

Changing Software Correctly

Institution ETH Zürich
Department D-INFK
Author Fabian Bannwart
Date February 21, 2006

Modifications of code that do not alter the functioning of object-oriented software are
called refactorings. Refactoring tools, not programmers, should guarantee correctness to
be most useful.

When do refactorings retain equivalence? To tackle this question, I conceive a semantic
model of refactorings. It aims at making it simple to prove refactorings correct, i.e., to
prove that equivalence is retained. It is parameterized over an operational semantics.
The crucial point is that the correspondence between original and refactored program
need not be defined for all states and all program points. The formalism is crafted so
as to offer a solution to a second problem: How can refactorings be applied in practice
without giving up equivalence guarantees? The idea is this: The proof procedure for
refactorings yields minimal obligations that must be satisfied by the transformed pro-
gram. These conditions can be formulated as pre- and postconditions of statements in
the code – they are local. Every program you want to apply the refactoring to needs
to satisfy those conditions. It is not practical to check them by hand. I suggest that
a refactoring tool does it for you: It will check simple conditions before applying the
refactoring as “preconditions” and it will add specification and instrumentation to the
transformed program for all those properties that cannot be readily checked or sensibly
approximated – these are called “postconditions”. It will also add all conditions as spec-
ifications that encode architectural constrains. With every refactoring, the programmer
thus codifies part of the tacit knowledge that is needed to know that the respective
refactoring is applicable for the program. The idea to extract specifications from inter-
actions between program and programmer can be applied to any change with defined
semantics.

A refactoring catalogue that is included does not mainly serve as an illustration of
theoretical concepts. It shows that most refactorings can be reduced to individual code
changes that are easy to verify using the theoretical framework and then be composed
to the conventional refactorings as we know them. I.e., refactorings in this text hardly
ever affect an unbounded number of code locations. The exception are data-refactorings.
They are covered separately.

2

Contents

1. Introduction 5

2. Refactoring: A Motivating Example For Simple Refactorings 25

3. Formalizing Equivalence For Refactorings 39

4. Simple Refactorings Proved Correct 75

5. Refactoring Access Paths: Moving Data Between Objects 117

6. Implementation Example 153

7. Conclusion 175

A. Code For Program Representation 179

B. Notations 181

C. About the Operational Semantics 183

3

Contents

4

1. Introduction
Definition

Refactorings are parameterized equivalence transformations. The intent of these trans-
formations is to reduce the code’s resistance to new features you want to add, i.e., equiva-
lence transformations to improve the design of existing code.

For refactorings, equivalence is confined to the equality of externally observable behav-
ior. Properties like the internal machine state or power consumption or execution time
are not taken into account. Refactorings retain the value of data processing applica-
tions.

Refactorings are practically important because they reduce the resistance to change of ex-
isting code and can therefore provide tangible benefits. They are important as part of the Importance

software development process and are thus tool supported.

Existing refactoring tools – such as the one that comes with Eclipse – are fairly simple.
They take the original program and transform it to a program that may not even compile.
For the correctness of the transformations, i.e., whether or not equivalence has been
retained, the programmer has to rely on unit tests. If the unit tests still pass after the State of the art

transformation, the refactored program is considered equivalent to the original program.
This of course only works if the unit test coverage is complete. This can hardly be
expected and the existing approach is thus insufficient. Mission and vision

I envision a tool that is applicable to the broadest set of programs possible, transforms
them and guarantees that the result is always and for all possible inputs correct. Such a
tool does not exist yet and neither do the preliminaries for its implementation. Establish-
ing preliminaries and illustrating their application is what this text is about.

It does not provide a working implementation even though chapter 6 does contain some
implementation code for a simple refactoring.

Correctness is not only a question of the right transformation. It is also about the
conditions the program must satisfy so as to make the refactoring correct. For example Refactorings have

conditionsrendering a virtual method C::f static is only a valid refactoring if (i) the transformation
is “proper” and (ii) a static C::f does not exist with conflicting signature and (iii)
there are no call-sites of C::f that resolve to a different method implementation. The
example makes clear that only allowing refactorings that are correct for all programs is
not an adequate solution. “Proper” means two things: the refactoring must produce
syntactically and semantically correct results for programs that satisfy conditions (ii)
and (iii).

5

1. Introduction

These conditions are what this thesis is focused on: The goal of this thesis is to prove – for
some reasonable equivalence criteria formulated as pre- and postconditions of program
statements – the conditions of validity for refactorings. There is no universal method to
date that would allow to do this for general sequential programs that support difficult
features like pointers and exceptions. The system should also be flexible enough to handle
other difficult aspects that are conventionally not considered important like finalization
and garbage collection [21].

Part of this text deals with definining such a method. The viability of the techniques
presented here is tested against some representative refactorings, most of them from
Fowler [16], the standard text on refactorings. If a refactoring is not defined in the text,
a description can be found in [16] unless stated otherwise. Names of refactorings are
always written in quotes.

The central idea that renders formalized refactorings practical is to emphasize local
equivalence criteria instead of global ones. Local criteria are criteria that depend on the
pre- and/or the poststate of a – possibly complex – statement. Criteria that reason about
all intermediary states are not local. It is easy to state global criteria (“the program has
to return the same results after transformation”, see [37]) but it is very difficult to check
them.

It is more difficult to state criteria that are locally checkable but still weak enough toModularity

yield applicable transformation criteria. Local verifiability is not the same as modularity,
but local criteria can be translated to modular criteria by asking which conditions have to
be maintained when putting together various software components. These are the proof
obligations for the separate system parts if refactorings have to be applied. This is as
far as you can get to modular refactorings because refactorings that change abstraction1

interfaces always require changes to the instantiations of these abstractions, which may
be dispersed in the program. An important design goal for a complete set of refactorings
and its implementation in a refactoring tool is to offer as few refactorings as possible
that have dispersed effects.

The introductory explanations already provide some legitimation for formally verified
refactorings that always yield correct results. Relying on unit tests has certain advan-Whay are refactorings

necessary that are

unconditionally

correct?

1Abstractions are results of abstracting. Abstracting in general is the act of separating a thing from its
direct associations. Programs and procedures are abstractions of operations over input data. Classes
are abstractions of data and operations. Templates are abstractions of types. Abstractions are
instantiated and therefore have an abstraction interface that defines how exactly the instantiation is
to be done. The abstraction principle states that any syntactically meaningful unit may be abstracted
in a programming language, i.e., that abstraction is completely supported [45]. The problem with
abstractions is that refactoring abstraction interfaces affects all uses of an abstraction even though
such changes are often driven by the needs of a specific instantiation. Translation between abstraction
interfaces becomes important in that case as exemplified in chapter 4 where changes to abstraction
interfaces are always treated as local refactorings. It is not easily possible to translate between
abstraction interfaces of storage like fields, which I call data abstractions. There should always be
only one data representation (cf. chapter 5).

6

1.1. Beyond unit tests: Verified refactorings for the software reengineering lifecycle

Figure 1.1.: The software reengineering lifecycle (adopted from [13])

tages however that cannot be easily discarded. Unit tests (i) provide a kind of documen-
tation, (ii) guarantee loose dependencies2 and (iii) are never overly restrictive because
all the programmer’s implicit assumptions are encoded in the unit tests. There is a more
foundational reason for having a provably correct refactoring and tool support in addi-
tion to unit tests that has to do with the software development lifecycle. It is described
in the next section 1.1.

1.1. Beyond unit tests: Verified refactorings for the software
reengineering lifecycle

Knowing that automated refactorings do not change the behavior of existing code does
not help much if we do not know whether the behavior is correct in the first place.
Correctness in the context of software maintenance is thought to be guaranteed by unit Unit tests

tests that can be executed quickly after every change.

Example 1.1. If a unit test runs for more than 30ms on today machines, it is probably
too slow.3 Here is why: In a system of usual size with 3000 classes and 20 unit tests
for each class, running all the tests takes more than half an hour. Even if you can make
sure you’re using only a subset to work with, it will still take a few minutes.4 In any
case, this will keep you from running the tests.

All is fine if you do have unit tests that allow you to perform the changes safely and
quickly. Before you can perform changes, tests have to be put in place. Even if there

2Unit tests by definition only affect one “unit”, either a single class, or a restricted group of classes
that are tightly coupled. The fact that they can be tested in isolation means they are only loosely
dependent on the rest of the system.

3I would suspect either the unit or the test is flawed in this case. The unit might be too big, or the
test may not be focused enough.

4I wonder why determining (a conservative superset of) unit tests that are affected by a change is not
a standard feature in today’s IDEs. Erich Gamma [17] claims that it would involve much more than
a crude dependency analysis.

7

1. Introduction

are tests, this can be problematic. For code that needs reengineering, you often haveSeaming code without

knowing it.5 to introduce such tests or update and rectify older “tests” that do not faithfully reflect
the state of the code. You may not understand the test hooks the code offers. You have
to change code in most cases to introduce and/or modify the tests. How can you (unit)
test a class that expects an opaque “database connection”6 or an opaque GUI toolkit?
Setting up a database or a database simulator may be just about feasible for tests that
should allow you to quickly check a refactoring even if they make the development process
closely dependent on the environment configuration. Automating the interactions with
a GUI however is a daunting task. The same is true for report generation and printing,
file handling and interfaces to other substantial subsystems of the application. MichaelDefinition “seaming”

Feathers [15] calls this the legacy code dilemma: Before being able to introduce unit
tests that would allow safe and rapid modifications, modifications to the code have to be
made to render the code testable. This is called seaming and mostly consists of breaking
external dependencies. Tests that use database connections, GUIs, files, etc. are not
unit tests.

It is a fallacy to believe that the maintenance of realistic, yet “properly engineered”
code equiped with unit tests is not subject to this conflict – although on a microscopic
scale, which renders the process much less painful. Software maintenance (and devel-
opment) is usually a cyclic exercise that involves (i) quick introduction of new features
or change of existing features (forward engineering), which increase the complexity of
the system. (ii) Test and possibly use of the features. (iii) A reverse engineering phase
to discover what the code was about. (iv) A reengineering phase that involves realign-
ing the code structure, writing tests for the features and updating old tests to make
the code ready for the next generation of changed requirements. This is shown in fig-
ure 1.1

The difference between legacy code and “properly maintained” code is the mere fact
that properly maintained code is subject to this cycle regularly and recurrently while
legacy code is barely forward engineered. Laudible practices like XP [4], TDD [30]
and “continuous refactoring” demand an extreme form of the software reengineering
lifecycle,7 they do not eliminate it. They aim at reordering it, blurring the distinction
between its phases and render them so small as to make them indistinguishable – it is
certainly easier to figure out what three lines of code added a few seconds ago are doing
than to crack the meaning of 30000 lines of code that is six months old. The primary
benefit of this culture of constant change is not mainly to keep the code up to date
with formal requirements – this could be done in chunks – but to safeguard the tacit
knowledge of existing code.8

5Argument summary : Modifications have to be made to make code testable. This is not possible by
hand because making changes by hand requires knowledge about the code. Refactoring tools can
help.

6In Java, the database connection could be a class instead of an interface. In C, consider fprintf
with a FILE * handle.

7The term is coined in [13].
8It is true that other programming paradigm variants like modular programming do have limitations

8

1.2. Automated refactoring

Unfortunately, tacit knowledge tends to get lost in practice, turning the program into
legacy. When modifications are made, this knowledge has to be rediscovered. This is
best done by writing and updating unit tests, which has the desirable effect that the
software becomes even more maintainable. Before effective unit tests can be introduced,
dependencies have to be weakened. The code has to be made structure shy.9 This is a
refactoring itself – in fact, it is the greatest challenge of updating legacy code. Feathers
[15] writes that the “trick is to do these initial refactorings very conservatively”. This is
a laudible advice, but it is better done with formally verified refactorings. They can help
refactor the code safely without having extensive tests.

The refactoring tool can add checks that guarantee correct execution whenever the code
is exercised – at least after you start writing tests. These assertions help debug the The general idea,

briefly mentionednewly written tests as they enforce backward equivalence. The checks can reveal the
expected “fixture” for the functioning of a class. The next sections describe this process
in detail.

1.2. Automated refactoring

This text focuses on local conditions for refactorings. Local criteria are also practically
useful because they are easy (even though they may be expensive) to check dynamically
by the runtime system after the transformation. This mandates that the local condi- Pre- and

postconditionstions be specified as “post”-conditions checked in the refactored program as opposed to
“pre”-conditions checked in the original program (suggested in [37] and normally imple-
mented in refactoring browsers, see figure 1.2). A refactoring tool could instrument the
object code with such tests. It should – in general – be possible to translate between
“pre”- and “post”-conditions. If this is not or not conveniently possible, a conservative
approximation must be found.

Example 1.2. Consider a program doing calculations on a right triangle with hy-
potenuse c and catheti (legs) a and b. The aim of the application is to print the length

b

a

c
β

of c given a and b. I show only the method that calculates c:

that are probably more severe than those of object orientation. It should not be contested however
that tacit knowledge of even beautifully designed applications is urgently needed particularly in
object-oriented systems because object-oriented programs tend to conceal the runtime data structures
and its interaction with inheritance and dynamic dispatch. Moreover, most OO languages force the
programmer to split shared responsibilities into separate classes and/or compilation units breaking
modularity and encapsulation. This makes relevant code hard to find.

9This makes the case for explicit constructs in programming systems that allow implicit disassociation
between different code parts. Such implicit means do not exist to date (unless we accept completely
dynamic languages that cannot provide safety guarantees). In Java-like languages, disassociation can

be achieved with interfaces and dynamic dispatch. In C++, it can also be done with templates. In
Haskell, it is done with type classes. SML has the most support for dissassociation, which it calls
signatures and functors. The possibility to minimize “hard links” between program parts is often
cited as a condition for reusable components (see for instance [19, 36])

9

1. Introduction

Figure 1.2.: Automated refactoring: the conventional perspectives

public class RightTriangle {
double a, b; // fields

public double get_c() {
double c = a/Math.cos(Math.atan(b/a));
return c;

}

...
}

There is also a JUnit test for the the program:

public class RightTriangleTest extends TestCase {
public void testGet_c(){

RightTriangle t = new RightTriangle(1,2);
double exp_c = 2.2;
Assert.assertEquals(exp_c, t.get_c(), 0.1);

}
}

At some point, the developer may discover the Pythagorean theorem c2 = a2 + b2. He
wants to simplify the calculations so he asks the refactoring tool to “Replace Expression”
a/Math.cos(Math.atan(b/a)) by Math.sqrt(a * a+b* b) . The following bulleted
list describes how each of the known and some hypothetical approaches to automated
refactoring would handle the problem and how the approach of this thesis solves this
task.

• If the tool is a conventional refactoring aid, the, tool will (hopefully) check whether
Math.sqrt(a * a+b* b) is indeed a valid expression. This corresponds to the first

10

1.2. Automated refactoring

line in figure 1.2. The transformed get_c method will look like this:

public double get_c() {
double c = Math.sqrt(a * a+b* b);
return c;

}

• If the tool is a bit more sophisticated, corresponding to the second possibility in fig-
ure 1.2, the tool will first check the syntactic validity of Math.sqrt(a * a+b* b) ,
and then it will try to prove some sort of equivalence between the code that
calculates c in the original and the transformed code, i.e., equivalence between
a/Math.cos(Math.atan(b/a)) and Math.sqrt(a * a+b* b) . That’s not ex-
actly trivial, but that’s what formal verification is about! The code will look just
like above.

• The tool that corresponds to the third line in figure 1.2 will try to find a syntactic
approximation to the required equality. It may for instance expand the expres-
sions a/Math.cos(Math.atan(b/a)) and Math.sqrt(a * a+b* b) to verify
whether the two code sequences are identical. It could also do some abstract in-
terpretation of the code. If the result of the interpretations are the same, the
refactoring is applied and the code is being transformed.

• Roberts [39] proposed a new approach that is introduced here to evoke a deja-vu
in sections 1.2 and 1.4.2.10 Before doing the transformation, all unit tests are run.
The JVM is instrumented, so each time the program counter reaches the line the
calculation of c starts, the program forks. One instance of the application uses
the conventional algorithm a/Math.cos(Math.atan(b/a)) , the other instance
uses the new one Math.sqrt(a * a+b* b) . If the resulting state spaces of both
instances are always compatible, the two expressions are considered equivalent and
the refactoring is applied as before.

• What I briefly proposed at the end of section 1.1 and elaborated on at the begin-
ning this section is this: Before the refactoring is performed, the tool checks the
precondition, making sure that the new expression will be valid in the respective
context. It will then generate a predicate that checks the equivalence the two old
and the new expressions. The predicate may contain code, so it should make sure
that adding the predicates does not alter the semantics of the transformed pro-
grams. This is all done before the actual transformation because this cannot be
determined effectively at runtime. The tool will then apply the refactoring and
add the predicate as a specification to the program at the appropriate location.
For the present case, the specification could be a simple Java assert statement:

10Roberts actually investigated simple predicates that could easily be evaluated by the runtime system
itself. I describe here how his idea can be extended to a more general setting.

11

1. Introduction

public double get_c() {
double c = Math.sqrt(a * a+b* b);
assert Help.approxEq(c,

a/Math.cos(Math.atan(b/a)));
return c;

}

No unit tests are run to exercise the new code. Instead, the assert statement
remains in the code. The advantage is obvious: The code will not change its
behavior without being noticed even if there are no or only incomplete unit-tests
like the one above because the test is performed every time the application is run
(with the right flags). Even if the assertion can be verified or reduced by a static
checker, the assertion is useful to document certain assumptions. In this example
for instance it is required that the value of a is positive.11 The new code in the
presence of a checker could then be

public double get_c() {
assert a > 0;
double c = Math.sqrt(a * a+b* b);
return c;

}

The rest of this section describes the vision of refactorings with specifications and dis-
cusses various considerations.

Preconditions are not made obsolete by postconditions. They are still necessary to de-
fine when a refactoring is appropriately applied. You cannot apply “Replace Typecode
with Subclass” if you do not use a typecode. Moreover, an automated tool may well
assume some standard structure it can apply its algorithms to. These preconditionsNot everything is a

postcondition have a different status from the postconditions that ensure the programs preserve equiv-
alence. Only essential applicability conditions have to be formulated as preconditions
that are tied to the structure and the concept of the refactoring, not its operational
properties.

Criteria do not suggest themselves as either pre- and postconditions in all cases. Some
people may even find it debatable whether non-aliasing properties belong to the pre-
or the postconditions. Instead of lengthy deliberation, a pragmatic solution has to be
adopted for the sake of practical applicability: It must be possible to sensibly approxi-
mate the semantic preconditions syntactically. And if this is possible, it should actually
be done, favoring pragmatism over unrestricted generality. This is why I reserve post-
conditions for a few difficult refactorings.

11This is an illustration that the original program is not always the best normative measure.

12

1.2. Automated refactoring

Conditions should only be checked in the running program if it is not reasonably possi-
ble to check them statically. They can be added to the program as specifications, which
might get translated to some static verification and dynamic checks for whatever can-
not be verified statically. These conditions can also be implemented as simple dynamic
checks. Or, alternatively, these conditions can be verified online: code is monitored
while running and transformed afterwards if the conditions are met. Even though these
conditions are not checked after the transformation, they fit well with the notion of
postconditions as conditions that are not checked before considering the transforma-
tion.

What is the disadvantage of postconditions? Postconditions are inserted into the pro- Why minimize

postconditions?gram as specifications, conventional instrumentation or they can be added to unit tests.
Every semantic change (by the programmer!) to the program functionality may in-
validate these generated parts of the program. He may not be familiar with the an-
notation or additions that may have been injected under the hood and yet the refac-
toring tool cannot help determine whether the specifications are still valid after the
programmer makes changes to the program. The programmer has to remove the in-
strumentation manually. An important consequence is therefore that the postcondi-
tions be visible to the programmer, so as to communicate, with every refactoring step,
which assumptions about the code are implied by the application of a certain refactor-
ing.12

The fact that the programmer has to learn new annotations is a disadvantage. It renders
the programming environment more complex. Still, postconditions are not be as bad
as they may seem because they mostly involve intuitive properties e.g. about aliasing
in the object graph. These are easy to communicate and appropriate for translation
into aliasing control type systems for instance. Some people [22, 23] believe, including
myself, that alias control and other sorts of constraints – as the ones inserted into the
application by a clever refactoring browser – benefit the quality (not only the safety) of
programs.

It is a central concept in this text (and a novel idea) to inject refactoring postconditions
as specifications in the program and expose them to the programmers. With every trans-
formation, the programmer codifies tacit knowledge about the program’s behavior – tacit
knowledge that may be proved wrong.13

12Again, tests cannot be assumed, so adding, testing, removing [39] is not an viable option for all
programs.

13Previously, postconditions were viewed as a mere tool to avoid expensive verification and inaccurate
static analyses.

13

1. Introduction

Figure 1.3.: Automated refactoring employing postconditions

1.3. Primitive and composite refactorings

The refactorings presented in Fowler [16] are hierarchically organized (“composite” refac-
torings, see [37]). There are atomic (“primitive”) refactorings14 that are not composed
from, and therefore independent of other refactorings. This can be seen as the defini-
tion of primitive/composite refactorings: “A primitive refactoring is a refactoring that
is not decomposed into simpler refactorings”. ([10], emphasis added) The ideal is that
the primitive refactorings form a core to which all refactoring transformations can be
reduced. It has to be complete15 and convenient for assemblage, but apart from that,
no other criteria are inevitable. This suggests that the modest definition is quite suffi-
cient.

Most refactorings are composite. They depend on other, simpler refactorings for parts
of their transformation. This is by no means limited to the refactorings in [16, chap.
12]. If possible, I want to avoid composite refactorings and focus on atomic ones be-
cause composition is simple, but correctness for atomic refactorings has to be tackled
directly.

There have been attempts to show equivalence of refactorings for composite refactor-
ings ([9]). There is just one way of composing refactorings: applying them after each
other. In the process I envision, each refactoring in a chain of applied refactorings adds
assertions to the source program. As long as these assertions use the abstractions of
the source program only (i.e., they can be expressed as ordinary program expression,
they are transformed together with the following transformations) I.e., as long as post-
conditions can be evaluated inside the program, unlimited composition of refactorings is
possible.

As I said in the text, I am confining myself to primitive refactorings. What are prim-
itive refactorings? A refactoring is certainly primitive at least in cases when it cannot
be decomposed to other primitive refactorings. This self-referential definition does not

14or refactorings that can be made atomic.
15Every equivalent program has to be reachable using only primitive refactorings.

14

1.4. Comparison to related efforts

Figure 1.4.: Composition of refactorings

reveal a unique set of primitive refactorings. Likewise, not every primitive transforma-
tion is a refactoring even if equivalence is retained in some cases. It should actively
provide for equivalence. Custom and conventional wisdom have to be respected in both
cases.

1.4. Comparison to related efforts

The related work discussed here is only a small (more probably tiny) fraction of the
vast literature on refactoring. It merely discusses those efforts that are geared towards
reasoning about the correctness and conditions of refactorings and not the refactorings
qua unconstrained program-transformations as covered for instance in Lämmel et al.
[8, 26]. Texts that focus on the design rationale of refactorings such as the book by
Kerievsky [25] are not considered either.

I summarize each of the various efforts in chronological order and compare them to the
approach chosen for this research. The section ends with a tabular overview of related
work.

1.4.1. Opdyke [37]

It is not quite clear what the single most important academic achievement of Wiliam
Opdyke in his doctoral thesis [37] was. Maybe that’s the reason why his contribution is
better known as “Opdyke’s thesis” than anything else. Fact is that Opdyke’s thesis is Contribution

the first readable account on refactorings and the first serious attempt to examine them
thoroughly. In fact, he even invented the term “refactoring”! The language he uses is a
subset of C++.

The part most relevant to this research is [37, chapter 4]. It discusses conditions for refac-
torings to maintain program behavior. Opdyke lists seven conditions, six of which are
trivial and concern syntactic properties that must hold after the refactoring in his system:
unique superclass and acyclic subclass relation, distinct class names, distinct member Opdyke’s seven

properties for

behavior preservation

names within a class, distinct member variables across subclasses, compatible signatures
of overriding methods and type-safe assignments. There are certainly more than these
six properties a compiler has to check for well-formedness, but these are the ones he

15

1. Introduction

lists.16 What Opdyke lists as number 7 is quite interesting indeed, and not at all trivial:
“Semantically equivalent references and operations”.Q: What is

equivalence?

A: Two programs are

equivalent if their

output is the same for

the same input.

Opdyke defines semantic equivalence as “the resulting set of output values must be the
same”. It may seem trivial but I found that it is quite insightful and significant com-
pared to what other people have come up with later when trying to formalize behavior
preservation. Other definitions of equivalence are discussed later in the context of their
respective proponents. I list them briefly: Two programs are equivalent if (variant i)
the internal state is the same at the end given the same initial state [11]; if (variant ii)
some lexical properties of the program structure are retained [29]; if (variant iii) they
are considered equivalent “somehow” [39, 9].

There are some denotational problems with Opdyke’s definition. What does “output”
mean? Does timing17 count as output? What about network traffic latency, etc. It
has to be made more concrete for formal purposes, but it still seems the most sensible
definition as it comes closest to the intuitive understanding of what “externally visible
behavior” encompasses (certainly not true for variants i & ii) and it is at the same time
not fatalisticly unapproachable (unlike variant iii). Opdyke’s definition is the one to be
used in this text.

Opdyke introduces quite a few important concepts that had not been stated as clearly
before. He recognized that common refactorings “are only behavior preserving under
certain preconditions” (emphasis added) He did not only invent refactoring precondi-
tions, he also formalized these conditions for the refactorings he examined. The func-
tions he used closely resemble the ones that were later used in the famous descrip-
tion of the Smalltalk Refactoring Browser [39] I am going to discuss in the next sec-
tion 1.4.2.

Opdyke informally argues for the correctness of the transformations. An example from
delete function argument , [37, p. 46]: “[. . .] Expressions passed to Arg (in calls to its
containing function) have no side effects. Therefore, program property seven (semanti-
cally equivalent references and operations) is preserved. The other program properties
are trivially preserved. [. . .]”

He does not have a formal model what correctness encompasses, which by no means
disqualifies his work but renders it more flexible and useful than later approaches. He
does however have a formal model of the program representation. He also introduces
a concept to capture the reach of a refactoring outside of which the program and its
semantics stay the same. It roughly corresponds to what I call “locality” in later chap-
ters.

16Syntactic well-formedness of refactoring results is not discussed explicitly in this text. It is implied
that the preconditions guarantee it.

17Consider calls to sleep(1000000) in C/C++!

16

1.4. Comparison to related efforts

Summary: How I complement Opdyke’s work Opdyke’s work has a different focus.
It established fundamental ideas but it adds little that is practically useful for the goals
of this thesis: He does not have a formal notion of equivalence. He consequently does
not have a proof method that directly yields minimal conditions for the correctness of
refactorings. He didn’t consider of postconditions or specifications. He does not cover
the decomposition and he does not explicitly recognize the value of confining the locality
of a refactoring.

1.4.2. Roberts’ Refactoring Browser [39]

Roberts’ thesis – submitted in 1999, seven years after Opdyke’s seminal work – pro-
vides more practical insights into the refactoring process. In particular, he adds the
concepts of postconditions to avoid having to analyze the program statically, which
– he consistently argues – is too inaccurate to be useful.18 He proposes a dynamic
approach to refactoring and emphasizes unit tests as a program specification. The post-
conditions are evaluated while the unit-tests are executed. He coins the term “online
refactoring” for a variant where the program is transformed and monitored while it is
running.

In Roberts’ formalism, postconditions are formulated as predicate transformers that
ought to facilitate chaining of refactorings where refactorings in the chain set up pro-
gram properties for refactorings later in the chain.19 Unlike this text, he does not
distinguish pre- and postconditions by their intent because he does not recognize the
value of correctness conditions as program specifications.

The notion of postconditions used in this research is a little different from the one
proposed in [39]. There, postconditions in their original definition specify how valid as-
sertions are transformed by the transformation into other valid assertions as long as the
transformation is correct – even though this notion is reduced to test cases. “Semantic
equivalence” in [39] is supposed to be retained if the preconditions of a refactoring are
satisfied. Postconditions in [39] are therefore trivially induced by the program trans-
formation. In this text however, postconditions are conditions that are necessary for
the correctness of the refactoring, but are checked in the transformed program instead
of the original program. Postconditions in this text are similar to the instrumenta-
tion introduced by what Roberts refers to as “dynamic refactoring” even though it is
before the program transformation that the instrumentation and testing is supposed
to be performed. [39, p. 60] briefly mentions that tests can be performed after the
transformation. The matter is more difficult because he considers functions as well as

18From [39, p. 9] “Some of these approximations are particularly poor, such as the analysis for object
ownership presented by Opdyke [. . .]”

19I disagree with his view. There are only very few properties where it is actually useful (such as
aliasing, “IsExclusive”). Moreover, the degree to which refactorings that depend on such predicates
are preceeded with refactorings that guarantee them (such as introducing a new field and assigning
a fresh object to it), is severly limited.

17

1. Introduction

predicates. functions are used to extract properties that are needed for the refactoring
transformation itself while predicates can be tested afterwards. This is not an issue for
modern languages that are sufficiently static for all known refactorings. So in [39] the
instrumentation is removed after the tests and before the refactoring takes place. This
contrasts with our approach that leaves all dynamic checks in the program and makes
sure that executing the program will never cause unintended results due to refactoring
independent of whether or not tests are available. Unfortunately, “dynamic refactoring”
has not been implemented in the (at least not in the publicly available) Refactoring
Browser.

Comparison In this text, for the refactoring to be correct, both the pre- and the
postconditions must hold. Postconditions are intended to be checked during execution
of the transformed program as code instrumentation or verified using static analysis.
The code remains there in either case. Code instrumentation is the key to composable
refactorings in the face of difficult transformations: The code that checks postconditions
is transformed together with subsequent transformations. Composite preconditions can
thus still be derived from the transformation – keeping all the advantages of [39] and
adding the possibility to analyse – instead of merely argue about – conceptually advanced
refactorings like “Move Field” based on the operational semantics of the programming
language.

The disadvantage of the approach taken with postconditions here is that annotations
must remain in the program and can only be removed by the programmer who needs
to know when he introduces transformations that invalidate the requirements of earlier
refactorings. This can also be seen as an ingenious feature: refactoring transforma-
tions actually make assumptions the programmer has about the program explicit and
transform them into annotation that can be useful for subsequent program verifica-
tion.

Roberts negates the necessity for formal correctness proofs. [39, p. 19 top] The signifi-
cance of Roberts’ work is the implementation of the “Smalltalk Refactoring Browser”, a
practical and useful refactoring tool. His main research contribution, dynamic refactoring
“has not yet been incorporated into the publicly available tool”.

Roberts’ work on composite refactorings has been extended by Cinneide [9, 10]. A formal
legitimation for primitive refactorings is not given. Cinneide reckons that behavior
preservation is too complex, formal semantics are too intractable and approaches based
on them “cannot therefore be currently expected to produce a working software tool”.
I aim at showing the opposite in this thesis. I also illustrate that postconditions are
helpful even without complete unit test coverage.

18

1.4. Comparison to related efforts

1.4.3. Graph-based formalization [29]

The papers written by Tom Mens et al. focus more on specifying the actual trans-
formation precisely rather than proving correctness of refactorings [29]. They specify
programs as graphs and refactorings as graph transformations. The graphs that repre-
sent programs are very similar to abstracts syntax trees and quite similiar to the tree
form I am using in programs. The difference is that abstraction uses have back-pointers
to the abstraction definition. I.e., method calls for instance have a back-edge to the
method implementation, classes have an edge to the superclass, etc. Refactorings as
graph transformations are advertised as particularly concise, transparent, elegant and
expressive. The article lists a few refactorings that are claimed to be “the list of primi-
tive refactorings” (emphasis added). The list does not contain refactorings to reorganize
data.

The kind of behavior preservation the paper examines is not based on an operational
model. Instead, three kinds of “behavior preservation” are presented: access preser-
vation, update preservation, call preservation, i.e., whether the implementation access-
es/updates the same variables and calls the same methods after the transformation as
before the transformation. These notions are formalized by “graph expressions” that
are regular paths specifications in the graph. Unfortunately, this notion of behavior
preservation is not based on an operational model. I.e., every non-trivial example will
violate behavior preservation even if access/update and call preservation is guaranteed.
Even though this has not been the primary goal, it is not easy to see where the presented
formalism can be most useful.

1.4.4. Model refactoring [18]

The research reviewed so far describes refactoring as a transformation on source code
or an abstracted version of source code like a variant of an abstract syntax tree. This
is also the approach taken in this text. Many other attempts to formalize refactorings
are based on a model of the source code. The model is meant to capture certain aspects
and relevant design decisions of the program. One example of a modelling language is
UML.

UML refactoring operates on the UML model of the program instead of on the actual
program representation. The advantage of model-driven approaches is that they are more
language independent than source-code refactoring. The disadvantages are the same as
the known weaknesses of model-driven development advertised as a general development
strategy: in general, the model is an incomplete specification, code and model can
diverge, late design and other changes cannot be propagated back, model validation has
limited significance. A particularly obvious instance is the fact that abstraction uses
(e.g., method calls) in class diagrams cannot be adjusted.

19

1. Introduction

There are various efforts to formalize model-refactoring or focus on design changes in
refactorings [5, 28, 43]. I only discuss one [18].

UML class models provide an approximation to the static class definitions of a program.
Gheyi et al. describe in [18] how refactoring could be done for Alloy, a modeling language
that avoids some of the complexities of UML class diagrams and has a simple semantics
based on sets.20 The original and its transformed counterpart are now called equivalent
if all instantiations of the model (i.e., set assignment that satisfy the model constraints)
have a corresponding instantiation in the transformed model that is given by some
mapping function and vice versa.

1.4.5. Refactorings as refinements [11]

Márcio Lopes Cornélio [11] proposes to use the refinement relation as the equivalence
criterion for refactorings. He uses the notation introduced in [33]. Refinement guaranteesContribution

functional properties, i.e., the relation between initial and final state. Refactorings as
understood in the context of my research is concerned with the externally visible behavior
however. Externally visible behavior has to be explicitly modelled (see [33, p. 133]).
Behavioral equivalence is thus not built into the formalism, but has to be built on top
of it.

In chapter 3, additional constraints21 are introduced that describe a relation between
data in the original and transformed program. Such a relation is needed in [11] as well.
It is conventionally called the coupling invariant of a refinement. Coupling invariants
have to hold all over the program unlike the corresponding concept used in this text.
This makes it more difficult to formalize new refactorings that cannot be decomposed
into existing refinement steps. Refinement does not allow to reason about the program
directly. This is done on the level of the refinement calculus. The reason is that programs
are embedded in a shallow manner. In this research, programs are syntactic entities that
are interpreted by a machine, so there is no switching back and fourth between calculus
and program.

An additional challenge with refactoring as refinement [11] is that refinement calculi are
traditionally less often applied to reference semantics. In fact, it is difficult to find a
text on refactoring that admits itself to such complexities. Gheyi [11] also assumes copy-
semantics. Many difficulties however stem from the fact that references and aliasing are
omnipresent in object-oriented languages (see also the extensive discussion of this topic
in Roberts’ thesis [39]).

The fundamental difficulty is that refinement was not conceived for reasoning about
improvements to existing code but for deriving code from a specification – integrating
specifications and executable constructs. Most seriously, the resulting program is sup-
posed to terminate if the original does. That means that conditions cannot be checked

20A tutorial can be found at http://alloy.mit.edu/tutorial3/alloy-tutorial.html
21called β

20

http://alloy.mit.edu/tutorial3/alloy-tutorial.html

1.4. Comparison to related efforts

dynamically after the transformation. They cannot be easily checked ahead of the trans-
formations either. Yet, the conditions that have to be checked for refactorings necessarily
remain the same.

Example: The transformation rule “Move Attribute” [11, Rule 4.3] roughly corresponds
to the “Move Field” refactoring. A field is moved from one object to a different object.
A required invariant is that the object where the field is moved does actually exist. This
is itself not trivial to check.

Refinement [11] Refactoring (this text)

Termination Respected Ignored
Composition Preconditions only Pre-/postconditions
Dynamic checks Impossible Where necessary
Determinism Increasing Indifferent
Embedding Shallow Deep
Faithfulness Limited to the calculus

– which isn’t the pro-
gramming languagea

Limited by your imagi-
nation – consider [42]!

Level Abstraction/model Actual program
I/O Model-

dependent/unspecified
Uninterpreted

aRefinement calculi are quite fixed compared to program semantics, which often
depend on the properties to be examined.

Table 1.1.: Main dissimilarities between refactorings as refinements and this research

One difference in the way abstractions are used and introduced, i.e., in their style. In re-
finement, the program is considered a mathematical entity and everything it deals with is
defined semantically as well. I/O is a good example: It is modelled inside the program.
Visible intermediate states may be ignored. The same is true for objects and references
even though the more features that are introduced that are close to some actual pro-
gramming languages, the more similar refinement becomes to the conventional approach
to define programs as (to a greater or lesser degree) syntactic entities that are interpreted
by an operational semantics. Operational semantics allow to intuitively reason about the
“inside” and the “outside” of the program. They are traditionally much less definitive
than refinement calculi partly because the operational semantics may also be subject to
refinement (for instance when formulated as ASMs [6]).

Having said that, I must stress that refactoring as refinement and the framework I
present here are related – both are using different varying correspondences between
initial and refactored code. Instead of sticking with the powerful but rigid idea and
framework of refinement however, I have basically taken the liberty of coming up with
novel framework that has proven useful to answer the unique challenges of refactoring
in practical applications.

21

1. Introduction

1.5. Scope

In the present text, I confine myself to semantic equivalence. Semantic equivalence is
only possible if refactorings always result in a compilable program. This is not discussed
explicitly, but it is silently assumed. This is not a audacious assumption: I give correct-
ness proofs. They show that semantic equivalence is retained. For any sensible notion of
semantic equivalence, the program that results from refactorings must be interpretable
as well. This is a weaker notion than compilability, but it is as far as I can get without
specifying a formal static semantics of the programming language discussed here, which
is beyond the scope of this thesis.

I try to cover all kinds of refactorings in this text, which I treat as source transformations.
Only source transformations capture the whole operational complexity that is needed
for behavioral equivalence. Behavioral equivalence is defined in the broadest way possible
without refering to pecularities of external system components.

The technique presented here does not depend on program specifications or formal lan-
guages that are not normally usable in software systems but nonetheless required by
other formally justified methods for refactoring.

Unfortunately, there is nothing apart from existing informal textbooks on refactoring to
measure the established criteria against since the local criteria established here will be
necessarily conservative in all but the most trivial examples.

The quest to find formal justification for atomic refactorings forces you to break down
a refactoring into truly atomic steps. This is something that has been advertised in
textbooks on refactorings, but has hardly been adhered to.

Audience This Thesis meant to serve as the prolegomena to a complete treatise on
practical refactoring of source-code with specifications as executable by machines is
written to be readable by both the uninitiated student, practicioners and researchers in
the field, not just the supervising professor.

Different people differ in their opinion what refactorings encompass, how they should be
used and how they should be investigated – just compare the software engineering text
by Kerievsky [25] with stringent model refactorings of Alloy specifications in [18] that is
hardly practical and yet formally elegant. As people interested in refactoring come from
various backgrounds, I have to limit my use of specific notations that may be well known
in certain communities while looking alien in others. I explain everything in terms that
should be known to any undergraduate in computer science. The numerous footnotes
may well be skipped. They contain remarks I deemed interesting but not essential for
understanding the text.

22

1.6. Organisation and overview

1.6. Organisation and overview

This research is split into chapters. Each chapter is self-contained except for chapter 3
on whose definitions the subsequent chapters depend.

Chapter 2 contains the obligatory introductory example of the stepwise evolution of a
small sample application. Each step contains a pointer to a section in chapter 4
that discusses the refactoring and proves it correct. This chapter exemplifies my
personal view how complex transformations should be decomposed. This chapter
is meant to make the thesis more readable and can be skipped if you are only
interested in concrete results.

Chapter 3 explains the mathematical model used for equivalence and the rationale be-
hind it. It shows the operational semantics on which the equivalence notion relies
and classifies refactorings according to the proof strategy they require. It also
compares and contrasts the approach to other approaches.

