
Eidgenössische Technische Hochschule
Zürich

Master’s Thesis

Veri�cation of Closures in Rust Programs

Author:
FabianWol�

Supervisors:
Alexander J. Summers

Peter Müller

ProgrammingMethodology Group
Department of Computer Science

ETH Zürich

September 30, 2020

Abstract

We consider the problem of closure verification in the context of Rust programs and, speci�cally, the
Prusti project. We categorize closure occurrences in real-world code into four categories, based on
a small-scale survey of Rust code on GitHub. We then provide techniques to verify many of them
by re�ning a previously existing notion of specification entailment (or fulfillment) for ahead-of-time
reasoning about all possible calls, and by introducing a novel arrow (~~>) notation for a posteriori
reasoning about the e�ects of speci�c calls. We further supplement these techniques with a range of
auxiliary tools, including invariants on the captured state, ghost state, and ghost arguments/results,
before demonstrating how they can be encoded in Viper, an intermediate veri�cation language, and
implemented in Prusti, an automatic veri�er for Rust. Our work extends the state of the art of closure
veri�cation in the existing literature, speci�cally in automatic veri�ers based on �rst-order separation
logic and corresponding tooling, in terms of modularity, �exibility, and ease of use.

Acknowledgments

During the course of my work on this thesis, I have had many prolonged and fruitful discussions with
mymain supervisor, Alexander Summers, who thereby helped to shape most of the ideas presented here.
His guidance and input in that regard have been invaluable, and I am very grateful that he took the time
for our weekly meetings despite his many other responsibilities and commitments as a new professor at
the University of British Columbia. His lecture Program Verification, delivered in Zürich in the spring
of 2019, provided many of the technical foundations for me being able to work on this topic in the �rst
place. I am also grateful to Peter Müller, who supervised and coordinated this project in his group, and
who �rst piqued my interest in program veri�cation through his excellent Concepts of Object-Oriented
Programming lecture. Furthermore, I would like to thankVytautas Astrauskas andAurel Bílý, who have
provided code reviews and supported my work on the implementation in Prusti; ChristophMatheja,
for his work on snapshots, and for assisting me in my �rst steps in the Prusti codebase; and Federico
Poli, for his help in getting me started in the �rst few weeks of the project.

Contents

1. Introduction 6
Related work . 7

2. Background 8
2.1. Motivation . 8
2.2. Languages and Tooling . 9

2.2.1. Closures in Rust . 9
2.2.2. Viper . 11
2.2.3. Prusti . 13

2.3. Previous Methodology . 14
2.3.1. Speci�cation Functions . 14
2.3.2. Speci�cation Entailments . 16

3. Classi�cation 19
3.1. Higher-Order Functions over Collections . 19
3.2. Higher-Order Functions with Fixed Behavior . 20
3.3. sort_by() . 21
3.4. Boxed Closures, Dynamic References to Closures, and Function Pointers 21

4. Methodology 23
4.1. Closure Speci�cations . 23

4.1.1. Exposing the Captured State through Views 24
4.1.2. Reasoning about the Enclosing Scope . 24
4.1.3. Invariants . 25
4.1.4. Ghost State for “Tracing” . 28

4.2. Speci�cation Entailments . 30
4.2.1. Components of |= . 31
4.2.2. Entailments in Conjunctions, PatternMatches, and under Quanti�ers . . . 32
4.2.3. Entailments with Invariants . 33
4.2.4. Nested |= . 35
4.2.5. The outer() Keyword . 36
4.2.6. |= Across Multiple Calls . 37
4.2.7. Boxed Closures, Dynamic References to Closures, and Function Pointers . . 38

4.3. Arrow (~~>) Notation . 41
4.3.1. Components of ~~> . 42
4.3.2. The outer() keyword . 45

4

4.4. Ghost Arguments and Results . 47
4.4.1. Basics Ideas . 47
4.4.2. Exposing Captured State via Ghost Arguments/Results 48
4.4.3. self: Accessing the Captured State Opaquely 49
4.4.4. Ghost Arguments as Invariants . 51

4.5. Summary . 52

5. Implementation 53
5.1. Encoding in Viper . 53

5.1.1. Basics . 55
5.1.2. Speci�cation Entailments . 60
5.1.3. Higher-Order Functions and Boxed Closures 67
5.1.4. ArrowNotation . 74
5.1.5. Ghost Arguments and Results . 74

