
Closure verification in an automated
fractional permission setting

Bachelor Thesis

F. Meier

Oktober 7, 2014

Supervisor: Dr. Yannis Kassios

Department of Software Engineering, ETH Zürich

Abstract

Closures are values which contain executable code - code which is gen-
erally not known statically. This dynamic nature of closures makes it
hard to verify them statically without a strong specification language
and a strong program verifier. A program verifier is a tool that allows
developers to prove statically that their code satisfies its specifications
in every environment.
In this Thesis I discuss a methodology on how to add closures to Chal-
ice and how the Viper verifier has to be adapted to verify closures. The
developed concept supports closures as first-class-citizen values and al-
lows users to add specifications to closures. It allows specifications of
state that is hidden from the client of a closure and an explanation is
found why the system does not suffer from the well known circularity
issues regarding self-referencing method specifications. I also develop
a concept for the use of higher order functions in Chalice.
The Viper project was enriched with the features for closures. There are
limitations in the implementation regarding old expressions (for spec-
ification proofs and higher order functions) and while dealing with
hidden state. Examples for all the features of closures could be veri-
fied.

i

Contents

Contents iii

1 Introduction 1
1.1 The Viper Project . 2

2 Chalice 5
2.1 Introduction to Chalice . 5
2.2 Concepts of Chalice . 5

2.2.1 Members . 6
2.2.2 Instructions . 7

2.3 Verifying a Chalice program . 8
2.3.1 Symbolic Verification . 8
2.3.2 Access permissions . 9

3 Adding Closures to Chalice 13
3.1 Overview of the Design . 13
3.2 Delegate Type definition . 14
3.3 Delegate Object . 15

3.3.1 Delegate creation . 15
3.3.2 Delegate call . 15
3.3.3 Delegate fork and join 15

3.4 Specifying delegates . 15
3.4.1 Creating an Entailment 18
3.4.2 Using an Entailment . 20
3.4.3 Proving an entailment 21

3.5 Hidden State with Delegates 23
3.6 Circularity Issue . 25
3.7 Higher order functions . 25

4 Viper Verification Infrastructure 29

iii

Contents

4.1 Introduction to Silver . 29
4.1.1 Translation . 30

4.2 Introduction to Silicon . 30
4.2.1 The parts of Silicon . 30

5 Modifications to the Viper Back-end 33
5.1 Translation to Silver . 33

5.1.1 Additions to the Silver AST 34
5.1.2 Translating a Delegate Creation 34
5.1.3 Delegate Call, Fork and Join 35
5.1.4 Ghost Functions and Predicates 37

5.2 Modifications of Silicon . 39
5.2.1 Inhaling an Entailment 39
5.2.2 Exhaling a pre Expression 39
5.2.3 Inhaling a post Expression 40
5.2.4 Proving an Entailment 41
5.2.5 Proving an Entailment with Old Expressions 43
5.2.6 The remaining Operations 45

6 The Implementation and Examples 47
6.1 Basic Examples from this Thesis 47

6.1.1 Basic operations . 47
6.1.2 Hidden State . 49
6.1.3 Higher order functions 50
6.1.4 Entailment proofs . 51

6.2 Command Pattern . 51
6.3 Arbitrary Command Pattern 54

7 Further Features 57
7.1 Stronger Entailment Proofs . 57
7.2 Functional Delegates . 57
7.3 Higher order Functions . 58
7.4 Anonymous Delegates . 58

8 Conclusions 59

9 Appendix 61
9.1 Higher Order Functions . 61
9.2 Limits of Higher Order Functions 62
9.3 Renaming in Old Expressions 64
9.4 State capturing . 65

Bibliography 67

iv

Chapter 1

Introduction

Closures are values containing executable code. Many of today’s main-
stream programming languages support closures, but few of them feature
verification of these closures. This is mainly because of their dynamic nature
and the difficulty to specify them using first order logic.

Goal of this project is to find a sound methodology to add closures to Chalice
[1] and verify them with the already existing Viper verifier called Silicon.
The developed concept has to find solutions for several features and well
known issues of closures:

Closures as values Closures must first-class-citizen values, for example they
have to be supported as arguments or as return values of methods.

Specification for Closures Method contracts may refer to the specification
of other methods, for example a closure factory must describe the be-
haviour of the delegate it creates. In particular statements like pre(c,·)
and post(c,·) for a closure c must be supported.

State Capturing Closures can hide state which makes it difficult to verify
them and auxiliary access methods are needed to deal with hidden
state.

Circularity Many closure verification methodologies have the Recursion through
the store phenomenon, when a closure has statically unknown refer-
ences to itself in its specification. This may lead to inconsistencies,
which need to be avoided in the developed concept.

Higher Order Functions Higher order functions are functions or methods
that work on delegates without knowing their exact specifications.
They are heavily used in design patterns involving delegates such as
Visitor or Chain of Responsibility.

1

1. Introduction

1.1 The Viper Project

The Viper Project is one of the projects of ETH’s department of Software
Engineering concerned with software verification. It started development
in 2010 and was then known under the name Semper. In 2014 the Semper
project was renamed to Viper and made open-source [3]. The project has
grown quite large, but only four components are relevant for this thesis, as
shown by Figure 1.1.

Figure 1.1: The components from Chalice to Silicon

Chalice is the front-end research language developed by Microsoft. It fea-
tures Parsing, has its own AST and Type-checking.

Boogie is the original verifier infrastructure for Chalice developed by Mi-
crosoft. It is not relevant for this thesis.

Chalice2Silver is the tool that translates the Chalice AST into Silver AST.

Silver is the intermediate language of the Viper infrastructure. Front-end
languages like Chalice are translated into Silver before they are veri-
fied.

Silicon and Carbon are the back-end verifiers of the viper infrastructure.
Carbon is based on verification condition generation and Silicon on
Symbolic Execution. This thesis uses Silicon for the verification of
closures.

Summary of the Thesis

Section 2 provides an introduction to the programming language Chalice.
In section 3 I present the methodology how closures can be added to Chal-
ice and how various issues are resolved. In section 4 the rest of the used
Viper infrastructure is presented and section 5 gives insight into the back-
end of the Viper infrastructure by showing how to verify the added closures.
Section 6 shows the final result of the implementation and gives some exam-

2

1.1. The Viper Project

ples on how it can be used. Further features are presented in section 7 and
section 8 concludes the thesis.

3

Chapter 2

Chalice

This chapter is an introduction to the programming language Chalice. In
section 2.2 the basic language concepts will be explained. If you’re already
familiar with object oriented languages you’re advised to sikp this section.
The verification process will be shown in section 2.3, by giving an intro-
duction into symbolic verification in section 2.3.1 and then introducing the
concept of fractional permissions in section 2.3.2.

2.1 Introduction to Chalice

Chalice is a research language developed by Microsoft. One of the core
concepts of Chalice is the use of fractional permissions - a concept that sim-
plifies verifying concurrent programs. More details about fractional permis-
sions can be found in section 2.3.
Chalice was originally verified by Microsoft’s Boogie platform. Recently
ETH developed their own verification infrastructure around Chalice with
the verifier Silicon.

2.2 Concepts of Chalice

Chalice is an object oriented language without inheritance. It is statically
typed and can therefore be type-checked. Chalices top-level definitions are
classes and channels. Channels were used to pass information between dif-
ferent threads but they are no longer supported in the Viper infrastructure.
Classes are still supported and they can have members of type

• Field,

• Method,

• Function,

5

2. Chalice

• Invariant and

• Predicate.

The following subsections introduce each type and give some examples.

Note In this chapter we build up a running example that is then used in all the
following chapters.

2.2.1 Members

Fields

Fields are just as one knows them from other languages. They have a type
and a name. The two relevant basis types are int and bool. Fields can also
have user defined classes as types. Let’s start the example with a class Cell

that can hold an integer value.

class Cell {

var value: int

}

Methods

Methods can have multiple arguments and multiple return values. A method
foo can be added to the class Cell with the following syntax:

method foo(i: int , c: Cell) returns (j: int , d: Cell)

{

j := i + c.value

d := c

}

Note that return values are assigned like normal variable assignments while argu-
ments can not be assigned to.

Functions

Functions are pure methods that only have one return value. The body of a
function consists of an expression. Class Cell can for example be extended
with function getLinear:

function getLinear(a: int , b: int): int

{

a * this.value + b

}

Invariants and Predicates

Invariants and predicates are explained in section 2.3.

6

2.2. Concepts of Chalice

2.2.2 Instructions

Chalice supports the following instruction set:

Object creation

There are no special constructor methods in Chalice. To create a new object
of type Cell one can write

var myCell := new Cell

This creates a new object of type Cell and stores a reference to it in the
variable myCell. All fields will be initialized with the the default values of
their respective type.

Method Call

Methods can be called with the call syntax:

var d: Cell

call myJ , d := myCell.foo(7, myCell)

The return values of foo will end up in the variables myJ and d. The call
statement also declares undeclared variables (for example myJ).

Fork and Join

Concurrent execution of methods is achieved with fork and join instruc-
tions. The fork statement returns a token which can be used in a later join

instruction to join that particular concurrent invocation:

fork t := myCell.foo(7, myCell)

// do other work

join myJ , d := t

The type of t is token<Cell.foo> but this token can not be given as argument
to another method.

Function Call

Functions can be invoked more freely, for example in expressions:

myJ := d.getLinear(3, 8 * myCell.getLinear(1, 2))

7

2. Chalice

Contol Flow

There are also two control-flow modification statements: if and while:

if (myJ == 8)

{

while (myJ < 100)

{

myJ := myJ + 1

}

}

else

{

myJ := 100

}

2.3 Verifying a Chalice program

This section describes the process how a Chalice program is verified by Sili-
con, a symbolic execution based verifier. The next section gives a brief intro-
duction to symbolic verification and section 2.3.2 establishes the concept of
fractional permissions and how Silicon handles them.

2.3.1 Symbolic Verification

Symbolic execution is a technique where all variables get assigned symbolic
values and then the program is verified by stepping through the instruc-
tions one by one. During this the verifier maintains a state that contains the
current symbolic values and constraints of these variables. This state can
be checked and modified by the very central operations assume and assert.
Assume adds conditions to the state while assert checks whether the state
satisfies a condition. This can be illustrated by an example:

if (a == 3) {

// body

}

The body of this if statement can be verified with the additional assumption
that a == 3.

b := 6 / a

To prove that this assignment is valid, the verifier has to assert that a != 0.
Symbolic verifiers go through each method of a program and verify them. A
way of achieving scalability for large programs is to add contracts in order
to increase modularity of the program. These contracts are added in form
of method pre- and postconditions and class invariants. With these each

8

2.3. Verifying a Chalice program

method can be verified against its contracts - it has to satisfy its own speci-
fication. This also helps to reduce the complexity of verifying a method call
- the caller can simply assume that the called method satisfies its specifica-
tions.
In Chalice method specifications are added with the following syntax.

method foo(i: int , c: Cell) returns (j: int , d: Cell)

requires i >= 10 && c != null && c.value > 0

ensures j > i && c == d

{

...

