
Using Verification Techniques to Synthesise Rust Programs
Master’s Thesis

Fabian Bösiger
Supervised by Jonáš Fiala and Prof. Dr. Peter Müller

Programming Methodology Group
ETH Zürich

Abstract

Rust’s strong type system is advantageous for automatic synthesis
techniques. There exists a prototype tool for the synthesis of Rust
programs based on the SUSLIK solver that uses a search tree to find
valid programs. We build a new tool that employs a novel directed
acyclic graph-based search algorithm with the goal of improving the
performance of the search of valid programs while retaining most of
the features from the previous approach. In the evaluation, we show
that this new search algorithm can significantly improve the perfor-
mance over the traditional tree-like search algorithm for the subset of
programs that are supported by both search algorithms.

I

Acknowledgements

Major thanks to my supervisor Jonáš Fiala for the interesting and
helpful discussions about the topic and the general support during
the writing of this thesis. The time and effort he expended to help
and advise me was highly appreciated.
A big thanks to Prof. Dr. Peter Müller and the Programming Method-
ology Group for sparking my interest in the field of program verifi-
cation and synthesis and providing with me the opportunity to work
on such topics.

II

Contents

1 Introduction 1

2 Background 2
2.1 Prusti . 2
2.2 Creusot . 2
2.3 SUSLIK . 2
2.4 RUSSOL . 3

3 Approach 4

4 Implementation 7
4.1 Program State Representation . 7
4.2 Working with Owned Data . 7
4.3 Working with Borrowed Data . 10
4.4 Program Search Algorithm . 13
4.5 Functional Specifications . 17
4.6 External Function Calls . 18
4.7 Recursive Function Calls . 19
4.8 Runtime Cost Heuristic . 20

5 Evaluation 24
5.1 Top 100 Crates . 24
5.2 Functional Specifications . 24
5.3 Custom Test Cases . 25
5.4 Limitations . 25
5.5 Summary . 26

6 Future Work 30
6.1 Introducing Scoped Synthetic Ownership Logic . 30
6.2 Partially Complete Programs for Better Synthesis Guesses 31
6.3 Generative AI Guided Search . 32
6.4 Parallelising the Program Search Algorithm . 33
6.5 Code Editor Support . 33

7 Conclusion 34

III

1 Introduction

Rust is a modern programming language with a strong type system and ownership model that guaran-
tees memory safety and thread safety at compile time. However, this type system has the downside of
making Rust code hard to write, especially for new developers. To aid new developers, a code synthe-
sizer can be used to automatically generate the function body based on the signature and specification
of the function. The strict type system not only simplifies writing specifications but also reduces the
search space for program synthesis. This makes the Rust language an ideal candidate for program
synthesis.

The set of valid solutions for a given function signature can be further constrained by introducing
functional specification annotations. During the synthesis of a type-correct solution program to a given
function signature, we can also collect facts about the functional behaviour of that program. Then it
is a matter of passing these facts together with the functional specification to an SMT solver to verify
whether the solution program satisfies the functional constraints.

There exists a prototype tool called RUSSOL (Fiala et al., 2023) for the synthesis of Rust programs
based on the SUSLIK program synthesis tool (Polikarpova and Sergey, 2019) that uses a search tree to
find valid programs. The search tree is formed by applying synthesis rules to synthesis goals, expanding
the search tree until a solution is found. In this thesis, our main contribution is to implement a new
search algorithm for RUSSOL that replaces the SUSLIK solver with the goal of improving the synthesis
speed. The new algorithm employs a novel directed acyclic graph-based search algorithm, which has
the advantage of reducing the number of applied synthesis rules, thus decreasing the number of search
steps required to reach a valid solution program. Furthermore, we implement our search algorithm in
a way that makes it possible to prioritise certain solutions based on a heuristic, which can help find the
most important solution first.

1

2 Background

2.1 Prusti

Prusti (Astrauskas et al., 2022) is a formal verification tool to verify Rust programs. It introduces
functional specification annotations to specify the functional behaviour of programs that resemble the
syntax of Rust program expressions.

Prusti is specifically designed for the Rust programming language. By capitalising on Rust’s robust
type guarantees, Prusti simplifies the process of specifying and verifying Rust programs. Formal ver-
ification of system software, which involves reasoning about pointers, aliasing, and mutable state, is
known to be challenging and typically requires expertise in complex logics such as separation logic.
However, Prusti leverages Rust’s ownership type system to enhance the specification and verification
process. For example, ownership and framing-related information crucial for separation logic proofs
are extracted directly from the program’s type-checking process performed by the Rust compiler.

Although we do not use Prusti directly in this work, we use its testing and benchmarking examples that
are annotated with functional specifications in our evaluation.

2.2 Creusot

Creusot (Denis et al., 2022) is, similar to Prusti, another verification tool for Rust programs. It in-
troduces its own flavour of functional specification annotations that we use in our work to annotate
function signatures with pre- and postconditions.

Creusot’s functional specification annotations also resemble the syntax of Rust program expressions,
but also introduce some further notation. The expression ^x is used to denote the final value of some
reference x at the time of its expiry, while the regular Rust dereferencing syntax *x denotes the value
at the time of its creation. It is also possible to use pure functions in the functional specifications,
allowing the user to write specifications such as #[ensures((^list).len() == (*list).len()
+ 1)] . This postcondition expresses that the annotated function adds one element to list, increasing
its length by one. Here, (*list).len() expresses the length of the list when the function was called,
while (^list).len() expresses the length of the list at the end of the function call where the reference
to list expires.

Besides using the same notation as Creusot for functional specifications, we also Creusot’s testing and
benchmarking examples in our evaluation.

2.3 SUSLIK

SUSLIK (Polikarpova and Sergey, 2019) is a program synthesis tool for generating heap-manipulating
C-like programs from separation logic specifications. Synthetic Separation Logic (SSL) is a variant
of Separation Logic (O’Hearn et al., 2001; Reynolds, 2002) that is targeted to program synthesis of
well-typed Rust programs and is used by SUSLIK to derive solution programs.

The synthesis algorithm operates by taking a pair of assertions, representing pre- and postconditions
that describe different states of the symbolic heap and attempts to transform one state into the other

2

by repeatedly applying SSL synthesis rules. These synthesis rules are used to generate program state-
ments, that in the end make up a valid solution program for the given synthesis problem. The derived
programs are inherently correct as they satisfy the assigned pre- and postconditions and are accompa-
nied by complete proof derivations that can be independently verified.

2.4 RUSSOL

RUSSOL (Fiala et al., 2023) is the first synthesizer for Rust code that can satisfy user-provided speci-
fications.

The logics used in both of the previously introduced program verifiers can reason about functional
correctness. However, they assume that the program already type-checks and thus do not formalise
all the aspects of the type system in the logic. For example, Prusti’s logic does not prevent two local
variables from storing mutable references to the same heap location. If this logic was used for program
synthesis, it might generate programs with mutable references that point to the same location. Thus,
RUSSOL introduces program logic called Synthetic Ownership Logic (SOL) to solve synthesis tasks
and generate solution programs that are correct by construction.

The type- and functional specification of a target function make up pre- and postconditions for the
synthesis process. They are translated into a synthesis goal that is expressed in SOL. RUSSOL solves
this synthesis goal by integrating SUSLIK’s proof search framework.

3

3 Approach

The SUSLIK proof search algorithm explores the space of all valid proof derivations by repeatedly
applying derivation rules to synthesis goals, thus forming a search tree. Every node of the search tree
corresponds to a synthesis goal that includes a precondition and a postcondition. The search starts
from the root, i.e. the initial synthesis goal, and always applies a rule to a node that isn’t closed by a
terminal rule. The search continues until there are no open nodes left to explore.

Although SUSLIK is good at finding solutions in Synthetic Separation Logic (SSL), this method of
proof searching is not efficient in searching for SOL proofs. To overcome the weaknesses in using
SUSLIK as a proof searcher for RUSSOL, this project builds a new version of the RUSSOL synthesis
tool based on the synthesis rules from the existing prototype. The new tool makes use of an improved
proof search algorithm optimised for SOL.

SOL derivation rules are generally designed in such a way that they either modify the precondition or
the postcondition, but not both. That way, we can split up the search space into two separate search
trees, the first one using forward rules exclusively exploring derivations starting from the original
precondition, and the second one using backward rules exclusively exploring derivations starting from
the original postcondition. In the last step, we can match the derived preconditions with the derived
postconditions to obtain the final derivation and the corresponding solution program.

As an example, consider the function signature in figure 1. To synthesise an appropriate implemen-
tation, the original algorithm that uses the SUSLIK solver starts by applying forward rules such as
DESTRSTRUCT for the input parameters u and v to unwrap the wrappers. Here it is possible to first
apply DESTRSTRUCT to u and then v, or the other way around. This results in two separate branches
in the search tree, one for each possible order. After this first phase of working on the preconditions is
done, the search algorithm starts applying backward rules to work on the postconditions, in this case,
CONSTRENUM and CONSTRSTRUCT to the result until the pre- and postconditions match. Note here
that the SUSLIK solver applies backward rules to all open leaves. As a consequence, the search tree
may repeat some work in some subtrees as we can see in figure 3. After the search is done, we can
construct all the possible programs that satisfy the function signature by following all the possible
paths from the root to the leaves. For example, by following the leftmost path we obtain the solution
program shown in figure 2.

In contrast, the new search algorithm implements multiple changes that aim to accelerate its execution
time. First, the forward and backward rules are applied on separate search trees. Second, the search
algorithm separates preconditions and postconditions into independent heap cells such that we avoid
the application of rules in different orders, for example when destructing the inputs u and v. In the
final step, we can combine the leaves from the forward search tree and the backward search tree to
obtain our final solution to the search and a corresponding solution program. Applying these changes
to our new search algorithm allows us to minimise the amount of work that is repeated. Instead of a
search tree, this results in a search graph as depicted in figure 6. From this search graph, we can again
construct the same solution program shown in figure 2.

4

1 struct Wrapper<T>(T);
2

3 struct Both<A, B>(A, B);
4

5 enum Either<A, B> {
6 A(A),
7 B(B),
8 }
9

10

11 fn select<U, V>(u: Wrapper<U>, v: Wrapper<V>) -> Either<Both<U, V>, Both<V, U>> {
12 todo!();
13 result
14 }

Figure 1: A first example, the goal is to replace the todo!() with a synthesised function body.