Chapter 4 considers a few refactorings that are essential for any practical refactoring
tool. In particular, all refactorings in chapter 2 are discussed and all the refactor-
ings used in the introductory example in [16]. I show that all these refactorings are
“simple” in the sense that they do not strictly require postconditions22 that are
evaluated at runtime yet they are important as illustrated by the fact that both
the examples in [16] and the present text are considered.

All the refactorings implemented in customary refactoring tools for Java are also
of this category. Up to renaming, they are both limited in the lexical scope of
their changes and the number of changes that have to be made. This was a goal,
not a coincidence as I explain in section 1.3. The requirement forces me to change
the definition of some refactorings. The analysis to be performed for all these
refactorings is merely local or can easily and well be approximated.23 Chaining
refactorings of this kind is simple and does not need the rather penetrative heavy-
weight conceptual framework in [39] and its successors for reasoning about pre-
condition transformers. This chapter is also meant to illustrate that truly difficult
refactorings have completely different intricacies that must be tackled differently.

Chapter 5 is the most delicate chapter because it covers refactorings that are not easily
implementable without dynamically enforced postconditions.

Chapter 6 is a tutorial that discusses how to extend the Eclipse IDE, Visual Studio and
use the Microsoft’s Common Compiler Infrastructure to implement tool support for
your own – possibly domain specific – refactorings. The refactoring implemented
as an example is that of chapter 5. It is almost completely unrelated to the more
theoretical considerations in the other chapters.

22Even though they may be used to generalize the refactorings.
23An alias analysis is required if full precision is needed.

23

1. Introduction

1.7. Contributions

The contributions of this thesis are the following. They will be discussed and explained
in the text and are depicted in figure 1.5.

1. A scheme for instrumenting source code with postconditions as specifications that
guarantee correctness of refactorings.

2. A definition of equivalence that

• Approximates intuition well

• Is parameterized over concrete operational semantics

• Suggests a way to derive minimal correctness conditions

3. An implementation of these ideas.

Figure 1.5.: Orthogonal axes of contribution

24

2. Refactoring: A Motivating Example For
Simple Refactorings

In this chapter, I consider an example similar to the introductory example in [16, chap.
1]. The program is refactored step by step. It ought to be illustrating the practical
applicability of the approach chosen in this text: All refactorings used here are ana-
lyzed. The full sourcecode for the example and all steps can be found in the exNNN
subdirectory.

This chapter does not use the “Move Field” refactoring. It is illustrated by the sample
project TheBank that comes with this text.

I have to repeat the disclaimer in [16]: The sample program is necessarily simple, it
should be imagined in the context of a much larger system. It calculates the summary
(or receipt) of a shopping cart as a text string. There are three types of groceries that
can be bought at this store: bread, cheese and wine. They have different characteristics,
the relevant of which is how the price is calculated. In general, the price customers have
to pay is given by the wholesale price times some multiplier that abstracts the gross mar-
gin on that product. There are three classes: Product , Purchase , ShoppingCart .
ShoppingCart contains a list of Purchase s, which in turn refer to the corresponding
Product abstractions. The difference between Purchase and Product is simply that
Purchase s are always objects inside ShoppingCart s whereas Products may be used
elsewhere.

Here is an example receipt returned by the program:

Shopping cart for Fabian
Multigrain Loaf 2.3
Soci ét é Roquefort 3.31
Rioja DOCa 1995, Gran Reserva Imperial C.V.N.E. 45.0
Ciabatta 2.1
Mango Bread 1.2
Rioja DOCa 1995, Gran Reserva Imperial C.V.N.E. 45.0
Gruy ère 6.15
Pinot Noir AOC 2004, Ch âteau d’Auvernier 13.5
Cabernet Sauvignon Grande 2001, R éserve Los Vascos Rothschild 15.0
Ciabatta 2.1

Amount is 135.66

25

2. Refactoring: A Motivating Example For Simple Refactorings

The initial version of the ShoppingCart contains the core routine summary() for the
receipt. It also calulates the prices and then adds them up to get the total amount
to be paid by the customer. The field that contains the Purchase s is items . Inside
summary , the margin multiplier is calculated depending on the product category. The
multiplier depends on some external system variables that are different for cheese, wine
and bread. In this example, I get their values from static function calls on the Apollo
and Hablo classes.ShoppingCart, v. 00

1 import java.util.ArrayList;
2 import java.util.Collection;
3
4 public class ShoppingCart {
5 public String customerName;
6 private Collection<Purchase> items = new ArrayList<Purchase>();
7
8 public ShoppingCart(String name) {
9 this.customerName = name;

10 }
11
12 public String getName() {
13 return customerName;
14 }
15
16 public void add(Purchase r){
17 items.add(r);
18 }
19
20 public String summary(){
21 double totalAmount = 0;
22 String result = "Shopping cart for " + getName() + "\n";
23 for (Purchase x : items) {
24 double multiplier;
25
26 switch(x.getProduct().productCategory){
27 case Product.CHEESE:
28 multiplier = Apollo.getDVal("CHEESE");
29 break;
30 case Product.WINE:
31 multiplier = Apollo.getDVal("WINE");
32 break;
33 case Product.BREAD:
34 multiplier = Hablo.cachedConfig(6823);
35 break;
36 default:
37 throw new RuntimeException();
38 }
39 double price = Math.ceil(100 * x.getProduct().wholesalePrice *

multiplier)/100;
40
41 result += "\t"+x.getProduct().title+"\t"+price+"\n";
42 totalAmount += price;
43 }

26

44 result += "Amount is " + totalAmount + "\n";
45 return result;
46 }
47 }

The Purchase class is a mere intermediary for the Product that would take into ac-
count discounts and the like in a more realistic version of the program. In this exemplary
setting however, the class is pretty much only an indirection to Product . Purchase, v. 00

1 public class Purchase {
2 private Product product;
3 public Purchase(Product prod) {
4 this.product = prod;
5 }
6 public Product getProduct() {
7 return product;
8 }
9 }

Product is the class that contains the actual information about a product: it includes
the wholesale price, the category and the name. All of these are public fields. The
category is an integer that can assume the values of the constants BREAD, CHEESEand
WINE. Product, v. 00

1 public class Product {
2 public static final int BREAD = 0;
3 public static final int CHEESE = 1;
4 public static final int WINE = 2;
5
6 public String title;
7 public int productCategory;
8 public double wholesalePrice;
9

10 static Product create(int code, double wholeSalePrice, String title){
11 return new Product(code, title, wholeSalePrice);
12 }
13
14 private Product(int category, String title, double price) {
15 this.productCategory = category;
16 this.title = title;
17 this.wholesalePrice = price;
18 }
19 }

“Extract Method”

The most obvious deficiency of the program is the method summary() which is too
long and too cluttered with unrelated activities. The refactoring for this is “Extract
Method” and the most obvious piece of code to extract is the calculation of the margin
multiplier. We call this new method getMarginMultiplier . Its only argument x is
the Purchase that is a local variable in summary and must accordingly be available

27

2. Refactoring: A Motivating Example For Simple Refactorings

in getMarginMultiplier . Note that the method could just as well be made static.
It is not strictly necessary to implement it as a static method because it is only called
from an instance context. Therefore, I didn’t do it.ShoppingCart, v. 01

20 public String summary(){
21 double totalAmount = 0;
22 String result = "Shopping cart for " + getName() + "\n";
23 for (Purchase x : items) {
24
25 double multiplier = getMarginMultiplier(x);
26 double price = Math.ceil(100 * x.getProduct().wholesalePrice *

multiplier)/100;
27
28 result += "\t"+x.getProduct().title+"\t"+price+"\n";
29 totalAmount += price;
30 }
31 result += "Amount is " + totalAmount + "\n";
32 return result;
33 }
34
35 private double getMarginMultiplier(Purchase x) {
36 double multiplier;
37 switch(x.getProduct().productCategory){
38 case Product.CHEESE:
39 multiplier = Apollo.getDVal("CHEESE");
40 break;
41 case Product.WINE:
42 multiplier = Apollo.getDVal("WINE");
43 break;
44 case Product.BREAD:
45 multiplier = Hablo.cachedConfig(6823);
46 break;
47 default:
48 throw new RuntimeException();
49 }
50 return multiplier;
51 }

“Extract Method”

The most obvious next candidate is the calculation of the price. Again, we need to pass
the purchase made to the routine:ShoppingCart, v. 02

33 private double getPrice(Purchase x) {
34 double multiplier = getMarginMultiplier(x);
35 double price = Math.ceil(100 * x.getProduct().wholesalePrice *

multiplier)/100;
36 return price;
37 }

“Extract Method”

The two methods we have introduced both take an argument of type Purchase but they
both operate only on the Product that is returned from getProduct() . It suggests

28

itself to extract methods that take Product s instead of Purchase s. The remaining
getMarginMultiplier method looks like this: ShoppingCart, v. 03

39 private double getMarginMultiplier(Purchase x) {
40 double multiplier;
41 Product prod = x.getProduct();
42 multiplier = getMarginMultiplier(prod);
43 return multiplier;
44 }

“Inline Method”

As noted before, getPrice suffers from the same illness as getMarginMultiplier :
It does not really need the Purchase , it merely needs the attached Product . This is
not immediately obvious because we’re calling getMarginMultiplier with a Purchase
argument. Therefore, we have to inline getMarginMultiplier first: ShoppingCart, v. 04

33 private double getPrice(Purchase x) {
34 double multiplier = getMarginMultiplier(x.getProduct());
35 double price = Math.ceil(100 * x.getProduct().wholesalePrice *

multiplier)/100;
36 return price;
37 }

“Introduce Temp”

It is only after we’ve done the inlining that we can add an additional method getPrice
that takes a Product as its argument. In order to make things easier, we first “Introduce
Temporary Variable”. In the kernel language defined in chapter 3, all method call results
are assigned to local variables. ShoppingCart, v. 05

33 private double getPrice(Purchase x) {
34 Product prod = x.getProduct();
35 double multiplier = getMarginMultiplier(prod);
36 double price = Math.ceil(100 * prod.wholesalePrice * multiplier)/100;
37 return price;
38 }

“Extract Method”

Extracting the price calculation that now only depends on prod is easy.
ShoppingCart, v. 06

33 private double getPrice(Purchase x) {
34 Product prod = x.getProduct();
35 return getPrice(prod);
36 }
37
38 private double getPrice(Product prod) {
39 double multiplier = getMarginMultiplier(prod);
40 double price = Math.ceil(100 * prod.wholesalePrice * multiplier)/100;
41 return price;
42 }

“Inline Method”

29

2. Refactoring: A Motivating Example For Simple Refactorings

Have a look at summary() again. We are still invoking the getPrice method that we
wanted to get rid of. Let’s inline this call as well.ShoppingCart, v. 07

24 double price = getPrice(x.getProduct());

“Delete Obsolete

Elements”
When we’ve done that, we can finally delete the “deprecated” getPrice(Purchase)
and getMarginMultiplier(Purchase) . Note that getPrice could be a method
in in Purchase but that would be speculatively general.1 At the moment, unlike
suggested on page 27, there are no discounts that are stored in Purchase , so there is
no reason to have getPrice in Purchase .

Puhh. . . That’s already a bit better than at the beginning. We are now at step 7 of the
example and it is worth having a look at the complete implementation of ShoppingCart
as this is the last refactoring that operates exclusively on ShoppingCart .ShoppingCart, v. 07

1 import java.util.ArrayList;
2 import java.util.Collection;
3
4 public class ShoppingCart {
5 public String customerName;
6 private Collection<Purchase> items = new ArrayList<Purchase>();
7
8 public ShoppingCart(String name) {
9 this.customerName = name;

10 }
11
12 public String getName() {
13 return customerName;
14 }
15
16 public void add(Purchase r){
17 items.add(r);
18 }
19
20 public String summary(){
21 double totalAmount = 0;
22 String result = "Shopping cart for " + getName() + "\n";
23 for (Purchase x : items) {
24 double price = getPrice(x.getProduct());
25
26 result += "\t"+x.getProduct().title+"\t"+price+"\n";
27 totalAmount += price;
28 }
29 result += "Amount is " + totalAmount + "\n";
30 return result;
31 }
32
33 private double getPrice(Product prod) {

1I try to allude to the “bad smell” “speculative generality” [16]: Do not generalize your code beyond
current needs.

30

34 double multiplier = getMarginMultiplier(prod);
35 double price = Math.ceil(100 * prod.wholesalePrice * multiplier)/100;
36 return price;
37 }
38
39 private double getMarginMultiplier(Product prod) {
40 double multiplier;
41 switch(prod.productCategory){
42 case Product.CHEESE:
43 multiplier = Apollo.getDVal("CHEESE");
44 break;
45 case Product.WINE:
46 multiplier = Apollo.getDVal("WINE");
47 break;
48 case Product.BREAD:
49 multiplier = Hablo.cachedConfig(6823);
50 break;
51 default:
52 throw new RuntimeException();
53 }
54 return multiplier;
55 }
56 }

“Make Method

Instance”
Now have a look at getMarginMultiplier() and getPrice() above. These are
instance methods but they do not access any instance fields nor does their functionality
depend on dynamic dispatch – they are not overriden at all. We could very well make
them static and keep them in ShoppingCart . These two methods do however operate
only on the first parameter of type Product , a strong indication that they are more
appropriately moved there. The first parameter prod becomes this. Let’s do it step by
step and first move getMarginMultiplier() (Only the first case is listed for brevity,
see line numbers) The method is declared final as it derives from a static method that
cannot be overriden either. Making it overridable could be confusing people who might
think that different “kinds” of (sub-)classes can have different implementations of this
function. Product, v. 08

20 public final double getMarginMultiplier() {
21 double multiplier;
22 switch(this.productCategory){
23 case Product.CHEESE:
24 multiplier = Apollo.getDVal("CHEESE");
25 break;
26 /* other cases omitted */
34 throw new RuntimeException();
35 }
36 return multiplier;

We have to rewrite all references to the moved method. Instead of ShoppingCart, v. 07

31

2. Refactoring: A Motivating Example For Simple Refactorings

34 double multiplier = getMarginMultiplier(prod);

We have to writeShoppingCart, v. 08

34 double multiplier = prod.getMarginMultiplier();

Having done that, it is now possible to move getPrice() as well: We remove it
from ShoppingCart and add it to Product replacing all references to prod by
this.Product, v. 09

38 public final double getPrice() {
39 double multiplier = this.getMarginMultiplier();
40 double price = Math.ceil(100 * this.wholesalePrice * multiplier)/100;
41 return price;
42 }

We do of course have to adjust the reference in ShoppingCart.summary() . This
leaves us with the following method body for ShoppingCart.summary()ShoppingCart, v. 09

20 public String summary(){
21 double totalAmount = 0;
22 String result = "Shopping cart for " + getName() + "\n";
23 for (Purchase x : items) {
24 double price = x.getProduct().getPrice();
25
26 result += "\t"+x.getProduct().title+"\t"+price+"\n";
27 totalAmount += price;
28 }
29 result += "Amount is " + totalAmount + "\n";
30 return result;
31 }

It is already much less cluttered than at the beginning but the for-loop is still doing
two things that are largely unrelated: adding the price to the output string (line 26)
and accumulating the totalAmount Because there is no dependency between these
two activities, we can directly split the loop into two: Unrelated activities should be
unbundled as far as possible, so as to be able to move them to different classes and to
give them meaningful names as separate procedures.ShoppingCart, v. 10

23 for (Purchase x : items) {
24 double price = x.getProduct().getPrice();
25 result += "\t"+x.getProduct().title+"\t"+price+"\n";
26 }
27 for (Purchase x : items) {
28 double price = x.getProduct().getPrice();
29 totalAmount += price;
30 }

32

“Extract Method”

This yields another opportunity to factor out functionality using “Extract Method”.
The new method is called getTotalAmount() and accesses – unlike the methods we
had to move to Product – the fields of ShoppingCart . ShoppingCart, v. 11

20 public String summary(){
21 String result = "Shopping cart for " + getName() + "\n";
22 for (Purchase x : items) {
23 double price = x.getProduct().getPrice();
24 result += "\t"+x.getProduct().title+"\t"+price+"\n";
25 }
26 double totalAmount = getTotalAmount();
27 result += "Amount is " + totalAmount + "\n";
28 return result;
29 }
30
31 private double getTotalAmount() {
32 double totalAmount = 0;
33 for (Purchase x : items) {
34 double price = x.getProduct().getPrice();
35 totalAmount += price;
36 }
37 return totalAmount;
38 }

“Rename Method”

The summary method could also be renamed to getReceipt , which is a bit more
suggestive. “Replace

Representation”
We’ve now done all the trivial refactorings that are more or less directly applicable.
The next refactoring is simple, but may be less familiar from books like [16] that focus
on high-level abstractions that are not always ideally suited for automatic tools. The
low-level refactoring I want to use now is “Replace Representation”. Remember that
the type of product that is being sold is encoded in the variable productCategory .
productCategory assumes values in {0, 1, 2}. It requires that productCategory
objects can be tested for equality. Because the set {0, 1, 2} cannot be specified in Java,
the program is using int as an approximation. What we’re doing now is introduce
a new set {ZERO, ONE, TWO} and replace all uses of the old values by the new values.
It is also necessary to replace all types representing the old set by a type approxi-
mating the new set. How this refactoring can be tool supported is discussed in sec-
tion 4.5.

The values are declared in constants in a new class Category inside —Product.java—.
The values themselves are object values of that class Category . I.e., Category is
the type we will have to replace int by in contexts where it is used to approximate
{0, 1, 2}.

We could take any other objects with value semantics that support equality tests. Of
course, the decision to choose objects is not completely unintentional. The idea is to

33

2. Refactoring: A Motivating Example For Simple Refactorings

turn the Category objects into strategies later.Product, v. 12

1 class Category{
2 public static final Category ZERO = new Category();
3 public static final Category ONE = new Category();
4 public static final Category TWO = new Category();
5 }

The constant declarations in Product remain, productCategory has to be declared
with a different type and the creation routine as well as the constructor have their
category parameter changedProduct, v. 12

8 public static final Category BREAD = Category.ZERO;
9 public static final Category CHEESE = Category.ONE;

10 public static final Category WINE = Category.TWO;
13 public Category productCategory;
16 static Product create(Category code, double wholeSalePrice, String

title){
17 return new Product(code, title, wholeSalePrice);
18 }
19
20 private Product(Category category, String title, double price) {
21 this.productCategory = category;
22 this.title = title;
23 this.wholesalePrice = price;
24 }

To make things more legible, we can inline the constants in Product and rename the
respective constants in Category .Product, v. 13

1 class Category{
2 public static final Category BREAD = new Category();
3 public static final Category CHEESE = new Category();
4 public static final Category WINE = new Category();
5 }

On our way from the atomic Category to a proper strategy, let’s differentiate the
BREAD, CHEESE, WINE objects by their type. According to the substitution princi-
ple, this does not change the program semantics as long as it cannot be determined
whether an object is of type Product or a subtype thereof. This is the case in Java
when getClass() and the special field class are unavailable (as well as more general
reflection facilities).Product, v. 15

1 class Category{
2 public static final Category BREAD = new CatBread();
3 public static final Category CHEESE = new CatCheese();
4 public static final Category WINE = new CatWine();
5 }
6

34

7 class CatBread extends Category{}
8 class CatCheese extends Category{}
9 class CatWine extends Category{}

“Replace Expression”

Let’s make things a bit more clear by replacing the object identity test in method
getMarginMultiplier() by a type test before we exploit the possibility to use dy-
namic dispatch on the subclass hierarchy we’ve created. Product, v. 16

26 public final double getMarginMultiplier() {
27 double multiplier;
28 if(this.productCategory instanceof CatCheese)
29 multiplier = Apollo.getDVal("CHEESE");
30 else if(this.productCategory instanceof CatWine)
31 multiplier = Apollo.getDVal("WINE");
32 else if(this.productCategory instanceof CatBread)
33 multiplier = Hablo.cachedConfig(6823);
34 else
35 throw new RuntimeException();
36 return multiplier;
37 }

“Replace Type Tests

with Dynamic

Dispatch”
It thus becomes obvious that the code in the individual branches can be moved into a
dynamically dispatched method in Category . It is called getMarginMultiplier()
for the sake of consistency. The Category class has to be made abstract to be able
to leave the method undefined for Category itself. Product, v. 17

1 abstract class Category{
2 public static final Category BREAD = new CatBread();
3 public static final Category CHEESE = new CatCheese();
4 public static final Category WINE = new CatWine();
5
6 abstract public double getMarginMultiplier();
7
8 }
9

10 class CatBread extends Category{
11 public double getMarginMultiplier(){
12 return Hablo.cachedConfig(6823);
13 }
14 }
15 class CatCheese extends Category{
16 public double getMarginMultiplier(){
17 return Apollo.getDVal("CHEESE");
18 }
19 }
20 class CatWine extends Category{
21 public double getMarginMultiplier(){
22 return Apollo.getDVal("WINE");
23 }
24 }

35

2. Refactoring: A Motivating Example For Simple Refactorings

25
26 public class Product {
42 public final double getMarginMultiplier() {
43 double multiplier;
44 multiplier = productCategory.getMarginMultiplier();
45 return multiplier;
46 }
53 }

“Inline Method”

Have a look at the getMarginMultiplier() method in Product above. It is merely
delegating the call to the corresponding Category . It might be nice to inline it in
getPrice() as getPrice() is also a member of Product and need not be shielded
from such intricacies.Product, v. 18

42 public final double getPrice() {
43 double multiplier = this.productCategory.getMarginMultiplier();
44 double price = Math.ceil(100 * this.wholesalePrice * multiplier)/100;
45 return price;
46 }

“Use Syntactic

Sugar” As a last step, we replace the Category subclass hierarchy by the equivalent synactic
extension in Java 1.5 – enumerations.

Product, v. 19

1 enum Category{
2 BREAD{ public double getMarginMultiplier(){
3 return Hablo.cachedConfig(6823); }},
4 CHEESE{ public double getMarginMultiplier(){
5 return Apollo.getDVal("CHEESE"); }},
6 WINE{ public double getMarginMultiplier(){
7 return Apollo.getDVal("WINE"); }};
8
9 public abstract double getMarginMultiplier();

10
11 }
12
13 public class Product {
14 public String title;
15 public Category productCategory;
16 public double wholesalePrice;
17
18 static Product create(Category code, double wholeSalePrice, String

title){
19 return new Product(code, title, wholeSalePrice);
20 }
21
22 private Product(Category category, String title, double price) {
23 this.productCategory = category;
24 this.title = title;
25 this.wholesalePrice = price;
26 }
27

36

28 public final double getPrice() {
29 return Math.ceil(100 * this.wholesalePrice
30 * this.productCategory.getMarginMultiplier())/100;
31 }
32 }

The goal of this last step is to keep the definitions of all price calculations together in a
single compilation unit. This may render it more inconvenient to add new categories or
the work on different categories independently. Keeping the interactions with external
systems together can also be valuable however.

37

2. Refactoring: A Motivating Example For Simple Refactorings

38

3. Formalizing Equivalence For
Refactorings

This chapter introduces the framework I am using to prove correctness of refactorings,
i.e., whether refactorings retain externally visible behavior or not. This research is using
basically the same definition of “externally visible behavior” as the landmark thesis by
William Opdyke: Two program are behaviorally identical if they yield the same output
for the same input ceteris paribus.

This definition avoids the inadequacies of other formal definitions as discussed in sec-
tion 1.4 that have been proposed. In refinement-based formalizations [11] for instance, Summary of

prevented problemsvisible intermediary states are ignored: If only the input-values-output-values relation
has to be retained as in refinement-based refactorings, the program may do arbitrary vis-
ible I/O (e.g., write output to the console or open new windows) without compromising
the equivalence of the program. This is not a safe conceptualization. See section 1.4.5
for details. Unlike model-based refactoring that does not have any operational concepts,
Opdyke’s definition affects the whole of the refactoring, including the imperative formu-
lation, not only the structural part of it and is therefore directly applicable for refactoring
tools.1 This definition is also substantially more useful than other definitions of “equiv-
alence” that do not aim at any kind of behavioral equivalence but merely respect lexical
properties of the source code [29]. At the same time, I try to avoid the fatalism of Roberts
[39] and his followers who state that the “complexity of the behavior preservation proofs
for non-trivial transformations will be intractable”. [10]

Let me quickly summarize the features the notion of equivalence to be used in this text
should have over and above the features of definitions that have already been postulated.
The formalization of externally visible behavioral equivalence should be. . .

• . . . easy to prove for non-trivial refactorings (but also for trivial ones).

1The argument above certainly applies in the case of UML/Alloy refactorings as discussed in sec-
tion 1.4.4. There are also non-structural models. Operational models are potentially possible but
the benefit forgone are severe: Operational models are normally used to derive implementations by
refinement (Z,B, etc.). This is largely incompatible with model refactoring and subsequent back-
propagation. If refinement is not used and there is no mapping from modelling language to im-
plementation language, automatic back-propagation becomes impossible anyway (e.g., AsmL). If
operational models are complete, manual back-propagation of model refactorings could at least be
verified. Unfortunately, unconstrained model checking is not decidable either. I do not know of any
such attempts however. See section 1.4.4 for details.

39

3. Formalizing Equivalence For Refactorings

• . . . at most a conservative approximation of the definition above modulo timing and
memory access patterns, which are difficult to analyze formally. It must therefore
be precise, i.e., no program that intuitively violates externally equivalent behavior
(print “a” instead of “b” on the console) should satisfy the formal definition.

• . . . complete (no part of the program is unaffected by the definition): The definition
must lead to fully functional refactoring tools.

• . . . easily transposed to other languages and different semantics.

The syntax and semantics of programs depend on the language that is used. Refactor-
ings cannot be discussed without refering to a concrete implementation language and
a concrete programming environment. The notion of “generic refactorings” [26] does
not pay tribute to the fact that in spite of all similarites, many refactorings on the
source level strongly depend on language-specific features. A language that does not
allow named formal method parameters (like the original Perl language) is not useful
for investigating the “Rename Parameter” refactoring. Correctness conditions are also
affected: Replacing class instantiations by instantiations of (empty) subclasses would
be unconditionally possible in Java if it were lacking the special class field2. It is
undeciable in general whether a program depends on the exact type if it uses the class
field.

Characteristics of the formalism The language I am using is a sequential subset of
Java. It could also be called a subset of C# – the covered features are the same. The
subset is sequential because most programs are largely sequential to a good approxima-
tion. Parallel programs depend on memory models that are not or not precisely definedLanguage used

as well explained in Stärk’s paper [40, section 6].

A big-step operational semantics is used to capture the meaning of program constructs.
The structure that is interpreted by the semantics is the domain of the refactoring, i.e.,
the same mathematical program representation is used for the semantics and the refactor-
ing. A program representation is always a complete representation of the whole program.Semantics used

This is necessary because refactorings potentially affect the whole program: Renaming a
public field must change all accesses – which may be anywhere in the program. Reflection
cannot reasonably be part of the language covered here.

Programs are represented as trees and program parts are only meaningful in the con-
text of a whole program. Program parts are always identified by paths in the programPrograms and

program parts tree. A statement for instance is the tuple of a program and the path to the state-
ment.

2. . . as well as getClass() and other reflection capabilities.

40

3.1. Programs

Original source Refactored source

Original AST Refactored AST

Source-to-source

AST-to-AST
Deserialization Serialization/Source-patching

Figure 3.1.: Refactoring of the intermediary representation

Overview The rest of this chapter is organized as follows: Section 3.1 contains essential
definitions of the symbols that will be used in subsequent sections and chapters, e.g., the
program state, the transition relation, the refactoring. A summary of the operational
semantics is given in section 3.2. Section 3.3 describes limitations and how they can be
overcome. Section 3.4 comes up with a classification of refactorings on which the rest of
this text is based.

3.1. Programs

This section covers the program representation first and then defines the formal concep-
tualization of refactorings.

3.1.1. Program representation

The most basic aspect of program transformation is the domain of the program itself.
Needless to say, most programming languages do have their source code stored in text
files, i.e., streams of characters. Streams of characters are not very handy and do not
really correspond to the structured nature of the subset of Java to be covered here well.
A more promising approach is to rely on serialization and deserialization of programs
(see figure 3.1). The Smalltalk refactoring browser already relied on this scheme and
so do probably a whole lot of other refactoring tools.3 It has already been recognized
in Opdyke’s thesis [37] that the preservation of non-semantic data like comments and
whitespace is imporant for serialization. Roberts’ browser relied on his Formatter class.
The program databases produced by contemporary compilers with detailed source loca-
tion information suggest a different kind of implementation: the source code is not fully
deserialized and then serialized again. Instead, textual replacement is done by the refac-
toring tool based on the positions in the program database. A very primitive incarnation
of this concept is presented as an example in section 6.1.

Whether textual replacement based on position information in the program represen-
tation is performed directly or the whole program representation is deserialized with
enough information about whitespace and comments does not matter too much. In

3Eclipse’s refactoring tool relies on patching the source code: only the parts of a source file are updated
that have their AST changed [17]. This means that the AST must contain enough information to
map individual source element tokens to the abstract syntax elements.

41

3. Formalizing Equivalence For Refactorings

most practical implementations, a mixed model will have to be used. Files that haven’t
changed during refactoring for instance do not need to be rewritten. On the other hand,
it may often be easier to replace whole method implementations by newly serialized
method implementations instead of fiddling around with individual statements and fig-
uring out how they can be replaced. Whatever the choice be, the program refactoring
itself is from abstract syntax tree to abstract syntax tree and the additional informa-
tion used for formatting shall be ignored for the discussion here as well as line-numbers,
column-numbers and the like. Eclipse’s AST rewrite framework implements just this
ideal.

A program consists of interface and class definitions:4

Prog ≡ Name →֒ Decl (3.1)

A class has a superclass and a number of implemented interfaces while an interface does
not have a superclass and the first element of the Decl tuple is None.

Decl ≡ (
superclass : (Name)option,
superifaces : (Name)list,
fields : Fields,
methods : Methods,
staticinitializer : StaticInitializer

)

(3.2)

Notation:

(α)option The data-type (α)option denotes the set α+{undef } (cf. Appendix B).

Just as in [44], the program structure does not support constructors. The reason isno constructor support
that constructors are normally used to establish object invariants. Fairly often, this is
necessary because unstructured initialization is difficult to reason about. On the other
hand, many patterns depend on initialization that is performed outside the constructor
(e.g., factory methods) or even outside the class to get good factoring.5 This research is
not mainly about how to establish invariants and how to check them statically and I could
ignore constructors for that reason alone. But even when static approximations of the

4Partial functions are used directly. This simplifies notation dramatically. There is no specific reason
to use lists instead like e.g. in [44]. Inter-class relations are finite if the functions are finite, something
we can reasonably assume, just as it is reasonable to assume that lists of classes are finite. Both
properties can be derived from the finiteness of the program itself if needed.

5I call this the code mobility principle, its the refactoring formulation of the single responsibility princi-
ple: Responsibilities should be movable between classes without non-local effect. This gets more im-
portant as more constraints are statically verified for the code and the programmer is more and more
constrained by these. Only C++ supports this principle with “friends” albeit in a pretty cumber-
some manner. A less concise but more clear syntax based on single permissions could help. Ceterum
censeo: The same is true for visibility qualifiers like private, protected, public, internal,
default visibility, etc.

42

3.1. Programs

criteria to be established for the refactorings are considered, it turns out that constructors
are of limited usefulness because they constrain the applicability of a refactoring too
much.6 An example can be found in section 5.4.

Inside the fields of a class, field names are mapped to their type.

Fields ≡ Name →֒ TypeTag

Fields have a unique type, so the type can also be thought of as being encoded in
the name itself. We write ctt(f) “compile time type” for the declared type of field
f . The same applies to local variables. ctt(l) is the declared type of a local variable
l Fields, methods

The fields in a class are indexed simply by their proper name for each class. This differs
from methods, where the whole signature but excluding the declaring class is used to
tell the implementations apart. In the heap however, fields are stored with the declaring
class made explicit. Field names inside the heap are thus a tuple of declaring class and
the proper field name. Lookup and access to fields happens with this pair C::f where
C is the declaring class and the proper field name is f .7 The qualifier C:: in the text
is only used to clarify the declaring class of a field, it is omitted if it is clear from the
context.

Inside the methods of a class, method signatures are mapped to their declaration.

Methods ≡ MethodSignature →֒ MethodDeclaration

The whole signature is taken because overloading is allowed. Method signatures identify
the method uniquely and the return type of a method can be considered part of the
name.8 For a method m, paramTs(m) yields the list of types of its formal parameters
and pNames(m) yields their names. The parameters are represented as a list because
overriding does not depend on formal parameter names in Java. retT(m) yields the
return type of m.

A method declaration (MethodDeclaration) is returned from the methods of a class given
the corresponding signature (MethodSignature). A declaration consists of parameters
(this time including names), the return type, and the body. The structure of all program
parts is summarized in figure 3.2.

6If constructors are assumed to establish some invariants, preconditions and the like, programs that
do not make use of constructors for good reasons cannot use the refactorings – which is really sad.
If constructors are not used for specifying refactoring preconditions, they can be dropped from the
language. This is what happend. It does not mean the results cannot be specialized for languages
with constructors – the invariants they might establish are just not needed.

7The primary aim of this convention is to establish a direct correspondence between data representation
and program structure. This correspondence is used in chapter 5.

8Note that the return type is not encoded in the signature because it is not used in method lookups
to be considered later. Adding it would render method lookup more complicated but wouldn’t add
anything to the discussion. The same is true for the declaring class.

43

3. Formalizing Equivalence For Refactorings

MethodSignature ≡ (
mname : Name
paramTs : (TypeTag)list

)
MethodDeclaration ≡ (

params : (ParameterName × TypeTag)list
retT : TypeTag
body : (Statement + {inherit-method, ext-body})

)

The declared type of an entity (field, local variable, method arguments and return
value) is represented as a TypeTag . Opaque basic types (BasicType) like int and bool

are type tags as well as class names (ClassName), which are also opaque. Alterna-
tively, a type tag can be an array type. As in Java, only one-dimensional arrays are
allowed.

TypeTag ≡ BasicType + ClassName + TypeTag []

Valid TypeTags are for example: int, bool, int[], C, D[].

Statements are represented as tuple data types. To avoid having to define a named
tuple type for every statement individually, positive integers are used as the names of
a statements’ component. Concrete syntax is used to label values. Setting a field f in
an object referenced by a local variable l to the result of the expression e is written as
l.f←e and its type is

(1 : LocalVariable, 2 : FieldName, 3 : Expression)

Expressions can be treated likewise.Local variables

Analogously to field and method names, local variables may also be qualified with their
declaring method in the text to make clear where they are declared. Unlike fields, local
variables are not stored together with their qualification. Qualifications are just added for
readability: Variable v in method m in class T is written as T ::m::v.9

This completes the description of the program representation. Remember that it is un-
derspecified for the implementation of a refactoring tool as it does not correspond to the
concrete syntax and comments and whitespace information is also missing as well as po-
sition information that would allow source-code patching.

The program representation consists of partial functions and named tuples. Named
tuples are also partial functions. Therefore, the program representation is a tree of
partial functions (figure 3.4). Statements can be nested, e.g., sequential composition of
statements. See figure 3.3 for an example.

9The language does not have local scopes in method bodies.

44

3.1. Programs

Prog = Name →֒ Decl (3.3)

Decl|{z}
D

= (Name)option| {z }
superclass(D)

× (Name)list| {z }
superifaces(D)

× Fields| {z }
fields(D)

× Methods| {z }
methods(D)

×StaticInitializer| {z }
staticinitializer(D)

(3.4)

Fields = Name →֒

fz }| {
(FieldName| {z }

fldname(f)

×TypeTag| {z }
tytag(f)

) (3.5)

Methods =MethodSignature →֒

p=params(m)=m(params)z }| {
(ParameterName× TypeTag)list (3.6)

× TypeTag| {z }
retT(m)

(3.7)

× (Statement)option| {z }
body(m)

(3.8)

MethodSignature = Name| {z }
mname(m)

× (TypeTag)list| {z }
paramTs(m)

(3.9)

TypeTag =BasicType + ClassName + TypeTag[] (3.10)

(3.11)

Figure 3.2.: Program structure and accessor names (excluding statements)

l.f←e while(p 6= Null){n←n + 1;p←p.next}

. ←

l

1

f

2

e

3

while(){ }

p 6= Null

1

;

2

←

1

n

1

n + 1

2

← .

2

p

1

p

2

next

3

Figure 3.3.: Two examples of statement trees

45

3. Formalizing Equivalence For Refactorings

Γ

C : Name

superclass

Name :

superifaces

(Name)list

fields

fld : Name

TypeTag

methods

sig : MethodSignature
mname

paramTs

params

pname paramT

retT body

Stmt

staticinitializer

Stmt

Figure 3.4.: Tree representation of the program

The whole program representation makes it easy to navigate to individual nodes in the
tree. Let the program be Γ. Γ(C) yields the class declaration of class C. Γ(C)(fields)
yields the fields in the class and Γ(C)(fields)(f) yields the type of the field f in the
class. The fact that this is more conventionally written as Γ. fields .f and the fact that
refactorings are very often confined to indivividual sections in the source-code suggests
a concise notation for defining conditions on programs as well as transformations on
them.

3.1.2. Conditions on programs
Path

A path in a program tree is a list p1.p2. · · · .pn of accessors pi. If given together with the
root of the tree, a path can identify a program part.10 In the context of a program Γ
as the root, the path p ≡ p1.p2. · · · .pn identifies Γ(p1)(p2) · · · (pn) if defined. Γ[p] can be
written instead. The notation root [e] for any expression e is then defined by the values
of the paths in the expression

root [e] ≡ e[root [e]/q for all paths q that occur in e]

Example 3.1. Let e be 3.1+7.8 , i.e.,

+

3.1

1

7.8

2

e[2 mod 1] is then e[2] mod e[1] = 7.8 mod 3.1 = 1.6.

46

3.1. Programs

iables

Free variables in the path lead to paths that do not identify subtrees uniquely. Instead,
such expressions are interpreted as sets of subtrees. Example: Γ[C] is the set of all class
and interface declarations in Γ if C is free Expressions with free

variables
Expressions over path variables are defined as set of all evaluations of the expression in
the elements of the cartesian product of the sets the path variables generate. I.e., Let
v1 to vm be all the free variables that occur in paths in e. Let v1 ∈ V1, v2 ∈ V2 etc. Let
B = V1 × · · · × Vm. Γ[e] is then defined as

{

e′
︷ ︸︸ ︷

Γ[e[bi/vi for all i ∈ 1..m]] |b ∈ B ∧ e′ defined}

Example 3.2. Γ[A. fields .f×B.fields .g] for the program Γ below yields

{int× long, long× int, int× int, long× long}

class Y{
int f, g;

}
class Z{
long f, g;

}

Γ[nodecount(e)] denotes the number of values e generates in Γ, i.e., Γ[nodecount(e)] =
|Γ[e]| Predicates

Predicates are to be interpreted as existential. Γ[P] is considered true whenever true ∈
Γ[P]. Star ∗

The star ∗ is used for any path: Γ[∗.while(e){S}] identifies all while loops in the program
Γ that have condition e and loop body S.

3.1.3. Transformations on programs

The simple notation for program transformation is

root [selector1 := replacement1, . . . , selectorn := replacementn]

The idea is that the part of the tree identified by “selector” is replaced by the tree for
the expression “replacement”. This does not create problems as long as the modified

10It actually does identify a program part unless there is no program part that corresponds to the path.

47

3. Formalizing Equivalence For Refactorings

parts are disjoint. Then, the expression is equivalent to sequential replacements. This
will always be the case for substitutions in this text:

root [selector1 := replacement1] . . . [selectorn := replacementn]

Updates can also be written as sets: Γ[U] is Γ[u1, · · · , um] if U = {ui|i ∈ 1..m}.

The path-expression or selector f1.f2. · · · .fn refers to the subtree root(f1)(f2) · · · (fn)
as stated above. For the selector f1.f2. · · · .fn, the replacement expression “·” refers to
root(f1)(f2) · · · (fn), “··” refers to root(f1)(f2) · · · (fn−1). Free variables can again serve
as patterns for replacements: Γ[C.fields .foo := undef] deletes all fields foo from all
classes. ∗ matches any path in the tree. Γ[∗.while(e){S} := skip] replaces all while-
loops in the program by skip.

