f a l s e

}
}

}
re turn t rue ;

}()
}

func maximum( x [] i n t ) (max i n t ) {
i f ! ( so r ted ( x )) {

panic ( " Precond i t ion v i o l a t e d " )
}
re turn x[ len ( x ) − 1]

}

Fig. 4.16: Runtime check generation of predicate calls
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Figure 4.16 shows an example predicate known from Section 3.6 that checks whether
a given integer slice is sorted in increasing order. The predicate is called in a
precondition for the maximum function depicted at the top of the figure. Since the
predicate is defined in scope of the predicate call and its name does not collide with
any existing function name, the runtime check generation succeeds. The resulting
code at the bottom shows the generated function definition for the predicate and the
predicate call encoded as a function call as part of the precondition runtime check.

4.10 Purity

Purity annotations as defined in Section 3.7 express constraints on the syntax of
a function. A function satisfies a purity annotation if it has exactly one return
parameter, its body consists of only a single return statement returning a pure
expression, and any assertion of postcondition for the function is a pure expression.
A function annotated as being pure has to be pure in all potential executions. Since
checking such a property at runtime would be difficult (or even impossible), we
decided to syntactically check pureness. With this, we follow the approach of the Go
verifier Gobra [2].

Purity checks are performed in two steps: First, GoRAC checks whether the syntax
of any function annotated as being pure fulfills the purity requirements given in
Section 3.7. Then, for all function calls occurring in specification GoRAC checks
whether the called function is annotated as pure.

The checks are performed during the execution of GoRAC. If a function is declared
as being pure but does not abide by the constraints described in Section 3.7, or a
function is called which is not pure, GoRAC aborts the runtime check generation
and gives an error to the user. When all purity checks performed by GoRAC are
successful, the purity annotations are removed. Thus, no runtime check is generated
and no encoding needs to be declared for purity annotations.

The explanation of purity checks concludes the chapter on runtime check generation.
The chapter illustrated how specification annotations are translated to Go code and
included into a given program such that the conditions they express are validated
during program execution. The next chapter details GoRAC’s implementation and
gives further details on how the runtime check generation is realized.
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5Implementation

„ If the implementation is hard to explain, it’s a
bad idea. If the implementation is easy to
explain, it may be a good idea.

— Tim Peters
Distinguished Software Engineer

Go Runtime Assertion Checker (GoRAC) is a command line tool implemented in Go
[18]. It consists of two Go packages: a specification parser and a framework that
handles user input, the overall process of generating runtime assertion checks and the
tool output. Runtime checks are generated as described in Chapter 4. This chapter
is structured as follows: First, an overview of the framework’s implementation is
given in Section 5.1. Then, Section 5.2 details implementation specific changes to
the encodings as given in Chapter 4. The tool’s usage is explain in Section 5.3.

5.1 Overview

A visualization of GoRAC’s workflow is given in Figure 5.1. On the left-hand side, a
Go source file that is annotated with specification is input to GoRAC. It is converted
into a file containing the original sources including runtime assertion checks (RACs)
for the provided specification, as shown on the right-hand side. Input and output

Parse Go
code (1)

Go code
+ spec

Extract
comments

(3)

Extract
typing
info (2)

Extract
spec (4)

Parse
spec (5)

Desugaring
(6)

RAC
generation

(7)

Go code
with RACs

Go AST

comment
map

spec

spec ASTs

typing info
desugared

spec ASTs

Go AST

Fig. 5.1: Overview of the GoRAC’s workflow
(AST = Abstract Syntax Tree, RACs = Runtime Assertion Checks)
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are depicted in purple ellipses, processes in green boxes. The arrows indicate the
order in which process output is combined for further steps.

1. First, the Go code is parsed into an abstract syntax tree (AST) using the Go
package go/ast [15].

2. From the Go AST, we obtain typing information using the package go/types
[17].

3. Additionally, we extract all comments with the help of the package go/parser
[16] and receive a comment map. A comment map holds for every comment in
the provided Go file a reference to an AST node that belongs to the comment.

4. Following the figure, comments are then filtered by being specification com-
ments or not.

5. Then, the specification parser is used to parse each specification annotation
into a specification AST.

6. The specification ASTs and the typing information are combined during the
desugaring process. The results are desugared specification ASTs. We need the
typing information to correctly transform the specification ASTs into runtime
assertion checks.

7. Each desugared specification AST is translated into a runtime assertion check by
the runtime assertion check generator. This part of the framework implements
the encodings of the specification constructs as explained in Chapter 4. The
runtime assertion checks are inserted into the original Go AST.

8. Finally, the modified Go AST, that now includes the runtime assertion checks,
is written to a file that can be compiled.

We explain two processes of the depicted workflow in Figure 5.1 in more detail: the
process of parsing specification and the process of generating the runtime assertion
checks.

