
Bachelor’s Thesis

Performance Improvements
of a Program Verifier

Fabian Bösiger
Supervised by Dr. Malte Schwerhoff
Programming Methodology Group
Department of Computer Science

ETH Zürich
September 6, 2021

Abstract

To advance program verification in practice, fast verification is crucial
as it provides a more streamlined experience for developers. This thesis
explores two different approaches to improve performance of the Silicon
program verification backend for the Viper verification infrastructure.

In the first part, we explore the concept of applying the flyweight pat-
tern on Silicon’s AST structures. Applying the flyweight pattern avoids
multiple instances of structurally equal AST nodes existing at the same
time. This allows us to replace structural and recursive equality checks
with reference equality checks, with the goal of improving performance
of equality checks.

In the second part, we introduce more sophisticated ways to join sym-
bolic execution paths in Silicon, after having branched on conditional
expressions, implications and if-statements.

Acknowledgements

I would like to thank my supervisor, Malte Schwerhoff, who provided
me with the opportunity to write this thesis. The time and effort he
expended to help and advice me was highly appreciated.

Furthermore, I’d like to thank Peter Müller and his group for sparking
interest and providing insight into topics such as these.

Last but not least, I’d like to express my gratitude towards my family
for providing me with a very pleasant home office environment.

Contents

1 Introduction 1

I Flyweight ASTs;
A Study in Applied Laziness 2

2 Approach 4

2.1 Implementation of Flyweight ASTs 4

2.2 Automate Boilerplate Generation Using Macros 5

3 Implementation 6

3.1 Implementation of the Flyweight Pattern 6

3.2 A Macro Annotation for Code Generation 7

3.3 Flyweight Macro Support for IntelliJ 10

4 Evaluation 13

4.1 Performance of Different Data Structures 13

4.2 Concluding Performance Evaluation 14

4.3 Why Did Flyweight Fail . 15

4.4 Complementary Benchmarks 16

4.5 Using Macros to Facilitate Experiments 18

5 Conclusion and Future Work 20

II Joining;
Reducing Verification Branches 21

6 Approach 22

6.1 Where to Join . 22

6.2 Pros and Cons of Joining . 24

6.3 Merging the Symbolic State 24

7 Implementation 28

7.1 Finding Join Points . 28

7.2 Implementing State Merges 31

8 Evaluation 33

8.1 Performance Evaluation . 33

8.2 Complementary Benchmarks 35

9 Conclusion and Future Work 37

1 Introduction

Viper [8] is a verification infrastructure on top of which verification tools for
different programming languages can be built. Silicon [11] is a backend for
Viper, which is based on Smallfoot-style [2] symbolic execution. To advance
program verification in practice, fast verification is crucial as it provides a
more streamlined experience for developers. This is the reason why one of
Silicon’s stated goals is performance:

“The verifier should enable an IDE-like experience: it should be
sufficiently fast such that users can continuously work on verify-
ing programs [...]” [11]

In this thesis, we explore two different approaches to improving performance
of Silicon.

First Approach

Silicon internally uses abstract syntax trees (AST) to represent the struc-
ture of a program as a tree data structure. As with any other tree structure,
ASTs can be traversed, searched, transformed and so forth. During such
operations, subtrees within the AST are potentially checked for equality
many times. Moreover, equality checks also occur in operations on collec-
tions of AST subtrees, for example in finding a specific subtree, which may
add additional performance overhead.

Equality checks can’t easily be avoided, but they can be implemented in a
more performant way. Silicon’s AST nodes are called terms, which represent
different program operations. Plus(IntLiteral(1), IntLiteral(2)) repre-
sents the program code 1 + 2. Plus, IntLiteral(1) and IntLiteral(2) are
called terms. Currently in Silicon, new term instances are created indepen-
dently of already existing ones, which potentially leads to the coexistence
of multiple structurally equal term instances. Subterm equality is checked
in a structural and recursive manner. In part I of working towards a po-
tential improvement in performance, we explore the concept of applying the
flyweight pattern [5] on AST terms to only ever have one instance of some

1

term structure, thus avoiding the need for structural and recursive equality
checks.

Second Approach

For verifying a program, Silicon uses the symbolic execution approach, where
the program is interpreted, and a symbolic state keeps track of all possible
program states at the current point of execution, for all possible input values
of the program. When encountering certain expressions or statements, for
example an if-statement, symbolic execution branches with the assumptions
of the corresponding program path.

Silicon currently only joins these branches for some simple cases. In other
cases, branches aren’t joined, which results in all statements later down
the verification path being evaluated essentially twice, but with different
assumptions in each branch. Both of these verification paths may branch
again, potentially leading to exponential growth in the number of branches.
In an effort to improve performance, part II of this thesis focuses on imple-
menting joining of execution paths or more complex cases, which ultimately
leads to fewer active branches.

2

Part I

Flyweight ASTs;
A Study in Applied Laziness

3

2 Approach

In the following sections we discuss our approach of implementing the fly-
weight pattern on ASTs, and the advantage of using code generation via
metaprogramming for our implementation.

2.1 Implementation of Flyweight ASTs

Currently in Silicon, new term instances are created independently of al-
ready existing ones, which potentially leads to the coexistence of multiple
structurally equal term instances. Subterm equality is checked in a struc-
tural and recursive manner. However the AST used in Silicon is immutable,
so the flyweight pattern [5] can be applied on AST terms. To do this, a
pool of term instances is maintained. Whenever a term is to be created, the
components of this new term is compared with the pool of existing terms. If
a term with the same components already exists, a reference to the existing
term is returned and the creation of a new instance is avoided. Otherwise,
a new term is created and added to the pool.