5.2. Implementation in Prusti . 77

6. Evaluation 81
6.1. Example Speci�cations . 81

6.1.1. Higher-Order Functions over Collections 81
6.1.2. Higher-Order Functions with Fixed Behavior 83
6.1.3. sort_by() . 85
6.1.4. Boxed Closures . 86

6.2. Our Implementation . 88

7. Conclusion 91
Future Work . 91

A. Proofs about Weakened Relations 92

Bibliography 95

5

1. Introduction

Closures, sometimes also called lambdas,1 are anonymous functions that can capture their lexical
environment. They are a powerful and useful language feature with their origins in early functional
programming languages [35] that have since found their way into many imperative and object-oriented
mainstream languages, including Java, Python, C++, and Rust. They can be used for purposes such as
code deduplication, as arguments to higher-order functions such as map() and fold(), as callbacks in,
say, GUI frameworks, as a decorator pattern to wrap other functions, and many more.

Rust is an emerging systems programming languagewith a strong ownership type system, ensuring the
absence of many memory safety issues typical of C/C++ codebases, including memory leaks, dangling
pointers, and data races. In particular, the creation ofmutable aliases is severely constrained in Rust—its
system of ownership and borrowing ensures that no more than one mutable reference to the same
object exists at any given time. This greatly facilitates veri�cation e�orts, because side-e�ects, including
modi�cations to aliased memory locations, are much easier to track (or forbidden in the �rst place). For
this reason, Astrauskas et al. [1] have launched the Prusti project, which aims to create an automatic
veri�er for Rust code that is suitable for end users without a background in veri�cation. Given the
ubiquity of closures in real-world Rust code, this thesis intends to �ll the gap and provide support for
closures in Prusti.

Closures can be viewed as a generalization of regular functions, being originally de�ned as “the
λ-expression and the environment relative to which it was evaluated” [18], thus comprising a function
plus an “environment”, its captured state. We should therefore expect an added level of di�culty when
verifying closure code, as opposed to regular functions. Closure speci�cations can depend on the
captured state, which is invisible to the caller; indeed, closures can evenmodify their captured state and
thus behave di�erently on every call.

Captured state is the de�ning speci�city of closures. But e�ective use of closures in practice requires
the use of some higher-order functional features not strictly related to closures, such as higher-order
functions taking functions/closures as arguments or returning them, and the ability to store functions/
closures in variables or struct �elds. Any satisfactory approach to handling closure code in an automatic
veri�er will thus also bene�t codebases using “only” regular functions (and passing them around, say, as
function pointers).

1The term “lambda” originates, of course, from the lambda calculus, where an anonymous function is represented by a
lambda abstraction λx.f , where x is considered bound in f and f may have further free variables, but they are not “part
of” the λ-expression, whereas a closure explicitly captures the free variables (its “environment”). Thus, the evaluation of
a λ-expression depends on the current (or “activation”, “call site”) environment, whereas a closure will be evaluated in
its “own” environment. Moses [24] views the analogon of a λ-expression in LISP as “a [porous] or an open covering of
the function since free variables escape to the current environment”, whereas by capturing the environment, we achieve
“a closed or nonporous covering (hence the term ‘closure’ used by Landin)” (referring to Landin’s 1964 paper [18]).

6

In this thesis, we present an approach to handling closure veri�cation which aims to be powerful,
modular, expressive, and comprehensible. We draw on the earlier work described in the next section,
combined with several novel features and extensions. Our approach is tailored towards Rust, sometimes
relying on its type system’s guarantees, but not excessively so; thus, our approach should be applicable
to and useful for veri�cation e�orts in other languages as well.

Chapter 2 will accustom the reader with the required background knowledge—introducing relevant
features of the Rust language, our veri�cation toolstack, and previous methodologies that we shall build
upon—before Chapter 3 segues into a description of four categories of real-world closure occurrences,
each one posing di�erent veri�cation challenges and motivating di�erent strategies. The latter will be
discussed in Chapter 4, detailing the speci�cation language at the user level, whereas Chapter 5 presents
the implementation of these strategies at the level of Viper, an intermediate veri�cation language. The
aptitude of our methodology for specifying and verifying a range of example programs is assessed in
Chapter 6, before Chapter 7 concludes this thesis and surveys the prospects of future work on this
topic.

