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Abstract

The goal of this semester-thesis is twofold. Firstly, we are defining an operational semantics and a
Hoare-style programming logic for an imaginary sequential, stack-based, bytecode language with local
variables, objects and dynamic dispatch that resembles the JVM or the CLR. Secondly, we explain
how to translate source-level proofs to the bytecode logic we have introduced in the first part.

1 Introduction

This paper defines a Hoare programming logic for a simple, sequential, stack based bytecode language
with objects and dynamic dispatch. For the purpose of our explanations, we shall call the virtual machine
for this bytecode language VMK. This machine is similar to the JVM or the CLR. The instruction set
is small to keep the logic simple, but large enough to show all the problems that may occur when trying
to specify a more realistic bytecode language for an existing virtual machine. The formalisms for the
bytecode logic closely follow [Ben04]. Objects and dynamic dispatch are treated similarly as in [PHM99].
It is not necessary to read these papers. We will repeat all the definitions, rules and conventions necessary
to understand our ideas.1

Unlike the logic in [Ben04], we do not merge specification and typing information in our bytecode logic.
But we naturally require certain well-typedness (see section 3.1.5 on page 14) conditions. This simple
well-formedness can be checked by a “bytecode verifier”. This separation of the verification process is
necessary to keep the programming logic manageable: Properties that can be easily checked by a verifier
are complicated enough2 that they should be reasoned about separately such that its result can form a
basis for the more complicated behavioral correctness proofs of a program.

1.1 Why is a Bytecode Logic and a Corresponding Translation Procedure
useful?

Is it necessary to have a logic for a bytecode programs? The ideas of proof-carrying code (PCC, [Nec97])
are already old. “Untrusted code” is augmented with information (the proof) that can render its (type-)
safety checkable. The obligation to provide a proof for the safety of a program is deferred to the code
producer. The only thing the user of the code has to do is checking the proof that comes with the program.
Checking a proof is comparably simple. This procedure allows mobile code to be executed directly and
without expensive runtime checks.

Unfortunately, properties described by PCC are typically limited to simple well-typedness of the binary
code. PCC is used for hardware platforms, where well-typedness is not guaranteed. Because the proofs
are simple, a certifying compiler can add a proof when compiling a program. For virtual machines like the
JVM or the CLR, the bytecode verifier automatically ensures the type-safety of a program.

What is more, in order to show that programs and especially program components do the right things, it is
just not enough to show that they do the things right, which is what PCC can guarantee. For complicated
properties like adherence to an interface specification, we need a formal program proof. But program
proofs are at most available on the level of the source code. They cannot be used for component- or class
libraries that are shipped or sent over a network as bytecode.

Our arguments illustrate the necessity of two elements for a “proven components industry”:
1Needless to say, what we define here may sometimes differ from the original in [Ben04] and [PHM99]
2e.g. are all variables definitely assigned when they are used, do the values on the stack contain values of the right type

for the operations applied to them, are all statements reachable?
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1. A logic for bytecode verification, to be able to show the correctness of bytecode programs.

2. An automatic translation from source code proofs to this bytecode logic. No one will be willing to
prove programs on the bytecode level and manual intervention is still necessary for formal program
verification.

The logic presented here and the accompanying translation procedure for program proofs is meant to be
a first step towards a system that can automatically produce formally verified bytecode from a verified
input program.

With introduction of the CLR, the idea of bytecode being a device for language interoperability has gained
ground. By the definition of how source code is translated to bytecode, we define at the same time how
source programs written in different languages can inter-operate. This fact defines another and important
application of any bytecode and its corresponding translation procedures of source level proofs into that
logic: To define a common semantics for specifications written in different languages. It can guarantee
that correctness properties survive across language boundaries and are even formally accessible.

This text treats the very simple case of a source and target language that are directly comparable.

The sections of this paper are organized as follows: We will introduce you to the source logic for the
subset of Java we are considering (taken from [PHM99]). We then define an operational semantics for
the VMKbytecode. The operational semantics directly leads to the Hoare-style program logic for bytecode
(our target calculus). The proof transformation procedure is explained in the following section and the
paper ends with an example of a translation from a source proof to a bytecode proof. There is also a
simple but complete implementation of the translation procedure given in section A on page 49.

We do not prove the soundness of our logic with respect to the operational semantics. A proof for a subset
of the VMK instructions can be found in [Ben04]. The soundness proof of the remaining instructions
should be straightforward, because there is a one-to-one correspondence between proof rules for the logic
and transition rules of the operational semantics.

We tried to write the paper in a strongly intuitive style. The reader should be familiar however with the
basic notions of programming language syntax and semantics.

2 The Logic for Sequential Java

In this section we introduce the Hoare-style logic that we translate from. It is a logic for a sequential Java
kernel, called Java-K. We explain some of the concepts that are also used for the bytecode logic, e.g., how
references and objects are handled. Only those parts of original paper ([PHM99]) are repeated that we
need for the subsequent explanations of the VMK logic.

As always the intuitive meaning of the Hoare-triple

{P} comp {Q}

is that if P holds in some initial state and the execution of comp terminates then Q will hold in the halting
state of comp.

We mainly concerned with the specification and verification of individual methods with pre- and postcon-
dition: given some precondition of a method-body, what condition holds when the method terminates.
The meaning of Hoare-triples ({P} Method body {Q}) can then be extended to method declaration iden-
tifiers that represent a method implementation or a set of method implementations in the case of a virtual
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method. A statically bound method m in class T has the method identifier T@m. A virtual method m in
class T is denoted by T : m

Example 1. For a statically bound method T@m

{P} T@m {Q}

holds if
{P ∧ this 6= null} Method body of T@m {Q}

We write impl(T@m) for the method body of T@m

Example 2. For a dynamically bound method T : m

{P} T : m {Q}

holds if
{P ∧ this 6= null} Method body of S@m {Q}

holds for all subtypes S of T (S � T ), i.e. for all concrete implementations of T : m

The state of our programs consists of3 the local parameters, the local variables and the object store. Local
parameters and local variables are treated identically, so we may say local variables if we mean local
variables as well as parameters. The object store $ is introduced in order to model the dynamic heap.
The object store and some auxiliary functions together support the usual operations that are normally
associated with the heap. These operations follow certain very intuitive axioms (given in section 3.1 of
[PH97]). We do not treat them here, because they are only necessary to actually prove properties about
your programs, but not to understand the concept of how the operations work and how they can be used.

• instance variable lookup:
iv : V alue× FieldDeclId → InstV ar

instance variables are written as Type@fieldname

Example 3. The class T has the fields a, b, c they are referred to as T@a, T@b, T@c, resp.

• instance variable update:

$〈f := v〉 : ObjectStore× InstV ar × V alue → ObjectStore

• instance variable load:
$(f) : ObjectStore× InstV ar → V alue

• new object allocation: this function returns the object-store after the allocation of a new object of
type T

$〈T 〉 : ObjectStore× ClassTypeId → ObjectStore

• return a new object of type T

new($, T ) : ObjectStore× ClassTypeId → V alue

Before we dive into the rules that enable us to handle method invocations and the object store, we will
explain some peculiarities of Java-K and list the standard Hoare-rules that are required in almost every
Hoare style logic.

3remember that we are considering individual methods only
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2.1 Conventions, Restrictions and Limitations of Java-K

The language Java-K follows some conventions and has a number of limitations:

• There is no abrupt termination:

– no break

– no continue

– no exception handling support

– no return statement: the return value of a method has to be assigned to a special variable
result

the special variables this and result are treated just like any other parameter or local variable resp.

• No support for global data. This is not a real restriction as global variables can always be represented
as fields of some metaclass objects. This is not practically useful in the restricted context of spec-
ifications that consists only of pre- and postconditions of method implementations and is therefore
omitted.

• While there can be basically many parameters, we give rules for methods with only one formal
parameter p. All in all, we usually have two parameters: the customary this and p.

For an example on how some of these rules are used in a proof, see section 3.2 on page 15.

2.2 Base Rules

There are a few rules common to practically every Hoare-style logic. These rules are taken from figure 1
of [PHM99] and are presented here without comment.

2.2.1 assign

assign
{P [e/x]} x = e {P}

2.2.2 if

if

{e = > ∧ P} comp1 {Q}
{e = ⊥ ∧ P} comp2 {Q}

{P} if(e){comp1}else{comp2} {Q}

2.2.3 seq

seq

{P} comp1 {R}
{R} comp2 {Q}

{P} comp1; comp2 {Q}
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2.2.4 while

while
{e = > ∧ P} comp {P}
{P} while(e){comp} {Q}

2.2.5 conjunct

conjunct

{P1} comp {Q1}
{P2} comp {Q2}

{P1 ∧ P2} comp {Q1 ∧Q2}

2.2.6 disjunct

disjunct

{P1} comp {Q1}
{P2} comp {Q2}

{P1 ∨ P2} comp {Q1 ∨Q2}

2.2.7 strength

strength

P ⇒ P ′

{P ′} comp {Q}
{P} comp {Q}

2.2.8 weak

weak

Q′ ⇒ Q
{P} comp {Q′}
{P} comp {Q}

2.2.9 inv

inv

R doesn’t contain references to the program state
{P} comp {Q}

{P ∧R} comp {Q ∧R}

2.2.10 subst

subst

t doesn’t contain references to the program state
Z is a logical variable

{P} comp {Q}
{P [t/Z]} comp {Q[t/Z]}
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2.2.11 all

all

Z, Y are distinct logical variables
{P [Y/Z]} comp {Q}

{P [Y/Z]} comp {∀Z : Q}

2.2.12 ex

ex

Z, Y are distinct logical variables
{P} comp {Q[Y/Z]}

{∃Z : P} comp {Q[Y/Z]}

2.3 Rules for References, Objects and Dynamic Dispatch

We are now going to examine the rules that are necessary to support object-oriented features. We begin
with the most straightforward rules and progress to the more sophisticated ones. (τ(x) denotes the run-
time-type of x)

2.3.1 cast

cast
{τ(e) � T ∧ P [e/x]} x = (T )e {P}

The cast-axiom is similar to the classical assignment axiom, but the stronger precondition ensures that
the cast cannot fail.

2.3.2 construction

construction
{P [new($, T )/x, $〈T 〉/ $]} x = newT () {P}

The construction axiom allocates a new object on the heap and assigns this newly created object to x.
Keep in mind that the object-store $ is the entity that allows us to track the state of the heap syntactically.

2.3.3 fieldread

fieldread
{y 6= null ∧ P [$(iv(y, S@a))/x]} x = y.S@a {P}

This is a direct adaptation of the assign-axiom.

2.3.4 fieldwrite

fieldwrite
{y 6= null ∧ P [$〈iv(y, S@a) := e〉]} y.S@a = e {P}

This is a direct adaptation of the assign-axiom as well.
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2.3.5 invocation

invocation
{P} T : m {Q}

{y 6= null ∧ P [y/ this, e/ p]} x = y.T : m(e) {Q[x/ result]}
The effect of a method invocation is the same as the effect of the method body expanded at the call site
with the formal replaced by the actual parameters and the result-variable in the method replaced by the
actual local variable that should receive that result value. Because we do not know which actual method
implementation we are calling, we take the Hoare-triple that holds for all bodies (implementations) of
T : m (i.e. {P} T : m {Q})

2.3.6 invocation-var

invocation-var

w is a program variable
Z is a logical variable

w 6= x
{P} x = y.T : m(e) {Q}

{P [w/Z]} x = y.T : m(e) {Q[w/Z]}
This rule formalizes that local variables (w) are not modified by a function invocation.

2.3.7 implementation

implementation
{this 6= null ∧ P} body(T@m) {Q}

{P} T@m {Q}
This rule formalizes what we have said before: The meaning of a function body can be transferred to
its signature. For the proof of the body, we can assume that {P} T@m {Q} holds (this is necessary
for recursive procedures). In [PHM99] there are also formal rules that link the specifications of a virtual
method to the actual implementations of that method. They allow statements to be made about virtual
method identifiers:

· · · · · ·
{P} T : m {Q}

we do not consider such rules in our text. We just note that it is possible to deduce statements
{P} T : m {Q} if we know {P} S@m {Q} ∀S � T

3 The VMK bytecode

In this section, we’re introducing the design of VMK virtual machine bytecode language. As indicated in
the introduction, VMK is a machine

• with unrestricted control flow expressed using conditional and unconditional jumps to labeled in-
structions within a method body.

• VMK is stack based. It does not impose any limit on the elements that may be pushed onto the
stack.

We restrict our attention to the specification and verification of individual method implementations by the
means of simple pre- and post-conditions for that method. This is the same abstraction as for Java-K. In
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Java-K the method bodies consist of a statement. In VMK they consist of sequences of instructions with
labels. We therefore have to reason about these sequences.

Because the specification of a program consists only of a pre- and a post-condition of the method, we
can use the same abstractions for methods4 as we have used for Java-K. One of the first goals of this
section is therefore to link the two entities we are dealing with: specifications of method identifiers and the
conformance of actual implementations to these specifications. I.e., we need a VMK-rule corresponding to
the implementation rule for Java-K:

implementation
{this 6= null ∧ P} body(T@m) {Q}

{P} T@m {Q}

Unfortunately, we cannot directly adapt this rule from Java-K, because our VMK method body consists not
of a single computation, but of a sequence of individual instructions. To be able to give an implementation
rule for VMK, we have to define first what

{this 6= null ∧ P} body(T@m) {Q}

means for a body(T@m) being a sequence of bytecode instructions. From now on, we write bodyVMK(T@m)
to indicate that we refer to the method body in bytecode form.

As we have jumps in our program, we can easily verify only one bytecode instruction at a time and we
say that a sequence p of instructions is well specified if all of its components are: The following definitions
formalize this idea step by step. We define what VMK instructions are, how they can be specified, what
they do and how they can be assembled to specified instruction sequences. It is then easy to see how the
VMK implementation rule can be constructed.