1 fn select<U, V>(u: Wrapper<U>, v: Wrapper<V>) -> Either<Both<U, V>, Both<V, U>> {
2 let Wrapper { content: u } = u;
3 let Wrapper { content: v } = v;
4 let a = Both(u, v);
5 let result = Either::A(a);
6 result
7 }

Figure 2: One of the possible solutions that satisfy the constraints of the function signature of figure 1.

5

Start

u ∶ Wrapper<U> ∗ v ∶ Wrapper<V>
result ∶ Either<_, _>

DESTRSTRUCT DESTRSTRUCT

u ∶ U ∗ v ∶ Wrapper<V>
result ∶ Either<_, _>

u ∶ Wrapper<U> ∗ v ∶ V
result ∶ Either<_, _>

DESTRSTRUCT DESTRSTRUCT

u ∶ U ∗ v ∶ V
result ∶ Either<_, _>

u ∶ U ∗ v ∶ V
result ∶ Either<_, _>

CONSTRENUM

CONSTRENUM

CONSTRENUM

CONSTRENUM
u ∶ U ∗ v ∶ V

result ∶ Both<U, V>

u ∶ U ∗ v ∶ V
result ∶ Both<V, U>

u ∶ U ∗ v ∶ V
result ∶ Both<U, V>

u ∶ U ∗ v ∶ V
result ∶ Both<V, U>CONSTRSTRUCT

CONSTRSTRUCT

CONSTRSTRUCT

CONSTRSTRUCT
u ∶ U ∗ v ∶ V
u ∶ U ∗ v ∶ V

u ∶ U ∗ v ∶ V
u ∶ U ∗ v ∶ V

u ∶ U ∗ v ∶ V
u ∶ U ∗ v ∶ V

u ∶ U ∗ v ∶ V
u ∶ U ∗ v ∶ V

End End End End

Figure 3: A graphic illustration of SUSLIK’s approach for figure 1. Ellipses represent synthesis goals,
rectangles represent rule applications. Synthesis goals contain a precondition (first line) and a post-
condition (second line).

6

4 Implementation

We start by introducing the program state representation and how the synthesis rules are used to find
possible solution programs by building a synthesis graph. We then discuss how this approach can be
extended to support functional specifications, as well as external and recursive function calls. Finally,
to show how solution prioritisation can be used, we introduce a runtime-cost based heuristic.

4.1 Program State Representation

To represent the effects of a program on the program state, SOL formalises these changes using in-
ference rules that operate on a symbolic heap. A symbolic heap {𝜙 ∣ x1 ∶ 𝑇1 ∗ x2 ∶ 𝑇2 ∗ ⋯} is a
set of heap cells that represent a binding of the form x ∶ 𝑇 , where x is a program variable of type 𝑇 .
A binding x ∶ 𝑇 (𝑣) can be refined by a snapshot 𝑣 that contains all the information about an object
of type 𝑇 . As an example, if 𝑇 is a primitive type, then the snapshot 𝑣 contains the concrete value of
that primitive type. If 𝑇 is an enum type, then 𝑣 contains the value of the discriminant 𝛿 that uniquely
identifies the enum variant and the snapshots of all its fields. Heap cells can additionally contain a pure
formula 𝜙 that constrains the values of snapshots from that heap.

A synthesis goal is a type of node in our graph. It is defined as a structure holding a single heap cell,
plus some additional data. Goals can be divided into forward goals and backward goals, where forward
goals are used to build the forward search tree, and backward rules to build the backward search tree.

The synthesis rules take as an input a number of synthesis goals and output again a number of new
synthesis goals. In general, we can classify synthesis rules as forward rules that take one forward goal
as an input and produce a number of new forward goals as outputs, backward rules that analogously
take one backward goal as an input and again produce a number of new backward goals. Having only
one goal that is taken as an input simplifies the rule application process significantly as the algorithm
can just select a single synthesis goal and attempt to apply the rule there. There also exist matching
rules that match forward goals with backward goals, thus combining the forward and backward tree
and forming a directed acyclic graph (DAG).

4.2 Working with Owned Data

The program synthesizer starts by building a synthesis graph by adding the input and output arguments
of the target function as synthesis goals and then attempting to apply synthesis rules to further expand
the graph. The expanded synthesis graph represents all possible program states of a program. The
nodes in the synthesis graph represent either goal nodes that represent synthesis goals or rule nodes
that connect goal nodes with each other. The first step in building the synthesis graph is to add a node
representing a forward goal for each of the target function’s input arguments and a node representing
a backward goal for the return argument. The added forward goals representing the input arguments
build the root of the potentially multiple forward search trees, while the backward goal represents the
root of the backward search tree. Next, the synthesizer attempts to apply synthesis rules to extend the
synthesis graph.

For this, any new goal node that is added to the synthesis graph is checked for applicable rules by
checking if the concrete types and variables can be substituted into a rule definition. If an applicable
rule is found, the rule is added to the graph by adding a corresponding rule node and further goal nodes

7

CONSTRSTRUCT
𝑇 = 𝑇0 ×⋯ × 𝑇𝑛

{f0 ∶ 𝑇0(𝑣0) ∗ ⋯ ∗ f𝑛 ∶ 𝑇𝑛(𝑣𝑛)} let x = (f0,… , f𝑛) {x ∶ 𝑇 ({f0 ∶ 𝑣0,… , f𝑛 ∶ 𝑣𝑛})}

CONSTRENUM
𝑇 = (𝑇0)𝑉0 +⋯ + (𝑇𝑛)𝑉𝑛

{f𝑖 ∶ 𝑇𝑖(𝑣𝑖)} let x = 𝑉𝑖(f𝑖) {x ∶ 𝑇 ({𝛿 ∶ 𝑉𝑖, f𝑖 ∶ 𝑣𝑖})}

DESTRSTRUCT
𝑇 = 𝑇0 ×⋯ × 𝑇𝑛

{x ∶ 𝑇 ({f0 ∶ 𝑣0,… , f𝑛 ∶ 𝑣𝑛})} let (f0,… , f𝑛) = x {f0 ∶ 𝑇0(𝑣0) ∗ ⋯ ∗ f𝑛 ∶ 𝑇𝑛(𝑣𝑛)}

DESTRENUM
𝑇 = (𝑇0)𝑉0 +⋯ + (𝑇𝑛)𝑉𝑛 𝑔𝑖 ∶= {f𝑖 ∶ 𝑇𝑖(𝑣𝑖)}

{x ∶ 𝑇 ({𝛿 ∶ 𝑉𝑖, f𝑖 ∶ 𝑣𝑖})} match x { 𝑉0(f0) => 𝑔0,…𝑉𝑛(f𝑛) => 𝑔𝑛, }

DROP
𝑇 not ref

{x ∶ 𝑇 (𝑣)} drop!(x) {emp}
RENAME

𝑇 not ref

{x ∶ 𝑇 (𝑣)} let y = x {y ∶ 𝑇 (𝑣)}

Figure 4: Synthesis rules for owned types.

f0 ∶ 𝑇0 ⋯ f𝑛 ∶ 𝑇𝑛

CONSTRSTRUCT ALL

x ∶ 𝑇

(a) CONSTRSTRUCT

f𝑖 ∶ 𝑇𝑖

CONSTRENUM

x ∶ 𝑇

(b) CONSTRENUM

x ∶ 𝑇

RENAME

y ∶ 𝑇

(c) RENAME

x ∶ 𝑇

DESTRSTRUCT ALL

f0 ∶ 𝑇0 ⋯ f𝑛 ∶ 𝑇𝑛

(d) DESTRSTRUCT

x ∶ 𝑇

DESTRENUM BRANCH

f0 ∶ 𝑇0 ⋯ f𝑛 ∶ 𝑇𝑛

(e) DESTRENUM

Figure 5: Synthesis rules for owned types as graph components.

for the outputs of that rule. How these nodes are added and connected with each other can be seen in
the graph representation of the rules in figure 5. The goal node that triggers a rule application is called
the trigger node for a rule, highlighted with a thick border. As an example, consider the DESTRSTRUCT
rule shown in figure 4. This rule can be applied whenever a goal node is of struct type, thus becoming
a trigger node for the DESTRSTRUCT rule. In figure 5d, we can see how the rule is then added to the
synthesis graph. The DESTRSTRUCT rule node adds 𝑛 new goals, one for each field of the struct.

Whenever a new goal is added, it is also checked for matches in the opposite tree by applying match
rules such as RENAME. In figure 5c, we can see how the RENAME rule is added to the synthesis graph.
Note that for match rules, we have both a forward and a backward node that can act as trigger nodes.

8

That way, goal nodes are matched immediately to all possible goal nodes of the opposite direction.
This combines the forward and backward search trees, thus effectively forming a directed acyclic graph
(DAG) that we call the synthesis graph.

The DROP rule is not an explicit rule that is applied to the synthesis graph. Instead, goal nodes that
are dropped simply are not connected to any further rules. This significantly reduces the number of
nodes in the synthesis graph and thus increases the performance of the synthesis algorithm compared
to when DROP would be implemented as an explicit rule.

Start

u ∶ Wrapper<U> v ∶ Wrapper<V>

DESTRSTRUCT DESTRSTRUCT

u ∶ U v ∶ V

RENAME RENAME RENAME RENAME

u ∶ U v ∶ V u ∶ U v ∶ V

CONSTRSTRUCT CONSTRSTRUCT

a ∶ Both<U, V> b ∶ Both<V, U>

CONSTRENUM

result ∶ Either<_, _>

End

(a) First Solution

Start

u ∶ Wrapper<U> v ∶ Wrapper<V>

DESTRSTRUCT DESTRSTRUCT

u ∶ U v ∶ V

RENAME RENAME RENAME RENAME

u ∶ U v ∶ V u ∶ U v ∶ V

CONSTRSTRUCT CONSTRSTRUCT

a ∶ Both<U, V> b ∶ Both<V, U>

CONSTRENUM

result ∶ Either<_, _>

End

(b) Second Solution

Figure 6: Synthesis graph for figure 1 with both of the possible flows highlighted.

