
Flyweight ASTs:
A Study in Applied Laziness

Bachelor’s Project Description

Fabian Bösiger
Supervised by Dr. Malte Schwerhoff

March 11, 2021



1 Introduction

Abstract syntax trees (AST) are used in compilers and similar programs
to represent the structure of a program as a tree data structure. As with
any other tree structure, ASTs can be traversed, searched, transformed and
so forth. During such operations, subtrees within the AST are potentially
checked for equality many times. Moreover, equality checks also occur in
operations on collections of AST subtrees, for example in finding a specific
subtree, which may add an additional performance overhead.

Because ASTs represent the structure of programs, equality checks usually
happen on a structural level. Structural equality checking of subtrees is done
recursively as we have to compare not only the roots, but also their chil-
dren. This may add unexpected performance costs, especially considering
the depth of ASTs representing big programs.

Many operations on ASTs, including equality checks, have to be imple-
mented for every AST node type individually. But these implementations
usually follow a simple pattern and only differ in the arity and type of the
node’s parameters. Such repetitive code is generally known as boilerplate
code and should be reduced to a minimum, for example with automatic code
generation using metaprogramming techniques.

The goal of this thesis is to improve the performance of AST subtree equality
checks without burdening developers with additional boilerplate implemen-
tations.

2 Background

2.1 Viper and Silicon

Viper [1] is a verification infrastructure on top of which verification tools for
different programming languages can be built. Silicon [2] is a backend for
Viper, which is based on symbolic execution. To advance program verifica-
tion in practice, fast verification is crucial as it provides a more streamlined
experience for developers. This is the reason why one of Silicon’s stated
goals is performance:

1



“The verifier should enable an IDE-like experience: it should be
sufficiently fast such that users can continuously work on verify-
ing programs [...]” [2]

Silicon internally builds an AST from the Viper input program. This AST is
potentially checked for structural equality many times within the execution
of Silicon, and as such has the properties described in section 1.

Listing 1: Example of multiple subtree (“term”) equality checks occuring
during the execution of Silicon.

1 // args is of type Seq[Term], meaning we compare a list of
2 // terms within a sort function which is called many times
3 // during the sorting process.
4 relevantChunks.sortWith((ch1, ch2) => {
5 // ... &&
6 ch1.args == args
7 })

2.2 Scala and IntelliJ

The Viper infrastructure is written in the Scala programming language.
Scala has support for metaprogramming using macros. For a nice program-
ming experience using macros, IDE support should ideally be provided. In
this case, we use the IntelliJ IDE. However, Scala macros are not supported
natively by the IntelliJ IDE:

“Since IntelliJ IDEA’s coding assistance is based on static code
analysis, the IDE is not aware of AST changes, and can’t provide
appropriate code completion and inspections for the generated
code.” [3]

To ensure support for macros, a macro-specific IntelliJ plugin would have to
be developed such that IntelliJ properly picks up macro-generated code.

2



3 Approach

3.1 Implementation of Flyweight ASTs

In a first step, we evaluate the performance of the Silicon backend, which
allows us to relate possible performance improvements to changes made
during this project. We use existing benchmarking infrastructure and, if
necessary, create new benchmarks and benchmarking tools.

We can’t avoid equality checks themselves, but what we can do is implement-
ing equality checks in a more performant way. Currently in Silicon, new term
instances are created independently of already existing ones, which poten-
tially leads to the coexistence of multiple structurally equal term instances.
Subterm equality is checked in a structural and recursive manner.

Listing 2: Simplification of how term instances currently are implemented.
Because Plus is defined as a case class, the compiler automatically generates
code for recursive structural equality checking.

1 case class Plus(val p0: Term, val p1: Term) extends Term

Because the AST used in Silicon is immutable, we can utilize the flyweight
pattern [4] on AST terms. To do this, we maintain a pool of term instances.
Whenever a term is to be created, we first compare the components of
this new term with our pool of existing terms. If a term with the same
components already exists, we return it and avoid creating a new instance
of this term. Otherwise, we create a new term and add it to the pool.

This gives us the guarantee that there are no two instances of the same term
in our pool, meaning every two structurally equal terms point to the same
underlying object in memory. Comparing terms for structural equality then
boils down to a cheap reference equality check, and recursive equality checks
can be avoided.