Specification annotations are parsed by a specification parser. The specification parser
parses each specification comment, containing one or multiple specification clauses,
into an AST. The parser is implemented using ANother Tool for Language Recognition
(ANTLR) [35]. ANTLR is a parser generator for LL(k)-parsers [36], i.e. left-to-right
parsers that use k tokens of lookahead. The parser for the GoRAC specification
language is constructed using a grammar and visitor functions. The grammar can be
reused in other projects, even in projects written in other programming languages
than Go since it is agnostic to the programming language. To allow for further reuse,
we made the design choice to place the specification parser in a separate Go package
and import it in the GoRAC implementation.
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The runtime check generation is performed by a GoRAC component called run-
time check generator. The runtime check generator receives as input desugared
specification ASTs and the Go AST of the original program. The generator performs

Parse
Go code

Desugaring

Purity
Check

Quantifier
Check

Handle Old
Expressions

Predicate
Extraction

Spec AST
Translation

Include RACs
into Go AST

Go code
with RACs

Go AST desugared spec AST

Fig. 5.2: Runtime check generation process
(AST = Abstract Syntax Tree,
RACs = Runtime Assertion Checks

several checks before creating and in-
serting the runtime checks for the speci-
fication ASTs into the Go AST, as shown
in Figure 5.2. First, purity checks are
performed: Every function annotated
as pure is checked for pureness as de-
scribed in Section 4.10. For each func-
tion call that is part of a specification
condition, it is additionally checked
whether the corresponding function dec-
laration is annotated as pure. Second,
for all quantifiers it is checked whether
every non-boolean quantified variable is
bound by some domain. Third, all old
expressions are extracted from specifi-
cation assertions. We check for each ex-
clusive old expression whether its use is
supported or not. Details on the correct
placement of old expressions are given
in Section ??. If it is supported, we en-
code the old expression as described in
Section 4.5. Fourth, we perform predi-
cate extraction, i.e. for every predicate
call, we include the respective predicate
as a function declaration in the provided
Go AST. The fifth step is the translation
of the specification ASTs into Go AST
nodes. These translations have been de-
scribed in the form of encodings in Chapter 4. In the last step, the resulting nodes
are inserted into the Go AST. The resulting tree is an abstract syntax represen-
tation of the original program with runtime assertion checks for all specification
annotations.

5.2 Wrapper

The encoding of specification constructs, as described in Chapter 4, states that e.g.
an assertion //@ assert a[0] > 42 is encoded as
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i f ! ( a [0] > 42) {
panic ( " As se r t i on ’ x > 42 ’ v i o l a t e d . " )

}

If the assertion condition is violated, we expect the program to fail with the message
"Assertion ’x > 42’ violated." However, the encoding does not meet these ex-
pectation if the array a is empty. The program will crash when accessing the element
at index zero and result in the following error "runtime error: index out of
range [0] with length 0". This message neither relates to the assertion that does
not hold, nor will it give information about the line of the original specification that
caused this error. Therefore, we extend the encoding of runtime assertion checks
in the implementation with a wrapper. The wrapper catches all errors that occur
while evaluating the runtime assertion checks and extends an error message by line
information and the violated specification.

For the example above, the actual produced code by GoRAC is shown in Figure 5.3.
This wrapping ensures for the example given at the beginning of this subsection
that the following message will be displayed to the user in case a panic occurs
while evaluating the assertion: "Line 1337, Specification ’assert x > 42’:
runtime error: index out of range [0] with length 0". Hence, the user is
able to quickly locate the panic’s origin and fix it.

func () {
de fe r func () {

i f e r r := recover ( ) ; e r r != n i l {
panic ( fmt . S p r i n t f ( " L ine 1337 ,
S p e c i f i c a t i o n ’ a s s e r t x > 42 ’ : %v " , e r r ))

}
}()
i f ! ( a [0] > 42) {

panic ( " As se r t i on ’ x > 42 ’ v i o l a t e d . " )
}

}()

Fig. 5.3: Implementation of a runtime check that catches errors and adds line information

5.3 Tool

GoRAC is a command line tool and its operation can be configured via various com-
mand line flags. By default, GoRAC produces checks for all specification annotations.
We can configure GoRAC to produce only runtime assertion checks for certain types
of specification clauses with the command line flags -generatePrePostChecks,
-generateInvariantsChecks, and -generateAssertionChecks. In its default con-
figuration, the resulting program is printed to a file that has the same name as
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the input file extended with the suffix _rac.go The flag -outputFile=<filename>
instructs GoRAC to write the resulting program to a file with the given name. Further
configuration options as well as installation and usage instructions can be found
in GoRAC’s readme [28]. GoRAC ’s implementation and the specification parser
package are tested with a unit test suite that provides a statement coverage of
approximately 88%. Code that is not covered by unit tests mostly consists of getter
methods for struct types and automatically generated code of the specification parser
by ANTLR.
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6Test Input Generation

„ Program testing can be a very effective way to
show the presence of bugs but is hopelessly
inadequate for showing their absence.

— Edsger Wybe Dijkstra
Computer Science Pioneer

When GoRAC is executed on a program that includes specification annotations,
it generates a file containing the code of the program enhanced with runtime
assertion checks for the specification. The program needs to be executed to determine
whether the runtime assertion checks hold, i.e. whether the program satisfies its
specification. A single execution that passes all runtime checks guarantees that
the specified properties are satisfied for exactly the input that was given for the
execution. However, these guarantees cannot be generalized for executions of the
program with other inputs. Therefore, the program should be run with a wide variety
of different inputs. Manually devising a wide variety of program inputs requires a
lot of time and effort. This effort can be reduced by automatically generating test
inputs to execute the program with.

A technique that is used for test input generation is called fuzzing. During fuzzy test-
ing, a program’s robustness is measured by running it with random and potentially
malformed inputs and thereby discovering crashes or invalid program states [22].
In this chapter we will assess different test input generation strategies for GoRAC
that are based on fuzzing. We will first outline several fuzzy testing approaches in
Section 6.1 and address a limitation of fuzzing when dealing with preconditions.
Different solutions to overcome this limitation are discussed in Section 6.2. The
chapter concludes with the explanation of a prototype implementation of one of
these solutions in Section 6.3.