As an example, consider again figure 1 and the corresponding synthesis graph in figure 6. In the
synthesis graph, we draw forward nodes an orange border, backward nodes with a purple border, goal
nodes as ellipses and rule nodes as rectangles. The algorithm starts by adding nodes for the input
and return arguments, the forward goal nodes u and v are added to the start node and the backward
goal node result to the end node. Next, the process of applying rules starts. Here we only consider
the rules for owned data as shown in figures 4 and 5 respectively. u and v are forward goals and of
struct type, so the forward rule DESTRSTRUCT can be applied to both of them. This results in two new
forward goals u and v that correspond to their respective inner fields. Further, result is a backward
goal of enum type, so the backward rule CONSTRENUM can be applied. Similarly to the previous rule
application, this creates two new backward goals a and b that correspond to the field of each variant
in result. Finally, the goal nodes that have the same type are matched using the RENAME matching
rule. There are no other rules that can be applied in a valid manner, thus the algorithm has completed
the construction of the synthesis graph.

9

4.3 Working with Borrowed Data

DESTRBORROWSTRUCT
𝑇 = 𝑇0 ×⋯ × 𝑇𝑛 ′𝑎0,… ,′ 𝑎𝑛 fresh

{x ↦ 𝑇 ({f0 ∶ 𝑣0,

… , f𝑛 ∶ 𝑣𝑛})}
let (f0,… , f𝑛) = x

{f0
′𝑎0
⟼ 𝑇0(𝑣0) ∗ ⋯

∗ f𝑛
′𝑎𝑛
⟼ 𝑇𝑛(𝑣𝑛)

∗ x{
′𝑎0,…,′𝑎𝑛} ↦ 𝑇 }

DESTRBORROWENUM
𝑇 = (𝑇0)𝑉0 +⋯ + (𝑇𝑛)𝑉𝑛 ′𝑎0,… ,′ 𝑎𝑛 fresh 𝑔𝑖 ∶= {f𝑖

′𝑎𝑖
⟼ 𝑇𝑖(𝑣𝑖)}

{x ↦ 𝑇 ({𝛿 ∶ 𝑉𝑖, f𝑖 ∶ 𝑣𝑖})}
match x { 𝑉0(f0) => 𝑔0,… ,

𝑉𝑛(f𝑛) => 𝑔𝑛 }
{x{′𝑎0,…,′𝑎𝑛} ↦ 𝑇 }

EXPIRE

{x{′𝑎0,…,′𝑎𝑛} ↦ 𝑇 ∗ f0
′𝑎0
⟼ 𝑇0 ∗ ⋯ ∗ f𝑛

′𝑎𝑛
⟼ 𝑇𝑛)} skip!() {x ↦ 𝑇 }

DROPREF
{𝜙 ∣ x ↦ 𝑇 (𝑣, 𝑥̂)} drop!(x) {𝑥̂ = 𝑣 ∧ 𝜙 ∣ emp}

WRITE
{x ↦mut 𝑇 (𝑣, 𝑥̂) ∗ y ∶ 𝑇 (𝑤)} *x = y {x ↦mut 𝑇 (𝑤, 𝑥̂)}

COPYOUT
{x ↦mut 𝑇 (𝑣, 𝑥̂)} let y = *x {x ↦mut 𝑇 (𝑣, 𝑥̂) ∗ y ∶ 𝑇 (𝑣)}

Figure 7: Synthesis rules for borrowed types.

Analogously to the rules that work with owned data, there are rules that work with borrowed data that
are shown in figure 7 with their corresponding graph representations in figure 8. However, a few new
concepts need to be introduced to deal with borrowed data. While a binding of the form x ∶ 𝑇 denotes
that the program variable x has type 𝑇 , we write x ↦imm 𝑇 when x is an immutable reference to 𝑇
and x ↦mut 𝑇 for mutable references respectively. Furthermore if a reference has lifetime ′𝑎, we write

x
′𝑎
⟼ 𝑇 . A reference can also be blocked by a set of lifetimes ′𝑎0,… ,′ 𝑎𝑛, denoted as x{′𝑎0,…,′𝑎𝑛} ↦ 𝑇 .

There are some rules that require special consideration when applying them to the synthesis graph.
For a binding x ↦ 𝑇 , the rules DESTRBORROWSTRUCT and DESTRBORROWENUM introduce fresh
lifetimes ′𝑎0,… ,′ 𝑎𝑛 for their fields and emit a blocked binding x{

′𝑎0,…,′𝑎𝑛} ↦ 𝑇 such that x can be
unblocked by using the EXPIRE rule once its fields expire. In figure 8, blocked nodes are highlighted
using dashed borders.

The EXPIRE rule takes a blocked reference and the synthesis goals that contain the blocked set’s life-
times. The references contained in the set of blocking goals are expired which means that the blocked
reference can be safely unblocked and reused later.

Contrary to the DROP rule, the DROPREF rule is not implemented implicitly and has a graph component
representation as shown in figure 8d. This is because there needs to be an explicit rule that connects
mutable references to the end node. Otherwise, a mutable reference would always be dropped implicitly
due to the inner working of the program search algorithm that is explained later in section 4.4. The
DROPREF rule connects either a mutable reference or the begin node directly to the end node. This

10

x ↦ 𝑇

DESTRBORROWSTRUCT ALL

f0 ↦ 𝑇0 ⋯ f𝑛 ↦ 𝑇𝑛 x ↦ 𝑇

(a) DESTRBORROWSTRUCT

x ↦ 𝑇

DESTRBORROWENUM BRANCH

f0 ↦ 𝑇0 ⋯ f𝑛 ↦ 𝑇𝑛 x ↦ 𝑇

(b) DESTRBORROWENUM

x ↦ 𝑇f0 ↦ 𝑇0 ⋯ f𝑛 ↦ 𝑇𝑛

EXPIRE ALL

x ↦ 𝑇

(c) EXPIRE

x ↦ 𝑇 Begin

DROPREF ONE

End

(d) DROPREF

x ↦mut 𝑇 y ∶ 𝑇

WRITE ALL

x ↦mut 𝑇

(e) WRITE

x ↦mut 𝑇

COPYOUT ALL

x ↦mut 𝑇 y ∶ 𝑇

(f) COPYOUT

Figure 8: Synthesis rules for borrowed n types as graph components.

indicates that a mutable reference can be dropped either right at the start or after it was used otherwise
within the solution program. As an optimisation, the DROPREF rule is only applied to goals where the
mutable reference was modified. If a mutable reference is never modified, the DROPREF rule is never
added to connect it to the end node, which is the same as dropping it at the start of the program.

The WRITE rule in figure 8e takes two goal nodes as an input instead of only one as is usual with forward
rules. The first input node corresponds to the mutable reference to write to. The second input goal node
corresponds to the value that is written into the mutable reference and is encoded as a backward goal
node. This enables our algorithm to apply further backward rules to it or match it with other forward
goal nodes, for example by using the RENAME rule as seen in figure 11.

To better understand this mechanism and the borrowing rules in general, let’s introduce a new example
in figure 9 that uses the newly introduced borrowing rules. In this example, the rules are applied
analogously to the first example to build the synthesis graph in figure 11, but also considering the newly
introduced borrowing rules. The function unwrap_write takes a mutable reference to a wrapped value
mut_ref: &mut Wrapper<T> and an owned value val: T. The first rule that can be applied is the
DESTRBORROWSTRUCT rule that gives a mutable reference to the inner value inner: &mut T of the
wrapper and blocks the mutable reference to the wrapper itself, denoted as a node with dashed borders.
Next, the WRITE rule can be applied to the inner and is matched using the RENAME rule val: T that
can be written into inner. Next, inner can be used by the EXPIRE rule to unblock the blocked value
mut_ref. Finally, the DROPREF rule is used to connect the mutable reference to the end node.

11

1 struct Wrapper<T>(T);
2

3 fn unwrap_write<T>(mut_ref: &mut Wrapper<T>, val: T) {
4 todo!();
5 }

Figure 9: A second example to demonstrate the borrowing rules.

1 fn unwrap_write<T>(mut_ref: &mut Wrapper<T>, val: T) {
2 let Wrapper(inner) = mut_ref;
3 *inner = val;
4 }

Figure 10: One of the solutions that satisfy the type constraints of figure 9.

Start

mut_ref ↦mut Wrapper<T>

val ∶ T

DESTRBORROWSTRUCT

RENAME

mut_ref{
′𝑎} ↦mut Wrapper<T>

inner
′𝑎
⟼mut T

inner ∶ T

WRITE

inner
′𝑎
⟼mut T

EXPIRE

mut_ref ↦mut Wrapper<T>

DROPREF

End

(a) First Solution where the owned value val is writ-
ten into the mutable reference mut_ref.

Start

mut_ref ↦mut Wrapper<T>

val ∶ T

DESTRBORROWSTRUCT

RENAME

mut_ref{
′𝑎} ↦mut Wrapper<T>

inner
′𝑎
⟼mut T

inner ∶ T

WRITE

inner
′𝑎
⟼mut T

EXPIRE

mut_ref ↦mut Wrapper<T>

DROPREF

End

(b) Second solution where the mutable reference
mut_ref is not modified.

Figure 11: Synthesis graph for figure 9 with two of the multiple possible flows highlighted.

12

4.4 Program Search Algorithm

In section 4.1 we have seen how the program state is represented as a synthesis graph. The next step is
to find all possible valid flows through this synthesis graph. A valid flow through the synthesis graph
denotes a way in which we can build the type of the return argument of a target function signature from
its input arguments by applying synthesis rules in the order that they were visited by the flow. From
this valid flow, a valid solution program can be built from the order of synthesis rule applications.

In order to build a valid flow, the traversal through every node in the synthesis graph has certain re-
strictions that need to be satisfied. To formalise these restrictions more precisely, we introduce a set of
traversal rules that specify the conditions that need to hold when traversing a node. Note that traver-
sal rules are a different concept than synthesis rules: While synthesis rules dictate how to build the
synthesis graph, traversal rules dictate how to traverse the synthesis graph to build a valid flow.

There are two kinds of traversal rules. The input traversal rules specify how multiple input flows are
combined at a node. There are three input traversal rules, the ONE rule, the ALL rule and the JOIN
rule. The output traversal rules specify how an output flow continues from a node. Again, there are
three output traversal rules, the ONE rule, the ALL rule and the BRANCH rule. The graph components
in figure 5 and 8 are annotated with their respective traversal rules.

To better understand how the traversal rules work, let’s look at a few examples. The ONE traversal
rules dictate that every incoming flow is kept separate and creates one outgoing flow. In general, this
rule is used for goal nodes to enforce Rust’s ownership system as we don’t want a valid flow to pass
the same resource to multiple consumers. An exception are goal nodes whose type implements the
Copy marker. In that case, the goal node uses the ALL rule such that the object can trivially be copied
and passed to multiple consumers. The ONE traversal rule is also used for the CONSTRENUM rule to
indicate that an enum can be constructed if only one of its variants can be constructed.