Definition 1. A specified VMK instruction consists of

1. an instruction

instr ∈ (
{
pushc c, pushvar x, pop x, binopop, unopop, brtrue l′, goto l′

}
∪ {checkcastT, invokevirtual T : m, getfield T : a, putfield T : a, nop, end_method})

2. a label l ∈ N (unique in the instruction sequence that contains the instruction)

3. a precondition El

4. a postcondition El+1

We write this specified instruction as {El} l : instr {El+1}

The meaning of {El} l : instr {El+1} can not been defined in isolation when instr is a control transferring
instruction. What we can say however is that if El holds when the program counter is just before the
instruction (at position l) and instr does not transfer control (instr /∈ {goto , brtrue l′}) then El+1 will
hold after the successful execution of instr. We will define the meaning of general instruction specifications
together with the definition of full method body specifications.

We can prove (verify) a specified instruction {El} l : instr {El+1} by giving a proof tree for it.

Definition 2. The operational semantics is normative, but this definition gives an informal overview of
the instructions available in the VMK.

4method identifiers of the form T : m or T@m
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• pushc v pushes a constant v onto the stack

• pushvar x pushes the value of a local variable (or method parameter) onto the stack

• pop x pops the top element off the stack and assigns it to the local variable x

• unopop replaces the top element by applying the unary operation op to it

• binopop replaces the two top elements of the stack by applying the binary operation op to them

• goto l transfers control the program point l

• brtrue l transfers control the program point l if the top element of the stack is true and uncondi-
tionally pops it.

• checkcastT checks whether the top element is of type T or a subtype thereof.

• newobj T allocates a new object of type T and pushes it onto the stack

• invokevirtual T : m invokes the method T : m on the object reference that is the second-topmost
element with the parameter that is the topmost element and replaces these two values by the return
value of the invoked method T : m

• getfield T@a replaces the top element by its field T@a

• putfield T@a sets the field T@a of the object denoted by the second-topmost element to the top
element of the stack and pops both values.

• nop has no effect

• end_method halts the execution. The intuition is that it transfers control back to the invoking
method. It serves therefore as an end marker for a method. There must be exactly one end_method
instruction per method body at the end of the method.

Definition 3. A specified VMK method implementation p consists of a sequence of specified VMK in-
structions.

1. |p| is the number of instructions in the method

2. The labels of the instructions are in Λp = {1..|p|}

3. For every label, we can retrieve the corresponding instruction, pre- and postcondition.

p(l) = Il

preconditionp(l) = El

postconditionp(l) = El+1

specp(l) = {El} l : Il {El+1}

4. p,preconditionp,postconditionp, specp are functions, i.e. there is exactly one instruction, precondition,
postcondition for every label in a method body. Putting it differently, labels are unique within an
instruction sequence.

5. The postcondition of one instruction is the precondition of the next

postconditionp(l) = preconditionp(l + 1)

The meaning of {El} l : instr {El+1} in such a instruction sequence is that if El holds when the program
counter is just before the instruction (at position l) then the precondition El′ of the successor instruction
at label l′ will also hold after successful termination of instruction l.

10



Definition 4. A specified method implementation p can be verified by verifying all of its components. The
precondition for p is the precondition of the first instruction, the postcondition of p is the postcondition
of the last instruction, which, moreover, is of kind end_method. It is the only end_method instruction.

body

[∀i ∈ Λp : specp(i)]

I|p| = end_method

∀i < |p| : p(i) 6= end_method

preconditionp(1) = P

postconditionp(|p|) = Q

{P} p {Q}
Definition 5. We can verify the specification of a method T@m by verifying the method implementation
p = bodyVMK(T@m).

VMK-implementation-0
{this 6= null ∧ P} bodyVMK(T@m) {Q}

{P} T@m {Q}

And because there is exactly one rule we necessarily have to apply to bodyVMK(T@m) we combine the
body and the implementation-0 rule:

VMK

p = bodyVMK(T@m) [∀i ∈ Λp : specp(i)]

I|p| = end_method

∀i < |p| : p(i) 6= end_method

preconditionp(1) = P ∧ this 6= null

postconditionp(|p|) = Q

{P} T@m {Q}

Remember that proofs in [PHM99] are not only about statements but also about method identifiers. We
need this functionality as well for our logic as we are interested in translating Java-K proofs. We will
therefore include all the rules of the Java-K logic in the VMK logic and leave the proofs for other program
entities than method implementations as is. We do however not use the usual Java-K rules for verifying
method bodies.

Our translation procedure is then limited to translating method implementation proofs for Java-K to
method implementation proofs for VMK. Parts of the derivation trees outside the method bodies stay the
same:

{this 6= null ∧ P} body(T@m) {Q}
{P} T@m {Q}

Z⇒ VMK
· · ·

{P} T@m {Q}

There are the same restrictions for our VMK as for Java-K: see section 2.1 on page 5.

With these definitions, we have a simple goal: to give a sound and complete system of rules that allow to
prove pre- and postconditions for individual instructions. Before we can do that, we should know what
our instructions are and what they are supposed to do, i.e., what their effect on the program state is. We
will therefore define an operational semantics of all instructions first, and then give rules for proving pre-
and postconditions about them.

3.1 Operational Semantics

Definition 6. The configuration 〈S, σ, l〉 of a program during execution consists of the program environ-
ment S, the stack σ and the program counter l (the label of the next instruction to be executed).
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• The State S maps variables and parameters to values and $ to the current object store

S ∈ State

State ≡ (LocalV ariable ∪ {this, p} → V alue)× ({$} → ObjectStore)

• The stack is a list of values

σ ∈ Stack

Stack ≡ V alue∗

• The program counter is always at a valid position

l ∈ Λp

Definition 7. The small step transition

p; 〈S, σ, l〉 → 〈S′, σ′, l′〉

means that for the program p, the machine can go in one step from the state 〈S, σ, l〉 to the VMK state
〈S′, σ′, l′〉.

we also define the multistep relation p; 〈S, σ, l〉 →∗ 〈S′, σ′, l′〉 inductively exactly as in [Ben04]:

p; 〈S, σ, l〉 →∗ 〈S, σ, l〉

The →∗ multistep relation frees us from having to model procedure activation frames explicitly.

p; 〈S, σ, l〉 → 〈S′, σ′, l′〉 p; 〈S′, σ′, l′〉 →∗ 〈S′′, σ′′, l′′〉
p; 〈S, σ, l〉 →∗ 〈S′′, σ′′, l′′〉

Equipped with these definitions, we can now define the individual instructions of our virtual machine. See
partition II of [ECM02] and [LY99] to compare them with the actual instructions of our example VMs.

Also note that we do not have subroutines (jsr in the JVM) although they would be easy to add. We do not
need them because our source language does not support exception handling (which is what subroutines
are used for in the JVM).

3.1.1 Instructions for the Compilation of Expressions

Pushing a Constant onto the Stack: pushc v The instruction pushc v is defined by the transition

[. . . l : pushc v . . .]; 〈S, σ, l〉 → 〈S, (σ, v), l + 1〉

Pushing the Value of a Local Variable onto the Stack: pushvar x The instruction pushvar x is
defined by the transition

[. . . l : pushvar x . . .]; 〈S, σ, l〉 → 〈S, (σ, S(x)), l + 1〉
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Popping the Stack into a Local Variable: pop x The instruction pop x is defined by the transition

[. . . l : pop x . . .]; 〈S, (σ, v), l〉 → 〈S[x 7→ v], σ, l + 1〉

Unary Operations: unopop The instruction unopop is defined by the transition

[. . . l : unopop . . .]; 〈S, (σ, v), l〉 → 〈S, (σ, op v), l + 1〉

Binary Operations: binopop The instruction binopop is defined by the transition

[. . . l : binopop . . .]; 〈S, (σ, v1, v2), l〉 → 〈S, (σ, v1 op v2), l + 1〉

3.1.2 Instructions that Modify the Control Flow

Unconditional Jump: goto l′ The instruction goto l′ is defined by the transition

[. . . l : goto l′ . . .]; 〈S, σ, l〉 → 〈S, σ, l′〉

Conditional Jump: brtrue l′ The instruction brtrue l′ is defined by the transitions

[. . . l : brtrue l′ . . .]; 〈S, (σ,>), l〉 → 〈S, σ, l′〉

and
[. . . l : brtrue l′ . . .]; 〈S, (σ,⊥), l〉 → 〈S, σ, l + 1〉

3.1.3 Instructions for Objects

Casting a Reference: checkcastT The instruction checkcastT is defined by the transition

τ(v) � T

[. . . l : checkcastT . . .]; 〈S, (σ, v), l〉 → 〈S, (σ, v), l + 1〉

Object Creation: newobj T The instruction newobj T is defined by the transition

[. . . l : newobj T . . .]; 〈S, σ, l〉 → 〈S[$ 7→ S($)〈T 〉], (σ,new(S($), T ))), l + 1〉
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Calling a Virtual Method (with Exactly one Argument): invokevirtual T : m The instruction
invokevirtual T : m is defined by the transition

p′ = bodyVMK(impl(τ(y),m)) p′(l′) = end_method
p′; 〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉 →∗ 〈S′, σ′, l′〉

[. . . l : invokevirtual T : m . . .]; 〈S, (σ, y, v), l〉 → 〈S[$ 7→ S′($)], (σ, S′(result)), l + 1〉

Loading a Field of an Object: getfield T@a The instruction getfield T@a is defined by the
transition

y 6= null
[. . . l : getfield T@a . . .]; 〈S, (σ, y), l〉 → 〈S, (σ, S($)(iv(y, T@a)), l + 1〉

Storing into a Field of an Object: putfield T@a The instruction putfield T@a is defined by the
transition

y 6= null
[. . . l : putfield T@a . . .]; 〈S, (σ, y, v), l〉 → 〈S[$ 7→ S($)〈iv(y, T@a) := v〉], σ, l + 1〉

3.1.4 Additional Instructions

No Operation: nop The instruction nop is defined by the transition

[. . . l : nop . . .]; 〈S, σ, l〉 → 〈S, σ, l + 1〉

3.1.5 Comments

Observation 1. The operational semantics is deterministic.

There is at most one transition for every statement and program point. And program points are unique
in a program.

Observation 2. There should be constraints on the state at a given program point.

Example 4. The effect of an execution step starting in the configuration [. . . l : pushvar x . . .]; 〈S′, σ, l〉
cannot be reasonably legitimated if the variable x is not yet initialized.

The configuration [. . . l : binopop . . .]; 〈S′, (σ, a, b), l〉 should not have a successor if op is not an operation
on τ(a)× τ(b) → α for some type α.

We assume that every VMK program satisfies some basic well-formedness constraints that ensure that such
situations can never occur.

We do so not only because this is rarely prohibitive and quite usual for real machines – both the JVM
and the CLR have bytecode verifiers – but also because this additional abstraction helps us keep the logic
we will construct simple. We are ruling out invalid behavior (type errors, popping the empty stack, ...)
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of our programs before our logic is applied to them. An alternative approach would be to combine type
checking5 and verification. Compare [Ben04] on how this can be done.

It should be noted that type-checking bytecode is itself a non-trivial undertaking: Research on this topic
has led to the publication of a vast quantity of articles and several Ph.D. theses. It is only recently
that the implications of the complex interplay between unrestricted control flow, exception handling and
unstructured subroutines has been completely understood6. The approach taken in [Ben04] is therefore
unlikely to scale to the extended instruction set of a real virtual machine.

3.2 An Example: Calculating xn Recursively

The sample code has been compiled by the Sun JDK 1.4.2 compiler and has been transcribed for the VMK.

3.2.1 Java-K

package pow;
public class Recursiv{

public int pow(int x, int n) {
if(n == 0) {

result = 1;
}else {

if(n%2 == 0) {
result = this.pow(x*x, n/2);

}else {
result = this.pow(x, n-1);
result = result*x;

}
}

}
}

Listing 1: Recursive calculation of xn in Java-K: This is an example of a complete Java-K program. The
Java-K method as well as the corresponding bytecode method implementation (section 3.2.2) are later
verified (see section 3.5.1 on page 19 for the Java-K verification).

3.2.2 VMK

pushc 1
pop result

test -1: pushvar n
unop <>0,
brtrue path -2

path -1: pushc 1
pop result
goto end

test -2: pushvar n
pushc 2
binop "%"
unop <>0

5in a very general sense
6[JAR03] gives an overview, [SS03] discusses the problems of bytecode verification

15



brtrue path -3
path -2: pushvar this

pushvar x
pushvar x
binop "*"
pushvar n
pushc 2
binop "/"
invokevirtual Recursiv:pow
pop result
goto end

path -3: pushvar x
pushvar this
pushvar x
pushvar n
pushc 1
binop "-"
invokevirtual Recursiv:pow
binop "*"
pop result

end: end_method

Listing 2: Recursive calculation of xn in VMK bytecode: This the translation of the method body of
the corresponding Java-K implementation (section 3.2.1 on the previous page). Both implementations are
verified in section 3.5.1 on page 19 and section 3.5.2 on page 20.

3.3 A Programming Logic for the Virtual Machine

In the next section 3.4 we are finally going to present the rules of our logic for the VMK bytecode. Having
done that, we will verify the specification of the running example Recursiv@pow. (section 3.2.2 on the
previous page)

Definition 8. The current stack is referred to as s, and its elements are denoted by non-negative integers:
element 0 is the top element, etc.:

[[s(0)]]〈S, (σ, v), l〉 = v

[[s(i + 1)]]〈S, (σ, v), l〉 = [[s(i)]]〈S, σ, l〉

Definition 9. Substitutions E[e′/x] or E[e′/s(i)], the simultaneous substitutions E[e′1/z1, e
′
2/z2, . . .] and

the evaluation [[.]] of assertions El are defined as usual. We do not want to restrict the assertions that can
be made and we therefore do not define them here (except for the access to stack elements in the previous
definition).

Definition 10. Helper functions

shift(E) = E[s(i + 1)/s(i) for all i ∈ N]

unshift = shift−1

3.4 The Rules

With the explanations at the beginning of this section (section 3 on page 8) and the operational semantics
at hand, we can define the rules for individual instructions.