Formally, root[f1.f2. · · · .fn := e] is the same as

root [f1 7→ root(f1)[f2 7→ root(f1)(f2)[f3 7→ · · · root(f1)(f2) · · · (fn−1)[fn 7→ root [e]]] · · ·]

Replacements may be guarded: root [if cond then updates] is root [updates] only if cond is
satisfied. cond may also contain path expressions. cond will then bind some of the free
variables in updates.Updates

I.e., Let v1 to vm be all the free variables that occur in paths in if cond then updates.
Let v1 ∈ V1, v2 ∈ V2 etc. Let B = V1 × · · · × Vm. Γ[if cond then updates] is then defined
as

Γ[{

u′

︷ ︸︸ ︷

updates[bi/vi for all i ∈ 1..m] |b ∈ B ∧ u′ defined ∧ cond ′}]

where cond ′ ≡ cond [bi/vi for all i ∈ 1..m]

The notation introduced – both for expressions and transformations – here is similar to
XQuery, the “tree parser” syntax in ANTLR as well as other tree matcher generators
like the ones of the BURG family (including iburg).

The concept is similar to ECMAScript [14]. This language presents objects as partial
functions just in the same way we model the program representation. It has a with
statement that establishes the default root object for other statements just as our nota-
tion here. with(Γ){ U } roughly corresponds to Γ[U].

Refactorings are often concerned with very selective updates that do not fit too well with
the syntax used in mainstream functional implementation languages.

The notation is also11 similar to pointcut designators in AspectJ (see figure 3.1). This is
by no means a coincidence. Aspect oriented programming is not much more than local
code instrumentation that is specified outside the instrumentation site. It suggests that

11This just shows that people come up with the same concepts and ideas over and over again.

48

3.2. The Notion of equivalence and the operational semantics

postconditions could be added to the application as aspects if a technology or language
like AspectJ is used. The lack of visibility that normally causes legitimate concerns is
not a problem when only postconditions are formulated as aspects: they do not alter
the programs’ functioning.

// Pointcut designators are a different syntax for pre
-/postconditions

aspect Foo {
declare error : set * . && withincode * .get * (..)) :

"side effect in getter!";

Listing 3.1: Designators in AspectJ (from [47])

3.1.4. µ: Refactoring transformations

As explained in the previous section, updates U for the program Γ are written as

Γ[U]

Such updates uniquely identify a transformation function on programs

Γ 7→ Γ[U]

If this transformations is a refactoring, it is named µ. All refactorings are refered
to as µ (possibly with some sub- and superscripts) and given as a set of updates on
Γ.

3.2. The Notion of equivalence and the operational
semantics

Summary. The operational semantics represents a state s as a tuple s = (xcpt, σ, γ, u)
of exception state xcpt, local variable and parameter state σ, heap γ and the sequence of
input/output operations u and an entity that denotes the initial system state and decisions
determining the outcome of I/O operations written as u0. u0 is never written as part of the
state because the input decisions are the same for all runs of all versions of all programs
observed. The sequence of I/O operations u is sometimes refered to as “world”. The big-

step transition relation is written as Γ ⊢ s
t

−→s′ for a program Γ, an initial state s a path t in
Γ identifying the executed statement and a terminal state s′. Two programs are considered
equivalent if they perform the same sequence of I/O operations on the same u0 states for
all comparable program parts. At least the whole programs must be comparable.

49

3. Formalizing Equivalence For Refactorings

This section provides an overview over all statements that are valid in the subset of Java
I cover in this research. A more detailed explanation is given in appendix C. In the
appendix, I also discuss differences between the semantics in the present text and the
semantics by Oheimb [44] on which it is based.

The section also derives the notion of equivalence in detail and elaborates on the neces-
sitities and trade-offs.

The statements are described by a big-step operational semantics. The operational se-
mantics is tailored towards its intended use: to prove the externally visible behavioral
equivalence of statements. This makes it necessary to model externally visible actions
explicitly. Most formal semantics deal only with the state updates “inside” the program-
ming environment and probably with some functions that handle aspects of the language
that have an impact on the execution itself, like threading libraries. The semantics are
normally geared towards proving correctness properties inside the program. If this is
the case, it can be quite reasonably assumed that I/O (or general external) functions do
not have any effect on the program state. They can be assumed to just return any value
without affecting the program’s internal state.

With refactorings, it is different. It does matter if putchar(’B’) is called once or
twice because if it is called twice, there will be two “B”s on the console instead of one
even if both calls return ’B’ ! As I explain in the introduction and repeat throughout the
book, this leads to the following straightforward definition:Observably equivalent

behavior

Refactorings in this research are considered correct if the program after the refactoring
yields the same output, i.e., perform the same I/O operations in the same order, as before
the refactoring. It is the definition first formulated by William Opdyke.

For a formalization, this vague definition has to be made more precise: It is certainly not
possible to take all the possibilities into account how a certain output can be produced
if the framework is to be easily extensible to different kinds of I/O. The treatment of
“output” should not depend on the concrete semantics of the I/O routines. Example:
The fact that printf("AB"); and putchar(’A’); putchar(’B’); produce the
same output on the console in C/C++ under normal conditions is a fact that cannot
be derived without knowing about the semantics inherent to printf and putchar .12

If this opaque view on I/O operations is accepted, it is clear that externally visibly
behavioral equivalence requires two programs to perform the same sequence of I/O op-
erations.

12Some of the reasons for this restriction are these: (i) The number of different I/O operations is
unreasonably large. (ii) The number of I/O abstractions is enormous: consider disks, tapes, flash
memory, windowing, printers, etc. (iii) I/O functions are difficult to specify (iv) and normally remain
un- or underspecified. (v) If it matters how I/O operates, differences in behavior may also be possible.

50

3.2. The Notion of equivalence and the operational semantics

3.2.1. State

The state as modelled in operational semantics should remember the sequence of I/O
operations. I/O operations need not be deterministic. The list of I/O operations

plus some initial configuration are refered to as u = (a
I/O
1 , · · · , a

I/O
|u|). AI/O denotes

all possible I/O operations. The “initial state” of the system that determines the re-
sults of subsequent I/O operations is refered to as u0 ∈ U. It encapsulates all the
possible paths the interaction could lead to, which might be infinite if the program
loops.

I find the name “I/O operations” misleading. Even though I/O encompasses all external
operations, the name “input/output” suggests that it may be confined to actual input
and actual (viewable, readable or otherwise usable output). I may therefore call u the
“world” instead. Other aspects of the

machine state
The state in the operational semantics does also have to model other more conventional
aspects of the machine that can be found in any operational semantics.

In addition to the world, the state (denoted by s, r, etc.) consists of the currently
active exception (xcpt), the values of local variables and parameters (σ) and the globals
(γ).

The whole machine state for the big-step operational semantics thus consists of: excep-
tion, locals, globals and the world. This is a tuple.

State ≡ (
xcpt : (ExceptionLocation)option,
σ : Locals,
γ : Heap,

u : U×(AI/O)list ,
)

(3.12)

The locals map the names of the local variables to their value:

Locals ≡ Name →֒ Value

The Heap contains all the global data in the program. This includes static fields as
well as dynamically allocated data (data in the object store). Object store data can
be objects and arrays. Java supports dynamic type tests so it is important that the
TypeTag also gets stored in the heap. A HeapValue consists of type tag and the proper
field values.

HeapValue ≡ (
rtt : TypeTag ,
refvalues : FieldValues + ArrayValues

)

(3.13)

51

3. Formalizing Equivalence For Refactorings

The accessor refvalues is omitted if it is clear from the context. Field values map field
names to their value and array values map non-negative integers within a certain range
to the value of the corresponding element. From their respective formal treatment,
arrays and objects are identical if the kind of index element is abstracted away as
ObjectIndex .

ArrayValues ≡ N →֒ Value

FieldValues ≡ FieldName →֒ Value

ObjectIndex ≡ N + FieldName

The heap now maps locations to heap values and the special reference Null to a special
value that allow to unify Null and Location for rtt.

Heap ≡ (Location →֒ HeapValue) ∪ {{Null 7→ (NullType, Null)}} (3.14)

Locations can be addresses returned from new but also the names of classes. They point
to the class object.

Example 3.3. Have a look at the following class definition and the subsequent state-
ments.

class A{
static int x, y;
static A someobj;
int f;

}
A.x = 1;
A.y = 2;
A.someobj = new A();
A.someobj.f = 3;

The heap will be the following function afterward execution of the statements (2134132
is an arbitrary valid location):

γ = {
A 7→ (metaclass(A), {x 7→ 1, y 7→ 2, someobj 7→ 2134132})
2134132 7→ (A, {f 7→ 3})

}

Example 3.4. The following complete program illustrates all aspects of the state: local
variables, parameters, the heap, I/O and exceptions.

52

3.2. The Notion of equivalence and the operational semantics

class A{
A next;
int n;

}

class Main{
public static void main(String[] args) throws

Exception{
A a = null, b = null;
// build structure
for(int i = 0; i < 5; i++){

b = new A(); b.next = a;
b.n = i;
a = b;
System.out.println("a = " + a.id + " a.n =

" + a.n);
}

for(;a.next != null; a = a.next)
;

a.next = b;

for(; a != null; a = a.next){
a.n = a.n * 5555;
if(a.n < 0) throw new Exception();
out.println(a.n);

}
}

}

The state s at the end of the program is the following. Locations are again just integer
numbers for the sake of simplicity:

53

3. Formalizing Equivalence For Refactorings

s. γ = {
A 7→ (metaclass(A), {})
1 7→ (A, {next 7→ 5, n 7→ 0})
2 7→ (A, {next 7→ 1, n 7→ 30858025})
3 7→ (A, {next 7→ 2, n 7→ 61716050})
4 7→ (A, {next 7→ 3, n 7→ 92574075})
5 7→ (A, {next 7→ 4, n 7→ −1529451860})
33 7→ (RuntimeException, {})

}
s. xcpt = 33
s.σ = {

a 7→ 5
b 7→ 5

}
s. u = [

System.out.println(0)
System.out.println(22220)
System.out.println(16665)
System.out.println(11110)
System.out.println(5555)
System.out.println(0)
System.out.println(123432100)
System.out.println(92574075)
System.out.println(61716050)
System.out.println(30858025)
System.out.println(0)

]

u0 is omitted.

Example 3.5. Now consider the following program that does input as well as output
and prints the character read from the console.
System.out.print((char)System.in.read());

Assume I enter “f” on the console. The resulting state is then

s. γ = {}
s. xcpt = None
s.σ = {}
s. u = [

System.in.read()⇒ ′f′

System.out.print(′f′)
]

54

3.2. The Notion of equivalence and the operational semantics

Imagine I decide to enter “f” on the console only if there hasn’t been any I/O activity
before in the program. One possible representation of u0 could be a function from
I/O and method calls to return values: s. u0 = {([], System.in.read()) 7→ ′f′}. The
I/O operations have to interpret u0 correctly. Refactorings that are unrelated to input-
output such as the one in this thesis will be correct if they do not make any assumptions
about its representation. Therefore, I do not want to commit myself to any particular
representation of u and u0.

3.2.2. The transition relation

The big-step transition relation is written as Γ ⊢ s
t
−→s′ where t is a path in Γ. t =

C.methods .g.body .2, for instance, identifies the second subtree of the statement that
constitutes the implementation of method g in class C in the program. The notation

Γ ⊢ s
t
−→s′ means that the execution of the statement identified by t leads from some

initial state s to some terminal state t′. Instead of “the statement identified by t in
Γ”, I just write statement t even though t is still only meaningful in the context of a
program.

As customary for operational semantics, the transition relation is specified for each kind
of statement individually. The kinds of statements are the following.

skip does nothing

t1;t2 executes t1 and then t2

while(e){t} executes t if and as long e is true

if(e){t1}else{t2} executes t1 if e is true and t2 otherwise

l←new C allocates an object on the heap and stores its location in the local variable l

throw e throws the exception identified by e

try{t1}finally{t2} executes t1 and then t2 even if t1 causes an exception

try{t1}catch(C l){t2} executes t1 and then t2 if t1 causes an exception of type C with
l bound to the location of the exception caused

l←e sets the local variable l to the value of e

l←(T)e sets the local variable l to the value of e or causes an exception if the runtime
type of the object identified by e is not a subtype of T

l.f←e Sets the value of field f in l to e

l1←l2.f Retrieves the value of f in l2 and stores the result in l1.

l[ie]←e sets element ie of l to e

l1←l2[ie] sets l1 to element ie of l2

55

3. Formalizing Equivalence For Refactorings

init class C initializes the class C

l1←l2.T ::m(e) invokes an implementation of method m in T or the next superclass that
implements it on object l2 with parameter vector e and stores the result of the
invocation in l1. The method is statically bound.

l1←l2.m(e) invokes the most specific implementation of method m for l2 on l2 with
parameter vector e and stores the result of the invocation in l1. The method is
dynamically bound.Evaluation of

expressions The evaluation of expressions [[e]]sΓ is defined as usual and can basically be reduced to
the formula

[[f(e1, · · · , en)]]sΓ = [[f]]sΓ([[e1]]
s
Γ, · · · , [[en]]sΓ)

[[f]]sΓ is the function that corresponds to function symbol f . Values like integers and reals
are idealized in the operational semantics and it therefore holds that the operator symbol
corresponds to the proper operator over the corresponding set. Example: [[x·y]]sΓ =
s.σ(x)·s.σ(y).The formalization of

I/O statements
I/O is performed by the program using special I/O “instructions”. These I/O instruc-
tions are abstracted as ext-body. The execution of an ext-body-statement does not
change the state space of the program except for the sequence of I/O operations, i.e.,
if the initial state is s0, the terminal state will be s0[u := u

′] for some new world
u
′. Moreover, the behavior of such a statement will only depend on the local vari-

ables and the objects reachable through them and static fields. The objects reach-
able from a set of root values σ in a heap γ is denoted by γσ+. The possible up-
dated sequence of I/O statements u

′ is then determined by the relation Ext alone:
Ext(σ, γσ+, u, u′)

As its name implies, the ext-body statement only occurs as the body of a method.
There is no specific reason for this decision except that it makes it easier to think
about the effect of external methods as the set of local variables used in a method
is not limited except at the beginning of a routine where only the parameters are
set.

As can be eaily seen from the semantics, only external ext-body changes the u part of
the state. All other instructions leave it invariant.Typegraphic

conventions for

variable names
I do not use the same font for all concrete variables. A variable that is represented
by the letter x can either be written as x (or x, which is the same) or as x. The
difference is merely that x represents a concrete variable that has the name x and x can
represent any concrete variable irrespective of what its name is, i.e., concrete variable x
can be called x in the source code but it might just as well be called y, z or anything
else.Java features not

covered here
This informal description illustrates the subset of features Java that are investigated
for this thesis. Omitted are features that would complicate the semantics but wouldn’t
add to the validity of the reasoning done here. These include: expressions with side

56

3.2. The Notion of equivalence and the operational semantics

effects (assignment statements and method calls), object access inside expressions (field
reads), abrupt termination with return, break or continue. Methods are assumed
to return the value of the special variable result.

Not covering abrupt termination is problematic for some investigations. It is unprob-
lematic for this research because atomic statements that affect the state space directly
are more likely to break equivalence than composite statements that affect control flow.
Switching to a language with completely unrestricted control flow like the one presented
in [2] for instance would be easy. The operational semantics for the statements is summa-
rized in the tables 3.2 to 3.5. They use the two abbreviations for raising new exceptions
raise(s, E) of type E in state s and allocating objects alloc(l, s, X) of type X in state s,
storing the result in l, a local variable.

raise(s, E) = s[xcpt := loc, γ := γ[loc 7→ init obj(Γ, E)]] where s. γ(loc) = None

alloc(l, s, X) = s[σ.l := loc, γ := γ[loc 7→ X]] where s. γ(loc) = None

Figure 3.5.: Abbreviations for exception handling

Statement Poststate Necessary conditions (∧ s0. xcpt = None)

skip s0 –

t1;t2 s2 Γ ⊢ s0
t1−→s1 ∧ Γ ⊢ s1

t2−→s2

while(e){t} s0 [[e]]s0
Γ = false

while(e){t} s2 [[e]]s0
Γ = true ∧ Γ ⊢ s0

t
−→s1 ∧ Γ ⊢ s1

while(e){t}
−−−−−−−→s2

if(e){t1}else{t2} s2 [[e]]s0
Γ = true ∧ Γ ⊢ s0

t1−→s2

if(e){t1}else{t2} s2 [[e]]s0
Γ = false ∧ Γ ⊢ s0

t2−→s2

Table 3.2.: Basic statements

Statement Poststate Necessary conditions (∧ s0. xcpt = None unless
stated)

t s0 s. xcpt 6= None
throw e s0[xcpt := x] x = [[e]]s0

Γ 6= Null
throw e raise(s0, NullPointer) x = [[e]]s0

Γ = Null

try{t1}finally{t2} s2[xcpt := s1. xcpt] Γ ⊢ s0
t1−→s1 ∧ Γ ⊢ s1[xcpt :=

None]
t2−→s2 ∧ s2. xcpt = None

try{t1}finally{t2} s2 Γ ⊢ s0
t1−→s1 ∧ Γ ⊢ s1[xcpt :=

None]
t2−→s2 ∧ s2. xcpt 6= None

try{t1}catch(C l){t2} s2 Γ ⊢ s0
t1−→s2 ∧ s2. xcpt = None

try{t1}catch(C l){t2} s2 Γ ⊢ s0
t1−→s1 ∧ rtts1(s1. xcpt)�ΓC ∧ Γ ⊢

s1[xcpt := None, σ.l := x]
t2−→s2

try{t1}catch(C l){t2} s1 Γ ⊢ s0
t1−→s1 ∧ rtts1(s1. xcpt) �Γ C

Table 3.3.: Exception statements

57

3. Formalizing Equivalence For Refactorings

Statement Poststate Necessary conditions (∧ s0. xcpt = None)

l←new C alloc(l, s, init obj(Γ, C)) –
l←new C[e] alloc(l, s, init obj(Γ, (C, N))) N = [[e]]s0

Γ ∧N ≥ 0
l←new C[e] raise(s0, NegArrSize) N = [[e]]s0

Γ ∧N < 0
l←e s0[σ.l := [[e]]s0

Γ] –
l←(T)e s0[σ.l := x] x = [[e]]s0

Γ ∧X = rtts0(x) ∧X�ΓT
l←(T)e raise(s0, ClassCast) x = [[e]]s0

Γ ∧X = rtt(γ(x)) ∧X �Γ T
l.f←e s0[γ .x.f := [[e]]s0

Γ] x = [[l]]s0
Γ ∧ x 6= Null

l.f←e raise(s0, NullPointer) x = [[l]]s0
Γ ∧ x = Null

l1←l2.f s0[σ.l1 := γ .x.f] x = [[l2]]
s0
Γ 6= Null

l1←l2.f raise(s0NullPointer) x = [[l2]]
s0
Γ = Null

l[ie]←e raise(s0, NullPointer) x = [[l]]s0
Γ = Null

l[ie]←e raise(s0, IndOutBound) x = [[l]]s0
Γ 6= Null ∧ ((T, N), a) = s0. γ(x) ∧ i = [[ie]]

s0
Γ /∈

[0, N)
l[ie]←e raise(s0, ArrStore) x = [[l]]s0

Γ 6= Null ∧ ((T, N), a) = s0. γ(x) ∧ i = [[ie]]
s0
Γ ∈

[0, N) ∧ v = [[e]]s0
Γ ∧ rtts0(v) �Γ T

l[ie]←e s0[γ .x.i := v] x = [[l]]s0
Γ 6= Null ∧ ((T, N), a) = s0. γ(x) ∧ i = [[ie]]

s0
Γ ∈

[0, N) ∧ v = [[e]]s0
Γ ∧ rtts0(v)�ΓT

l1←l2[ie] raise(s0, NullPointer) x = [[l2]]
s0
Γ = Null

l1←l2[ie] raise(s0, IndOutBound) x = [[l2]]
s0
Γ 6= Null ∧ ((T, N), a) = s0. γ(x) ∧ i =

[[ie]]
s0
Γ /∈ [i, N)

l1←l2[ie] s0[σ.l1 := a(i)] x = [[l2]]
s0
Γ ∧ x 6= Null ∧ ((T, N), a) = γ(x) ∧ i =

[[ie]]
s0
Γ ∈ [0, N)

Table 3.4.: Statements for object manipulation

Statement Poststate Necessary conditions (∧ s0. xcpt = None)

init class C s0[xcpt := x, γ := s2. γ]) γ(C) = None ∧ γ′ = s0. γ[C 7→
init obj(Γ, metaclass(C))] ∧ Γ ⊢ s0[σ :=

{this 7→ C}]
staticinitializer(Γ(C))
−−−−−−−−−−−−−−→s2

init class C s0 s0. γ(C) 6= None
l1←l2.T ::m(e) raise(s0, NullPointer) x = [[l2]]

s0
Γ = Null

l1←l2.T ::m(e) s1[σ := σ[l1 7→ σ′(result)]] x = [[l2]]
s0
Γ 6= Null ∧ Γ ⊢ s0[σ :=

{this 7→ x, pNames(Γ, T, m) 7→ e}]
body(Γ,T,m)
−−−−−−−−→s1

l1←l2.m(e) raise(s0, NullPointer) x = [[l2]]
s0
Γ = Null

l1←l2.m(e) s1[σ := s0.σ[l1 7→ s1.σ(result)]] x = [[l2]]
s0
Γ 6= Null ∧ T = rtt(x) ∧ Γ ⊢ s0[σ :=

{this 7→ x, pNames(Γ, T, m) 7→ e}]
body(Γ,T,m)
−−−−−−−−→s1

ext-bodym s0[u := u
′] method m has ext-bodym as its body and

Ext(s0.σ, s0. γ
s0.σ+, s0. u, u′)

Table 3.5.: Invocation statements

58

3.2. The Notion of equivalence and the operational semantics

3.2.3. State and execution correspondence

This section starts with two examples that make it clear that formalizing refactorings
needs two additional concepts: state correspondence and execution correspondence.
These concepts help define equivalence. As their names imply, state correspondence
relates the internal states in the original and the refactored program and execution corre-
spondence captures the intuitive13 requirement that it is not arbitrary which parts of the
programs do what in the original program and the refactored program. Indeed, there is
one state correspondence that is particularly obvious and necessary: the correspondence
of the I/O statements performed. The I/O statements have to be the same, whereas
other parts of the state can be in any relation to each other.

Consider the following two equivalent programs:

for(int i = 0; i < 10; i++)
out.println(1 << i);

for(int i = 1; i < 1000; i * = 2)
out.println(i);

They produce the same output yet they have a different internal state. Refactorings may
change the internal state as well – just consider “Extract Method”. The two states are
not unrelated however. Both states can be used to derive the same output relevant values
for the invocation of I/O routines. This concept can be captured in a binary relation
that associates corresponding states. This correspondence is called state correspondence State correspondence

βand it is denoted by β. It needs to be specified in addition to the program correspondence
µ for every refactoring as shown in figure 3.6.

The need for β
Why does it not suffice to state how programs are transformed and let the state corre-
spondence, β be inferred from the code transform itself? The reason is that also parts
of programs may be comparable, not only whole programs. Their initial state is not in-
dependent of previous program-dependent behavior. Consider the following comparable
and equivalent code snippets. The output is the same, provided 2i = j holds at the
beginning of the execution.

j = j * 2;
out.println(j);

i = i+1;
out.println(1 << i);

The example illustrates another point. Imagine the left hand side code is the original
code and the right hand side is the refactored result. What happens if j = 0 at the
beginning? According to what I said above, 2i = 0 should hold. Unfortunately, this
this equation does not have a solution. Should such a correspondence be forbidden?
Probably not because at the example above would not be possible in that case. I even
reckon that it would render the formalism much less useful. Initial data correspondence
is therefore a precondition for equivalence, i.e., something that can be assumed. Terminal
data correspondence is a postcondition of the transformation, i.e., it must be ensured

13The requirement is not only intuitively justified as shown below (cf. section 4.3)

59

3. Formalizing Equivalence For Refactorings

by the transformation. This rule could be weakened for the execution of the whole
program, but that seems overly general. Moreover, it is clear that a data correspondence
that is never satisfied14 is not very helpful, even though it could help prove whatever
refactoring is desired. Initial data correspondence at execution start is a precondition of
the program.

Γ Γ′
µ : Prog → Prog

Γ ⊢ s
t
−→s′ Γ′ ⊢ r

t′
−→r′

β[t,t′] ⊂ State2

Figure 3.6.: Program correspondence µ (the transform) and state correspondence β in-
dexed by the respective positions in the source-code

To understand why execution correspondence is needed, consider the following equivalent
programs.

out.println(j);
j = j+1; out.println(j);
j = j+1; out.println(j);
j = j+1; out.println(j);

out.println(j1);
j2 = j1+1; out.println(j2);
j3 = j2+1; out.println(j3);
j4 = j3+1; out.println(j4);

It is obvious that the programs produce the same output. The right hand side is the
single-assignment form of the left hand side. There is no fixed correspondence between
the variables. The correspondence depends on what statement is being executed. At the
beginning, j1 = j but at the the end, j1 = j − 3. In other words, the correspondence
depends on the statement that is being executed. Moreover, the statements may not
even be symmetric as in the example above – to make things more complicated, I could
have wrapped the original into one (or two) for-loops. Unfortunately, big-step semantics
do not have a single valid program counter. Paths to the respective parts of the programs
provide a sufficient approximation to this low-level concept however. Data correspon-
dence can therefore only be asserted if the statements that are executed in the original
and the refactored program correspond to each other.

The combined data-execution correspondence is thus a quarternary relation over paths
to statements being executed and the respective state spaces. Correspondence in two
programs Γ and Γ′ of two states s and r and two program positions t and t′ is written
as β[t,t′](s, r).

It is worth noting that this is just another way of recognizing that the “program counter”
is effectively also part of the machine state albeit one that is hidden behind the big-step

14e.g., |i|+ 1 = − |j|

60

3.2. The Notion of equivalence and the operational semantics

operational semantics.15 The viable option would be a “mixed” operational semantics
that combines abstract block structures and a “flat” program counter (i.e., without stack
frames) [2]. The thesis would probably be less accessible as such semantics are not (yet!)
widely used or taught.

The arguments serve to legitimate the representation I have chosen for the rest of this
thesis. They are by no means complete and this chapter does not provide a derivation
of a “complete” formalism in whatever sense. Stack-frames for instance also play a role
in some cases. The abstractions presented here however are sufficient for what I want to
illustrate.

3.2.4. Defining EXTERNAL EQUIVALENCE

This section formalizes the discussion in the previous sections and defines equivalence as
a formula that is to prove for each refactoring. The formal definition is presented first
and then explained and related to the discussion.

Two programs Γ and Γ′ are considered externally equivalent (cf. equation (3.15)) if
for all states s, r and s′ and all statement paths t and t′ the following property holds:
if there is an execution of t in Γ with initial state s that results in s′, and s and r
are corresponding states for the statements t in Γ and t′ in Γ′, then there is a transi-
tion from r to r′ of t′ in Γ′ and s′ and r′ correspond to each other for the successor
statements. All statements have successors. The main routine has a sentinel successor
statement. Initial data

correspondence is a

program precondition
If m and m′ are the respective main routines, there must be a possible initial state
w in the original and a possible initial state z in the refactored program such that
β[m,m′](w, z).

ExtEqβ(Γ, Γ′) ≡ ∀t, t′, s, s′, r : (Γ ⊢ s
t
−→s′) ∧ β[t,t′](s, r)

⇒ ∃r′∀t+ ∈ succΓ(t), t′+ ∈ succΓ′(t′) : (Γ′ ⊢ r
t′
−→r′) ∧ β[t+,t′+](s

′, r′) (3.15)

This definition of external equivalence is too general and too cumbersome to apply for
practical refactorings. Special cases of the definition that are powerful enough are defined
below.

A program transformation µ is a refactoring with data correspondence β if it retains
external equivalence under the condition that certain preconditions pre and postcondi-
tions post are satisfied. Pre- and postconditions are whole program properties: These Definition refactoring

15A small step semantics would not have been an alternative: Big-step semantics allow to consider the
cumulative effect of a whole block. This is important for refactorings because most blocks will remain
unaffected even if they are part of statements that may have been updated by the refactoring.

61

3. Formalizing Equivalence For Refactorings

properties are independent of properties that must hold for statements because of data
correspondence β.

µ is a refactoring with correspondence β under pre-/postconditions pre and post

≡ pre(Γ) ∧ post(Γ′)⇒ ExtEqβ(Γ, µ(Γ)) (3.16)

u-equivalence β is only a valid data correspondence if it is the identity on the sequence
of I/O operations, i.e.,

β(s, r)⇒ u(s) = u(r)

It is this condition that renders the definition faithful to the required intuition.

Equation (3.15) is perhaps not so suprisingly quite similar to the definition of a sim-
ulation.16 After all, simulations are a standard means to prove equivalence between
transition systems. If the subscripts of β are ignored and we assume t′ is uniquely deter-
mined by a function we call µ for consistency like the refactoring itself, β is a simulation

between the transition systems Γ ⊢ .
.
−→. and Γ′ ⊢ .

µ(.)
−−→.. β’s correspondence to the

coupling relation in refinement then becomes apparent.

Note that the definition equation (3.16) is asymmetric. It makes perfect sense to demand
that the definition of a refactoring is symmetric, making it resemble a bisimulation. This
has favourable consequences as discussed later but is of little general relevance if refac-
torings qua (unidirectional) transformations are concerned. Definition equation (3.16)
and its variants are the main ones used in the text.

µ is a symmetric refactoring with correspondence β ≡

pre(Γ) ∧ post(µ(Γ))⇒ ExtEqβ(Γ, µ(Γ)) ∧ ExtEqβ−1(µ(Γ), Γ) (3.17)

16For the readers who are surprised by my understanding of what a simulation encompasses and those
who are not completely familiar with the notion itself, here is the general definition I assume: let
S = (S, A,−→

S
) and R = (R, A,−→

R
) be transition systems with states S and R, actions A and

transition relations −→
S

and −→
R

. b ⊆ S × R is then a simulation iff whenever s
a
−→
S

s′ ∧ b(s, r), there is

some r′ such that r
a
−→
R

r′ ∧ b(s′, r′). b is a bisimulation if both b and b−1 are simulations.

62

3.2. The Notion of equivalence and the operational semantics

Figure 3.7.: Comparable parts in the refactored programs

Two important variants

More often than not, the definition in equation (3.15) is overly general. As the informal
legitimation of equation (3.15) in the previous sections showed, only certain parts of
the definition are actually needed for each sufficiently simple refactoring. The following
paragraphs summarize the variants that are actually needed in the refactorings discussed
in the rest of the text.

Variant 1: β is the identity Many refactorings do not change the state space of the
program. “Simplify Conditional” or “Strength Reduction” are examples. Different code
is used to achieve the same effect, including state updates. Another more important
example is reordering independent statements. Example:

a++;
b++;

b++;
a++;

Comparable

statementsβ is in this case the identity for all statements t and t′ for which β[t,t′] is not empty.
Such statements are called “comparable”. They are the statements that correspond
to each other in the original and the refactored program and are not affected by the
transformation. Equation (3.15) has to be proven directly for all program parts that are
not comparable while an inductive method can be leveraged for all comparable parts.
This suggests that all regions unaffected by a refactoring are considered comparable.
Figure 3.7 illustrates the matter.

ExtEqβ(Γ, Γ′) ≡ ∀s, comparable t and t′, s′ : (Γ ⊢ s
t
−→s′)⇒ (Γ′ ⊢ s

t′
−→s′) (3.18)

The crucial point now is that equivalence can be temporarily invalidated, namely for the
statements that are not comparable. Consider the example above again. The statements
are now labelled.

t

t1

{

a++

t2

{

b++
t′

t′1

{

b++

t′2

{

a++

63

3. Formalizing Equivalence For Refactorings

Statements t1 and t′1 are obviously not comparable. Given an identical initial state, the
first program will have a updated, the second, refactored program, will not. Instead,
b will be incremented by one. The second statement will not start with β-compatible
states. After its execution however, correspondence is reestablished. t and t′ are thus
comparable: If t and t′ start in compatible states – in this case this means equivalent
states, the states will be compatible again after the execution of t even if it is temporar-
ily violated during the execution of t. The possibility to violate data correspondence
temporarily greatly increases the flexibility you have to formalize a refactoring. It is
exactly the kind of flexibility you need because refactorings normally leave most state-
ments unaffected but change a few, that are known and have specific properties that can
be used for the definition of the data correspondence.

Comparable statements are like “visible states” JML assumes during which class invari-
ants have to hold.

Variant 2: β is invariant For most refactorings, in particular all the refactorings in this
text, β is a kind of invariant that must be reestablished by every relevant statement (i.e.,
one that is comparable to its refactored counterpart) and may also be assumed by it.
Statements t and t′ are comparable if β[t,t′] is not empty as above. The “comparability”
criterion in that case replaces the correspondence between different statements in the
original and the refactored program.

Most important

variant!

ExtEqβ(Γ, Γ′) ≡ ∀s, comparable t and t′, s′, r : (Γ ⊢ s
t
−→s′) ∧ β(s, r)

⇒ ∃r′ : (Γ′ ⊢ r
t′
−→r′) ∧ β(s′, r′) (3.19)

It is important to understand that for a refactoring µ, there is no single correct β.
Different β can be defined. Some of them may be weak enough to be invariants, others
may depend on the actual statement being executed. The reordering statements example
is again good enough as an illustration: If only t and t′ are considered comparable, β
is very simply the identity on comparable statements: β = id. If all statements are
considered comparable, β has to encode the temporary violation of the invariant. β[t,t′]

and β[t1,t′1] are still id, but after the execution of the first statement, the state spaces are
different

β[t2,t′2](s, s[σ := σ[a := a− 1, b := b + 1]])

For more complex refactorings there are more choices you can make with more or fewer
comparable statements. This choice influences the complexity of a correctness;

64

3.3. Extensions to the basic model

Figure 3.8.: The spectrum of possible data correspondences and associated complexity

Comparability Every refactoring can be explained with a detailed β that allows com-
parability of all statements, including those that are subject to the refactoring. β
“knows” the refactoring. Such β are difficult to specify and duplicate the work done
for formalizing the transformation itself. Specification and verification of refactorings
are only practical if the definitions can be kept simple. Leaving β undefined every- Unreasonably well

behaved βwhere except the main routines makes it very simple but not very descriptive and
renders the proof unncessarily complicated. β should therefore capture the essence of
the refactoring while leaving the description of the transformation to µ as far as possi-
ble.

For usual refactorings, there is only one β that faithfully reflects intuition and results
in simple proofs. It is the β that considers only those statements comparable that
are unchanged by the refactoring, even if their components are updated. Cf. fig-
ure 3.8

It is clear that comparability cannot serve as a foundation for the notion of equivalence
if programs do not terminate in general. This is why termination should be required
separatly for individual program relevant parts if they are also comparable. For such
parts, equivalence of termination must be shown (i.e., if one program part terminates in
the first program, the corresponding program part in the second program part must also
terminate. In practice, every unexamined program part may also do I/O, which yields
a sensible notion of equivalence at least for those parts.

3.3. Extensions to the basic model

3.3.1. Syntactic approximation with preconditions

Refactorings as discussed by Fowler [16] are meant to preserve equivalence. This is their
correctness criterion and unit tests normally serve as a specification as noted above – the
most prominent advocate of this idea is Roberts in his PhD thesis [39], see section 1.4.2
for details.

65

3. Formalizing Equivalence For Refactorings

Unit tests as specifications naturally lead to “refactorings” that do not retain the seman-
tics for all inputs. Instead, the inputs that are contained in the tests are actually the
execution “pre”-conditions in the meaning of a condition that must hold for the program
to yield the expected results just as it is used in software verification. The formalized
refactorings in this text do not incorporate the notion of such execution preconditions,
which may be essential to the applicability of refactorings. This is not a problem if
semantic conditions are tested dynamically, during program execution because every
excecution will necessarily satisfy the preconditions. It is a problem however if con-
ditions are verified statically using syntactic approximation – a possibility I cordially
embrace.

The problem occurs as well for static verification, but it is more naturally taken into
account there. It is unreasonable to expect that useful preconditions can be “extracted”
from tests in either case as it involves generalization.

Here is a simple idea: A specified execution precondition is propagated to all parts of the
program using a data flow analysis (or abstract interpretation). These data abstractions
cannot possibly be overly complex but may include value abstractions of individual data
structures at each program point.

As I said above, value propagation does not have any benefit for the dynamic tests
that are injected into the program by the refactoring tool, because the possible inputs
are conformant with the precondition. If syntactic approximations are implemented
however, the precondition become important when the syntactic approximation can be
formulated in the same framework as the propagation algorithm – i.e., some kind of
data flow analysis. If the initial state of the analysis is reduced to the precondition,The special status of

dataflow analyses for

static approximations

to postconditions

static approximations take into account the presence of preconditions. This is of course
applicable to parts of programs as well as whole programs.

Example 3.6. Imagine a “program”17 takes an input x as its argument. x is guaranteed
to be in {1, 2, 3}. For the refactoring “Move Field”, the pointer to the object to which
the field is moved must not be null at program points when the moved field is accessed.
Consider the following program

1 ...
2 z.target = null;
3 switch(x){
4 case 1: x.target = Some non-null expression; break;
5 case 2: x.target = Some non-null expression; break;
6 case 3: x.target = Some non-null expression; break;
7 }
8 t = z.f
9 ...

17It is just the entity outside of which I do not want to analyze code.

66

3.3. Extensions to the basic model

Applying “Move Field” to this program – moving f from ctt(z) to ctt(z.target) will
require the postcondition z.target 6= Null at line 8. A non null analysis could only
guarantee this claim if the additional knowledge about x ∈ {1, 2, 3} is taken into account.

This technique could – depending on the speed of the analysis – outweigh the flexibility
lost initially acquired by formalized refactorings. Keep in mind however that formalized
refactorings are most useful when it is not (yet) possible to test code. Writing white box
tests does have many other functions beyond checking refactorings that are discussed in
the introduction.

3.3.2. Reverse transformations

As noted in [16, chap. 14 by Don Roberts and John Brant], it is particularly important
that the effect of a refactoring can be reversed. Simplicity of transformation should
not be an argument for investigating a transformation instead of its reverse. Moreover,
refactorings may turn out to be bad and must be undone long after the transformation
has initially happened without affecting the changes made later. In principle, the back-
ward transformation is easy to formulate if you have the forward transformation: The
postcondition becomes the precondition and the precondition becomes the postcondi-
tion.

This does not work in general, but it does if the refactoring is symmetric as in equa-
tion (3.17). The original refactoring is µ1 with data correspondence β1 and pre- and post-
conditions pre1 and post1. The refactoring then satisifes equation (3.17)

pre1(Γ) ∧ post1(Γ
′)⇒ ExtEqβ1

(Γ, µ1(Γ
′)) ∧ ExtEqβ−1

1
(µ1(Γ

′), Γ)

The inverse refactoring is µ2 = µ−1
1 with data correspondence β2 = β−1

1 and pre-
/postconditions pre2 = post1 and post2 = pre1. As can be trivially verified, equa-
tion (3.17) is satisfied for the new refactoring if µ1 is injective (and µ2 is therefore
defined). If this is not the case, finding a µ2 such that µ1(µ2(Γ

′)) = Γ′ for all Γ′ ∈
{µ1(Γ)|Γ ∈ Prog ∧ pre1(Γ)}may be an acceptable solution. Are postconditions of

the forward refactoring

good preconditions for

the backward

refactoring?

Consider “Move Field”. (section 5.4) A precondition for the reverse transformation
would be that every access to the field would happen with the field access statements the
forward transformation produces. This is quite acceptable as the program can probably
be brought into this shape by reordering instructions and forward substitution. This is
certainly an essential applicability condition for the reverse transformation. What about
aliasing conditions that also play a role? It is hard to defend that they are essential for the
applicability of the refactoring. These should be framed as postconditions in the reverse
refactoring and preconditions in the original refactoring.