6.1 Fuzzing Approaches

In order to check whether a program satisfies its runtime assertion checks for different
executions, we start by testing the program using existing fuzzy testing packages

77



for Go programs. The package go-fuzz is a coverage-guided fuzzing solution for
testing of Go packages [43]. It generates various inputs for a given Go program in
an infinite loop and aims to achieve a complete statement coverage of a program. In
order to differentiate between input that increases coverage and input that does not
provide relevant information, the package requires a user to write a function called
Fuzz. Based on the output of the Fuzz function, the fuzzer increases or decreases
priority of a given input during subsequent fuzzing. Additionally, initial input for the
fuzzer called a corpus needs to be provided in byte format.

The requirements, that a go-fuzz user needs to provide a byte encoding of arbitrary
program inputs for the corpus and an implementation of the Fuzz function, substan-
tially decrease usability of the tool for programmers without knowledge of fuzzing
techniques. Therefore, we attempt to automate the approach using the package go-
fuzz [40]. (Note that go-fuzz is different from gofuzz.) The gofuzz package generates
initial input which can be used during fuzzy testing a program with go-fuzz.

However, the combination of go-fuzz and gofuzz leads to further complications:
Using initial input created by gofuzz, most tests that go-fuzz performs fail the runtime
checks for preconditions. E.g. for the binary search algorithm that is discussed in
Section 1.1, go-fuzz in combination with gofuzz is not able to generate a valid input
array that is sorted. Executions that terminate due to violated preconditions do not
provide any information about subsequent runtime checks. Thus, the test that are
generated with the combination of gofuzz and go-fuzz are not effective. We instead
seek to generate a great range of different test inputs for which the precondition
holds.

6.2 Handling Preconditions

Given a precondition that reasons about several parameters, we want to generate
values for the parameters such that the precondition is satisfied. This problem can
be formulated as an SMT (Satisfiability Modulo Theories) [5] problem. We can use
an SMT solver to generate a model for the precondition, i.e. an assignment for the
parameters that satisfies the precondition.

The formulation of a precondition as an SMT problem entails an encoding of all
variables of the precondition into first-order logic formulas. Since GoRAC precondi-
tions reason about parameters that can be arbitrary Golang objects, we require an
encoding of Go data structures like arrays and structs into first-order logic formulas.
As such encodings are quite complex, we aim to reuse the SMT encodings of the
Gobra verifier. This is possible since we defined our specification language to be
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close to Gobra’s specification language. For a non-satisfiable SMT formula, Gobra
also supports counter example generation using the SMT solver Z3 [10]. Thus, we
can employ Gobra to get a model for a given precondition as follows: We write a
function with true as its precondition. The function’s body contains an assertion
that holds the negated precondition for which we want to compute a model. Gobra
then encodes the precondition into SMT format and generates a counter example for
the negated precondition using Z3. This counter example is a satisfying assignment,
i.e. a model, for the original (non-negated) precondition.

We have implemented a prototype version of this approach in the remaining time
for this thesis. The prototype is restricted to preconditions that reason about integer
variables, which significantly facilitates the SMT encoding. Hence the integration
of Gobra with GoRAC is omitted and the SMT solver Z3 is directly included into
GoRAC’s fuzzing module.

6.3 Combining SMT Solving and Fuzzing

Go code
with RACs

Number
of tests n

Function

PreconditionsParameters

Models

Partial parame-
ter assignments

Complete param-
eter assignments

Unit tests

Test results

Z3

go-fuzz

Fig. 6.1: Test input generation process
(RACs = Runtime Assertion Checks)

We implement test input generation
for functions with integer preconditions
using a combination of SMT solving
and fuzzing. Test input for parameters
bound by preconditions is generated us-
ing an SMT solver while all remaining
parameters receive random values ob-
tained by a fuzzer. Figure 6.1 outlines
the combination of the two techniques
in order to automatically test a function
with runtime checks. Input is a file gen-
erated by GoRAC, i.e. a Go program
with runtime assertion checks, and the
number of desired tests n that should be
run on the given program. The input
file consists of several Go functions; the
figure depicts the test generation pro-
cess for a single function: First, the pa-
rameters and preconditions of the func-
tion are extracted. The SMT solver Z3
generates models for the preconditions.
The values of the parameters from these
models are assigned to the parameters.
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This results in partial parameter assignments since parameters that are not part of a
precondition have not been assigned a value yet. Then, gofuzz is used to generate
random values for all remaining parameters. In this step, the models and random
assignments are further combined such that n complete parameter assignments are
obtained. For instance, the same model is combined with different fuzzy values of
remaining parameters. From each complete parameter assignment, we construct
a unit test for the function. Finally, all generated tests are executed. The test re-
sults exhibit whether or not the runtime checks of the input program hold for the
generated inputs.