The ALL input traversal rule is used whenever a node requires valid flows for all input nodes and
combines them into a valid output flow. Rule nodes such as CONSTRSTRUCT employ this rule to
indicate that a valid flow is needed for all goal nodes corresponding to struct fields in order to create a
struct. Analogously, the ALL output traversal rule is used for nodes that create multiple valid output
flows for one valid input flow. Rule nodes such as DESTRSTRUCT employ this rule to indicate that
all the fields of the deconstructed struct can be used at the same time, thus resulting in multiple valid
flows, one for each field of the struct.

The BRANCH traversal rule is used to model the behaviour of conditional statements and expressions
such as match expression introduced by the DESTRENUM rule. It indicates that the resulting output
flows need to be combined at some point further down the flow at a goal node by using the JOIN rule.
Each output flow corresponds to a match arm, and the goal node where the corresponding JOIN rule
is used corresponds to the output type of the match expression.

Note that all the input traversal rules have the same effect if there is only one incoming edge for some
node. This is due to the fact that combining all incoming flows is the same as keeping every incoming
flow separate if there is only ever one incoming flow. Analogously, the output traversal rules all have
the same effect if there is only one outgoing flow. Thus, we annotate forward rules that have one
incoming edge and potentially multiple outgoing edges only with their respective output traversal rule,
and backward rules that have multiple incoming edges and one outgoing edge only with their respective
input traversal rule.

In order to define the construction of a valid flow more formally, we first define a scope as a stack of

13

branch points 𝑠 ∶= [𝑏1,… , 𝑏𝑚]. Each branch point 𝑏𝑖 has a corresponding set of identifiers arms(𝑏𝑖) ∶=
{𝑎𝑖,0,… , 𝑎𝑖,𝑛} that denote the set of 𝑛 arms originating from branch point 𝑏𝑖. The function arm(𝑏𝑖) ∶=
𝑎𝑖,𝑗 denotes the arm the flow has taken at that branch point. We define last(𝑠) ∶= 𝑏𝑚 to be the last
branch point within the scope 𝑠.

Next, we introduce operators that act on a scope. Whenever a new scope is entered, the function
push(𝑠, 𝑏𝑖, 𝑎𝑖,𝑗) adds the branch point 𝑏𝑖 to the end of the scope and sets arm(𝑏𝑖) = 𝑎𝑖,𝑗 , indicating that
arm 𝑎𝑖,𝑗 was taken at branch point 𝑏𝑖. When leaving a scope, the function pop(𝑠) removes the last tuple
at the end of the scope. cond(𝑎𝑖,𝑗) is an expression representing the branch condition on which arm
𝑎𝑖,𝑗 at branch point 𝑏𝑖 is taken. This is needed for expressing facts about the functional behaviour of a
program within a scope.

Using the notion of scopes, we can define a flow 𝑓𝑖 ∶= (scope𝑖, 𝐸𝑖, 𝑈𝑖) where scope(𝑛𝑖) ∶= 𝑠𝑖 is a
mapping from nodes to scopes and denotes the scope 𝑠𝑖 of some node 𝑛𝑖. The scope is used to make sure
that the resulting solution programs respect the program scopes of variables. 𝐸𝑖 ∶= {(𝑛src0 , 𝑛dst0),…} is
a set of edges that were already traversed in this flow. 𝑈𝑖 ∶= {(𝑛src0 , 𝑛dst0),…} ⊆ 𝐸𝑖 is a subset of edges
that can only occur once per flow. This mechanism can be used to make sure that the same goal node
corresponding to an owned resource is not used multiple times, thus conflicting with Rust’s ownership
rules. We define the union of two flows to be the union of their set of mappings of nodes to scopes,
edges and unique edges 𝑓𝑖 ∪ 𝑓𝑗 = (scope𝑖 ∪ scope𝑗 , 𝐸𝑖 ∪ 𝐸𝑗 , 𝑈𝑖 ∪ 𝑈𝑗). When computing the union of
scopes, we can assume by the construction of the algorithm that the same keys (in this case nodes of
the synthesis graph) always contain the same value (scopes of the respective nodes).

Before joining two flows together, we need to make sure that the uniqueness requirement is met. For
this, we introduce the unique(𝑓0,… , 𝑓𝑚) function that checks whether the union of the flows 𝑓0,… , 𝑓𝑚
does not pass through an edge that can be only used once.

unique(𝑓1,… , 𝑓𝑚) ∶= ∀𝑈𝑖, 𝑈𝑗 ∈ {𝑈1,… , 𝑈𝑚}.𝑈𝑖 ∩ 𝑈𝑗 = ∅

Figure 12 shows an example where the unique requirement fails. outputONE adds the edge 𝑒 into the
unique set. When attempting to apply the inputALL traversal rule, this fails as both 𝑈1 and 𝑈2 contain
the edge 𝑒.

𝑛0

outputONE

𝑛1𝑈1 = {𝑒,…} 𝑛2 𝑈2 = {𝑒,…}

inputALL unique(𝑓1, 𝑓2)

𝑛3

𝑒

Figure 12: Example where the unique requirement fails.

Before joining flows back together that come from different scopes, the function joinable(𝑛src1 , 𝑓0,… , 𝑛src𝑚 , 𝑓𝑚)
checks whether the flows 𝑓1,… , 𝑓𝑚 coming from the nodes 𝑛src1 ,… 𝑛src𝑚 can be joined back into a single
flow. For this to be the case, the respective scopes 𝑠1,… , 𝑠𝑚 need to originate from the same branch
point 𝑏 and all match arms arms(𝑏) of this branch point need to be covered by the flows.

14

joinable(𝑛src1 , 𝑓1,… , 𝑛src𝑚 , 𝑓𝑚) ∶= ∃𝑏 ∶
(

∀𝑠𝑖 ∈ {scope(𝑛src1),… , scope(𝑛src𝑚)} ∶ last(𝑠𝑖) = 𝑏
)

∧
(𝑚
⋃

𝑖=1
arm(last(scope(𝑛src𝑖))) = arms(𝑏)

)

Figure 13 shows an example where the joinable requirement fails. outputBRANCH creates a fresh branch
point 𝑏 and two scopes, one for each match arm arms(𝑏) = {𝑛2, 𝑛3}. However, the flow doesn’t traverse
through the second match arm for the inputJOIN rule. Both input edges have different scopes which
invalidates the joinable requirement.

𝑛0scope0(𝑛0) = [] 𝑛1 scope1(𝑛1) = []

outputBRANCHfresh 𝑏, arms(𝑏) = {𝑛2, 𝑛3}

𝑛2scope2(𝑛2) = [(𝑏, 𝑛2)] 𝑛3 scope3(𝑛3) = []

inputJOIN joinable(𝑛2, 𝑓2, 𝑛3, 𝑓3)

𝑛4

Figure 13: Example where the joinable requirement fails.

Using the newly introduced definition of a flow, we can define the ONE, ALL and BRANCH output
traversal rules, and the ONE, ALL and JOIN input traversal rules more formally. All the output traversal
rules take a flow 𝑓 coming from node 𝑛src and pass it to the next node 𝑛dst . outputONE adds an edge
from 𝑛src to 𝑛dst . These edges are also added to the unique set, meaning they can only be used once.
outputALL also adds an edge from 𝑛src to 𝑛dst but doesn’t add this edge to the unique set. outputBRANCH
works just like outputONE, but also creates a new scope for the node 𝑛dst .

outputONE(𝑛src, 𝑓 , 𝑛dst) ∶= 𝑓 ∪
(

∅, {(𝑛src, 𝑛dst)}, {(𝑛src, 𝑛dst)}
)

outputALL(𝑛src, 𝑓 , 𝑛dst) ∶= 𝑓 ∪
(

∅, {(𝑛src, 𝑛dst)}, ∅
)

outputBRANCH(𝑛src, 𝑓 , 𝑛dst) ∶= 𝑓 ∪
(

{𝑛dst ↦ push(𝑠, 𝑛src, 𝑛dst)}, {(𝑛src, 𝑛dst)}, {(𝑛src, 𝑛dst)}
)

The input traversal rules take multiple flows 𝑓1,… , 𝑓𝑚 coming from the respective nodes 𝑛src0 ,… , 𝑛src𝑚
and join them into one or potentially multiple flows at node 𝑛dst𝑗 . inputONE does not combine the
incoming flows, but just adds the node 𝑛dst𝑗 to each flow, keeping it in the respective scope of that
flow. inputALL combines the incoming flows into a single flow. This is only allowed if the uniqueness
requirement for the edges is met and the scope is the same for all flows at the node 𝑛dst𝑗 . It also adds the
node 𝑛dst𝑗 to each flow within the same scope. Finally, inputJOIN joins multiple flows coming from the
same branch point back together into a single flow. This is only allowed if the uniqueness requirement
is met and the flows are joinable.

15

inputONE(𝑛src1 , 𝑓1,… , 𝑛src𝑚 , 𝑓𝑚, 𝑛
dst
𝑗) ∶= 𝑓1 ∪

(

{𝑛dst𝑗 ↦ 𝑠1}, ∅, ∅
)

,… , 𝑓𝑚 ∪
(

{𝑛dst𝑗 ↦ 𝑠𝑚}, ∅, ∅
)

inputALL(𝑛src1 , 𝑓1,… , 𝑛src𝑚 , 𝑓𝑚, 𝑛
dst
𝑗) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓1 ∪⋯ ∪ 𝑓𝑚 ∪
(

{𝑛dst𝑗 ↦ 𝑠𝑗}, ∅, ∅
)

unique(𝑓1,… , 𝑓𝑚),
𝑠𝑗 = 𝑠1 = ⋯ = 𝑠𝑚

∅ otherwise

inputJOIN(𝑛src1 , 𝑓1,… , 𝑛src𝑚 , 𝑓𝑚, 𝑛
dst
𝑗) ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑓1 ∪⋯ ∪ 𝑓𝑚 ∪
(

{𝑛dst𝑗 ↦ 𝑠𝑗}, ∅, ∅
)

unique(𝑓1,… , 𝑓𝑚),
joinable(𝑓1,… , 𝑓𝑛),
𝑠𝑗 = pop(𝑠1) = ⋯ = pop(𝑠𝑚),

∅ otherwise

To see how the traversal rules work in a more concrete example, let’s examine again the synthesis graph
from figure 6 and construct the valid flows. The algorithm starts with a single valid flow from the begin
node. The begin node uses the ALL traversal rule as all input arguments can be used at the same time.
The next goal nodes u and v do not implement Copy and thus use the ONE rule. However, as the nodes
only have a single input flow and a single output flow, they do not create any new flows. The same
goes for both of the next DESTRSTRUCT rules. At this point, there is still a single flow that contains the
uppermost five nodes in the synthesis graph. The following two goal nodes both have a single input
flow but have two outputs. As both of the goal nodes use the ONE rule. This results in a total of four
flows, the first flow with the first and second RENAME, the second with the first and fourth RENAME,
the third with the second and third RENAME and the fourth with the third and fourth RENAME. The
next four goal nodes are again trivial as they have a single input and a single output. The algorithm
now arrives at the CONSTRSTRUCT rule nodes that use ALL traversal rule as they require flows for all
inputs. This eliminates the second and the third flow as they do not provide resources for all fields of
the struct, leaving only two remaining flows, one that traverses through the first CONSTRSTRUCT and
another that traverses through the second CONSTRSTRUCT rule. These two remaining valid flows are
shown in figure 6a and 6b.