Observation 3. There is exactly one transition for every instruction in our operational semantics and
exactly one rule in our programming logic. It is no surprise that they look similar.
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This one-to-one correspondence can help us prove the soundness of the logic: we just need to show that
if there is a small step transition from one state K = 〈S, σ, l〉 to its next state K ′ = 〈S′, σ′, l′〉7 and the
precondition El holds in K then El′ must also hold in K ′.

We may have reached the end of the method if there is no transition. I.e. we may have reached the
end_method instruction. In that case, we know the the precondition of end_method holds. This is also
the postcondition of our method. Because the end_method instruction is the only means of returning from
a method8, we know that if a method terminates, its postcondition will always hold.

3.4.1 Instructions for Expressions

pushc
shift(El) → El+1[v/s(0)]
{El} l : pushc v {El+1}

pushvar
shift(El) → El+1[x/s(0)]
{El} l : pushvar x {El+1}

pop
El → (shift(El+1))[s(0)/x]
{El} l : pop x {El+1}

unop
El → El+1[(op s(0))/s(0)]
{El} l : unopop {El+1}

binop
El → (shift(El+1))[(s(1) op s(0))/s(1)]

{El} l : binopop {El+1}

3.4.2 Instructions that Modify the Control Flow

goto
El → El′

{El} l : goto l′ {El+1}

brtrue
El ∧ ¬s(0) → shift(El+1) El ∧ s(0) → shift(El′)

{El} l : brtrue l′ {El+1}

3.4.3 Instructions for Objects

checkcast
El → El+1 ∧ τ(s(0)) � T

{El} l : checkcastT {El+1}

newobj
shift(El) → El+1[new($, T )/s(0), $〈T 〉/ $]

{El} l : newobj T {El+1}

getfield
El → El+1[$(iv(s(0), T@a))/s(0)] ∧ s(0) 6= null

{El} l : getfield T@a {El+1}
7which means: p; 〈S, σ, l〉 → 〈S′, σ′, l′〉
8see the definition of the invokevirtual rule
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putfield
El → (shift2(El+1))[$〈iv(s(1), T@a) := s(0)〉/ $] ∧ s(1) 6= null

{El} l : putfield T@a {El+1}

for exactly one argument, this is what we are going to reason about

invokevirtual

{P} T : m {Q}
El → s(1) 6= null ∧ P [s(1)/ this, s(0)/ p] Q[s(0)/ result] → El+1

{El} l : invokevirtual T : m {El+1}

invokevar

Z is a logical variable
w is a local variable or a stack element 6= s(0)

{E′
l} l : invokevirtual T : m

{
E′

l+1

}
El → E′

l [(shift(w))/Z] E′
l+1[w/Z] → El+1

{El} l : invokevirtual T : m {El+1}

or more generally for an arbitrary number n of arguments

invokevirtual-n

{P} T : m {Q}
El → s(1) 6= null ∧ P [s(n)/ this,∀i ∈ 1..n : s(n− i)/ pi] Q[s(0)/ result] → El+1

{El} l : invokevirtual T : m {El+1}

invokevar-n

Z is a logical variable
w is a local variable or a stack element 6= s(0)
El → E′

l [(shiftn(w))/Z] E′
l+1[w/Z] → El+1

{E′
l} l : invokevirtual T : m

{
E′

l+1

}
{El} l : invokevirtual T : m {El+1}

3.4.4 Other Instructions

nop
El → El+1

{El} l : nop {El+1}

method
El → El+1

{El} l : end_method {El+1}

3.5 An Example: Calculating xn

This section continues section 3.2 on page 15. Here we specify and verify the bytecode method presented
there. The specification is:

{P ≡ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0} Recursiv@pow {Q ≡ result = xn0
0 }

An assumption during verification is {P} Recursiv : pow {Q}. See [PHM99], for exactly when such an
assumption can be deduced from the assumption {P} Recursiv@pow {Q}. The reasoning is simple in our
case because Recursiv is the only class in our program.

We also list a Java-K proof to allow comparison with the proof system we ultimately want to translate
from.
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3.5.1 Java-K

{this 6= null ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
=⇒
{x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
if(n == 0) {

{n = 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
result = 1;
{result = xn0

0 }
}else {

{n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
if(n%2 == 0) {

{n mod 2 = 0 ∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
=⇒
⇓ {x·x > 0 ∧ n/2 ≥ 0 ∧ x·x = x0·x0 ∧ n/2 = n0/2 ∧ n0 mod 2 = 0} (inv-rule)
⇓ {x·x > 0 ∧ n/2 ≥ 0 ∧ x·x = x0·x0 ∧ n/2 = n0/2} (subst-rule)
⇓ {x·x > 0 ∧ n/2 ≥ 0 ∧ x·x = x′0 ∧ n/2 = n′0} (subst-rule)
{x·x > 0 ∧ n/2 ≥ 0 ∧ x·x = x0 ∧ n/2 = n0}
=⇒
⇓ {this 6= null ∧ x·x > 0 ∧ n/2 ≥ 0 ∧ x·x = x0 ∧ n/2 = n0} (invocation-rule)
result = this.pow(x*x, n/2);
⇑ {result = xn0

0 } (invocation-rule)

⇑
{

result = x
′n′0
0

}
(subst-rule)

⇑
{

result = (x0·x0)
n0/2

}
(subst-rule)

⇑
{

result = (x0·x0)
n0/2 ∧ n0 mod 2 = 0

}
(inv-rule)

=⇒
{result = x0

n0}
}else{

{n mod 2 6= 0 ∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
=⇒
{n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
=⇒
⇓ {x > 0 ∧ n− 1 ≥ 0 ∧ x = x0 ∧ n− 1 = n0 − 1 ∧ x = x0} (invocation-var-rule)
⇓ {x > 0 ∧ n− 1 ≥ 0 ∧ x = x0 ∧ n− 1 = n0 − 1 ∧ xf = x0} (inv-rule)
⇓ {x > 0 ∧ n− 1 ≥ 0 ∧ x = x0 ∧ n− 1 = n0 − 1} (subst-rule)
⇓ {x > 0 ∧ n− 1 ≥ 0 ∧ x = x′0 ∧ n− 1 = n′0} (subst-rule)
{x > 0 ∧ n− 1 ≥ 0 ∧ x = x0 ∧ n− 1 = n0}
=⇒
⇓ {this 6= null ∧ x > 0 ∧ n− 1 ≥ 0 ∧ x = x0 ∧ n− 1 = n0} (invocation-rule)
result = this.pow(x, n-1);
⇑ {result = xn0

0 } (invocation-rule)

⇑
{

result = x
′n′0
0

}
(subst-rule)

⇑
{
result = x0

n0−1
}

(subst-rule)
⇑

{
result = x0

n0−1 ∧ xf = x0

}
(inv-rule)

=⇒
{result ·xf = x0

n0 ∧ xf = x0}
⇑ {result ·x = x0

n0 ∧ x = x0} (invocation-var-rule)
=⇒
⇑ {result ·x = x0

n0}
=⇒
{result ·x = xn0

0 }
result = result*x;
{result = xn0

0 }
}
{result = xn0

0 }
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}
{result = xn0

0 }
Listing 3: Verification of the recursive calculation of xn: Continuing section 3.2.1 on page 15, we prove
the Java-K implementation to allow comparison with the VMK proof that follows.

3.5.2 VMK

Our assumption

{P ≡ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0} Recursiv : pow {Q ≡ result = xn0
0 }

cannot be used directly for the recursive method invocations. We have to deduce two other triples that
are more useful in our calling contexts. As for Java-K, we use a linear notation here that makes it easier
to grasp the idea of the proof. Note that in a fully formal presentation, the proof would consist of a
list of derivation trees for individual instructions. We could then integrate the modifications we make to
our original assumption into a derivation tree of an instruction (the invokevirtual instruction). See
section 5.3 on page 44 for a fully formal bytecode proof that has been automatically generated from a
source proof.

• ⇓ {x > 0 ∧ n ≥ 0 ∧ x = x0·x0 ∧ n = n0/2 ∧ n0 mod 2 = 0} (inv-rule)
⇓ {x > 0 ∧ n ≥ 0 ∧ x = x0·x0 ∧ n = n0/2} (subst-rule)
⇓ {x > 0 ∧ n ≥ 0 ∧ x = x′0 ∧ n = n′0} (subst-rule)
{x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
Recursiv:pow
{result = xn0

0 }
⇑

{
result = x′0

n′0
}

(subst-rule)

⇑
{

result = (x0·x0)
(n0/2)

}
(subst-rule)

⇑
{

result = (x0·x0)
(n0/2) ∧ n0 mod 2 = 0

}
(inv-rule)

• ⇓ {x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0 − 1 ∧ xf = x0} (inv-rule)
⇓ {x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0 − 1} (subst-rule)
⇓ {x > 0 ∧ n ≥ 0 ∧ x = x′0 ∧ n = n′0} (subst-rule)
{x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
Recursiv:pow
{result = xn0

0 }
⇑

{
result = x′0

n′0
}

(subst-rule)

⇑
{
result = x0

n0−1
}

(subst-rule)
⇑

{
result = x0

n0−1 ∧ xf = x0

}
(inv-rule)

→ {result ·xf = x0
n0 ∧ xf = x0}

{x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
test -1: pushvar n

{x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0 ∧ (s(0) 6= 0) = (n 6= 0)}
unop <>0,
{x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0 ∧ s(0) = (n 6= 0)}
brtrue test -2

path -1: {n = 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
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pushc 1
{s(0) = xn0

0 }
pop result
{result = xn0

0 }
goto end

test -2: {n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
pushvar n
{((s(0) mod 2) 6= 0) = (n mod 2 6= 0) ∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
pushc 2
{((s(1) mod s(0)) 6= 0) = (n mod 2 6= 0) ∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
binop "%"
{(s(0) 6= 0) = (n mod 2 6= 0) ∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
unop <>0
{s(0) = (n mod 2 6= 0) ∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
brtrue path -3

path -2: {n mod 2 = 0 ∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
pushvar this
{n mod 2 = 0 ∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
pushvar x
{s(0) = x ∧ n mod 2 = 0 ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
pushvar x
{s(1)·s(0) = x·x ∧ ∧ n mod 2 = 0 ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
binop "*"
{s(0) = x·x ∧ n mod 2 = 0 ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
pushvar n
{(s(0)/2) = n/2 ∧ s(1) = x·x ∧ n mod 2 = 0 ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
pushc 2
{(s(1)/s(0)) = n/2 ∧ s(2) = x·x ∧ n mod 2 = 0 ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
binop "/"
{s(0) = n/2 ∧ s(1) = x·x ∧ n mod 2 = 0 ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
→ {(x > 0 ∧ n ≥ 0 ∧ x = x0·x0 ∧ n = n0/2 ∧ n0 mod 2 = 0)[s(2)/ this, s(1)/x, s(0)/n]}
invokevirtual Recursiv:pow{
(result = (x0·x0)

(n0/2) ∧ n0 mod 2 = 0)[s(0)/ result]
}

→ {s(0) = xn0
0 }

pop result
{result = xn0

0 }
goto end

path -3: {n mod 2 6= 0 ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
pushvar x
{s(0) = x ∧ x > 0 ∧ n > 0 ∧ x = x0 ∧ n = n0}
pushvar this
{x = x ∧ s(1) = x ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
pushvar x
{n− 1 = n− 1 ∧ s(0) = x ∧ s(2) = x ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
pushvar n
{(s(0)− 1) = n− 1 ∧ s(1) = x ∧ s(3) = x ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
pushc 1
{(s(1)− s(0)) = n− 1 ∧ s(2) = x ∧ s(4) = x ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
binop "-"
{s(0) = n− 1 ∧ s(1) = x ∧ s(3) = x ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
⇓ {s(1) > 0 ∧ s(0) ≥ 0 ∧ s(1) = x0 ∧ s(0) = n0 − 1 ∧ s(3) = x0} (invokevar)
{(x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0 − 1 ∧ xf = x0)[s(2)/ this, s(1)/x, s(0)/n]}
invokevirtual Recursiv:pow
→ {(result ·xf = x0

n0 ∧ xf = x0)[s(0)/ result]}
⇑ {s(0)·s(1) = x0

n0 ∧ s(1) = x0} (invokevar)
→ {s(1)·s(0) = xn0

0 }
binop "*"
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{s(0) = xn0
0 }

pop result
end: {result = xn0

0 }
end_method

Listing 4: Verification of the recursive calculation of xn: We prove the VMK implementation of the
example in section 3.2.2 on page 15. The proof should give a rough idea how the programming logic for
bytecode can be used in practice to prove method implementations correct.

4 Proof transformation from Source to Bytecode

This section presents the procedure for translating proofs for method specifications from Java-K to VMK:

{this 6= null ∧ P} body(T@m) {Q}
{P} T@m {Q}

Z⇒ VMK
· · ·

{P} T@m {Q}

Before we can do so, we have to fix some conventions and to make a few observations that help construct
the bytecode proofs. It will be useful to have an additional notion for expressions that do not contain
program variables:

Definition 11. Expressions that do not contain program variables are called Σ-terms.

4.1 Simplifications for the Translation

The translation of proofs presented here is simple. Various improvements are possible. Two important
conventions can not be seen from the pattern-based translation rules.

The set of local variables and parameters is not changed during translation. No variables are eliminated,
no new variables are introduced. Elimination of local variables that are dead at certain points in the
analyzed region is an optimization that would either necessitate a two step translation (compilation and
then optimization) or would render our formalism more complicated. Similarly for assertions: we assume
that trivial proof transformation for assertions is possible: a source proof an assertion P can be used as the
proof of the translated assertion P on the bytecode level. Since we do not translate program variables and
we do not change logical variables, we do not need to translate assertions. It is sometimes necessary for
the correctness of the generated proofs to keep in mind that assertions in the source proof do not contain
references to the stack s.

4.2 Form of the Translation Patterns

We use three compilation function for the translation of source proofs:

`S for the translation of proof trees that prove statements
`E for the translation of expressions to simplify the notation used in the definition of

`S (the
`E function

has weaker requirements on its input parameters than
`X)

`X for the translation of expressions
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These functions return sequences of specified instructions that fulfill the basic block property. If control
flow enters the sequence at the beginning of the first statement, then control flow will leave the sequence
at the end of the last statement.