This gives the guarantee that there are no two instances of the same term
in our pool, meaning every two structurally equal terms point to the same
underlying object in memory. Comparing terms for structural equality then
boils down to a cheap reference equality check, and recursive equality checks
can be avoided, at the cost of increased overhead at the creation of a term
instance due to the flyweight pattern.

4

Figure 1: Example AST with-
out using the flyweight pat-
tern. Multiple structurally
equal instances of the some
term may exist in the AST.

Figure 2: The same AST
as in figure 1, but us-
ing the flyweight pattern.
The two structurally equal
term instances in figure 1
are avoided, and only one
instance exists instead.

2.2 Automate Boilerplate Generation Using Macros

Silicon’s AST representation of the Viper language consists of nearly 100 dif-
ferent terms, all with boilerplate implementations for different operations.
For example, because Silicon usually doesn’t use case classes for its terms,
each term defines it’s own unapply method. Our changes introduce addi-
tional boilerplate code by implementing the flyweight pattern for each term
as seen in listing 3.1.

Our ASTs shouldn’t only be flyweight in the sense of the implementation
pattern, but also regarding development time and effort. The Viper infras-
tructure is written in the Scala programming language, which provides seam-
less interoperability with Java and has support for metaprogramming using
macros. [10] This allows us to avoid boilerplate code and instead automat-
ically generate it using Scala’s support for macro annotations. Additional
benefits of using macro annotations include improvements in code readabil-
ity and maintainability. Experimenting with code changes will become a
matter of editing a single macro instead of editing each term individually.
Terms which may be added in the future are also easier to implement.

5

3 Implementation

After discussing the general idea of flyweight ASTs, we now focus on the
specific implementation details for Silicon’s ASTs. As the flyweight pattern
for Silicon’s terms is implemented in Scala, we assume general familiarity
with the language.

3.1 Implementation of the Flyweight Pattern

For the implementation of flyweight ASTs in Silicon, we modify the AST
terms as follows:

1. The constructor of a term is made private (listing 1, line 1) so that
new term instances can’t be created via the new keyword, but only via
the apply method (listing 1, line 9), which acts as the term factory
and does the pool lookups.

2. For every term, we create a map which maps the components of the
term to the term itself (listing 1, line 7). This allows us to later look
up whether a structurally equal term was created already (listing 1,
line 10).

3. In the apply method, we check the pool for structurally equal instances
(listing 1, line 10), and if one exists, we return it and thus avoid
creating a new instance of the same term (listing 1, line 20).

4. If no structurally equal instance exists, we create a new instance via
the new keyword, add it to the pool and return it (listing 1, line 14,
15, 16).

As an example, the implementation of the flyweight pattern for the Plus
term is shown here:

Listing 1: Implementation of the flyweight pattern.
1 class Plus private (val p0: Term, val p1: Term) {
2 // ...
3 }
4

6

5 object Plus extends ((Term, Term) => Term) {
6 // Maps fields of the term to the term instance itself.
7 var pool = new Map[(Term, Term), Term]
8
9 def apply(e0: Term, e1: Term): Term = {

10 pool.get((e0, e1)) match {
11 // If no structurally equal term exists,
12 // create a new one.
13 case None =>
14 val term = new Plus(e0, e1)
15 pool.addOne((e0, e1), term)
16 term
17 // If a structurally equal term exists,
18 // return a reference to it instead.
19 case Some(term) =>
20 term
21 }
22 }
23
24 // ...
25 }

3.2 A Macro Annotation for Code Generation

The Viper infrastructure is written in the Scala programming language,
which has support for metaprogramming using macros. Silicon’s different
AST term classes are an ideal target for static code generation, as they in-
herently share many similarities with each other, their code is structurally
equivalent, but differ in type and arity. To address the problem of boiler-
plate code described in section 2.2, we implement a macro annotation that
automatically generates required code.

The code for the flyweight macro annotation exists as a subproject within
Silicon. Each term can be annotated with @flyweight, which invokes the
macro at compile time and rewrites the term in the following way:

1. If an apply method is already defined, rename it to _apply. The

7

already defined apply method can’t be discarded because it potentially
defines additional operations required on creation of a term.

2. Define a new apply method that introduces the flyweight pattern as
discussed in section 3.1. If a new term instance has to be created, either
use the previously defined _apply method if it exists, else simply create
an instance using the new keyword.

3. Generate a suitable unapply method.

4. Generate a copy method that calls apply instead of creating instances
via new such that the flyweight pattern can’t be bypassed when copying
a term.

5. Override hashCode to use Java’s System.identityHashCode.

This process of rewriting terms using macros happens on every term an-
notated with @flyweight, and can in nicely illustrated by an example that
considers the program input in listing 2, and output in listing 3 of our macro:

Listing 2: Input code annotated with the macro.
1 @flyweight
2 class Plus(val p0: Term, val p1: Term)
3 extends ArithmeticTerm
4 {
5 override val op = "+"
6 }
7
8 object Plus extends ((Term, Term) => Term) {
9 def apply(e0: Term, e1: Term): Term = (e0, e1) match {

10 case (t0, Zero) => t0
11 case (Zero, t1) => t1
12 case (IntLiteral(n0), IntLiteral(n1)) => IntLiteral(n0 + n1)
13 case _ => new Plus(e0, e1)
14 }
15 }

Listing 3: Output code generated by our macro.
1 class Plus private (val p0: Term, val p1: Term)
2 // Superclasses and implemented traits are preserved from input.