Translating between pre and postconditions is easily possible if β is a function – which
is indeed the case for “Move Field”. Let the state18 in the untransformed program be s

18or tuple of states

67

3. Formalizing Equivalence For Refactorings

and in the transformed program be r as in equation (3.15). We call the precondition P
and the corresponding postcondition P ′. At least when β(s, r) is satisfied, the pre- and
postconditions have to correspond, i.e., β(s, r)⇒ (P (s)⇐⇒ P ′(r)). If the postcondition
P ′ is given, P (s) = P ′(β(s)) trivially satisfies the equation. The opposite is of course trueI treat β as a function

if β−1 is a function.19 This leads to the following conclusion: As long as β is a function
in its first argument, the reverse transformation can leverage the postconditions of the
forward transformation to generate its own postconditions.Are preconditions of

the forward refactoring

good postconditions

for the backward

refactoring?

It is worth noting that most refactorings do not have postconditions, for these refactor-
ings, the opposite problem is most imminent and the opposite condition must hold.

3.3.3. Coping with variant control flow and externally visib le state in
practice

For most refactoring, talking about the “world” or “the sequence of I/O operations”
seems rather heavyweight and superflous. Often, a simple informal argument is sufficient
to support the claim that the refactorings do not change the externally observable behav-
ior. As long as the methods with external effect (i.e., I/O routines) are called in the same
order and number, the programs are equivalent. Control flow does only change if (a) ex-
ceptions or (b) the evaluation of basic expressions change.20

The externally visible semantics need not be taken into account. For refactorings
that do actually alter the control flow of a program in non-trivial manners, it might
be worthwhile to explicitly reason about visible state and its history (“the world”).
These refactorings are quite rare in practice and include:21 “Replace Exception by
Check”, “Replace Typecase by Dynamic Dispatch”, “Replace Error Code with Excep-
tion”, etc.

Introducing the “world” abstraction does not actually alter what is possible to exam-
ine, it merely introduces a formal entity that represents what is being reasoned about
therefore providing tangible argumentation.

Example 3.7. “Replace Exception by Check” is a refactoring that benefits marginally
from the world abstraction.

19If the precondition is given and β−1 is a function, the postconditions can be derived, which are the
preconditions of the reverse transformation.

20The approach is reminiscent of the notion of “preservation” in [29]. [29] does not go any further to
examine what the semantic consequences of “access”, “update”, “call” preservation are – they just
name it.

21They may be rare just because control flow alterations do not benefit as much from automation as
other refactorings.

68

3.3. Extensions to the basic model

class C {
void m(D o, Params params){
try{

o.f(params);
} catch(MyException e){

S();
}

}
}

⇒

class C {
void m(D o, Params params){
if(o.noExc(params)){

o.f(params);
} else{

S();
}

}
}

u is altered by both the call o.f(params) and S() . The statements implementing
these two routines remain the same. u is therefore updated in the same way before and
after refactoring if the context in which they are invoked is also the same.

For the proof of “Replace Exception by Check”, it is necessary that o.noExc(params)
does not update any state local variables that is relevant for the remainder of the pro-
gram’s execution.

For practical purposes, it is sufficient that the changes leave the externally visible reac-
tions to these changes identical. It is a very weak condition that could for instance be
reduced to observational purity, to identity of the reachable state or any other notion
that is handy to check.

3.3.4. Data-vs-instruction induction refactorings

For refactorings that mainly affect the data space of the program, giving only β could
allow to derive a provably correct refactoring µ. The more conventional direction would
be to derive β from µ even if care is taken to leave β unspecified where the actual
transformation happens. As an example, let’s consider the “Move Field” refactoring. β
is a function in its first argument: β. β undoes the effect of the program transformation
on the state space. Conversly, µ undoes the effect of β:

Γ ⊢ s
t
−→s′ ⇒ µ(Γ) ⊢ β(s)

µ(t)
−−→β(s′)

The idea is now to identify load and store statements with every data access path.22 β
is presented as a table of data correspondences with the invariant data paths stripped
away. For “Move Field”, it looks like this:

Before After

γ(loc)(Src::f) γ(γ(loc)(Src::target))(Target::f)

22This translation is straigforward: γ(γ(x)(f))(d) for instance would generate the statements
tmp←x.f ;tmp.d← and tmp←x.f ; ←tmp.d

69

3. Formalizing Equivalence For Refactorings

Refactorings that can be handled in this very reduced framework are those that are
concerned with data access alone: “Move Field”, “Rename Field”, “Replace Array with
Object”, “Rename Local Variable/Parameter”. Others like “Split Temporary Variable”
need more information: It is not only a matter of replacing one access by another but
of replacing one access by two others. Still, the replacement of one access by another is
an important element in this procedure.

The fundamental difference between transformations altering the access path to a value
in the object graph and other conventional refactorings is that refactorings are normally
concerned with bringing code into a certain shape that is not determined by the change
in the state space alone.

Access paths mappings are a framework that allows the general substitution of one se-
quence of access statements (i.e., field/variable load and store) by another sequence. It
can also guide the user of a refactoring tool using this formalism to the locations in
the code where modifications have to be made to keep two copies of the same value in
sync.

Refactorings of this kind are covered in detail in chapter 5.

3.4. A proof-pragmatic classification of refactorings

Different refactorings differ in the program parts and abstractions they modifiy. It
might be useful to classify the refactorings according to these dimensions to identify
other refactorings and topics that could be worth investigating. I present such a clas-
sification here. Clearly, refactorings can modify the data structure or the program rep-
resentation. Changes in the data structure are always reflected in the program struc-
ture but not vice versa. Refactorings can retain or they can alter the control flow.
Refactorings can have a reverse transformation that is easily applicable or they may
not.

A classification of refactorings could focus on the programmatic aspects of refactoring.23

A more interesting classification focuses on the way the program behaves and how it dif-
fers after the refactoring. This is relevant for the proof strategy.

The classification is therefore instructive to capture the different approaches that are
needed for the correctness proofs. It is also necessary because I want to have at least
one refactoring in each class of modifications that I have shown correct. There are three
relevant axes to be considered:

23Fowler [16] also implies a classification of refactorings by the organisation of the catalogue into chapters.
This implicit classification is organized along the lines of syntactic elements and intentions that are
less relevant for the theoretical framework here.

70

3.4. A proof-pragmatic classification of refactorings

Control flow preservation If control flow does not change, externally visible program
behavior remains trivially the same as long as external method calls are not
changed and their argument values remain the same. If control flow does change
however, it is necessary to capture the externally visible effects of code explicitly
in the state.24 See section 3.3.3

There are not many refactorings in [16] that do change the control flow of the
program. They are limited to

• “Replace Exception by Check”,

• “Replace Typecase by Dynamic Dispatch”,

• “Replace Error Code with Exception”

Locality of code changes Refactorings can either be purely local or they can be scat-
tered across the whole program. Most refactorings are purely local. Purely local
refactorings assume a stringent structure of the program that is being transformed
– if they didn’t, they couldn’t transform it. Because of the stringent structural
assumptions, semantic postconditions are mostly essential applicability conditions
that are too difficult to check syntactically. Most refactorings in [16] involve only
local modifications.

Global data variance (access/create-path preservation) Some refactorings operate
on the object representation: They move fields up, down and across the hierarchy,
alter the representation of fields, introduce them and remove them.

I want to keep the refactorings as simple as possible, to be able to prove correctness easily,
even if this means that they have to be composed or applied repeatedly.

• If the access paths are not kept the same, the effect cannot always be local: In Global data variance

⇒ Non-local

modifications

the absence of visibility restrictions, it is impossible to guarantee that access paths
are confined to certain parts of the program. Global data changes should be
isolated from changes to local data by data mapping. This avoids having to update
unrelated user code.

• If every access path is retained, it is impossible that the refactoring is changing
an unbounded number of program parts – if the refactoring is atomic. This is Global data invariance

⇒ local modificationsso because data invariant changes are in fact independent of each other and the
refactoring could be split into multiple simpler refactorings.

• If the control flow is not retained, modification should be local. If control flow
changes, modifications to the local state σ are made. This cannot be due to access Control flow changes

⇒ local modificationspath changes because they should be isolated by data translation. Changes in
control flow must therefore be due to other local changes. Local changes can
be made in isolation however and if they are not, the refactoring is not atomic.
Likewise, control flow changes should not involve access path modifications because Control flow changes

⇒ no global state

changes
24It can still be argued about correctnenss, but not in a mathematically rigorous way.

71

3. Formalizing Equivalence For Refactorings

access path changes are not local.

Some refactorings do not fit into this simplified classification. They do not affect control
flow or global state, but they do affect the program non-locally. The simplest example is
“Rename Method”. These refactorings are isomorphisms on the relevant program parts.
The classification above is lacking them for exactly this reason: If they were more than
isomorphisms, we would have been able to anticipate them with the classification above
that is based on the necessities for proofs. Renaming however does not require a sophis-
ticated proof for showing program equivalence. Every isomorphism can be eliminated
by adding an extra level of indirection to the operational semantics.25 This leads to the
classification tree in figure 3.9.

All refactorings of abstraction interfaces may be subject to non-local transformations.
Fortunately, methods are the only kind of abstraction in Java that is unrelated to the
heap state per se. Another, related issue is class hierarchies: altering only the class
hierarchy only should not change the way the application works. However, it may
modify the way methods are looked up – even though the results do not change. They
are classified as isomorphisms and “simple” refactorings.

25Example: Use indices instead of parameter names, etc.

72

3.4. A proof-pragmatic classification of refactorings

Affects abstraction

Relev. abstraction

interfacea

Paramsb

m
et
ho

ds

4.12

Element

data

type/val

re
p.

4.5,
4.7

β ⇒ µ �c

paths

4.11

iso.

nam
es/�

Γ d

4.14,
4.13,
4.10,
4.9,
4.8

Control flow is. . . e

bodyf

Instructions

retainedg

intact

“Simple”

altered

4.6,
4.4,
4.3

world useful

chnd

3.3.3

aImplies dispersed changes. Conventional wisdom suggests that there are no usable atomic refactorings
that modify both the interface to an abstraction and the control flow on individual method bodies.

bThese can be made local by “Extract Method” followed by “Move Static Method” and “Inline Method.”
See “Make Method Static” for an example of such a refactoring.

cThis is the only difficult class of refactorings. Unlike method calls for instance, these refactorings
cannot be decomposed into a few refactorings that concentrate the whole complexity because the
path replacement is only subject to the object structure the program establishes.

dThe method resolution procedure may change while the method to be invoked does not usually change
in normal refactorings. I cannot imagine any usable atomic refactorings that change the class hier-
archy and at the same time change the result of method lookup.

eAn orthogonal classification is whether the data mapping is path dependent or not.
fImplies locally confined updates
gMost refactorings discussed and formalized in other texts fall into this category. They are the simplest

but also the most useful refactorings. Some of them are discussed in chapter 4.

Figure 3.9.: Classification according to proof strategy and references to discussed refac-
torings chapter 4

73

3. Formalizing Equivalence For Refactorings

74

4. Simple Refactorings Proved Correct

This chapter discusses some refactorings that are important yet “simple” in the sense
that they do either not involve complex behavioral correctness conditions or behavioral
conditions that are formulated synactically, drawing from existing compiler optimiza-
tion analyses. These refactorings include all those that are needed in the introductory
example in chapter 2.

This section is also meant to provide some examples of simpler refactorings and ought
to give a feeling how the framework provided in this text can guide the analysis of other
refactorings as needed for a refactoring tool.

The goal is to show that the refactorings are often very simple, something that is not clear
when reading other texts on refactoring. “Rename Method” is treated quite formally to
illustrate the proof strategy. Later sections are less formal.

For the definition of β, it is convenient to definitionally extend it pointwise from corre-
spondences of the components of the state, which I also call β.

β(s, r) = β(s. xcpt, r. xcpt) ∧ β(s.σ, r.σ) ∧ β(s. γ, r. γ) ∧ β(s. u, r. u)

β is the identity for components that are left unmentioned. The same notation is used
in chapter 5.

Contents

4.1. “Rename Method” . 76
4.2. “Replace Type Code with Subclass” 82
4.3. “Extract Method” . 90
4.4. “Inline Method” . 95
4.5. “Replace Representation” . 97
4.6. “Replace Expression” . 101
4.7. “Replace Type Tests with Dynamic Dispatch” 103
4.8. “Use Reducible Language Features (Syntactic Sugar)” 104
4.9. “Make Method Static” . 107
4.10. “Make (Extracted) Method Instance-Bound” 108
4.11. “Move Local to Object” and “Field to Local” 110
4.12. “Rename/Reorder Parameter” 113
4.13. “Rename Field” . 114
4.14. “Delete Obsolete Element” . 114
4.15. Conclusion . 115

75

4. Simple Refactorings Proved Correct

4.1. “Rename Method”

The “Rename Method” refactoring renames a method and all its occurences – just as
the name implies. This refactoring is widespread, conceptually simple and it is an
isomorphism.

As with all the refactorings, “Rename Method” is chiefly described by a transformation
function µ. Before I continue defining µ for this first simple case and proving by induc-
tion that equation (3.16) is satisfied, let me first quickly introduce an easy notational
scheme: The refactoring’s name is written as a superscript, the arguments to the refac-
toring are written as sub-scripts. µRefactoring name

arguments The same notation is used for data
correspondence β. For the discussion of a single refactoring, I am just using µ and β
instead of the qualified symbols.

For method renaming, the declaring class or interface, the old signature and the new sig-
nature of the method must be specified: µRename Method

class,old sig,new sig Two signatures are supposed
to differ only by their name: new sig = (new name, tys) and old sig = (old name, tys)

Before continuing, let me give a simple example of the “Rename Method” refactor-
ing. Method void B::m() is to be renamed to void B::n() . B implements both
void I::m() and void J::m() . They will both have to be renamed as well as the
methods implementing and overriding them.1

1The situation is more complicated in .NET. The corresponding C# program, A::m can implement both
I::m and J::m just as in Java, but it does not have to. In fact, interface method implementations
and class methods are separate. The following is therefore allowed:

interface I {
void m();

}
interface J {

void m();
}

class A : I, J {
void I.m() {

con.WriteLine("A::I.m");
}
void J.m() {

con.WriteLine("A::J.m");
}
public virtual void m() {

con.WriteLine("A::m");
}

}

The Java-like construct does also exist of course:

class B : I, J {
public void m() {

76

4.1. “Rename Method”

interface I{
void m();}

interface J{
void m();}

class A implements I,J{
public void m(){

out.println("A::m"); }}
class B extends A{

public void m(){
out.println("B::m"); }}

class C extends A{
/* inherit A::m */}

class X implements J{
public void m(){
out.println("X::m"); }}

interface I{
void n();}

interface J{
void n();}

class A implements I,J{
public void n(){

out.println("A::m"); }}
class B extends A{

public void n(){
out.println("B::m"); }}

class C extends A{
/* inherit A::n */}

class X implements J{
public void n(){

out.println("X::m"); }}

This example shows is that the difficulty of this refactoring is merely to identify all the
methods that are related to the method that is being renamed. I call the set of these
methods S. It contains both the methods a method implements/overrides as well as the
methods that implement them.

S ≡
⋃

{overrideΓ(T, m)|(T, m) ∈ overridenΓ(class, old sig)}

The overriden function returns those class/method-signature pairs that are overriden or
implemented by its parameter while the override function returns those that override the
given method including abstract methods and methods redeclared in related interface
definitions.2

con.WriteLine("B::m");
}

}

2Here is a formal definition employing the isa relation: isa1Γ(A, B) ≡ Γ[B = A. superclass ∨B ∈
A. superifaces] and consequently, isaΓ = isa1∗

Γ

overridenΓ(T, m) ≡ {(B, m)|T isaΓB ∧m ∈ Γ[B. methods]}

The other auxiliary function is almost identical.

overrideΓ(B, m) ≡ {(T, m)|T isaΓB ∧m ∈ Γ[T. methods]}

77

4. Simple Refactorings Proved Correct

Transformation 4.1.1. Having defined the set of “affected” definitions S, it is easy to
formulate the transformation concisely.

µRename Method
class,old sig,new sig(Γ) = Γ[if (T, m) ∈ S then

T. methods .m := undef , T. methods .new sig := ·.m,

∗ .l1←l2.T ::m(e) := l1←l2.T ::new sig(e),

∗ .l1←l2.m(e) := l1←l2.new sig(e)

]

Data correspondence 4.1. “Rename Method” leaves data unaffected. This is reflected
in β for which β = id. I.e., equation (3.18) can be used to prove correctness. “Rename
Method” is an isomorphism. Two statements are therefore comparable if they are iden-
tified by the same path (up to isomorphism), i.e., in some method, statement 34 in the
original program still corresponds to statement 34 in the refactored program. State-
ments in method declarations that are renamed correspond to each other of course. The
statement path correspondence is called µ as in chapter 3, i.e., statement t corresponds
to statement µ(t) and t, µ(t) are always comparable.

4.1.1. Proof

The next step is to check, by induction on the derivation of Γ ⊢ s
t
−→s′ , whether the

transformation acutally satisfies the equivalence criterion equation (3.18), which I repeat
for clarity

∀s, comparable t and t′, s′ : (Γ ⊢ s
t
−→s′)⇒ (Γ′ ⊢ s

t′
−→s′)

For “Rename Method”, all statements are comparable because the data correspondence
is not even temporarily violated.

The proof is conducted in a strictly step-wise manner that can seem trivial from time
to time. I do believe however that this is the only effective way to prevent misunderstand-
ings and valuable for the first example of a formal treatment in this text.

Lemma 4.1. For the proofs, note first of all that the result of simple expressions are
not affected by the transformation. This is trivial, because β = id

[[e]]sΓ = [[e]]
β(s)
µ(Γ) (4.1)

With this lemma in mind, let’s continue to the proof of the individual kinds of statements.
For the proof in this section, the world u part of the state is irrelevant as are u-updates
because of equation (4.1).

78

4.1. “Rename Method”

Case Skip: skip For skip, the result state does not depend on Γ. Moreover µ(skip) =
skip. The implication is trivial.

Similar: Write Local l←e

Exception Propagation The result state is independent of Γ as well as the statement
t. Equation (3.18) is satisfied in that case.

Case Chain t1;t2 According to the induction hypothesis, both µ(Γ) ⊢ s0
µ(t1)
−−−→s1 and

µ(Γ) ⊢ s1
µ(t1)
−−−→s2 hold. Because of the unique derivation of t1;t2,

µ(Γ) ⊢ s0
µ(t1);µ(t2)
−−−−−−→s2

holds. This is, according to the definition of µ, µ(Γ) ⊢ s0 ≡ (None, σ, γ, u)
µ(t1;t2)
−−−−→s2.

qed.

The same approach works for all other statements for which µ is just used to trans-
late embedded statements, i.e., while(e){t}, try{t1}finally{t2}, try{t1}catch(T l){T2}.

Case While: while(e){t} There are two possible derivations for while loops. The case
when e is similar to t1;t2, so I consider [[e]]sΓ = true here.

According the the induction hypothesis, µ(Γ) ⊢ s0
µ(t)
−−→s1 and µ(Γ) ⊢ s1

µ(while(e){t})
−−−−−−−−−→s2

hold. According the definition of µ, it is equivalent to µ(Γ) ⊢ s1
while(e){µ(t)}
−−−−−−−−−→s2.

Combining the (cf. table 3.2), we get µ(Γ) ⊢ s0
while(e){µ(t)}
−−−−−−−−−→s2, which is µ(Γ) ⊢

s0
µ(while(e){t})
−−−−−−−−−→s2

Case New l←new C and l←new C[e] The proof does not really depend on the intrica-
cies of array allocation, so I am proving the case for l←new C. It has to be shown
that

Γ ⊢ (None, σ, γ)
l←new C
−−−−−→(None, σ[l 7→ loc], γ[loc 7→ init obj(Γ, C)])

implies

µ(Γ) ⊢ (None, σ, γ)
µ(l←new C)
−−−−−−−→(None, σ[l 7→ loc], γ[loc 7→ init obj(Γ, C)])

Γ is arbitrary and l←new C = µ(l←new C):

µ(Γ) ⊢ (None, σ, γ)
µ(l←new C)
−−−−−−−→(None, σ[l 7→ loc], γ[loc 7→ init obj(µ(Γ), C)])

This is satisfied according to the definition of init obj because init obj depends at
most on fields(Γ(ty)), which is left unchanged by µ: γ[loc 7→ init obj(µ(Γ), C)] =
γ[loc 7→ init obj(Γ, C)].

Case Throw throw e Similar: Cast l←(T)e

79

4. Simple Refactorings Proved Correct

Subcase [[e]]sΓ 6= Null . See “Case Skip”

Subcase [[e]]sΓ = Null . See “Case New”

Case Finally try{t1}finally{t2} See “Case Chain”

Case Catch try{t1}catch(C l){t2} See “Case Chain”

Case Write Local See “Case Skip”

Case Write Field, Read Field, Write Array, Read Array See “Case Skip” and “Case
New”

Case Initialize Class

Subcase γ(C) 6= None . See “Case Skip”

Subcase γ(C) = None . We can assume γ(C) = None, γ′ = γ[C 7→ init obj(Γ, metaclass(C))]
and

Γ ⊢ (None, {this 7→ C} , γ1, u1)
staticinitializer(Γ(C))
−−−−−−−−−−−−−→(x, σ, γ2, u2)

According the the induction hypothesis,

µ(Γ) ⊢ (None, {this 7→ C} , γ1, u1)
µ(staticinitializer(Γ(C)))
−−−−−−−−−−−−−−−→(x, σ, γ2, u2)

holds. According the definition of µ,

µ(staticinitializer(Γ(C))) = staticinitializer(µ(Γ)(C))

Therefore,

µ(Γ) ⊢ (None, {this 7→ C} , γ1, u1)
staticinitializer(µ(Γ)(C))
−−−−−−−−−−−−−−−→(x, σ, γ2, u2)

Moreover, because µ does not affect fields and init obj depends at most on fields.

γ[C 7→ init obj(Γ, metaclass(C))] = γ[C 7→ init obj(µ(Γ), metaclass(C))]

Therefore, µ(Γ) ⊢ (None, σ, γ, u)
µ(init class C)
−−−−−−−−−−→(x, σ, γ2, u2) holds according to the

derivation of init class C.

Case Invoke Special/Virtual l1←l2.T ::m(e) and l1←l2.m(e) This is very similar to “Case
Class Initialization”. I treat the case “Invoke Special” only. “Invoke Virtual” is –
with rtt(γ(x)) instead of T – basically the same. If (T, m) /∈ S, the cases become
trivial. Assume m = old sig.

Subcase x = Null . See “Case New”

80

4.1. “Rename Method”

Subcase x 6= Null Assume x = [[l2]]
s
Γ, x 6= Null and

Γ ⊢ (None, {this 7→ x,pNames(Γ, T, m) 7→ e} , γ, u)
body(Γ,T,m)
−−−−−−−−→(xcpt, σ′, γ′, u′)

According the the induction hypothesis,

µ(Γ) ⊢ (None, {this 7→ x,pNames(Γ, T, m) 7→ e} , γ, u)

µ(body(Γ,T,m))
−−−−−−−−−−→(xcpt, σ′, γ′, u′)

This is

µ(Γ) ⊢ (None, {this 7→ x,pNames(µ(Γ), T, new sig) 7→ e} , γ, u)

body(µ(Γ),T,new sig)
−−−−−−−−−−−−−→(xcpt, σ′, γ′, u′)

From which we can deduce

µ(Γ) ⊢ (None, σ, γ, u)
µ(l1←l2.T ::m(e))
−−−−−−−−−−→(xcpt, σ[l1 7→ σ′(result)], γ′, u′)

because µ(l1←l2.T ::m(e)) = µ(l1←l2.T ::new sig(e)) (equation (4.1) is used
tacitly as before)

The critical step is to show the required equivalence between µ(body(Γ, T, m))
and body(µ(Γ), T, new sig). What it means of course is that the lookup of the
changed program results in the body of the original program, but transformed.
This critical identity is what I am going to show next.

First of all, note that m = old sig. I am showing that

µ(body(Γ, T, m)) = body(µ(Γ), T, new sig)

To check that equality assume that class B in the transformed program con-
tains body(µ(Γ), T, m′). It is then easy to verify that class B in the original
program contains body(Γ, T, m), i.e.,

body(µ(Γ), T, new sig) = Γ′[B.methods .new sig]

body(Γ, T, m) = Γ[B.methods .m]
(4.2)

Moreover, (B, m) ∈ S. Now recall the relevant part of the transformation:

Γ[B.methods .new sig := Γ.B.methods .m]

The left-hand side of the assignment is just what is looked up in the trans-
formed program, which yields the new equation when combined with both
lines in equation (4.2).

81

4. Simple Refactorings Proved Correct

4.2. “Replace Type Code with Subclass”

4.2.1. “Replace Type Code” explained

A field in the class determines the behavior of objects in a discrete number of ways.
This field is constant and it identifies the “kind” of the object. Examples could include
the “type” identifier of ASTs,3 the kinds of commands in the command pattern (e.g.,
for undo/redo operations), the format used to store images in memory, etc. For all the
possible values of the field, a subclass is created and the type-code is removed. The
class cannot have subclasses before the refactoring. If it has, “Replace Type Code with
Strategy” [16, p. 227] has to be used.

4.2.2. Applicability

The Replace Type with Subclass refactoring [16, p. 223] is a “scaffolding move” to
enable more complete refactorings that replace switch statements (“bad smell switch
statement”).

This refactoring makes obvious what is imminent in other refactorings as well:4 The
level of abstraction does not suggest itself unambigously.

For “Replace Type Code with Subclass”, some questions are: Should the subclasses al-
ready exist? How is the typecode initialized? Is the type code allowed to change?

A very generic solution could be subject to unrealistic restrictions that invalidate the
attempted generality and make the resulting investigation more cumbersome than neces-
sary. As development by application of transformation patterns like refactorings becomes
more common, it will have to be left up to the programmer to choose the appropriate
level of flexibility.

There is still always a spectrum of possibilities. Extremely flexible refactorings can
be applied to practically all programs. They do not ensure many invariants. Very

3The enumeration System.Compiler.NodeType is an example discussed in chapter 6
4Including section 5.4 “Move Field”

82

4.2. “Replace Type Code with Subclass”

strict refactorings can be applied to a narrow range of code patterns but guarantee
useful invariants that simplify the postconditions. It is thus at least necessary that
any program that fulfills minimal requirements can be transformed into a program that
can be subject to the refactoring as presented in this text where the entities in the
code retain their function. For the “Move Field” refactoring for instance, this criterion
means that we must not introduce a fresh class that serves as a container for the moved
field.

It is better to split refactorings into a few structurally simple auxiliary refactorings that
have weak requirements and some refactorings that perform heavy-weight structural
modifications. The auxiliary refactorings must be used to make the program conform
with the syntactic5 requirements of structural refactorings. You could well demand a
more flexible refactoring, but it seems for this refactoring that a simple solution is more
rewarding to discuss.

4.2.3. The refactoring

“Replace Type Code with Subclasses” is a structural refactoring. As such, it expects
a specific code pattern. As explained above, we can easily and pragmatically assume
that the type code is a private field that does not change after its initial assignment
(“final”). This is a precondition of the refactoring. The refactoring could introduce
all the type-classes at once and it would still be local.

Alternatively, we could allow stepwise transformation as suggested by Fowler [16]. Step-
wise transformation is easier to describe and more elementary but it is more difficult
to state concrete syntactic criteria that identify the appropriate situations in which the
refactoring should be applied. I consider this a problem of identifying refactoring oppor-
tunities that is beyond the scope of this text. The refactoring will therefore be described
as a stepwise procedure.

Here is a code example that roughly shows the pattern and how it is transformed by the
refactoring.

5Such requirements can also be semantic, but they have to be easy to check. If they aren’t, they should
be formulated as postconditions.

83

4. Simple Refactorings Proved Correct

public class B {
static B create(

E type,
Rest rest){

result = new B();
result.type = type;

}

private E type;
final E getType(){

result = type;
}

}

⇒

class A extends B{
E getType(){

result = AE; }
}

public class B {
static B create(

BV type,
Rest rest)

{
if(type != AE){
result = new B();
result.typecode

= type;
} else{
result = new A();
result.typecode

= AE;
}

}

private E type;
E getType(){

result = type; }
}

4.2.4. Expected structure

Let’s call the class that contains the typecode encoded in its field B. B is the variant
class. B’s typecode field is typecode. Its type is E, which can be an integer without
losing generality. It is set in B’s static create (factory) method that takes arbitrary
parameters. The create method is expected to have the following structure before the
refactoring:
1: S1

2: if(cond){
3: S2 //must assign result, result.typecode 6= AE

4: } else{
5: result = new B();
6: result. typecode = AE ;
7: }
8: S3 // Must not alter result, result.typecode

84

4.2. “Replace Type Code with Subclass”

As you can see, the pattern specifies semantic properties. It is easier to formulate com-
plex conditions semantically first and then relate them to known analyses (for instance
compiler analyses).6

B.typecode is written exactly once: In the B.create. For the refactoring, we want to turn
the B objects with typecode value AE into A objects. The typecode is only read through
the getter method getType. Formulating the transformation µReplace typecode with subclasses

B,typecode,getType,A,AE

is quite challenging and not helping the understanding of the refactoring. For the
sake of conciseness and understandability, it is worth trying to find a different for-
mulation for the transformation that can also be used for specifying the precondi-
tions.

4.2.5. Formalizing “Replace Typecode by Subclass”

After this informal exposition of the preconditions, I give a formal definition of the same
conditions using the abbreviations in chapter 3 to illustrate that they are suitable for
practical specification of preconditions and transformations.

Preconditions (essential applicability conditions) To keep the precondition more
readable, I identify the name of the creation procedure create with its path in the
program metaclass(B). methods .(create, sig).

First the purely syntactic ones

Γ[The merly syntactic ones first

B.fields .typecode = E “B’s typecode field is typecode : E”

∧B.methods .(getType, []) = ([], E, result←this.typecode) getType’s simple definition

∧ create = (p, B, b) Declaration of create

∧ b = S1;if(cond){S2}else{Sr};S3 Implementation of create

∧ Sr = result←new B; result .typecode←AE

∧ nodecount(∗. ←new B) = 1

]

6Why I am not using postconditions instead to express these conditions? Here is a recapitulation of
the reason from the introduction: Local properties are often unrelated to architectural decisions.
Invariants and specifications are most important for architectural decisions that are non-local and
non-trivial, i.e., at the join points of different components like non-private instance variables and
method or class interfaces. The semantic conditions above are non-trivial, but they are local and
certainly not linked to any architectural decision. The programmer will be able to bring his program
into this shape.

85

4. Simple Refactorings Proved Correct

S1 and S3 do not allocate B objects.

∧ ∀Γ′, γ, γ′ : Γ′ ⊢ (, , γ′,)
S1−→(, , γ′,)⇒ ∀loc /∈ dom γ ⇒ rtt(γ′(loc)) �Γ B

S2 sets result and result .typecode to something else than AE.

∧ ∀Γ′, s, s′, t : Γ′ ⊢ s
S2−→s′ ≡ (None, σ′, γ′, u′)⇒ t = γ′(σ′(result))(typecode) ∧ t 6= AE

S3 leaves result, result .typecode unchanged

∧ (∀Γ′, s, s′, r : Γ′ ⊢ s ≡ (, σ, γ,)
S3−→s′ ≡ (None, σ′, γ′, u′)

⇒ r = σ(result) = σ′(result) ∧ γ(r)(typecode) = γ′(r)(typecode))

The rest of the program leaves result .typecode unchanged

∧ (∀Γ′, t + create, s′, r : Γ′ ⊢ s ≡ (, σ, γ,)
S3−→s′ ≡ (None, σ′, γ′, u′)

⇒ ∀r : γ(r)(typecode) = γ′(r)(typecode))

Syntactic approximations for the semantic preconditions Semantic conditions as
preconditions are unacceptable. I list here some possibilities to approximate them syn-
tactically. The legitimacy of the restrictions I present could seem drastic and indis-
criminate. Keep in mind however that create is already fairly constrained anyway.
I deemed the additional responsibilities the syntactic approximations create accept-
able.

Transformation Let’s introduce abbreviation for create’s body:

b(S) ≡ S1;if(cond){S2}else{S; result .typecode←AE};S3

The transformation is

Γ[if metaclass(B). methods .(create, sig) = (p, B, b(result←new B)) then

metaclass(B). methods .(create, sig) := (p, B, b(result←new A))

A := emptyCls[methods .(getType, []) := ([], E, result←AE)]

]

86

4.2. “Replace Type Code with Subclass”

Semantic goal Approximation

Guarantees that S1 and S3 do not allocate
B objects.

No allocations of objects of type B or one
of its subtypes outside the if statement.
In Java, this could mean making the con-
structor private and checking that it is not
used outside create.7

Guarantee that S2 sets these values such
that they do not interfere with the criteria
for subclass B.

Definite assignment of result,
result .typecode in S2 (definite as-
signment to result .typecode guarantees
result 6= Null) typecode must not be
AE . This can be checked with simple
copy propagation and only allowing
assignments with known values.

Correctness of the typecode field. Strict no aliasing for result before S3

(e.g., no right-hand side occurences and
no use as parameter) and no assignment
to result .typecode in S3 and the program
outside create.

4.2.6. State correspondence

State correspondence is able to express directly the intuition behind the refactoring
pattern: All objects of type B with typecode AE must become A objects in the trans-
formed version. The exception state and the local variables do not change at all, so
external behavior will be retained. For individual heap values, it is easy to formulate
βReplace Typecode with Subclass as a function that is bijective:

β(T, v) =

{

(T, v) if v(B::typecode) 6= AE (v(B::typecode) may be undefined)

(A, v) if v(B::typecode) = AE

(4.3)

4.2.7. Equivalence

Let’s check the crucial invariant before progressing to the actual proof. If typecode = AE ,
the type must be equal to B, not a subclass thereof, i.e.,

Lemma 4.2. For all S in Γ, including the body of create but excluding its constituents

Γ ⊢ (, , γ,)
S
−→(, , γ′,)⇒ ∀loc /∈ dom γ : γ′(loc)(B::typecode) = AE ⇒ rtt(γ′(loc)) = B

This will turn out to be the only non-trivial requirement, so I invest some care. First of
all, the fact that v(B::typecode) is defined implies v�ΓB. It also helps to observe that

87

4. Simple Refactorings Proved Correct

the runtime type of a location in the heap does not change, i.e., for every S in Γ outside
create, it holds that

Γ ⊢ (, , γ,)
S
−→(, , γ′,)⇒ rtt(γ(loc)) = rtt(γ′(loc))

This can be seen by careful examination of the operational semantics: For all rules
and all locations loc, if there is a transition from heap γ to γ′, the type of all de-
fined locations remains the same.8 This does only hold for statements that are outside
create.

B objects are only allocated within create’s body b and their typecode field is only set
within that method. If it is guaranteed that after its execution, the desired invariant
holds, then the invariant holds for all programs. This argument could again be formal-
ized inductively with a case distinction on whether create is called or not for method
invocations.

It remains to show that create establishes the required invariant for new objects:

Γ ⊢ (, , γ,)
b
−→(, , γ′,)⇒ ∀loc /∈ dom γ : γ′(loc)(B::typecode) = AE ⇒ rtt(γ′(loc)) = B

(4.4)

For create’s body b, we introduce the following abbreviations

b =

t1a
︷︸︸︷

S1 ;

t1b
︷ ︸︸ ︷

if(cond){S2}else{ result←new B; result .typecode←AE}
︸ ︷︷ ︸

t1

; S3
︸︷︷︸

t2

Let’s now consider the shape of an arbitrary execution. At the top level, b is a chaining of
different statements. A derivation tree must therefore have the following shape:

Γ ⊢ s0
t1a−−→s1a Γ ⊢ s1a

t1b−−→s1

Γ ⊢ s0
t1a;t1b−−−−→s1 Γ ⊢ s1

t2−→s2

Γ ⊢ s0
t1;t2
−−−→s2

Such a derivation must always exist: Expression evaluation is invariant because there is
no way to determine whether a value is of exact type B or a subtype thereof. That’s
why the β defined above gives that guarantee. A formal proof works by induction on
the structure of expressions.

Because the value of expressions remains the same, control flow does not change and the
derivation does always exist.

If there was a way to tell A objects and B objects apart, for instance using Java’s . class
field, the derivation wouldn’t be guaranteed. S3 could loop for example.
while(result. class.getName().equals("A")) /* loop */;

8Formally, this is an inductive argument of course.

88

4.2. “Replace Type Code with Subclass”

That simply means that additional constraints are necessary in practice like forbidding
access to getClass() , . class in Java and GetType() in .NET. Another possibility
would be to check that reflection is not used in conjunction with class B and its subclasses
as postconditions.9

From the applicability conditions, we know that

∀ γ, γ′ : Γ ⊢ (, , γ,)
t1a−−→(, , γ′,)⇒ ∀loc /∈ dom γ ⇒ rtt(γ′(loc)) �Γ B

That is, the left-hand side of equation (4.4), γ′(loc)(B::typecode) = AE is never satis-
fied.

For the then part (i.e., S2) of the if statement, it is the same, because it is guaranteed
– according to the semantic preconditions – that typecode is never AE . The else part
is fully determined, so it is easy to check that the invariant is indeed retained. t2 does
not invalidate it either because there are no allocations of B objects. The condition that
result is not altered is only required for the intended semantics of the program, not for
the correctness.

With this strong lemma at hand, it is easy to establish the equivalence theorem equa-
tion (3.16). To see why, notice that, in the proof sketches above, B can be replaced by
A. The only place where code and propositions are linked is the body of create, more
precisely, it is the result←new B instruction. After the transformation it becomes
result←new A – matching the modified propositions we have proven already. Leading
to the following lemma

Lemma 4.3. For all S in Γ′ = µ(Γ), including the body of create but excluding its
constituents

Γ ⊢ (, , γ,)
S
−→(, , γ′,)⇒ ∀loc /∈ dom γ : γ′(loc)(B::typecode) = AE ⇒ rtt(γ′(loc)) = A

(4.5)

This guarantees that newly allocated objects v with v(B::typecode) = AE have type

A. Now let’s go back and assume (Γ ⊢ s
t
−→s′) ∧ β(s, r) as in the equivalence definition

equation (3.16). r = β(s) means everything is the same except that heap objects in
s of type B with their typecode field set to AE are of type A in r. If we could show

that B objects and A objects behave the same if typecode = AE , Γ ⊢ r
t
−→r′ would be

guaranteed immediately. This is indeed the case. The critical aspect is invocations to
getType, which can be easily shown to behave identically to the implementation in B.10

9The problem with this approach is that reflection is very often used in conjunction with generic
Object s or interfaces instead of values with more precise type information that could help eliminate
some of the tests easily.

10This may raise the question why we did override getType in the first place. Needless to say, there is
no clear answer. Imagine we override getType: After all typecodes are replaced with subclasses, we
probably wanted to get rid of the typecode field that has now become superfluous if B is an abstract
class anyway. The required transformation is anther refactoring, a variation of what is done here that
should be included in a comprehensive refactoring catalogue. The refactoring couldn’t draw from the
extensive list of assumptions we rely on here. It would probably be cumbersome to apply and specify
and mostly used in the context of “Replace Typecode with Subclass” anyway.

89

4. Simple Refactorings Proved Correct

To finish the proof, equation (4.5) is used. It shows that newly allocated values are β
compatible, i.e., β(s′, r′).

4.2.8. Conclusion

The required correspondence is satisfied without any additional postconditions – even
though I must admit that the catalogue of requirements for the transformation itself
is quite extensive. Some semantic preconditions could be translated to postconditions
instead of being approximated. The difficulty is still that many assumptions have to be
made about the structure of the program to allow transformation in the first place. Some
of these assumptions on the program structure could be replaced by more complex, purely
semantic conditions. It would be interesting to see how this could simplify the treatment
of the refactoring. The problem with this approach is that the necessary postconditions
are difficult to check dynamically (or to verify them statically). The solution I’ve chosenExample: the body of

create must not

allocate B objects and

set invalid typecodes.

here was more pragmatic. Only the adoption by a refactoring tool can show where such
a formalization needs to be generalized.

4.3. “Extract Method”

This refactoring is used to factor out inline code. It is used to break long methods into
smaller pieces. “Extract Method” is a local refactoring. It is well supported by existing
refactoring browsers and alters the data space only locally. The variables that are set
in the extracted blocks must be returned by the extracted method and must be set at
the invocation site. The example in figure 4.1 is taken from chapter 2 and illustrates
a limitation of the Java language: the only direct way variables at the invocation site
can be set to variables in in the invokee is through return values.11 In this case, the
return value of the extracted method mc() corresponds to the variable min the original
program.