`S,
`E and

`X are defined depending on the shape of their arguments,
i.e., the translation is pattern based.

The compilation function for statements
`S takes proof trees as its argument and its definition depends

only on the rule that is used at the root, i.e.,
`S can handle any valid Java-K derivation tree9 and always

returns a sequence whose pre- and postconditions are the same as the pre- and post-conditions of the the
root of the argument derivation tree.

Both
`X and

`S take three arguments (P, e,Q): they produce a sequence of instructions calculating e

on top of the stack where P is the precondition of the sequence and Q is its postcondition. Unlike
`S,

the translation of expression is defined only for special cases of P and Q: the shape of the pre- and
post-conditions is constrained,

`X and
`E are used only with arguments that obey these constraints.

We abbreviate the instantiation of
`S. We write “

`S(consequent)” and mean
“
`S(the whole tree that leads to the consequent)” when it is clear from the context what the proof looks

like: hS
({P} S {Q}) ≡

hS
(

rule
· · · {P} S {Q} · · ·
{P ′} S {Q′}

)

The proof for the method body is assembled from small pieces that are concatenated to form larger pieces
that form the whole VMK proof for the whole method body.

Example 5. Sequential composition is the easiest rule to translate

`S

(
seq

{P} S1 {Q} {Q} S2 {R}
{P} S1;S2 {R}

)
=

S1 : {P}
hS

({P} S1 {Q})

S2 : {Q}
hS

({Q} S2 {R})

{R}

The rule is to be read as follows:

if the root of the derivation tree is an application of the “seq”-rule, the the proof tree must have the form

seq

T1

{P} S1 {Q}
T1

{Q} S2 {R}
{P} S1;S2 {R}

which we abbreviate as
seq

{P} S1 {Q} {Q} S2 {R}
{P} S1;S2 {R}

9there are some minor limitations given in section 4.5 on page 26
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then the translation of this tree is the concatenation of the two verified instruction sequences obtained
from p1 ≡

`S ({P} S1 {Q}) and p2 ≡
`S ({Q} S2 {R}) where the triple {P} S1 {Q} again stands for

the whole tree that leads to this conclusion: T1

{P} S1 {Q}
. Note that the well-formedness condition

preconditionp(l) = El

postconditionp(l) = El+1 = preconditionp(l + 1)

is respected at the boundary between the two sequences. “S1 :” and “S2 :” are symbolic labels. They stand
for the actual labels at the beginning of the sequences p1 and p2 resp. Logical labels are also introduced
for newly introduced instructions (e.g., A : pop x in the translation of the assign rules). These are always
fresh labels that stand for the actual numerical label within the definition.

Example 6. Consider the translation rule for the weak-rule:
`S

(
weak

Q → Q′ {P} S {Q}
{P} S {Q′}

)
=

L : {P}
hS

({P} S {Q})

P : {Q}
nop

{Q′}

We’re introducing a new instruction nop into our result sequence of verified instruction. The problem is
that nop is not verified itself. According to the nop-rule

nop
El → El+1

{El} l : nop {El+1}

We have to prove El → El+1 in order to make the generated nop a verified instruction as required for the
proof of a method implementation.

This is what the sections labeled “Reasons” are here for: they contain proofs for the antecedents of the
VMK rules that are used in the translation. They have to be adapted to a specific deductive system for
the underlying logic to be mechanically checkable.

4.3 Making the Translation Easier to Understand

We sometimes argue about all rules of the VMK logic by referring to two functions f, g that we claim to be
distributive with respect to the boolean operations ∧ , ∨ and commutative with respect to substitution
of logical variables by Σ-terms. This is to be understood as follows.

Looking at section 3.4 on page 16, we see that “most”, the ordinary rules, with the notable exceptions
of invokevirtual and invokevar, have a special and simple form. Their antecedents consist of a logical
implication “→” between two program assertions on which we apply a function consisting of substitutions,
shifts and adding one simple conjunction.

Example 7. The pushc rule

pushc
shift(El) → El+1[v/s(0)]
{El} l : pushc v {El+1}

has an antecedent of the form
f(El) → g(El+1)

where f(E) = shift(E) and g(E) = E[v/s(0)]
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For the ordinary instructions has antecedents f(El′) → g(El′′) where f and g have the form

E 7→ shiftk(E)[· · · ] ∧A

For a specific function f :
f(E) = shiftkf (E)[Rf ]︸ ︷︷ ︸

f−(E)

∧Af

It is now easy to check that the ordinary rules follow this pattern: (v ranges over values, x over local
variables)

f, g ∈ { shift(.),
(.)[v/s(0)],
(.)[x/s(0)],
(.),
(shift(.))[s(0)/x],
(.)[(op s(0))/s(0)],
(shift(.))[(s(1) op s(0))/s(1)],
(.) ∧ ¬s(0),
shift(.),
(.) ∧ s(0),
(.) ∧ τ(s(0)) � T,

(.)[new($, T )/s(0), $〈T 〉/ $],
(.)[$(iv(s(0), S@a))/s(0)] ∧ s(0) 6= null,

(shift2(.))[$〈iv(s(1), S@a) := s(0)〉/ $] ∧ s(1) 6= null
}

And that these functions are indeed distributive w.r.t the boolean operators ∧ , ∨ .

(shiftk(E1)[· · · ] ∧A) ∧ (shiftk(E2)[· · · ] ∧A) = (shiftk(E1 ∧ E2)[· · · ] ∧A)

(shiftk(E1)[· · · ] ∧A) ∨ (shiftk(E2)[· · · ] ∧A) = (shiftk(E1 ∨ E2)[· · · ] ∧A)

invokevirtual and invokevar are less regular, their antecedents’ form is El → X ∧ Y → El+1

4.4 nops Generated During Translation

nop instructions may be generated during translation. They can removed in a second pass (through the
VMK proof) if needed: all rules have the f, g form explained above. Both before and after an instruction,
we replace nop’s using the knowledge, that the implication is transitive either

1. “after”10 another instruction if g is the identity (goto, invokevirtual, invokevar, nop, method)

(f(A) → B ∧B → C) → (f(A) → C)

or
10all successor instructions
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2. before another instruction if f is the identity (pop, unop, binop, goto, checkcast, getfield, putfield,
onvokevirtual, invokevar, nop, method):

(A → B ∧B → g(C)) → (A → g(C))

Example 8. Consider the following sequence from section 5.3 on page 44
T1

x = x0 → (x = x0 ∧ 1 = 1)
{x = x0} 1 : nop {(x = x0 ∧ 1 = 1)}

,

T2

shift((x = x0 ∧ 1 = 1)) → (x = x0 ∧ 1 = s(0))[1/s(0)]
{(x = x0 ∧ 1 = 1)} 2 : pushc 1 {(x = x0 ∧ 1 = s(0))}


In this context, it seems that nops cannot be removed: Rule 1 is not applicable because the nop has no
predecessor and rule 2 is not applicable either (because shift(.) is not the identity). This is not a problem
however. shift does only rename free variables, which does not change the truth-value of a formula:



T1

x = x0 → (x = x0 ∧ 1 = 1)
shift(x = x0) → shift((x = x0 ∧ 1 = 1))

T2

shift((x = x0 ∧ 1 = 1)) → (x = x0 ∧ 1 = s(0))[1/s(0)]
shift(x = x0) → (x = x0 ∧ 1 = s(0))[1/s(0)]
{x = x0} 2 : pushc 1 {(x = x0 ∧ 1 = s(0))}


Taking this special case into account, we can apply the extended rule 2 to pushvar and pushc as well.
This is important: nop before pushvar and pushc are generated for every expression that is translated
by

`E.

Closer examinations of the actual proof-sequences that can be produced show that all nops can be removed
from the proofs we generate by just applying the two rules above when appropriate.

4.5 Limitation: ∃ Elimination and ∀ Introduction

We are convinced that the ex- and the all-rules are not strictly necessary on the bytecode level. We believe
that they can always be lifted to the outmost level of method body proofs an then pulled down into the
proof for the method identifier (T@m). Unfortunately, we do know how this is achieved, in general. For
now we just assume that ex- and all-rules do not occur in source proofs for method bodies. Thus source
proofs should have a special normal form.

Other possibilities of handling the ex- and all-rules are more invasive: they may make the mechanical
verification of a proof cumbersome or destroy other desirable properties of our current proof rules like
having exactly one rule for every instruction11.

11invokevirtual is a special case: easy generalization would allow both rules to be combined into one, but it is technically
convenient to keep them separate
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4.6 Expressions

4.6.1 How Expressions are Translated

The translation of expressions is special: expressions are atomic entities for source logic, but not on for
the VMK.
`E (P, e,Q ≡ shift P ∧ e = s(0)) =

L : {P}
nop

E : {P ′ ≡ P ∧ e = e}
hX

(P ′, e,Q)

{Q}

Reasons

L : nop P → P ∧ e = e is trivially true.

4.6.2 e1 op e2

This and the next two sections do the actual work for translating expressions.
`X(Qs ≡ Q ∧ unshift(P [e/s(0)]), e ≡ (e1 op e2), Qe ≡ shift(Q) ∧ P ) =

E1 : {Qs}
hX

(Qs, e1, Q2 ≡ shift(Q) ∧ P [(s(0) op e2)/s(0)])

E2 : {Q2}
hX (

Q2, e2, Q3 ≡ shift2(Q) ∧ (shift(P ))[(s(1) op s(0))/s(1)]
)

P : {Q3}
binopop

{Qe}

Reasons: binopop

Q3 → (shift(Qe))[(s(1) op s(0))/s(1)]

= shift2(Q) ∧ (shift(P ))[(s(1) op s(0))/s(1)] → (shift(shift(Q) ∧ P ))[(s(1) op s(0))/s(1)]

= shift2(Q) ∧ (shift(P ))[(s(1) op s(0))/s(1)]

→ shift2(Q)[(s(1) op s(0))/s(1)] ∧ (shift(P ))[(s(1) op s(0))/s(1)]

= shift2(Q) ∧ (shift(P ))[(s(1) op s(0))/s(1)] → shift2(Q) ∧ (shift(P ))[(s(1) op s(0))/s(1)]
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4.6.3 Constants

`X(Qs ≡ Q ∧ unshift(P [e/s(0)]), e ≡ c,Qe ≡ shift(Q) ∧ P ) =

L : {Qs}
pushc c

{Qe}

Reasons: pushc c

shift(Qs) → Qe[c/s(0)]
= shift(Q ∧ unshift(P [e/s(0)])) → (shift(Q) ∧ P ))[c/s(0)]
= shift(Q) ∧ shift(unshift(P [e/s(0)])) → shift(Q)[c/s(0)] ∧ P [c/s(0)]
= shift(Q) ∧ P [e/s(0)] → shift(Q)[c/s(0)] ∧ P [c/s(0)]
= shift(Q) ∧ P [e/s(0)] → shift(Q) ∧ P [c/s(0)]

4.6.4 Variables

`X(Qs ≡ Q ∧ unshift(P [e/s(0)]), e ≡ x, Qe ≡ shift(Q) ∧ P ) =

L : {Qs}
pushvar x

{Qe}

Reasons: pushvar x

shift(Qs) → Qe[x/s(0)]
= shift(Q ∧ unshift(P [e/s(0)])) → (shift(Q) ∧ P ))[x/s(0)]
= shift(Q) ∧ shift(unshift(P [e/s(0)])) → shift(Q)[x/s(0)] ∧ P [x/s(0)]
= shift(Q) ∧ P [e/s(0)] → shift(Q)[x/s(0)] ∧ P [x/s(0)]
= shift(Q) ∧ P [e/s(0)] → shift(Q) ∧ P [x/s(0)]

4.6.5 Example for Expressions

The evaluation of
`E (P, x·y, Q ≡ P ∧ (x·y) = s(0)) yields the partial proof

1.
(P → (P ∧ (x·y) = (x·y)))

{P} 1 : nop {(P ∧ (x·y) = (x·y))}

2.
((shift (P ∧ (x·y) = (x·y))) → ((shift P ) ∧ (x·y) = s(0)[(s(0)·y)/s(0)])[x/s(0)])

{(P ∧ (x·y) = (x·y))} 2 : pushvar x {((shift P ) ∧ (x·y) = s(0)[(s(0)·y)/s(0)])}

3.
((shift ((shift P ) ∧ (x·y) = s(0)[(s(0)·y)/s(0)])) → ((shift (shift P )) ∧ (shift (x·y) = s(0))[(s(1)·s(0))/s(1)])[y/s(0)])

{((shift P ) ∧ (x·y) = s(0)[(s(0)·y)/s(0)])} 3 : pushvar y {((shift (shift P )) ∧ (shift (x·y) = s(0))[(s(1)·s(0))/s(1)])}

4.
(((shift (shift P )) ∧ (shift (x·y) = s(0))[(s(1)·s(0))/s(1)]) → (shift ((shift P ) ∧ (x·y) = s(0)))[(s(1)·s(0))/s(1)])

{((shift (shift P )) ∧ (shift (x·y) = s(0))[(s(1)·s(0))/s(1)])} 4 : binop · {((shift P ) ∧ (x·y) = s(0))}

or, after some simplifications and assuming that P is a source proof assertion:
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1.
(P → (P ∧ (x·y) = (x·y)))

{P} 1 : nop {(P ∧ (x·y) = (x·y))}

2.
((P ∧ (x·y) = (x·y)) → (P ∧ (x·y) = (x·y)))

{(P ∧ (x·y) = (x·y))} 2 : pushvar x {(P ∧ (x·y) = (s(0)·y))}

3.
((P ∧ (x·y) = (s(1)·y)) → (P ∧ (x·y) = (s(1)·y)))

{(P ∧ (x·y) = (s(0)·y))} 3 : pushvar y {(P ∧ (x·y) = (s(1)·s(0)))}

4.
((P ∧ (x·y) = (s(1)·s(0))) → (P ∧ (x·y) = (s(1)·s(0))))

{(P ∧ (x·y) = (s(1)·s(0)))} 4 : binop · {(P ∧ (x·y) = s(0))}

4.7 Base Rules

4.7.1 assign

`S

(
assign

{P [e/x]} x = e {P}

)
=

V : {P [e/x]}
hE

(P [e/x], e, shift(P [e/x]) ∧ s(0) = e)