8

3 extends ArithmeticTerm
4 {
5 // Override hashCode.
6 override val hashCode = System.identityHashCode(this)
7
8 // Generated copy method which uses the generated apply method.
9 def copy(p0: Term = p0, p1: Term = p1) = Plus(p0, p1)

10
11 // Preserved from input.
12 override val op = "+"
13 }
14
15 object Plus extends ((Term, Term) => Term) {
16 var pool = new Map[(Term, Term), Term]
17
18 // Define new apply method which uses the flyweight pattern.
19 def apply(e0: Term, e1: Term): Term = {
20 pool.get((e0, e1)) match {
21 case None =>
22 val term = Plus._apply(e0, e1)
23 pool.addOne((e0, e1), term)
24 term
25 case Some(term) =>
26 term
27 }
28 }
29
30 // Generated unapply method.
31 def unapply(t: Plus) =
32 Some((t.p0, t.p1))
33
34 // Renamed existing apply method to _apply.
35 // AST simplifications implemented are thus preserved.
36 def _apply(e0: Term, e1: Term): Term = (e0, e1) match {
37 case (t0, IntLiteral(0)) => t0
38 case (IntLiteral(0), t1) => t1
39 case (IntLiteral(n0), IntLiteral(n1)) => IntLiteral(n0 + n1)
40 case _ => new Plus(e0, e1)
41 }
42 }

9

3.3 Flyweight Macro Support for IntelliJ

For a nice programming experience using Scala macros, IDE support should
ideally be provided. In this case, we use the IntelliJ IDE. However, coding
assistance for Scala macros is not supported natively by the IntelliJ IDE, as
it is difficult for IDE’s to provide proper syntax highlighting.:

“Since IntelliJ IDEA’s coding assistance is based on static code
analysis, the IDE is not aware of AST changes, and can’t provide
appropriate code completion and inspections for the generated
code.” [6]

In the example of our flyweight macro, the IDE is not aware that the method
apply is generated and exists in the by our macro expanded code. The IDE
thus reports an error that the method apply doesn’t exist wherever a term is
applied, despite apply existing in the expanded code, as illustrated in figure
3.

To fix this issue for the IntelliJ IDE, we provide a plugin which can be easily
installed in IntelliJ, and fixes the highlighting issues for the flyweight macro.
The plugin is hard-coded to make the IDE aware of code changes introduced
by the flyweight macro, as seen in figure 4.

10

Figure 3: The IDE is not aware of code changes done by our macro. This
leads to incorrect error reporting.

Figure 4: The IDE is now aware of code changes done by the flyweight
macro, which fixes error reporting.

11

3.3.1 Towards Full Scala Macro Support for IntelliJ

The plugin discussed in section 3.3 is hard-coded to only support the fly-
weight macro. Changes in the flyweight macro require the programmer
to manually modify the plugin. To encourage more experimentation using
macros, it is of advantage to have a plugin which supports macros that may
be modified, for example by generating additional methods.

To support this kind of more dynamic plugin, the macro is modified to dump
all generated method signatures into an XML configuration file whenever it
is run by the compiler. This configuration file is then read by the IntelliJ
plugin. The plugin communicates the method signatures read from the con-
figuration file to the IDE, which now has all information to provide proper
coding assistance. Whenever the macro is modified and the program is
compiled again, the configuration file is rewritten, and the IntelliJ plugin is
aware of the changes, without the programmer being required do manually
rewrite the plugin. This is illustrated in figure 5.

Figure 5: The IDE is aware of code changes done by the flyweight macro,
which fixes error reporting. The plugin does not manually need to be edited
whenever changes in the macro are made.

12

4 Evaluation

In the following sections, we discuss the performance impact of introducing
the flyweight pattern to Silicon’s AST. The Silicon implementation without
flyweight ASTs will be referred to as the base implementation.

In section 4.1, we evaluate the performance difference of using different map
implementations for the pool holding all term instances, seen in listing 1, line
7. We further discuss the performance impact of various other implementa-
tion details in the flyweight pattern. In section 4.2, we present a concluding
performance evaluation over a wide variety of test cases generated by various
frontends.

4.1 Performance of Different Data Structures

The table below shows the performance change of the flyweight implemen-
tation using different map data structures for the flyweight pool implemen-
tation that stores term instances. The performance change is relative to the
base implementation without flyweight pattern.

Data Structure Relative Performance Change to Base
Implementation (Negative is better)

mutable.HashMap -1.3%
mutable.WeakHashMap -0.2%
concurrent.TrieMap -0.2%
concurrent.ListMap +89.5%

As expected, the use of ListMap significantly worsens performance, as lin-
ear time with respect to existing terms is required for a lookup operation.
The performance of HashMap, WeakHashMap and TrieMap are very similar to
the base implementation in this benchmark. As Silicon may use multiple
verifier instances in parallel, we chose TrieMap for the concluding perfor-
mance evaluation in section 4.2, as it has the additional benefit of being
concurrency-safe.

13

4.1.1 Caching Libraries

Dedicated maps for caching such as Caffeine [7] where tested as well, but
they add no advantage over maps implemented in the Scala standard library,
performance- or otherwise. Eviction policies implemented in such caching
libraries for example add an additional performance overhead, but are un-
necessary when used in our flyweight pool as terms are required to stay in
the pool at least as long as other references to the term still exist.

4.1.2 Clearing Pools After Each File

As an attempt to increase performance, we modified the term pool discussed
in 4.1 to be emptied after the verification of each file. However, no significant
performance difference could be observed.

