
Verification of Closures in Rust Programs
Master’s Thesis Project Description

Fabian Wolff

Supervisors: Dr. Alexander J. Summers, Prof. Dr. Peter Müller

Start Date: March 30, 2020
End Date: September 29, 2020

1 Introduction

The Rust programming language prevents certain classes of errors commonly found
in systems and C/C++ software—such as memory leaks, dangling pointers, and data
races—statically, through the use of an advanced ownership type system, in which every
value always has exactly one owner, a variable (and, by extension, a thread).

Sharing of data can happen via moves (ownership transfers), copies, and borrowing,
which refers to the creation of non-owning references to an object, either immutable or
mutable. The type system guarantees that only the owner may move or deallocate an
object, and only if there are no live references to it. Furthermore, at most one mutable
reference may exist at a time, and only if there are no other currently-usable references
to the same object, to prevent race conditions and provide framing information: a refer-
enced object is never modified unexpectedly by another actor (such as a called function
or another thread).1

The strong static guarantees made by Rust make it an ideal platform for program
verification efforts. Indeed, Astrauskas et al. [1] have demonstrated how Rust types can
be utilized to simplify specification and verification of programs written in Rust. In this
thesis, we will build on their work and expand their approach to include closures.

2 Closures

Closures, sometimes also called lambdas, are anonymous functions that can capture their
lexical environment. They are available in many mainstream languages, including C++,
Python and Java. What’s special about Rust closures is that the aforementioned rules for

1An exception to this rule is the notion of interior mutability used by some libraries; this requires the
use of unsafe code to circumvent some of the restrictions.

1

value sharing apply; in particular, Rust closures capture their environment by borrowing
values immutably or mutably or by moving values into them. In the following example,
cl borrows x immutably, y mutably, and z is moved into cl:

let mut x = "x".to_owned ();

let mut y = "y".to_owned ();

let mut z = "z".to_owned ();

let x_borrow = &x; // we can have overlapping immutable borrows

// || introduces a closure; arguments go between the bars:

let cl = || {

let x_clone = x.clone (); // this only reads from x

y.push_str (&x_clone); // modify y

std::mem::drop (z); // this call requires ownership of z

};

cl ();

println! ("{} {}", x_borrow, y); // we can't use z anymore here

Apart from capturing, closures behave like regular functions, even to the extent that
they can be coerced into the same (function pointer) type:

fn add (a: i32, b: i32) -> i32 { a + b }

let f: fn(i32, i32) -> i32 = add; // works

let g: fn(i32, i32) -> i32 = |a: i32, b: i32| -> i32

{ a + b }; // works, closure doesn't capture anything

let c = 42;

let h: fn(i32, i32) -> i32 = |a: i32, b: i32| -> i32

{ a + b + c }; // fails: closure captures c

This restriction to non-capturing closures is necessary: To be able to access the captured
state, closures must be wrapped in struct-like objects by the compiler, containing fields
for all the captured variables, as well as a function pointer to the actual closure code,
and thus cannot simply be coerced into function pointers in the general case. Conversely,
however, functions can always be automatically wrapped as “closure types”:

fn inc (i: i32) -> i32 { i + 1 }

let c: i32 = 1;

let f: Box<dyn Fn(i32) -> i32> = Box::new (|i: i32| -> i32 { i + c });

let g: Box<dyn Fn(i32) -> i32> = Box::new (inc);

In this example, inc will be wrapped in a subtype of Fn(i32) -> i32. The Fn, FnMut,
and FnOnce traits are common supertypes for closures; specifically, they describe how

2

closures access their captured state. The Fn trait, for instance, is only implemented by
closures that neither modify nor move their captured state; since functions don’t even
have a captured state, they can always be used where a Fn trait is expected.

Closures have manifold applications in practice. For instance, closures can often be
elegantly employed to control the behavior of certain “abstract” operations, such as
filtering:2

let a = [0i32, 1, 2];

let mut iter = a.iter().filter(|x| x.is_positive());

assert_eq!(iter.next(), Some(&1));

assert_eq!(iter.next(), Some(&2));

assert_eq!(iter.next(), None);

or mapping, that is, applying a closure to every element of a container (and thereby
modifying the container’s contents according to the closure’s behavior):3

let a = [1, 2, 3];

let mut iter = a.iter().map(|x| 2 * x);

assert_eq!(iter.next(), Some(2));

assert_eq!(iter.next(), Some(4));

assert_eq!(iter.next(), Some(6));

assert_eq!(iter.next(), None);

This can be particularly useful when working with specialized data structures, such as
the Option type. In the following example, using a closure allows us to entirely avoid
unwrapping or matching on the Option:4

let maybe_some_string = Some(String::from("Hello, World!"));

let maybe_some_len = maybe_some_string.map(|s| s.len());

assert_eq!(maybe_some_len, Some(13));

Another common use case for closures is as a callback for when certain events occur,
such as when a button is pressed in a GUI framework:5

use gtk::{Button, ButtonExt};

let button = Button::new_with_label("Click me!");

button.connect_clicked(|but| {

but.set_label("I've been clicked!");

});

In addition, closures can be used for code de-duplication, certain higher-order operations
such as partial function application and function composition, as a decorator pattern to
wrap other functions, and more.