Related work

This thesis draws many ideas from an earlier investigation into closure veri�cation by Kassios and
Müller [15], whose basic ideas are also present inNordio et al.’s work [26]. Additionally, an unpublished
student project report [12] contains some ideas which have been adopted, re�ned, and further developed
here. A formerMaster’s thesis byWeber [37] in PeterMüller’s group also explored automatic veri�cation
of closures, in Python; Weber employs so-called “Call Slots”, meaning speci�c descriptions of the states
in which closure calls happen, together with manual proofs at the call-site of higher-order functions
to ensure that the closure’s speci�cation actually allows it to be used in these particular locations/cir-
cumstances. This approach is burdensome and not very modular, though; also, Weber fails to present a
technique for handling captured state, which by de�nition is essential for closures.
Svendsen et al. [32] discuss the very similar problem of verifying delegates in C#, but they resort to

the use of higher-order separation logic, which is unsuitable for veri�cation e�orts based on �rst-order
logic and SMT solvers. Several other works in the literature [10, 14, 17, 27] also rely on higher-order
logic. There exist also a number of theoretical treatments of higher-order function veri�cation [9, 13,
33], which are often unsuited for automatic veri�cation, as they usually require a large speci�cation
overhead.
Darvas and Leino [5] as well as Leino andMüller [21] present techniques for verifying higher-order

functions in imperative and object-oriented settings, but only for pure functions, whereas the approach
presented in this thesis explicitly aims to support e�ectful closures, by themselves and as arguments to
higher-order functions.

7

2. Background

2.1. Motivation

Closures behave somewhat like instance methods in that they have state associated with them, but
unlike instance methods, a closure’s captured state is hidden and inaccessible to anyone but the closure
itself—at least until the closure’s lifetime ends:

let mut count = 0;
let mut cl = || -> i32 { let r = count; count += 1; r };

assert_eq! (cl (), 0);
assert_eq! (cl (), 1);

// cl is no longer live here
assert_eq! (count, 2);

Closures can be stored in variables, passed around, and assigned to each other:

let hocl = |i: i32| { move || i };
let mut f = hocl (1);
assert_eq! (f (), 1);

let g = hocl (2);
assert! (f () != g ());

f = g;
assert_eq! (f (), g ());

This is especially true for boxed closures, which can be reassigned to instances of completely di�erent
closure de�nitions:

let mut f: Box<dyn FnMut (i32) -> i32> = Box::new (|i| 42);

let mut x = 0;
f = Box::new (move |i| {let r = x; x = i; r });

Moreover, closures are often used in the context of higher-order functions, i.e. functions that take other
functions/closures as arguments, or return them:

let nums = vec! [1, 2, 3];
let doubled = nums.iter ().map(|i| i * 2).collect::<Vec<_>> ();
assert_eq! (doubled, vec! [2, 4, 6]);

8

Amodular approach to veri�cation demands the higher-order function to be veri�ed independently
from its argument closures. Therefore, we must be able to verify closure calls without knowing which
closure gets called (and, by extension, what precise speci�cation it has, what kind of captured state, etc.).

Yet the higher-order function has to knowwhether it can call the closure, may expect some properties
about its behavior, and needs a way to describe the e�ects/result of the closure call:

fn foo (mut f: impl FnMut (i32) -> i32) -> i32 {
// Does f's precondition hold?
let x = f (42);

// f should not return 0
assert_ne! (x, 0);

// What should foo's postcondition be?
x

}

Therefore, there are two angles from which we need to reason about closure calls: Before we can call
the closure, we need to know that its precondition holds, for a given set of arguments and the current
value of the captured state.1 Moreover, a higher-order function might want to place certain restrictions
on the behavior of the closure; say it wants to divide by the closure’s return value, then the closure’s
postcondition should imply that its result is non-zero. Note how these kinds of considerations happen
before the closure was called; thus, we will refer to them as a priori reasoning.
The second angle is about describing the e�ects of speci�c closure calls. This is easier for regular

function calls, because we knowwhich functionwe are calling, and therebywe also know that function’s
concrete speci�cation.2 For closures, however, this information might not be available statically and/or
modularly: A higher-order function can require certain restrictions on its argument closure’s behavior,
as described above, but these restrictions must be weak enough to be ful�lled by all closures we might
want to pass into this function. Thus, a higher-order function usually does not have any concrete
knowledge about its argument closure’s behavior and must express its own behavior abstractly, or
parametrically. For this, we need a way to talk about the e�ects of closure calls abstractly, after they have
happened, i.e. from an a posteriori point of view.