4.2 Concluding Performance Evaluation

To analyze the performance difference resulting from the flyweight pattern,
test programs generated by the VerCors [3], Prusti [1], Gobra [13] and Vyper
[12] frontends are used as we are interested in the performance impact on
the verification of real-life examples. For the benchmark, total verification
time is measured. The benchmark is repeated ten times, where the slowest
and fastest verification times are ignored.

Silicon optionally allows multithreaded verification, but for this benchmark,
multithreading is disabled. However, as Scala’s mutable.TrieMap is used,
the flyweight pattern would still work in a parallelized environment.

Figure 6 suggests that there is a small performance improvement of pro-
grams with an absolute verification time greater than ten seconds, but for
programs with less than ten seconds absolute verification time, we observe
a performance decrease. On average, the flyweight implementation 2% was
slower, which is still within the standard derivation of 2.9%.

14

Figure 6: Change in performance depending on absolute base verification
time. Negative performance difference shows a speedup.

4.3 Why Did Flyweight Fail

Although reference equality checks are certainly much faster than recur-
sive structural equality checks, changing terms to use the Flyweight pattern
didn’t result in measurable performance improvements.

There are some reasons why this might be the case. First, there may be not
enough structurally equal term instances to justify a flyweight pattern. To
explore this possibility, we measured the hit percentage of looking up terms
in the flyweight pool. Remember that on the creation for every term, we
first check if a term instance with the same component already exists in the
term pool (listing 1, line 10). If a term already exists in the pool, we call
it a hit, else a miss. Many structurally different term instances would lead
to a low hit percentage, which would render a flyweight pattern inefficient.
In our benchmarks, a hit percentage of around 83% was measured, meaning
that on average, for every term created and added to the flyweight pool,
only four structurally equal term instances could be avoided.

Another reason may lie in the depth of the terms on an equality check. If
the terms are very flat when checking for equality, the additional perfor-

15

mance overhead of structural, recursive equality checks becomes negligible
compared to reference equality checks, even if many equality checks take
place. To test this hypothesis, we counted the number of subterms con-
tained term at every equality check. For example, if Plus(1, Minus(2, 3))
was checked for equality with some other term, we count 5 contained sub-
terms: once Plus, once Minus and three integer literals. Figure 7 shows the
average subterm count for each term class. On average, a term contains
around 14 subterms on equality check.

Figure 7: Average number of subterms contained in a term instance on
equality check.

To summarize, avoiding on average four structurally equal term instances
which contain on average 14 subterms is most likely not enough to justify
the overhead introduced by the flyweight pattern.

4.4 Complementary Benchmarks

4.4.1 Parallelization

In this section we discuss the impact of parallelization in Silicon. Figure
8 illustrates the change of performance if parallelization is enabled for the

16

base implementation using 8 threads, relative to the base implementation
without parallelization.

For small programs, the overhead introduced by parallelization isn’t worth
the speedup, and performance decreases up to 100%, which isn’t much in
absolute terms as absolute verification times are quite small. For larger
programs with absolute verification time of five seconds and above, paral-
lelization provides a clear performance improvement of up to around 50%.

Figure 9 shows that the implementation using the flyweight pattern has no
impact on parallelization, as expected.

Figure 8: Change in performance when parallelization is enabled in the base
implementation, compared to the base implementation without paralleliza-
tion. Negative performance difference shows a speedup.

17

Figure 9: Change in performance when parallelization is enabled in the
flyweight implementation, compared to the base implementation without
parallelization. Negative performance difference shows a speedup.

4.5 Using Macros to Facilitate Experiments

Although the flyweight pattern itself didn’t have a significant impact on
performance, the macro annotation developed to implement the flyweight
pattern can be quickly modified to perform experiments or benchmarks on
the Silicon AST.

In the following example, the macro is edited to ignore AST simplifications.
The method _apply performs AST simplifications. To ignore them, we don’t
call apply and instead, we directly create instances using the new keyword.
As the AST simplifications take place in the apply method, they are now
circumvented. Using the macro, this can be done quickly for all terms by
only modifying three lines instead of rewriting every term manually.

Listing 4: Use AST simplifications as normal.
1 def apply(..$fields) = {
2 // ...
3 ${
4 if (hasRenamedApplyMethod)

18

5 // AST simplifications are potentially performed when
6 // creating instances via _apply.
7 q"${termName}._apply(..${fieldNames})"
8 else
9 q"new $className(..${fieldNames})"

10 }
11 // ...
12 }

Listing 5: Modified macro to ignore AST simplifications.
1 def apply(..$fields) = {
2 // ...
3 ${
4 q"new $className(..${fieldNames})"
5 }
6 // ...
7 }

This illustrates that the macro developed as part of this thesis facilitates
experiments and benchmarks in Silicon.

19

5 Conclusion and Future Work

In this part, we have introduced the concept of flyweight ASTs, which avoids
multiple structurally equal terms within the same AST. This has the advan-
tage of being able to replace structural, recursive equality checks by simple
reference equality checks, but also adds additional overhead due to the fly-
weight pattern. The benchmark has shown that for most programs, a small
performance decrease is visible when using flyweight ASTs. However, the
macro annotation and IDE plugin developed as a part of this thesis invite
for further experimentation in other directions:

• The macro annotation developed to modify Silicon’s Terms invites
to various experiments. AST simplifications for the Silicon AST are
concurrently hard-coded in the corresponding apply methods of the
terms. Plus(t, IntLiteral(0)) for example is directly simplified to
t. The usage of a domain-specific language in combination with Scala
macros to auto-generate AST simplifications would allow easy addition
and modification of AST simplifications in the future.