Listing 3: Avoid instantiating multiple structurally equal terms using the
flyweight pattern.

1 class Plus private (left: Term, right: Term) extends Term {
2 // ...
3 }
4

3



5 object Plus extends ((Term, Term) => Plus) {
6 // Pool object which holds our "Plus" terms.
7 var pool = new HashMap[(Term, Term), Plus]
8
9 def apply(e0: Term, e1: Term) = {

10 pool.get((e0, e1)) match {
11 // If this term already exists in pool, return it.
12 case Some(term) => term
13 // Otherwise, create a new instance.
14 case None =>
15 val term = new Plus(e0, e1)
16 pool.addOne((e0, e1), term)
17 term
18 }
19 }
20
21 // ...
22 }

The Plus constructor is now private, which makes it impossible to create
Plus instances without checking the pool first. The companion object Plus
now contains a pool of all existing Plus instances. Furthermore, Plus is no
longer a case class, which means that the default equals method no longer
recursively checks for structural equality, but instead simply does a reference
equality check. Because Scala’s equality operator (==) and data structures
such as HashMap use the equals method behind the scenes, this will most
likely lead to performance improvements.

3.2 Automate Boilerplate Generation using Macros

Silicon’s AST representation of the Viper language consists of nearly 100
different terms, all with boilerplate implementations for different operations,
as discussed in section 1. Our changes introduce additional boilerplate code
to each term companion object, as seen in the case of the Plus term in listing
3.

Our ASTs shouldn’t only be flyweight in the sense of the implementation
pattern, but also regarding development time and effort. This is why we

4



want to avoid such boilerplate code and instead automatically generate com-
panion objects seen in listing 3 using Scala’s macro annotations. Additional
benefits of using macro annotations include improvements in code readabil-
ity and maintainability. Experimenting with code changes will become a
matter of editing a single macro instead of editing each term individually.
Terms which may be added in the future are easier to implement.

Listing 4: One possible way to use macro annotations to automatically
generate code in listing 3.

1 @memoizing
2 case class Plus(left: Term, right: Term) extends Term

4 Goals

4.1 Core Goals

1. Research other potential solutions for fast subtree equality check-
ing, in the context of Scala and in general, that may have been tried
for similar problems.

2. Implement the solution approach described in section 3.1 without
the use of macros. This allows for a first evaluation of performance
before auto-generating code using macro annotations.

3. Evaluate performance improvements and discuss the impact of
our changes on the time needed for verification.

4. Develop macro annotations for automatic code generation as de-
scribed in section 3.2.

5. Ensure IntelliJ IDE support for our macro annotations as dis-
cussed in section 2.2.

4.2 Extension Goals

1. Profiling parts of Silicon that perform many operations on terms. Pos-
sibly adapt such parts to better utilize performance improvements re-
garding equality checks, some data structures for example may perform

5



better over others with fast equality checks. Evaluate performance im-
provements.

2. Investigate if the same approach as discussed in section 3 can be ap-
plied to the Viper AST. If possible, implement our approach and eval-
uate the changes made.

3. Research, implement and evaluate ways to extend AST simplifications
as a further step to increase performance. Plus(t, IntLiteral(0))
for example can be directly simplified to t. Usage of a domain-specific
language in combination with Scala macros to auto-generate AST sim-
plifications. This would allow to easily add or modify AST reductions
in the future.

References
[1] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. “Viper: A

verification infrastructure for permission-based reasoning”. en. In: De-
pendable Software Systems Engineering. Ed. by Alexander Pretschner,
Doron Peled, and Thomas Hutzelmann. Vol. 50. Amsterdam: IOS Press
BV, 2017, pp. 104–125. isbn: 978-1-61499-809-9. doi: 10.3233/978-1-
61499-810-5-104.

[2] Malte H. Schwerhoff. “Advancing Automated, Permission-Based Pro-
gram Verification Using Symbolic Execution”. en. PhD thesis. Zürich:
ETH Zurich, 2016. doi: 10.3929/ethz-a-010835519.

[3] IntelliJ API to Build Scala Macros Support. https://blog.jetbrains.
com/scala/2015/10/14/intellij- api- to- build- scala- macros-
support/. Accessed: March 3, 2021.

[4] Erich Gamma et al. Design Patterns: Elements of Reusable Object-
Oriented Software. en. 2016. isbn: 978-0201633610.

6