}

Note Pre- and post conditions can be split up over multiple lines by repeating the
requires or ensures keyword.

Postconditions can also contain old expressions. This is useful to specify the
change of a field. For example a method that increases the value of a cell
can specify it by having postcondition c.value == old(c.value) + 1.

Note From the perspective of the verifier a method call is nothing more than as-
serting its precondition then assuming its postcondition. A method itself can be
verified by assuming the pre condition then verifying the body and in the end trying
to assert the post condition.

In Chalice functions do only have preconditions - postconditions are implic-
itly inferred from the body of the function.

function getLinear(a: int , b: int): int

requires a > 0

{

a * this.value + b

}

Note Since loops are hard to verify with symbolic execution the user can help by
specifying a loop invariant.

while (myJ < 100)

invariant myJ <= 100

{

myJ := myJ + 1

}

The invariant has to hold at the start of the while and after each iteration - this
includes the last one.

2.3.2 Access permissions

Fraction Permissions are a way to help verifying concurrent programs. The
hardest part of verifying concurrent programs is that at any point in time an-

9

2. Chalice

other thread could modify a field you currently work on. Chalice prevents
that by introducing access permissions - the permission to read or write a
field.
These permissions are kept in the state in a separate heap. Whenever there
is a field-access the verifier checks whether the appropriate permissions are
present. Permissions of the state can be added and removed by the opera-
tions inhale and exhale. They work very similar to assume and assert, they
even include the behaviour of them because permissions are usually added
simultaneously to other conditions, for example in pre- and postconditions.

inhale is the operation that adds the permissions it is given to the state. If
it receives a normal expression it will assume the expression.

exhale removes permissions from the state. If normal expressions are ex-
haled it will assert them.

Note An expression containing no access permissions is called pure. For pure
expressions inhale is equivalent to assume, exhale to assert.

Let’s illustrate this behaviour with an example:
The following method bar cannot be verified because it’s missing the access
permissions to c.value:

method bar(c: Cell) returns (i: int)

requires c != null

ensures i == old(c.value) && c.value == 0

{

i := c.value

c.value := 0

}

To attain read and write access for c.value the method bar must require the
access permission:

method bar(c: Cell) returns (i: int)

requires c != null && acc(c.value)

ensures i == old(c.value) && c.value == 0

{

i := c.value

c.value := 0

}

Access permissions can also be split. This is useful to allow concurrent ac-
cess to the same resources. Split access is always read only - to write a field
100% of the access is required. This results in a thread safe environment
because there can never be more than 100% of access to a field.
For example 50% read access is denoted by acc(c.value, 50). Any percent-
age can be given - there is also the possibility to give infinitely small amounts
or arbitrary amounts of access to another method.

10

2.3. Verifying a Chalice program

Note The current version of bar would consume the access to c.value because it
does not return the access. This means, after it is called no-one can access c.value

any more. To fix this bar should have a postcondition ensures acc(c.value) to
give access back to the caller.

Note Accessing fields in pre- or postconditions needs at least read permission. An
expression that covers all its field-accesses with permissions is called self-framing.
Only self-framing pre- and postconditions are allowed in Chalice.

Note Accessing fields of the this object needs permission too, like any other access.

Note Functions do not have post conditions but can still require access permissions.
This access is not consumed, instead functions always return all access permissions
which they require.

Bundling Permissions

Specifying permissions can lead to a huge overhead very fast - often the
same fields are required for each operation on an object. This is where
predicates come into play - they bundle access permissions together.

predicate valid { acc(this.value) && acc(this.value 2) }

Predicates are members of classes and they usually hold access rights to
the classes’ fields. Predicates can or must be folded and unfolded. Folding
transforms the individual permissions into the predicate and unfolding re-
verses this. These operations only succeed if the necessary permissions are
present.

fold this.valid

unfold this.valid

To access fields which are enclosed by a predicate, the predicate has to be
unfolded first. Predicates can also be temporarily unfolded in expressions.
This is useful to unfold a predicate in a function which can only have an
expression as body:

unfolding this.valid in this.value

Note Predicates can also hold other expressions than accesses. This is especially
useful for recursive data structures where a valid predicate of an outer element can
contain the access to the inner element and simultaneously the valid predicate of
the inner element.

Predicates and functions allow classes to hide their inner workings. For
example we can add the following members to the Cell class to hide that it
contains a value field:

11

2. Chalice

class Cell {

var value: int

function getValue (): int

requires valid

{ unfolding valid in value }

predicate valid { acc(value) }

method set(i: int)

requires valid

ensures valid && getValue () == i

{

unfold valid

value := i

fold valid

}

method inc()

requires valid

ensures valid && getValue () == old(getValue ()) + 1

{

unfold valid

value := value + 1

fold valid

}

}

A client of the Cell can now verify the following method without knowing
that Cell contains an integer:

method test(c: Cell)

requires c.valid && c.getValue () == 0

ensures c.valid && c.getValue () == 10

{

c.set(4)

c.set(c.getValue () * 2)

c.inc()

c.inc()

}

Cell could also internally maintain a history of values and use only the
newest entry and the client would not notice the difference.

12

Chapter 3

Adding Closures to Chalice

In this chapter I present a concept of how closures can be added to Chal-
ice and then be verified with the existing Viper verifier. Section 3.1 gives
a short introduction of the type of closures I add to Chalice. Then in sec-
tion 3.2 and 3.3 the syntax of the closures is explained and in section 3.4 I
show how the added closures can be specified in order to verify them. Sev-
eral issues of the concept are then discussed in section 3.5 (Hidden State),
section 3.6 (Circularity) and section 3.7 (Higher Order Functions).

3.1 Overview of the Design

Closures are variables that can hold executable code which can change dy-
namically. Here is an example that shows a closure in action:

method closures () {

var a := 0

var c := {

a := a + 1

print a

}

c()

c()

c := {

a := a - 1

print a

}

c()

}

Note A closure named c is created and invoked twice. Then the executable code of
c is changed and c is invoked once more. The final output of this program is 1 2 1.

13

3. Adding Closures to Chalice

This example shows an anonymous closure. It’s anonymous because the
code a:= a + 1; print a is not part of any named method.
Another approach to closures is to only allow pointers to named methods.
This approach is well known from mainstream languages like C#. There clo-
sures are the first-class-citizen objects called delegates that point to methods
of other objects. This is not a weaker concept than allowing anonymous clo-
sures, because every anonymous closure can be transformed into a delegate
with the same behaviour.
The following sections describe in detail how delegates were added to Chal-
ice.

3.2 Delegate Type definition

The first modification of Chalice is the introduction of a new top-level decla-
ration: the delegate type definition. Delegate types are what make delegates
type-safe by specifying the signature of the method a delegate can point to
(the so-called delegate target method).

delegate Creator(int) returns (Cell)

Note There can be as many arguments and return types as you like, but the signa-
ture has to match exactly, even the order of the arguments.

This means delegate objects of type Creator could point to the following two
methods, but not to the third:

method createCell(i: int) returns (c: Cell)

ensures c.valid && c.getValue () == i

{

c := new Cell

c.value := i

fold c.valid

}

method createIncreasedCell(i: int) returns (c: Cell)

ensures c.valid && c.getValue () == i + 1

{

c := new Cell

c.value := i + 1

fold c.valid

}

method createDiffCell(i: int , j: int) returns (c: Cell)

ensures c.valid && c.getValue () == i - j

{

c := new Cell

c.value := i - j

fold c.valid

}

14

3.3. Delegate Object

3.3 Delegate Object

Instances of a delegate type can appear as fields of other classes, as argu-
ments to methods and as local variables. The delegate object points to a
method of the so called delegate target object or delegate target for short.
Both the delegate target and the target method are immutable.

3.3.1 Delegate creation

Delegate objects are constructed very similarly to normal objects. Instead of
the new keyword the newdel keyword is used.

var cre := newdel Creator(this.createCell)

Reminder During this operation the delegate target method and delegate target
are assigned and after this they are immutable.

3.3.2 Delegate call

Similar to a Chalice method call, delegates can also be called with the call

keyword.

call myCell := cre (7)

Note Delegates can be called multiple times.

3.3.3 Delegate fork and join

Delegates can be forked and joined to allow concurrent execution of dele-
gates. Similar to method forking the delegate fork produces a token of type
token<Creator>. This token can be used to join the delegate execution with
the current execution.

fork t := cre (7)

// do other work

join myCell := t

Note Similar to a method fork, a delegate can be forked multiple times before it’s
joined again (if you can provide the necessary permissions for each fork).

3.4 Specifying delegates

These were already all of the added instructions, but now we need some
mechanics on how to verify delegates. Let us look at an example of the
issue first:

15

3. Adding Closures to Chalice

method client(cre: Creator) {

call myCell := cre (7)

assert myCell.getValue () == 8

}

In this example the client has no information which method is executed
when it calls cre. It could be createCell or createIncreasedCell or something
completely different. We need to be able to specify what cre does and then
adding that specification to the precondition of client. This specification
should then reside in the state of the symbolic execution until it is needed
when the delegate is called.
There are two different ways to achieve this. Both will be explained using
the creatorFactory example below.

method creatorFactory () returns (cre: Creator)

ensures ?

{

if (random ()) {

cre := newdel Creator(this.createCell)

} else {

cre := newdel Creator(this.createIncreasedCell)

}

}

Exact Specification The First possibility is to specify the exact target method
of cre. This allows us to write the postcondition of creatorFactory as
something similar to:

(cre points to createCell) or

(cre points to createIncreasedCell)

Stronger Preconditions and Weaker Postconditions The other approach is
to allow specifications to be more ambiguous. This means not always
the exact specification is given but rather something different. For
the system to be sound the specified constraints have to be stronger
than the actual precondition (in case of a precondition) or otherwise
weaker than the actual postcondition. This design allows us to specify
the postcondition of creatorFactory as

cre(value) returning (myCell) has postcondition

myCell.valid and value <= myCell.getValue () and

myCell.getValue () <= value + 1

Note This postcondition is weaker than both, the postcondition of createCell
and of createIncreasedCell.