2.2. Languages and Tooling

2.2.1. Closures in Rust

The Rust programming language prevents certain classes of errors related to memory management
statically, through the use of an advanced ownership type system, in which every value always has exactly
one owner, a variable (and, by extension, a thread). Sharing of data (between, say, di�erent functions or

1Implicating the captured state in the preconditionmay sound unintuitive, because the closure’s caller does not have access
to it; however, one can construct examples where, say, a closure should be called at most n times, and this could be
implemented by a counter in the captured state that is exposed to the caller (via views, as we will see in Section 4.1.1) and
mentioned in the precondition.

2This is not true for calling dynamically dispatched methods on trait objects, because the concrete subtype might not be
known, but in that case, we still know the trait method’s speci�cation.

9

threads) can happen viamoves (ownership transfers), copies, and borrowing, which refers to the creation
of non-owning references to an object, either immutable or mutable. The type system guarantees
that only an owned value may be moved or deallocated, and only if there are no live references to it.
Furthermore, at most one mutable reference may exist at a time, and only if there are no other currently-
usable references to the same object, to prevent race conditions and provide framing information: A
referenced object is never modi�ed unexpectedly by another actor (such as a called function or another
thread).3
What is special about Rust closures, compared to the same feature in other languages, is that the

aforementioned rules for value sharing apply; in particular, Rust closures capture their environment by
borrowing values immutably or mutably or bymoving or copying values into them. In the following
example, cl borrows x immutably, y mutably, and z is moved into cl:

let mut x = "x".to_owned ();
let mut y = "y".to_owned ();
let mut z = "z".to_owned ();
let x_borrow = &x; // we can have overlapping immutable borrows

// || introduces a closure; arguments go between the bars:
let cl = || {

let x_clone = x.clone (); // this only reads from x
y.push_str (&x_clone); // modify y
std::mem::drop (z); // this call requires ownership of z

};

cl ();
println! ("{} {}", x_borrow, y); // we can't use z anymore here

ARust closure is modeled internally similar to a struct with one �eld for a function pointer to the
code and additional �elds for every captured value of appropriate types. Because of this, every closure
de�nition is given a unique and anonymous type by the compiler, which is why closure variables cannot
be reassigned even to syntactically equal closures:

let mut cl = |i: i32| -> i32 { i };
cl = |i: i32| -> i32 { i }; // error: mismatched types

Note, however, that multiple instantiations (“instances”) of the same de�nition are all going to have
the same type. This can happen whenever the de�nition is, say, inside of a loop or a function/closure,
and thus can be passed more than once by the control �ow. Instances of the same de�nition, therefore,
can be assigned to each other:

let ho_cl = |i: i32| { move || -> i32 { i } };
let mut a = ho_cl (1);
let mut b = ho_cl (2);
a = b;

Every closure in Rust implements one or more of the three common supertypes (traits) for closures
in Rust:
3An exception to this rule is the notion of interior mutability used by some libraries; this requires the use of unsafe code
to circumvent some of the restrictions.

10

1. The Fn trait, which is implemented by all closures that can be called via immutable references (i.e.,
that do not modify or move their captured state). Closures of this type can be called arbitrarily
often.

2. The FnMut trait, which is implemented by all closures that can be called via mutable references
(and thusmaymodify, but not move, their captured state). Closures of this type can also be
called arbitrarily often.

3. The FnOnce trait, which is implemented by all closures. Closures of this type can be called at least
once; closures that move out their captured state can be called at most once and thus implement
only this trait.

In particular, closures that don’t capture any state, even immutably, can be coerced into simple
function pointers:

let f: fn() -> i32 = || 42;

At the same time, simple functions can always be wrapped into Fn-trait objects, because they don’t have
any captured state and thus can’t modify or move it:

fn g_function () -> i32 { 42 }
let g: Box<dyn Fn() -> i32> = Box::new (g_function);

For further reading on Rust, both in general and relating to closures speci�cally, please refer to the
Rust documentation; in particular, “the book” byKlabnik andNichols [16], the community-maintained
“Rust by Example” [29], and, for examples of closure occurrences as well as documentation about
standardized higher-order functions that work with closures, the Rust standard library manual [34].

2.2.2. Viper

Viper [25] is a veri�cation infrastructure, meaning it is a language for expressing programs and properties
about such programs, together with an implementation that veri�es these properties. Unlike previously-
existing veri�cation infrastructures such as Boogie [19] andWhy [8], Viper was developed with an eye
toward separation logic and permission-based reasoning [28], which it natively supports.