A : {shift(P [e/x]) ∧ s(0) = e}
pop x

{P}

Reasons

A : pop x

P is a source assertion, it does not contain references to the stack
shift(P [e/x])︸ ︷︷ ︸

P [e/x]

∧ s(0) = e → (shift(P )︸ ︷︷ ︸
P

)[s(0)/x]

=P [s(0)/x] ∧ s(0) = e → P [s(0)/x]
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4.7.2 while

`S

(
while

{e = > ∧ P} S {P}
{P} while(e){S} {e = ⊥ ∧ P}

)
=

L : {P}
goto T

S : {e = > ∧ P}
hS

({e = > ∧ P} S {P})

T : {P}
hE

(P, e, shift(P ) ∧ s(0) = e)

B : {shift(P ) ∧ s(0) = e}
brtrue S

{P ∧ e = ⊥}

Reasons

L : goto T We have to prove: P → P , trivial

B : brtrue S We have to prove:

shift(P ) ∧ s(0) = e ∧ ¬s(0) → shift(P ∧ e = ⊥)

trivial, and
shift(P ) ∧ s(0) = e ∧ s(0) → shift(e = > ∧ P )

also trivial

4.7.3 if

In the produced code, the else-part comes before the then-part of the statement.
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`S

(
if
{e = > ∧ P} S1 {Q} {e = ⊥ ∧ P} S2 {Q}

{P} if(e){S1}else{S2} {Q}

)
=

T : {P}
hE

(P, e, shift(P ) ∧ s(0) = e)

B : {shift(P ) ∧ s(0) = e}
brtrue S1

S2 : {e = ⊥ ∧ P}
hS

({e = ⊥ ∧ P} S2 {Q})

L : {Q}
goto E

S1 : {e = > ∧ P}
hS

({e = > ∧ P} S1 {Q})

E : {Q}
nop

{Q}

Reasons

B : brtrue S1 We have to prove:

shift(P ) ∧ s(0) = e ∧ ¬s(0) → shift(e = ⊥ ∧ P )

trivial, and
shift(P ) ∧ s(0) = e ∧ s(0) → shift(e = > ∧ P )

also trivial

4.7.4 seq

`S

(
seq

{P} S1 {Q} {Q} S2 {R}
{P} S1;S2 {R}

)
=

S1 : {P}
hS

({P} S1 {Q})

S2 : {Q}
hS

({Q} S2 {R})

{R}

4.7.5 conjunct/disjunct

Conjunction and disjunction are treated identically. We show here only the conjunct-rule.
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`S

(
conj

{P1} S {Q1} {P2} S {Q2}
{P1 ∧ P2} S {Q1 ∧Q2}

)
=

create the two proofs hS
({P1} S {Q1})

and hS
({P2} S {Q2})

The embedded instructions are (by construction) the same. With the two proofs, we assemble a third
proof (the result)

hS
({P1 ∧ P2} S {Q1 ∧Q2})

by merging, for all instructions, their specifications{
A(l)

}
l : instr

{
A(l+1)

}
and {

B(l)

}
l : instr

{
B(l+1)

}
to get {

A(l) ∧B(l)

}
l : instr

{
A(l+1) ∧B(l+1)

}
For the common instructions with that have the f, g form (see section 4.3 on page 24), a proof tree can
then be constructed easily:

distributive

· · ·
f(A) → g(B)

· · ·
f(C) → g(D)

f(A) ∧ f(C) → g(B) ∧ g(D)
· · · f(A ∧ C) → g(B ∧D) · · ·{

A(l) ∧B(l)

}
l : instr

{
A(l+1) ∧B(l + 1)

}
This argument is not true for invokevirtual (i.e. for the invokevirtual and invokevar rules). In that
case, we apply the the rule directly to the method specification that is required by invokevirtual if the
two rules we’re looking at are both invokevirtual:

· · ·
{P1} T : m {Q1}

· · ·
{P2} T : m {Q2}

{P1 ∧ P2} T : m {Q1 ∧Q2} · · · Others are proven as above{
A(l) ∧B(l)

}
l : invokevirtual T : m

{
A(l+1) ∧B(l+1)

}
In the case of at least one invokevar rule12, we propagate the conjunction up the proof tree. As a simplifi-
cation, we assume that the logical variables used in the two proofs are disjoint (if this is not the case, we
could always insert subst-rules)

given one tree

invokevar
{A′

l} l : invokevirtual T : m
{
A′

l+1

}
Al → A′

l[(shift(w))/Z] A′
l+1[w/Z] → Al+1

{Al} l : invokevirtual T : m {Al+1}

and a second tree (represented by its root)

{Bl} l : invokevirtual T : m {Bl+1}
12we have to “merge” one invocation-var rule with another rule (either a invocation-var or a invokevirtual rule)
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we produce

invokevar

· · ·
{A′

l ∧Bl} l : invokevirtual T : m
{
A′

l+1 ∧Bl+1

} (Al ∧Bl) → (A′
l ∧Bl)[(shift(w))/Z]

(A′
l+1 ∧Bl+1)[w/Z] → (Al+1 ∧Bl+1)

{Al ∧Bl} l : invokevirtual T : m {Al+1 ∧Bl+1}

where the rest of the tree (represented by dots) is obtained from merging the two trees

{A′
l} l : invokevirtual T : m

{
A′

l+1

}
and

{Bl} l : invokevirtual T : m {Bl+1}

Because we know that Bl and Bl+1 do not contain Z, we know (i.e. we can prove) that the result tree is
a valid application of the invokevar rule. Illustration:

(Al ∧Bl) → (A′
l ∧Bl)[(shift(w))/Z] = (Al ∧Bl) → A′

l[(shift(w))/Z] ∧Bl

Example 9. Consider the following method fragment:

x = x^2;

and two proofs for it

{x·x = y}
x = x*x
{x = y}

{x·x > 0}
x = x*x
{x > 0}

together, applying the conjunct rule, they tell us that

{x·x = y ∧ x·x > 0}
x = x*x
{x = y ∧ x > 0}

or representing the proof as a tree

{(x·x) = y} x = (x·x) {x = y} {((x·x) > 0)} x = (x·x) {(x > 0)}
{((x·x) = y ∧ ((x·x) > 0))} x = (x·x) {(x = y ∧ (x > 0))}

Applying the
`S function on this tree gives us:

1.
(((x·x) = y ∧ ((x·x) > 0)) → (((x·x) = y ∧ (x·x) = (x·x)) ∧ (((x·x) > 0) ∧ (x·x) = (x·x))))

{((x·x) = y ∧ ((x·x) > 0))} 1 : nop {(((x·x) = y ∧ (x·x) = (x·x)) ∧ (((x·x) > 0) ∧ (x·x) = (x·x)))}

2.
((((x·x) = y ∧ (x·x) = (x·x)) ∧ (((x·x) > 0) ∧ (x·x) = (x·x))) → (((x·x) = y ∧ (x·x) = (x·x)) ∧ (((x·x) > 0) ∧ (x·x) = (x·x))))

{(((x·x) = y ∧ (x·x) = (x·x)) ∧ (((x·x) > 0) ∧ (x·x) = (x·x)))} 2 : pushvar x {(((x·x) = y ∧ (x·x) = (s(0)·x)) ∧ (((x·x) > 0) ∧ (x·x) = (s(0)·x)))}
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3.
((((x·x) = y ∧ (x·x) = (s(1)·x)) ∧ (((x·x) > 0) ∧ (x·x) = (s(1)·x))) → (((x·x) = y ∧ (x·x) = (s(1)·x)) ∧ (((x·x) > 0) ∧ (x·x) = (s(1)·x))))

{(((x·x) = y ∧ (x·x) = (s(0)·x)) ∧ (((x·x) > 0) ∧ (x·x) = (s(0)·x)))} 3 : pushvar x {(((x·x) = y ∧ (x·x) = (s(1)·s(0))) ∧ (((x·x) > 0) ∧ (x·x) = (s(1)·s(0))))}

4.
((((x·x) = y ∧ (x·x) = (s(1)·s(0))) ∧ (((x·x) > 0) ∧ (x·x) = (s(1)·s(0)))) → (((x·x) = y ∧ (x·x) = (s(1)·s(0))) ∧ (((x·x) > 0) ∧ (x·x) = (s(1)·s(0)))))
{(((x·x) = y ∧ (x·x) = (s(1)·s(0))) ∧ (((x·x) > 0) ∧ (x·x) = (s(1)·s(0))))} 4 : binop · {(((x·x) = y ∧ (x·x) = s(0)) ∧ (((x·x) > 0) ∧ (x·x) = s(0)))}

5.
((((x·x) = y ∧ (x·x) = s(0)) ∧ (((x·x) > 0) ∧ (x·x) = s(0))) → (x = y ∧ (x > 0)))

{(((x·x) = y ∧ (x·x) = s(0)) ∧ (((x·x) > 0) ∧ (x·x) = s(0)))} 5 : pop x {(x = y ∧ (x > 0))}

or, in linear form

1.

nop
{((x·x) = y ∧ ((x·x) > 0))}
1 : nop
{(((x·x) = y ∧ (x·x) = (x·x)) ∧ (((x·x) > 0) ∧ (x·x) = (x·x)))}

2.

pushvar
{(((x·x) = y ∧ (x·x) = (x·x)) ∧ (((x·x) > 0) ∧ (x·x) = (x·x)))}
2 : pushvar x

{(((x·x) = y ∧ (x·x) = (s(0)·x)) ∧ (((x·x) > 0) ∧ (x·x) = (s(0)·x)))}

3.

pushvar
{(((x·x) = y ∧ (x·x) = (s(0)·x)) ∧ (((x·x) > 0) ∧ (x·x) = (s(0)·x)))}
3 : pushvar x

{(((x·x) = y ∧ (x·x) = (s(1)·s(0))) ∧ (((x·x) > 0) ∧ (x·x) = (s(1)·s(0))))}

4.

binop
{(((x·x) = y ∧ (x·x) = (s(1)·s(0))) ∧ (((x·x) > 0) ∧ (x·x) = (s(1)·s(0))))}
4 : binop ·
{(((x·x) = y ∧ (x·x) = s(0)) ∧ (((x·x) > 0) ∧ (x·x) = s(0)))}

5.

pop
{(((x·x) = y ∧ (x·x) = s(0)) ∧ (((x·x) > 0) ∧ (x·x) = s(0)))}
5 : pop x

{(x = y ∧ (x > 0))}

4.7.6 strength

`S

(
strength

P ′ → P {P} S {Q}
{P ′} S {Q}

)
=

P : {P ′}
nop

L : {P}
hS

({P} S {Q})

{Q}
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Reasons

P : nop
P ′ → P

but this we know from the source proof. (see section 4 on page 22)

4.7.7 weak

`S

(
weak

Q → Q′ {P} S {Q}
{P} S {Q′}

)
=

L : {P}
hS

({P} S {Q})

P : {Q}
nop

{Q′}

Reasons

P : nop We have to prove
Q → Q′

but this we know from the source proof. (see section 4 on page 22)

4.7.8 inv

`S

(
inv

{P} S {Q}
{P ∧W} S {Q ∧W}

)
=

We just add a ∧W to every specification of the sequence produced by
`S ({P} S {Q}). We again exploit

the special form of the rules.

distributive

f(A) → g(B)
f(A) ∧W → g(B) ∧W

(f−(A) ∧Af ) ∧ (W ∧Af ) → (g−(B) ∧Ag) ∧ (W ∧Ag)
f(A) ∧ f(W ) → g(B) ∧ g(W )
· · · f(A ∧W ) → g(B ∧W ) · · ·{

E(l) ∧W
}

l : instr
{
E(l+1) ∧W

}
invokevirtual is treated as in section 4.7.5 on page 31. We propagate the ∧W along the slim proof
tree until we reach the method. We then apply the the original Java-K inv rule to the method.

Example 10. Consider this simple proof
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{x·x > 0}
x = x*x
{x > 0}

again.