• In principle, the generic plugin implementation introduced in section
3.3.1 can be used in projects other than Silicon which make use of
their own macro annotations. However, the plugin is not yet fully
fleshed out. Concretely, the plugin slows down as it reads the many
configuration files generated by the macro. This could be avoided by
using caching techniques, for example. Furthermore, the plugin does
not work yet for all kind of macro annotations. It can be developed
further to be faster and provide more support for a wider range of
macro types, providing a valuable addition to development of Scala
programs using macros in the IntelliJ IDE.

20

Part II

Joining;
Reducing Verification Branches

21

6 Approach

6.1 Where to Join

For verifying a program, Silicon symbolically executes the program, and a
symbolic state keeps track of all possible program states at the current
point of execution, for all possible input values of the program. When
encountering certain expressions or statements, for example an if-statement,
symbolic execution branches into two execution paths, where in one path the
if-statement is assumed to evaluate to true, and in the second path to false.
In the following sections, we list the different statements and expressions
that result in a branching of execution paths, which later can be joined
again.

Listing 6: An example Viper program to demonstrate how branching relates
to the number of symbolic execution paths. Let s0, s1, s2 and s3 denote
generic viper statements.

1 method test(b: Bool) {
2 s0
3 if (b) {
4 s1
5 } else {
6 s2
7 }
8 s3
9 }

22

Figure 10: The symbolic execution paths taken by Silicon when verifying
the program in listing 6. Note that s3 is symbolically executed twice as the
paths are not joined after the if-statement.

6.1.1 If-Statements

Viper is parsed into a control flow graph (CFG) consisting of blocks contain-
ing statements, and edges that connect blocks. Edges can be unconditional
or conditional, and can potentially form cycles whenever a back edge is con-
nected to a loop head block. Silicon branches whenever a block has more
than one outgoing edges. If-statements cause such CFG blocks with more
than one outgoing edges. To join again at the correct location within the
CFG after branching, the join point for each corresponding branch point
has to be identified. The algorithm used to identify join points within the
CFG is discussed later in 7.1

6.1.2 Conditional Expressions

Consider a conditional expression of the form b ? e1 : e2. As Silicon eval-
uates this expression, and b cannot definitely be evaluated to true or false,
two branches are created, in the first one, b is assumed to be true, and the
expression is evaluated to be e1. In the second branch, b is assumed to be
false, and the evaluation yields e2. The symbolic execution is continued in
both branches, and all following code is executed twice.

23

6.1.3 Implications

Similar to conditional expressions, symbolic execution branches on implica-
tions too. Consider an implication of the form b1 ==> b2. Again, in the first
branch, b1 is assumed to be true, and in the second branch, b1 is assumed
false.

6.2 Pros and Cons of Joining

Branches created by conditional expressions and implications are already
being joined if they are pure, that is, they do not modify the heap. Branches
resulting from impure conditional expressions and implications, and from
all if-statements aren’t joined again, meaning that all statements later down
the verification path are evaluated twice, as demonstrated in the example
of figure 10. Both of these verification paths may branch again, eventually
leading to exponential growth in branches. These branches are avoided when
joining the symbolic execution paths back together.

Intuitively, the same work has to be done with or without joining, but
there are some differences when joining. Concretely, joining leads to fewer
execution paths but with more complex symbolic states. Table 1 lists some
differences.

Property Without Joining With Joining
Number of Execution Paths More Paths Fewer Paths
Symbolic State Less Complex More Complex
Number of SMT Solver Invocations More Invocations Fewer Invocations
Complexity of SMT Solver Invocations More Complex Less Complex

Table 1: Differences of using symbolic execution with joining versus without
joining.

6.3 Merging the Symbolic State

After finding the appropriate locations for joining, the information gathered
through both branches in the symbolic state has to be merged into a single

24

symbolic state to continue the symbolic execution on a single path.

To formalize the merging process, we define a symbolic state σ of type
Σ := (Γ,Π,H). The entries defined as follows:

• A store γ of type Γ := V ar → V maps local variables to their symbolic
values.

• A path condition stack π of type Π records all assumptions that have
been made on the current verification path.

• A symbolic heap h of type H that records which heap locations are
accessible and their respective symbolic values. A heap is implemented
as a collection of heap chunks, where each heap chunk provides infor-
mation about the location’s value and the receiver’s permission amount
to the location.

For the following subsections, assume that after the verification branched
under the condition c of type Bool, two symbolic states σ1 = (γ1, π1, h1)
under the branch condition b1, and σ2 = (γ2, π2, h2) under the branch con-
dition b2, which is the negation of b1, are to be merged, resulting in the new
state σ3 = (γ3, π3, h3).

Note that this core idea could be extended to merge more than two states
at once. In the current version of Viper however, no more than two states
are merged at once.

6.3.1 Merging Stores

For merging stores γ1 and γ2, we consider two cases:

1. Let x 7→ v denote that the variable x maps to the value v. Assume
that for some local variable x, we have x 7→ v1 ∈ γ1 and x 7→ v2 /∈ γ2.
In this case, we can simply omit x in the new store γ3 as we can assume
that x won’t be needed later down the verification path as Viper has
the usual lexical variable scopes.

2. For some local variable x, we have x 7→ v1 ∈ γ1 and x 7→ v2 ∈ γ2.
In this case, we modify store entry such that x 7→ Ite(b1, v1, v2) ∈ γ3,

25

where Ite(b, e1, e2) is a conditional expression that resolves to e1 if b
is true, and e2 otherwise.