In the second synthesis graph from figure 11, the algorithm starts again with a single valid flow from
the begin node. As the begin node uses the ALL traversal rule, both mut_ref and val can be used in
the same flow. The mutable reference mut_ref can be destructed using the DESTRBORROWSTRUCT
rule, yielding a mutable reference to its inner value inner, and a blocked version of mut_ref. Next,
the Write rule can be used to write the owned value val into the mutable reference inner. Then, the
blocked reference mut_ref can be unblocked by using the EXPIRE rule. Finally, the DROPREF rule
uses the ONE traversal rule and thus creates two flows: Either the flow will be connected through the
mutable reference mut_ref to the end node, resulting in the flow highlighted in figure 11a where the
mutable reference inner is written to. Or the flow is connected directly from the begin node to the
end node, resulting in the flow highlighted in figure 11b where the mutable reference is not written to.

16

4.5 Functional Specifications

Building a solution program from the synthesis graph by following the traversal rules ensures that the
type specification given by the signature of the target function is satisfied. However, the algorithm
also supports synthesising functions that are annotated with functional specifications. In the next sec-
tion, we take a look at how the algorithm ensures that functional specifications hold for the solution
programs.

Rust type signatures can be annotated with #[requires] and #[ensures] clauses that represent
the pre- and postconditions of the annotated function where the precondition can be assumed as a
fact and the postcondition needs to be proven to hold after the execution of the synthesised program.
All rules specify further facts. For example, the RENAME rule specifies on how program variables
are related to each other. If we rename a program variable let y = x, we know that the value of
y is that of x. Furthermore, some rules such as FNCALL (discussed later in section 4.6) impose a
precondition that needs to be proven in order for it to be used in a valid way. Finally, rules such as
DESTRENUM may also add branch conditions. Throughout the traversal of the synthesis graph, these
facts and statements to prove are accumulated under their respective branch conditions and transformed
into a single expression that we call the flow condition. If a valid flow is found that satisfies the type
specification of a function signature, the next step is to prove whether the found solution program
satisfies the functional specifications. For this, the algorithm checks whether the flow condition is
satisfiable by invoking an SMT solver. Note that in this approach it is only necessary to check the flow
condition for solutions that already satisfy the type specification. If no functional specification is given,
the flow condition does not need to be checked as the program search algorithm already constructs only
type-valid solution programs by design.

1 #[ensures(matches!(input, Ok(_)) == matches!(result, Ok(_)))]
2 fn map_err<T, E1, E2>(input: Result<T, E1>) -> Result<T, E2> {
3 todo!();
4 result
5 }
6

7 #[extern_spec]
8 #[requires(matches!(input, Err(_)))]
9 #[ensures(matches!(result, Err(_)))]

10 fn convert_err<T, E1, E2>(input: Result<T, E1>) -> Result<T, E2>

Figure 14: An example to demonstrate functional specifications and external function calls.

To demonstrate how the construction of the flow condition works in more detail, consider a new ex-
ample in figure 14. The map_err function takes as an input a Result<T, E1> enum and output the
Result<T, E2> enum. To satisfy the specifications, the synthesiser can utilise the external function
convert_err that expects an Result<T, E1> error variant as its input and outputs the correspond-
ing Result<T, E2> error variant. To see how facts, statements to prove and branch conditions work
in that case, consider the annotated solution program in figure 15. From the start, we know as a
fact that the discriminant of the input enum 𝛿input and the output enum 𝛿result are within a valid
range 𝛿input ∈ {0, 1} ∧ 𝛿result ∈ {0, 1}, where a value of 0 indicates the first enum variant Ok
and a value of 1 the second variant Err. The solution program matches on the input enum which
results in two match arms with respective branch conditions. In the first match arm, the program re-
turns the Ok variant, yielding the fact 𝛿input = 0 ⟹ 𝛿result = 0. In the second match arm,
the input for the convert_err function call is constructed. Calling convert_err yields a trivial

17

statement to prove that verifies its precondition 𝛿input = 1 ⟹ 𝛿input = 1, plus a fact from its
postcondition 𝛿input = 1 ⟹ 𝛿result = 1, both under the respective branch condition from the
match arm. Finally, to verify the postcondition of the map_err function, it needs to be proven that
𝛿input = 0 ⟺ 𝛿result = 0. This holds because we know that 𝛿input ∈ {0, 1} ∧ 𝛿result ∈ {0, 1}, as
well as 𝛿input = 0 ⟹ 𝛿result = 0 and 𝛿input = 1 ⟹ 𝛿result = 1.

1 fn map_err<T, E1, E2>(input: Result<T, E1>) -> Result<T, E2> {
2 // fact: 𝛿input ∈ {0, 1} ∧ 𝛿result ∈ {0, 1}
3 let result = match input {
4 Ok(t) => {
5 // branch condition: 𝛿input = 0
6 Ok(t)
7 // fact: 𝛿input = 0 ⟹ 𝛿result = 0
8 }
9 Err(e) => {

10 // branch condition: 𝛿input = 1
11 let input = Err(e);
12 convert_err(input)
13 // to prove: 𝛿input = 1 ⟹ 𝛿input = 1
14 // fact: 𝛿input = 1 ⟹ 𝛿result = 1
15 }
16 };
17 // to prove: 𝛿input = 0 ⟺ 𝛿result = 0
18 result
19 }

Figure 15: The solution that satisfies the type and functional constraints of figure 14.

The use of pure functions is also supported within functional specification declarations. A pure func-
tion’s body can be expressed as a pure formula. Whenever a fresh program variable is introduced by
a DESTR or CONSTR rule, it is also checked whether a pure function is defined that uses this program
variable. If so, the pure function’s body that is translated as a pure formula is substituted with the
respective caller’s input and output arguments that were used for that function. The substituted pure
formula’s body is then added as a fact to the already existing facts 𝜙 in the following synthesis goals.

4.6 External Function Calls

External functions are annotated with the #[extern_spec] clause. We implement external function
calls by translating an external function’s input arguments and return argument to goal nodes, similar to
the arguments of the function that is to be synthesised. However, instead of translating input arguments
as forward nodes and the return argument as a backward node, we invert the direction such that input
arguments are translated as backward nodes and the return argument as a forward node. The goal nodes
that correspond to the input arguments are connected by the FNCALL rule to the goal node representing
the output argument. Whenever there exists a solution for all input arguments, the output argument of
the function can be computed by invoking the external function call.

Figure 16 and 17a show the FNCALL rule and its corresponding synthesis graph component. It utilises
the ALL traversal rule to express that all input arguments are needed in order to compute the output
argument. There is no trigger node as the FNCALL rule is added to the synthesis graph only when

18

FNCALL
𝜙 ⟹ 𝜙′ {𝜙′ ∣ a0 ∶ 𝑇0(𝑣0) ∗ ⋯ ∗ a𝑛 ∶ 𝑇𝑛(𝑣𝑛)} foo {𝜓 ∣ r ∶ 𝑇 (𝑤)}

{𝜙 ∣ a0 ∶ 𝑇0(𝑣0) ∗ ⋯ ∗ a𝑛 ∶ 𝑇𝑛(𝑣𝑛)} let r = foo(a0,… , a𝑛) {𝜙 ∧ 𝜓 ∣ r ∶ 𝑇 (𝑤)}

Figure 16: Synthesis rule for a function call.

translating an external function’s arguments and is not dynamically added as the synthesis graph is
extended with new synthesis goals, contrary to all the other rules.

Furthermore, if the external function call is annotated with functional specifications, the FNCALL rule
adds the function’s precondition as a statement that needs to be proven. This ensures that the program
search algorithm returns only solutions where the external function’s precondition is satisfied. The
function’s postcondition is added as a given fact.

r ∶ 𝑇

FNCALL foo ALL

a0 ∶ 𝑇0 ⋯ a𝑛 ∶ 𝑇𝑛

(a) FNCALL

Figure 17: Synthesis rule for function calls as a graph component.

Let’s take a look at how the synthesis graph of figure 18 is created from the example in figure 14. First,
the input and return arguments of the function map_err are translated into their respective goal nodes
that are connected to the begin and end nodes. Then, the input and return arguments of the function
convert_err are translated, but in an inverted manner. After all the function arguments are translated
into goal nodes, the synthesis rules are applied as usual, eventually forming the complete synthesis
graph.

4.7 Recursive Function Calls

To allow recursive function calls, we can reuse the same mechanism that allows the call of external
functions described in the previous section 4.6. First, the target function’s input arguments are added to
the synthesis graph as forward goal nodes and the return argument as a backward goal node as usual.
Additionally, the target function is also added as a function call just as external functions, adding
the return argument as a forward goal that is connected via a FNCALL rule to its input arguments as
backward goals.

To avoid recursive function calls that don’t make any progress, the number of DESTR and CONSTR
rules that are applied before the invocation of the recursive function call are counted. The recursive
function call is only allowed if the number of DESTR rules is greater than the number of CONSTR
rules. This uses the size of the object as a termination measure, guaranteeing that progress is made.
We now have all prerequisites to synthesise recursive functions, for example the one shown in figure
19. Before calling itself recursively, the function applies the DESTRENUM rule by matching on the list,
thus making progress and eventually reaching the end of the list.