Applying the inv rule with W ≡ (X = Y ) yields

⇓ {x·x > 0 ∧X = Y }
{x·x > 0}
x = x*x
{x > 0}
⇑ {x > 0 ∧X = Y }

and its proof tree
{((x·x) > 0)} x = (x·x) {(x > 0)}

{(((x·x) > 0) ∧X = Y )} x = (x·x) {((x > 0) ∧X = Y )}

Applying the
`S function on this tree gives us what we expected:

1.
((((x·x) > 0) ∧X = Y ) → ((((x·x) > 0) ∧ (x·x) = (x·x)) ∧X = Y ))

{(((x·x) > 0) ∧X = Y )} 1 : nop {((((x·x) > 0) ∧ (x·x) = (x·x)) ∧X = Y )}

2.
(((((x·x) > 0) ∧ (x·x) = (x·x)) ∧X = Y ) → ((((x·x) > 0) ∧ (x·x) = (x·x)) ∧X = Y ))

{((((x·x) > 0) ∧ (x·x) = (x·x)) ∧X = Y )} 2 : pushvar x {((((x·x) > 0) ∧ (x·x) = (s(0)·x)) ∧X = Y )}

3.
(((((x·x) > 0) ∧ (x·x) = (s(1)·x)) ∧X = Y ) → ((((x·x) > 0) ∧ (x·x) = (s(1)·x)) ∧X = Y ))

{((((x·x) > 0) ∧ (x·x) = (s(0)·x)) ∧X = Y )} 3 : pushvar x {((((x·x) > 0) ∧ (x·x) = (s(1)·s(0))) ∧X = Y )}

4.
(((((x·x) > 0) ∧ (x·x) = (s(1)·s(0))) ∧X = Y ) → ((((x·x) > 0) ∧ (x·x) = (s(1)·s(0))) ∧X = Y ))

{((((x·x) > 0) ∧ (x·x) = (s(1)·s(0))) ∧X = Y )} 4 : binop · {((((x·x) > 0) ∧ (x·x) = s(0)) ∧X = Y )}

5.
(((((x·x) > 0) ∧ (x·x) = s(0)) ∧X = Y ) → ((x > 0) ∧X = Y ))

{((((x·x) > 0) ∧ (x·x) = s(0)) ∧X = Y )} 5 : pop x {((x > 0) ∧X = Y )}

4.7.9 subst

`S

(
subst

{P} S {Q}
{P [t/Z]} S {Q[t/Z]}

)
= As before, first we generate

`S ({P} S {Q}) and then we replace Z

by t in each specification and in all proofs for assertions (the antecedents normally). We again use the
special form of our rules. We do not really need to do the replacement in all proof, we can actually replace
the proofs compositionally :

· · ·
f(A) → g(B)

(f(A) → g(B))[t/Z]
· · · f(A[t/Z]) → g(B[t/Z]) · · ·{

E(l)[t/Z]
}

l : instr
{
E(l+1)[t/Z]

}
invokevirtual is treated as in section 4.7.8 on the preceding page.
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4.8 Rules for References, Objects and Dynamic Dispatch

4.8.1 invocation

`S

(
invocation

{P} T : m {Q}
{y 6= null ∧ P [y/ this, e/ p]} x = y.T : m(e) {Q[x/ result]}

)
=

S : {Qs ≡ y 6= null ∧ P [y/ this, e/ p]}
pushvar y

V : {shift(Qs) ∧ s(0) = y}
hE

(shift(Qs) ∧ s(0) = y, e, Qi ≡ shift(shift(Qs) ∧ s(0) = y) ∧ s(0) = e)

I : {Qi}
invokevirtual T : m

A : {Q[s(0)/ result]}
pop x

{Q[x/ result]}

Reasons

A : pop x Q does not contain program variables or stack references

Q[s(0)/ result] → (shift(Q[x/ result]))[s(0)/x]
=Q[s(0)/ result] → Q[x/ result][s(0)/x]
=Q[s(0)/ result] → Q[s(0)/ result, s(0)/x]
=Q[s(0)/ result] → Q[s(0)/ result]

S : pushvar y

shift Qs → (shift(Qs) ∧ s(0) = y)[x/s(0)]

I : invokevirtual T : m

Qi

→ s(1) 6= null ∧ P [s(1)/ this, s(0)/ p]
= shift(shift(Qs) ∧ s(0) = y) ∧ s(0) = e

→ s(1) 6= null ∧ P [s(1)/ this, s(0)/ p]
=Qs ∧ s(1) = y ∧ s(0) = e

→ s(1) 6= null ∧ P [s(1)/ this, s(0)/ p]
=y 6= null ∧ P [y/ this, e/ p] ∧ s(1) = y ∧ s(0) = e

→ s(1) 6= null ∧ P [s(1)/ this, s(0)/ p]

4.8.2 invocation-var

`S

(
invocation-var

{P} x = y.T : m(e) {Q}
{P [w/Z]} x = y.T : m(e) {Q[w/Z]}

)
=
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generate the proof
`E (P, x = y.T : m(e), Q) and replace all Z by w in all instruction proofs. The proofs

are still going to work, because the instructions pushvar , pushc and binopop generated by
`E and

`X

(for the actual parameter e) do not modify local variables (w in our case) The proof-checker does not need
to know that, it just sees that the deductions are still correct, which is what we want to achieve.

In fact, we need not treat invocation-var any different than the subst-rule. The only difference is that we
replace a local variable instead of a logical variable. f, g are not commutative with respect to replacement
of logical variables with local variables in general. But as explained in the previous paragraph, we also
know a lot more (see also section 4.6 on page 27 and section 4.8.1 on the preceding page): we know that
for the evaluation of expressions, only rules with f, g ∈ {shift, (.)[· · · /s(0)], (shift(.))[(s(1) op s(0))/s(1)]}
are generated, the variable w we may introduce is not used in the assignment. Taking these facts into
account, we can safely treat invocation-var for all rules exactly as the subst-rule.

· · ·
f(A) → g(B)

(f(A) → g(B))[w/Z]
· · · f(A[w/Z]) → g(B[w/Z]) · · ·{

E(l)[w/Z]
}

l : instr
{
E(l+1)[w/Z]

}
invokevirtual is treated similarly as in section 4.7.5 on page 31 by insertion of the specialized invokevar
rule.

Note that we can restrict our attention to local variables and we do not need to include stack elements in
our consideration although that would also be possible with our invokevar rule (section 3.4.3 on page 18).

Example 11. Consider the virtual method invocation:

invokevar

inv

invoke
{p = p0} Add2 {result = (p0 + 2)}

{p = p0[x/p][o/this]} x = o.Add2(x) {result = (p0 + 2)[x/result]}
{(p = p0[x/p][o/this] ∧ Z = 5)} x = o.Add2(x) {(result = (p0 + 2)[x/result] ∧ Z = 5)}

{(p = p0[x/p][o/this] ∧ Z = 5)[t/Z]} x = o.Add2(x) {(result = (p0 + 2)[x/result] ∧ Z = 5)[t/Z]}

simplified:

invokevar

inv

invoke
{p = p0} Add2 {result = (p0 + 2)}

{x = p0} x = o.Add2(x) {x = (p0 + 2)}
{(x = p0 ∧ Z = 5)} x = o.Add2(x) {(x = (p0 + 2) ∧ Z = 5)}
{(x = p0 ∧ t = 5)} x = o.Add2(x) {(x = (p0 + 2) ∧ t = 5)}

Applying
`S yields:

1.
{(x = p0 ∧ t = 5)} 1 : nop {((x = p0 ∧ o = o) ∧ t = 5)}

2.
{((x = p0 ∧ o = o) ∧ t = 5)} 2 : pushvar o {((x = p0 ∧ o = s(0)) ∧ t = 5)}

3.
{((x = p0 ∧ o = s(0)) ∧ t = 5)} 3 : nop {(((x = p0 ∧ o = s(0)) ∧ x = x) ∧ t = 5)}

4.
{(((x = p0 ∧ o = s(0)) ∧ x = x) ∧ t = 5)} 4 : pushvar x {(((x = p0 ∧ o = s(1)) ∧ x = s(0)) ∧ t = 5)}
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5.

{p = p0} Add2 {result = (p0 + 2)}
{(p = p0 ∧ Z = 5)} Add2 {(result = (p0 + 2) ∧ Z = 5)}

{(((x = p0 ∧ o = s(1)) ∧ x = s(0)) ∧ Z = 5)} 5 : invokevirtual Add2 {(s(0) = (p0 + 2) ∧ Z = 5)}
{(((x = p0 ∧ o = s(1)) ∧ x = s(0)) ∧ t = 5)} 5 : invokevirtual Add2 {(s(0) = (p0 + 2) ∧ t = 5)}

6.
{(s(0) = (p0 + 2) ∧ t = 5)} 6 : pop x {(x = (p0 + 2) ∧ t = 5)}

or in linear form:

1.

nop
{(x = p0 ∧ t = 5)}
1 : nop

{((x = p0 ∧ o = o) ∧ t = 5)}

2.

pushvar
{((x = p0 ∧ o = o) ∧ t = 5)}
2 : pushvar o

{((x = p0 ∧ o = s(0)) ∧ t = 5)}

3.

nop
{((x = p0 ∧ o = s(0)) ∧ t = 5)}
3 : nop

{(((x = p0 ∧ o = s(0)) ∧ x = x) ∧ t = 5)}

4.

pushvar
{(((x = p0 ∧ o = s(0)) ∧ x = x) ∧ t = 5)}
4 : pushvar x

{(((x = p0 ∧ o = s(1)) ∧ x = s(0)) ∧ t = 5)}

5.

invokevar
{(((x = p0 ∧ o = s(1)) ∧ x = s(0)) ∧ t = 5)}

5 :

invokevirt
{(((x = p0 ∧ o = s(1)) ∧ x = s(0)) ∧ Z = 5)}
5 : invokevirtual Add2

{(s(0) = (p0 + 2) ∧ Z = 5)}

{(s(0) = (p0 + 2) ∧ t = 5)}

6.

pop
{(s(0) = (p0 + 2) ∧ t = 5)}
6 : pop x

{(x = (p0 + 2) ∧ t = 5)}

39



4.8.3 cast

`S

(
cast

{τ(e) � T ∧ P [e/x]} x = (T )e {P}

)
=

V : {Qs ≡ τ(e) � T ∧ P [e/x]}
hE

(Qs, e, shift(Qs) ∧ s(0) = e)

C : {shift(Qs) ∧ s(0) = e}
checkcast

A : {shift(Qs) ∧ s(0) = e}
pop x

{P}

Reasons

C : checkcast

shift(Qs) ∧ s(0) = e → shift(Qs) ∧ s(0) = e ∧ τ(s(0)) � T

= τ(e) � T ∧ P [e/x] ∧ s(0) = e → τ(e) � T ∧ P [e/x] ∧ s(0) = e ∧ τ(s(0)) � T

A : pop x

shift(Qs) ∧ s(0) = e → (shift(P ))[s(0)/x]
= τ(e) � T ∧ P [e/x] ∧ s(0) = e → P [s(0)/x]

4.8.4 construct

`S

(
construct

{P [new($, T )/x, $〈T 〉/ $]} x = new T () {P}

)
=

V : {Qs ≡ P [new($, T )/x, $〈T 〉/ $]}
newobj T

A : {(shift(P ))[s(0)/x]}
pop x

{P}

Reasons
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V : newobj T

shift(Qs)
→ ((shift(P ))[s(0)/x])[new($, T )/s(0), $〈T 〉/ $]

=Qs

→ P [s(0)/x][new($, T )/s(0), $〈T 〉/ $]
=Qs

→ P [new($, T )/x,new($, T )/s(0), $〈T 〉/ $]
=Qs

→ P [new($, T )/x, $〈T 〉/ $]︸ ︷︷ ︸
=Qs

A : pop x

(shift(P ))[s(0)/x]
→ (shift(P ))[s(0)/x]

4.8.5 read

`S

(
read

{y 6= null ∧ P [$(iv(y, S@a))/x]} x = y.S@a {P}

)
=

S : {Qs ≡ y 6= null ∧ P [$(iv(y, S@a))/x]}
pushvar y

V : {shift(Qs) ∧ s(0) = y}
getfield S@a

A : {shift(Qs) ∧ s(0) = $(iv(y, S@a))}
pop x

{P}

Reasons

S : pushvar y

shift(Qs) → (shift(Qs) ∧ s(0) = y)[y/s(0)]
= shift(Qs) → shift(Qs) ∧ y = y
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V : getfield S@a

shift(Qs) ∧ s(0) = y

→ (shift(Qs) ∧ s(0) = $(iv(y, S@a)))[$(iv(s(0), S@a))/s(0)] ∧ s(0) 6= null
= shift(Qs) ∧ s(0) = y

→ (shift(Qs) ∧ $(iv(s(0), S@a)) = $(iv(y, S@a)))[$(iv(s(0), S@a))/s(0)] ∧ s(0) 6= null
= shift(Qs) ∧ s(0) = y

→ (shift(Qs))[$(iv(s(0), S@a))/s(0)] ∧ s(0) 6= null
=Qs ∧ s(0) = y

→ Qs ∧ s(0) 6= null
= (Qs ∧ y 6= null)︸ ︷︷ ︸

Qs

∧ s(0) = y

→ Qs ∧ s(0) 6= null

A : pop x

shift(Qs) ∧ s(0) = $(iv(y, S@a)) → (shift(P ))[s(0)/x]
=Qs ∧ s(0) = $(iv(y, S@a))
→ P [s(0)/x]

=y 6= null ∧ P [$(iv(y, S@a))/x] ∧ s(0) = $(iv(y, S@a))
→ P [s(0)/x]

4.8.6 write

`S

(
write

{y 6= null ∧ P [$〈iv(y, S@a) := e〉/ $]} y.S@a = e {P}

)
=

S : {Qs ≡ y 6= null ∧ P [$〈iv(y, S@a) := e〉/ $]}
pushvar y

V : {shift(Qs) ∧ s(0) = y}
hE

(shift(Qs) ∧ s(0) = y, e, Qx ≡ shift(shift(Qs) ∧ s(0) = y) ∧ s(0) = e)

A : {Qx}
putfield S@a

{P}

Reasons

S : pushvar y

shift(Qs) → (shift(Qs) ∧ s(0) = y)[y/s(0)]
= shift(Qs) → shift(Qs) ∧ y = y
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A : putfield S@a

Qx → (shift2(P ))[$〈iv(s(1), S@a) := s(0)〉/ $] ∧ s(1) 6= null︸ ︷︷ ︸
G

=shift(shift(Qs) ∧ s(0) = y) ∧ s(0) = e → G

=shift2(Qs) ∧ s(1) = y ∧ s(0) = e → G

=y 6= null ∧ shift2(P [$〈iv(y, S@a) := e〉/ $])︸ ︷︷ ︸
does not contain references to the stack

∧ s(1) = y ∧ s(0) = e → G

=y 6= null ∧ P [$〈iv(y, S@a) := e〉/ $] ∧ s(1) = y ∧ s(0) = e → G

=P [$〈iv(y, S@a) := e〉/ $] ∧ y 6= null ∧ s(1) = y ∧ s(0) = e

→ P [$〈iv(s(1), S@a) := s(0)〉/ $] ∧ s(1) 6= null

4.9 Methods

`S

(
{P} body(T@m) {Q}

{P} T@m {Q}

)
=

VMK

p =



S : {P ′ = P ∧ this 6= null}
hS

({P ′} body(T@m) {Q})

T : {Q}
end_method

{Q}


I|p| = end_method

∀i < |p| : p(i) 6= end_method

preconditionp(1) = P ∧ this 6= null

postconditionp(|p|) = Q

{P} T@m {Q}

5 Application

In this section, we present a Java-K proof and its automatic translation in order to give a feeling –
together with implementation in section A on page 49 – how the translation rules are used. The example
is necessarily trivial. That’s why it does not use some of the more complex instruction rules. It calculates
the factorial of a number.

We first give a linear form of the proof, then the actual proof tree and its translation into a VMK proof.