It remains to explain how multiple models are computed for the preconditions of
a function. Intuitively, we generate models iteratively and, for each model that is
obtained, we add a restriction that the same model should not be computed in future
steps. Algorithm 4 describes the model computation in detail:

Algorithm 4: Computing models for preconditions
Data: Conjuction of preconditions c, number of desired tests n
Result: Set of models M for the conjunction of preconditions c
cSMT = Z3.encode(c);
M = ∅;
i = 0;
while Z3.sat(cSMT) ∧ i < n do

m = Z3.model(cSMT) = {(x1, v1), . . . , (xk, vk)};
M = M ∪ {m};
cSMT = cSMT ∧

∨
(x, v) ∈ m x 6≡ v;

i++;

Input to the algorithm is a conjunction of all preconditions for the function under test.
The first step of the algorithm is the encoding of the conjunction into SMT format.
I.e. all Go integer variables are translated into Z3 variables, and all arithmetical,
logical and relational unary and binary operations are reconstructed using respective
Z3 operators. The set that will contain the computed models is initialized with the
empty set and a counter to keep track of how many models have been computed is
declared. After initialization, the algorithm starts by iteratively computing models
in a while loop. Every model that is computed is added to the set of models
which will be returned. For all variable assignments, we disjoin a condition to the
precondition conjunction which states that a variable should not be equal to it’s
assigned value of the latest model. This disjunction ensures that every iteration
of the loop yields a different model. The loop terminates if either the (modified)
precondition conjunction is not satisfiable or if we have generated enough models for
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the desired number of tests. Note that if the loop terminates due to an unsatisfiable
conjunction, we might have generated less than n models. In this case, we can still
obtain n test cases by combining models with different fuzzy values for remaining
parameters as it was explained above.

This concludes the description of the test input generation prototype for integer
preconditions. Section 8.1 details possibilities of future work on the test input
generation to extend the prototype that was described in this chapter.
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7Evaluation

In this thesis, we implement a runtime assertion checker for Go programs called
GoRAC. The tool generates runtime checks for specification of a program. Our goal
is that GoRAC enables software engineers to detect errors in their implementations
and motivate engineers to eventually verify their implementation to prove program
correctness. In order to foster the use of GoRAC in Go projects, the tool has to meet
the following requirements:

• The generation and execution of the runtime checks has to perform within
acceptable time limits. The performance should be within appropriate bounds
such that users are willing to use GoRAC and add specification to their code.

• The programmers should be able to check useful properties at runtime. Thus,
the specification language supported by GoRAC needs to be expressive enough
to write meaningful specification.

• The specification for runtime checking should be well-tested and simplify
writing specification for a subsequent verification. Hence, the gap between
assertion checking and verification should be as small as possible.

This chapter provides an extensive evaluation of the work that was done in this
thesis in order to analyze whether GoRAC fulfills the above stated requirements.
Section 7.1 describes the performance evaluation of the tool. Section 7.2 details
the effectiveness of GoRAC’s specification language, and Section 7.3 discusses the
evaluation of the remaining gap between runtime checking and verification. Note
that the prototype test input generation is not evaluated due to its limitations that
are detailed in Chapter 6.

7.1 Performance
GoRAC’s performance is evaluated for both the generation of the runtime checks with
GoRAC and the execution of the runtime checks. We further discuss how in certain
circumstances syntactically different but semantically equal specification can affect
the performance. For all evaluations we use the Linux command usr/bin/time to
measure the performance. Each measurement is executed multiple times; the final
result is the average over all measured times. The next two subsections discuss the
evaluation for the generation performance and execution performance separately.
In the following, we call the generation of runtime checks based on provided
specification simply the generation, and similarly the execution of the generated
runtime checks the execution.
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7.1.1 Generation

We measure the generation performance by generating runtime checks for the Go
library Go Data Structures (GoDS) [37]. GoDS is one of the most extensive and well-
maintained data structure libraries for Go containing implementations of various
common data structures such as lists, heaps, stacks or trees. The library has a total of
5960 lines of code. This establishes a representative scenario for a practical use case
of GoRAC. We annotate GoDS with 1347 lines of specification and generate runtime
checks for all annotations with GoRAC. The total execution time of GoRAC amounts
to 24 seconds. This result suggests that GoRAC performs within an acceptable time
limit, thus the result validates the usability of the tool.

Limitations: Besides showing that GoRAC can be applied in practical use cases,
we further analyze how syntactical changes to the specification can influence the
generation time of runtime checks. Our results show that the generation times of
semantically equal but syntactically different specification can diverge. This can,
for instance, be observed when splitting a precondition that contains a conjunction
into separate preconditions for each term of the conjunction. Figure 7.1 displays
two versions of a function, one without and one with splitting the precondition,
respectively. We measure the runtime check generation for two files where one
contains 10 instances of the function from the top of Figure 7.1 and the other
contains 10 instances of the function from the bottom. The function is duplicated

/*@
* r e q u i r e s acc (a ) && acc (b) &&
* acc ( c ) && acc (d) &&
* len (a ) > 0 && len (b) > 0 &&
* len ( c ) > 0 && len (d) > 0
*/
func addFi r s tE lements (a , b , c , d [] i n t ) i n t {

re turn a [0] + b[0] + c [0] + d[0]
}

//@ r e q u i r e s acc (a )
//@ r e q u i r e s acc (b)
//@ r e q u i r e s acc ( c )
//@ r e q u i r e s acc (d)
//@ r e q u i r e s len (a ) > 0
//@ r e q u i r e s len (b) > 0
//@ r e q u i r e s len ( c ) > 0
//@ r e q u i r e s len (d) > 0
func addFi r s tE lements (a , b , c , d [] i n t ) i n t {

re turn a [0] + b[0] + c [0] + d[0]
}

Fig. 7.1: Two versions of a function whose specification is once a conjunction (at the top)
and once multiple single terms (at the bottom)
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10 times to increase the overall generation time and hence reduce the impact on
the measurements by operating system noise. The file containing the specifications
as conjunctions takes 16.3 seconds. The file in which the specification is split into
multiple preconditions takes only 0.1 seconds.