Since the second practice is more flexible we decided to go with it. The ap-
proach also does not suffer from a well known phenomenon called Recursion

16

3.4. Specifying delegates

through the store. What it exactly is and why this design is resilient against
it will be discussed in section 3.6. But the added flexibility comes at a cost
that we have to do difficult proves during program verification.

To add specifications we used the entailment operator and representative
values for pre- and postconditions. The entailment operator is written as |=

and its formal semantic is

A |= B ⇐⇒ ∀states : A =⇒ B

Note This will be defined later more formally.

The syntax of the place-holders for pre- and postconditions is

pre(cre , value)

post(cre , value , myCell)

Note The place-holders specify which delegate they belong to with the first argu-
ment. The then have a list of formal names for the arguments of cre. The post

expression has additionally a list of formal names for return values.

This structure can be used to specify delegates in the following manner:
Assume cre is a delegate pointing to createCell, but the verifier does not
know about this. The only hints for the verifier are the following entailments
in the state:

i > 5 |= pre(cre , i)

post(cre ,i,result) |= result.valid && result.getValue () >=i

Those both are valid entailments to have in the state, we can check this
quickly since we know the real pre- and postconditions:

∀states : i > 5 =⇒ true

The real precondition of createCell is true, thus this trivially holds. For the
postcondition we need to check:

∀states : result.valid && result.getValue() == i

=⇒

result.valid && result.getValue() >= i

This holds as well because in these proofs access permissions and predicates
can be treated like boolean functions.

Note The effect of ∀states is that it quantifies over the variables i and result.

17

3. Adding Closures to Chalice

Note The place-holders pre and post can only occur inside of entailment expres-
sions. An entailment has either a post on its left side or a pre on the right side.
These entailments are named post-entailment and pre-entailment respectively. The
entailment body is defined as the part of the entailment which is not a pre or a post
expression. The scope of the body are the formal arguments from the pre or post
statement.

Since we have these predicates in the state the verifier can still verify a del-
egate call to cre, even though he has no information over the real precondi-
tion.

call myCell := cre (7)

The verifier does not know the real precondition of cre. But it has an entail-
ment in the state which specifies a stronger precondition. We can use that
out of two reasons:

• The entailment quantifies over all states, so too in this state the impli-
cation holds.

• If the stronger precondition holds, then the real pre condition must
hold too, so it is sound to exhale the stronger one instead.

We can do this by plugging in the actual argument 7 into the formal argu-
ment i of the pre expression and then exhaling the entailments body which
is 7 > 5. Since this holds we can successfully call the delegate.
With a similar reasoning we conclude that the body of the post-entailment
can be inhaled because it is a weaker condition weaker that the real postcon-
dition. In this example we can inhale myCell.valid && myCell.getValue()

>= 7.
For this operation to be sound we can only be allowed to store stronger
preconditions and weaker postconditions in the state.

Note To increase readability, the entailment sign can also be turned around, such
that both place-holders stand on the left side.

pre(c) =| A

post(c) |= B

3.4.1 Creating an Entailment

Entailments are created implicitly when a delegate object is created. The ver-
ifier adds automatically one pre-entailment and one post-entailment to the
state. These entailments hold the real contracts of the at that point known
target method.
After the instruction var cre := newdel Creator(this.createCell) the two
entailments can be found in the state:

18

3.4. Specifying delegates

pre(cre , i) =| true

post(cre ,i,myCell) |= myCell.valid && myCell.getValue ()==i

These entailments do hold because both sides of the entailment are exactly
the same if you replace the place-holders with what they stand for. Let
us define a formal semantic for entailments such that we can reason more
clearly over them.

Definition 3.1 A mathematical predicate is a boolean expression over some Vari-
ables. The meta variables A and B are used for predicates.

Note There are no access permission included in this definition. All the proofs that
follow work very similarly under the consideration of access permissions.

Definition 3.2 A state ϕ is a mapping from Variables to Values. Mathematical
predicates can be evaluated in a state ϕ written as A(ϕ). The result of this is the
boolean value of the predicate where each variable was substituted with the value it
had in the mapping ϕ. We say A holds in state ϕ if A(ϕ) evaluates to true.

Note This definition defines not a symbolic state, but the real state during the
execution of a program.

Definition 3.3 The entailment operator is formally defined as:

A |= B ⇐⇒ ∀ϕ : State. A(ϕ) =⇒ B(ϕ)

Definition 3.4 pre(c) is the mathematical predicate defined by the precondition of
the target method of c. Since the target method of a delegate and the precondition of
a method are both immutable, pre(c) never changes.

Definition 3.5 post(c) is the mathematical predicate defined by the postcondition
of the target method of c. Since the target method of a delegate and the postcondition
of a method are both immutable, post(c) never changes.

Theorem 3.6 Assume A is the predicate of the precondition of the target method
of c and B is the respective postcondition. Then the entailments pre(c) =| A and
post(c) |= B assumed after a delegate creation hold.

Proof We prove that pre(c) =| A holds by using the entailment definition
and get

∀ϕ : State. A(ϕ) =⇒ pre(c)(ϕ)

Note that both sides of the implication are the same mathematical predicate.
Since pre(c) does not change after c is created (target of a delegate is im-
mutable), this implication holds in all states.
post(c) |= B can be proven in the same way. �

19

3. Adding Closures to Chalice

3.4.2 Using an Entailment

Entailments are used when the symbolic execution reaches a delegate call
statement. At that point it would like to exhale the precondition of the
target method and then inhale its postcondition. As marked before we can
also exhale stronger preconditions and inhale weaker postconditions. The
next two sections cover these operations.

Note These two operations are handled separately since the fork and join operations
split the call operation in the exact same way.

Precondition

Theorem 3.7 states that it sound to verify a delegate fork instruction of del-
egate cre when we can exhale a condition A from a state containing the
entailment pre(cre) =| A.

Theorem 3.7 Assume a state ϕ. If we want to prove that pre(cre) holds in ϕ and
we can assume the entailment pre(cre) =| A, then it is sufficient to prove that A

holds in ϕ.

Proof Let ϕ be a state and assume pre(cre) =| A. Using the entailment
definition and eliminating the ∀ we get that A(ϕ) =⇒ pre(cre)(ϕ). Now it
is simple to show that if we can prove A holds in ϕ, then pre(cre) will hold
in ϕ too. �

Note If we can prove A in ϕ, then pre(cre) holds in ϕ, otherwise we do not know
whether pre(cre) holds.

Note In the actual implementation, the user should make sure that there is one
fitting pre-entailment in the state. If there is none, a delegate fork can not be verified.
If there are multiple pre-entailments, the verifier chooses one that works arbitrarily.

Postcondition

A similar proof can be made for post-entailments. Here we prove that it is
sound to add a condition B to the state after a delegate join instruction of
delegate cre when the state contains the entailment post(cre) |= B.

Theorem 3.8 Assume a state ϕ. It is sound to assume the predicate B in a state
ϕ when post(cre) holds in ϕ and we additionally know post(cre) |= B.

Proof Let ϕ be a state and assume we have post(cre) |= B and post(cre)

(ϕ). Using the definition of entailments we get post(cre)(ϕ) =⇒ B(ϕ)
which results in B(ϕ). �

Note When we consider access permissions we have to make sure that the permis-
sions are removed from the state only once.

20

3.4. Specifying delegates

Note The user is responsible to make sure that there is one fitting post-entailment
in the state. If there are multiple, one is chosen arbitrarily. If there is none, nothing
will be inhaled.

Additional Notes

Note Both proofs can be adjusted to hold with the consideration of access permis-
sions, predicates and old expressions.
The entailments remain in the state after these operations (an entailment holds in
every state, it also holds in a state where it was used once or more).

A post-entailment can also contain old expressions in its body. In that case
the entailment operator not only quantifies over the current state, but also
over all old states. For old expressions to work in post-entailment bodies
the ”old state” is stored when the precondition is checked. This is done by
adding the whole state to the state during the fork and then old expressions
can be evaluated in this stored state while joining.

3.4.3 Proving an entailment

Let us again have a look at creatorFactory at the start of section 3.4. At the
end of this method the verifier has to prove that the entailment

post(cre , i, myCell) |= myCell.valid &&

value <= myCell.getValue () &&

myCell.getValue () <= value + 1

holds after the method is executed. This is difficult because the verifier does
not know the real postcondition post(cre, i, myCell) dynamically. Luckily
the delegate creations each put one of the entailments below is in the state:

post(cre , i, myCell) |=

myCell.valid && myCell.getValue () == value

post(cre , i, myCell) |=

myCell.valid && myCell.getValue () == value + 1

Both of these can be used to prove the entailment above. Using theorem 3.10
we see that it is sufficient to prove

myCell.valid && myCell.getValue() == value

|=

myCell.valid &&

value <= myCell.getValue() && myCell.getValue() <= value + 1

This principle allows the verifier to automatically prove entailments. Below
are the formal theorems used for it.

21

3. Adding Closures to Chalice

Theorem 3.9 If we want to prove pre(cre) =| A and we can assume an entail-
ment pre(cre) =| B, then it is sufficient to prove A |= B.

Theorem 3.10 If we want to prove post(cre) |= A and we can assume an entail-
ment post(cre) |= B, then it is sufficient to prove B |= A.

Proof (Proof of theorem 3.9) We have pre(cre) =| B and assume A |= B holds.
Then we have

∀ϕ : state. B(ϕ) =⇒ pre(cre)(ϕ)∧ ∀π : state. A(π) =⇒ B(π)

⇐⇒
∀ϕ : state. (B(ϕ) =⇒ pre(cre)(ϕ)∧ A(ϕ) =⇒ B(ϕ))

=⇒
∀ϕ : state. A(ϕ) =⇒ pre(cre)(ϕ)

⇐⇒
A |= pre(cre) �

The proof of theorem 3.10 is very similar and let as an exercise for the reader.

Proof with Old Expressions

Post-entailment bodies can also contain old expressions. These should in the-
ory be provable in the same way, but it’s still worthy to note the differences.
Let us have a look at the method increaseCell.
method increaseCell(c: Cell)

requires c.valid

ensures c.valid && c.getValue () == old(c.getValue ()) + 1

{

c.inc()

}

This method has a postcondition with an old expression. Assume we have
an entailment for that postcondition in the state and we want to prove the
entailment
post(inc ,c) |= c.valid && c.getValue () > old(c.getValue ())

Using theorem 3.10 again we see that it is sufficient to prove

c.valid && c.getValue() == old(c.getValue()) + 1

|=

c.valid && c.getValue() > old(c.getValue())

The difference is that values inside old expressions are not equal to the same
values outside (looking at c.getValue()). The proof itself works in the same
way as without old expressions.