2Example taken from https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter
3Example taken from https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
4Example taken from https://doc.rust-lang.org/std/option/enum.Option.html#method.map
5Example taken from https://gtk-rs.org/docs-src/tutorial/closures

3

https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
https://doc.rust-lang.org/std/option/enum.Option.html#method.map
https://gtk-rs.org/docs-src/tutorial/closures

3 Challenges

Closures are useful but make verification trickier for several reasons, including:

� When calling a closure, it is, in general, statically unknown where and how the
closure was defined, what internal state it has, which side effects may occur, etc.

Indeed, not even the precise pre- and postcondition will usually be known to the
caller. They could depend on captured memory locations invisible to the caller, so
the caller has to rely on abstract guarantees.

� Closure invocation may change the program state, including that of the captured
variables (if any) of the closure. Preserving information about the state across
closure invocations is thus necessary but difficult; and in particular, verification of
repeated closure invocations, such as in the mapping and filtering examples above,
becomes complicated.

� To specify the behavior of closures as function arguments and return values, it
is necessary to nest function specifications; for instance, the precondition of a
function that takes a closure as an argument may have to mention the pre- and
postcondition of that closure. The current language and semantics of function
specifications therefore have to be extended to support a kind of “higher-order”
specification.

In fact, closures can even be used to implement various higher-order functionalities
not supported by the first-order logic of SMT solvers, such as statically-unbounded
iterated functions (fn = f ◦ . . . ◦ f , for unknown n). This may or may not be a
relevant problem for this project, depending on which, if any, of these higher-order
features arrive in practical use cases.

Note that many of the same challenges arise in the treatment of regular functions; as
described above, closures and functions can often even be used interchangeably. For this
reason, we expect this project to benefit not only the verification of code using closures,
but also function pointers, wrapped functions in the place of Fn* traits, etc. We have
(nominally) focused on closures here because they pose the more general challenge.

4 Core Goals

1. Explore existing codebases (such as popular crates, Rosetta Code, . . .) to identify
common classes of closure use cases—such as combinators (filter, map, . . .)—or
more specialized, but important, use cases, such as AST transformations.

2. Choose one of these classes and collect a set of examples representative for this
class, both to justify the practical relevance of this project as well as to help guide
its path, although the aim remains an approach as generally applicable as possible.

This includes examples for pure and non-pure, capturing and non-capturing clo-
sures, as well as for functions in the place of Fn* traits.

4

3. Develop a methodology to handle these examples in the context of the Prusti
project.

4. Implement this methodology in Prusti.

5. Evaluate the implementation on a set of representative and challenging example
programs.

In the course of his research internship at ETH, Thomas Hader has already made an
initial exploration of the topic of Rust closure verification, based on an earlier, more
general inquiry into the issue of closure verification by Kassios and Müller [3]. In his
report [2], he gives several examples for closure use cases and outlines a potential verifi-
cation methodology for some of them. We plan to perform a more in-depth exploration
of closure use cases in practice and develop a methodology for a wider variety of such
use cases, ideally with a smaller number of core cases (i.e., with one general approach
encompassing many use cases).

5 Extension Goals

1. Evaluate the implementation on an existing code base, such as a library or small
application, to demonstrate the applicability and strength of the chosen approach.

2. Design and implement techniques to handle more of the closure use cases discovered
in the first Core Goal. This could include, for instance, different modes of capturing
the environment (compare the Fn/FnMut/FnOnce traits), or boxed closures.

3. Explore simplifications and/or alternatives in the chosen language of specification
primitives to simplify closure verification for Prusti end users.

References

[1] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers, “Leveraging Rust types for
modular specification and verification,” Proceedings of the ACM on Programming
Languages, vol. 3, Oct. 2019. doi: https://doi.org/10.1145/3360573.

[2] T. Hader, “Proposal for supporting closures in Prusti,” 2019. [Online]. Available:
https://bit.ly/2Ry7ZGj (visited on 04/13/2020).

[3] I. T. Kassios and P. Müller, “Specification and verification of closures,” ETH Zurich,
Department of Computer Science, Tech. Rep., 2010. doi: https://doi.org/10.
3929/ethz-a-006843251.

5

https://doi.org/https://doi.org/10.1145/3360573
https://bit.ly/2Ry7ZGj
https://doi.org/https://doi.org/10.3929/ethz-a-006843251
https://doi.org/https://doi.org/10.3929/ethz-a-006843251

	Introduction
	Closures
	Challenges
	Core Goals
	Extension Goals