In order to explain the large divergence between the two generation times, we
profiled the GoRAC execution on the two files. The profiling showed that the main
difference in the generation times stems from the parsing process of the specification
expressions: Parsing multiple single terms is much faster than parsing a conjunction
of all the terms. Since we did not implement the parser ourselves but instead used
ANTLR [35] as a parser generator, we decided that the parsing process should
be enhanced as future work. We also noted slightly longer execution times for
desugaring a conjunction and extracting the old expressions from it in comparison
to multiple single terms. However, the time differences for these two processes are
not as profound as the one for parsing. The time differences can be explained by the
overhead the recursive calls make when desugaring a conjunction. Hence, we could
slightly enhance these generation times e.g. by implementing an iterative approach
of desugaring and extracting old expressions.

7.1.2 Execution
The execution overhead of the runtime checks is measured by comparing the exe-
cution times of different Go files containing the same program once with and once
without runtime checks. In the following, we present several programs that serve
as examples for worst case scenarios of runtime overhead, i.e. they have been
constructed to exhibit significant overhead when executing runtime checks. Note
that for the evaluation of the execution performance, the resulting duration consists
not only of the execution time but also includes compilation.

First, we measure the program given in Figure 7.2. The program computes the sum
of all elements in a slice given that all elements are zero. The first column of Table

// I f a l l s l i c e e n t r i e s are equal to zero , t h e i r sum w i l l be zero
//@ r e q u i r e s f o r a l l i i n t : : i in range s l i c e ==> s l i c e [ i ] == 0
func sumZeros ( s l i c e [] i n t ) i n t {

re turn 0
}

func main () {
s l i c e := make ( [ ] in t , math . MaxInt32 )
sumZeros ( s l i c e )

}

Fig. 7.2: Program quantifier.go: Function with a quantifier whose runtime check leads to
a significant increase in execution time
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Exec. domainorder.go optimizations.go
time

quantifier.go
range a first range b first optimized not optimized

Plain ∅ 1.12s 0.72s 0.51s 0.21s 0.25s
RACs ∅ 12.4s 0.56s 14.18s 0.35s 11.75s

Tab. 7.1: Average execution times in seconds (s) of both a plain version (i.e. one without
runtime checks) and a version including runtime checks for quantifier.go (Figure
7.2), domainorder.go (Figure 7.3) and optimizations.go (Figure 7.4).

7.1 shows the execution times for the program without and with runtime assertion
checks. Executing the program with runtime checks, takes almost 12 times longer
than the execution without the checks takes. Thus, the observation we make is
that runtime checks for specifications containing quantifiers significantly increase
the execution time of a program. The time difference results from the encoding of
quantifiers as described in Section 3.3: The quantifier used in Figure 7.2 is translated
into a for-loop that checks the condition a[i] == 0 for all entries of the slice. Thus,
executing the function with runtime checks yields a runtime of O(n) where n is the
length of the slice whereas the function without runtime checks runs in O(1).

The second scenario concerns the order in which quantifier domains are stated.
Figure 7.3 shows two preconditions for a function computing the intersection of
disjunct slices. Both, the function at the top and at the bottom, are annotated with
semantically equivalent quantifiers. The only difference is the order of domains in
the quantifiers. Based on the precondition len(a) < len(b), we can deduce that
the first domain of the quantifier at the top ranges over the shorter slice. In contrast,

//@ r e q u i r e s len (a ) < len (b)
//@ r e q u i r e s f o r a l l i , j i n t : :
//@ _ , i in range a && _ , j in range b ==> i != j
func d i s j u n c t I n t e r s e c t i o n (a , b [] i n t ) [] i n t {

re turn [] i n t {}
}

//@ r e q u i r e s len (a ) < len (b)
//@ r e q u i r e s f o r a l l i , j i n t : :
//@ _ , j in range b && _ , i in range a ==> i != j
func d i s j u n c t I n t e r s e c t i o n (a , b [] i n t ) [] i n t {

re turn [] i n t {}
}

func main () {
empty := make ( [ ] in t , 0)
l a rge := make ( [ ] in t , math . MaxInt32 )
d i s j u n c t I n t e r s e c t i o n (empty , l a rge )

}

Fig. 7.3: Program domainorder.go: Two versions of a function whose preconditions have
different domain orders
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the first domain at the bottom ranges over the longer slice. As explained in Section
3.3, multiple domains of a quantifier result in nested for-loops. The order in which
domains are stated implies the order in which they get nested: In the example on
the top, the outer loop will range over the shorter slice and the inner loop over the
longer one. In the example on the bottom, the nesting occurs the other way around.
The main function creates two slices with the largest possible difference in number
of elements to exhibit a significant impact on the execution time for the mentioned
two versions of the precondition.

According to the nesting of the loops, the runtime check for the function at the top
will loop over the empty domain first. Since it is empty, the quantifier immediately
returns true. For the function at the bottom, the function will loop over long domain
first. Thus, the execution time for the runtime checks of the function at the top is
shorter than the time for the runtime checks for the function at the bottom. Our
experiments confirm this explanation, as shown by the measurements in Table 7.1.
We can conclude that if the lengths of domains are known, it is advisable to state
shorter domains first.