22

3.5. Hidden State with Delegates

3.5 Hidden State with Delegates

State capturing occurs when an anonymous method accesses variables which
are not defined in the anonymous method, but in the method surrounding
it. These variables are called captured and they may be out of scope when
the delegate is executed.
The current system does not exactly allow state capturing, but some state
can be hidden. Let us illustrate this with the example of a counter delegate
that counts the number of times it was called.
class CounterObject {

var value :int;

method count() returns (result: int)

requires valid

ensures valid

ensures result == old(getCount ())

ensures getCount () == old(getCount ()) + 1

{

unfold valid;

result := value;

value := value + 1;

fold valid;

}

function getCount () : int

requires valid

{

unfolding valid in value

}

predicate valid {

acc(value);

}

}

The following method createCounter creates a delegate pointing to the count

method of a counterObject c.
delegate Counter () returns (int)

class Client {

method createCounter () returns (res: Counter)

ensures pre(res) =| c.valid

ensures post(res , i) |= c.valid &&

i == old(c.getCount ()) &&

c.getCount () == old(c.getCount ()) + 1

ensures c.valid && c.getCount () == 0

{

var c := new CounterObject

23

3. Adding Closures to Chalice

c.value := 0;

fold c.valid

res := newdel Counter(c.count)

}

method client () {

call c := createCounter ()

call i := c()

call j := c()

assert i == 0 && j == 1

}

}

Note that the createCounter method does not specify any information about
c which causes the postcondition of createCounter to be invalid. The reason
for this is that it refers to c, an object that is unknown at the callers side.
Non the less we want a specification that allows a client to verify calls to
res.

Ghost Functions and Predicates

The basic issue is that the count method has a specification about the this

object, which is out of scope in the client method. We introduce ghost
functions and predicates as a way to allow specifications to access functions
and predicates of the delegate target object. A ghost function is a function
of the delegate object which points to a function of the delegate target object
and a ghost predicate is the same for predicates.

Note This is, res.getCount() points to (target object of res).getCount().

To make this approach type-safe the delegate type definition has to be en-
riched with these new members.

delegate Counter () returns (int) {

function getCount (): int

predicate valid

}

When we now create a Counter delegate to c.count, we have to make sure
that c also provides the function getCount() and the predicate valid. This is
checked at delegate creation, and when the delegate target object does not
provide the full interface an error is thrown during type-checking.

Note A delegate type definition can have any number of ghost functions and predi-
cates.

The method specification of createCounter can now be rewritten to the fol-
lowing:

24

3.6. Circularity Issue

ensures pre(res) =| res.valid

ensures post(res , i) |= res.valid &&

i == old(res.getCount ()) &&

res.getCount () == old(res.getCount ()) + 1

ensures res.valid && res.getCount () == 0

Here we also see how ghost members are evaluated. The predicate res.

valid can be exhaled since it points to c.valid which is available at the end
of createCounter. Similarly res.getCount() points to c.getCount() which is
0 in that state. With this specification the method client can be verified.

Note Ghost Functions can only be used as part of specifications and ghost predi-
cates can not be folded or unfolded.

Note This concept allows the notion of possible target types of a delegate type.
It is the set of all classes that implement the full interface defined by a delegate type.

3.6 Circularity Issue

The circularity issue, or more generally known as the phenomenon Recursion
through the store arises when a specification refers to itself and causes an
inconsistency. An example would be a method with a precondition that
says pre(c) = false. If we now set c to be that method we get a recursive
inconsistent definition.
In our system this issue does not emerge, thanks to the one-sided relation
between pre- and postconditions and their specifications. This is, we can
only ever say that one condition is implied by another condition, never that
they are equal.

3.7 Higher order functions

Higher order functions are functions or methods which work with delegates
without knowing their exact specification. They are necessary for most de-
sign patterns involving delegates, for example Visitor or Chain of Command.
The current system has to be adapted to make higher order functions possi-
ble because we can only specify exact pre- and postconditions of delegates,
and higher order functions should work with unknown delegates.
Here is a basic example, the method Conditional which takes a boolean and
a delegate and executes the delegate if the boolean is true. This method does
not care about the exact requirements or effects of the delegate, it only needs
that if the first argument is true then the delegate should be executable. To
make this specifiable in the current system, we introduce a new mechanism.

25

3. Adding Closures to Chalice

delegate Command ()

method Conditional(b: bool , c: Command)

requires b ==> pred(c)

ensures b ==> postd(c)

{

if (b) {

call c()

}

}

pre and post expressions standing on their own, not inside an entailments
allow us to specify higher order methods. A client can now use this method
with a variety of different delegates and still rely on the exact behaviour for
each call:

Note Due to a limitation of the parser we use the keywords pred and postd for free
pre and post expressions.

class Client {

var value: int

method set 3()

requires acc(value)

ensures acc(value) && value == 3

{

value := 3

}

method set 5()

requires acc(value)

ensures acc(value) && value == 5

{

value := 5

}

method client ()

requires acc(value)

{

value := 0

var c1 := newdel Command(this.set3)

var c2 := newdel Command(this.set5)

call Conditional(true , c1)

assert value == 3

call Conditional(false , c2)

assert value == 3

call Conditional(true , c2)

assert value == 5

}

}

26

3.7. Higher order functions

At the call Conditional statement we do the normal pre-exhalement. After
the call we can inhale the postcondition which is in this case post(c1), the
inhalement of this is the same as discussed in section 3.4.2. The only new
operations become apparent during the verification of method Conditional.
Assuming b is true we need to inhale pre(c). This operation is not standard,
but it is intuitively clear that we have to add this pre(c) expression to the
state. This works fine when we want to exhale pre(c) at the delegate call
instruction: pre(c) is already in the state and we only need to remove it to
allow the call.
When we return from the call we are inhaling post(c). Since there is no
post-entailment for c the post(c) was originally just thrown away. We can of
course do better by adding it to the state, because at the end of the method
we’ll need it to satisfy the postcondition.

All in all this is not a too graving modification of the system. The ap-
pendix 9.1 contains an example where the delegate works with input and
output. Then, in appendix 9.2 we see the first limitation of this system -
composition of delegates can not be done. In section 5.2.6 we see the other
limitation of this approach - old expressions will not work with higher order
functions.
This mechanism was implemented only one day before the end of the project
and is therefore not fully tested. Basic examples were verifiable and the fea-
ture seems to be sound.

27

Chapter 4

Viper Verification Infrastructure

Verifying the added delegates of Chalice is hard. To understand what needs
to be done the verifier must be understood first. This Chapter serves as
introduction to the back-end of the Viper project. Section 4.1 describes the
Silver language and section 4.2 looks into Silicon.

As mentioned in the introductions, the viper verification system works in
four steps:

• Chalice code is parsed into a Chalice AST

• This AST is then type-checked

• After that it is translated into a Silver AST

• Then this Silver AST is verified using Silicon

The first two steps should already be clear at that point. This and the next
chapter discuss the last two steps.

4.1 Introduction to Silver

Silver is an intermediate language designed by ETH for the Viper project.
It supports fractional permissions and has a simpler, more dedicated syntax
than Chalice. There are also translations from other front-end languages like
Scala into Silver.
The type-checking is done in Chalice, thus Silver programs do not have any
type information. This makes classes obsolete and thence all classes are
merged into one big class named ref. This class contains all members of all
original classes and also some generated members which are not present in
the original Chalice program.
The Silver ref class can have members of the following types:

29

4. Viper Verification Infrastructure

• Fields

• Methods with pre- and postconditions

• Functions with preconditions

• Predicates (including invariants)

4.1.1 Translation

Members are translated into equivalent members for the ref object. To avoid
naming conflicts they are renamed to a combination of their class and the
original name. For example the value field of Cell is translated into a field
Cell_value of the only class ref. Silver does not provide a this field, so
methods, functions and predicates get an additional argument this.
Chalice’s object creations are translated into new ref statements. This instruc-
tion adds permissions to all fields to the state, but not all fields are used by
the Chalice program. Method calls are translated into simple exhale and
inhale statements. For example a call to a method with precondition pre

and postcondition post is translated into

exhale pre

inhale post

All other instructions have their equivalent in Silver.

4.2 Introduction to Silicon

Silicon is a verifier based on symbolic execution. A short introduction
on symbolic execution can be found in section 2.3.1. This introduction is
enough to understand this thesis, the next section further describes the parts
of Silicon for those who are interested.

4.2.1 The parts of Silicon

Silicon is designed in a cake-pattern which makes it very flexible in regards
of switching out components. It is written almost purely functional and for
most components a continuation passing style is used. This makes Silicon a
hard verifier to understand, non the less I learned a lot about Silicon’s inner
workings. Here are the components of Silicon, even if they are not relevant
in this theses, they were relevant for the implementation of the system.

Verifier The Verifier is the main component. It takes a program and passes
each method to the executor.

Executor The Executor steps through a method and does predefined actions
depending on the statement that is processed.

30

4.2. Introduction to Silicon

Producer Inhalations of expressions are handled by the Consumer. It changes
the state according to the given expression.

Consumer Exhalations of expressions are handled by the Producer. It as-
serts conditions and can remove access permissions depending on the
given expression.

Evaluator The Evaluator takes an expression and evaluates it to a symbolic
term.

Decider The Decider is the proofer of Silicon, it can check if a term evaluates
to true or false. It uses Microsoft’s extremely strong theorem proofer
called Z3.

Reminder As mentioned before Silicon verifies modularly, each method by itself.
This is possible because methods can be linked by their contracts.

Silicon divides the symbolic state into these three (and more) parts:

Store The store is where the mapping from variable names to symbolic
terms is defined.

Path-condition Known relations between terms are stored in the path-condition.

Heap The heap stores the access permissions, predicates and values of fields
(as terms).

As you might have guessed the entailments will later be stored in the heap,
in the same way as access permissions are stored. Elements of the heap are
called chunks and we introduce two new sorts of chunks: DelegateChunks

and StateChunks. DelegateChunks are used to store entailments, pre and post

expressions and StateChunks can store a whole state.

31

Chapter 5

Modifications to the Viper Back-end

The goal of the thesis was to leave the back-end of Viper (Silver and Silicon)
as it is and try to encode all special behaviour of delegates into the transla-
tion from Chalice to Silver. This was not possible; three new AST nodes had
to be added to Silver and Silicon had to be modified to handle these nodes.