Viper is considered an intermediate language, meaning it is intended to be used as a basis for front-end
veri�cation tools (Prusti, described in Section 2.2.3 below, being one example of the latter). For this
reason, Viper supports di�erent styles of reasoning (e.g., recursive predicates as well as quanti�ed permis-
sions [25, Section 3]) to provide �exibility for the front-end tools, as well as havingmany features relevant
for encoding imperative and object-oriented front-end languages built-in, such as heap references, loops
and other control structures, heap-dependent (pure) functions and (impure) methods, custom types
(via domains), and more.

The core of separation logic is a notion of permissions to �elds of heap objects. Fields are de�ned
globally in Viper:

field a: Int
field b: Bool

11

Fields can be accessed via references:
var r: Ref
var i: Int := r.a // fails

This snippet would fail to verify, because we don’t hold any permissions to r.a. Permissions are
represented by the acc keyword; acc(r.a) means full (exclusive) permission to �eld a of object r, and
acc(r.a, 1/2)means a fractional permission to the same �eld: A full, exclusive permission is required
for write access, and any non-zero permission is su�cient for read access.

Permissions can be added to the current state via inhales:
var r: Ref // fresh variable, we have no permissions
inhale acc(r.a, 1/2) // adds 1/2 permission to r.a
inhale acc(r.a, 1/2) // we now have full permission to r.a

inhale acc(r.a, 1/2) // permission exceeds 1 now

Holding more than a full permission (i.e., a permission greater than 1) to a �eld in a state amounts to
the same e�ect as writing assume false.

exhale has the opposite e�ect of removing permissions from the state:
var r: Ref
inhale acc(r.a) // we now have full permission to r.a
exhale acc(r.a, 1/3) // we still hold 2/3 permission
exhale acc(r.a) // fails, can't have negative permissions

Exhaling permissions that are not currently held is a veri�cation error, equivalent to an assert
false, such as in the last line of the snippet above, where we try to exhale a full permission while only
holding 2/3.
The value of permissions lies in their ability to provide us with framing information: Because

permissions to a �eld of a given object need always add up to one, we know that as long as we hold a
positive amount of fractional permission, nobody else can have full permission, and thus nobody can
modify the �eld unexpectedly. If, however, we give up all of our permissions, then we lose all knowledge
about the �eld’s content, even after regaining permission:

var r: Ref
inhale acc(r.a, 1/2) && r.a == 42
assert r.a == 42 // succeeds

exhale acc(r.a, 1/2)
assert r.a == 42 // fails, insufficient permission

inhale acc(r.a)
assert r.a == 42 // fails, value could have been changed

Permission transfers often happen at method calls:
method inc_a(r: Ref)

requires acc(r.a)
ensures acc(r.a) && r.a > old(r.a)

{
r.a = r.a + 1;

12

}

var r: Ref
inhale acc(r.a) && r.a == 0
inc_a (r)
assert r.a > 0

A method call amounts to exhaling the precondition, potentially losing some or all permissions to
certain �elds and thus possibly some framing information, and inhaling the postcondition, potentially
(re)gaining permissions and some knowledge about the values of certain �elds.

Further reading on Viper may be found in the main publication by Müller et al. [25], in the tuto-
rial [36], and in several more specialized papers on the implementation of Viper, such as Schwerho�
and Summer’s treatise [30] on automated handling of magic wands, and on applications of Viper to the
veri�cation of real-world problems, such as an encoding of weak-memory programs by Summers and
Müller [31].

2.2.3. Prusti

The Prusti project exploits the safety guarantees of Rust’s type system for automatic veri�cation pur-
poses. The input Rust program is encoded in Viper; and in particular, type information from the Rust
compiler is used to construct a so-called “core proof”, which supplies all the necessary separation logic
annotations to allow for automatic veri�cation in Viper to go through. This re-veri�es the memory
safety properties already given by the type system, but it also allows us to give further speci�cations,
concerning functional behavior, or safety properties, such as the absence of crashes and integer over-
�ows. These stronger speci�cations will be integrated into the core proof and checked modularly and
automatically. [1]
If no functional speci�cations are given, and checks for integer over�ows and crashes/assertion fail-

ures are disabled, no annotations need be supplied at all (because the memory safety properties veri�ed
in this case won’t go beyond what is already given by the type system, as described above).