Relevance The formalization of this refactoring is reasonably interesting because it
is the prime representative of local state space modifications, i.e., modifications that
extend to a limited period of the program’s execution inside a confined region of the
program code. In our framework, local state space modifications can be handled be-
cause β may differ because of the path leading to a statement (βp0.p1...pn). This is vital
because invocation frames are abstracted away by the big-step semantics we’re using.
Refactorings could be construed where the state space correspondence cannot be de-
scribed in terms of the location in the program text (i.e., class and method name) and

11Out and in/out parameters are possible in .NET. The refactoring tool for C# that comes with Vi-
sual Studio exploits these capabilities.

90

4.3. “Extract Method”

String s(){
double t = 0;
String r = gN()+"\n";
for (P x : a) {
double m;

switch(x.gP().c){
case P.A:

m = ...;
break;

// etc...
default:

fail();
}

double p =
x.gP().s * m;

r += "\t"+x.gP().t
+"\t"+p+"\n";

t += p;
}
r += t+"\n";
return result;

}

⇒

String s(){
double t = 0;
String r = gN()+"\n";
for (P x : a) {

double m = mc();
double p =

x.gP().s * m;

r += "\t"+x.gP().t
+"\t"+p+"\n";

t += p;
}
r += t+"\n";
return result;

}

static double mc(P x){
double m;
switch(x.gP().c){
case P.A:

m = ...;
break;

// etc...
default:

fail();
}
return m;

}

Figure 4.1.: Extract method (adapted from chapter 2)

91

4. Simple Refactorings Proved Correct

Figure 4.2.: Stack dependent state space correspondence

the technique used here would fail.12 β would have to take into account the runtime
stack of the program. This is not the case for practical refactorings that have been
proposed.

For the formalization, I assume that there is exactly one variable that is used by the
source method after the invocation. Reduction to no variable is trivial, extension to more
than one value that is passed from the extracted method must be handled by turning local
variables into objects, i.e., apply “Turn Locals into Object”, a micro-refactoring briefly
discussed in section 4.11. The refactoring as presented here may result in unassigned
variables being passed to the method.13 This is not syntactically valid in proper Java
but allowed by the operational semantics. Such variables could also be declared inside
the invoked method. Even equivalence can be proven easily because it is known that
their values are undef .

Preconditions The code to be extracted is in method f of class F . It is to be ex-
tracted into a new static method with name t in class T . t can be turned into an
instance method in a second step by the micro-refactoring As the extracted method is
always static, it can be turned into an instance method by “Make Method Instance-
Bound” (section 4.10). in a second step. Additional contraints have to hold if the
method is accessing non-public fields: F = T , T�ΓF or the classes have to be in the
same package (depending on whether the fields are “private”, default visibility or
“protected”).

12Examples are absolutely unrealistic and so is the following: Imagine I want to split a method mwith
two invocation sites – in one step – so that a different method is called from each site. For the
sake of clarity, assume the two invocations are in different methods f and g. It is obvious that
β-correspondence for any local variable x cannot be formulated if no information is available about
the invocation site: If m was called from f , β(C::m::x) = C::m1::x and β(C::m::x) = C::m2::x if
called from g (see figure 4.2).

If you think this is an artefact from qualifying the local variables – which is just a way of hiding
the paths that qualify β, just consider the case when you want to rename the variables as well. As I
contended before, the fact that it is a composite refactoring does not give it a special status – whether
or not a refactoring is composite depends on the refactorings you consider primitive.

13This is so because I do not distinguish between

92

4.3. “Extract Method”

For the refactoring, I assume that this as well as result is properly renamed. This
is the only source of complication for the refactoring.

The method F ::f consists of the statements S1, S and S3.
14 S is the statement to extract. Method body

containing statement

to be extracted is

S1;S;S3. Parameters

are Pf , return type is

Rf .

It takes formal parameters Pf and returns a value of type Rf . P r
f are the types of the

Statement to extract is

S

parameters. I.e.,

Γ[F. methods .(f, P r
f) = (Pf , Rf , S1;S;S3)]

Er denotes the set of local variables and parameters S is (potentially) using. Ew is the
set of locals S is writing and are retained beyond S. I.e., Er will be the parameters

Er are the input

variables, Ew are the

output variables of S

of the newly extracted method and Ew contains the variable the will be returned as a
result. In this simplified setting, this set must consists of a single element: {r} = Ew.
Note that variables that are local to a block of statements are not in Ew, indepen-
dent of whether they are written or not. A more general incarnation would allow
variables in Ew that are written but whose value is never read after the execution of
S.

The heavly constrained structure of the enclosing method now helps define Er and Ew.
I am using the following abbreviations: read(I) =

⋃
Γ[if t = I. ←e then FV(e)] denotes

the set of local variables that are read in statement I. written(I) = Γ[if t = I.l← then l]
is the set of local variables written in I.

Ew are the variables read in S3 and written in S. Er are the variables read in S and
written in S1:

Er = read(S) ∩ written(S1)

Ew = read(S3) ∩ written(S)

These definitions do not take into account the possibility of write-before-write accesses:
A variable could be written by S3 before being read in S3 but after being written in S. Definition of Er and

Ew simple, but too

conservative

Alternatively, it could be written in S before being read in S but after being written in
S1.

Transformation The body S1;S;S3 of f has to be replaced by the invocation to the
newly created method t in metaclass T , i.e., r←T.T ::t(Er). The newly created method
takes all the variables read by S as formal arguments. We refer to the formal argu-
ment list as well as the name and types list by Er to economize on symbol names.

14A more flexible approach is taken with the inverse refactoring in the next section on page 95. The
formal treatment remains the same.

93

4. Simple Refactorings Proved Correct

The special variables and this and result have to be renamed because they are al-
ready used by the extracted method. The renaming is done by piecewise application
of

ren“Extract Method” = V 7→

metaclass T ::t::X ′ if V = F ::f ::X

X ′ = X if V /∈ {this, result}

X ′ = unique id otherwise

V otherwise

Using ren, the transformation can be expressed as follows. As always, static methods are
declared as instance methods of the corresponding class objects.

Γ[

F. methods .(f, P r
f). body := S1;r←T.T ::t(Er);S3

metaclass(T). methods .(t, renEr) := (ctt r, renEr, renS;result← ren r)]

Data correspondence β is the identity outside S and maps between variables in F ::f
and metaclass T ::t, i.e., β(F ::f ::x) = metaclass T ::t:: renx inside S for all x ∈ (Er ∪Ew)
and β = id otherwise. It is absolutely vital to confine β to (Er ∪ Ew) because only
the variables that are read and written and consequently returned are set at all in the
extracted method. There may well be variables that survive the call of the extracted
method without being used there.

β[q,µ(q)](X) =

{

ren(X) if q ⊇ S and X ∈ (Er ∪ Ew)

X otherwise

β leaves the heap and the exception state unaffected.

Equivalence This refactoring is a local transformation and it is sufficient to show
that

(Γ ⊢ s
S
−→s′) ∧ β(s, r)⇒ (µ(Γ) ⊢ r

r←T.T ::t(Er)
−−−−−−−−→r′) ∧ β(s′, r′)

The assignments due to the parameter passing restore the relevant part of the environ-
ment in T ::t to that in F ::f . The aspect of the proof that is not entirely trivial is that
the environments are only equivalent with respect to the variables that are read (i.e.,
Er ∪ Ew) but not the variables that are not read. Luckily, this has already been taken
care of by the definition of β.

94

4.4. “Inline Method”

4.4. “Inline Method”

“Inline Method” is a refactoring that is most well known as a compiler optimization
– see [34] for instance. For composite refactorings however, it plays an important role
when redistributing the code incrementally to different old and new methods as illus-
trated in chapter 2 and figure 4.4. “Inline Method” is not only theoretically the inverse
of “Extract Method”. What this means is that “Inline Method” could be carefully
described and “Extract Method” could be covered as the derived reverse refactoring
only.

“Inline Method” is also a local refactoring and does not have any postconditions neces-
sary for correctness preserving execution.

It is possible to inline method calls whose implementing method is not known by case
distinction on the runtime type of the receiver. This is the idea of dynamic dis-
patch. In this section, I’ll cover only the most simple case where the implementing
method is known – the possible reasons of which I am leaving completely unspeci-
fied.

Preconditions Let the method call we want to inline be identified by path i. For
the sake of explicitness, i is an invoke special in Γ, i.e., Γ[i = r←y.Q::m(E)]. The Definitions r, y, Q, m,

Ecase for invoke virtual is identical (with rtt(y) instead of Q) as for all proofs that do
not specifically depend on the runtime type of the object possibly differing between
executions of the statement, i.e., if dynamic dispatch can be resolved statically or not is
irrelevant for that matter.

In this case, the body the lookup resolves to must be constant: b = body(Γ, Q, m) for all Definition b

possible Q in case of virtual invocation. I.e., either a single, special Q in case of invoke-
special or all sub-classes and implementations of ctt(y). The implementing method is
T ::t and the method that contains the invocation statement i is F ::f . Note that it is Definitions T ::t and

F ::fimmaterial if Q::m is static or not – in case of a static method, Q is some class object,
i.e., Q = metaclass()).

Γ[i = r←y.Q::m(E)], Q variable

b = body(Γ, Q, m) for all possible Q

The symbols are illustrated in figure 4.3.

95

4. Simple Refactorings Proved Correct

class F {
...
_ f (_){

...
r←y.Q::m(E) ≡ i
...

}
...

}

class T {
...

ctt(r) t(E) {
b

}

...
}

⇒

class F {
...
_ f (_){

...

ren b

...
}
...

}

Figure 4.3.: Variable names for “Inline Method”

private double f(P x){
return g(x);

}

private double g(P x) {
Product p = x.m();
return this.q(p);

}

⇒
private double f(P x){

Product p = x.m();
return this.q(p);

}

Figure 4.4.: Simple inline method for eliminating unneeded indirections

96

4.5. “Replace Representation”

Transformation The transformation itself is specified as if variable names were quali-
fied by their enclosing method and class. It actually depends on the subtree inside which
the variable is to be renamed.

ren“Inline Method” = V 7→

F ::f ::X ′ if V = T ::t::X

X ′ = y if X = this

X ′ = r if X = result

X ′ = generated unique identifier otherwise

V otherwise

The expansion is then easy to formulate in terms of ren.

Γ[i := ren b]

Correspondence Inline method is interesting because it illustrates that the mapping
between corresponding program parts, which is denoted by µ, just as the transforma-
tion, may be neither bijective nor injective for a simple refactoring. This means that
β cannot be parameterized by only the path to the statement in the original program
but necessarily has to inlclude the corresponding part in the transformed program. I
have given an example of an “Inline Method” refactoring where the data mapping nec-
essarily depends on the runtime stack in figure 4.2. There are no practical refactorings
of this sort that cannot be easily decomposed to refactorings with simpler characteris-
tics – including “Inline Method” that is used to “unwind” the stack to the necessary
level.

“Inline Method” is a local refactoring, so the data correspondence is id almost every-
where. Just as for “Extract Method”, β is id at the refactoring site.

β[q,q′] =

{

ren if q ⊃ b and q′ ⊃ i

id if q = q′

Correctness The proof for “Inline Method” is analogous to the one in “Extract
Method”: No runtime checks are needed.

4.5. “Replace Representation”

“Replace Representation” could be formulated in a very general manner. This is not
what I want to attempt in this mini-section. Instead, I want to provide a pragmatic
solution that is often sufficient and is well suited as a scaffolding step as illustrated
in chapter 2 for example for “Replace Type Tests with Dynamic Dispatch”. “Replace

97

4. Simple Refactorings Proved Correct

public class C {
void proc(){

int x = 3;
out.println(x+3);

}

void g(){
int x = 1;

proc(); inline!

}

void h(){
int y = 412;
proc();

}
}

⇒µ

public class C {
void proc(){

int x = 3;
out.println(x+3);

}

void g(){
int x = 1;
int x_renamed = 3;
out.println(x_renamed+3);

}

void h(){
int y = 412;
proc();

}
}

βT::proc(x) = T::proc::x

2nd stk frame is h()

β
T::proc(x) = C::g::x renamed

2nd stk frame is g()

Figure 4.5.: “Inline Method” leads to non-injective PC mapping

Representation” as discussed here is about replacing the value of a single variable, not
the logic abstraction this value may encapsulate as in the case of a linked list vs. an
array based list for instance.

The idea is again to confine the application of the refactoring. Just as “Rename
Field”, the present refactoring is a data refactoring and it is not in general benefi-
cial to avoid changing all occurences of the data abstraction. It is however possible to
shield other data abstractions from the change. This is done by introducing transla-
tion functions inside the program in a global class. These translation functions must
correspond to the specified correspondences that are given as input to the refactoring
tool. The translation functions can easily be synthesized so as to be correct by construc-
tion.

Every write access uses the forward translation function, every read access uses the
reverse translation function. In the example in figure 4.6 as well as the formaliza-
tion below, representation of field T::f is changed from type X and corresponding set
X ⊂ [[X]] to type Y and set Y ⊂ [[Y]]. The translation function M : X → Y is encoded as
Globals::forwardM its inverse M−1 is encoded as Globals::backwardM

For the sake of completeness, I want to present a formal definition and a brief discussion
of correctness for this section as well even though it is a bit less rewarding than the ones
treated before.

Preconditions (essential applicability) The only precondition is that there is a field
f of type X in class T .15 All other conditions are more aptly formulated as postcondi-

15I write X for the name in the program to distinguish it from X, which is the subset it is approximating
even though X is also variable and need not be called X.

98

4.5. “Replace Representation”

class T{
X f;

}

class T{
Y f;

}

public class Globals{
// assume X is finite
static Y forwardM(X t){
if(t == C1)

return M(C1);
...
else assert(false);

}

static X backwardM(Y t){
if(t == M(C1))

return C1;
...
else assert(false);

}
}

// example
T t = new T();

// write access
t.f = E1;
// read access
X tt = E2.f;

// example
T t = new T();

// write access
t.f = Globals.forwardM(E1);
// read access
X tt = Globals.backwardM(E2.f);

Figure 4.6.: Pattern for “Replace Representation”

99

4. Simple Refactorings Proved Correct

tions.

Γ[T. fields .f = X]

The presence of the translation methods, which I call forwardM and backwardM , just
as in the example, is not assumed. They are produced as part of the transforma-
tion.

There is another correctness constraint I introduce here to keep the data correspondence
simple: compatibility of initial values. The default value of field f must correspond before
and after the transformation. M(zX) = zY if the default value of X is zX and the default
value of Y is called zY. To avoid this quite significant restriction, the data correspondence
can be weakened in much the same way as in chapter 5.

Data correspondence “Replace Representation” only changes individual statements.
All original statements are comparable, β[t,t] is defined for all paths t in Γ. For those
statements, β trivially maps the value of field f . Let (Q, w) be any heap value of
type T , i.e., Q�ΓT . Field f ∈ X is then mapped to the corresponding value in Y :
β(Q, w) = (Q, w[T ::f 7→M(w(T ::f))])

Additional correctness conditions Whatever value v field f is set to in the orig-
inal program, v must be in X. When v is read, it must also be in X. This can be
translated to postconditions using the β correspondence. To make sure that f is set
to a valid value, an assertion has to be added before the assignment. To make sure
that the value that is read from f is valid, an assertion has to be added after the field
access.

If you think the second check is not necessary, you’re right. β guarantees that f contains
only valid values anyway. Yet, I want to keep it because it gives me the opportunity to
reiterate two concepts of the formalism in a simple setting. Firstly, the read assertion
is in the resulting program, but the condition it verifies is formulated in terms of the
original program: “x must be in X” must be translated to “x must be in Y ”. The
condition is translated to the abstractions of the refactored program. Secondly, it could
be argued that the resulting program aborts when the condition is not met at execution
time. That’s absolutely true in practice, but it does not have anything to do with the
formal treatment. Pre- and postconditions are properties of the original program Γ and
the resulting program µ(Γ). Assertion failure at runtime means that the postconditions
were not satisfied, i.e., the conditions that are assumed for every correctness proof are not
given. There is no assert(E) statement in the language!

Transformation The first step is certainly to change the type of f :

Γ[T. fields .f := Y]

100

4.6. “Replace Expression”

Then we have to produce the translation functions forwardM and backwardM are unique
names that not present in the program. Depending on the exact implementation, it would
also be necessary to produce additional helpers that test whether a value is contained
in the sets X and Y or not. I omit them for clarity.

I put the translation functions into T as static methods to avoid having to come up with
a separate class for them and I call the parameters t .

Γ[metaclass(T). methods .(forwardM , X) := ([(t, X)], Y, encode(M)),

metaclass(T). methods .(backwardM , Y) := ([(t, Y)], X, encode(M−1))]

I am using the helper function encode to produce a program representation of a finite
function. One possible definition could be

encode(M) =

{

if(t==x){ result←y}else{encode(M − {x 7→ y})} if {x 7→ y} ∈M

assert(false) if M = {}

The code faithfully represents the given function. This has to be proven by case distinc-
tion on the element passed to the function.

It is also necessary to modify read and write accesses to the field: I do need additional
temporary variables. I write them as temp1 and temp2 even though they have to be un-
derstood as injective functions from program point to unique name.

Γ[if t = ∗.e1.T ::f←e2 then

t := assert(e2 ∈ X);temp1←T. metaclass(T)::forwardM (e2);e1.T ::f←temp1

][if t = ∗.l←e.T ::f then]

t := temp2←e.T ::f ;assert(temp2 ∈ Y);l←T. metaclass(T)::backwardM (temp2)]

Correctness The correctness of “Replace Representation” is almost guaranteed by
the definitions. The only crucial statements are object allocation where precondition
guarantees that the poststate is compatible and field updates with expressions. The
assumed validity of the assertion guarantees the property that make sure that β cor-
respondence is retained, i.e., that the newly set Y value has a corresponding value in
X.

4.6. “Replace Expression”

Replace expression whenever one expression (without side-effects as usual in the subset
covered here) E is equivalent to a different expression F for the given preconditions

101

4. Simple Refactorings Proved Correct

of the application. Assertions can be used to test equivalence of F and E. Even if
checked dynamically, these assertions are not a performance issue because evaluation of
expressions is a constant time operation in our language.

The refactoring becomes more useful if more general expressions or calculations with side
effects are allowed as well. “Replace Expression” then becomes “Replace Algorithm”.
Testing equivalence for different algorithms modularly such that it does not affect the
outcome of subsequent I/O operations is not something I would want to attempt as part
of this Thesis. Here is a exposition of the simplest version where an expression e is
replaced by e′:

Conditions The expression to be replaced is the right hand side e of an assignment to
a local variable l that is identified by i, i.e.,

Γ[i = l←e]

The other non-syntactic condition, namely that e and e′ are identical is less trivial. I
can definitely not expect e and e′ to be equivalent.16 All I need is equivalence for all
values at which I evaluate e.

This is exactly what can be tested by an assertion. Assertions have to be conservative
approximations of conditions, not vice versa. The condition has to be at least as weak.
weak as the condition that is tested by the assertion. Only then I can be sure that the
program will run correctly.

Data correspondence If the resulting expressions are indeed identical, nothing should
change in the state space of the program, i.e., β[t, t] = id

Transformation The expressions are compared just before the assignment:

Γ[i := assert(e = e′);l←e′]

Correctness Correctness for this refactoring requires postconditions and yet it is so
simple that I definitely want to discuss it in great detail.

β is identity. The relevant correctness notion is equation (3.18). All statements t are

comparable, so it has to be shown that ∀t, s, s′ : Γ ⊢ s
t
−→s′ ⇒ µ(Γ) ⊢ s

t
−→s′. Most

statements are unaffected by the transformation, so equivalence is trivial for them. Let’s
consider the case t = i then.

Assume Γ ⊢ s
l←e
−−→s′, i.e., s′ = s[σ.l := [[e]]sΓ]. The goal is to show Γ ⊢ s

assert(e=e′);l←e′

−−−−−−−−−−−→s′′

for s′ = s′′. The derivation always exists with result s′′ = s[σ.l := [[e′]]sµ(Γ)]. The

16See the chapter 1 for an example.

102

4.7. “Replace Type Tests with Dynamic Dispatch”

class B{ ... }
class Ti extends B{
}
if(x instanceof Ti)

t = m(..., t);

class B{
method m_indirect(..., t){
return t;

}
}
class Ti extends B{

method m_indirect(..., t){
return m(...);

}
}

t = x.m_indirect(...);

Figure 4.7.: Pattern for “Replace Type Tests with Dynamic Dispatch”

prefixed assertion (without operational interpretation!) tells us that [[e′ = e]]sµ(Γ) and

consequently [[e′]]sµ(Γ) = [[e]]sµ(Γ). Expression evaluation is unaffected by µ as could be

shown by induction on the structure of expressions. Therefore, [[e′]]sµ(Γ) = [[e]]sΓ and

s′ = s′′.

4.7. “Replace Type Tests with Dynamic Dispatch”

“Replace Type Tests with Dynamic Dispatch” is another very simple refactoring if a
modest interpretation is adopted that is very apt for composition (i.e., it looks a bit
silly if it isn’t composed). Consider the simple case where the types T1, . . . , TN you test
against have a single common superclass B. For every (general) test you introduce a
function that does not do anything for the base class and executes the then-part of the
test for the class that is tested against.

What could happen when translating a series of if-statements is that you end up calling
lots of different functions that have been generated according to the pattern above:

t = x.m1_indirect(..., t);
t = x.m2_indirect(..., t);
... // and so on

In that case, it may be time to merge these different functions. Two virtual functions
with identical scope can be merged if they share the same implementation for all classes
for which they are both implemented. This is just the case for the functions produced
by the refactoring above.

103

4. Simple Refactorings Proved Correct

Preconditions The formalization adheres to the pattern in figure 4.7. There is a base
class B and its subclass Ti: Ti�ΓB.

The type test to be replaced is identified by q:

Γ[q = if(x instanceofTi){t←v.m(e)}else{skip}]

For the transformation to be syntactically valid, it is necessary that ctt(x) = B. The new
method that is introduced is called indirect and is fresh in the program.

Data correspondence A complex data correspondence is avoided. The statements
in the newly introduced method are not considered comparable. The dynamic dis-
patch and the delegation to the original method have to be treated in one step: β =
id.17

Transformation This is just a matter of replacing q and introducing a new method that
does the dispatch. I write P for the names as well as the static types of (e, v, t).

Γ[B.methods .(indirect , P) := (ctt(t), P, result←t)

Ti. methods .(indirect , P) := (ctt(t), P, t←v.m(e))

q := t←x.indirect(e, v, t)]

Correctness The correctness proof is only interesting for q. It then works by case
destinction on the value of x instanceofTi. The body of indirect has to be unfolded
completely to show equivalence.

4.8. “Use Reducible Language Features (Syntactic Sugar)”

Reducible language features and syntactic sugar in particular is increasingly popular in
Java as well as the mainstream .NET languages (C#, Visual Basic, J#). It is introduced
to capture parts of patterns that have become widely established and are built into the
framework. These refactorings are trivial but nonetheless important because they usually
provide the last step of “refactoring to patterns”: Once the pattern is “diffused” into the
program, syntactic sugar makes it even more visible. Moreover, syntactic sugar often
provides some kind of syntactic checking beyond the type constraints of the primitive
constituents of a pattern. The section provides a number of examples for synactic sugar
that show that the scope of today’s syntactic sugar constructs is quite broad and not
confined to its most banal incarnations like operator overloading, “indexers” and arrow
syntax (->) in C++.

17Remember that when I write β instead of β[t1,t2], it means that β is defined for all symmetric program
parts, i.e., β[t,t] = β. In this case, the then-part of the if statement is not present in both the original
and the transformed program. It thus has to be examined together with the if statement.

104

4.8. “Use Reducible Language Features (Syntactic Sugar)”

Example 4.1. Enumerations in Java are more than simple syntactic sugar because they
are also types. Syntactic sugar does not normally introduce additional binables into the
program. Still, the translation pattern of enumerations is fix as defined by the language
definition and it is fair to say that the enumeration pattern as understood in Java is not
a first class descendant of algebraic datatypes in functional languages and conventional
enum types in Pascal and C but of the typesafe enum pattern.

Example 4.2. Foreach loops in both Java and .NET are examples of syntactic sugar.
The translation is comparatively simple. The Java for-each loop

for (T it : col)
...

gets translated to about this code

for (Iterator i = col.iterator(); i.hasNext();) {
T it = (T) i.next();
...

}

Example 4.3. Generics in Java are implemented using erasure (for example described
in Appel’s compiler text [1]). I.e., there is an equivalent Java program without generics
that will generate exactly the same bytecode as the corresponding program with generics.
Generics in Java are certainly more than mere syntactic sugar, but this transformation
could certainly be useful for the Java 1.4 code that needs to be upgraded.

Example 4.4. LINQ in .NET is a language feature for the .NET that is to date described
for C# 3.018 and Visual Basic 9.0.19 This feature allows you to specify declarative query
expressions that operate on in-memory collections, databases and XML documents. The
following example is adapted from the LINQ Project Overview document [7]

var names = new[]{ "Peter", "Adam", "Werner",
"Jenny", "Hermann", "Martin",
"Arsenii", "Joseph" };

var expr = from s in names
where s.Length == 5
orderby s
select s.ToUpper();

foreach(string item in expr)
Console.WriteLine(item);

18http://msdn.microsoft.com/vcsharp/future/
19http://msdn.microsoft.com/vbasic/future/

105

http://msdn.microsoft.com/vcsharp/future/
http://msdn.microsoft.com/vbasic/future/

4. Simple Refactorings Proved Correct

LINQ is not a meta-programming facility. The code in the example above does not
contain executable code for filtering the collection. Instead, the query expression is
translated to function calls that interpret the collection in the .NET libraries. The
translation is specified in the C# 3.0 overview document [31]. A query expression with
a single from clause, no orderby clause, and a select clause for instance:

from x in e select v

is translated to

(e) . Select (x => v)

4.8.1. Formalization

Syntactic sugar are language features whose semantics derives from the semantics of
their reductions. For-each loops for instance do not have a semantic production that
could interpret them directly. They are translated to the kernel language first and then
evaluated. Equivalence and data correspondence are therefore not an issue – these are
semantic concepts. Still, the translation and the preconditions can formulated in the
manner I present other refactorings in this chapter. Let’s consider a very simple case of
syntactic sugar with local scope.

The syntactic sugar I want to translate has a label and subtrees as all other statements.
The label is S and the subtrees are W . For a simple for-each loop (without the decla-
ration that is required in Java), S(x, a, b) = for(x:a){b}. R(W) is the reduction of that
statement. In the example, this could be

R(x, a, b) = i←a.iterator();f←i.hasNext();while(f){x←i.next();b;f←i.hasNext()}

where f , i are fresh variables.

Now suppose at program point q, I want to use syntactic sugar.

Precondition The statement at q has to be a reduction of some syntacic construct:

Γ[q = R(W)]

Transformation The resulting program uses the syntacic sugar instead of the reduced
syntax.

Γ[q := S(W)]

106

4.9. “Make Method Static”

1 class C{
2 int x = 3;
3 static void main(){
4 (new C()).run();
5 }
6 void run(){
7 doA();
8 doB();
9 out.println(x);

10 }
11 int doA(){
12 x += 1;
13 }
14 int doB(){
15 x += 3;
16 doA();
17 }
18 }

class C{
int x = 3;
static void main(){

(new C()).run();
}
void run(){

doA(this);
doB();
out.println(x);

}
static int doA(C it){

it.x += 1;
}
int doB(){

x += 3;
doA(this);

}
}

1 class C{
2 int x = 3;
3 static void main(){
4 (new C()).run();
5 }
6 void run(){
7 doA();
8 doB();
9 out.println(x);

10 }
11 void doA(){
12 doA_static(this);
13 }
14 void doA_static(C it){
15 it.x += 1;
16 }
17 void doB(){
18 x += 3;
19 doA();
20 }
21 }

Original Possibility 1: Replacing all occurences Possibility 2: Using mediator

Figure 4.8.: Possibilities to make methods static

4.9. “Make Method Static”

A method can be made static if all invocation sites are known that definitely resolve
to this method at runtime and it is known that there are no other invocations that
could resolve to this method. In that case, calls as well as the implementation can be
replaced.

Consider the following closed and complete “original” program in figure 4.8. The calls
to doA on lines 7 and 16 can be easily resolved as body(Γ, C′, doA) is definitely con-
stant for all C ′�ΓC. Moreover it is clear that there are no other calls to adjust be-
cause the whole program is known. We can transform the program by changing the
declaration of doA and replacing all calls. This is a dispersed refactoring on parame-
ters.

Non-local dispersed changes in the source program are difficult to handle. One goal
of this chapter is to get rid of as many of them as possible. They can be avoided by
introducing a mediator that translates the original function call to a call to the new
static function doA_static . The calls to doA can then be eliminated one by one using
“Inline Method”.

Take another look at doA_static . We could just as well get the result by applying
“Extract Method” to the body of doA and calling the extracted method doA_static .
There is nothing peculiar about this example. It represents the general situation: “Make

107

4. Simple Refactorings Proved Correct

User-level “Make Method Instance-Bound”

Extract Method
↓

Make Extracted Method Instance-Bound
↓

Inline Static Method

Figure 4.9.: Decomposition of ”Make Method Instance-Bound”

Method Static” is the chaining of “Extract Method” followed by a number of “Inline
Method”. Again, this is a simple fact, but it has wide applicability because many otherNo formal treatment

necessary:

Refactoring is fully

compositional

refactorings that are summarized as “Change Signature” can be decomposed in the same
manner.

4.10. “Make (Extracted) Method Instance-Bound”

Section 4.9 elaborates on how “Extract Method” followed by “Inline Method” can be
used to make a method static. “Make Method Instance-Bound” is a different refactoring
only because “Extract Method” yields a static method in this text.

The “Make Method Instance-Bound” is a refactoring that augments the chain “Extract
Method” ⇒ “Inline Method”. Before inlining, the method with the single call site
“Extract Method” has introduced is made instance-bound. This is the purpose of “Make
Method Instance Bound”. Splitting the desired refactoring into multiple steps simplifies
reasoning for each of them.

The difficult part of the proof is to show that only one call site is affected. This is simplest
if the name of the method is unique, which is what we will assume for the moment. After
all, the method can still be renamed afterwards using “Rename Method” that takes care
of all the conditions that need to be observed to retain equivalence of all impl invocations
in possible derivation trees. To keep things simple, assume that it is parameter N on
which the method shall be dispatched (the parameters are v1 to vN). Let the method be
T::m . In the method’s body, all occurences of VN have to be renamed to this which
is what is passed as the implicit instance parameter. It is necessary to rename this
as well as the this parameter in static methods points to the respective class object.
Figure 4.10 illustrates the transformation mechanics.

The formalization is basically identical to that of “Extract Method” and “Inline Method”
and so is the correctness proof. The pattern is summarized in figure 4.10. I again use ren
as the variable rename function that is now particularly simple:

ren v =

{

this if v = vN

T if v = this

108

4.10. “Make (Extracted) Method Instance-Bound”

method T::m(v1, ..., vN){
body

}

single invocation site
l = T.m(A1, ... AN)

⇒

method T::m(v1, ..., vN−1){
body[(vN 7→this,this7→T]

}

single invocation site
l = AN .T::m(A1, ... AN−1)

Figure 4.10.: “Make Extracted Method Instance-Bound”

Precondition I refer to the formal parameters of the extracted method as well as their
types as P and I assume that the single invocation site is identified by q, i.e.,

Γ[metaclass(T). methods .(m, P) = (P, R, b)

q = l←T. metaclass(T)::m(V)]

Transformation The transformation consists of renaming the variables in method body
b that is added to the newly created instance method. I also leave the original static
method in place to avoid having to argue that there it is never called.

Γ[T. methods .(m, P1..(N−1)) := (P1..(N−1), R, ren b)

q := l←VN .T ::m(V1..(N−1))]

Statements in the old static and the new instance method correspond to each other and
are comparable:

µ(t) =

{

T. methods .(m, P1..(N−1)).p if t = metaclass(T). methods .(m, P).p

t otherwise

Data correspondence β is defined for all corresponding statements and maps local
variables in the method. All other values remain unaffected.

β[t,µ(t)](σ) =

{

renσ if t ⊃ metaclass(T). methods .(m, P)

σ otherwise

Correctness Only one statement is structurally changed and has to be examined: q.
It has to be shown that each invocation resolves to the corresponding method. A case
distinction is necessary for all kinds of statements depending on whether it is inside the
method or outside. Both cases are trivial.

109

4. Simple Refactorings Proved Correct

method m{
X x;
...
...

}

⇒

method m{
X x;
...
req: o 6= Null
// ‘‘temp_f’’ is fresh
F temp_f = o.f;
o.f = x;
x = o.f;
o.f = temp_f;
...

}

Figure 4.11.: Kernel version of “Move Local to Object”

4.11. “Move Local to Object” and “Field to Local”

Both refactorings in this section are complex. Their applicability is based on semantic
conditions that heavily depend on the syntactic formulation. The syntactic require-
ments in turn are difficult to describe concisely. I therefore omit a formal treatment
in favour of a more conceptual overview that describes possible implementation strate-
gies.

4.11.1. “Move Local to Object”

The refactoring discussed in this paragraph is one of the transformations whose scope
is highly debatable. I referred to this refactoring while discussing encapsulation of in-
dividual parameters and will be considering “Move Local to Field” in a way that aims
at satisfying this simple case only. Minimal deliberation shows that the refactoring is
quite sufficient if refactorings conventionally used as compiler optimizations are allowed.
They include transformations for reordering statements, for copy propagation, register
promotion, etc. The basic idea is to allow only trivial assignments that copy a value
to an object and then back as shown in figure 4.11. A temporary variable is used to
make sure the object’s field value is retained. This temporary variable that backs up the
object’s original value can be removed if it turns out that the object does not escape or
the escaping object has the field reassigned before it is read. This is most easily tested
locally but interprocedural tests could also be envisioned.

If this refactoring does not look terribly useful in isolation, it is probably because it isn’t!
It is a refactoring that is meant to be used as part of “Introduce Parameter Object”, a
refactoring in [16].

The “Move Local to Field” refactoring can be used like this: “Introduce Parameter
Object” changes the method interface by replacing the parameters by an object that

110

4.11. “Move Local to Object” and “Field to Local”

contains the respective parameter values. Clearly, “Extract Method” can be used to
avoid having to reason about non-local properties and protect the rest of the source
code from modifications. This is not enough however because the code still expects
scalar parameters, not an object that is decomposed.

The solution is to introduce another intermediary routine that takes the object apart
that was created by the first routine. The only challenge for this middle routine is
to prove that it retains the input values and passes them unchanged to the original
implementation. This is depicted in figure 4.12.

Figure 4.12.: “Introduce Parameter Object” intermediaries

The individual steps in the transformation are depicted in figure 4.13. It also shows that
the method can also be extended to an arbitrary subset of the parameters by simply
introducing an object that aggregate fewer parameters.

4.11.2. “Move Parameter Object’s Field to Local”

“Move Field to Local” tries to use a local variable instead of an instance variable.
Fields are sometimes considered “the new globals”: they can obscure the responsibil-
ities of methods and objects and make understanding programs difficult. It is easy
to determine when fields have become unnecessary by backward slicing the program
from all external method calls. In compiler optimization, it is sometimes refered to
as “aggressive global dead code elimination” and has received extensive formal treat-
ment.

Transformations to keep a field value in a local variable are well established because they
can reduce load on the data bus and are an effective compiler optimization called “register
promotion”. For the present refactorings, it is best to rely on this existing technique.
Then the steps in figure 4.14 are possible for any field f that is to be moved to a local
variable. In figure 4.14, x stands for any object instance abstraction as determined by
some points-to analysis. Every assignment to the field x.f is replaced by an assignment
to a temporary variable temp_x_f that corresponds to the value in field f of that
abstract object followed by a separate assignement of temp_x_f to x.f . Every access
of x.f with assignment to l is replaced by an assignment of x.f to temp_x_f followed
by an assignment of temp_x_f to l . The ideal is that register promotion of x.f in
temp_x_f completely eliminates read accesses of x.f .

A clever dead code elimination could then render the assignments to x.f redundant. As
a last step, the field can be removed from the class definition if desired.

111

4. Simple Refactorings Proved Correct

class P{ A a; B b; }

f(A x,B y){
...

}

⇒a

f(A x,B y){
g(x,y);

}

g(A x,B y){
...

}

⇒b

f(A x,B y){
g(x,y);

}

g(A x,B y){
P t = new P();
t.x = x;
t.y = y;

x = t.x;
y = t.y;
...;

}

⇒c

f(A x,B y){
g(x,y);

}

g(A x,B y){
P t = new P();
t.x = x;
t.y = y;
h(t);

}

h(P t){
x = t.x;
y = t.y;
...;

}

a“Extract Method 1” isolates the callers from any changes. They may later wish to use “Inline Method”,
possibly after simplifications to the method structure. These refactorings transform the program while
structurally retaining the method body returned by body(Γ, T, m). Except for “Push Up/Pull Down
Method”, such refactorings are not described in [16]. They are probably considered too simple.

b“Move Local to Object” The step is new and explained in this section.
c“Extract Method 2” This is how the desired object is introduced as a formal parameter.

Figure 4.13.: Stepwise transformation to get desired “Introduce Parameter Object”

...
x.f = E;
...
l = x.f;
...

th
is

re
fa

ct
o
ri

n
g

⇒

...
temp_x_f = E;
x.f = temp_x_f;
...
temp_x_f = x.f;
l = temp_x_f;
...

p
ro

m
o
ti

o
n

p
lu

s
lo

ca
l

d
ea

d
co

d
e

el
im

.

⇒
...
temp_x_f = E;
...
l = temp_x_f;
...

re
m

ov
e

fi
el

d
if

p
o
ss

ib
le

⇒

Figure 4.14.: “Move Field to Local”

112

4.12. “Rename/Reorder Parameter”

f(..., O o){
...

}

⇒
f(..., O o){

temp_o_f = o.f;
...[promote o.f]

}

⇒

f(..., O o){
temp_o_f = o.f;
g(..., o, temp_o_f)

}

g(..., O o, F f){
...’

}

// Ext. call site
f(..., o);

// Ext. call site
f(..., o);

// Ext. call site
f(..., o);

Figure 4.15.: “Move Field to Local” for parameters

Usage

The construction is introduced to extract a field from a parameter object and pass it
separately. Here is how.

The construction again relies on “Extract/Inline Method”. It is shown in figure 4.15. The
last parameter o in method f is the object from which we want to extract the field f to
pass separately. As always, the signature of f must not change because this would mean
non-local code updates. Such updates are condensend in “Inline Method” and other
refactorings that unify identical methods as described above.

f should now use a local variable instead of o.f . We will turn this local variable into a
parameter using “Extract Method”. We do this by just assigning o.f to temp_o_f and
relying on promotion of o.f in temp_o_f for the rest of the method body. Needless
to say, I assume that the field f is used unconditionally such that exceptions etc. are
not an issue for equivalence. Promotion is subject to dependency and alias analysis of
course. If o.f is afterwards still read inside the body (the body of g in figure 4.14), well,
bad luck. It means that the field cannot be eliminated.

4.12. “Rename/Reorder Parameter”

This is the only refactoring on method interfaces that is applicable and still not com-
pletely banal – unlike “Remove Parameter” and “Add Parameter”, that are applicable
only if the parameter is not used. Let the parameters be v1 to vN . If parameters vi and
vj are to be swapped in procedure C::m, β is βt(vi, vj) and βt(vj , vi) if C::m ⊂ t and id
if the left-hand side is not in {i, j} or the program counters is not in C::m. Parameters
can be used almost everywhere, so µ can have an effect on almost all instructions. Every
parameter access has to be translated, including the parameter accesses in ordinary ex-
pressions. Parameters are not qualified with their enclosing method because of dynamic
dispatching. µ is thus defined as Γ[if C::m ⊂ t then t := t[vi 7→ vj , vj 7→ vi]]. As this

113

4. Simple Refactorings Proved Correct

Figure 4.16.: Isolating changes with data translation

translation function shows, the refactoring is just a matter of renaming local variables.
See sections 4.3, 4.4, 4.9, 4.10 for how this is formalized.