A similar observation can be made when considering the order of optimized domains.
Figure 7.4 shows the same example function twice but with syntactically different
quantifiers. In both cases, the quantifier domains express that if the quantified
variable is a member of the given slice and is bound by the interval from 0 to
100,000, then the variable is not an outlier. Following the quantifier optimizations
described in Section 4.4.3, the nesting of the domains from the example at the top
are optimized as follows:

for _, i := range values { if 0 <= i && i <= 100000 { ... } }

In contrast to this, the domains for the quantifier at the bottom are not optimized
and encoded as the following nested loops:

for i1 := 0; i1 <= 100000; i1++ { for _, i2 := range values { ... } }

//@ r e q u i r e s len ( va lues ) < 100
//@ r e q u i r e s f o r a l l i i n t : :
//@ _ , i in range va lues && 0 <= i <= 100000 ==> ! i s O u t l i e r ( i )
func processVa lues ( va lues [] i n t ) { . . . }

//@ r e q u i r e s len ( va lues ) < 100
//@ r e q u i r e s f o r a l l i i n t : :
//@ 0 <= i <= 100000 && _ , i in range va lues ==> ! i s O u t l i e r ( i )
func processVa lues ( va lues [] i n t ) { . . . }

Fig. 7.4: Program optimizations.go: Two versions of a precondition whose runtime check
is once optimized (at the top) and once cannot be optimized (at the bottom)
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The lack of optimization for the domains at the bottom of Figure 7.4 yields 100×
100000 loop iterations instead of only 100 for the example at the top. This effect can
also be seen in the execution times in Table 7.1. Therefore, we again recommend to
check the order of quantifier domains if the runtime check overhead of a program
containing quantifiers is too large.

7.2 Effectiveness of the Specification Language

We analyze the effectiveness of the GoRAC specification language regarding different
properties that programmers might desire to specify. We consider a set of properties
that enables thorough runtime assertion checking of programs and examine which
properties can be expressed by the specification language. Furthermore, we evaluate
how efficient the specification language can express these properties, i.e. how
concise a property can be stated. The following paragraphs each examine different
properties that are expected to be supported by a runtime checker. We first state
the expectations and then determine how successful these are met by the GoRAC
specification language. For the last two points, we also compare GoRAC to state-of-
the-art assertion-based testing tools in order to identify differences in the employed
specification language.

Reasoning about the program state: When runtime checking a program, we need
to be able to reason about the current program state. The program state is defined
by the contents of all memory locations, i.e. the heap and stack. With the GoRAC
specification language, we can check properties of the program state by expressing
conditions using valid Go expressions. E.g. we can check whether a struct field holds
a certain value, whether an array is equal to an array literal or whether an expression
evaluates to a desired value. Additionally, we can specify whether a function has
no effects on memory using the purity annotation that GoRAC provides. However,
GoRAC exhibits certain restrictions. For instance, GoRAC does currently not support
type assertions. Type assertion could be included into the supported syntax as future
work. Also, we always need to inquire about objects which are in scope; we are not
able to directly lookup arbitrary memory addresses. When reasoning about the heap,
it is also important to note that it is possible to check equality of objects but the
specification language cannot express conditions about whether two objects alias.

Checking assertions at arbitrary program points: It is necessary to allow for
checks at any point of the program execution such that a user can potentially ensure
correctness of all visited program states for an execution. This is permitted by
the different types of specification statements of GoRAC: Pre- and postconditions
reason about program states before and after functions, assertion and assumption
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statement can be placed at any program point inside a function, and invariants
express conditions that are maintained from one loop iteration to the next. Since
specification can also be part of the main function, runtime checking at the very
beginning or end of a program is possible.

Comparing different program states: It is often useful to be able to relate program
states at different program points with each other. Hence, a user can reason about
the presence or absence of changes in between two program points. In GoRAC,
one can use old expressions to refer back to previous program states. Therefore,
a user can compare the current program state with old ones. Labels can be used
to specify and name which program points one want to reference. This feature is
also supported by other runtime assertion checkers [23, 44]. We refer the reader
to Chapter 2 that discusses similarities and differences regarding old expressions of
existing tools in comparison with GoRAC.

Efficient means to express specification: It is desired that a specification language
provides means to write concise specification such that short annotations are suffi-
cient to express complex properties. The specification language should make it easier
for users to express properties than to implement the checks themselves. To this
end, GoRACprovides predicates and quantifiers: Predicates enable reuse of runtime
check annotations and therefore contribute towards writing compact specification.
Quantifiers reason about all members of a domain. This permits concise specification
instead of having to repeatedly specify the same condition for all members. The fact
that quantifiers need to be bounded in GoRAC prohibits reasoning about infinite
sets. Bounded quantifiers are a common feature of runtime checkers [23, 44]. A
comparison of these tools with GoRAC concerning quantifiers is part of the related
work described in Chapter 2.

7.3 Gap between Runtime Checking and
Verification

As described in the motivation for this thesis in Section 1.1, runtime checking with
GoRAC is supposed to supplement verification with Gobra. By enabling programmers
to write specification for runtime checking a program, we hope to facilitate a later
verification of the program by reusing some of the specification. In this part of
the evaluation, we analyze by how far our premise that specification from runtime
checking can be reused for verification holds.