Prusti is able to verify that assert statements such as the following will not fail at runtime:

let x = y * y;
assert! (x >= 0);

Additionally, we can supply functional speci�cations in the form of pre- and postconditions, which
need to be proved where the function is de�ned:

#[requires(i >= 2)]
#[ensures(result > 10)]
fn foo (i: i32) -> i32 {

i * 8
}

This knowledge about foo’s behavior can (andmust, for the precondition) now be used at every call-site
of foo:

13

if y < 2 { y = 2; }
let z = foo (y);
assert! (z / 2 >= 5);

The type system gives us framing information: As long as we hold a currently-usable4 reference
(corresponding to a non-zero amount of permissions) to an object, nobody else can modify it; for write
access, we need a mutable reference (a full/exclusive permission); passing around a mutable reference
(transferring permissions) allows others to modify the object and thus loses framing information.

Since reasoning about Rust code in this way does not require the intimate knowledge of permissions
and separation logic necessary for the e�ective use of lower-level tools like Viper, the Prusti project
hopes “that it lowers the barrier to applying veri�cation” [1], both from a perspective of time/e�ort
(since the construction of the core proof is automatic; so users can focus on functional and safety
properties, rather than worrying about, say, the correct amounts of permissions needing to be passed
around, etc.) and one of knowledge/experience (not requiring a background in veri�cationmight enable
and encourage more users to adopt Prusti for their own projects).

For further reading on Prusti, refer to the main publication by Astrauskas et al. [1].

2.3. Previous Methodology

2.3.1. Speci�cation Functions

Kassios andMüller [15] present a veri�cation methodology to reason about closures based on so-called
specification functions. When a closure is stored in a variable or passed as an argument, it is, in general,
unknown where the closure was de�ned.5 In addition, the same closure definition can lead to many
di�erent instances, as in the following example (adapted from the Kassios/Müller paper, although
Kassios andMüller do not work with Rust code):

let counter = |x: u32| {
let mut count: u32 = x;
let mut inc = move || { let r = count; count += 1; r };
inc ();
inc

};

This necessitates a mechanism for “looking up” closure speci�cations. For this purpose, Kassios and
Müller de�ne their specification functions, one for each closure signature (as the concrete closure could
be any one with a matching signature). Let CI(T1,T2,...)→R denote a common supertype for closures

4Rust has “non-lexical lifetimes”, meaning the borrow checker can deduce a reference to be dead and treat it as such even
while it is still in scope.

5In Rust, every closure de�nition is assigned a unique type during compilation, so we could in principle keep track of (say)
all instantiations of a generic higher-order function for concrete closure types. This is non-modular, though, because
the higher-order function’s speci�cation would then have to be re-checked for every instantiation. Furthermore, this
wouldn’t work for dynamic references (or boxes) to one of the Fn* traits, because they point to a dynamic subtype,
i.e. the concrete closure type (and therefore, its de�nition) won’t be known until runtime in general.

14

with the signature (T1, T2, . . .) → R. Then the pre- and postcondition speci�cation functions will
have the following signature:6

pre(T1,T2,...)→R :
(
CI (T1,T2,...)→R, Heap, T1, T2, . . .

)
→ Bool

post (T1,T2,...)→R :
(
CI (T1,T2,...)→R, Heap, Heap, T1, T2, . . . , R

)
→ Bool

Note how the postcondition function receives two heaps, because it needs to relate the pre- to the
poststate. The arguments may be heap-dependent, i.e. if, say, T1 is a pointer/reference type, then
dereferencing it may yield di�erent results in the pre-/poststate heap.

We can use the speci�cation functions to describe the behavior of higher-order functions, including
counter from above:

let counter =
// ensures: ∀ h : Heap :: pre (result, h)
|x: u32| { ... };

to specify that counter’s result has precondition true. The postcondition is expressed through similar
means, although for this example, we need a further speci�cation function absT that “abstracts” (and
thereby, more importantly, exposes) parts of the captured state (the subscript type in absT is a technical
necessity, as the type of the abstracted captured state is not apparent from the closure’s signature; Kassios
and Müller extend the closure signature to make this explicit,7 but we will omit it here, as it is not
important for the remainder of this section):

// ensures: abs(result) = x + 1
// ensures: ∀ oldh, h : Heap, r : Int :: post(result, oldh, h, r) ⇒
// (r = abs(result, oldh) ∧ abs(result, h) = abs(result, oldh) + 1)

Here, abs with just one argument denotes a special overload that is to be evaluated in the current heap
(i.e., counter’s poststate). x (in abs(result) = x + 1) refers to counter’s argument.