4.13. “Rename Field”

“Rename Field” has the characteristics of the refactoring in chapter 5 and it is a special
case thereof. Just like the more general refactoring in chapter 5, the refactoring cannot
easily be made local: Either you have one field name or you have a different field name.
I.e., the problem is that you cannot isolate the refactoring by mapping the changed
abstractions to the original abstractions without losing the gist of the refactoring. Here
is one possibility: You could introduce an additional field with the new name. You then
identify the region to which you want to apply the “Rename” and then copy the old field
to the new field whenever entering that region and vice versa when leaving the region.
This does not work well when non-local data is concerned as in the case of objects and
their fields.

4.14. “Delete Obsolete Element”

Is removing unused code elements a refactoring? Many programs are cluttered with
unreachable code, functions that are never invoked, classes that are never instantiated.
So at least I can say it is a very important transformation

Getting rid of these code elements safely and quickly can reduce the “restistance to
change” of existing code considerably. For private members and locally scoped variables,
warnings are normally generated by the compiler to indicate that a program abstraction
is not used. For public and protected class members, the compiler cannot possibly issue

114

4.15. Conclusion

a warning because the abstraction is visible and usable from outside the compilation
unit. A refactoring tool that helps eliminate unused abstractions must have a whole
program view, as usual for refactorings.

A whole-program view is inevitably tied to the kind of model choosen for the oper-
ational semantics: The whole program’s tree representation Γ. This means that all
investigations automatically assume the presence of the whole program. While this is
a trivial fact, it is particularly important to keep in mind for “Delete Obsolete Ele-
ments”.

Deleting an obsolete method is the most delicate of the “Delete Obsolete Elements” fam-
ily of refactorings. The correctness proof is becomes trivial when the following

4.15. Conclusion

This chapter has shown that many complex refactorings can be aptly decomposed into
simpler refactorings. The primive refactorings that remain are confined in their scope or
the number of modifications that are necessary. For such refactorings, the notations and
the proof method presented in chapter 3 is useful – even when only used as a conceptual
framework.

Some local refactoring however are still difficult to describe and investigate. They involve
aliasing properties of objects that are referenced inside a method. Even though these
properties are difficult to describe syntactically, it may not be worthwhile to include
them as postcondition assertions because they do not express architectural constraints.
It is better to rely on existing analyses such as the ones used in optimizing compilers.
For this kind of refactorings, a more expressive spezialized notation would be useful to
describe the transformations and the preconditions.

115

4. Simple Refactorings Proved Correct

116

5. Refactoring Access Paths: Moving
Data Between Objects

This chapter is about a specific class of refactorings that are concerned with how data
is accessed in the program, i.e., about access paths in the object graph of the program.
It starts with an example and then continues with a more general discussion that leads
to the conclusion that moving fields in the access path – replacing one access path by
another – is the most important such refactoring and the most theoretically rewarding
as well.

Summary. Replacing one path in the object graph like x.f by a different one like x.t.f ,
where t and f are field names, is a refactoring if x.t.f after the replacement identifies
the same value as x.f before the replacement. This can either be the case because the
structure of the program is such that x.t.f and x.f have the same value or because the
transformation replaces updates to x.f by updates to x.t.f . The path x.f becomes
invalid in this case. The first refactoring is called “Replace”, the second is called “Move”.
Establishing the redundant structure expected by “Replace” is the “Copy” refactoring.
“Copy” is special because it does not alter existing structures in the program. It merely
adds new ones.
All three access path refactorings “Replace”, “Copy” and “Move” have architectural signif-
icance. The paths I allow are simple and fixed paths that specify the fields used to access a
value (e.g., of the form p1. · · · .pn). When replacing access paths in a program, such simple
paths prove insufficient but provide tangible results. A thorough investigation that would
pay tribute to the importance of “Replace” in program redesign would have to allow arbi-
trary paths. This is done by generalizing actual instance variables to field abstractions. It
is omitted for the lack of time, space and conceptual clarity. In this research, “Replace”
is acknowledged to be important but not derived separately. The same is true for “Copy”.
This is because “Move” contains all elements of both the “Copy” and the “Replace” refac-
torings: “Move” can simulate “Copy” and “Replace”. The opposite is also true: “Move”
can be split into “Copy” followed by “Replace”. It is simpler however to minimize the basis
and consider only “Move” a primitive refactoring because all of the three refactorings have
to tackle similar problems (aliasing, value identity, etc.). That’s why “Move” is formally
investigated. “Copy” and “Replace” aren’t. “Move” can be further decomposed according
to the structure of the simple paths. The result is a number of “Move Field” transforma-
tions. For this base transformation, semantic postconditions are established and syntactic
approximations are discussed.

117

5. Refactoring Access Paths: Moving Data Between Objects

5.1. About access paths

Here is an example of an access path and a picture of one possible object graph in
figure 5.1:1

x.next.parent.spouse

Figure 5.1.: Excerpt from a possible object graph with path x.next.parent.spouse

Access paths are subject to refactoring. Most often, there is more than one way to access
a certain object. In the example in figure 5.1 for instance, the path x.next.parent.spouse
identifies the same object as

x.z.z

The fact that x.z.z and x.next.parent.spouse identify the same object may just
be a coincidence. It may however also be a structural property of the program mandated
by the program’s very design.

It is this second kind of systematic access paths correspondences that is interesting
because they are based on architectural decisions.

Relevance The way individual objects are accessed is directly coupled with what mod-
ifications and extensions can be made. In the example above, the next , parent and
spouse links can be modified without affecting program parts that access only the z
link. Likewise, intermediary objects can be altered only if they are not used in access

1The syntax is not valid in may language.

118

5.1. About access paths

paths. Moreover, access paths identify the program’s data representation. Moving data
between objects involves adjusting access paths. In other words, access path modifica-
tions can reduce a program’s resistance to change to new features more directly than
other refactorings. The relevance of access paths has long been recognized by Lieber-
herr’s claim for “structure shyness” [27].

I reckon that it was only this class of refactorings as the last refactoring in a chain
that lead Roberts to conceive the idea of postconditions as predicate transformers in his
Doctoral Dissertation [39].

Application to subsets Access paths are valid for objects of certain classes. Often,
fields are used differently depending on the context in which the class is used. Just
consider the parent link of a (concrete) Item class.2 Depending on the instantiated
subclass, the field may have a different meaning. In a Person , it may denote the
physical parents, in a Node, it may point to the tree node that has the object as one
of its children, in a union-find structure, it might represent the canonical element of
the set the node belongs to, etc. The set of objects that should be affected by a certain
refactoring may thus not be defined by the actual type of the object. Other classifications
may be more reprentative as illustrated in the OMS model [35] in figure 5.2 for a contacts
database.

The transformations presented in this chapter – just as any other transformation affecting
objects of a certain type – can be applied to any disjoint sets of such objects. This fact
is mentioned and stressed in this chapter because the “Copy” refactoring can be used to
unbundle different responsibilities and values that are stored in the same field. Example:
in the Item class, one can introduce different fields for the super-class field parent
depending on the group to which the object belongs.

Figure 5.2.: OMS model for contacts: Classification beyond types

Tool support Access refactorings have architectural relevance. This is the first reason
why access path modifications got their own, separate chapter. Another is that the
investigation of these refactorings does not benefit too much from the general frame-
work defined earlier – the derived criterion that two access paths are equivalent if they

2Yes, I want to illustrate bad design here.

119

5. Refactoring Access Paths: Moving Data Between Objects

return the same value/exception is quite intuitive. Moreover, none of the refactoring
tools I tried (IntelliJ IDEA, Xrefactory, JBuilder, Eclipse, etc.) properly supported
access path refactorings.3 The Smalltalk Refactoring Browser does not support them
either.

Access refactorings are non-local Access path refactorings are difficult to frame as
local refactorings: There is normally only one data representation in the program. Either
a data representation is changed or it is not. This is not true for program code: Code can
be easily replicated without affecting the program. It is of course a matter of framing
the other refactorings correctly such that non-locality does not occur. With access paths
refactorings, it is much less easily possible to keep them local. For an illustration of this
claim, consider a simple “Move Field” where a field declaration is put in a class that is
directly related. Consider the two class definitions below before and after the transfor-
mation. The path A::f is to be replaced by A::t.B::f .

class B{
}
class A{

int f;
B t;

}

class B{
int f;

}
class A{

B t;
}

Now consider the following use, before and after a the first field access replacement in
the refactoring

f(A a){
out.println(a.f);

}

f(A a){
out.println(a.t.f);

}

This change would require all write updates to A::f to be updated as well! A similar
problem occurs when trying to replace a single write access a.f = ... by a.t.f =
Refactoring single statements necessitates changes all over the program. Changing a field
affects4 the whole program; neither the new nor the old field is locally confined. This is

3Eclipse’s “Move” refactoring turns out to be a “textual move”, which isn’t very helpful.
The only faithful discussion of access path refactorings is found in [39]. There seems to be the real

need to discuss this kind of refactorings in the light of more recent implementation possibilities like
ownership type systems, specifications etc.

4I would even say: Infects!

120

5.1. About access paths

certainly not ideal. If the changes are done in a certain order, you still lose the possibility
to reason about the whole transformation.

Postconditions Access refactorings are the only refactorings with substantial postcon-
ditions that are non-local and non-trivial at the same time.5 It is a mere necessity that
they should be made explicit as specifications because non-local properties correspond
to architectural decisions. In the example above, it is required that a.t is non-null at
the beginning of f(A a) . This is a condition that is not easy to check as a precondition
using static analysis but it is very easy to check dynamically. These postconditions can
also be translated to preconditions in which case they can benefit from the invariants
and assertions established by preceding refactorings.

Three kinds of access path refactorings: “Replace”, “Copy” and “Move” Access
path refactorings transform the program in such a way that it does not use a path
p = p1. · · · .pn to access a value but a different path q = q1. · · · .qm instead, possibly
on a different object. This can mean three different things that are compared in ta-
ble 5.1.

“Replace” The two paths identify the same value because of the structure of the pro-
gram as in the example above.

It is unusual to find a program where this interpretation can be readily applied
if only proper fields are considered. If “Replace” can be applied, there is a re-
dundancy in the object graph that should be considered for elimination because it
creates cumbersome maintenance responsibilities. Redundancies however can yield
speedy access to objects or they can legitimately result from circular structures,
bidirectional associations and objects in multiple structuers like in figure 5.4. This
is more common in C++ than in Java where value classes do not exist. Consider
the singly-linked list in figure 5.3 for an example where an explicit pointer to the
last element in the list is stored and has to be maintained.

“Copy” The kind of redundancies that are needed for valid applications of “Replace”
are introduced by the “Copy” refactoring. p will identify the same value as q after
the refactoring.

“Move” The path p is replaced by path q, i.e., the structure before the transformation
is such that p accesses some value while q is invalid. After the transformation q is
valid and refers to the value p used to refer to but p is now invalid. The simplest
example of such a refactoring is “Move Field” that will serve as an initial example.

5“Move Local to Field” and vice versa for instance has non-trivial but local postconditions. Isomor-
phisms like rename method have non-local but trivial (i.e., no) postconditions. “Move Local to Field”
is discussed in chapter 4, but postconditions are not discussed for them.

121

5. Refactoring Access Paths: Moving Data Between Objects

Figure 5.3.: Linked list with and without tail pointer

There are indeed reasons to believe that these are the only cases that are useful for
refactoring programs: Read accesses to p can either be left intact or can be mapped
to read accesses to q. If they are left intact, write accesses must be left intact as well
because accesses to p should still yield the same results. Write accesses to q can be
added without harm if q is invalid before. (“Copy”) If read accesses to p are mapped
to accesses to q, it is either possible that q already has the same value as p (“Replace”)
or that the value of q must be established before (“Move”). It would be possible to
keep the value of p, but it is hard to see why, because this kind of redundancy can be
reintroduced at any time by the “Copy” refactoring.

Name q before p after affect p’s affect q’s

“Replace” valid, same as p valid, same as q read none
“Copy” invalid valid, same as q none write
“Move” invalid invalid read/write read/write

Table 5.1.: What to do with p and q: Schematic view of “Copy/Replace/Move”

Name Γ Γ′ require ensure

“Replace” read p read q p and q are the same –
write p write p – –

“Copy” read p read p – –
write p write p and q – p and q are the same

“Move” read p read q – –
write p write q – –

Table 5.2.: Conceptual view of “Copy/Replace/Move”

This can be formulated as a conceptual relation between the three refactorings: “Mov-
ing” object references involves changing the update as well as the read accesses. “Replac-
ing” object references involves changing read accesses: The structure must already be
established by the program. “Copying” object references means changing write accesses:
It establishes a structural relation.

122

5.1. About access paths

Figure 5.4.: Tree elements that are in a circular list

“Move” is the most complex of the three refactorings. It thus is tempting to believe it
is beneficial to programmatically implement “Move” by “Copy”, which establishes the
required structure in the object graph followed by a “Replace” where all read accesses
to the old path are replaced by the new one. As a last step, references to the old path
could be removed.

The following code example schematically illustrates the chain for “Move” as a composite
refactoring. Not all conditions are shown.

x.w=...
...=x.w

x.n.e.w=...
x.w=x.n.e.w
ens: x.w = x.n.e.w
...=x.w

x.n.e.w=...
x.w=x.n.e.w
ens: x.w = x.n.e.w
req: x.w = x.n.e.w
...=x.n.e.w

x.n.e.w=...
...=x.n.e.w

The ens/req pair can be immediately eliminated.

ens: x.w = x.n.e.w
req: x.w = x.n.e.w

The correctness proof later in this chapter shwos that (value-)equivalence per se is easier
to reason about than the necessary invariants in the object graph. It is thus a better idea
to use the more complex “Move” as a basis for both the “Copy” and the “Replace” even
though the opposit would also be possible.6 Once you have “Move” defined, the “Copy” I treat “Copy” and

“Replace” as

composites of “Move”,

not vice versa

and the “Replace” refactorings come for free.7 Here is how.

6The definition of primitive refactorings – refactoring that are not composed from primitive refactorings
– always ultimately boils down to the kind of utility considerations done here.

7For “Replace”, additional postconditions may be necessary.

123

5. Refactoring Access Paths: Moving Data Between Objects

5.2. “Move” to put together “Copy” and “Replace”

5.2.1. “Copy”

For the “Copy” refactoring, consider its trivial case when a redundancy is introduced as a
second field with exactly the same content. (in this example C::f and C::f2)

class C{
X f;

}

class C{
X f;
X f2; // ‘‘Copied’’ field

}

This kind of redundancy is easy to introduce and does not need any pre- or post-
conditions. Just make sure that the second field is always set when the original one
is:

l1.f = l2;

“
D

ir
ec

t
C

o
p
y
”

⇒
C temp_obj = l1;
X temp_val = l2;
temp_obj.f = temp_val;
temp_obj.f2 = temp_val;

Once you have the f2 field in the same class as f , you can move it anywhere achieving
the same effect as with a complex “Copy”.

5.2.2. “Replace”

For “Replace”, a more indirect construction has to be employed that might not always
work perfectly without additional postconditions. Consider the example where you have
two classes C1 and C2 that have the fields f1 and f2 respectively. You want to replace
accesses to f1 by accesses to f2 .

class C1{
X f1;
...

}

class C2{

124

5.2. “Move” to put together “Copy” and “Replace”

X f2;
...

}

The classes are related somehow such that you can employ “Move” on f1 to put it into
C2:

class C1{
...

}

class C2{
X f1;
X f2;
...

}

If your assumption was correct that f1 and f2 contained the same value at the beginning,
this must still be the case after the “Move”! If you can prove this, you’re done and
replacing accesses to f1 by accesses to f2 is trivial.

Note that the initial “Move” does not introduce any new uncertainty or problems: The
conditions of “Move” are minimal for identifying the object uniquely that contains the
corresponding f2 field.

What might cause problems however – and this is why this decomposition may not
always work as is – is that you have to prove that f1 and f2 contain the same value.
In fact, you could even think that the transformation didn’t do anything for solving the
problem!

This is not true however: Before the transformation, the refactoring tool would have
had to reason about values in different objects. Such reasoning is complex and should
be isolated. After the transformation, the mere values of two variables have to be
compared that are either both defined (reference to container is non-null) or undefined
(reference is null or cannot be reached). This means that after the transformation, a
very simple refactoring browser could just textually compare the code that calculates
the values for each assignment. Side-effects have to be taken into account though.
A more sophisticated refactoring tool could do some data flow analysis to find and
compare the proper value of f1 and f2 . If all that does not help, the tool can add
postcondition assertions that checks equivalence: assert x.f1 == x.f2 .8 All three
variants benefit massively from the decomposition because they are freed from having
to reason about the availability of necessary objects. This is taken care of by the initial
“Move”.

8Needless to say, that’s my favourite!

125

5. Refactoring Access Paths: Moving Data Between Objects

Figure 5.5.: “Remove Indirection” as an example of “Replace” where fixed paths are
sufficient

Access path specifications Access paths can be arbitrarily complex. Consider fig-
ure 5.3 again. The number of next links that have to be followed to reach the tail is
not determined in advance. It depends on the number of elements in the list. Figure 5.3
uses a null reference to signal the end of the list. A sentinel could be used just as
well or a reference to the last element or a reference to the first element in the list.
Conventions can be arbitrarily complex. Restricting the possible access paths that can
be transformed to an arbitrary subset will pose limitations that are hard to justify and
hard to understand.

How useful is it to restrict the transformation to fixed access patterns like

p1. · · · .pn

where all of p1 to pn are determined in advance. At least for the “Replace” refactoring,
my suspicion is that: restricting access paths refactorings to fixed patterns is not very
useful in practice because such patterns can only be used where the structure is limited
and fixed. It is exactly in these cases that redundancies are least useful and most unlikely
to occur.9 But this is exactly where they are needed most. Yet, fixed access patterns
is precisely the abstraction I will use: Only fixed access paths that are specified using
sequences of fields are allowed as arguments. A precise definition of “fixed access paths”
is given below.

In this chapter, I want to confine myself to simple access paths that are not very useful
for “Replace” because they are less intractable to handle formally than totally general
access paths. Simple access paths are a pragmatic solution and one that yields tangible
results.

A more generous interpretation of fields as association values is still possible. In this case
“fields” are not merely the instance variables of objects but all values that are associated
in some way with an object and change through certain state updates – “field” values
can be computed for example as in figure 5.3. This allows to treat all kinds of generalized
access refactorings but puts the burden of interpreting the notions of the access refactor-
ings in terms of generalized fields, which is just as difficult as general access paths, but
more tangible. This is what the next paragraph is about

9A notable exception is when a level of indirection is added or removed as in figure 5.5, which does
realistically occur in practice. A different kind of argumentation would be that legacy programs be
assumed to contain simple, redundant data structures and it is worthwhile for that reason to cover
“Replace” for fixed access paths.

126

5.3. Possibilities and meaning of access paths

Field abstractions Access paths do not necessarily have to be specified as fields as
suggested when writing p = p1. · · · .pn. The association that is resolved through the
fields p1 to pn could also be put somewhere else – for instance ouside the classes involved.
Consider the following example:

class A{ int f; } class B{}

“Moving” with p = A :: f and q = B :: f is not directly possible using access paths because
A and B are not related by fields. There might still be some relation in the program
associating A and B objects (a static map in this case).

class Prog{ static Map<A,B> assoc }

In this example, but also in general, it is necessary that only one B object be associated
with every A object at any time when the f field is used. Every kind of association
must pay tribute to this fact (a static association as above for instance; getter/setter like
interfaces are of course always sufficient). A field is just a model for this kind of behavior.
Whether the model exists or not is irrelevant. It is therefore possible to argue about
simple, fixed access paths only without loss of generality.

5.3. Possibilities and meaning of access paths

The refactoring that is treated here is of the form

“Move” p to q

This section answers the due question what this refactoring means and how the objects
that are accessed by p and q can be resolved.

Consider the example when p and q are simply fields in the same class, i.e., p = C::f
and q = C::g, i.e., the field f is to be replaced by a field g in the same class, retaining
all updates and reads. This is a simple “Rename Field” as discussed in section 4.13. To
simplify the other cases, let’s assume that the name of the field to be moved remains the
same, i.e., pactual = p.f and qactual = q.f

Let pactual again be the field f of a class C, i.e., C::f . If q also starts with a field in C,
the “Move” is a simple “Move field”: The field is moved to the object identified by the
path q in the object graph.

The inverse transformation can also be considered: The field f is moved from the ob-
ject that is identified by p to the object p originates from. I call this “Reverse Move
Field”.

127

5. Refactoring Access Paths: Moving Data Between Objects

Needless to say, the two transformations can be combined: The field can be moved
backward along p to some originating object and then forward along q to an object that
is pointed to by q.

The four basic possibilities are illustrated in table 5.3.

Name p q Meaning

Rename field F ::f F ::g rename f in F to g

Move field F ::f F ::t.G::f move f from F to G: go through t

Reverse move field F ::t.G::f F ::f move f through t from G to F

Move field indirect F ::t.G::f F ::r.H::f move f through t from G to H through r

Table 5.3.: Meaning of access paths for “Move”

The three non-trivial possibilities table 5.3 move the field either in the direction of a
link to an object that is pointed to or from such an object to an originating object.
This can be done step by step. In the example in figure 5.6, the field is moved from
the original object to a, from there it is moved to b etc. until it reaches its final des-
tination in nine steps. The “anchor” object x is completely irrelevant now and can be
omitted.

Decomposing the transformation into atomic steps makes it possible to treat more com-
plex paths such as the one in figure 5.7.

An access transformation is thus always moving a single field f either forward or back-
wards along certain fields. The whole transformation is specified by the name of the
field to be moved and the sequence of atomic transformations to be executed in the
order of their execution. The transformation depicted in figure 5.7 for instance can be

summarized as follows when Forward movements along C::g are written as
−−→
C::g, reverse

movements are written as
←−−
C::g.

128

5.3. Possibilities and meaning of access paths

Figure 5.6.: Moving a field step by step

Figure 5.7.: An artificially complex but possible access refactoring

129

5. Refactoring Access Paths: Moving Data Between Objects

move f along
←−−
C::g,

←−−
E::r,

−−→
D::d,

−−→
U::q,

−−→
V::h,

←−−
B::k,

←−−
C::r,

←−−
A::d,

←−−
Y::g,

−−→
V::c,

−−→
C::y,

−−→
W::v,

−−→
A::b

Keep in mind that it does not matter whether the movement is done at once or step
by step: Postconditions are transformed together with the program. The refactoring in
figure 5.7 is equivalent to the chain

move f along
←−−
C::g

move f along
←−−
E::r

...

move f along
−−→
W::v

move f along
−−→
A::b

The forward transformation is a “Move Field”. The “Reverse Move Field” is its inverse
as the name suggests. I.e., it is sufficient to examine “Move Field” and show that it is
symmetric.10

This is what I am doing in the rest of this chapter: Examine the “Move Field” refactoring
and its inverse and establish pre- and postconditions.

5.4. The “Move Field” base refactoring

This section discusses and formalizes the “Move Field” refactoring and its inverse, which
serves as a basis for all access refactorings. I also discuss how the refactorings can be
composed and how the semantic conditions that are necessary for this refactoring can be
approximated syntactically. How they are represented as specifications is shown in chap-
ter 6. The specifications that are generated serve as the main illustration in this research
how refactorings can be used to convey the assumptions about the program behavior and
how these assumptions are translated to specificiations.

I first describe the transformation informally and then switch to a more formal investi-
gation.

10Yes, this is actually a very specific reason that inverse transformations are discussed in section 3.3.2.
This is another application of the famous Gearloose Principle.

130

5.4. The “Move Field” base refactoring

5.4.1. Description

I assume that there is already a field (i.e., an actual instance variable) pointing from
the source to the target object, i.e. from the object where the field to be moved re-
sides to the object where it ought to be moved just as in the example below.11 It is
possible to use any other abstraction that maps source to target object. For the sake
of simplicity, I assume that the abstraction is a simple instance variable. The assump-
tions about and conditions on the instance variables can then be generalized to arbitrary
abstractions.

class Src{
X f;
Target target;
...

}

class Target{
...

}

⇒

class Src{
Target target;
...

}

class Target{
X f;
...

}

For the transformation to remain well-formed, f must not be an existing field in Target .12

Moreover, I assume that Src and Target are unrelated in �Γ to avoid special cases in
my argumentation. As I explain in the introduction to this chapter, “Move” can poten-
tially happen between any disjoint sets of objects, irrespective of how they are related
in �Γ and the “field” abstraction could also be super.13

The structure of the heap is changed. β has to take into account the mapping between
the two states.

5.4.2. Transformation and applicability

For the transformation, I assume that the field to be moved is f and the class that
originally contains this field is called Src. The class where f is moved is called Target

11In section 4.2, I discussed the problem to find the appropriate amount of assumptions for a refactoring.
For “Move Field” per se it is not clear what kind of structure should be allowed to be already present
before refactoring and what is should be allowed to be introduced by the refactoring. Is the class the
field is moved to supposed to exist at all before the refactoring? A programmer should be able to bring
– with justifiable effort – any code he wants to apply the refactoring to into a shape that is accepted
by the refactoring. Writing a new class that encapsulates the functionality of an already existing
class just to be able to move a field there if “Move Field” required a new class is not justifiable. But
this assumption has been made [11].

12I also assume that is does not occur in any of the superclasses of Target even though that’s not
strictly required by the Java language. In any case, fields are always qualified by the class name
Src::f, something I ignore in this section for the sake of readability.

13This special case is “Pull Up Field”, its inverse is “Push Down Field”.

131

5. Refactoring Access Paths: Moving Data Between Objects

and the object is refered to by the field target in Src. In the previous section, Src = Src,
f = f, target = target and Target = Target. Using our abbreviated notation, this
reads as Γ[Src. fields .target = Target ∧ Src. fields .f = X] where X is any valid type
tag.

Just as for all other refactorings, I first define the forward transformation µmove field
Src,Target,f,target.

tr is a fresh variable for every match of ∗.14Forward “Move Field”

Γ[∗.lr←xr.Src::f :=tr←xr.Src::target ;lr←tr.Target ::f

Src. fields .f :=undef ,

Target . fields .f :=Src. fields .f]

Initialization

It is an evident condition that must be fulfilled such that this refactoring can be safely
applied and equivalence criterion equation (3.19) is satisfied: target must have been
initialized when an application wants to access f . Failure to do so will cause a null-
pointer exception.

Invariants like target 6= Null are normally assumed to be established by constructors.
[11] even requires the target object to be initialized in the constructor with a fixed
initialization pattern.

Our language does not have constructors.15 Even if there were constructors, the problem
wouldn’t have been solved at all: What would the target object to point to be? How
can it be ensured that target is definitely assigned after the constructor? Moreover, the
criteria derived here should be usefully applicable to the implementation of a refactoring
tool. It should impose only minimal restrictions on the shape of the program. Giving
the constructor a special status and demanding that invariants are established there
is incompatible with a program that uses some other method of initialization (like a
factory for instance). The solution chosen here is monotonous initialization that iscode mobility principle

checked dynamically with postcondition assertions: Once the target field is initialized,
its value must not be reverted to Null.

5.4.3. Correctness conditions (postconditions)

Informal derivation of correctness conditions

Imagine we keep a “shadow” of field f in Src to help understand the required invari-
ants and conditions for sound application of the transformation above. Its value is

14I.e., it is an injective naming function from path to identifier.
15This decision is legitimated on page 42

132

5.4. The “Move Field” base refactoring

what people should get from reading out the refactored f , which is target .f . When
running the program, the aim is that access to target .f always yields the same value
as direct access to the shadow Src::f . Direct access to target .f cannot occur before
the transformation and need not be considered. It seems important to understand that Outline of derivation

of conditionsassignments to Src::target will already be present in the source of the program. In-
deed such assignments are necessary to establish a relation between source and target
objects. It has to be made sure that they do not alter the semantics of the program.
Modifying target itself is in general tantamount to changing the value of target .f . See
equation (5.6).

Aliasing can also be a problem: if x .target = y .target , assignments to y .target .f can also
alter the value of x .target .f .

Rationale

The idea to keep a “shadow” fits well with the bisimulation-like equality defined in
equation (3.19) and the aim to establish local criteria: β can directly be formulated
in terms of Src::f , Src::target and Target ::f because both the pre- and the poststates
are available to β. Following conventional intuition and the criteria in section 3.2.4
(repeated in figure 5.9), β is a mapping between target .f and the old shadow field f .
The questions that have to be asked for every term is: How can the correspondence be β. . .

. . . used to derive the

conditions

violated and how can the violation be prevented? This is what is done in the paragraph
above.

Organization The rest of this chapter is organized as follows: I first define β and
then investigate, for every t the maintenance of the correspondence prescribed by β
as mandated by equation (3.19).16 I am coming up with criteria and show that these
criteria are locally sufficient to retain β. Moreover, I give an example (as source-code)
where non-adherence to the condition can lead to erroneous behavior. After having
done that, I explore known syntactic possibilities that guarantee the local semantic
conditions.

β: Correspondence between original and refactored Program

Refresher β is a binary relation on states that relates the state in the original program
and the refactored program when the statements being executed are the same. In chap-
ter 3, such statements are called “comparable”. In “Move Field”, individual statements
are replaced by other statements. Both the structure of the replaced statement and
the replacement are fully determined. As explained in chapter 3, it yields the simplest
correctness proof if all statements are considered comparable that are not directly inside
a replacement or modification as shown in figure 5.9. This could include statements

16I.e., it is equation (3.19) that is used.

133

5. Refactoring Access Paths: Moving Data Between Objects

Figure 5.8.: Nested correspondences do not imply outer correspondences

Figure 5.9.: Correspondence for “Move Field” (cf. figure 3.7)

that are nested inside modified program parts as well (see figure 5.8) – for “Move Field”
however, this is not necessary.

β(s, r) =

β(s. xcpt, r. xcpt) ∧

β(s.σ, r.σ) ∧

β(s. γ, r. γ) ∧

β(s. u, r. u)

Notations Just as in chapter 4, it is notationally convenient to definitionally extend β
from pointwise from its components.

Correspondence The exception state and I/O ought not to be changed by the trans-
formation: β(xcpt, xcpt) and β(u, u). This is not quite true for local variables as we
introduce a fresh local variable v for every occurence of accesses to f during transfor-
mation. β(σ, σ[v 7→ t]) for some determined t that depends on v, the old state and the
heap (it contains l2.target). t may be undef . More precisely, v could be scoped locally.
This would require a concrete formulation of β’s dependence on the program counter
(β[t,µ(t)]). The number of changes is unbounded and so would be the different cases for
β. I therefore omit the qualification and I just assume that it is known which concrete
variable I am talking about.

For the heap, the allocated objects are the same. We could introduce a bijection between
locations to abstract away differences in allocation but that’s not necessary. We can thus
extend β to heap values:

β(γa, γb) ≡ ∀ reachable(loc) : β(γa(loc), γb(loc)) (5.1)

134

5.4. The “Move Field” base refactoring

The restriction to reachable(loc) is conservative and unnecessary. It is just a means to
make sure the postconditions that result from the derivations can be used as specifica-
tions.

It is then easy to define how heap values at the same location relate to each other: f in the
original program corresponds to target .f ; objects of type Src and Target must be identical
if field f is ignored. This is achieved by subtracting f from the domain of the respective
value v:17 f⊳−v All objects that are neither of type Src nor of type Target are unaffected
by the transformation. This is formalized in equation (5.2).

β(va, vb) ≡ rtt(va) = rtt(vb) ∧

va(f) = γb(vb(target))(f) and f⊳−va = vb if va�ΓSrc

va = f⊳−vb if va�ΓTarget

va = vb otherwise

(5.2)

This equation can serve as an apt illustration of the wide spectrum anyone has who wants
to formalize refactorings. Equation (5.2) could be overly restrictive. As long as the field f
is not read or written, the data correspondence need not hold. In the present framework
this is easy to formulate with program paths indices on β. Needless to say, loosening the
data correspondence renders the proof more complicated.

β is a function on heaps

This section shows that β is a function in its first argument. In section 3.3.2, I show
that this property is sufficient to make sure postconditions of the forward transform
“Move Field” can be easily transformed to postconditions of the reverse transform.
Precise postconditions for the forward transformation are derived from the correctness
proof.

β is a function on states. It is trivially a function on exception, local state, I/O. Here I
show that it is also a function on heaps. It is not a function on individual heap values
because responsibility is moved between them. We denote this function on heaps by β.
To show that β is indeed a function, consider two heaps γ1 and γ2 that solve β(γ, .). It
must hold that ∀ reachable(p) : β(γ(p), γ1(p)) and ∀ reachable(p) : β(γ(p), γ2(p)). Let p
be arbitrary and let y1 = γ1(p) and y2 = γ2(p). To show that β is a function, I prove
y1 = y2. Three cases have to be distinguished:

• x�ΓSrc. x(f) = γ1(y1(target))(f), f⊳−x = y1, x(f) = γ2(y2(target))(f) and
f⊳−x = y2. Only f⊳−x = y1 and f⊳−x = y2 are needed to deduce y1 = y2

• x�ΓTarget. x = y1[f 7→ γ1(y1(target))(f)] and x = y2[f 7→ γ2(y2(target))(f)]
leads to y1[f 7→ f1] = y2[f 7→ f2]. y1 = y2 because f /∈ dom y1 and f /∈ dom y2,
which is a well-typedness criterion.

17f⊳−v is defined in appendix B.

135

5. Refactoring Access Paths: Moving Data Between Objects

• otherwise x = y1 and x = y2. y1 = y2 is trivial.

This paragraph is valid for the data correspondence as defined in equation (5.2). Later in
this chapter, a new, weaker, data correspondence is introduced where target can remain
unitialized for a while. β is then still a function. See equation (5.29).

Semantic equivalence for statements

Trivia We are now ready to check equation (3.16) for every possible transition. Most of
them are unaffected by µ. They are not considered for the proof. These cases include (the
variables in the comment refers to the rule as listed in tables 3.2 to 3.5:

• skip because the pre- and poststates are the same,

• l←e because l 6= v,

• l←(T)e because l 6= v and T �� ClassCast if T is related to either Src or Target,

• l←new C[e] because l 6= v. Moreover NegArrSize or (C, N) and Src/Target are
unrelated,

• throw e because Src/Target and NullPointer are unrelated. σ and γ are un-
changed by the transition, for xcpt, β = (=) which is satisfied because µ(throw e) =
throw e

• l[i]←e and l1←l2[i]: the built-in exception and the array type itself is unrelated
to both Src and Target.

• init class C: the metaclass(C) is unrelated to Src and Target. Moreover,
µ(staticinitializer(Γ(C))) = staticinitializer(µ(Γ)(C)) as can be seen from the def-
inition of µ.

Composites The cases for t1;t2, while(e){t}, try{t1}finally{t2} and try{t1}catch(T l){t2}
are treated analogously to the proof in chapter 4.1. As an illustration, consider t1;t2.

To make sure I am not concealing any mistakes here, let me write it down step by step
and very carefully.

• It has to be shown that

(Γ ⊢ s0
t1;t2
−−−→s2) ∧ β(s0, s

′
0)⇒ (µ(Γ) ⊢ s′0

µ(t1;t2)
−−−−→s′2) ∧ β(s2, s

′
2)

• To show the implication, let’s assume its left-hand side,

(Γ ⊢ s0
t1;t2
−−−→s2) ∧ β(s0, s

′
0)

136

5.4. The “Move Field” base refactoring

• Γ ⊢ s0
t1;t2
−−−→s2 must have been derived from the rule for chaining statements in

table 3.2. Therefore Γ ⊢ s0
t1−→s1 and Γ ⊢ s1

t2−→s2

• With Γ ⊢ s0
t1−→s1 and β(s0, s

′
0) and according to the induction hypothesis, we can

conclude that µ(Γ) ⊢ s′0
µ(t1)
−−−→s′1 and β(s1, s

′
1).

• Because of β(s1, s
′
1) and Γ ⊢ s1

t2−→s2, we get again according to the hypothesis

β(s2, s
′
2) and µ(Γ) ⊢ s′1

µ(t2)
−−−→s′2

• Using the rule for chaining statements in table 3.2 on µ(Γ) ⊢ s′0
µ(t1)
−−−→s′1 and µ(Γ) ⊢

s′1
µ(t2)
−−−→s′2 together with the definition µ(t1);µ(t2) = µ(t1;t2), we deduce µ(Γ) ⊢

s′0
µ(t1;t2)
−−−−→s′2.

• Moreover, we still know that β(s2, s
′
2), which is what we needed to prove as well.

The remaining non-trivial cases that potentially have to be guarded by local conditions
are the following.

• Field update “l.f ld←e”

• Field read “l1←l2.f ld”

• Object allocation “l←new C”

The statements are examined in the order above. When there is more than one deduction
rule for a statement, the discussion is organized in “cases” and “subcases”.

As mentioned on page 132, l←new C introduces an obvious problem with the data cor-
respondence as defined in equation (5.2): The target link is Null after the allocation,
but equation (5.2) requires that this link be initialized from the beginning. The solu-
tion is to weaken the requirement of β. This does not affect the proofs too much, so
I decided to ignore object initialization for the other cases to make them more concise
and clear and then to introduce during the discussion of object allocation this issue
and to point out at that time, what is needed to take this additional consideration into
account.

The following says that the values of expressions in the program that are given by the
user do not change.

Lemma 5.1. v introduced by transformation, e given by user. [[e]]
(σ,γ)
Γ = [[e]]

(σ[v 7→t],β(γ))
µ(Γ)

Reason: v /∈ FV(l) and the only case where γr is used is for the instanceof operator.
rtt(x) = rtt(y) from equation (5.2) guarantees that its value does not change.

137

5. Refactoring Access Paths: Moving Data Between Objects

Field update “ l.f ld←e”

We have to show that

(Γ ⊢ s
l.f ld←e
−−−−−→s′) ∧ β(s, r)⇒ (µ(Γ) ⊢ r

µ(l.f ld←e)
−−−−−−−→r′) ∧ β(s′, r′)

Assuming the left hand side Γ ⊢ s
l.fld←e
−−−−→s′) and β(s, r), there are two cases to be

considered: exceptional and normal termination. We consider the derivation resulting
in an exception (because of null pointers) as well. It serves as an example for all other
cases where the conditions for regular execution are not satisfied and some of the cases
above I do not treat in detail.

Case 1: Write Field with exception The additional assumption is according to ta-
ble 3.4

[[l]]sΓ = Null

Technically, we would have to distinguish the case when the field being accessed is f
(fld = f) and when it is not. I only treat the more direct case fld 6= f explicitly. For
fld = f , the exception is caused by read-access to l.target in the translated version
instead of the read access to l.f . The strategy is the same, but the chain and the
exception propagation rule have to be used and combined.

• Assume Γ ⊢ s
l.f ld←e
−−−−−→s′ and β(s, r)

• According to table 3.4,

s = (None, σ, γ, u)s′ = (Some loc, σ, γ[loc 7→ init obj(Γ, NullPointer)], u)

• r = (xcptr, σr, γr, ur) is uniquely determined by the definition of β.

– xcptr = None

– σr = σ[v 7→ t]

– γr = β(γ)

– ur = u

• γr(loc) = None because of γ(loc) = None and equation (5.1).

• Assuming fld 6= f , we thus get the transition µ(Γ) ⊢ r
µ(l.f ld←e)
−−−−−−−→r′ with r′ =

(xcpt′r, σ
′
r, γ
′
r, u
′
r) and

– xcpt′r = Some loc

– σ′r = σ[v 7→ t]

138

5.4. The “Move Field” base refactoring

– γ′r = γr[loc 7→ init obj(µ(Γ), NullPointer)]

– u
′
r = u

β(Some loc, xcpt′r) and β(σ, σ′r) are immediately obvious from the definition.18 The
third requirement,

β(γ[loc 7→ init obj(Γ, NullPointer)], γr[loc 7→ init obj(µ(Γ), NullPointer)])

is satisfied because β(γ, γr) and the objects at loc are β-compatible (they are equal
and unrelated to both Src and Target).

Case 2: Write field without exception The additional assumption is [[l]]sΓ 6= Null
according to table table 3.4.