19

Start

input ∶ Result<T, E1>

DESTRENUM

t ∶ T e ∶ E1

result ∶ Result<T, E2>

RENAME

t ∶ T

CONSTRENUM RENAME

End

FNCALL convert_err

result ∶ Result<T, E2>

input ∶ Result<T, E1>

CONSTRENUM

e ∶ E1

RENAME

Figure 18: Synthesis graph for figure 14. The nodes that are generated from the external function call
are enclosed in the rectangle.

1 enum List<T> {
2 Next(Box<List<T>>),
3 End(T),
4 }
5

6 fn get_end<T>(list: List<T>) -> T {
7 let result = match list {
8 List::Next(list) => {
9 let list = *list;

10 get_end(list)
11 }
12 End(t) => {
13 t
14 }
15 };
16 result
17 }

Figure 19: An example to illustrate recursive function calls.

4.8 Runtime Cost Heuristic

At any given time during the execution of the program search algorithm described in section 4.4, there
may exist multiple incomplete flows that did not yet reach the end node. Each incomplete flow contains

20

Start

list ∶ List<T>

DESTRENUM

t ∶ T next ∶ Box<List<T»

result ∶ T

RENAME RENAME

End

FNCALL get_end

result ∶ T

list ∶ List<T>

RENAME

next ∶ List<T>

DESTRBOX

Figure 20: Synthesis graph for figure 27. The nodes that are generated from the recursive function call
are enclosed in the rectangle.

a set of nodes and edges that it traverses. Based on the rule nodes that the flow traverses and the goal
nodes that are connected to that rule node, it is possible to define various heuristics that assign a priority
to each incomplete flow. The algorithm then picks the incomplete flow with the highest priority which
is then extended by further traversing the synthesis graph. In general, the incomplete flow with the
highest priority is the first that reaches the end node and gets completed. However, the priority of an
incomplete flow is recomputed whenever the flow is extended with additional rule nodes and may thus
change its priority during its construction.

Using this method of changing priorities for incomplete flows, various heuristics can be implemented.
Concretely, we implement a runtime cost heuristic that prioritises synthesis solutions with the smallest
runtime cost when run. Each rule generates a program statement that defines an estimate of its runtime
cost, and the total runtime cost of a flow is the sum of the runtime cost of each rule.

mov(𝑇) ∶=

{

sizeof(𝑇) if the size of 𝑇 is known,
ℎmov otherwise

alloc(𝑇) ∶= ℎalloc

call(𝑓) ∶=

{

ℎcall if 𝑓 is not a recursive function call,
ℎrec otherwise

drop(𝑇) ∶=

{

ℎcall if 𝑇 is not a primitive,
0 otherwise

where ℎmov < ℎalloc < ℎcall < ℎrec

21

The estimation of the runtime cost of a rule works by estimating the number of trivial operations
emitted for the respective program statement that is generated from that rule. mov(𝑇) estimates the
runtime cost as the size of the type 𝑇 in bytes if it is known and some value ℎmov otherwise. alloc(𝑇)
is set to some high value ℎalloc such that allocations are avoided if the size of 𝑇 is smaller than ℎalloc.
call(𝑓) calls the function 𝑓 . As the function body of 𝑓 is unknown to the algorithm, we estimate it
to be some high value ℎcall similar to the allocation, and if 𝑓 is a recursive function call we estimate
it to be an even higher value ℎrec as recursive function calls are generally very expensive. Finally, the
cost drop(𝑇) of dropping a non-primitive value of type 𝑇 is estimated to be as expensive as an external
function call. If the type 𝑇 is primitive, we know that it has no drop implementation and the runtime
cost is estimated as 0.

As a second example that contains allocations, consider the singleton function in figure 21 that
creates a list from a single element of type T. There exist two solutions, the first solution in figure
22 just creates an empty list. It contains no allocations and just constructs an element List::Nil
for which we estimate the runtime cost as mov(List<T>). Furthermore, elem is not used and thus
dropped, which has the runtime cost drop(T).

The second solution in figure 23 constructs a list with a single element of type T. To achieve this, the first
step is again to construct List::Nil for which we estimate the runtime cost as mov(List<T>), which
is then boxed, where constructing a box has runtime cost alloc(List<T>). Constructing List::Cons
is again estimated to have a runtime cost of mov(List<T>).

We can see that the runtime cost of the first solution is dominated by the call to the drop function,
while the runtime cost of the second solution is dominated by the allocation. In general, we assume
that calling the drop function is just as expensive as calling any unknown function, and thus more
expensive than an allocation as the unknown function itself may allocate some data. This means that
in this case, our runtime cost heuristic prefers the second solution where elem is not dropped. However,
if we assume that T is a primitive that has no drop implementation, we can assume that dropping the
primitive is cheaper than an allocation. In that case, the first solution is preferred.

1 enum List<T> {
2 Nil,
3 Cons {
4 elem: T,
5 next: Box<List<T>>
6 }
7 }
8

9 fn singleton(elem: T) -> List<T> {
10 todo!();
11 result
12 }

Figure 21: A function that creates a list from a single element.

22

1 fn singleton(elem: T) -> List<T> { // drop(T)
2 let result = List::Nil; // mov(List<T>)
3 result
4 }

Figure 22: First solution for figure 21.

1 fn singleton(elem: T) -> List<T> {
2 let next = List::Nil; // mov(List<T>)
3 let next = Box::new(next); // alloc(List<T>)
4 let result = List::Cons { // mov(List<T>)
5 elem,
6 next,
7 };
8 result
9 }

Figure 23: Second solution for figure 21.

23

5 Evaluation

The new synthesizer that we call DAG solver was implemented in the Rust programming language
itself. It uses Creusot’s (Denis et al., 2022) annotations for functional specifications. All the bench-
marks were done on a consumer-grade PC with an AMD Ryzen 7 5800 8-Core CPU and 16 GB of
RAM running Fedora Linux. Our evaluation aims to answer the following three main questions:

(Q1) Does the new search algorithm support the same features as the SUSLIK implementation?

(Q2) Can the new search algorithm compute the same number of solutions as the SUSLIK implemen-
tation on the same subset of supported examples?

(Q3) Can the new search algorithm outperform the SUSLIK implementation on the same subset of
supported examples?

For the benchmarks, we have set a time limit of ten seconds per synthesis problem. As the DAG solver
supports only a subset of the functionality that the SUSLIK solver supports, we only include problems
where both of the solvers find at least one solution. We list the total number of solutions found, the
added time per solution and the time to the first solution. The time to the first solution measures the
time difference from the invocation of the algorithm to the time when the first valid solution is found.
This measure is especially useful in combination with a program search heuristic or with functional
specifications where the first solution is usually the one that is desired. The added time per solution is
the average of the added time it takes from one solution to compute the next solution, or the time from
starting the algorithm until computing the first solution respectively. Intuitively, this is the average
time a user needs to wait until they receive the next solution.

5.1 Top 100 Crates

This benchmark contains Rust function signatures extracted from the top 100 crates from the Rust
community’s crate registry. Signatures with unsupported types are excluded. Note that the function
signatures extracted from the top 100 crates have no functional specifications. The goal of this bench-
mark is to evaluate the performance of our new program search algorithm on a wide range of real-world
examples compared to the previous approach that uses the SUSLIK solver. The benchmark results are
shown in table 1.

Note that although we were able to extract 14’138 function signatures from the top 100 crates, we only
consider the ones where both the SUSLIK Solver and the DAG Solver find at least one solution. As
our implementation at the moment only supports a small subset of rules (see section 5.4 for all of the
limitations), the set of problems is reduced significantly to 224 function signatures. This explains the
lower number of solutions found compared to the earlier work of Fiala et al. (2023).

5.2 Functional Specifications

As our program search algorithm supports functional specifications and the previous benchmark does
not contain any, we also include examples with functional specifications extracted from different sources.
It includes a collection of idiomatic rust programs that were taken from the previous work of Fiala et al.

24

Benchmark Data Point Description SUSLIK Solver DAG Solver DAG Solver
No Heuristic Runtime Cost

Top 100 Crates
Number of Solutions Found 853 313 (-63%) 313 (-63%)
Time to First Solution 142 ms 3 ms (-98%) 4 ms (-97%)
Added Time per Solution 58 ms 4 ms (-94%) 5 ms (-92%)

Table 1: Benchmark results of the functions from the top 100 crates.

(2023), a collection of synthesis tasks from the SUSLIK benchmark suite (Itzhaky et al., 2021) and fi-
nally a collection of programs from the Prusti (Astrauskas et al., 2022) and Creusot (Denis et al., 2022)
test suites. The benchmark results are shown in table 2.

Benchmark Data Point Description SUSLIK Solver DAG Solver DAG Solver
No Heuristic Runtime Cost

Functional
Specifications

Number of Solutions Found 77 33 (-57%) 30 (-61%)
Time to First Solution 111 ms 2 ms (-98%) 7 ms (-93%)
Added Time per Solution 50 ms 8 ms (-82%) 4 ms (-91%)

Table 2: Benchmark results of the examples with functional specifications.

5.3 Custom Test Cases

Together with the top 100 crates and the examples with functional specifications, we also include
a benchmark on the newly created test cases for the DAG Solver. These test cases contain a mix
of diverse function signatures, including mutable references, functional specifications and recursive
function calls to thoroughly test the new solver’s implementation. The benchmark results are shown
in table 3.

Benchmark Data Point Description SUSLIK Solver DAG Solver DAG Solver
No Heuristic Runtime Cost

Test Cases
Number of Solutions Found 321 170 (-47%) 170 (-47%)
Time to First Solution 151 ms 4 ms (-97%) 3 ms (-98%)
Added Time per Solution 77 ms 4 ms (-95%) 3 ms (-96%)

Table 3: Benchmark results of the custom test cases.

5.4 Limitations

At the moment, our synthesis rules allow only the synthesis of programs where any enum’s variants
contain at most one field. This is due to the fact that synthesis graph nodes can only utilise either the
BRANCH traversal rule or the ALL traversal rule. An enum with multiple fields would need to utilise
both of these rules simultaneously. The introduction of scopes as proposed in the following section
6.1 would eliminate this limitation entirely as the need for BRANCH and JOIN traversal rules would
be eliminated.