The evaluation is performed in two parts: The first part consists of three case studies
about the reuse of specification. The second part discusses difficulties that might be
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encountered when reusing specification. In the end, a summary of the remaining
gap between runtime checking with GoRAC and verification with Gobra is given.

7.3.1 Case Studies

The three case studies are based on three examples from the Viper tutorial [49]:
(i) Binary search [46] is an algorithm that finds a given element in a sorted list
of elements [26] (ii) Given some number k, the quickselect algorithm [48] selects
the k-th largest element from a list of elements [20] (iii) Graph marking [47] is an
algorithm to traverse a graph starting at some given node and mark all nodes that
are reachable from the given node. Graph marking is similar to the mark-and-sweep
algorithm used for garbage collection. We picked these three algorithms since they
are state-of-the-art algorithms for searching, selecting and graph traversal, and we
assume most readers to be familiar with them.

The Viper examples have been translated into Go and first annotated for GoRAC. In
this first step, the objective was to receive GoRAC annotations that are representative
of annotations an engineer without background in deductive verification would
write. Therefore, only the implementations were inspired by the Viper code but the
corresponding specification was created independently. In a second step, we have
translated Viper specification to Gobra-like specification. Since Gobra is still under
development, Gobra in its current state does not support the whole specification
as it is used for this evaluation. However, we provided Gobra specification that
resembles a complete specification for verification once the final Gobra tool is
released. We compare the number of lines of specification (LOS) for GoRAC with
the number of LOS for Gobra. Additionally, we qualitatively evaluate how much
of the GoRAC specification could be reused for Gobra specification. We consider a
specification annotation for GoRAC as being reusable if it semantically expresses
the same condition as a specification statement at the same program point in Gobra.
Table 7.2 summarizes our findings. For each case study, we shortly describe what
specification was reusable. Finally, we describe the implications of our case study
results with respect to the remaining gap between runtime checking and verification.

GoRAC LOS Gobra LOS Reused LOS
Binary Search 16 23 6
Quickselect 28 44 10

Graph Marking 10 25 3

Tab. 7.2: Lines of specification (LOS) for GoRAC and Gobra, and reused lines of GoRAC
specification for Gobra specification for three cases studies
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Binary Search. Both the GoRAC and the Gobra specification require that the input
slice is sorted. Both also ensure that the returned position is either equal to a
slice index or equal to the value -1 if the number that was searched for was not
found. The Gobra specification includes more access permissions than the one for
GoRAC . For example, the access permissions of the function are repeated as loop
invariants. For some loop invariants from Gobra, the GoRAC specification expresses
the condition as assertions directly in the loop body. In summary, 6 lines of the
GoRAC specification were reused for the Gobra one. This entails that 37.5% (6 out
of 16 LOS) of the runtime checking specification replaces approximately 26% (6 out
of 23 LOS) of the specification for verification.

Quickselect. The specifications for GoRAC and Gobra have the same requirements
on the input parameter k in the search for the k-th largest element. They also
both specify properties for the elements to the left and right of the kth-largest one
when the function exits. For a helper function that partitions the slice using a pivot
element, the GoRAC as well as Gobra specification reasons about the position of
the pivot element. For a helper function that swaps elements in the slice, both
specifications use old expressions to express that the values have been swapped.
There are also some differences, namely Gobra uses ghost code to specify that
permutations have occured on the slice. Finally, the Gobra specification includes
fold and unfold statements, and uses triggers for quantifiers. GoRAC does not
support fold or unfold, and also does not need triggers in quantifiers since all GoRAC
quantifiers are bounded. Overall, 10 lines of GoRAC annotations were reused for
Gobra specification. This includes approximately 35% (10 out of 28 LOS) of GoRAC
specification or 22% (10 out of 44 LOS) of Gobra specification.

Graph Marking. Both specifications for GoRAC and Gobra state access permissions
on all nodes that make up the graph that is input to the graph marking algorithm.
It is also specified by both specifications that a node cannot be marked yet when
it is first visited and that it is marked after it has been visited. The propagation
of markers on all adjacent nodes is included in the GoRAC as well as the Gobra
specification, however, the Gobra annotation is more extensive than the GoRAC one:
The Gobra specification uses ghost code to check that no nodes are being modified
except for the currently considered one and all its neighbors. In this case study,
GoRAC and Gobra share 3 lines of specification, i.e. approximately 33% (3 out of 10
LOS) of GoRAC specification are reused to make up 12% (3 out of 25 LOS) of the
specification for Gobra.

We conclude that the part of a specification for GoRAC that reasons about the
functionality of a program or function and properties of input and return parameters
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can often be reused for Gobra specification. Gobra specification often extents
this functional specification with annotations that are additionally needed for the
correctness proof. For example, certain specifications have to be repeated at different
program points to enable the automatic verifier to discharge proof obligations. Such
repetitions are not present in GoRAC specification. Furthermore, we observed that
certain properties have been stated as assert statements in GoRAC whereas invariants
have been used in Gobra. This can be explained by the fact that in order to find bugs
it is sufficient to repeatedly check an assertion. However, when proving correctness
of a program, stronger guarantees such as invariants expressing properties that hold
across loop iterations are needed. Gobra specification also exhibits a more extensive
use of ghost code and access permissions, and also makes use of constructs like fold,
unfold of quantifier triggers which are not supported by GoRAC. Finally, GoRAC
does not enforce a minimal set of specification and therefore some properties might
simply be forgotten in the specification. In contrast, verification is typically a repeated
process of attempting a verification and extending or fixing the specification.