5.1 Java-K, linear

public class Trivial {
public int f(int x) {

{x = x0}
result = 1;
{x = x0 ∧ result = 1}
=⇒
{result ·x! = x0!}
while(x != 0){

{x 6= 0 ∧ result ·x! = x0!}
=⇒
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{result ·x·(x− 1)! = x0!}
result = result*x;
{result ·(x− 1)! = x0!}
x = x-1;
{result ·x! = x0!}

}
{result ·x! = x0! ∧ x = 0}
=⇒
{result = x0!}

}
}

5.2 Java-K, Tree

T0 =
id

T1

{P} bodyVMK(Trivial@f) {Q}
{P} Trivial@f {Q}
· · · see [PHM99]

{P ≡ x = x0} Trivial : f {Q ≡ result = x0!}

T1 = weak

seq
T2 T3

{x = x0} result = 1; while(...)... {result ·x! = x0! ∧ x = 0}
{x = x0} result = 1; while(...)... {result = x0!}

T2 = weak

assign
{x = x0} result = 1 {x = x0 ∧ result = 1}
{x = x0} result = 1 {result ·x! = x0!}

T3 = while

seq
T4 T5

{x 6= 0 ∧ result ·x! = x0!} ...; ... {result ·x! = x0!}
{result ·x! = x0!} while(...)... {result ·x! = x0! ∧ x = 0}

T4 = strength

assign
{result ·x·(x− 1)! = x0!} result = result·x; {result ·(x− 1)! = x0!}

{x 6= 0 ∧ result ·x! = x0!} result = result·x; {result ·(x− 1)! = x0!}

T5 = assign
{result ·(x− 1)! = x0!} x = x− 1; {result ·x! = x0!}

5.3 The Translation

The translation has been automatically generated from the source proof. result is abbreviated by r (to
save space). “Reasons” for the antecedents are not given but they are trivial to check. The assumption
this 6= null is left implicit in our assertions.
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

{x = x0} 1 : nop {(x = x0 ∧ 1 = 1)}

{(x = x0 ∧ 1 = 1)} 2 : pushc 1 {(x = x0 ∧ 1 = s(0))}

{(x = x0 ∧ 1 = s(0))} 3 : pop r {(x = x0 ∧ r = 1)}

{(x = x0 ∧ r = 1)} 4 : nop {(r·(x!)) = x0!}

{(r·(x!)) = x0!} 5 : goto 17 {((r·(x!)) = x0! ∧ x 6= 0)}

{((r·(x!)) = x0! ∧ x 6= 0)} 6 : nop {((r·x)·((x− 1)!)) = x0!}

{((r·x)·((x− 1)!)) = x0!} 7 : nop {(((r·x)·((x− 1)!)) = x0! ∧ (r·x) = (r·x))}

{(((r·x)·((x− 1)!)) = x0! ∧ (r·x) = (r·x))} 8 : pushvar r {(((r·x)·((x− 1)!)) = x0! ∧ (r·x) = (s(0)·x))}

{(((r·x)·((x− 1)!)) = x0! ∧ (r·x) = (s(0)·x))} 9 : pushvar x {(((r·x)·((x− 1)!)) = x0! ∧ (r·x) = (s(1)·s(0)))}

{(((r·x)·((x− 1)!)) = x0! ∧ (r·x) = (s(1)·s(0)))} 10 : binop · {(((r·x)·((x− 1)!)) = x0! ∧ (r·x) = s(0))}

{(((r·x)·((x− 1)!)) = x0! ∧ (r·x) = s(0))} 11 : pop r {(r·((x− 1)!)) = x0!}

{(r·((x− 1)!)) = x0!} 12 : nop {((r·((x− 1)!)) = x0! ∧ (x− 1) = (x− 1))}

{((r·((x− 1)!)) = x0! ∧ (x− 1) = (x− 1))} 13 : pushvar x {((r·((x− 1)!)) = x0! ∧ (x− 1) = (s(0)− 1))}

{((r·((x− 1)!)) = x0! ∧ (x− 1) = (s(0)− 1))} 14 : pushc 1 {((r·((x− 1)!)) = x0! ∧ (x− 1) = (s(1)− s(0)))}

{((r·((x− 1)!)) = x0! ∧ (x− 1) = (s(1)− s(0)))} 15 : binop− {((r·((x− 1)!)) = x0! ∧ (x− 1) = s(0))}

{((r·((x− 1)!)) = x0! ∧ (x− 1) = s(0))} 16 : pop x {(r·(x!)) = x0!}

{(r·(x!)) = x0!} 17 : nop {((r·(x!)) = x0! ∧ (x 6= 0) = (x 6= 0))}

{((r·(x!)) = x0! ∧ (x 6= 0) = (x 6= 0))} 18 : pushvar x {((r·(x!)) = x0! ∧ (x 6= 0) = (s(0) 6= 0))}

{((r·(x!)) = x0! ∧ (x 6= 0) = (s(0) 6= 0))} 19 : pushc 0 {((r·(x!)) = x0! ∧ (x 6= 0) = (s(1) 6= s(0)))}

{((r·(x!)) = x0! ∧ (x 6= 0) = (s(1) 6= s(0)))} 20 : binop 6= {((r·(x!)) = x0! ∧ (x 6= 0) = s(0))}

{((r·(x!)) = x0! ∧ (x 6= 0) = s(0))} 21 : brtrue 6 {((r·(x!)) = x0! ∧ x = 0)}

{((r·(x!)) = x0! ∧ x = 0)} 22 : nop {r = x0!}

{r = x0!} 23 : end_method {r = x0!}


{x = x0} Trivial@f {r = x0!}

6 Related Work

A huge amount of work deals with the formalization of aspects of the JVM. [HM01] contains an overview.
[SBS01] gives an almost comprehensive ASM specification of the JVM. Operational semantics for the
JVM are given in many different publications. Most of them want to be faithful to the “real” JVM but
fail to model non-trivial aspects like dynamic class loading and garbage collection. Examples include
[Qia99], [SH01] and [Ber97]. Operational semantics have been used to proof the soundness of type systems
for bytecode (e.g., [SNF03]), but they are not very suitable for program verification. [Qui03] describes
a formalism that tries to rediscover structures in the bytecode for program verification, precluding the
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verification of arbitrary programs. There are fewer papers about the CLR, but the results are the same.
The formalism of our logic is based on [Ben04].

7 Conclusion

We have presented the operational semantics and a programming logic for the bytecode of VMK, a virtual
machine similar to the JVM or the CLR. Possible uses of this approach include language interoperability
of specifications and trusted components that are not available in source form.

To show complex properties of a program, we usually have to produce a proof by hand. This is done
on the source level and not on the bytecode level. In order to make applications of a bytecode logic
possible, we therefore need an automatic translation procedure from source proofs. We have presented
such a translation procedure together with a simple prototype implementation.

The bytecode logic is a simple Hoare style logic with labeled assertions. Labeled assertions allow us to
express non-local requirements on instructions. They are conceptually simpler than other methods to
handle unstructured control flows. Checking a proof is purely local: we can check one instruction at a
time.

The simplicity of our proof translation is fundamentally tied to the special shape13 of the deductive rules
we introduced. It allowed us to omit instruction independent rules like the weak, inv, subst rules from our
bytecode logic. Unfortunately, we were not able to translate the ex- and all-rules to our logic.
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A Implementation

This appendix contains an implementation of the translation in SML. It is meant to demonstrate that the
translation is easy.

The “reasons” sections did not find their way into this translation because we did not want to restrict
ourselves to specific underlying logic and a deductive system for that logic. We do not include the trivial
invariant this 6= null in our proofs, either.

The actual compilation does not begin before line 217 with the function CompileX. Three functions are
defined that correspond to the three translation functions defined in section 4 on page 22:

SML function name Symbol
CompileX

`X

CompileE
`E

CompileS
`S

The translation from the definitions in the text to the runnable SML program is quite direct. Still,
the definition of the more difficult translations (line 243) may be interesting when an existing verified
instruction sequence is modified (for the substitution rule for instance).

The translation function CompileImpl (line 396) is just a distinct name for
`S when method implementa-

tions should be translated, which is our ultimate goal.

The generation of labels is quite mundane: the genuniqueid (line 115) is a helper function to produce fresh
variables and labels. It works by updating a counter. In order to get the numbers right, we take care to
do the recursive invocation of the translation functions in the order in which their results will appear in
the final instruction sequence.

The functions at line 154 are used for the simplification of expressions. They are not strictly necessary,
but help when producing printable output.

Because there is only one rule for most instructions, we declare (line 199) the function that does the
mapping between instructions and rules.

The rest of the code is straight-forward and should not need any additional explanation.

• The datatype Expr (line 3) is used to represent all assertions/predicates as well as expressions in the
program. Operations that are strictly required to handle the proofs are included (e.g. conjunction,
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disjunction) plus a few others. prg, lvr, stk represent program, logical and stack variables. There
is one operation for the replacement of each kind of variables.

• We treat the object-store $ (line 28) just like an ordinary program variable.

• Stmt (line 30) represents arbitrary computations both for Java-K and VMK.

• Rule (line 60) is an enumeration of all possible rules. Again, there is no separation between Java-
K and VMK. The antecedents are not stored with the individual rules in order to avoid lengthy
repetitions of similar declarations.

• Proof (line 102) stores an actual proof. There are two kinds of proofs: those constructed using
DT, representing proofs for Hoare-triples and those that prove assertions (constructed with DE). As
before, it may be safer to treat Hoare-triple proofs and assertion proofs as different datatypes, but
the unification chosen here aims at making the program smaller.

• Starting at line 104, some accessors for the parts of the proofs are declared, we use them because
the DT constructor is quite complicated.
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(* Transformation of SJ -Proofs to SVM -Proofs *)
(* Predicates/Assertions for SJ/SVM *)
datatype Expr = falseP | trueP

| implies of Expr * Expr
5 | conj of Expr * Expr

| disj of Expr * Expr
(* for lvr ’s *)

| allP of string * Expr
| exP of string * Expr

10 | shiftP of Expr
| unshiftP of Expr
(* relational operators *)
| eqP of Expr * Expr
| neP of Expr * Expr

15 | binop of string * Expr * Expr
| unop of string * Expr
| prg of string
| lvr of string
| stk of int

20 | genop of string * Expr list
| replacelvr of string * Expr * Expr
| replaceprg of string * Expr * Expr
| replacestk of int * Expr * Expr
| literal of string

25 (* OS *)(*obj*)(*field*)
| instvar of Expr * Expr * string
| instvarupdate of Expr * Expr * string * Expr

val OS = prg "$"
(* SJ Stmts and Methods *)

30 datatype Stmt = cast of string * string * Expr
| ctor of string * string
| assign of string * Expr
| readf of string * string * string
| writef of string * string * Expr

35 | invoke of string * string * string * Expr
| swhile of Expr * Stmt
| sif of Expr * Stmt * Stmt
| seq of Stmt * Stmt
| skipstmt

40 | kmeth of string (* T@m *)
| vmeth of string
| pushc of string
| pushvar of string
| pop of string

45 | iunop of string
| ibinop of string
| goto of string (* labels are strings *)
| brtrue of string
| checkcast of string

50 | newobj of string
| invokevirtual of string
| getfield of string
| putfield of string
| methodend

55 | nop
(*
at the moment , no reaons are given , trees are
trees are just for hoare -triples
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*)
60 datatype Rule = assumed

| omitted
| rpushc
| rpushvar
| rpop

65 | runop
| rbinop
| rgoto
| rbrtrue
| rcheckcast

70 | rnewobj
| rgetfield
| rputfield
| rinvokevirt (* one antecedent *)
| rinvokevar (* one antecedent *)

75 | rnop
| rmethod
| rimplementation (* antecedent is proof -list *)
(* SJ *)
| xcast

80 | xassign
| xctor
| xreadf
| xwritef
| xinvoke (* one antecedent *)

85 | xinvokevar (* one antecedent pre must be *exactely" replacelvr(Z
,w, P) *)

| ximpl (* one antecedent *)
(* class - and subtype - rule are not modelled here *)
| xwhile (* one antecedent *)
| xif (* two antecedents *)

90 | xseq (* two antecedents *)
| xfalse
| xconj (* two antecedents *)
| xdisj (* two antecedents *)
| xstren (* one antecedent *)

95 | xweak (* one antecedent *)
| xinv (* one antecedent , pre must be *exactely* conj(P,R) *)
| xsub (* one antecedent , pre must be *exactely" replacelvr(Z,t, P

) *)
| xall (* one antecedent *)
| xex (* one antecedent *)

100 and
(* label , instr , precond , post , rule , antecedents *)

Proof = DT of string * Stmt * Expr * Expr * Rule * Proof list
| DE of Expr (* result *)

(**** PROOF TRANSFORMATION BEGIN ********** *)
105 fun antecedents(DT(label , instr , pre , post , rule , antes)) = antes

fun precondition(DT(label , instr , pre , post , rule , antes)) = pre
fun postcondition(DT(label , instr , pre , post , rule , antes)) = post
fun instruction(DT(label , instr , pre , post , rule , antes)) = instr
fun label(DT(label , instr , pre , post , rule , antes)) = label

110 fun first L = hd L
fun last L = List.last L
fun strictzip (a::x) (b::z) = (a,b)::( strictzip x z)

| strictzip [] [] = []
(* generating fresh variables *)
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115 fun genuniqueid name counter =
(fn() => let

val id = "{"^name^"{"^Int.toString (! counter)^"}}";
in (counter := !counter + 1; id) end , fn() => (counter := 1))

val (freshLvr , resetLvr) = genuniqueid "Z_" (ref 1)
120 val (freshPrg , resetPrg) = genuniqueid "t_" (ref 1)

val (freshLab , resetLab) = genuniqueid "" (ref 1)
(* future work , for now , we assume , there are no ex/all rules *)
fun liftExRule(proof) = proof
fun liftAllRule(proof) = proof

125 (* maps the expressions of a proof *)
fun mapProofExprs f (proof as DT(label , instr , pre , post , rule , antes)) =

DT(label , instr ,
f pre , f post ,
rule , map (mapProofExprs f) antes)