Unlike in the case before, where we assumed fld 6= f because it wouldn’t have made a dif-
ference anyway, we have to consider at least two cases now: fld = target ∧ ctt(γ(l))�ΓSrc
and fld = f ∧ ctt(γ(l))�ΓSrc. Remember for the rest of this case that we can use the
wisdom established in section 5.4.3: the value of a simple expression (like l and e) is never
affected by the transformation. We write x = [[l]]sΓ. γr(x)(target) 6= Null is guaranteed
by β(γ, γr).

Subcase: Write field without exception where the field is target The additional
assumption for this subcase is

fld = target ∧ ctt(γ(x))�ΓSrc

For this subcase, it has to be shown that

(Γ ⊢ s
l.target←e
−−−−−−→s′) ∧ β(s, r)⇒ (µ(Γ) ⊢ r

l.target←e
−−−−−−→r′) ∧ β(s′, r′) (5.3)

• Assume Γ ⊢ s
l.target←e
−−−−−−→s′ and β(s, r). Just as above, we have (again according to

table 3.4), s = (None, σ, γ, u) and the assumption β(s, r) leaves only one possibility
for r = (xcptr, σr, γr, ur). As a reminder:

– xcptr = None

– σr = σ[v 7→ t]

– γr = β(γ)

– ur = u

18And so is β(u, u), which I omit for the rest of this proof.

139

5. Refactoring Access Paths: Moving Data Between Objects

• As a terminal state, we get

s′ = (None, σ, γ[x 7→ γ(x)[target 7→ [[e]]sΓ]], u)

• Likewise for the transformed version, we get the final state ([[e]]sΓ unaffected by µ)

r′ = (None, σ[v 7→ t], γr[x 7→ γr(x)[target 7→ [[e]]sΓ]])

• β(xcpt(s′), xcpt(r′)), β(σ(s′), σ(r′)) and β(u(s′), u(r′)) hold trivially.

• It remains to check the truth-value of β(γ(s′), γ(r′)):

β(γ[x 7→ γ(x)[target 7→ [[e]]sΓ]], γr[x 7→ γr(x)[target 7→ [[e]]sΓ]])

• We still know β(γ, γr). This is how we derived it in the first place.

• Because of equation (5.1) and the way compliance is defined, it only remains to val-
idate β-compliance of the locations that are potentially affected by µ. It translates
to the condition

β(γ(x)[target 7→ [[e]]sΓ], γr(x)[target 7→ [[e]]sΓ])

• Because γ(x)�ΓSrc, the first case in equation (5.2) is relevant:

rtt(γ(x)[target 7→ [[e]]sΓ]) = rtt(γr(x)[target 7→ [[e]]sΓ]) ∧

γ(x)[target 7→ [[e]]sΓ](f) = γr(γr(x)[target 7→ [[e]]sΓ](target))(f) ∧

f⊳− γ(x)[target 7→ [[e]]sΓ] = γr(x)[target 7→ [[e]]sΓ] (5.4)

To evaluate the expression, remember that because of the assumption, β(γ, γr).
I.e., β(γ(x), γr(x)), which guarantees the three propositions

– rtt(γ(x)) = rtt(γr(x)),

– γ(x)(f) = γr(γr(x)(target))(f) and

– f⊳− γ(x) = γr(x)

• The first line in equation (5.4),

rtt(γ(x)[target 7→ [[e]]sΓ]) = rtt(γr(x)[target 7→ [[e]]sΓ])

holds because rtt(γ(x)) = rtt(γr(x)).

• The third line in equation (5.4),

f⊳− γ(x)[target 7→ [[e]]sΓ] = γr(x)[target 7→ [[e]]sΓ]

holds because f⊳− γ(x) = γr(x) and the state update is to the same value.

140

5.4. The “Move Field” base refactoring

• The second line in equation (5.4),

γ(x)[target 7→ [[e]]sΓ](f) = γr(γr(x)[target 7→ [[e]]sΓ](target))(f)

can be simplified tocondition

γ(x)(f) = γr([[e]]
s
Γ)(f) (5.5)

This expression does not obviously hold, which is unfortunate but understandable:
If we change the Target object l.target points to, how could we expect that the
value of Target.f remains the same? Equation (5.5) tells how: by making sure
that the new Target has a value in its f field that is consistent with the shadow
field f in l. Not a very helpful proposition, to be honest.

The fact about the prestates we recorded before, γ(x)(f) = γr(γr(x)(target))(f),
can be combined with equation (5.5) and allows us to simplify the condition to
something that can be checked in transformed program alone: conservative

approximation

γr([[e]]
s
Γ)(f) = γr(γr(x)(target))(f) (5.6)

condition

In other words, the f field of the newly assigned expression must be the same as
the f field that is already present in the object pointed to by x.target, in program
notation: e.f = l.target.f .

We can also derive conservative approximations by generalization from field values
to object values and then to locations. This seems the only kind of semantic
approximation that is evident. The following conservative conditions result.

– γr([[e]]
s
Γ) = γr(γr(x)(target))

– [[e]]sΓ = γr(x)(target)

The last one is what has been suggested at the beginning on section 5.4.3.

Subcase: Write field without exception where field accessed is f For this sub-
case, the additional assumption is

fld = f ∧ ctt(γ(x))�ΓSrc

(Γ ⊢ s
l.f←e
−−−→s′) ∧ β(s, r)⇒ (µ(Γ) ⊢ r

v←l.target;v.f←e
−−−−−−−−−−−→r′) ∧ β(s′, r′) (5.7)

• Assume Γ ⊢ s
l.f←e
−−−→s′ and β(s, r)

141

5. Refactoring Access Paths: Moving Data Between Objects

• As above, we get19 s = (None, σ, γ) and r = (xcptr, σr, γr) with

– xcptr = None

– σr = σ[v 7→ t]

– γr = βd(γ)

• As an end state, we get (x = [[l]]sΓ)

s′ = (None, σ, γ[x 7→ γ(x)[f 7→ [[e]]sΓ]], u)

• The derivation tree for the right hand side of equation (5.7) can have only one
form:

xl = [[l]]sΓ xl 6= Null

µ(Γ) ⊢ (None, σr, βd(γ), u)
v←l.target
−−−−−−−−−→(None, σ[v 7→ βd(γ)(xl)(target)

xl.target

], βd(γ), u)

xv = xl.target xv 6= Null

µ(Γ) ⊢ (None, σ[v 7→ xl.target], βd(γ), u)
v.f←e
−−−−−→(None, σ[v 7→ xl.target], βd(γ)[xv 7→ βd(γ)(xv)[f 7→ [[e]]

(σ,γ)
µ(Γ)

]], u)

µ(Γ) ⊢ r
v←l.target;v.f←e
−−−−−−−−−−−−−−→(None, σ[v 7→ xl.target], βd(γ)[xv 7→ βd(γ)(xv)[f 7→ [[e]]sΓ]], u)

• All the assumptions of the tree are satisfied from the corresponding transition in
the original program.

• It remains to show that

β((None, σ, γ[x 7→ γ(x)[f 7→ [[e]]sΓ]], u),

(None, σ[v 7→ xl.target], βd(γ)[x 7→ βd(γ)(xv)[f 7→ [[e]]sΓ]], u)) (5.8)

• The first two and the last component, i.e., exception, local state and I/O, trivially
satisfy β

• It remains to show that β(γ[x 7→ γ(x)[f 7→ [[e]]sΓ]], βd(γ)[xv 7→ βd(γ)(xv)[f 7→
[[e]]sΓ]])

• We have to show

β(γ[x 7→ γ(x)[f 7→ ee]], γr[γr(x)(target)
︸ ︷︷ ︸

f -container

7→ γr(γr(x)(target))[f 7→ ee]]) (5.9)

19As promised, I am omitting the u part because it remains trivially unaffected.

142

5.4. The “Move Field” base refactoring

• The procedure is again the same as in the previous subsections: I write down the
prepositions that are guaranteed by β(γ, γr) and then derive some intuitively clear
obligations from equation (5.9). This is the proof procedure we will continue to
use for the other cases without further reference to it. To be able to do so, let me
finally nail down consistent naming conventions for this section:

Original Transformed

Prestate s, xcpt, σ, γ or γs r, xcptr, σr, γr

Poststate s′, xcpta, σa, γa or xcpts′ , σs′ , γs′ r′, xcptb, σb, γb or xcptr′ , σr′ , γr′

• Let’s keep in mind the three propositions guaranteed by β(γ, γr).

• We’re checking the condition for the locations for which β(γa(loc), γb(loc)) is not
be guaranteed by β(γ, γr). Which locations are these? This, of course, depends on
the definition of β for heap values. In general, all locations have to be examined for
which a changed value could have an effect on the truth value of β(γa(loc), γb(loc)).

The respective poststates are (cf. tree above):

γa = γ[x 7→ γ(x)[f 7→ ee]] (5.10)

γb = γr[γr(x)(target) 7→ γr(γr(x)(target))[f 7→ ee]] (5.11)

The updated objects are: γ(x)(f), γr(γr(x)(target))(f). While γ(x)(f) identifies
a unique heap location x for the update, the same is not true for the second
expression.

• The three relevant obligations are now examined for values that are potentially
affected. Cf. va(f) = γb(vb(target))(f),f⊳−va = vb and va = f⊳−vb in equa-
tion (5.2).20

20Required correspondences in our specific case for va = γa(x) are the following:

γa = γ[x 7→ γ(x)[f 7→ ee]] (5.12)

γb = γr[γr(x)(target) 7→ γr(γr(x)(target))[f 7→ ee]] (5.13)

va = γa(x) = γ(x)[f 7→ ee] (5.14)

va(f) = ee (5.15)

vb = γb(x) = γr(x) (assume types unrelated, therefore γr(x)(target) 6= x)
(5.16)

= γ(x) because f⊳− γ(x) = globsr(x) (5.17)

vb(target) = γ(x)(target) = γr(x)(target) (5.18)

γb(γ(r)(target)) = γb(γr(r)(target)) (5.19)

= γr(γr(x)(target))[f 7→ ee] (5.20)

γr(γr(x)(target))[f 7→ ee](f) = ee (5.21)

143

5. Refactoring Access Paths: Moving Data Between Objects

The first obligation f⊳−va = vb, which states that nothing else apart from f has
been written, is known from the prestate f⊳− γ(x) = γr(x).

Target consistency γa(γ(x)(target)) = f⊳− γb(γ(x)(target)) is also quite clear as it
can be directly reduced to the prestate condition: γa(γ(x)(target)) = γ(γ(x)(target))
and f⊳− γb(γ(x)(target)) = f⊳− γr(γr(x)(target))[f 7→ ee]

Consistency of field f is less easy: for loc = x, it is unproblematic

va(f) = γb(vb(target))(f) (5.22)

ee = γb(γ(x)(target))(f) = ee (5.23)

Consistency of f for the other object cannot be proven because it does not hold
in general. In other words, it is another correctness condition for the refactoring.
We do not use the condition directly as a check for this refactoring. It does not
seem intuitive enough:

∀ reachable loc 6= x : γa(loc)(f) = γb(γb(loc)(target))(f)

The prestate conditions says:

∀ reachable loc : γ(loc)(f) = γr(γr(loc)(target))(f)

Remember that
γa = γ[x 7→ γ(x)[f 7→ ee]]

and
γb = γr[γr(x)(target) 7→ γr(γr(x)(target))[f 7→ ee]]

If the propositions γ(loc)(f) = γa(loc)(f) and

γb(γr(loc)(target))(f) = γr(γr(loc)(target))(f)

hold, the condition reduced to the condition of the prestate and it is satisfied.
γ(loc)(f) = γa(loc)(f) is certainly true because x 6= loc.

As for the second equality, we can be sure it holds if γr(γr(x)(target))(f) is up-
dated. This means that the equation γb(γr(loc)(target))(f) = γr(γr(loc)(target))(f)
is potentially falsified when γr(loc)(target) = γr(x)(target)21

A sensible conservative semantic approximation is therefore:22condition

21Unless the value ee is the same as the old value in γr(γr(loc)(target))(f), an unlikely case that we
disregard.

22There is some indication that the original precise condition

∀ reachable loc 6= x : γa(loc)(f) = γb(γb(loc)(target))(f)

is practically superior because it also allows to concentrate dispersed equivalent data, a frequent

144

5.4. The “Move Field” base refactoring

∀ reachable loc 6= x : γr(loc)(target) 6= γr(x)(target) (5.24)

In plain English: the target fields of two Src objects must not point to the same
object if the f field of at least one of them is written. This has been anticipated
on page 132.

It is worth pointing out that the field f is introduced by the transformation. Other
pointers to target objects will never write f . Target objects that are not pointed
to by a Src object are not subject to this restriction either. Equation (5.24) is a
bit tough to check. An additional bit could be used in Target objects to indicate
whether they are or are not being used by a Src object to speed up checking.

Field read “ l1←l2.f ld”

The cases when fld 6= f or the referenced field does not exist ([[l2]]
s
Γ = Null) are trivial.23

I therefore assume x = [[l2]]
s
Γ, x 6= Null, rtt(γ(x))�ΓSrc and fld = f . The poststates sa

and sb for which we have to check β consistency are:24

sa = (None, σ[l1 7→ γ(x)(f)], γ) (5.25)

sb = (None, σ[l1 7→ γr(γr(x)(target))(f), v 7→ t], γr) (5.26)

This time, it is easy to see that the exception part and the heap are β-compatible. What
about the local variables? The definition mandates γ(x)(f) = γr(γr(x)(target))(f). But
this is exactly was is guaranteed by β(γ, γr) (equation (5.2)).

Object allocation “ l←new C” (and how it alters the proofs above)

This statement looks pretty unproblematic – and it actually is! All that is created is a
new object. If C �Γ Src, the required invariants hold trivially.

If C�ΓSrc however, one of the required invariants evaluates to false – uncondition-
ally. Here is how:25 The start states are γ and γr. For them, β(globs, γr) holds. The
end-states are γa = γ[loc 7→ init obj(Γ, Src)] and γb = γr[loc 7→ init obj(µ(Γ), Src)].

intent of the “Move Field” refactoring. An example from the TheBank application that comes with
this thesis: The field double interest is stored in class Account . If it turns out that interest
depends only on the Account ’s accountType field, interest can be moved to AccountType
even though there are many accounts that point to a single AccountType instance.

23It is the same as for field updates.
24Remember that the required γr(x)(target) 6= Null is guaranteed by β(γ, γr).
25For notational convenience, we assume C = Src

145

5. Refactoring Access Paths: Moving Data Between Objects

The updated stores look like this: γa = γ[loc 7→ {alla 7→ defvals}] and for the trans-
formed program: γb = γ[loc 7→ {target 7→ Null, alla 7→ defvals}]. Now let’s check β-
compatibility for γa(loc) and γb(loc):

{alla 7→ defvals} (f) = γb({target 7→ Null, alla 7→ defvals} (target))(f)

in equation (5.2). The left-hand side evaluates to the default value of f , but the right-
hand side is undefined (the heap does not map Null to an ordinary heap value, see
equation (3.14)). There is no associated target object that could contain the correct
value for f . The equation “Some value = no value” is never satisfied, i.e., it is just false!
Finding a strategy to satisfy the equation requires finding a way to weaken the require-
ment β. It ought to be a conservative weaking (β ⊂ βnew).

The are multiple options, (i.e., multiple different βnews) that can be proposed to solve this
problem. As noted previously, one possibility is to ask for establishment of the required
invariant condition in the constructor. We pointed out that while this is feasible in formal
specification and verification, it is not a satisfactory solution for refactoring. It treats
code differently depending on from where it is called. It creates asymmetric obligations
and it is an obstacle to truly local checking.

The simplest possibility is to admit that target fields are set to Null. The new β would
then be:

β(va, vb) ≡ rtt(va) = rtt(vb) ∧

vb(target) = Null ∨ (f⊳−va = vb

∧ va(f) = γb(vb(target))(f))
if va�ΓSrc

va = f⊳−vb if va�ΓTarget

va = vb otherwise

(5.27)

The proofs before have to be adapted: x 6= Null where x is the location of the Src object
has to be introduced explicitly as a precondition, i.e., a condition on the prestate. The
problem is with write accesses to target itself. In the case when we assign a non-null
object to target, the value of target.f has to match the shadow field’s content in the
untransformed version. How could this be checked? It cannot if we are erasing the field f
in Src. It cannot be the aim of this formal analysis to conclude that the original and the
transformed version have to be run side by side to find out whether the transformation
was applied correctly!26 A simple but already sufficient alternative is to demand that
initialization of target is monotonous. “Resetting” target is not possible. This does
not affect the equivalence relation and can be readily tested locally in the transformed
version of the program:

26For practical uses however, it is quite sufficient and even advisable if done automatically by a refac-
toring tool for testing.

146

5.4. The “Move Field” base refactoring

∀ rtt(γr(x))�ΓSrc : γr(x)(target) 6= Null⇒ γr′(x)(target) 6= Null (5.28)

equation (5.28) is an

additional sufficient

postcondition
This invariant has to be checked only for assignments to field target of Src objects.

The only advantage of this definition is that it can be ensured by local testing. We do
however, not eliminate the difficulty of initial write accesses to target. (The precon-
dition is sufficient to guarantee that target writes come before f -reads. This creates
a problem with the normative condition for write accesses to target fields we found in
equation (5.6). We derived it utilizing the precondition in β’s definition and concluded
that γr([[e]]

s
Γ)(f) = γr(γr(x)(target))(f) would guarantee preservation of β compatibil-

ity. This does of course hold if γr(x)(target) 6= Null. For γr(x)(target) = Null, there is
only one defensible strategy. Demand that the assigned target has its f field set to the
default value of ctt(f). The reason is that write accesses to f cannot have occured, the
shadow field f therefore still has the default value, which is what should be returned by
the next read access if there is any. This meta-argument cannot be used for the proof
– it assumes a definite beginning in a properly initialized state, i.e., a state compatible
with our assumption. The newly discovered invariant has to be made formal as part of
β’s definition, with which the formal proof becomes trivial:

β(va, vb) ≡ rtt(va) = rtt(vb) ∧

(va(f) = defaultval(Src.f) ∧ vb(target) = Null)

∨ (f⊳−va = vb ∧ va(f) = γb(vb(target))(f))
if va�ΓSrc

va = f⊳−vb if va�ΓTarget

va = vb otherwise

(5.29)

This definition of β renders monotonous initialization of target unnecessary. target could
now be reset to Null if the field is set to the default value first. I do not consider this a
realistic condition however.

It also has to be pointed out that this construction is not a necessary outcome of the inves-
tigation. Other solutions might have been possible. It is a conservative attempt, but not
overly restrictive – at least not for the programs I can think of.

5.4.4. Summary of the proof structure in this chapter

1. Assume a derivation for Γ ⊢ s
t
−→s′ and assume β(s, r), which then determines r as

β(s).

2. Consider a derivation for Γ ⊢ r
t
−→r′. There is only one possibility because the

semantics is deterministic.

147

5. Refactoring Access Paths: Moving Data Between Objects

3. The checkable condition is “β(s′, r′) and the assumptions needed for step 2 un-
der the assumptions established in step 1”. This (minimal) condition has to be
jointly implied by the pre- and postconditions. I.e., pre- and postconditions are
conservative approximations.

5.5. Syntactic approximations

This chapter sketches some syntactic methods and analyses to conservatively approxi-
mate the local conditions that must be satisfied. For each approximation, we repeat the
desired condition and the more conservative condition the syntactic condition is sup-
posed to guarantee. Time and space do not allow to check the syntactic conditions for
their soundness.

Summary of normative conditions

The original Γ and the transformed µ(Γ) version of the program are equivalent wrt.
equation (3.16), section 5.4.3 and equation (5.29) if, for every execution of original t and
transformed µ(t), the following holds in µ(Γ):

t Cond. for execution Check

l.target←e γ
r
(x)(target) = Null ∧

x = [[l]]
s

Γ
6= Null ∧ ctt(γ

r
(x))�ΓSrc

[[e]]
s

Γ
= Null ∨ γ

r
([[e]]

s

Γ
)(f) =

defaultval(f)

l.target←e γ
r
(x)(target) 6= Null ∧

x = [[l]]
s

Γ
6= Null ∧ ctt(γ

r
(x))�ΓSrc

γ
r
([[e]]

s

Γ
)(f) = γ

r
(γ

r
(x)(target))(f)

l.f←e x = [[l]]
s

Γ
6= Null ∧ ctt(γ

r
(x))�ΓSrc γ

r
(x)(target) 6= Null ∧

∀ reachable loc 6= x :
γ

r
(loc)(target) 6= γ

r
(x)(target)

l1←l2.f x = [[l2]]
s

Γ
6= Null, rtt(γ(x))�ΓSrc γ

r
(x)(target) 6= Null

If these checks succeed, the state correspondences between Γ and µ(Γ) are retained.

Syntactic approximations: assignments to target

For assignments to Src.target (l.target←e), the following precondition has to be checked
if x = [[l]]sΓ 6= Null:

if γr(x)(target) = Null

then [[e]]sΓ = Null ∨ γr([[e]]
s
Γ)(f) = defaultval(f)

else γr([[e]]
s
Γ)(f) = γr(γr(x)(target))(f)

For identifying syntactic conditions, it might be useful to split the problem into two
parts. Ensure that (1) a non-null target is never overwritten with Null, (2) if a null

148

5.5. Syntactic approximations

target is overwritten, it must be overwritten with a Target object whose f is set to
w = defaultval(f), (3) if an update happens to an already initialized target, the f field
must not be modified.

Tackling (1) and (2) using static analysis The first two problems can be easily framed
as a data-flow problem that can be solved with a simple forward analysis. The fact that
only Src and Target objects and assignments to target have to be examined makes the
procedure feasible and fast. It is best to keep different data-flow information for Src
and for Target. The kind of information we provide is directly derived from the validity
conditions:

l.target←e is valid ⇐⇒

if l = Null

if l 6= Null ∧ l.target = Null ∧ e = Null

if l 6= Null ∧ l.target = Null ∧ e 6= Null ∧ e.f = w

if l 6= Null ∧ l.target 6= Null ∧ e 6= Null ∧ e.f = x.target.f

(5.30)

For Target e, the states are

{e = Null, e 6= Null ∧ e.f = w, e 6= Null ∧ e.f arbitrary}

For Src l, the relevant states are (if l.target is a separate entity in the analysis, there
could be only two states: l = Null and l 6= Null)

{l = Null, l 6= Null ∧ l.target = Null, l 6= Null ∧ l.target 6= Null ∧ l.target.f = w,

l 6= Null ∧ l.target 6= Null ∧ l.target.f = arbitrary} (5.31)

We use the textual representation of the conditions as labels for the states. Names or
entities point to abstract locations for every program point (may-alias information). Fol-
lowing the notation in [34, chap. 10], for a program point p and a name v, Alias(p, v) = L
means that v can point to any of the abstract locations in L. For the sake of the anal-
ysis, Null is also considered a location. This is the crucial point for the unification of
typestates and non-null types. With every location, we associate a subset of the pos-
sible states above. We initialize the subset to the appropriate condition (i.e., l = Null
resp. e = Null for Null, l 6= Null ∧ l.target = Null for new Src, e 6= Null ∧ e.f = w for
new Target and ∅ otherwise). We then propagate the possible states. Control flow joins
are set merges. Precision could be increased in cases we have perfect alias information,
i.e., if a aliasmust b, then state-updates to a also update the typestate of b destructively
(as opposed to just adding another possible state to b). This is comparable to “strong”
updates in [46].

149

5. Refactoring Access Paths: Moving Data Between Objects

This procedure is guaranteed to terminate because there is an upper bound of elements
in the set and the transfer function is monotone.

If the alias analysis is modular, the data-flow analysis can also be made modular by
abstracting methods by transfer functions.

The result of the analysis is the annotated program that can then be checked for com-
pliance with the necessary correctness criterion. Moreover, the algorithm identifies the
assignments to target for which equality of l.target.f and e.f must hold. This is what
we shall be using below.

Algorithms like this abound and their correctness is straightforward to prove. There is
hardly anything that I can contribute to such an algorithm or its explanation.

The proposed solution raises another, important objection however: is the resulting con-
tainment a syntactic restriction as advertised in the title of this chapter? Like every static
analysis, data-flow analyses try to interpret the behavior of programs at runtime. It is not
just a matter of giving for example a CFG whose instances guarantee the desired prop-
erties. In that respect, it is not a purely syntactic. This is true for all but the simplest
restrictions however. A different argument has to be found.

The main argument in favour of the analysis is this: Restrictions of this kind are normally
considered good software development practice. Programmers may intuitivitely adhere
to these restrictions and programs are more likely to satisfy them. All intuitively sensible
restrictions have been (or at least will be) expressed by a corresponding type system. A
type system could be used to ensure exactely the properties we are trying to establish
here: Finite state type system for instance (“typestates”) allow to express conditions
that are satisfied by objects at different times during their lifetime. The model presented
here can be translated to a specialized type system based e.g. on [12]. Type systems are
syntactic restrictions. It is possible to formulate them as a set of constraints over every
semantically meaningful syntactic class. The program satisfies the condition if there is
a satisfying assignment for all meta-variables. Such a non-constructive attempt would
probably be less useful than a static analysis.

I do personally believe that the analysis suggested here does have unique features that
sets it apart from other analyses and I claim it is more useful than simple typestates
because it combines non-null types with typestates. Typestates are associated with ob-
jects, not with names, i.e., they abstract invariants over an object’s state. Even though
typestates solve the problem prevalent in imperative languages that objects change over
time, it does not extend to the earliest phase of object initialization: before the object
comes into existence. This responsibility is accepted by non-null types. Non-null types
however provide stepwise initialization only in a very limited context. Combining type-
states and non-null types solves the problems both approaches have. Allowing sets of
typestates instead of one specific typestates yields more flexibility. This idea is explicitly
acknowledged in [12, sec. 3].

150

5.5. Syntactic approximations

Tackling (3) using another static analysis? – probably not The previous subsection
has led us with a program where some of the assignments to target have to satisfy
γr([[e]]

s
Γ)(f) = γr(γr(x)(target))(f). An approximation could be to demand [[e]]sΓ =

γr(x)(target). Copy propagation analysis could provide the necessary information for
both criteria. If we require [[e]]sΓ = γr(x)(target), the statements that always satisfy this
condition are probably programming errors. It is also unlikely that we can show that
the f fields are the same for some objects. Furthermore, as far as I know, keeping strict
correspondence between field values of different objects is not considered good software
development practice.

This would mean that we forbid write access to target unless we know that the right-
hand side of the assignment is either Null or an object whose f is w. This seems
to be quite restrictive. It is almost equivalent to having the field target declared
final but not requiring that the initialization definitely happens during construc-
tion.

Syntactic approximations: Assignment to f

For assignments to the field f we do have the condition

∀ reachable loc 6= x : γr(loc)(target) 6= γr(x)(target)

I.e., there must be at most one Src.target field pointing to every Target object. There
have been a lot of proposals for confining points-to relations between objects. Most of
them are based on the idea of “ownership”. Ownership type systems structure the
heap into contexts and limit the point-to relations between them. This seems too
restrictive in the limited context treated here: It is indeed allowed for any part of
the program to have any number of pointers to arbitrary Target objects. Access to
Target objects should thus not be restricted beyond the simple criterion mentioned
above.

If we accept the restriction that the Target object is created inside Src, the Universe
type system provides an apt framework for reasoning about the problem. Imagine target
is declared as rep inside Src. Let it be the only annotation we introduce for fields in
the program. It is still possible to pass around arbitrary pointers to the enclosed ob-
ject. These references will be readonly to prevent modifications to the internal state
of the Target object. We do not care about modifications however and we could just
ignore the readonly attribute for access to methods and fields of Target. When writing
Src.target however, ownership types must be taken into account to guarantee that no
aliasing through target occurs. All right-hand sides must be rep. Inference of anno-
tations could work by first introducing rep for all the entities that require it and then
finding an type assignment that satisfy all the restrictions as implemented by Nathalie
Kellenberger.

Note that access to Target objects that are not reached through a target field will not lead
to accesses of target .f and do not have to be specifically protected.

151

5. Refactoring Access Paths: Moving Data Between Objects

Syntactic approximations: Reading f

We have to show γr(x)(target) 6= Null. If x.target were Null, an exception would oc-
cur invalidating state equivalence. The typestates infered in section 5.5 can be used to
guarantee this condition.

If things are really simple, target could be declared final and adherence could be
checked (requires definite assignment during “construction”, which does not exist in our
language. It has to be made sure that assigned values are non-null.).

152

6. Implementation Example

Warning. This chapter is largely unrelated to the theoretical material in the rest of this
text. It provides a tutorial-like example that illustrates how the material can be implemented
in practice. It is also a technical description of some important mechanisms in Visual Studio
and Eclipse.

This chapter describes two prototypical implementations of refactoring tools for Spec#
and Java implementing the “Move Field” refactoring. The refactoring tools differ from
conventional tools in that they add specifications to the program – just as described in
the previous chapters.

The goal of this chapter is twofold:

• The tools serve as a demo to illustrate what refactoring with specifications feels
like, not as a development aid. For that reason, only the “Move Field” refactoring
is implemented. They are not intended to be used in development. Instead, they
are designed to be as minimally invasive as possible and to use as few internals of
the IDEs they are integrated with as possible.

• The tools are implemented in Visual Studio and Eclipse. These are two of the most
prominent IDEs on the market. This chapter is written in a tutorial-like manner.
After reading it, you will know (i) how to write a simple plugin in Visual Studio
and Eclipse (ii) how to implement an Eclipse Quick Assist extension. (iii) how to
use Eclipse’s ASTRewrite framework to implement refactorings and (iv) how to
use the Microsoft common compiler infrastructure.

MSR’s Spec# language supports contracts, invariants, non-null types, etc. Its specifica-
tion language is a bit more powerful than what is possible with Java assertions. I have
chosen Java and Spec# as examples for the following reason: For a refactoring tool to
be useful, it has to be tightly integrated with a development environment. Currently,
there are only two languages that are sufficiently supported with tools and at the same
time have sufficiently expressive specification capabilities built-in: JML and Spec#.1

1This rules out conventional C# and Visual Basic. C/C++2and Java support simple assertions (via
the assert keyword). This facility is very useful but not quite powerful enough for the conditions re-
quired by “Move Field”. Additional code instrumentation would be necessary (like adding a reference
count to target objects). Unfortunately, there is no standard means to declare code structures that
are soley used for assertion checking. It would actually be preferable to express all assertions using
only the language’s vocabulary as this renders composition with assertions trivial: The assertions
could just be transformed together with the source-code.

153

6. Implementation Example

JML integration is provided for Eclipse by a tool called JMLEclipse [24]. JMLEclipse
just patches the original JDT3 that comes with the Eclipse SDK instead of providing a
separate plugin. While it makes perfect sense to reuse the JDT code, I am not sure it is
the best idea to just put your own code into a framework that is actively being developed:
The latest version of JMLEclipse is for Eclipse 3.0. However, the current version of
Eclipse is 3.2, differing sustantially from the 3.0 release.

Spec# [3] is integrated in Visual Studio as a separate “VSPackage” (explained below)
that is installed just like any other language package. Even though Spec# is based on
C#, the Visual Studio support is separate. It seems however that the Spec# plugin is
maintained as an integral part of the Spec# project. Still, refactoring is not supported
for Spec# although it is for C#.

The refactoring tools are neither directly implemented for the JMLEclipse plugin nor
for Spec#’s Visual Studio integration: Instead, I have written them for Eclipse’s Java
Development Kit and for C# in Visual Studio (even though Spec# code is generated).
This is a viable alternative: JMLEclipse is based on the JDT and the refactoring tool
should be usable with JMLEclipse as well once it is available for Eclipse 3.2. The Eclipse
tool produces very basic Java assert in addition to JML assertions. Spec# is based
on C# and refactoring will probably become available for Spec# as well. The tool is
then usable from Spec# without modifications.

It is much easier to make an external refactoring tool look like a built-in one in Visual
Studio than in Eclipse: In particular, there are no Eclipse “Extension Points” for cus-
tom refactorings or source transformations in general.4 Unlike for Visual Studio, it is
not easily possible to augment the refactoring sub-menu in the code window context
menu.

The rest of the chapter is organized as follows: I first present the design, implementation
and use of the refactoring plugin for Visual Studio and describe its limitations. I then
show how a corresponding Eclipse refactoring plugin can be written. The Eclipse plugin
extends the Quick Assist extension point and therefore behaves differently from the built-
in refactorings. I then compare the two implementations. This chapter can also serve as a
quick introduction to the plugin mechanisms of the two IDEs.

6.1. Writing a plugin for Visual Studio 2005

The plugin presented in this section is a proper Visual Studio plugin. It is not a Macro
and it is not a VSPackage.

2Yes, assert is a macro in C/C++.
3Java Development Tools
4JDT still provides too few possibilities and standard means to extend the IDE. After all, there is a

reason that JMLEclipse was not implemented on top of the existing toolkit.

154

6.1. Writing a plugin for Visual Studio 2005

Visual Studio automation overview Macros are written in VBA and developed in
what is called the Macros IDE, based on Visual Studio. Macros can also be recorded, Macros

offering an easy way to explore the Visual Studio automation model including all automa-
tion objects provided by the various built-in programming language packages. Macros
are also easy to debug because they can be changed and restarted without restarting
Visual Studio.

Plugins are more complex than macros. They are autonomous COM objects that attach
to the Visual Studio environment. They implement the IDTExtensibility2 COM in- Add-ins, plugins

terface. Traditionally, Visual Studio plugins are called add-ins.

Now how do macros differ from plugins in their abilities? Of course, plugins are compiled
components, but that does not make them worse (or better)! There are however things
that cannot be done with macros [32]:

1. Add the plugin to the “Options” and “About” dialogs. (see figure 6.1)

2. Create tool windows and sophisticated dialogs (see figure 6.6)

3. Disable and enable commands in menus and toolbars (see figure 6.3)

Figure 6.1.: “Move Field” plugin is added to the “About” box. This is impossible with
macros.

Plugins are registered in XML files in the user’s home directory. This has changed since
Visual Studio 2003.

VSPackages are even more powerful. Support for a new programming language for
instance is implemented as a VSPackage. VSPackages can provide custom editors,
project types, dialogs, etc. VSPackages have to be registered in the Windows Reg-
istry.

The refactoring tool is written as a plugin. Macros are not suitable in this case because
most of the code in the tool is interacting with external C# libraries – the Spec#
compiler and the compiler support packages. If the libraries are written in C#, it is

155

6. Implementation Example

also a good idea to write the tool itself in C#. Plugins can also be loaded at start-up
time. This allows some initialization code to be run like adding entries to the context
menu.

Figure 6.2.: The tool is integrated into the context menu.

6.1.1. Implementation description

The plugin is connected by a XML file with the extension .Addin . It has to be placed in
the user’s Visual Studio 2005/Addins directory and contains all the information
the IDE needs to load the plugin. Here is the relevant excerpt.

<Assembly>..\Projects\FormalRefactoring\
FormalRefactoring\bin\FormalRefactoring.dll</
Assembly>

<FullClassName>FormalRefactoring.Connect</
FullClassName>

<LoadBehavior>0</LoadBehavior>
<CommandPreload>1</CommandPreload>

My refactoring plugin uses C# as an implementation language and therefore uses the
.NET wrappers instead of implementing a COM object directly. The assembly is speci-
fied first, followed by the qualified class name that will be used to instantiate the connec-
tion class that mediates between the plugin and the environment. Methods of this class
are called when the plugin is loaded, unloaded, the IDE starts, etc.

156

6.1. Writing a plugin for Visual Studio 2005

LoadBehavior 0 means that the plugin is not started when the IDE is started. This
is just important for debugging. CommandPreload is 1 if the plugin setup mechanism
should be invoked only once instead of each time the plugin is loaded.

Connect code The class invoked by the Visual Studio environment is

FormalRefactoring.Connect

The method that is called first, as a notification that the plugin is being loaded, is

OnConnection(
object application, ext_ConnectMode connectMode,
object addInInst, ref Array custom)

The application parameter is the top level object in the Visual Studio automation
model. The connectMode parameter is ext_ConnectMode.ext_cm_UISetup if
the plugin should install itself. If that case, the “Move field” command is installed into
the “Refactor” sub-menu of the context menu of the code window. The menu-item is
associated with a command string.

When the command’s availability is queried or it should be executed, the following plugin
methods are called

QueryStatus(string commandName,
vsCommandStatusTextWanted neededText,
ref vsCommandStatus status, ref object commandText)

Exec(string commandName,
vsCommandExecOption executeOption, ref object varIn,
ref object varOut, ref bool handled)

In my plugin, the commands (at the moment only one to be precise) are stored in a dic-
tionary that is consulated at each QueryStatus and Exec invocation. The invocations
are dispatched to the corresponding UserCmd item.

private static Dictionary< string, UserCmd>
userCommands

= new Dictionary< string,UserCmd>();
static Connect() {

foreach(Type t in UserCmd.userCmds) {
UserCmd cmd = (UserCmd)Activator.

CreateInstance(t);

157

6. Implementation Example

userCommands.Add("FormalRefactoring.Connect."
+ cmd.Name, cmd);

}
}

The important pieces are in the MoveField class that extends the abstract class
UserCmd. MoveField.Exec implements the actual transformation.

First, the selected field is retrieved using the current document’s code model that allows
access to “programmatic constructs in a source code file”. Unfortunately, it is not
supported for Spec#, so I am expecting C# editor windows here (the resulting code will
not be C#, but that’s a different story). In any case, it is a pragmatic decision to accept
this limitation – it would have been much more cumbersome to use the Spec# compiler
to get hold of code elements corresponding to the current selection. The code element
is retrieved in

selectedCodeElement(con, out doc, out projitem, out
codeElement);

which basically encapsulates a call to the corresponding environment routines.

In Exec , the fields that may point to the field are examined and presented in a dialog
box to the user

CodeVariable codeVariable = (CodeVariable)codeElement;
CodeType cls = (CodeType)codeVariable.Parent;
string fieldName = codeVariable.Name;
List< string> possibleTargets = new List< string>();

foreach(CodeElement m in cls.Members) {
if(m.Kind == vsCMElement.vsCMElementVariable) {

CodeVariable tvar = (CodeVariable)m;
if(tvar.Type.TypeKind == vsCMTypeRef.

vsCMTypeRefCodeType && tvar.Name !=
fieldName) {

possibleTargets.Add(tvar.Name);
}

}
}

Having selected a field, the actual refactoring method

movefield.MoveFieldRefactoring.performF

158

6.1. Writing a plugin for Visual Studio 2005

is called that analyzes and rewrites all changed files in the project. If there are compi-
lation errors, they are printed.

if(!movefield.MoveFieldRefactoring.performF(true,
files, fromClass, toClass, fieldName, target, out

errs)) {
foreach(string err in errs)

con.message(err);
return;

}

That’s basically all the connect class contains! Querying the status of the command has
been omitted. It is just like the actual transformation without calling performF at the
end.

Figure 6.3.: “Move Field” is not available if the text selection isn’t near a field declaration
for which the refactoring is applicable.

159

6. Implementation Example

Refactoring code The plugin calls performF as the last step. performF takes the
following arguments:

• string fromclass, toclass, field, target the fully qualified names
of the syntactic entities involved in the transformation.

• out string[] errors messages that made the refactoring fail and have to be
reported to the user

The method perform actually coordinates the transformation: First, the files are com-
piled by the Spec# compiler. Secondly, changes to the original source code are de-
rived from the AST returned by the compiler and the context information contained
therein.

Spec#’s compiler is based on System.Compiler , which is sometimes refered to as
Microsoft’s common compiler infrastructure (CCI). It is supposed to be used by all lan-
guages that use the .NET framework, including HScript, EcmaScript, Zonnon, Comega
(Cω), X++, Spec#, Sing#, Xaml and C/AL.

AST nodes are also defined in System.Compiler , which means that the nodes are the
union of all node kinds supported by all languages, including the CLR IL itself. The
nodes are rewritten destructively in various passes to resolve references, overloads, etc.
and to reduce the tree to a model over CLR IL, which is then serialized. The AST nodes
are defined as concrete classes and unlike in Eclipse’s code model, there are no interfaces
that hide the concrete implementation. The CCI nodes are just records of public fields,
i.e., the code model is passive. All fields can be null in case a value cannot be resolved
or there is some other error in the soure code. There are no explicit guarantees as to
which values can be expected. Most AST nodes are supposed to be used from more than
one language and they do not faithfully render the abstract syntax of the tree (unlike
the Eclipse AST nodes).5

Within perform , the compilation is factored into a separate compile routine that han-
dles the intricacy of instatiating compilation units and parsing them.