Ultimately, it is important to note that the findings of the three case studies are
influenced by the fact that they were carried out by a person without a strong
verification background. The GoRAC specification was written without having read
the corresponding Viper specification that serves as a basis for the Gobra annotations.
Therefore, we estimate that the case studies reflect the use of GoRAC by regular Go
programmers that work on an implementation and simultaneously write specification
for it.

7.3.2 Over-Approximation of Permissions
Given a struct pointer x, GoRAC checks an access permission for it by checking that x
is not nil. Hereby, GoRAC over-approximates the access permission. I.e. any access
permission that holds in a Gobra specification, also holds during runtime checking
with GoRAC. However, if an access permission is deemed satisfiable by GoRAC, this
does not imply that it holds during verification with Gobra. An example of such a
scenario is provided in Figure 7.5. The depicted function requires access permissions

type foo s t r u c t {
bar i n t

}

//@ r e q u i r e s acc ( x . bar ) && acc ( y . bar )
//@ r e q u i r e s x . bar == y . bar
func e x c l u s i v i t y (x , y * foo ) . . . {

//@ a s s e r t x == y
}

Fig. 7.5: Program for which executions exist that pass the runtime checks generated by
GoRAC while verification with Gobra fails
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for the field bar of the two parameters x and y that are pointer to a struct of type foo.
In the body of the function, we assert that the two parameters are equal. Runtime
checks generated by GoRAC validate that both x and y are not nil, that the structs
have equivalent values for the field bar, and the runtime check for the assertion
finally checks whether the two struct pointers are equal. If both parameters receive
the same input value, the runtime checks succeeds. Thus, there exists an execution
that satisfies the specification. However, in the case of verification with Gobra, the
program does not successfully verify: Access permissions granted for a location are
exclusive. Hence, it is not possible to hold multiple permissions to the same location
[49]. In other words, write access prohibits aliasing. In the example below, the
access permissions acc(x.f) and acc(y.f) thus imply that x and y do not alias.
Consequently, it is guaranteed that x is not equal to y.

The over-approximation of permissions can thus yield controversial outcomes of
runtime checking and verification. This also contributes to the remaining gap
between runtime checking and verification.

This concludes last part of the evaluation for this thesis. We have shown that GoRAC
performs within acceptable time limits both for generation and execution of the
runtime checks. We have discussed circumstances in which the performance is
influenced by the way specification is stated. The evaluation has further shown that
the effectiveness of the GoRAC specification language covers most of the expectations
for runtime checking tools with only some minor limitations. Finally, the evaluation
suggests that runtime checking with GoRAC is a useful supplement to verification
with Gobra despite the differences that still exist.
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8Conclusion

This thesis detailed the design and implementation of GoRAC, a runtime checking
framework based on assertions for the Go programming language. We provided
an extensive description of GoRAC’s specification language which we designed to
be close to the specification language of the Go verifier Gobra. This allows for
reuse from runtime checking specification for verification. It is defined how runtime
assertion checks are generated for the various annotations that can be expressed in
the specification language. In combination with the generated checks, a technique
for test input generation is presented which can be used to test a program against its
specification during execution. Thus, this thesis promotes the use of specification
through the benefit of automatic testing.

We evaluated the work in this thesis with regard to the performance of generating
and executing runtime checks. The evaluation showed that runtime check generation
performs within an acceptable time limit, hence validating the usability of the GoRAC
tool. The thesis further discussed how syntactical changes to the specification can
influence the runtime of checks. Moreover, the evaluation suggested that GoRAC
is a helpful supplement to Gobra since we could adopt various GoRAC annotations
when writing Gobra specification in different case studies. Therefore, this thesis
contributes towards bridging the gap between runtime checking and verification.

8.1 Future Work

There exist three main opportunities for future work on GoRAC. First, GoRAC should
add complete support of exclusive old expressions as described in Section 4.6. The
exclusive old algorithm outlined in Subsection 4.6.5 can be used as a reference. The
thesis further discusses some implementation specifics for exclusive old expressions
in Section 4.6.7. These concepts need to be generalized for all types of expressions
but can serve as a first basis for the implementation of the exclusive old expression
support in GoRAC.

Second, the prototype for the test input generation detailed in Section 6 should be
extended to handle all types of parameters. Besides the already existing support for
integer parameters, this includes handling all other primitive types and complex data
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structures of Go like arrays or slices. Subsection 6.2 explains how Gobra can be used
to support complex Go data structures. Thus the SMT solver Z3, which is currently
part of the test input generation prototype, should be replaced with a dependency
on Gobra. Additionally, we can expand the test input generation by considering
certain edge cases, e.g. positive or negative integer values, empty data structures, or
null pointers. Once a test input generation for arbitrary parameter types has been
implemented, it needs to be evaluated how efficiently errors are detected by the
generated tests.

Finally, more features of Gobra’s specification language can be added to the spec-
ification language of GoRAC. Permission tracking as described in Section 3.5 can
be augmented with support for inhale or exhale statements. These statements
are used in Gobra to add or remove permissions. Furthermore, predicate support
in GoRAC can be enhanced by handling fold and unfold operations. An unfold
operation exchanges a predicate instance for its body, whereas a fold operation
exchanges a predicate body for a predicate instance [49]. Finally, ghost code can
be incorporated into GoRAC’s specification language to provide more means for
auxiliary declarations.
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