This chapter discusses the necessary modifications to the Viper back-end
in order to verify the delegates added in section 3. Section 5.1 describes the
translation of the added Chalice AST nodes into Silver and section 5.2 shows
how Silicon has to be modified to handle delegates.

5.1 Translation to Silver

This section specifies a way to translate each added AST node into Silver
statements such that Silicon can verify them. To do this three new Silver
AST nodes had to be introduced to be able to encode all the behaviour of
delegates in Silver. The new nodes are Entail, Pre and Post.

Reminder The original translation from Chalice to Silver removes all type infor-
mation from the program. Most Chalice Statements are encoded into a series of
instructions in Silver. For example consider a call to a method with precondition
pre and postcondition post. The translation of the call results in

exhale pre

inhale post

Note Delegate type definitions are not translated into Silver code - they are only
needed for type-checking which is handled by Chalice.

Note The translation will be explained using the example presented in section 3 -
a delegate targeting the method createCell. Of course the implemented translation
can also handle more general programs.

33

5. Modifications to the Viper Back-end

5.1.1 Additions to the Silver AST

The new AST nodes in Silver are the three expressions Entails, Pre and Post.
These three nodes had to be added to support the new functionality - and
they are also sufficient for all the features of the design.
Consequently the translation of Chalice entailments, pre and post expres-
sions is quite easy - they are translated one to one into the correspond-
ing Silver expressions. Silicon needs to be modified to understand inhale

and exhale operations for these three nodes, but this will be covered in sec-
tion 5.2.

Note As discussed in chapter 3 the symbolic state can contain entailments. These
entailments are identified with the delegate object they’re associated with as identi-
fiers.

Note In Silver the pre and post expressions can take an optional additional last
argument. This argument is unused when translating pre or post expressions from
Chalice to Silver, it is only used for pre and post expressions generated by the
translation (as seen and explained in detail in section 5.2.4).

5.1.2 Translating a Delegate Creation

To understand the translation of a delegate creation to Silver, let us review
how it looks like in Chalice. Using the example from section 3, a delegate of
type Creator can be constructed using the code

c := newdel Creator(o.createCell)

Reminder As discussed in section 3.3.1 and section 3.4.1 after a delegate creation
we have

• pre- and post-entailments in the state

• c is an new object that represents a delegate

Keeping this remark in the head the translation of a creation can be written
as the pseudo-code below (Silver does not have a written syntax, only an
abstract syntax tree).

c := new ref

c.delegateTarget := o

c.delegateTargetType := 2

inhale pre(c, value) =| value >= 0

inhale post(c, value , myCell) |= myCell.value == value

The translation into Silver adds two new fields delegateTarget and
delegateTargetType to the ref class. They are only added if delegates are
used in the program. delegateTarget stores the target object of the dele-
gate. It is later used to access the ”hidden state” also known as the this

34

5.1. Translation to Silver

object of the invoked method. The type of the target object is stored in
delegateTargetType. We need that type later in the translation of expres-
sions that access ghost functions and predicates. The type is stored as an
integer, in detail it is the index of the type - with respect to all possible
target types of Counter.

Since inhaling is the operation of adding specification to the state it is only
logical to inhale entailments in order to add them to the state. This process
is described in detail in section 5.2.1. The real conditions are taken from
the specification of the target method. All references to the this object in
these conditions are replaced with references to c.delegateTarget, which is
coincidently the same logical object.

Note To avoid conflicts the names of all formal arguments and return values of the
entailments are changed to new unique identifiers.

5.1.3 Delegate Call, Fork and Join

Delegate calls, forks and joins do not exist in Silver as AST nodes. They
are translated into the appropriate inhales and exhales. In order to reduce
the overhead of translating all three operations into Silver, delegate calls are
first transformed into a fork followed by an immediate join instruction. The
resulting fork and join operate on a unique token for this delegate call.

Fork

A Chalice delegate fork expression looks like this:

fork t := c(7)

Reminder The fork statement produces a token t which can be used to join the
method later. Section 3.4 describes the process that should happen during a delegate
fork.

• Search the state for a pre-entailment of c and try to exhale its body.

• Store the current state for later (”old state” in the join operation).

Searching an entailment is not a standard procedure of Silicon. This is why
the translation introduces the new operation of exhaling a pre expression.
With that the translation of the fork statement results in

t = new ref

t.delegate := c

t.Creator_argument0 := 7

exhale pre(c, 7, t)

The token stores a lot of information which will be used later in the join

operation.

35

5. Modifications to the Viper Back-end

• The delegate object will be stored in a field delegate which is added
to the ref class.

• All arguments of this invocation will be stored in fields added to the
ref class. This is done once per delegate type.

The process of the exhaling a pre expression will be explained in detail in
section 5.2.2. In general it finds a pre-entailment in the state with the iden-
tifier c and then exhales its body where it substituted the formal arguments
with the actual arguments. You may have noticed the unexpected last ar-
gument t of the pre expression - it will be used to store the ”old state” as
explained at the end of this section.

Note Since the token can not be given into another context we do not have to
manage access permissions of these added fields.

Join

Assume t is a token which was created by a previously forked delegate of
type Creator. Then a join statement for this token has the following code:

join myCell := t

Reminder According to the specification of section 3.4 a join statement has the
effects

• Search the state for a post-entailment for the delegate c, then inhale its body.

• Use the state stored in the fork expression to evaluate old expressions.

This searching is another new operation for Silicon. It is specified as an
inhale of a post expression. This results in a simple translation:

inhale post(t.delegate , t.Creator_argument0, result0, t)

myCell := result0

All the fields previously stored in the token are now used in the post ex-
pression. The process of inhaling a post expression will be explained in
section 5.2.3. On a high level it finds a post-entailment in the state and in-
hales its body where it substitutes the formal arguments and return values
with the actual arguments from the token and some fresh unique local vari-
ables like result0. After that the actual result variable myCell, which could
already have constraints in the state, is assigned with result0, which does
only have the constraints from this join.

The next section explains why the post expression needs the token as the
last argument.

36

5.1. Translation to Silver

Old Expressions in Post-entailments

Post-entailments can have old expressions in their body. When inhaling the
postcondition they need to be evaluated in the state of the corresponding
fork statement when the token is created. This is done by storing the whole
state in the state. To find this state later we use the token as identifier. This
is why the pre and post expression take the token as the last argument - the
state is stored and retrieved during these operations.

5.1.4 Ghost Functions and Predicates

Reminder In section 3.5 ghost functions and ghost predicates are described. They
allow references to the state that is hidden by the delegate. When evaluated they
should return the value of the function or predicate of the delegate’s target object.

Reminder A normal function access myCell.getValue() (assuming myCell is of
type Cell) is translated into Cell_getValue(myCell) in Silver. Predicates are trans-
lated similarly.

As noted, ghost function applications and ghost predicate accesses should
point to the target objects’ functions and predicates with the same name.
The difficulty arising is that a ghost function can point to functions with
the same name of many different classes. In Silver these functions will all
have different names. Luckily we have stored the type in the delegate object
during its creation. This allows us to select the correctly typed function
dynamically. A ghost function application c.getValue() can be translated
into

c.delegateTargetType == 0? Cell_getValue(c.delegateTarget)

: (c.delegateTargetType == 1 ? ... : ...)

We have to enumerate each possible target class for the delegate type here. In
the end the verifier picks the correctly typed expression during verification.
A similar translation is done for ghost predicate accesses.

This implementation has issues in states where c.delegateTargetType is not
known. Below is such an example. It uses the Counter delegate type as
introduced in section 3.5.

method foo(d: Counter)

requires d.valid && d.getCount () == 0

requires pre(d) =| d.valid

requires post(d, res) |= d.valid &&

res == d.getCount () &&

d.getCount () == old(d.getCount ()) + 1

ensures d.valid && d.getCount () == 1

{

call d()

}

37

5. Modifications to the Viper Back-end

There are many ghost function and predicate accesses in this example, but
d.delegateTargetType is unknown. Assuming there are at least two possible
target classes - there will be multiple possible targets for the ghosts valid

and getCount.
The way Silicon works in this case is that it will try all cases once and it will
only succeed if all of the cases succeed. This introduces two issues:

• The method gets verified multiple times for each possible target type
once. This can slow the verification process significantly.

• Functions can require access predicates. If there exists a function
getCount which requires other access predicates than valid the veri-
fication of the whole method will fail.

Both these issues can be solved by renaming the functions of all classes
which are not intended to be targeted with a Counter delegate.

Issues with Delegate Object fields

The example in the previous section has a second, more serious issue - we
do not get access to the fields delegateTarget and delegateTargetType and
also we do not know whether delegateTarget is null or not. This issue only
appears during ghost function or predicate applications since that is the only
time these two fields are accessed. There is no easy way to allow the user to
specify access to these fields because they do not appear in Chalice code.

The implemented solution was to add the following expression to each pre-,
postcondition and entailment entailment that required access to one of the
fields:

acc(c.delegateTarget , _) && c.delegateTarget != null &&

acc(c.delegateTargetType , _)

Reminder These expressions give wild-card access to the fields. Wild-card means
an arbitrary positive amount of access.

This access must also be provided for each method or delegate call (and
fork) that requires it, since the user does not have the possibility to ensure
the availability of these access permissions. This solution does not cover all
cases - access to these fields can also be hidden inside of predicates which
would result in missing access permissions.
The more general solution would have been to exclude these fields from the
whole access mechanic, but this was not possible on the side of Silicon.

Even after that addition there was still a bug in the implementation: Assume
we create a delegate to the inc method of Cell and therefore we know the
target type of the resulting delegate object. If we now want to prove the
following postcondition

38

5.2. Modifications of Silicon

c.delegateTargetType == 0 ? Cell_valid(c.delegateTarget) :

OtherClass_valid(c.delegateTarget)

the verifier forgets about the field delegateTargetType again, since it is not
mentioned in the postcondition. The verifier can then not verify OtherClass_

valid(c.delegateTarget) since we only have Cell_valid(c.delegateTarget)

in the state. This limitation is severe and many examples do not work with
it.

5.2 Modifications of Silicon

In the previous section we saw that the translation of delegates is only pos-
sible if Silicon is modified to support the used operations. This section
specifies the details of these operations. Table 5.1 has an overview what
operations Silicon needs to support.

Table 5.1: New Silicon Operations

Entailment pre post

inhale required only for 3.7 required
exhale required required only for 3.7

The operations marked with ”only for 3.7” are only needed for higher order
functions. They were implemented at the end of the project and they were
not tested very much.