SpecSharpCompilerOptions options = makeOptions();
Compilation c = compile(fileNames, compiler, options,

out results);
if(c == null) return false;

Compilation is done by invoking methods on the compiler parameter. A new method
had to be introduced that resolves all overloads in a compilation unit but does not
simplify the parse tree. It is called ResolveParseTreeNoReduce . The strings identi-
fying the fields and classes involved are looked up and the result is stored as AST nodes.

5It is clear that this concept of a universal source-level IR is not universally appreciated and the Zonnon
compiler for instance uses its own IR that is then translated to System.Compiler nodes [20].

160

6.1. Writing a plugin for Visual Studio 2005

fromclass becomes fc , toclass becomes tc , field becomes ff , tf becomes tf .
The lookup is simply done by iterating over all global classes in the compilation unit,
even though the Module and TypeNode classes provide methods to look up types and
fields:

• TypeNode Module.GetType(Identifier Namespace,
Identifier name)

returns the type with the specified name in the specified namespace or null if such
a type cannot be resolved. It does not search referenced assemblies. To do so,
there is the method
TypeNode GetType(Identifier Namespace,

Identifier name,
bool lookInReferencedAssemblies)

• Field TypeNode.GetField(Identifier name)

returns the field declared by this type node with the specified name or null if there
is no such field.

Unfortunately, interesting source components that could further illustrate how to use
other components of the CCI are not available in the source distribution of Spec#. The
Visual Studio integration for instance is not shipped.6 If it were, the tool could have been
directly implemented inside the Spec# language package.

Transformation The transformation itself is kept simple. As I said above, a proper
refactoring tool needs some serious infrastructure like the one presented in section 6.2.
For this simplistic plugin, I just provide what is absolutely necessary to make the refac-
toring work for simple demo examples. The refactoring is specified as a number of
SourceChange s.

List<SourceChange> changes =
new List<SourceChange>(100);

SourceChange is a struct defined in System.Compiler . It describes a textual re-
placement in the source code. The list of changes is first collected and then applied to
the source files.

Changes happen at every access of the field ff . These changes are collected by an
AST visitor that extends StandardVisitor . This visitor class is used to transform
the tree, that’s why all the visit * methods return a value of the node type they
visit. This feature is not used here and the return value of the default implementation
is returned, which is just the identity. In CCI, the “dot” expression x.ff is translated to a
MemberBinding node in the AST after symbol-table lookup.

6Microsoft.SpecSharp.Package

161

6. Implementation Example

public override Expression VisitMemberBinding(
MemberBinding qid) {
if(qid.BoundMember == ff) {

SourceChange sc = new SourceChange();
sc.SourceContext = qid.BoundMemberExpression.

SourceContext;
sc.ChangedText = tf.Name + "." + ff.Name;
changes.Add(sc);

todo.Add(qid);
}
return base.VisitMemberBinding(qid);

}

BoundMemberExpression is the right-hand side of a dot expression, i.e., ff in case the
field has the name of the variable that identifies it. This SourceContext is replaced by
tf.ff , i.e., which is the string tf.Name + "."+ ff.Name .

The todoFF list contains all accesses of ff in a statement. todoTF contains the ac-
cesses of tf . For these accesses, assert-statements have to be generated. Needless
to say, this only works if sub-expressions do not have side effects. This is the case
in the sub-set discussed in this text, but will not be true in general for Spec#. For
demo purposes, I considered it enough. In the code below, someStmts contains all the
node types that are considered statements for which assertions have to be generated.
Aux.addLineBefore(changes, n, txt) inserts a line of text before node n, tak-
ing into account the indentation of the next line, but nothing else.

public override Node Visit(Node node) {
Node n = base.Visit(node);

if(someStmts.ContainsKey(n.NodeType)) {
foreach(MemberBinding mb in todoFF) {

string txt;
if(todoLhs.ContainsKey(mb)) {

// this f-access is on the left
txt = getAssignAssertionFF(mb, todoLhs

[mb]);
} else // this is on the right

txt = getReadAssertionFF(mb);

Aux.addLineBefore(changes, n, txt);
}

162

6.1. Writing a plugin for Visual Studio 2005

foreach(MemberBinding mb in todoTF) {
string txt;
if(todoLhs.ContainsKey(mb)) {

// this target-access is on the left
txt = getAssignAssertionTF(mb, todoLhs

[mb]);
} else // this is on the right

txt = getReadAssertionTF(mb);

Aux.addLineBefore(changes, n, txt);
}

todoTF.Clear();
todoFF.Clear();
todoLhs.Clear();

}
return n;

}

The exact definition of the assertions are taken directly from the table on page 148
(under “Summary of normative conditions”). The plugin computes the assertions as a
string. To keep the construction compact, I am using patterns in the string that are
replaced by the method
string getAssertion(MemberBinding mb,

AssignmentStatement ass, string format)

In the format string, {x.t} for instance is replaced by an access of the target field.
If an assignment is present, {e} is replaced by the right-hand side, etc. The defini-
tion of the four methods that calculate the assertion statements just contain a call to
getAssertion with the correct format string.

private string getReadAssertionFF(MemberBinding mb) {
return getAssertion(mb, null, "assert {x} == null

|| {x.t} != null;");
}

private string getAssignAssertionFF(MemberBinding mb,
AssignmentStatement ass) {
return getAssertion(mb, ass,

"assert {x} == null"
+" || ({x.t} != null && "+
"forall{{S} loc in enumof({S});"
+" loc.{t} != {x.t}});");

163

6. Implementation Example

}

private string getReadAssertionTF(MemberBinding mb) {
return getAssertion(mb, null,

"assert true;");
}

private string getAssignAssertionTF(MemberBinding mb,
AssignmentStatement ass) {
return getAssertion(mb, ass,

"assert {x} == null || ("
+"{x.t} == null ?"
+" {e} == null || {e}.{f} == {default_f}"
+": {e}.{f} == {x.t.f}"
+");");

}

For the subset covered in this research, the code above works just perfectly. In C# and
most other languages however, field accesses can also be used inside expressions. If the
field is accessed inside the condition of a while loop, the assertion will only be checked
once instead of before every evaluation of the expression. Problems also occur when
right-hand sides are not side effect free.

Appying CodeChanges After all the changes are stored in the changes list, the
changes are applied. The changes are applied from back to front of each file so that the
offsets do not have to be adjusted after each insertion:

if(fileChanges.TryGetValue(fileNames[i], out fchanges)
)

fchanges.Sort(delegate(SourceChange a,
SourceChange b) {
return b.SourceContext.StartPos - a.

SourceContext.StartPos;
});

StringBuilder sb = new StringBuilder(
c.CompilationUnits[i].SourceContext.SourceText);

for(int j = 0; j < fchanges.Count; j++) {
SourceContext cx = fchanges[j].SourceContext;
sb.Remove(cx.StartPos, cx.EndPos - cx.StartPos

);

164

6.2. Writing a plugin for Eclipse 3.2 and Eclipse’s refactoring framework

sb.Insert(cx.StartPos, fchanges[j].ChangedText
);

}

using(StreamWriter w = new StreamWriter(
newFileNames[i])) {

w.Write(sb.ToString());
}

Figure 6.4.: The tools show a modal dialog to let the user select the field along which
the field is to be moved.

6.2. Writing a plugin for Eclipse 3.2 and Eclipse’s refactoring
framework

The Eclipse IDE supports refactoring extremely well compared to other development
environments. It also provides an extensive framework for source code reorganisation.
It is this framework that I want to present in this section. Just as for Visual Studio, I
implement a small Eclipse extension that can perform the “Move Field” refactoring –
I present the refactoring with just one Java assert statement to safe some space. The
source code that comes with this thesis implements the whole range of checks using JML
specifications.

165

6. Implementation Example

Figure 6.5.: The result of executing the refactoring.

Extensions to Eclipse are always called plugins, no matter how they are actually built. In
fact, everything except the basic infrastructure is a plugin in eclipse. The implementation
is now referred to as a bundle since Eclipse 3.0 is trying to adhere to – and extending –
the OSGi standard.

Eclipse plugins can be extended by implementing so-called extension points. The thing
that implements an extension is called the extension and is itself inside a plugin. Unfor-
tunately, there are no extension points for custom refactorings. It is thus impossible to
make custom refactorings look like built-in ones without changing the internals of the
JDT plugin.

The plugin presented here extends the Quick Assist extension point, i.e., it implements
a Quick Assist. Quick Assists are tools that provide context sensitive assistence for the
programmer normally by local transformations on the source code. The great thing
about the Quick Assist extension point is that it is intended for exactly the purpose
I am using it: Looking at the AST and determining whether some transformation is
applicable. The extension point gives you direct access to the underlying compilation
unit.

166

6.2. Writing a plugin for Eclipse 3.2 and Eclipse’s refactoring framework

6.2.1. Quick Assist workflow

The class that implements the Quick Assist is MvFieldQuickAssist and has to im-
plement IQuickAssistProcessor .

The class is required to implement two methods

boolean hasAssists(IInvocationContext context) throws
CoreException;

IJavaCompletionProposal[] getAssists(
IInvocationContext context, IProblemLocation[]
locations) throws CoreException;

hasAssists is queried to indicate whether Quick Assistance is available in the given
context. It corresponds to the Query method in Visual Studio.

getAssists returns a number of of IJavaCompletionProposal objects.

Here are the most important methods of the IJavaCompletionProposal inter-
face:

String getDisplayString();
void apply(IDocument document);

The IJavaCompletionProposal objects contain all the information to display and
execute the Quick Assist. All the objects returned are displayed to the user, who can
select one of them.

getDisplayString() returns the string that is displayed in the list-box that pops
up when pressing Ctrl+1. apply effectuates the changes stored in this object of type
IJavaCompletionProposal . This method is called when the user selects the pro-
posal.

6.2.2. Code walkthrough

I didn’t delve into the details of Visual Studio’s CodeModel and I didn’t discuss Query
because it differs from what is actually used for the refactoring. In Eclipse however,
there is only one code model, so I will take this chance and explain how hasAssists
works.

hasAssists must be precise, that is return true only if there are actually proposals.
The work that has to be done in this routine is consequently about the same what is done
in getAssists that returns the assists for a given context.

167

6. Implementation Example

Figure 6.6.: Choosing the refactoring in the Quick Assist menu.

The assists are stored in an auxiliary class Proposals . hasAssists constructs the
proposals and tests whether they are applicable, that is, whether there are any propos-
als.

public boolean hasAssists(IInvocationContext ct)
throws CoreException {
return new Proposals(ct, false).isApplicable();

}

The method getAssists , used to collect Quick Assists, also constructs the proposals
and returns them. Eclipse has the idea that it passes compilation problems that are
close to the invocation site as an additional parameter locations . They are are just
ignored: as long as the proposals can be successfully constructed, it is ok if there are
problems around.

public IJavaCompletionProposal[] getAssists(
IInvocationContext context,

IProblemLocation[] locations) throws
CoreException {

return (new Proposals(context, true)).getAll();
}

Let’s now have a look at the Proposals class and its constructor that encapsulates the
functionality for “Move Field”.

The constructor takes two arguments: IInvocationContext ct and boolean produce
produce = false means that the proposals do not actually have to be produced and

168

6.2. Writing a plugin for Eclipse 3.2 and Eclipse’s refactoring framework

the constructor aborts once the first proposal is found. ct just carries the invocation con-
text that gets passes to hasAssists and getAssists .

The context provides methods to retrieve the AST for the compilation unit and – what is
really handy – the node that is covered by the current selection.

cu = ct.getCompilationUnit();
ASTNode p = ct.getCoveredNode();

The Quick Assist assumes that the user selects the name of the field to be moved first
and then presses Ctrl+1. If there is no selection, the Quick Assist does not have anything
to do.

if(p == null) return;

The same is true if the user does not select a proper name: Name is the superclass of
all nodes that refer to bindables, i.e., named entities, like procedure names, field names,
qualified class names, etc.

if(!(p instanceof Name))
return;

The name has to be resolved to a field declaration. This is done with resolveBinding
that returns a “binding”, i.e., the reference to a named entity in Java. If the binding
cannot be resolved, resolveBinding returns null.

Name pn = (Name)p;
IBinding ffb = pn.resolveBinding();
if(ffb == null) return;

ffb is actually an IVariableBinding (if it really refers to a field). Other possibilities
are IPackageBinding , ITypeBinding , IMethodBinding .

Most bindings have an underlying Java element that is represented with the interface
IJavaElement . Only bindables that are not defined in the Java language itself (like
the built-in types) do not have corresponding IJavaElement s. All other bindables do
have a corresponding IJavaElement sub-interface, e.g., IType , IMethod , IField ,
ITypeParameter , etc.

IJavaElement ffj = ffb.getJavaElement();
if(ffj == null) return;
if(ffj.getElementType() != ffj.FIELD)

169

6. Implementation Example

return;

It is already quite good to have an IJavaElement at hand. What is needed however is
the corresponding node in the source code. I use the internal method findDeclaration
here. Using internal APIs is not recommended as they may change without notice. I
do so because there are no public methods to achieve the same in a similarly concise
manner.

ff = (VariableDeclarationFragment)ASTNodes
.findDeclaration(ffb, p.getRoot());

if(ff == null) return;

The method findDeclaration returns a VariableDeclarationFragment AST
node. A VariableDeclarationFragment is part of a variable or field declaration
(type FieldDeclaration).

The AST nodes in Eclipse are truly abstract syntax trees. The AST closely follows the
structure of the source code and is thus formidably suited for specifying refactorings.
This contrasts with the use of the tree used in .NET’s CCI that emphasizes the tree as an
intermediary representation. It is also referred to as such in the documentation. While
I prefer the approach chosen in System.Compiler , some language specific hooks that
allow restoring the concrete program representation – and frameworks that can do it –
wouldn’t hurt too much.7

The FieldDeclaration in turn is a child of the TypeDeclaration . Calling method
getParent twice thus returns the class node if everything is parsed as it should
be.

FieldDeclaration ffdecl = (FieldDeclaration)ff.
getParent();

ASTNode clnode = ffdecl.getParent();
if(clnode == null || clnode.getNodeType() != ASTNode.

TYPE_DECLARATION)
return;

fc = (TypeDeclaration)clnode;

7.NET does provide SourceContexts that allow to retrieve the underlying source code, but not the
originating grammar productions.

170

6.2. Writing a plugin for Eclipse 3.2 and Eclipse’s refactoring framework

I restrict the analysis to just one compilation unit and the Quick Assist only updates
the current unit.8 For a public type with a field that is public, protected or has default
visibility, the transformation is in general not correct as some accesses to the field can
be from outside the current unit.9

if((fc.getModifiers() & Modifier.PUBLIC) != 0
&& (ffdecl.getModifiers() & Modifier.PRIVATE) == 0)

return;

Quick Assist will present the user with a list of fields along which the selected field is
to be moved. There is only one way to do that: iterating through all the fields declared
in fc . This requires two for loops because each field is inside a FieldDeclaration
containing VariableDeclarationFragment s.

FieldDeclaration[] fdecl = fc.getFields();
for (int i = 0; i < fdecl.length; i++) ...

List flds = fdecl[i].fragments();
for (Iterator itf = flds.iterator(); itf.hasNext()

;) ...
VariableDeclarationFragment tf =

(VariableDeclarationFragment) itf.next();

What follows resembles what is done above for the source class fc and source field
ff . The field declaration uses a type, which must not be an array type nor a primitive
type.

Type tc_occurence = fdecl[i].getType();

if ((tc_occurence.isArrayType()) || (tc_occurence.
isPrimitiveType()))
continue;

It is a peculiarity of Java that array brackets [] can be put both after the type and
after after the variable name in a declaration. For a fragment, they are called extra
dimensions (a[][] has two extra dimensions)

if(tf.getExtraDimensions() > 0)
continue;

8This restriction does not apply to the .NET version, which updates all files in the project.
9The test could be skipped if absolutely necessary as the transformation is likely (i.e., in the absence

of shadowing) to produce compile-time errors.

171

6. Implementation Example

The type declaration tc is obtained as above using the pair resolveBinding and
findDeclaration . The proposals are stored in the target list. Every Proposal
contains a reference to the target field tf and the target class tc .

if(target == null)
target = new ArrayList<Proposal>(2);

Proposal prop = new
Proposal(this, target.size(), tf, tc);

target.add(prop);

The proposals implement the IJavaCompletionProposal interface. An array of
IJavaCompletionProposal objects is to be returned by getAssists . The method
getAll() provides them from the target list.

public IJavaCompletionProposal[] getAll() {
if(target == null) return null;
return (IJavaCompletionProposal[])target.toArray(

new IJavaCompletionProposal[target.size()]);
}

Applying the transformation As described above, every Proposal has an apply
method that is called when the user chooses to execute the Quick Assist.

The AST is used to work with the transformation framework built into Eclipse. It allows
to specify the transformations as tree updates on trees and delegate the responsibility
to generate text-edits to the framework. As you’ll see, this is much more elegant than
the ad-hoc approach used for Visual Studio.

Transformations on source-code are encapsulated as ASTRewrite objects. ASTRewrite
allows you to collect transformation information and then apply it to the AST at
once. The transformation is recorded without modifying the original AST. What makes
ASTRewrite so powerful is the fact that it preserves comments and formatting, and
also respects code formatting settings by the user.

final ASTRewrite rewriter = ASTRewrite.create(ast);

Before applying the tranformation, I distinguish two steps: Moving the declaration and
moving the accesses to the field.

172

6.2. Writing a plugin for Eclipse 3.2 and Eclipse’s refactoring framework

moveDeclaration(ff, ast, rewriter);
adjustAccesses(targetField, ff,fc,rewriter, ast);
TextEdit ed = rewriter.rewriteAST(document, null);

Both moveDeclaration and adjustAccesses add transformations to rewriter ,
which is what I want to explain. moveDeclaration is the simpler one, so I desist from
discussing adjustAccesses .

The declaration fragment ff has to be moved from the source class to the target class.
It is not directly possible to unlink the fragment and record the insertion in rewriter .
Instead, a pseudo-node (“placeholder”) has to be created that represents ff . This
placeholder can be used just as it were ff in rewriter

ASTNode newField = rewriter.createMoveTarget(ff);

Except for the field fragment, the new declaration is made from scratch.

FieldDeclaration newDecl = (FieldDeclaration)ast.
createInstance(ASTNode.FIELD_DECLARATION);

List newFrag = newDecl.fragments();
newFrag.add(newField);

The newly created declaration has to be inserted. This done with a ListRewrite that
is tightly integrated with ASTRewrite . Whenever there is a list of something, you have
to create a ListRewrite object and you cannot use ASTRewrite directly. In this
case, it is the list of declaration in the class body.

ListRewrite lrw = rewriter.getListRewrite(targetClass,
targetClass.BODY_DECLARATIONS_PROPERTY);
lrw.insertFirst(newDecl, null);

The old declaration of the field has to be removed. If there is only one fragment, the
whole declaration has to be removed, otherwise, it is sufficient to remove the fragment.
This is a weakness of ASTRewrite .

rewriter.remove(oldDecl.fragments().size() > 1 ? ff :
oldDecl, null);

173

6. Implementation Example

6.3. Concluding remarks

This chapter has shown that refactoring with specifications can be supported with rela-
tively modest efforts. The conditions yielded by the proof process are directly applica-
ble.

The effort is likely to increase when trying to make the refactorings correct for all valid
Java and Spec# programs, not only those that comply with the subset discussed here.
Small transformations that can be modularly applied are then necessary. Examples:
Transformations to introduce temporary variables, to extract loops conditionals, take if
statements apart, etc. Such facilities are likely to exist already somewhere in Eclipse and
Visual Studio. It would greatly facilitate the vision of refactorings with specifications if
they were made available for custom transformations.

Even if more supporting facilities are made available to the plugin developer, only the tool
vendor can ultimately leverage the enormous potential of specification-supported refac-
torings. This chapter is an illustration that it is easily possible.

174

7. Conclusion

In the preceding chapters, I presented techniques for proving refactorings correct, for
making difficult refactorings accessible to tool support, for extracting specifications from
the application of refactorings at no cost, revealing knowledge about the program that
would otherwise remain concealed. The key to this achievement is the first formal-
ization of refactorings that has been applied to realistic language semantics and re-
alistic transformations. The corresponding proof process yields correctness conditions
for free. These conditions can then be used as specifications in the transformed pro-
gram.

I summarize the main technical contributions of this thesis and discuss their relevance
and limitations. I also discuss possible future research that is mandated by the insights
this text provides.

7.1. Summary and contributions

Refactorings are program transformations that aim at retaining equivalence. The orig-
inal program is transformed to the refactored program. The two programs are related:
The code is related by the transformation function and data correspondence relates the
state spaces of the programs. The correspondence of data is not a simple simulation be-
tween the transition systems defined by the programs: data correspondence may change
depending on the positions of the program counters and it may not exist at all for some
points. Moreover, a step in the original program can correspond to multiple steps in the
refactored program and vice versa. This flexibility makes it handy to prove refactorings
correct and to use the data correspondence that is intutively the right one. Data corre-
spondence is required to be the identity on the state of issued I/O operations. The I/O
space is constructed to make it impossible to invalidate correspondence and then restore
it. Thus it is guaranteed that externally visible intermediary states are always the same
for the original and the refactored program.

The correctness proof proceeds inductively, statement by statement. Conditions that
are not necessarily fulfilled are correctness conditions of the refactoring. These are
local conditions, i.e., they can be expressed as pre- and postconditions of the statement
that is being examined. Local conditions can be easily added as specifications to the
transformed program, for instance as assert statements.

175

7. Conclusion

Refactorings can be applied one after another. There are no special requirements if
specifications are treated as part of the program: Specifications are just transformed
together with the program.

7.1.1. Catalogue of simple refactorings

This text contains a systematic catalogue of refactorings. They are broken down to
atomic refactorings that either have limited lexical scope or only need a limited number
of changes. The catalogue is an illustration how other refactorings can be formalized,
analyzed and tackled.

7.1.2. Refactoring responsibilities

The “Move” refactoring allows the programmer to move data from one object to another.
The association between the two objects is given by a field in the simplest case. This
simple case provides an interesting example and shows that the specifications produced
by a refactoring may differ depending on the program’s structure and the programmer’s
intent.

7.1.3. Refactoring as specification by interaction

Visual Studio has Domain Specific Languages and “Code Snippets”, Eclipse and Net-
Beans have Quick Assists and Quick Fixes, JBuilder has Wizards, SharpDevelop has
“Auto code generation”. All of them support model driven development in some way
or another. Coding can largely be done by applying the right tools in the right order
instead of inserting individual characters into a source code file. This should be done
to a far greater extent. This is a great opportunity for specifications. Programmers
can hardly be expected to manually insert specifications into their source if they do not
express functional properties. Instead, most specifications should be inserted by code
transformers.

This is more powerful than static inference because it can reveal what is not apparent
and more powerful than runtime inference because it illustrates what is not tested yet
imposed by the programmer.

7.2. Future work

Depending on the programmer’s intent, refactorings may have different correctness con-
ditions and different data correspondences. The scope and importance of refactorings
can only be understood if these relationships are systematically analyzed. To make this
possible, some experience must be gained with complex tool-supported refactorings that

176

7.2. Future work

benefit from specifications. Refactoring tools that master such refactorings do not exist
to date. I have shown how an implemenation could look like in chapter 6. It is not
necessary to wait for the widespread adoption of languages that support specifications
like Spec# or JML. Normal Java assert statements are quite sufficient. It is more im-
portant however that these tools make available features that render “programming by
specification” feasible. They include: Reverse refactoring for every forward refactor-
ing, association between code editing steps and specifications that are added, history
of code transformations and possibilities to roll them back selectively (sometimes called
“non-destructive/selective undo”). The process will increase the number of refactoring(-
variant)s that should be implemented. Frameworks that support building and composing
refactorings are desparately needed. A notation like the one used throughout this thesis
can serve as a basis, but it has limitations (illustrated at the end of chapter 4) that
should be avoided.

177

7. Conclusion

178

A. Code For Program Representation

The code listed here corresponds to the mathematical definition in chapter 3.

class Name{} /* Opaque type */

class Prog
: Dictionary<Name,Decl>{}

class Fields
: Dictionary<Name,TypeTag>{}

class Methods
: Dictionary<MethodSignature, MethodDecl>{}

class Decl{
Name superclass;
List<Name> superifaces;
Fields fields;
Methods methods;
StaticInitializer staticinitializer;

}

class StaticInitializer : Statement { }

class MethodSignature{
Name mname;
List<TypeTag> paramTs;

}

class MethodDecl{
List<Param> prms;
TypeTag retT;
MethodBody body;

}

class MethodBody{}

class ExternalMethodBody
: MethodBody{}

class NoMethodBody
: MethodBody{}

class ImplementedMethodBody
: Statement{}

class TypeTag{}

class SimpleTypeTag : TypeTag{
Name className;

}

class ArrayTypeTag : TypeTag{
TypeTag baseType;

}

class Expr{
enum Kind {

ADD, MUL, ...
LDFLD, WRFLD, INVKVIR,
INVKSPC, ...

}
Kind kind;
Expr[] nodes;

}

class Statement : Expr { }

class Param{
Name pname;
TypeTag paramT;

}

179

A. Code For Program Representation

180

B. Notations

See also section 3.1.2 for a description of Γ[· · ·]

(T)option is not an algebraic datatype. Instead, (T)option = T + {undef }. This
means that the partial function definition A →֒ B is equivalent to
A→ (B)option, that the constants None and undef are equivalent, that
Some x = x.
I use the constructor Some x to denote elements x of (T)option for which
x 6= None. This notation is used for the operational semantics to make
the rule specifications more concise.

ctt(x) The function returns the declared type (compile time type) of variable
(or field) x. This type can be thought of as being encoded in the name
itself.

rtt(x) returns the runtime-type (i.e., the first element in a heap value) of a value
in the object heap. A close look at the operational semantics reveals that
rtt(x) is invariant for the lifetime of the program for any given location

and the heap, i.e., Γ ⊢ s
t
−→s′ ∧ rtt(s. γ(p)) = T ⇒ rtt(s′. γ(p)) = T

β is the function formulation of β, i.e., β = {x 7→ y|(x, y) ∈ β} it is well
defined only if β is actually a function, i.e., β(x, y1) ∧ β(x, y2)⇒ y1 = y2

init obj returns a function that maps all field values of the specified type to the
default value for this type (0 and false for primitive types, Null for refer-
ences).

X ⊳ F Restricts the function F to domain X such that (X ⊳F)(y) is not defined
for y /∈ X.

x⊳−F Subtracts x from the domainn of F , i.e., x⊳−F = (dom F − {x}) ⊳ F .
{T x; S} introduces block local variables. It is called the “block statement”. Its

definition is

Γ ⊢ (xcpt, σ, γ)
S
−→(xcpt′, σ′, γ′)

Γ ⊢ (xcpt, σ, γ)
{T x; S}
−−−−−→(xcpt′, σ′[x 7→ undef], γ′)

Refactoring equivalence for {T x; S} does not have to be considered sep-
arately: There are no refactorings for which the block statement would
pose any difficulties as it is formally equivalent to S;x←undef and rea-
soning is always over individual statements.

181

B. Notations

(x : T, . . .) For the mathematical definition of the program representation in chap-
ter 3, I rely on named tuples. The set Z ≡ (a : X, b : Y) is equivalent
to the set Z ≡ X × Y where a(t) = t.a = fst(t) and b(t) = t.b = snd(t)
if t ∈ Z where fst(x, y) = x and snd(x, y) = y are the usual extraction
functions for tuples. Tuples with more than two components are defined
similarly. This is the same definition that is sometimes used in relational
algebra. A named tuple can also be interpreted as a partial function that
returns the value of each component for the name of the component. In
the example above, the tuple (x, y) corresponds to the partial function
{a 7→ x, b 7→ y}. “a” and “b” are called accessors in this context.1

1Programmers should find this interpretation of tuples as partial functions natural because it closely
resembles object representation in the operational semantics. The view also corresponds directly
to the concept of objects in prototype-oriented languages like Self or ECMAScript that have the
dictionary directly attached to them. For an illustration, have a look at the following constructor
function Z in JScript.NET.

function Z(a : X, b : Y){
this.a = a; this.b = b;

}

var z = new Z(x,y);

print("z.a = ", z.a, "; z[’a’] = ", z["a"]);
print("z.b = ", z.b, "; z[’b’] = ", z["b"]);

Z returns a tuple. The tuple is named and corresponds to the following class definition.

class Z{
var a : X, b : Y;

}

Instead of the usual dot (z.a) notation, the square bracket notation z["a"] can also be used
to access the component. One possibility is to interpret z[?] as a partial functions from names to
component values.

182

C. About the Operational Semantics

To the end of establishing local criteria for equivalence during refactoring, I am using an
operational semantics. The advantages of operational semantics over other formaliza-
tions is well-accepted: the formalism requires only minimal mathematical background,
it is easy to derive executable models from the semantics, it is easier to understand than
other approaches.

Oheimb’s operational semantics This appendix gives a detailed account of this se-
mantics presented in table 3.3 and table 3.4. I originally envisioned using the oper-
ational semantics presented in [44]. I found that a simplified variant that is tailored
and sufficient for the goal I am persuing here is more appropriate as the formalism
in chapter 3 aims at being largely independent of the actual semantics – any opera-
tional semantics with a program state similar to the one used here. As I said before,
this is intentional: operational semantics are the touchstones of novel theories, not vice
versa.

There is another reason not to use David’s formalization directly: He had to use the
theorem prover Isabelle but I do not. Partial functions are used directly, instead
of “(α, β)table”. Interfaces and classes are unified and the notations are much less
heavy.

The operational semantics is also simpler : side-effects in expressions are dropped for
instance. This leads to more rules that are easier to understand. There are separate
rules for array access, array update, object access, object update, etc. Many of the rules
are very similar. I prefer having multiple similar rules than just one rule that encodes
different behaviours (like method-lookup).

At the same time, the text tries to use additional simplifications that do not change the
expressiveness of the underlying language: It eliminates different modi when invoking
methods and replaces them by two different commands for invoking virtual functions
and for invoking non-virtual functions.

Static methods are translated to methods of the corresponding classes (meta-class ob-
jects in Smalltalk). This is a unification that is not explicitly recognized in [44]. It does,
however, recognize that there is some more room for unification in his model (p. 39,
bottom, “One could adopt the Smalltalk view that everything is an object”) but it is
not clear how useful the proposed unification would be for checking program proper-
ties.

183

C. About the Operational Semantics

Omissions Type safety and well-formedness is not formalized even though I will have
to assume certain invariants from time to time. Because the semantics used here is
still an adaption of the operational model presented in [44], the text should be easily
transfereable to the original semantics with some effort. Moreover, the semantics re-
tains all the properties I am investigating as part of this work. This includes, most
importantly, heap, class, method, parameter structure, local variables, fields, etc. Note
that properties that are to be ensured by the type system are not subject to investiga-
tion. It could be established separately by proving that the transformations result in
well-formed programs. Together with a type-safety theorem, this would guarantee such
properties.

Capabilities The semantics I am using still has to be reasonably sophisticated because
refactoring may only become interesting if relatively complex conditions are taken into
account like exceptions, class initialization errors, etc. It would certainly be worthwhile
to use an even more detailed specifications [41] if it were more easily accessible. [44] is
probably the most appropriate choice as a basis for such a semantics as (i) it supports
the features needed and it (ii) is a big-step semantics, which might simplify reasoning.
Other semantics like [38] for instance lack features I’d like to have (dynamic class loading
and exception handling). Most1 big-step semantics that have these features however
necessarily seem pretty similar and it may not matter too much what to base this work
on.

In our formalism, just as in [44], the state consists of the currently active exception
(xcpt), the local variables and parameters (σ) and the globals (γ, it includes the heap and

class objects). It also includes the sequence of I/O operations u = (a
I/O
1 , · · · , a

I/O
|u|) and the

“decision procedure” for inputs u0, collectively written as u because u0 is supposed to be
exogenously given and identical for all runs of all programs.

s ≡ (xcpt, σ, γ, u)

Note that [44] calls the “full state” σ and refers to the locals and globals together as
s.

The program is called Γ and the big-step transition relation has a conventional (and uni-
fied) format for a statement that is identified by a path t in Γ (statement t):

Γ ⊢ (xcpt, σ, γ, u)
t
−→(xcpt′, σ′, γ′, u′)

Unlike [44], no separate expression is used that is evaluated to return the result but
assume that a procedure’s desired result value is stored in a special variable result just
as in [38].

1All I’ve seen

184

The rest of this chapter discusses some additional differences that are related to individ-
ual statements.

Exception propagation The rule for exception propagation is simplified. xcpt =
(ObjectLocation)option just as in [44]. Null is not used instead of None to signal the
absence of an exception – unlike in [38]. The only reason is to notationally simplify case
distinctions on whether an exception is active or not.

Object allocation Object allocation is the same as in [44]. It is not our primary goal
to retain equivalence with respect to allocators. The heap is a function from locations
to values.

The heap is not axiomatically modelled. rtt is used to extract the type tag from a
heap value. ctt is the declared type of a variable or field. For heap values v, v(f) =
(right(v))(f). The full definition of object allocation involves some technicalities like
setting the fields of the object to default values. These are covered in [44, p. 40] and can
be accepted for our purpose. We use the function init obj, assumed to return a value
instead of an updated state. Object allocation does not cause OutOfMemory errors.
They are rare in practice and make it difficult to reason about refactorings that increase
the heap size. The criteria in this text are correct modulo out-of-memory errors as
legitimated in chapter 1.

Raising exceptions In [44], an exception can either be a heap allocated non-null
location or a standard exception that is merely identified by its name (p. 42). It seems
more sensible to erase this distinction.

185

C. About the Operational Semantics

186

Bibliography

[1] A. W. Appel and J. Palsberg. Modern Compiler Implementation in Java. Cambridge
University Press, New York, NY, USA, 2003.

[2] F. Bannwart and P. Müller. A logic for bytecode. In Bytecode Semantics, Verifica-
tion, Analysis and Transformation (BYTECODE), Electronic Notes in Theoretical
Computer Science. Elsevier, 2005.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In CASSIS, volume 3362 of LNCS. Springer-Verlag, 2004.

[4] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 2nd edition, 2004.

[5] P. L. Bergstein. Object-preserving class transformations. In OOPSLA ’91: Confer-
ence proceedings on Object-oriented programming systems, languages, and applica-
tions, pages 299–313, New York, NY, USA, 1991. ACM Press.

[6] E. Börger, G. Fruja, V. Gervasi, and R. F. Stärk. A high-level modular definition of
the semantics of C#. Theoretical Computer Science, 2004. Accepted for publication.

[7] D. Box and A. Hejlsberg. LINQ project overview. Available from
http://msdn.microsoft.com/netframework/future/linq/ default.aspx .

[8] E. Casais. An incremental class reorganization approach. In ECOOP ’92: Proceed-
ings of the European Conference on Object-Oriented Programming, pages 114–132,
London, UK, 1992. Springer-Verlag.

[9] M. Cinneide and P. Nixon. Composite refactorings for Java programs, 2000.

[10] M. O Cinneide. Automated Application of Design Patterns: A Refactoring Ap-
proach. PhD thesis, University of Dublin, Trinity College, 2001.

[11] M. Cornélio. Refactorings as Formal Refinements. PhD thesis, Universidade de
Pernambuco, 2004.

[12] R. DeLine and M. Fähndrich. Typestates for objects. In ECOOP, pages 465–490,
2004.

[13] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object Oriented Reengineering Patterns.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002. Foreword By-
Ralph E. Johnson.

187

http://msdn.microsoft.com/netframework/future/linq/default.aspx

Bibliography

[14] Standard ECMA-262: ECMAScript Language Specification. ECMA International,
3rd edition, 1999.

[15] M. Feathers. Working Effectively with Legacy Code. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2004.

[16] M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[17] E. Gamma. Private conversation, 2005.

[18] R. Gheyi, T. Massoni, and P. Borba. An abstract equivalence notion for object
models. Electr. Notes Theor. Comput. Sci., 130:3–21, 2005.

[19] J. Gutknecht. Component-oriented virtual machines. Lecture script, 2003.

[20] J. Gutknecht. Private conversation, 2005.

[21] P. H. Hartel and L. Moreau. Formalizing the safety of Java, the Java Virtual
Machine, and Java Card. ACM Computing Surveys, 33(4):517–558, 2001.

[22] J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt. The Geneva convention
on the treatment of object aliasing. SIGPLAN OOPS Mess., 3(2):11–16, 1992.

[23] G. Hunt, J. Larus, M Abadi, M. Aiken, P. Barham, M. Fähndrich,
C. Hawblitzel, O. Hodson, S. Levi, N. Murphy, B. Steensgaard, D. Tarditi,
T. Wobber, and B. Zill. An overview of the Singularity project. Tech-
nical Report MSR-TR-2005-135, Microsoft Research, 2005. Available from
http://research.microsoft.com/os/singularity .

[24] About JMLEclipse. http://jmleclipse.projects.cis.ksu.edu/ .

[25] J. Kerievsky. Refactoring to Patterns. Addison-Wesley Professional, August 2004.

[26] R. Lämmel. Towards Generic Refactoring. In Proc. of Third ACM SIGPLAN
Workshop on Rule-Based Programming RULE’02, Pittsburgh, USA, October5 2002.
ACM Press. 14 pages.

[27] K. J. Lieberherr. Controlling the complexity of software designs. Available from
http://www.ccs.neu.edu/research/demeter/talks/eth-i bm-04/ .

[28] K. J. Lieberherr, W. L. Hürsch, and C. Xiao. Object-extending class transforma-
tions. Formal Aspects of Computing, (6):391–416, 1994. Also available as Technical
Report NU-CCS-91-8, Northeastern University.

[29] T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens. Formalizing refactorings
with graph transformations. J. Softw. Maint. Evol., 17(4):247–276, 2005.

[30] Object Mentor. Test driven development.

[31] Microsoft. C# 3.0 overview. Available from http://msdn.microsoft.com/ .

188

http://research.microsoft.com/os/singularity
http://jmleclipse.projects.cis.ksu.edu/
http://www.ccs.neu.edu/research/demeter/talks/eth-ibm-04/
http://msdn.microsoft.com/

Bibliography

[32] Microsoft. The spectrum of Visual Studio automation. Available from
http://msdn.microsoft.com/ .

[33] C. Morgan. Programming from specifications. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1990.

[34] S. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997.

[35] M. C. Norrie, A. Würgler, A. Palinginis, K. von Gunten, and M. Grossniklaus. OMS
Pro 2.0 introductory tutorial.

[36] M. Odersky and M. Zenger. Scalable component abstractions. In OOPSLA 2005.

[37] W. F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, Champaign,
IL, USA, 1992.

[38] A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In
S. D. Swierstra, editor, European Symposium on Programming (ESOP ’99), volume
1576, pages 162–176. Springer-Verlag, 1999.

[39] D. B. Roberts. Practical analysis for refactoring. PhD thesis, 1999. Adviser-Ralph
Johnson.

[40] R. F. Stärk. Formal specification and verification of the C# thread model. Theo-
retical Computer Science, 2005.

[41] R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine—
Definition, Verification, Validation. Springer-Verlag, 2001.

[42] R. F. Stärk, E. Börger, and J. Schmid. Java and the Java Virtual Machine: Defi-
nition, Verification, Validation with Cdrom. Springer-Verlag New York, Inc., 2001.

[43] L. Tokuda and D. Batory. Evolving object-oriented designs with refactorings. In
ASE ’99: Proceedings of the 14th IEEE International Conference on Automated
Software Engineering, page 174, Washington, DC, USA, 1999. IEEE Computer
Society.

[44] D. von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and
Hoare Logic. PhD thesis, Technische Universität München, 2001.

[45] D. A. Watt. Programming Language Design Concepts. John Wiley & Sons, 2004.

[46] J. Whaley and M. Rinard. Compositional pointer and escape analysis for java
programs. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 187–206,
New York, NY, USA, 1999. ACM Press.

[47] P. Wu and K. Lieberherr. Shadow programming: Reasoning about programs using
lexical join point information. In Proceedings of the 4th International Conference
on Generative Programming and Component Engineering, 2005.

189

http://msdn.microsoft.com/

Bibliography

All links have been verified on February 21, 2006.

190