6.3.2 Merging Heaps

To merge heaps h1 and h2, we perform the following steps:

1. Every heap chunk c for which c ∈ h1 and c ∈ h2 holds can be carried
over to h3 without modifications.

2. Let r.f 7→ v # p denote a heap chunk where r, v, p are symbolic expres-
sions denoting the receiver of some location f , the symbolic value of
the location and the permission amount provided by the heap chunk.
Heap chunks c := r.f 7→ t# p where c ∈ h1 and c /∈ h2 are modified to
have permissions only if b1 holds: c′ := r.f 7→ v # Ite(b1, p, 0) ∈ h3.

Quantified heap chunks are of the shape ∀r : r.f 7→ v(r)# p(r). Analogously
to non-quantified heap chunks described previously, we can simply modify
the permission amounts of quantified heap chunks to p′(x) = Ite(b1, p(x), 0).

Proving assertions or permission amounts of a location in the heap is nor-
mally done greedily, where the heap chunks are traversed until the first
matching heap chunk for the location is found. This greedy algorithm is
in general incomplete if multiple heap chunks for the same location exist.
To avoid any issues, Silicon’s option --enableMoreCompleteExhale should be
used, which enables a more sophisticated method of finding matching heap
chunks. Furthermore, more complete exhale provides a small performance
improvement by itself, as later discussed in section 8.2.2.

Another option to avoid incompleteness is to do state consolidations after
merging heaps. State consolidations can rewrite the heap using the infor-
mation available in the current state such that aliasing heap chunks can be
combined into a single one. Doing state consolidations after every merge
has shown to decrease performance, which is why we require more complete
exhale to be enabled instead.

26

6.3.3 Merging Path Conditions

For path conditions, the functionality for merging is already provided. This
is done by putting the collected path conditions of each branch under an
implication with the corresponding branch condition.

6.3.4 An Example

Assume we want to merge two following two symbolic states:

σ1 = ({a 7→ 7}, {b <= 10}, {x.f 7→ 7# 1}) with branch condition b <= 10
σ2 = ({a 7→ 8}, {b > 10}, {y.f 7→ 8# 1}) with branch condition b > 10

As a occurs in the store of both σ1 and σ2, the new store entry has the shape
a 7→ Ite(b <= 10, 7, 8).

For the heap, we cannot be sure whether the receivers x and y are aliases,
which is why we keep both heap chunks but with modified permission
amounts: x.f 7→ 7# Ite(b <= 10, 1, 0), y.f 7→ 8# Ite(b > 10, 1, 0).

Finally, the path conditions b <= 10, b > 10 are merged, resulting in a new,
empty path condition.

The new state is now fully described as follows:

σ3 = ({x 7→ Ite(b <= 10, 7, 8)}, {}, {x.f 7→ 7# Ite(b <= 10, 1, 0), y.f 7→
8# Ite(b > 10, 1, 0)})

27

7 Implementation

7.1 Finding Join Points

In section 6.1, we have discussed which statements and expressions cause
branches that can be joined again, but we still need to identify the join
points. For conditional expressions and implications, finding the join point
is trivial as it is within the same expression as the branch point. For if-
statements, finding the join point to a corresponding branch point is more
difficult as we have to search for it within the whole CFG. We introduce a
recursive algorithm which maps each branch point to its corresponding join
point, if it exists. The algorithm runs the following steps:

1. Initialize a queue of blocks to visit next (the successors of the branch
point), and a list of already visited blocks (the branch point itself).
Traverse the CFG in a breath-first way by adding the successors of a
block to the queue (listing 7, line 9).

2. Base Case. If a block is visited that already is included in the vis-
ited list, return this block (listing 7, line 16), as it is the join point
corresponding to the branch point where this algorithm was called.

3. Recursive Case. If a block has two outgoing edges, it is a branch point.
Call this algorithm recursively, starting from this branch point (listing
7, line 13).

Listing 7: The join point finding algorithm without support for loops.
1 def findJoinPoint(branchPoint: CFGNode)
2 queue = branchPoint.successors
3 visited = [branchPoint]
4 // Abort while the loop if no next node is given.
5 while curr = queue.next
6 if curr not in visited
7 visited += curr
8 match curr.successors
9 case [next]:

10 queue += next
11 // Branch point found,

28

12 // find corresponding join point recursively.
13 case [_, _]:
14 queue += findJoinPoint(curr)
15 // Currently, only CFGs with at most two outgoing
16 // edges are considered.
17 case _:
18 abort("At most two outgoing edges are supported")
19
20 else
21 // curr is the join point for this branch point.
22 return curr

Special attention has to be paid to loops. If our algorithm follows a back
edge before finding a join point, it may do the recursion again for the same
branch point, leading to non-termination. Figure 11 shows an example CFG
where this problem occurs. To avoid this issue, all already visited loop head
blocks (they are already labeled as such) are remembered for later recursive
invocations. Already visited loop head blocks are not followed again.

29

Figure 11: An example where the naive join point finding algorithm sketched
in listing 7 fails. Starting at the branch point, the edges are visited in a
breath-first way, as indicated by the numbers. Due to the loop, the initial
branch point is found again before finding the join point, and the same
recursion is done again.

To find join points within the CFG, the algorithm described in listing 7
is implemented, but with some additional modifications to support loops.
All loop heads that were already seen are remembered to avoid infinite
recursion issues as described in figure 11. In a single preprocessing step,
the algorithm produces a mapping from each branch point to the respective
join point. If an if-statement is encountered during verification, we check
if a corresponding join point exists and the branches can be joined again.
Otherwise, we branch as normal without joining again.