5.2.1 Inhaling an Entailment

Reminder Inhaling an entailment is used during delegate object creation (sec-
tion 5.1.2) to simply add an entailment to the state.

Entailments are stored in the state in a similar way access permissions are
stored. An entailment inhalation adds the entailment to the state. The sym-
bolic value of the delegate object of the entailment is used to identify the
entailment later.

Note The entailment is stored unevaluated as an expression.

5.2.2 Exhaling a pre Expression

Reminder A pre expression is exhaled during a delegate fork operation of Chalice.
The exact translation can be found in section 5.1.3. According to section 3.4 axhal-
ing a pre expression should cause Silicon to find a pre-entailment for the delegate

39

5. Modifications to the Viper Back-end

and exhale its body instead. The formal arguments of the entailment must be re-
placed with the actual arguments that are contained in the pre expression we want
to exhale.

Let us assume we want to exhale the pre expression pre(c, 7, t) out of the
state. Below is pseudo-code that resembles what Silicon has to do in this
situation.

exhale(pre(c, 7, t)) {

store the chunk (t, current state) in the state

for each entailment e in the state

if (e is a pre -entailment for c) {

e’ := substitute the formal arguments in the

body of e with the actual arguments

(here 7)

exhale e’

failure: reverse this exhale and continue

with next entailment

success: return success and continue with

the modified state

}

no entailment was successful: return failure

}

This procedure finds a fitting pre-entailment in the state and exhales its body.
It returns either when the first entailment can be exhaled or fails when no
entailment can be exhaled (this results in a verification error). It also stores
the current state with the token as identifier as discussed in section 5.1.3.

Note After the substitution of the formal arguments there are no free variables
in e’, because the scope of an entailment is only its formal arguments and return
values.

Note This operation can modify the state, for example when access permissions are
consumed.

Note This pseudo-code looks very different form the solution implemented in Sili-
con since Silicon is programmed in an almost purely functional matter.

5.2.3 Inhaling a post Expression

Reminder A post expression is inhaled during a delegate join operation. Sec-
tion 5.1.3 describes the exact translation and from section 3.4 we can learn what
has to happen. Inhaling a post expression Silicon should find a post-entailment for

40

5.2. Modifications of Silicon

the delegate and inhale its body instead. The formal arguments and return variables
must be substituted with the actual arguments and return values given in the post

expression.

Here is an example how Silicon handles the inhalation of post(c, 7, result

0, t) into the state.

inhale(post(c, 7, result0, t)) {

OS := retrieve the old state with identifier t

for each entailment e in the state

if (e is a post -entailment for c) {

e’ := substitute the formal arguments in the

body of e with the actual arguments

(here 7 and result 0)

inhale e’ and use old state OS

return success and continue with the modified

state

}

no entailment was successful: return success and

continue with the unmodified state

}

This procedure finds a fitting post-entailment in the state and inhales its
body. If there are old expressions in the body they are evaluated in a state
which was stored during the exhale of the pre expression. This procedure
returns without modifying the state if no fitting post-entailment was found.

Note Again e’ does not contain any free variables after the substitution.

Note If there are no old expressions in the body of the entailment, the old state is
not necessary.

5.2.4 Proving an Entailment

Entailments are exhaled when they need to be proven, for example at the
end of a method that ensures some entailment.

Reminder How an entailment can be proven is described in detail in section 3.4.3.

The verifier can only do this proof when there is already an entailment for
the same delegate in the state. In that case, using theorem 3.9 and 3.10, it is
possible to reduce the to prove statement into an entailment A |= B of two
known expressions A and B. The verifier can prove such entailments using
the following steps:

41

5. Modifications to the Viper Back-end

• Create a new, empty state ϕ

• Inhale A into ϕ with fresh symbolic values assigned to all formal argu-
ments.

• Try to exhale B from ϕ with the same symbolic values assigned to the
corresponding arguments.

The code below shows how Silicon handles the proof. There are two proce-
dures - one for pre-entailment proofs and one for post-entailment proofs.

Reminder The difference between a pre-entailment and a post-entailment is that a
new pre-entailment can only be stronger and an new post-entailment can only be
weaker.

exhale(newEntail = pre(c, x) =| x > 10) {

for each entailment e in the state

if (e is a pre -entailment for c) {

for example e = pre(c, a) =| a > 0

prove newEntail is stronger than e

success: return success

failure: continue with next entailment

}

no entailment was successful: return failure

}

exhale(newEntail = post(c, x, y) |= y >= x + 1) {

for each entailment e in the state

if (e is a post -entailment for c) {

for example e = post(c, a, b) |= b == a + 1

prove e is stronger than newEntail

success: return success

failure: continue with next entailment

}

no entailment was successful: return failure

}

prove_stronger(strong , weak) {

substitute the formal arguments and return values of

strong with the formal arguments of weak

create empty state s0

inhale strong ’s body into s0

exhale weak ’s body from s0

return the result of this operation

}

42

5.2. Modifications of Silicon

The first two procedures both first find a fitting entailment and then use
the prove_stronger procedure to prove the right relationship between the
original and the new entailment. If this succeeds for one entailments of the
state the operation succeeds and fails otherwise.

Examples

Here are the proofs for the examples we used in this section:

inhale a > 10

exhale a > 0

This is of course possible and thus the entailment pre(c, x) =| x > 10 can
be exhaled. For the post-entailment we have the following proof:

inhale y == x + 1

exhale y >= x + 1

This holds too and the entailment post(c, x, y) |= y >= x + 1 can be ex-
haled.
This procedure works when there are no old expressions in post-entailments.
The next section will discuss what happens if there are old expressions.

Note The actual implementation uses the usual state instead of a new empty state.
This can be done because all formal arguments and return values have unique names,
such that no variable has associations with any other that is already in the state.

5.2.5 Proving an Entailment with Old Expressions

In Silicon, the proof with old expressions is especially difficult, because we
have only one state at our disposal. But this should be sufficient, since we do
not want to evaluate an expression, but only prove if one of the conditions
is stronger than the other.

Let us look at an example. Assume we have the post-entailment below in
the state.

post(c, myCell , i) |=

myCell.valid && i == old(myCell.getValue ())

We should be able to infer the weaker post condition from the original post-
entailment:

post(c, myCell , i) |=

myCell.valid && i > old(myCell.getValue () - 3)

Generally this should be done the same way as before - by inhaling the body
of the original entailment into an empty state and then trying to exhale the

43

5. Modifications to the Viper Back-end

body of the weaker entailment. But since old expressions can not be inhaled
they have to be transformed into something else first.

The next subsection describes the obvious attempt to handle this situation
and then shows that it can fail. The subsection after that describes a better
solution that does not have the previous weaknesses but is much harder to
implement. The last subsection then describes the implemented solution,
which is not complete but still sound because there was not enough time to
implement the correct solution.

First attempt

This is a concept we came up early and we were convinced it was strong
enough to allow a correct proof. The concept was to rename all variables in
old expressions and then replace the old expressions with their content. For
example:
old(myCell.getValue ())

was replaced with
old_myCell.getValue ()

To allow this to work fresh symbolic values were assigned all these new
variables and permissions to fields of these variables were added to the
state. Unfortunately there were always some edge cases where this did not
work. Finally we discovered that when the expression x == old(x) was in
the body of an entailment, then the proof was unsound. Here an example:
post(c, x) |= old(x) == x && acc(x.f) && old(x.f) == 0

The old expressions of the body of this entailment were replaced and in the
end something like the expression below was inhaled.
old_x == x && acc(x.f) && old_x.f == 0 && acc(old_x.f, _)

Since x and old_x are equal there is actually more than 100% access to x.f

inhaled, which is unsound.

In retrospective the renaming variables was also not quite the logical step,
since the variables are actually the non-changing objects. Variable inside
old expressions are always either formal arguments of the entailment or
the delegate object. Return values can not be in old expressions. But the
arguments of a method actually never change in chalice, neither does the
delegate object. Thus it did not make sense to rename the variables.

A better Way

As noted in the previous subsection the renaming of the variables was not
a good solution because the variables do not change between the old and

44

5.2. Modifications of Silicon

current state. The better solution is to rename all fields, functions and pred-
icates. For example:

old(myCell.getValue ())

is replaced with

myCell.old_getValue ()

The appendix 9.3 contains an example why this is not enough to be complete:
functions and predicates have to be unpacked and recursively renamed. It
can go so far as to double the program size.

This solution was not implemented due to time constraints. I think this solu-
tion would be sound, and it would definitely be stronger than the currently
implemented solution which is discussed in the next section.

Implemented solution

The implemented solution is minimal but definitively sound. It replaces
whole old expressions with variables, and only if they are syntactically iden-
tical they are replaced with the same variable. This is a very restrictive
solution, but most examples can be adjusted to work despite this restriction.

5.2.6 The remaining Operations

The remaining two operations of table 5.1 are implemented to allow higher
order functions. The implementation was not fully tested, but the concept
behind these operations can be found in section 3.7.

Inhaling pre expressions

When pre expressions are inhaled they should just be added to the state.
These pre expressions do not have formal arguments but rather actual argu-
ments for which the pre should hold. This is why those pre expressions are
added to the state with all arguments evaluated to their symbolic values.

The exhale operation of pre expressions has to be modified too - otherwise
the pre expressions in the state could never be used. The modification is
simple: at the start of the operation the state is scanned for pre expressions.
When one matches with the delegate and all the other arguments (as sym-
bolic values) it can be used instead of trying to use an entailment.

Note This manual addition of a pre expression has one downside: there is no token
which we can use to store the ”old state”. This is why old expressions are not
supported in this design of higher order functions.

45

5. Modifications to the Viper Back-end

Exhaling post expressions

To enable the exhaling of post expressions they first need to have a way to
get into the state. For this the inhale of post expressions is modified in the
following way: If there is no suiting entailment, instead of doing nothing,
the post expression is added to the state. This is too done with all the
arguments and return values evaluated to their symbolic expressions.

Now when post expressions are exhaled, they can be found in the state and
if all arguments and return values match the exhale is successful.

Note old expressions are not supported in this design of higher order functions,
because there is no ”old state” to evaluate them in.

46

Chapter 6

The Implementation and Examples

The implementation of the project was done in a very rushy manner to-
wards the end of the project, especially he features regarding hidden state
and higher order functions did not have the deserved time to ripe and are
therefore not fully tested. As mentioned before, the entailment proof with
old expressions is handled poorly by the implementation. This allowed in
the end only basic examples, including all the examples mentioned in this
thesis, to be verified with the implemented system. The basic examples are
listed in section 6.1.