130 | mapProofExprs f (DE(E)) = DE(f E)
(* maps the sub -expressions in an expression *)
fun mapSubExprs f expr =

case expr of
implies (e1, e2) => implies(f(e1), f(e2))

135 | conj (e1 , e2) => conj(f(e1), f(e2))
| allP (v, e) => allP(v, f(e))
| exP (v, e) => exP(v, f(e))
| shiftP (e) => shiftP(f(e))
| unshiftP (e) => unshiftP(f(e))

140 | eqP (e1, e2) => eqP(f(e1), f(e2))
| neP (e1, e2) => neP(f(e1), f(e2))
| unop (s, e) => unop(s, f(e))
| binop (s, e1, e2) => binop(s, f(e1), f(e2))
| replacelvr (s, e1 , e2) => replacelvr(s, f(e1), f(e2))

145 | replaceprg (s, e1 , e2) => replaceprg(s, f(e1), f(e2))
| replacestk (s, e1 , e2) => replacestk(s, f(e1), f(e2))
| genop (s, L) => genop(s, map f L)
| e => e

fun mapExprRec f expr = f(mapSubExprs (mapExprRec f) expr)
150 fun mapExprRecCond P f expr =

if P(expr) then f(mapSubExprs (mapExprRecCond P f) expr)
else expr

exception UnshiftOnTOS
fun doShift e = case e of stk i => stk (i+1) | _ => e

155 fun doUnshift (stk i) = if i = 0 then raise UnshiftOnTOS
else stk (i-1)

| doUnshift e = e
fun doreplacelvr s By In =

mapExprRecCond
160 (fn(e) => case e of

allP (x,_) => s <> x
| exP (x,_) => s <> x
| _ => true)

(fn(e) =>
165 case e of lvr x => if s=x then By else e

|_=>e)
In

fun doreplaceprg s By In =
mapExprRec

170 (fn(e) =>
case e of prg x => if s=x then By else e

|_=>e)
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In
fun doreplacestk i By In =

175 mapExprRec
(fn(e) =>

case e of stk k => if k=i then By else e
|_=>e)

In
180 (* tries to evaluate as much as possible from an expression *)

fun simplifyExpr0 e’ =
case e’ of

conj(trueP , E) => E
| disj(falseP , E) => E

185 | conj(E,trueP) => E
| disj(E,falseP) => E
| conj(falseP , E) => falseP
| disj(trueP , E) => trueP
| conj(E,falseP) => falseP

190 | disj(E,trueP) => trueP
| shiftP e => mapExprRec doShift e
| unshiftP e => mapExprRec doUnshift e
| replacelvr (s, By , In) => doreplacelvr s By In
| replaceprg (s, By , In) => doreplaceprg s By In

195 | replacestk (i, By , In) => doreplacestk i By In
| _ => e’

fun simplifyExpr expr = mapExprRec simplifyExpr0 expr
fun simplifyProof proof = mapProofExprs simplifyExpr proof
fun correspondingVMRule Instr =

200 case Instr of
pushc _ => rpushc

| pushvar _ => rpushvar
| pop _ => rpop
| ibinop _ => rbinop

205 | iunop _ => runop
| goto _ => rgoto
| brtrue _ => rbrtrue
| checkcast _ => rcheckcast
| newobj _ => rnewobj

210 | invokevirtual _ => rinvokevirt
| getfield _ => rgetfield
| putfield _ => rputfield
| methodend => rmethod
| nop => rnop

215 fun instr(P, L, Instr , Q) = DT(L, Instr , P, Q, correspondingVMRule Instr , [])
fun instrx(P, L, Instr , Q, X) = DT(L, Instr , P, Q, correspondingVMRule Instr , X)
(** Translation of Expressions **)
fun CompileX(Qs as conj(Q, P0), e as binop(opname , e1, e2), Qe as conj(Q0 , P)) =

let val Q2 = conj(shiftP(Q), replacestk (0, binop(opname , stk(0), e2), P))
220 val Q3 = conj(shiftP(shiftP(Q)),

replacestk (1, binop(opname , stk(1), stk(0)), shiftP(P)))
in CompileX(Qs , e1, Q2) @ CompileX(Q2, e2 , Q3)

@ [instr(Q3 , freshLab (), ibinop opname , Qe)]
end

225 | CompileX(Qs as conj(Q, P0), e as literal c, Qe as conj(Q0 , P)) =
let val L = freshLab ()
in [instr(Qs, L, pushc c, Qe)] end

| CompileX(Qs as conj(Q, P0), e as prg x, Qe as conj(Q0 , P)) =
let val L = freshLab ()

230 in [instr(Qs, L, pushvar x, Qe)] end
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fun CompileE(P, e, Q (* shift P ++ e = s(0) *)) =
let

val L = freshLab ()
val P’ = conj(P, eqP(e,e))

235 in
[instr(P, L, nop , P’)]@ CompileX(P’,e,Q)

end
fun CompileEPost(P,e) = conj(shiftP(P), eqP(e, stk 0))
(* Translation of statements *)

240 exception InvalidShape of string;
(* Compiling the conjunct/disjunct rule , see paper for requirements

to call this function *)
fun CompileSConjDisj(proof as DT(_, Comp , P, Q, rule , [pS1 , pS2])) = let

val S1 = CompileS(pS1)
245 val S2 = CompileS(pS2)

fun co(x,y) = case rule of (* abstracting the rule *)
xconj => conj(x,y)

| xdisj => disj(x,y)
(* merging two invokevirtual rules *)

250 fun mergeivirt ([p1 as DT(L, M1 , P1, Q1 , R1, _)],
[p2 as DT(_, M2 , P2, Q2 , R2, _)]) =

[DT(L, M1, co(P1,P2), co(Q1 ,Q2), rule , [p1 ,p2])]
(* merging one invokevar with some other rule *)
fun mergeivar(p1 as DT(L, M1 , P1, Q1 , rinvokevar , [MA]), p2) =

255 DT(L, M1, co(P1 ,precondition(p2)), co(Q1 ,postcondition(p2)),
rule , [merge(MA , p2)])

(* merging the "common" rules *)
and merge(p1 as DT(label1 , stmt1 , pre1 , post1 , rule1 , antes1),

p2 as DT(label2 , stmt2 , pre2 , post2 , rule2 , antes2)) =
260 case (rule1 ,rule2) of

(rinvokevar , _) => mergeivar(p1,p2)
| (_, rinvokevar) => mergeivar(p2,p1)
| _ => DT(label1 , stmt1 , co(pre1 ,pre2), co(post1 ,post2),

rule1 , case rule1 of
265 rinvokevirt => mergeivirt(antes1 ,antes2)

| _ => map merge (strictzip antes1 antes2))
in map merge (strictzip S1 S2) end
and CompileSInv(proof as DT(_, Comp , P’ as conj(P,R), Q’, xinv , [pS])) =
let val S = CompileS(pS)

270 fun mergeivirt ([(p as DT(L, M, P, Q, _, _))]) =
[DT(L, M, conj(P,R), conj(Q,R),

xinv , [p])]
| mergeivirt ([]) = (print "CompileSInv:empty"; raise InvalidShape("

CompileSInv:empty"))
| mergeivirt (X) = (raise InvalidShape("CompileSInv:mergeivirt"))

275 fun mergeivar ([p as DT(L, M, P, Q, rinvokevar , [pS])]) =
[DT(L, M, conj(P,R), conj(Q,R),

rinvokevar , [merge pS])]
and merge(DT(L, St, pre , post , rule , antes)) =

DT(L, St, conj(pre ,R), conj(post ,R), rule ,
280 case rule of rinvokevirt => mergeivirt antes

| rinvokevar => mergeivar antes
| _ => map merge antes

)
in map merge S end

285 and CompileSSub(proof as DT(_, Comp , P’ as replacelvr(Z,t, P),
Q’, xsub , [pS])) =

let val S = CompileS(pS)
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fun mergeivirt ([p as DT(L, M, P, Q, R, _)]) =
[DT(L, M, replacelvr(Z,t,P), replacelvr(Z,t,Q),

290 xsub , [p])]
fun mergeivar ([p as DT(L, M, P, Q, rinvokevar , [pS])]) =

[DT(L, M, replacelvr(Z,t,P), replacelvr(Z,t,Q),
rinvokevar , [merge pS])]

and merge(DT(L, St, pre , post , rule , antes)) =
295 DT(L, St, replacelvr(Z,t,pre), replacelvr(Z,t,post), rule ,

case rule of
rinvokevar => mergeivar antes

| rinvokevirt => mergeivirt antes
| _ => map merge antes)

300 in map merge S end
and CompileSInvokeVar

(proof as DT(_, invoke(x,y,M,e),
P’ as replacelvr(Z, prg w, P),
Qe , xinvokevar , [pI])) =

305 let val I = CompileS(pI)
fun merge(p as DT(L, St , pre , post , xinvokevirt , [M])) =

DT(L, St, replacelvr(Z,prg w,pre), replacelvr(Z,prg w,post),
rinvokevar , [p])

| merge(DT(L, St, pre , post , rule , antes)) =
310 DT(L, St, replacelvr(Z,prg w,pre), replacelvr(Z,prg w,post), rule ,

map merge antes)
in map merge I end

and CompileS(DT(_, assign(x, e), P0, P, xassign , [])) =
let

315 val P0 ’ = CompileEPost(P0,e)
in

CompileE(P0 ,e,P0 ’) @ [instr(P0’, freshLab (), pop x, P)]
end

| CompileS(DT(_, swhile(e, St), P, Q, xwhile , [pS])) =
320 let val P’ = precondition(pS)

val E’ = CompileEPost(P, e)
val L = freshLab ()
val SB = CompileS(pS)
val TB = CompileE(P, e, E’)

325 val B = freshLab ()
val T = label(first(TB))
val S = label(first(SB))

in [instr(P, L, goto T, P’)] @ SB @ TB @ [instr(E’, B, brtrue S, Q)] end
| CompileS(DT(_, sif(e, St1 , St2), P, Q, xif , [pS1 ,pS2])) =

330 let val P1 = precondition(pS1)
val P2 = precondition(pS2)
val P’ = CompileEPost(P, e)
val AL = freshLab ()
val B2 = CompileS(pS2)

335 val BL = freshLab ()
val B1 = CompileS(pS1)
val EL = freshLab ()
val S1 = label(first(B1))
val S2 = label(first(B2))

340 in CompileE(P,e,P’) @ [instr(P’, AL, brtrue S1, P2)]
@ B2 @ [instr(P, BL , goto EL , P1)]
@ B1 @ [instr(Q, EL , nop , Q)]

end
| CompileS(DT(_, seq(St1 , St2), P, Q, xseq , [pS1 , pS2])) =

345 CompileS(pS1) @ CompileS(pS2)
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| CompileS(proof as DT(_, Comp , P, Q, xconj , [pS1 , pS2])) =
CompileSConjDisj(proof)

| CompileS(proof as DT(_, Comp , P, Q, xdisj , [pS1 , pS2])) =
CompileSConjDisj(proof)

350 | CompileS(proof as DT(_, Comp , P, Q, xinv , [pS])) =
CompileSInv(proof)

| CompileS(proof as DT(_, Comp , P, Q, xsub , [pS])) =
CompileSSub(proof)

| CompileS(DT(_, St , P’, Q, xstren , [pSt])) = let
355 val P = precondition(pSt)

in [instr(P’, freshLab (), nop , P)] @ CompileS(pSt) end
| CompileS(DT(_, St , P, Q’, xweak , [pSt])) = let

val Q = postcondition(pSt)
in CompileS(pSt) @ [instr(Q, freshLab (), nop , Q’)] end

360 | CompileS(DT(_, invoke(x,y,M,e), Qs , Qe, xinvoke , [pM])) = let
val Q1 = CompileEPost(Qs, prg y)
val Qi = CompileEPost(Q1, e)
val P = precondition pM
val Q = postcondition pM

365 val Qi ’ = replaceprg("result", stk 0, Q)
in CompileE(Qs , prg y, Q1) @ CompileE(Q1 , e, Qi)

(* it is absolutely essential that we do add antecedents
where they must be *)

@ [instrx(Qi , freshLab (), invokevirtual M, Qi ’, [pM])]
370 @ [instr(Qi ’, freshLab (), pop x, Qe)]

end
| CompileS(proof as DT(_, invoke(x,y,M,e), Qs, Qe, xinvokevar , [pI])) =

CompileSInvokeVar(proof)
| CompileS(DT(_, cast(x, T, e), P0 , P, xcast , [])) =

375 let val P0 ’ = CompileEPost(P0,e)
in CompileE(P0 ,e,P0 ’)

@ [instr(P0 ’, freshLab (), checkcast T, P0 ’),
instr(P0’, freshLab (), pop x, P)]

end
380 | CompileS(DT(_, ctor(x, T), Qs, P, xctor , [])) = let

val P’ = replaceprg(x, stk 0, shiftP(P))
in [instr(Qs, freshLab (), newobj T, P’),

instr(P’, freshLab (), pop x, P)] end
| CompileS(DT(_, readf(x, y, F), Qs , P, xreadf , [])) = let

385 val Qs ’ = CompileEPost(Qs, prg y)
val P0 = conj(shiftP(Qs), eqP(instvar(OS, prg y, F), stk 0))

in CompileE(Qs , prg y, Qs ’)
@ [instr(Qs ’, freshLab (), getfield F, P0),

instr(P0, freshLab (), pop x, P)] end
390 | CompileS(DT(_, writef(y,F,e), Qs , P, xwritef , [])) = let

val Qs ’ = CompileEPost(Qs, prg y)
val Qx = CompileEPost(Qs’, e)

in CompileE(Qs , prg y, Qs ’) @ CompileE(Qs ’,e,Qx)
@ [instr(Qx , freshLab (), putfield F, P)] end

395 | CompileS(proof) = raise InvalidShape("CompileS")
fun CompileImpl(DT(L, M, P, Q, ximpl , [Body])) =
let val _ = resetLab ()

val S = CompileS(Body)
in DT(L,M,P,Q,rimplementation ,

400 S@[instr(Q, freshLab (), methodend , Q)]) end
(**** PROOF TRANSFORMATION END ********** *)

Listing 5: Implementation
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