30

7.2 Implementing State Merges

Store and heap merges are implemented as according to section 6.3. Silicon’s
state, however, consists of additional data, that has to be merged with
caution. Some of these additional state components are used at various times
during verification to increase performance. Such caches within the state are
currently emptied instead of merged for simplicity. Furthermore, the option
--disableCaches, which disables the caches, was added to Silicon in order to
provide more fair benchmarks. The performance impact of disabling caches
is further discussed in section 8.2.1.

Our implementation can be optionally enabled by passing the command-line
argument --moreJoins to the Silicon executable. To illustrate the difference
in verification, consider the Viper program in listing 8. Table 2 shows the
execution trace of Silicon with more joins disabled, in table 3, more joins is
enabled.

Listing 8: An example Viper program.
1 method test(b: Bool) {
2 var x: Int := 0
3 if (b) {
4 x := x + 5
5 } else {
6 x := x + 7
7 }
8 x := x + 3
9 assert x <= 10

10 }

Line (Listing 8) Operation Store Path Conditions
2 var x: Int := 0
4 x := x + 5 x 7→ 0 b
8 x := x + 3 x 7→ 5 b
9 assert x <= 10 x 7→ 8 b
6 x := x + 7 x 7→ 0 !b
8 x := x + 3 x 7→ 7 !b
9 assert x <= 10 x 7→ 10 !b

31

Table 2: Symbolic execution trace of viper program 8 using the base imple-
mentation without joining.

Line (Listing 8) Operation Store Path Conditions
2 var x: Int := 0
4 x := x + 5 x 7→ 0 b
6 x := x + 7 x 7→ 0 !b
8 x := x + 3 x 7→ Ite(b, 5, 7)
9 assert x <= 10 x 7→ Ite(b, 5, 7) + 3

Table 3: Symbolic execution trace with joining. Joining leads to fewer
execution steps, but to a more complex state.

32

8 Evaluation

In the following section 8.1, we analyze the performance difference of our im-
plementation using more joins, compared to the base implementation. Addi-
tionally, we provide some complementary benchmark results which provide
additional insights.

8.1 Performance Evaluation

The benchmark uses frontend-generated Viper programs from VerCors [3],
Prusti [1], Gobra [13], Vyper [12] and Nagini [4] as we are interested in the
performance impact on verifying real-life examples, and the total duration
of each verification run is measured. The benchmark is repeated five times,
where the slowest and fastest verification times are ignored.

The results show that verification time increases by around 3% on average
when using more joins, relative to a version which doesn’t make use of the
implemented joining procedures. Intuitively, one would expect that fewer
branches lead to better performance, however, state merging introduces a
more complex final state which again tends to worsen performance.

Interestingly, figure 12 shows that the performance seems to improve for
about 3.3% of the programs with an absolute base verification time of up
to 0.5 seconds. With increasing verification time, the performance seems to
decrease.

33

Figure 12: Change in performance depending on absolute base verification
time. Negative performance difference shows a speedup. Excluded are pro-
grams where no joins were performed on verification. The numbers in the
brackets indicate the number of test cases falling in each section.

This observation suggests that for smaller programs where fewer joins are
needed, the more complex symbolic states caused by joining is worth trading
for the benefit of having fewer branches. For larger programs, the symbolic
state may become overly complex up to a point that the advantage of fewer
branches no longer pays off.

When comparing the number of state merges to the verification time per-
formance difference, no clear correlation is visible, as can be seen in figure
13.

34

Figure 13: Impact on the number of state merges on the performance, neg-
ative performance difference shows a speedup.

8.2 Complementary Benchmarks

8.2.1 Disable Caching

As state merging currently empties caches instead of merging them, an op-
tion to disable the caches entirely was added to Silicon in order to provide
more fair benchmarks. Disabling caches results in a performance decrease
of 1.9% compared to the base implementation with caching enabled. In the
base implementation used for comparison in section 8.1, the caches were dis-
abled such that the performance of both implementations are not affected
by caching.

8.2.2 More Complete Exhale

Silicon additionally provides an option of enabling a more complete version
of exhaling permissions, which should be used when joining is enabled, as
discussed in section 6.3.2. Benchmarks have shown that enabling more com-
plete exhale results in a performance increase of 2.9%. In the benchmark

35

presented in section 8.1, more complete exhale was used by both implemen-
tations such that this performance increase observed by using this feature
does not affect the results.

36

9 Conclusion and Future Work

We have presented an approach for joining verification branches in Silicon,
and discussed the advantages and disadvantages of joining. The benchmark
has shown that joining does not generally lead to a performance improve-
ment when verifying programs. Nevertheless, there are still some open ques-
tions that can be addressed in future work:

• Currently, we use conditional expressions for merging both the heap
and the store. Merging can also be done by introducing new sym-
bolic variables and conditionalizing them via implications in the path
conditions. For example, if the store is merged to v = Ite(b, e1, e2),
we could analogously express this using a new symbolic variable v′ as
v = v′ and restrict the value of v′ in the path conditions using implica-
tions b =⇒ v′ = e2 and b =⇒ v′ = e2. Maybe, The implementation
of merges using implications instead of conditional expressions will
lead to a performance increase.

• Section 7.2 discusses how caches are used in Silicons state. For sim-
plicity, we empty such caches instead of merging them. Implementing
sophisticated cache merges would probably result in a performance
increase when using more joins.