This chapter contains some further examples with delegates and shows how
they could be verified or why the current system is not strong enough to
verify them. In section 6.2 an example of the Command pattern is given.
The next section then shows an extension of it. Both examples were not
fully verifiable with the final implementation.

6.1 Basic Examples from this Thesis

6.1.1 Basic operations

This section contains the full Cell example. It was fully verifiable.

class Cell {

var value: int

function getValue (): int

requires valid

{ unfolding valid in value }

predicate valid { acc(value) }

method Set(i: int)

requires valid

47

6. The Implementation and Examples

ensures valid && getValue () == i

{

unfold valid

value := i

fold valid

}

method inc()

requires valid

ensures valid && getValue () == old(getValue ()) + 1

{

unfold valid

value := value + 1

fold valid

}

}

delegate Creator(int) returns (Cell)

class Client {

method client () {

var cre := newdel Creator(createCell)

call myCell := cre (7)

assert myCell.getValue () == 7

fork t := cre (8)

join myCell := t

assert myCell.getValue () == 8

}

method createCell(i: int) returns (c: Cell)

ensures c != null && c.valid && c.getValue () == i

{

c := new Cell

c.value := i

fold c.valid

}

method createIncreasedCell(i: int) returns (c: Cell)

ensures c != null && c.valid &&

c.getValue () == i + 1

{

c := new Cell

c.value := i + 1

fold c.valid

}

method creatorFactory(r: bool) returns (cre: Creator)

ensures pre(cre , i) =| true

ensures post(cre , i, myCell) |= myCell != null &&

myCell.valid &&

i <= myCell.getValue () &&

myCell.getValue () <= i + 1

48

6.1. Basic Examples from this Thesis

{

if (r) {

cre := newdel Creator(createCell)

} else {

cre := newdel Creator(createIncreasedCell)

}

}

}

6.1.2 Hidden State

The counter example serves as proof of concept for the solution for hidden
state. The following program was fully verifiable.

class CounterObject {

var c :int;

method count() returns (res: int)

requires valid

ensures valid

ensures res == old(getCount ())

ensures getCount () == old(getCount ()) + 1

{

unfold valid;

res := c;

c := c + 1;

fold valid;

}

function getCount () : int

requires valid

{

unfolding valid in c

}

predicate valid { acc(c) }

}

delegate Counter () returns (int) {

function getCount (): int

predicate valid

}

class Client {

method createCounter () returns (res: Counter)

ensures pre(res) =| res.valid

ensures post(res , i) |= res.valid &&

i == old(res.getCount ()) &&

res.getCount () == old(res.getCount ()) + 1

49

6. The Implementation and Examples

ensures res.valid && res.getCount () == 0

{

var c := new CounterObject

c.c := 0;

fold c.valid

res := newdel Counter(c.count)

}

method client () {

call c := createCounter ()

call i := c()

call j := c()

assert i == 0 && j == 1

}

}

6.1.3 Higher order functions

This example was fully verifiable and it is a proof of concept for higher order
functions. Appendix 9.1 shows another fully verifiable example for higher
order functions with return values.

delegate Command ()

class Client {

var value: int

method Conditional(b: bool , c: Command)

requires b ==> pred(c)

ensures b ==> postd(c)

{

if (b) {

call c()

}

}

method set 3()

requires acc(value)

ensures acc(value) && value == 3

{

value := 3

}

method set 5()

requires acc(value)

ensures acc(value) && value == 5

{

value := 5

}

method client ()

requires acc(value)

50

6.2. Command Pattern

{

value := 0

var c1 := newdel Command(set3)

var c2 := newdel Command(set5)

call Conditional(true , c1)

assert value == 3

call Conditional(false , c2)

assert value == 3

call Conditional(true , c2)

assert value == 5

}

}

6.1.4 Entailment proofs

The test file entailment.chalice contains interesting proofs with entailments
that were verifiable.

6.2 Command Pattern

This example is about modifying a Document which is equivalent to a Cell.
The client creates delegates to methods which can work on the Document.
The example shows the basic operations in action.

delegate Command(Document) {

predicate valid

function state () : int

}

delegate Command 2(Document)

class Document {

var val: int

method Set(i: int)

requires valid

ensures valid && value() == i

{

unfold valid

val := i

fold valid

}

predicate valid { acc(val) }

51

6. The Implementation and Examples

function value (): int

requires valid

{

unfolding valid in val

}

}

class AddObject {

var summand : int;

method Add(d:Document)

requires valid && d != null && d.valid

ensures valid && d.valid &&

old(d.value()) + state() == d.value()

{

call d.Set(d.value() + state())

}

predicate valid { acc(summand) }

function state () : int

requires valid

{

unfolding valid in summand

}

}

class Program {

method InverseMethod(d:Document)

requires d != null && d.valid && d.value () != 0

ensures d.valid && d.value() == 100 / old(d.value())

{

call d.Set (100 / d.value())

}

method createAdd(value:int) returns (c:Command)

ensures c != null && c.valid && c.state() == value

ensures pre(c, d) =| c.valid && d!=null && d.valid

ensures post(c, d) |= c.valid && d.valid &&

old(d.value()) + c.state() == d.value()

{

var o := new AddObject;

o.summand := value;

fold o.valid

c := newdel Command(o.Add)

}

method client () {

52

6.2. Command Pattern

var inverse : Command 2;

var add : Command;

var d := new Document;

fold d.valid

call d.Set (100)

inverse := newdel Command 2(this.InverseMethod);

call inverse(d);

call add := this.createAdd (1);

call add(d);

assert d.value() == 2;

call add := this.createAdd (10);

call add(d);

assert d.value() == 12;

}

}

This program is almost fully verifiable with the current implementation. The
only part where it fails due to a strange bug of which I could not find the
reason is the last postcondition of method createAdd. While such entail-
ment proofs with old expressions and ghost functions and predicates usu-
ally work, this particular one did not. The entailment proof looks like this:

stronger: acc(c.delegate$target$, wildcard) && (c.delegate

$target$!= null) && acc(c.delegate$targettype$,

wildcard) && (true && (acc(ArbCommandObjectvalid $(c.

delegate$target $), write) && acc(Documentvalid $(d$_2),

write) && (Documentvalue $(d$_2) == r$_1) && Post(

ArbCommandObjectff $(c.delegate$target $), old$$$$0 , r

$_1)))

weaker: acc(c.delegate$target$, wildcard) && (c.delegate$

target$!= null) && acc(c.delegate$targettype$,

wildcard) && (acc(ArbCommandObjectvalid $(c.delegate$

target $), write) && acc(Documentvalid $(d$_2), write) &&

(Documentvalue $(d$_2) == r$_1) && Post(

ArbCommandObjectff $(c.delegate$target $), old$$$$0 , r

$_1))

We can easily verify this proof, since the only difference is a true expression
which is added as a conjunct. The exception is thrown from the inner work-
ings of Silicon which I do not understand.
When I in-line the method createAdd twice and remove the actual method,
the verifier can verify the program.

53

6. The Implementation and Examples

6.3 Arbitrary Command Pattern

In this example the client can construct his command by himself by giving
a function that specifies how the document’s value should be modified.

delegate Command(Document) returns (int) {

predicate valid

function ff() : Func

}

delegate Func(int) returns (int)

class Document {

var val: int

method Set(i: int)

requires valid

ensures valid && value() == i

{

unfold valid

val := i

fold valid

}

predicate valid { acc(val) }

function value (): int

requires valid

{

unfolding valid in val

}

}

class ArbCommandObject {

var f : Func;

method ArbCommand(d:Document) returns (r: int)

requires valid && d != null && d.valid &&

pred(ff(), d.value())

ensures valid && d.valid && d.value() == r &&

postd(ff(), old(d.value ()), r)

{

call r := f(d.value())

call d.Set(r)

}

predicate valid { acc(f) }

function ff(): Func

54

6.3. Arbitrary Command Pattern

requires valid

{ unfolding valid in f }

}

class Program {

method createArbCommand(f:Func) returns (c:Command)

ensures c.valid

ensures pre(c, d) =| c.valid && d != null &&

d.valid && pred(c.ff(), d.value ())

ensures post(c, d, r) |= c.valid && d.valid &&

d.value () == r &&

postd(c.ff(), old(d.value ()), r)

{

var o := new ArbCommandObject;

o.f := f;

fold o.valid

c := newdel Command(o.ArbCommand);

}

method Arb(i: int) returns (j: int) {

j := (i + 3) * 2

}

method client () {

var d := new Document;

fold d.valid

call d.Set (10)

var fnc := newdel Func(Arb)

call ac := createArbCommand(fnc)

call res := ac(d)

assert d.value() == 26

}

}

Here the exact same error appeared for method createArbCommand. Verifying
every method by hand yields that this program is correct.

55

Chapter 7

Further Features

There are several features that are not yet supported in the current design
but the addition of these features would contribute to a full tool-set for
closures in Chalice.

7.1 Stronger Entailment Proofs

The current system only supports very weak proofs of entailments with old
expressions. A stronger entailment proof would improve the system a lot
and it is definitively possible as discussed in section 5.2.5.

7.2 Functional Delegates

Functional Delegates are delegate objects that point to functions instead of
methods. They are useful because they can appear in expressions, especially
also in pre- and postconditions. But this added functionality also makes it
hard to verify them.

Functional delegates were implemented in Chalice but they are not sup-
ported further than that - the translation into Silver will throw errors.

An example of the current implementation in Chalice:

functional delegate Func(int , int): int {

predicate valid

function getValue (): int

}

class Client {

method Test() returns (f: Func)

ensures f.valid && f(3, 4) == 7

ensures post(f, a, b) |= a * f.getValue () + b

{

57

7. Further Features

var c := new Cell

c.value := 1

fold c.valid

f := newdel Func(c.getLinear)

}

}

This example shows a functional delegate pointing to the function getLinear

of class Cell. For this to work the delegate type has to be declared as
functional.

7.3 Higher order Functions

The support for higher order functions is very limited in the current system.
As shown in appendix 9.2 they do not support delegates executed sequen-
tially and there is no obvious simple solution to this issue. Also the imple-
mentation of the concept (see section 5.2.6) has the further limitation that it
does not work with old expressions. Further work to extend the support for
higher order functions can definitively be done.

