
Closures Project 01.04.2014 Fabian Meier

Support for Closures in an automated
modular verification setting

Abstract
Delegation is an important concept of executing an unknown task by calling a method which is

chosen at runtime. It's used in several common design patterns like Visitor, Command and Chain of

Responsibility. Unfortunately, this dynamic aspect makes delegates hard to verify, since the

specification of a client may depend on the behavior of statically unknown delegates. This raises

many well known concerns like the recursion through the store phenomenon, where a contract

depends on itself. The Paper "Modular Specification and Verification of Delegation with SMT Solvers"

(Kassios, Müller 2013) shows that such issues can be solved with first-order logic, which is believed to

be applicable to fractional permission based languages like Chalice.

Chalice is a fractional permission-based experimental language used to verify concurrent programs.

ETH researchers developed a verifier for Chalice called SILICON, which supports a permission-style

verification with Symbolic Execution. SILICON operates on an intermediate language called SIL, into

which Chalice can be translated by the "Chalice to SIL" translator. At present the verification of

closures is not supported. The main goal of this project is to add a way to specify closures in Chalice

and extend the already existing translator with support for these closures such that certain

properties of these closures can be verified with SILICON. Many contracts used to verify code are

trivial, thus the translation should be able to infer some contracts automatically, such that the

programmer doesn't have to specify them. Some of these inferable contracts are treated as

extensions for the project.

Core: Part 1
The first part is finding a modular methodology for verifying closures using a combination of first-

order logic and linear permission based logic. In particular for the following issues a solution must be

found:

 Procedure contracts may refer to the specification of other methods, for example a closure

factory must describe the behavior of the delegate it creates. In particular statements like

pre(c,·) and post(c,·) for a closure c and old(·) expressions must be supported.

 Closures for arguments or as return values must be possible. Background knowledge used to

verify such closures could be inferred by the verifier, but as a first step it can be assumed

that you don't need any additional knowledge except what is present in the contracts.

 A closure may refer to itself through statically unknown pointers to other delegates. There

must be mechanisms to prevent such circular dependencies in the contracts of closures

(recursion through the store) because recursive definitions of specifications may be

inconsistent.

 Capturing of state is a property which is hard to specify in the current setup, thus it can be

ignored in the core part of the project. This is no constraint since you can still allow C#-like

delegates which refer to non-anonymous methods of specific objects for most purposes.

Closures Project 01.04.2014 Fabian Meier

 Custom control flow creation like a while(c, b) (where c and b are closures) or a Chain

of Responsibility must be verifiable, but ghost parameter closures needed for verifying don't

have to cover multiple states (like old(·) expressions).

There are several examples prepared by the supervisor which cover these issues. The new

methodology should be efficient and sound in regard to the translation from Chalice to SIL and

contracts should be verifiable by a SILICON-like verifier.

Core: Part 2
The second part of the core project is an actual implementation of the newly found methodology.

Main steps are adding an user friendly way to define Closures in Chalice and extending the Chalice to

SIL translator with support for these closures such that certain properties of these closures can be

verified with the SIL verifier. Another focus is to reduce the specification overhead of trivially

inferable contracts for the user wherever easily possible.

The new system should not conflict with anything already existing and examples for all the above

issues must be verifiable by the SIL verifier using the new translation.

Extensions
Possible extensions of the project are the following:

 Tackling reasonably large examples from the literature, and tweaking the prover accordingly

to achieve scalability.

 Add support for nested closures (anonymous methods in C#) and therefore state-capturing

(anonymous closures can capture variables which are out of scope when the delegate is

executed). Magic Wands can probably be used for this purpose.

 Automatically include background knowledge (state that is not given as arguments) needed

to verify nested closures into the contracts.

 Extend custom control flow creation with ghost parameter closures which cover multiple

states.

 Extending and unifying the specification language, which for the time being is minimal.

 Using the approach to support behavioral subtyping with traits or mixins in Scala.