• The current implementation described in part II has introduced a bug
which in a few cases (7 of the 333 tests used in the benchmark were
affected) leads to a failure in the interaction with the SMT solver Z3 [9]
that Silicon uses internally. Simply put, the merging of some quantified
heap chunks may result in a Z3 warning because two triggers, that for
themselves work flawlessly, may result in a new, invalid trigger when
merged. The exact details or an approach to fix this bug are currently
unclear and should be further examined.

37

References
[1] V. Astrauskas et al. “Leveraging Rust Types for Modular Specifica-

tion and Verification”. In: Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA). Vol. 3. OOPSLA. ACM, 2019,
147:1–147:30. doi: 10.1145/3360573.

[2] Josh Berdine, Cristiano Calcagno, and Peter O’Hearn. “Modular Au-
tomatic Assertion Checking with Separation Logic”. In: vol. 4111. Nov.
2005, pp. 115–137. isbn: 978-3-540-36749-9. doi: 10.1007/11804192_6.

[3] Stefan Blom and Marieke Huisman. “The VerCors Tool for Verification
of Concurrent Programs”. In: FM 2014: Formal Methods. Ed. by Cliff
Jones, Pekka Pihlajasaari, and Jun Sun. Cham: Springer International
Publishing, 2014, pp. 127–131. isbn: 978-3-319-06410-9.

[4] Marco Eilers and Peter Müller. “Nagini: A Static Verifier for Python:
30th International Conference, CAV 2018, Held as Part of the Feder-
ated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Pro-
ceedings, Part I”. In: July 2018, pp. 596–603. isbn: 978-3-319-96144-6.
doi: 10.1007/978-3-319-96145-3_33.

[5] Erich Gamma et al. Design Patterns: Elements of Reusable Object-
Oriented Software. en. 2016. isbn: 978-0201633610.

[6] IntelliJ API to Build Scala Macros Support. https://blog.jetbrains.
com/scala/2015/10/14/intellij- api- to- build- scala- macros-
support/. Accessed: March 3, 2021.

[7] Ben Manes. Caffeine GitHub Repository. https://github.com/ben-
manes/caffeine. Accessed: July 22, 2021.

[8] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. “Viper: A
verification infrastructure for permission-based reasoning”. en. In: De-
pendable Software Systems Engineering. Ed. by Alexander Pretschner,
Doron Peled, and Thomas Hutzelmann. Vol. 50. Amsterdam: IOS
Press BV, 2017, pp. 104–125. isbn: 978-1-61499-809-9. doi: 10.3233/
978-1-61499-810-5-104.

[9] Microsoft Research. Z3 Theorem Prover. https://github.com/Z3Prover/
z3. Accessed: August 26, 2021.

[10] Scala Docs - Macro Annotations. https://docs.scala- lang.org/
overviews/macros/annotations.html. Accessed: July 29, 2021.

38

[11] Malte H. Schwerhoff. “Advancing Automated, Permission-Based Pro-
gram Verification Using Symbolic Execution”. en. PhD thesis. Zürich:
ETH Zurich, 2016. doi: 10.3929/ethz-a-010835519.

[12] Vyper. https://github.com/viperproject/2vyper. Accessed: August
4, 2021.

[13] Felix A. Wolf et al. “Gobra: Modular Specification and Verification of
Go Programs”. In: Computer Aided Verification - 33rd International
Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings,
Part I. Ed. by Alexandra Silva and K. Rustan M. Leino. Vol. 12759.
Lecture Notes in Computer Science. Springer, 2021, pp. 367–379. doi:
10.1007/978-3-030-81685-8_17. url: https://doi.org/10.1007/
978-3-030-81685-8%5C_17.

39

Eigenständigkeitserklärung

Die unterzeichnete Eigenständigkeitserklärung ist Bestandteil jeder während des Studiums verfassten
Semester-, Bachelor- und Master-Arbeit oder anderen Abschlussarbeit (auch der jeweils elektronischen
Version).

Die Dozentinnen und Dozenten können auch für andere bei ihnen verfasste schriftliche Arbeiten eine
Eigenständigkeitserklärung verlangen.

__

Ich bestätige, die vorliegende Arbeit selbständig und in eigenen Worten verfasst zu haben. Davon
ausgenommen sind sprachliche und inhaltliche Korrekturvorschläge durch die Betreuer und Betreuerinnen
der Arbeit.

Titel der Arbeit (in Druckschrift):

Verfasst von (in Druckschrift):

Bei Gruppenarbeiten sind die Namen aller
Verfasserinnen und Verfasser erforderlich.

Name(n): Vorname(n):

Ich bestätige mit meiner Unterschrift:

− Ich habe keine im Merkblatt „Zitier-Knigge“ beschriebene Form des Plagiats begangen.

− Ich habe alle Methoden, Daten und Arbeitsabläufe wahrheitsgetreu dokumentiert.

− Ich habe keine Daten manipuliert.

− Ich habe alle Personen erwähnt, welche die Arbeit wesentlich unterstützt haben.

Ich nehme zur Kenntnis, dass die Arbeit mit elektronischen Hilfsmitteln auf Plagiate überprüft werden kann.

Ort, Datum Unterschrift(en)

 Bei Gruppenarbeiten sind die Namen aller Verfasserinnen und

Verfasser erforderlich. Durch die Unterschriften bürgen sie
gemeinsam für den gesamten Inhalt dieser schriftlichen Arbeit.

Performance Improvements of a Program Verifier

Bösiger Fabian

Eich, 30.08.2021