7.4 Anonymous Delegates

Anonymous delegates are delegates that do not point to a specific method
but still have executable code associated with them. This code is said to
be contained in an anonymous method, which is why the delegate is called
anonymous.
I believe it is possible to add anonymous delegates to the system without
modifying the back-end of the Viper infrastructure. This can be done by
creating an anonymous class each anonymous delegate definition during
the translation into Silver. This is only speculation and further investigations
are required regarding the soundness of such a system. A detailed example
can be found in Appendix 9.4.

58

Chapter 8

Conclusions

This thesis has shown a feasible approach to introduce closures as first-class-
citizen values to Chalice. The concepts developed in section 3 provide a
good basis for delegates in Chalice where they work well with fractional
permissions. The methodology provides solutions for several well known
issues of closures, including dealing with hidden state (Section 3.5), the
circularity problem (Section 3.6) and higher order functions (Section 3.7).

The biggest issue with this thesis is the lack of real-world examples that
could be verified. This is partially due to that the concept is not strong
enough for all examples or that the implementation did not achieve all the
features of the concept. Another major point was that I simply did not have
the needed time to do these tests due to bad time management.

Section 7 has some interesting examples how the system could be extended
to support functional delegates, delegates that point to functions instead
of methods, and anonymous closures, delegates that do not point to any
method and can capture local variables.

The implementation is documented by many comments in the source code
wherever I modified the original code of the viper project. It can be accessed
form the Bitbucket repositories yChaliceClosures, chalice2silClosures,
silClosures and siliconClosures. All examples of this thesis can be found
in the directory

chalice2silclosures/src/test/resources/chaliceSuite/

closures

At this point I want to thank everyone who helped me, this is Ioannis T. Kas-
sios who supervised and supported me even in times where I did not make
much progress, Malte Schwerhoff who gave me a detailed introduction into
Silicon and answered many questions about it and Prof. Müller who allowed
this thesis.

59

Chapter 9

Appendix

9.1 Higher Order Functions

This example shows how higher order methods involving arguments and
return values work in chalice. condF is a higher order method that takes
a boolean and executes the Func delegate when this boolean is true. The
comments in the code describe the state at various times. This example was
verifiable with the implemented verifier.

delegate Func(int) returns (int)

class HigherOrderMethodTest {

var value: int

method condF(b: bool , f: Func , i: int) returns (j:int)

requires b ==> pred(f, i)

ensures b ==> postd(f, i, j)

{

// assuming b == true we have here pre(f, i) in

// the state. Note that both f and i are stored

// in evaluated form.

if (b) {

// this call succeeds because it can get

// pre(f, i) from the state and all arguments

// match with the stored arguments.

call j := f(i)

// here post(f, i, j) is added to the state

// (because no fitting entailment is found)

// - again the arguments are evaluated.

}

// we can exhale post(f, i, j) here because it ’s

// in the state with the exact same arguments.

}

61

9. Appendix

method id(i: int) returns (j: int)

requires acc(value , 50)

// just to make it more interesting

ensures j == i

{ j := i }

method test()

requires acc(value)

{

var f := newdel Func(id)

call a := f(3)

// here we have half access to value left

// this consumes access permissions even though it

// says nothing of this in its specification.

call b := condF(true , f, 4)

// this does not consume access permissions

call c := condF(false , f, 5)

assert a == 3 && b == 4 // holds

}

}

Reminder pre and post expressions embedded in entailments can only take formal
names as arguments (except the delegate object). Free pre and post expressions can
also take expressions.

Free pre and post expressions can also take expressions instead of formal
arguments. Free post expressions can still only take local variables as return
values (or even only return variables of the method).

9.2 Limits of Higher Order Functions

This example shows the limitations of the implemented solution for higher
order functions. The composition method takes two Func delegates and com-
poses them to a FuncComp delegate.

delegate Func(int) returns (int)

delegate FuncComp(int) returns (int , int) {

function f0(): Func

function f1(): Func

predicate valid

}

class CompositionClass {

var f0: Func

62

9.2. Limits of Higher Order Functions

var f1: Func

method composition(i: int) returns (t: int , j: int)

requires pred(f0, i)

requires post(f0, i, t) |= pred(f1, t)

ensures postd(f1, t, j)

{

call t := f0(i)

call j := f1(t)

}

predicate valid { acc(f0), acc(f1) }

}

class client {

method createComposition(f0: Func , f1: Func) returns (

res: FuncComp)

ensures pre(res , i) |= (pred(res.f0(), i) &&

post(res.f0(), i, t) |= pred(res.f1(), t))

ensures post(res , i, t, j) |= postd(res.f1(), t, j

)

{

var compObj := new CompositionClass

compObj.f0 := f0

compObj.f1 := f1

fold compObj.valid

res := newdel FuncComp(compObj.composition)

}

method func0(i: int) returns (j: int)

ensures j == 2 * i

{

j := 2 * i

}

method func1(i: int) returns (j: int)

ensures j == i + 5

{

j := i + 5

}

predicate valid { true }

method client () {

fold valid

var f0 := newdel Func(this.func0)

fold valid

var f1 := newdel Func(this.func1)

63

9. Appendix

call f := createComposition(f0, f1)

call t, j := f(10)

assert j == 25

}

}

This construction with the double output for FuncComp is necessary to serve
the client with the right t for the postcondition post(f1, t, j).

The expression post(f0, i, t) |= pre(f1, t) is quite interesting. It works
perfectly fine if we define the post expression to be bound by the entailment
and the pre expression to be free. The method composition will try to inhale
pre(f1) after the first delegate call. This will succeed in the same way the
pre(f0) expression was inhaled at the start of it. In the client the proof
will try to exhale the pre(f1) out of the empty state filled with the post(f

0). It will find the right pre-entailment for f0 to exhale which works if the
postcondition of f0 really implies the precondition of f1.

This example can still not be verified because of a subtle detail: The value of
t returned by composition is and can not be specified by the postcondition.
We would need to also return post(f0, i, t) to specify t which is not possi-
ble because we need it to get pre(f1, t). This is a serious constraint on the
system.

9.3 Renaming in Old Expressions

This example shows how throughout the renaming of fields, functions and
predicates must be to make the system complete.

inhale post(c, myCell , i) |= myCell.valid &&

i == old(myCell.getValue ())

exhale post(c, myCell , i) |= myCell.valid &&

unfolding myCell.valid in i >= old(myCell.value)

It does not suffice to rename myCell.getValue() to myCell.old_getValue() -
the body of old_getValue has to be changed to myCell.old_value too. Other-
wise the proofer could not associate old(myCell.getValue()) with unfolding

myCell.valid in old(myCell.value). When there are further references to
other functions in getValue this renaming can cause the program size to
double.

64

9.4. State capturing

9.4 State capturing

This example shows a concept of how anonymous methods could be imple-
mented in chalice and how they can be transformed into standard Chalice
code. The assumption is that an anonymous method also provides one (or
more) ghost functions to access its captured state and also a ghost predicate
that specifies the footprint of the closure. This assumption is based on the
paper [2].

method foo() {

var a := new Cell

fold a.valid

call a.setValue (1)

var closure := delegate ()

requires valid

ensures valid &&

a.getValue () == old(a.getValue ()) + 1

{

call a.inc()

} with ghosts {

function getState (): int

{ a.getValue () }

predicate valid { acc(a) && a.valid }

}

closure ()

closure ()

assert a.getValue () == 3

}

This closure can be transformed automatically into the following normal
Chalice code:

delegate AnonDel () {

function getState (): int

predicate valid

}

class AnonType {

var a: Cell

function getState (): int

requires valid

{ a.getValue () }

predicate valid { acc(a) && a.valid }

method anonMeth ()

requires valid

65

9. Appendix

ensures valid &&

a.getValue () == old(a.getValue ()) + 1

{

unfold valid

call a.inc()

fold valid

}

}

method foo() {

var a := new Cell

fold a.valid

call a.setValue (1)

var anonObj := new AnonType

anonObj.a := a

fold anonObj.valid

var closure := newdel AnonDel(anonObj.anonMeth)

closure ()

closure ()

assert a.getValue () == 3

}

In this example we do not deal with the possibility that a might be reas-
signed to another Cell inside the anonymous closure. The transformation
can be adjusted to work even under such circumstances by boxing a and
replacing every occurrence of a with the boxed expression. This only needs
to be done with local variables since the this object and other arguments
are immutable.

66

Bibliography

[1] K. Rustan M. Leino, Peter Müller, Jan Smans Verification of Concurrent
Programs with Chalice. ETH Zürich, Microsoft Research Redmond, KU
Leuven, 2009.

[2] Ioannis T. Kassios, Peter Müller Modular Specification and Verification of
Delegation with SMT Solvers. ETH Zurich, 2013.

[3] Uri Juhasz, Ioannis T. Kassios, Peter Müller, Milos Novacek, Malte Schw-
erhoff, Alexander J. Summers Viper: A Verification Infrastructure for
Permission-Based Reasoning. ETH Zurich, 2014.

67

!

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.

− I have not manipulated any data.

− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Closure verification in an automated fractional permission setting

Meier Fabian

7. October 2014 F. Meier

	Contents
	Introduction
	The Viper Project

	Chalice
	Introduction to Chalice
	Concepts of Chalice
	Members
	Instructions

	Verifying a Chalice program
	Symbolic Verification
	Access permissions

	Adding Closures to Chalice
	Overview of the Design
	Delegate Type definition
	Delegate Object
	Delegate creation
	Delegate call
	Delegate fork and join

	Specifying delegates
	Creating an Entailment
	Using an Entailment
	Proving an entailment

	Hidden State with Delegates
	Circularity Issue
	Higher order functions

	Viper Verification Infrastructure
	Introduction to Silver
	Translation

	Introduction to Silicon
	The parts of Silicon

	Modifications to the Viper Back-end
	Translation to Silver
	Additions to the Silver AST
	Translating a Delegate Creation
	Delegate Call, Fork and Join
	Ghost Functions and Predicates

	Modifications of Silicon
	Inhaling an Entailment
	Exhaling a pre Expression
	Inhaling a post Expression
	Proving an Entailment
	Proving an Entailment with Old Expressions
	The remaining Operations

	The Implementation and Examples
	Basic Examples from this Thesis
	Basic operations
	Hidden State
	Higher order functions
	Entailment proofs

	Command Pattern
	Arbitrary Command Pattern

	Further Features
	Stronger Entailment Proofs
	Functional Delegates
	Higher order Functions
	Anonymous Delegates

	Conclusions
	Appendix
	Higher Order Functions
	Limits of Higher Order Functions
	Renaming in Old Expressions
	State capturing

	Bibliography