Our implementation of external function calls supports at most one function call per synthesis result.
Recall from section 4.6 that each external function is added once into the synthesis graph. At the mo-

25

Group Feature SUSLIK Solver DAG Solver

Data Structures
Structs Yes Yes
Tuples Yes Yes
Enums Yes Yes1

Primitives Finding Concrete Values Yes2 No

Mutable References
Writing Yes Yes
Expiring Yes Yes
Passing to External Functions Yes Yes

Function Calls External Function Calls Yes Yes3

Pure Functions in Specification Yes Yes4

Recursion Recursion on the Target Function Yes Yes
Synthesising Helper Functions Yes No

Solution Prioritisation Based on Runtime Cost No Yes

Table 4: Overview over all supported features of both solvers.

ment, there exists no way to dynamically add more function calls during the expansion of the synthesis
graph. Furthermore, the FNCALL rule is unique in the sense that its edges are directed from the back-
ward goals that represent its inputs to the forward goals that represent its output. The reversed direction
may introduce cycles to the synthesis graph if multiple functions are used.

Contrary to the SUSLIK search algorithm, our new algorithm does not yet support the synthesis of
helper functions. However, recursive calls to the target function itself are supported as described in
section 4.7.

Although there is support for annotating target functions with functional specifications, the synthe-
sis using functional specifications is limited. Currently, concrete values for primitive types can not
be found from the functional specifications. Although it can be proven that there exists some prim-
itive value that satisfies the functional specification, the concrete value itself is not found and in the
synthesised program code, a default value is inserted instead that can be later substituted by the user.

5.5 Summary

Table 5 summarises the three benchmarks from sections 5.1, 5.2 and 5.3. The new solver demonstrates
significantly faster performance compared to the SUSLIK solver, as indicated by the time taken to find
the initial solution and the additional time required for each subsequent solution. On average, the time
required to find the first solution is reduced by 97%, while the additional time per solution is reduced
by 93% when employing the runtime cost heuristic.

We can also observe that depending on the heuristic used for the DAG solver, a different number of
solutions are found. Internally, the DAG solver stores incomplete solution flows in a priority queue.
During the execution of the algorithm, this priority queue may grow relatively large. To avoid filling
the queue with too many incomplete flows, the incomplete flows with the least priority may be dropped
after the queue reaches a certain size. As the priority changes with the heuristic that is used, this may

1Enum variants with one field.
2Only some specific values are tested.
3Only one external function call per solution is supported.
4Generics are not supported.

26

Benchmark Data Point Description SUSLIK Solver DAG Solver DAG Solver
No Heuristic Runtime Cost

Total
Number of Solutions Found 1251 516 (-59%) 513 (-59%)
Time to First Solution 142 ms 3 ms (-98%) 4 ms (-97%)
Added Time per Solution 62 ms 4 ms (-93%) 4 ms (-93%)

Table 5: Combined results of all the benchmarks.

lead to different incomplete flows being dropped and ultimately to a different number of total solutions
that are found.

Figure 24: Combined results of all the benchmarks.

In figure 24 a dot is drawn for each solution that was found, and different solvers are highlighted with
different colours. The x-axis tells us the solution number that indicates how many solutions were found
for the same function signature beforehand. The y-axis shows the time that was needed to find the
solution. In general, the new approach (DAG Solver) finds solutions much faster than the old approach
(SUSLIK Solver). However, there are a few outliers where the DAG solver takes considerably longer
to find a solution. We have found that most of these outliers deal with mutable references. This is most
likely due to the fact that the DROPREF rule gives the program search algorithm the choice of either
dropping the mutable reference from the start or only after applying a set of rules to it, for example
writing to it. This causes the runtime of the algorithm to increase exponentially when dealing with
multiple mutable references.

A further observation that can be made is that the longest time to solve a problem was 906 ms, despite
setting the timeout to ten seconds. We ascribe this observation to the fact that the program synthesis
algorithm has an exponential time complexity. However, we believe that it would be possible to find
solutions to larger problems more efficiently by introducing a suitable solution prioritisation heuristic,

In figure 25, we divide the benchmark programs into three categories. Functional Specs contains all

27

Figure 25: Combined results of all the benchmarks divided into categories.

the solutions where the target function has non-trivial functional specifications. Mutable Refs contains
all the solutions where the target function deals with mutable references. Finally, Other contains all
the remaining solutions. As expected, we can clearly see that the DAG solver is the fastest when
used on target functions that contain neither mutable references nor functional specifications. When
dealing with mutable references and functional specifications, the time to find solutions increases a
bit, although still being faster than the SUSLIK solver. When solving functional specifications, the
advantage of the DAG solver compared to the SUSLIK solver decreases the most as both solvers have to
invoke the SAT solver to prove whether the functional specifications are satisfied. We can also observe
that using the runtime heuristic for the DAG solver seems especially advantageous when dealing with
mutable references compared to using no heuristic.

To answer the first question of our evaluation (Q1), we take a look at table 4 that lists all supported
features of both solvers. Most of the features supported by the SUSLIK solver are also supported
by the DAG solver, except for the synthesis of recursive helper functions and the insertion of concrete
primitive values that satisfy the functional specifications. At the moment, our solver can decide whether
there exists a primitive value that satisfies the functional specification, but it can not yet find the concrete
value and insert it. This is due to a limitation of the interaction with the SMT solver. Enum variants
can contain exactly one field, however, by using a tuple within that field one can easily emulate the
behaviour of enum variants with multiple fields. Additionally, our solver introduces the runtime cost
heuristic feature that can prioritise certain solutions over others. This is not possible with the SUSLIK
solver.

To answer the second question (Q2), the number of solutions found suggests that the SUSLIK solver
finds a lot more solutions than the DAG solver for the top 100 crates benchmark. However, we note
that the SUSLIK solver also generates programs that include statements without any effect, for example
constructing objects that are dropped immediately or calling functions whose return value is never used.
The DAG solver on the other hand discards programs that contain effect-free statements. Furthermore,

28

the SUSLIK solver may return the structurally equivalent solution multiple times, but with different
primitive values inserted. In contrast, the DAG solver just uses the one default value defined on a
primitive type.

To answer the final question (Q3), the time to the first solution and the added time per solution show
that the new solver is much faster compared to the SUSLIK solver. The time to find the first solution
is lowered by 97% on average, while the added time per solution is also lowered by 93% when using
the runtime cost heuristic. Some small part of this significant speedup can be explained from a more
efficient implementation and the difference in the programming languages used. Our solver was im-
plemented in Rust, while the SUSLIK solver is implemented in Scala, which adds the overhead of more
heap allocations, garbage collection and others.

As we have discussed earlier in section 3, our new synthesis algorithm had the goal of significantly
reducing the number of rules that are applied in the synthesis process. If we try to estimate the number
of search steps saved with the changes implemented, we can make a rough estimate of the number
of search steps saved by changing from a single search tree to separated forward and backward search
trees. Assuming the original approach using a single search tree uses 𝑛 nodes, the height of the tree can
be estimated by log(𝑛). Further assuming that the number of applicable forward and backward rules
are roughly the same for any proof search, we can estimate the height of our forward and backward
search trees in the new approach by log(𝑛)∕2 and a total number of nodes of 2

√

𝑛 in both search
trees, considerably lowering the number of nodes in the new approach. As this approach could be
implemented as discussed for the new DAG solver, we can be certain that this algorithmic difference
is the main explanation for the observed speedup.

29

6 Future Work

6.1 Introducing Scoped Synthetic Ownership Logic

With the previous tree-like search, keeping track of the scope in which a variable is defined was not
needed. With our novel approach of having a forward and a backward search tree that are combined
into a search graph, keeping track of scopes becomes a necessity to avoid synthesising malformed
programs that use program variables in invalid scopes. With our attempt, scopes were kept track of
during the execution of the program search algorithm (see section 4.4) with the use of BRANCH
and JOIN traversal rules. However, it should also be possible to create a scope-aware program state
representation such that variable scopes are respected even during the creation of the synthesis graph.
For this end, we propose the introduction of scopes for the SOL inference rules, creating an extension
of SOL that we call Scoped Synthetic Ownership Logic (SSOL).

Recall the definition of scopes from section 4.4. Synthesis goals are slightly modified to also contain
a scope. We annotate program variables with their respective scopes 𝑠 with the subscript notation
x𝑠 ∶ 𝑇 . Consequently, some of the synthesis rules also need to be adapted to take into account the new
logic.

In particular, rules that previously used the BRANCH traversal rule such as DESTRENUM need to be
modified to keep track of scopes. The necessary modifications are shown in figure 26. We further
introduce two new rules, MOVE and JOIN. The JOIN rule joins together branches that were created
by rules such as DESTRENUM and thus replaces the JOIN traversal rule that was introduced with the
program search algorithm in section 4.4. The MOVE rule is used to move a program variable from
an outer scope into an inner scope. Note that both of these rules are now enforced directly during the
construction of the synthesis graph and not only during the program search. This should not only enable
much easier implementation of the program search algorithm but will most likely further increase the
performance of the program search significantly.

Note that the DESTRENUM and DESTRBORROWENUM rules now not only change the contents of the
heap cell but also change the scope by adding a branch point. The RENAME match rule now only
matches variables in the same scope. The DROP rule can drop variables from any scope. Furthermore,
two new rules are introduced that act on the scope. The first rule JOIN acts as a join point for rules
that introduce branch points. The second rule MOVE takes a value and moves it into the arms of a
branch point, but unlike DESTRENUM or DESTRBORROWENUM, it does not modify the value itself.
The remaining rules that we do not discuss here are assumed to only act within the same scope.

To demonstrate how the SSOL rule change the synthesis graph compared to the usual SOL rules, we
take a look at a new example in figure 27. The synthesis graph in figure 28a is constructed with the
usual SOL rules. On the other hand, the second synthesis graph in figure 28b is constructed using the
newly introduced SSOL rules. Note that when using the SSOL rules, the goals originating from the
DESTRENUM rule have distinct scopes 𝑢 and 𝑣. Thus, they can’t be matched with the goals from the
CONSTRSTRUCT rule that both expect the same scope. With the first approach, it is only clear that no
valid solution exists after the program search algorithm is executed. With the SSOL rules, it is clear
from the synthesis graph alone that there exists no valid program as the forward tree is not connected
to the backward tree at all.

30

DESTRENUM

𝑇 = (𝑇0)𝑉0 +⋯ + (𝑇𝑛)𝑉𝑛
𝑏 fresh arms(𝑏) = {𝑎0,… , 𝑎𝑛} 𝑠𝑖 ∶= push(𝑠, 𝑏, 𝑎𝑖) 𝑔𝑖 ∶= {(f𝑖)𝑠𝑖 ∶ 𝑇𝑖(𝑣𝑖)}

{x𝑠 ∶ 𝑇 ({𝛿 ∶ 𝑉𝑖, f𝑖 ∶ 𝑣𝑖})} match x { 𝑉0(f0) => 𝑔0,…𝑉𝑛(f𝑛) => 𝑔𝑛, }

DESTRBORROWENUM

𝑇 = (𝑇0)𝑉0 +⋯ + (𝑇𝑛)𝑉𝑛 ′𝑎0,… ,′ 𝑎𝑛 fresh

𝑏 fresh arms(𝑏) = {𝑎0,… , 𝑎𝑛} 𝑠𝑖 ∶= push(𝑠, 𝑏, 𝑎𝑖) 𝑔𝑖 ∶= {(f𝑖)𝑠𝑖
′𝑎𝑖
⟼ 𝑇𝑖(𝑣𝑖)}

{x𝑠 ↦ 𝑇 ({𝛿 ∶ 𝑉𝑖, f𝑖 ∶ 𝑣𝑖})}
match x { 𝑉0(f0) => 𝑔0,… ,

𝑉𝑛(f𝑛) => 𝑔𝑛 }
{x{′𝑎0,…,′𝑎𝑛} ↦ 𝑇 }

MOVE
arms(𝑏) = {𝑎0,… , 𝑎𝑛} 𝑠𝑖 ∶= push(𝑠, 𝑏, 𝑎𝑖) 𝑔𝑖 ∶= {(f𝑖)𝑠𝑖 ∶ 𝑇𝑖(𝑣𝑖)}

{x𝑠 ∶ 𝑇 ({𝛿 ∶ 𝑉𝑖, f𝑖 ∶ 𝑣𝑖})} skip!() 𝑔0,… , 𝑔𝑛

JOIN
arms(𝑏) = {𝑎0,… , 𝑎𝑛} 𝑠 ∶= pop(𝑠0) = ⋯ = pop(𝑠𝑛) 𝑔𝑖 ∶= {𝜙𝑖 ∣ x𝑠𝑖 ∶ 𝑇 (𝑣𝑖)}

𝑔0,… , 𝑔𝑛 skip!()
{(cond(𝑎0) ⟹ (𝜙0 ∧ 𝑣 = 𝑣0)) ∧⋯

∧ (cond(𝑎𝑛) ⟹ (𝜙𝑛 ∧ 𝑣 = 𝑣𝑛)) ∣ x𝑠 ∶ 𝑇 (𝑣)}

RENAME
𝑇 not ref

{x𝑠 ∶ 𝑇 (𝑣)} let y = x {y𝑠 ∶ 𝑇 (𝑣)}

Figure 26: Newly introduced or modified rules in SSOL.

1 struct Both<A, B>(A, B);
2

3 enum Either<A, B> {
4 A(A),
5 B(B),
6 }
7

8 fn either_to_both<A, B>(input: Either<A, B>) -> Both<A, B> {
9 todo!();

10 result
11 }

Figure 27: A partially complete function body.

6.2 Partially Complete Programs for Better Synthesis Guesses

We use functional specifications to reduce the set of solution programs. However, the vast majority of
programmers in practice do not annotate functions with functional specifications. We propose an alter-
native way to restrict the set of solution programs to better capture the intentions of the programmer.

Recall that the synthesizer builds a synthesis graph with rule nodes and goal nodes. A valid program
for the type specification corresponds to a flow through this synthesis graph. Assume that instead of

31

Start

input ∶ Either<A, B>

DESTRENUM

a ∶ A b ∶ B

RENAME RENAME

a ∶ A b ∶ B

CONSTRSTRUCT

result ∶ Both<A, B>

End

(a) Using SOL rules

Start

input0 ∶ Either<A, B>

DESTRENUM

au ∶ A bv ∶ B

a0 ∶ A b0 ∶ B

CONSTRSTRUCT

result0 ∶ Both<A, B>

End

(b) Using SSOL rules

Figure 28: Synthesis graphs for figure 27.

an empty function body, we have a partially complete function body as seen in figure 29. The todo!()
denotes the remaining function body that needs to be synthesised. The first statement of the function
body constrains the set of valid flows to those that first travel through a DESTRBORROWSTRUCT rule.
The remaining flows that do not travel through a DESTRBORROWSTRUCT rule can be discarded as
they do not satisfy the constraints given by the partial function body. If further disallow statements
that are effect-free, for example destructing rules where none of the fields are used, this leaves only
one possible solution program that writes to the content of the wrapper by replacing the todo!() with
*inner = val.

1 fn unwrap_write<T>(mut_ref: &mut Wrapper<T>, val: T) {
2 let Wrapper(inner) = mut_ref;
3 todo!();
4 }

Figure 29: A partially complete function.

6.3 Generative AI Guided Search

Large language models (LLM) have proven themselves useful to quickly generate whole programs
or auto-complete computer programs. However, this method of generating programs has two major
disadvantages. First, these models are commonly not aware of the underlying type system rules and
occasionally suggest programs that do not compile. Second, they do not consider functional specifica-
tions and thus may generate programs that do not satisfy the requirements.

32

On the other hand, our approach has the advantage that it respects the target language’s type system
and annotated functional specifications. We have also seen in section 4.8 that it is possible to guide
the program search algorithm by introducing some heuristics. We propose combining both of the
advantages of these different approaches for program generation by adding a heuristic based on an
LLM. Based on previously seen data, the LLM would be able to efficiently prioritise the synthesis of
the most "useful" program, while the fact that the synthesis still uses the underlying synthesis graph
traversal guarantees that the solution program satisfies type and functional specifications.

6.4 Parallelising the Program Search Algorithm

The current implementation of the program search algorithm described in section 4.4 can in principle
be easily parallelised. However, some of the data types that are used by the Rust compiler are not
usable in a multi-threaded environment. There is an effort to make the Rust compiler parallel that
naturally uses thread-safe data structures, but is currently unstable and did not work with our approach
of multi-threading. The idea of parallelising the search algorithm can either be revisited at a later stage
when the Rust compiler is multi-threaded, or the search algorithm itself can be rewritten in a way that
it does not rely on the Rust compiler’s data structures in the first place.

6.5 Code Editor Support

To further allow a better adaptation of the code synthesizer, a plugin for code editors can be made
available. The plugin either scans rust code for todo!()’s and provides appropriate solutions, or pro-
vides solutions on the fly while typing. Together with the proposal for synthesising partially complete
programs from section 6.2, the code synthesizer becomes a feasible tool to speed up development times
in practice.

33

7 Conclusion

The goal of this work was to introduce a new proof search framework optimised for SOL to increase
the performance of the synthesis process for Rust programs by replacing the SUSLIK’s proof search
algorithm in the RUSSOL implementation.

The new search algorithm takes advantage of the design of SOL derivation rules. By splitting the
search space into two separate search trees, one for forward rules and one for backward rules, we can
explore derivations starting from the original precondition and postcondition separately. The search
algorithm also separates preconditions and postconditions into independent heap cells such that we
avoid the application of rules in different orders. In the final step, the forward and backward trees are
matched to obtain the synthesis graph of a problem that can then be traversed to obtain valid solution
programs for the given functional and type specification.

By implementing these changes, our new search algorithm significantly improves execution time by
minimising the number of synthesis rules that are applied. We found that the new DAG solver outper-
formed the SUSLIK solver significantly. The time taken to find the first solution was reduced by an
average of 97%, and the additional time per solution was decreased by 93%. We attribute this consid-
erable speedup mainly to the algorithmic difference achieved by transitioning from a single search tree
to separated forward and backward search trees.

Our evaluation also showed that the new solver supports most of the features provided by the SUSLIK
solver, with the main exceptions of recursive helper functions and the insertion of concrete primitive
values satisfying functional specifications.

Overall, the combination of Rust’s strong type system and the novel program search introduced by our
new search algorithm, as well as the ability to introduce heuristics for solution prioritisation and the
proposed changes for a future version are very promising for making the synthesis of Rust programs
more efficient.

34

References

Astrauskas, V., Bílý, A., Fiala, J., Grannan, Z., Matheja, C., Müller, P., Poli, F., and Summers, A. J.
(2022). The prusti project: Formal verification for rust. In Deshmukh, J. V., Havelund, K., and
Perez, I., editors, NASA Formal Methods, pages 88–108, Cham. Springer International Publishing.

Denis, X., Jourdan, J.-H., and Marché, C. (2022). Creusot: A foundry for the deductive verification
of rust programs. In Riesco, A. and Zhang, M., editors, Formal Methods and Software Engineering,
pages 90–105, Cham. Springer International Publishing.

Fiala, J., Itzhaky, S., Müller, P., Polikarpova, N., and Sergey, I. (2023). Leveraging rust types for
program synthesis. Proc. ACM Program. Lang., 7(PLDI).

Itzhaky, S., Peleg, H., Polikarpova, N., Rowe, R. N. S., and Sergey, I. (2021). Deductive synthesis of
programs with pointers: Techniques, challenges, opportunities. In Silva, A. and Leino, K. R. M.,
editors, Computer Aided Verification, pages 110–134, Cham. Springer International Publishing.

O’Hearn, P., Reynolds, J., and Yang, H. (2001). Local reasoning about programs that alter data struc-
tures. In Fribourg, L., editor, Computer Science Logic, pages 1–19, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Polikarpova, N. and Sergey, I. (2019). Structuring the synthesis of heap-manipulating programs. Proc.
ACM Program. Lang., 3(POPL).

Reynolds, J. (2002). Separation logic: a logic for shared mutable data structures. In Proceedings 17th
Annual IEEE Symposium on Logic in Computer Science, pages 55–74.

35

	Introduction
	Background
	Prusti
	Creusot
	SuSLik
	RusSOL

	Approach
	Implementation
	Program State Representation
	Working with Owned Data
	Working with Borrowed Data
	Program Search Algorithm
	Functional Specifications
	External Function Calls
	Recursive Function Calls
	Runtime Cost Heuristic

	Evaluation
	Top 100 Crates
	Functional Specifications
	Custom Test Cases
	Limitations
	Summary

	Future Work
	Introducing Scoped Synthetic Ownership Logic
	Partially Complete Programs for Better Synthesis Guesses
	Generative AI Guided Search
	Parallelising the Program Search Algorithm
	Code Editor Support

	Conclusion