Now, to encode a function call f (t1, t2, . . .), we can write (somewhat simpli�ed from Kassios and
Müller):

assert pre(T1,T2,...)→R
(
H[f],H

)
oldHeap := H
havocH, r
assume post (T1,T2,...)→R

(
oldHeap[f], oldHeap,H, r

)
for fresh r and square brackets denoting heap lookups (writingH[f] is necessary because f , the concrete
closure instance, is not known statically; it could be any closurewith amatching signature, stored behind
a reference, and thus we need to look it up on the heap).
6As a technical necessity, Kassios and Müller additionally pass an “allocation table” to the speci�cation functions, which
they need for encoding allocations/deallocations inside the closure body. We omit this here for simplicity and because
it is not relevant to our approach: Rust’s type system gives us all the knowledge we need about (de-)allocations inside
closures/functions.

7This is actually a modularity problem, at least without adequate subtyping rules in place, because closures with di�erent
types of captured state now no longer have the same signature; a higher-order function will have to decide which kind of
captured state its argument closures may have, etc.

15

To encode calls to higher-order functions, no further action is necessary: The higher-order function’s
speci�cation will probably mention pre and/or post with regards to its argument or result, but the SMT
solver can use whatever knowledge it currently has about these functions (gained either by knowing
the concrete closure instance and its speci�cation, or via the postcondition of some other higher-order
function, or through a manual assume statement, or . . .) to verify a call to a higher-order function in
the same way that a regular function call is handled. For further details on this and other aspects of
speci�cation functions, please refer to the work of Kassios andMüller.

This small “counter” example demonstrates the �exibility of speci�cation functions, but also several
of their weaknesses, especially as a part of the user-level speci�cation language: Speci�cation functions
are not always particularly easy to understand and use for users without a veri�cation background—a
target group of the Prusti project—, and even for experienced users, having to manually quantify over
heaps and such is a bit of a nuisance and not extremely readable. In fact, implementing this technique
requires heaps to be �rst-class objects, to be passed around and quanti�ed over, which is neither possible
in Viper nor compatible with separation logic in general.

2.3.2. Speci�cation Entailments

Hader [12] takes a di�erent approach: At the core of his strategy lie speci�cation entailments. To reason
about speci�cations in assertions, he de�nes a custom syntax:

| t1 : T1, t2 : T2, . . . | { requires: P (t1, t2, . . .) , ensures: Q (t1, t2, . . .) }

where t1, t2, . . . are binders for the closure arguments (Hader mandates their types to be given explicitly,
but these could also be inferred from the context where possible), P is an expression for the precondition
andQ is an expression for the postcondition, which may additionally refer to the result as well as wrap
sub-expressions into old() to refer to the prestate. Either P orQ, or both, may be omitted and default to
“true”. The meaning of such a speci�cation is an implicit8 quanti�cation not only over the arguments,
but also over states: In any state, for any arguments t1, t2, . . . , if P holds, we may call the function and
assumeQ in the poststate.

Now, assuming we have such speci�cations spec1 and spec2, we can use the entailment operator “|=”:

spec1 :
�� params1

�� { requires: pre1, ensures: post1 }
spec2 :

�� params2
�� { requires: pre2, ensures: post2 }

spec1 |= spec2

This is a logical assertion that can be either true or false, expressing that

1. the signatures (params1 and params2) of spec1 and spec2 match;

2. spec1 has a weaker precondition than spec2 (pre2 ⇒ pre1); and

3. spec1 has a stronger postcondition than spec2 (old(pre2) ⇒ (post1 ⇒ post2)).

8This is the analogon to Kassios andMüller’s explicit quanti�cation over heaps.

16

Intuitively, this means that wherever a closure with speci�cation spec2 is expected, we can pass in a
closure with speci�cation spec1; this closure also ful�lls spec2, hence the term “entailment” (knowing
that spec1 holds entails knowing that spec2 also holds).
Note that these rules are equivalent9 to the behavioral subtyping rules for method overloads in

object-oriented programming languages, pioneered by Liskov andWing [23] and subsequently re�ned
by Dhara and Leavens [6]. Thus, we could say that spec1 represents a behavioral subtype of spec2.10
For practical purposes, where the precise (concrete) speci�cation of a closure f is often not known

and we want to check whether f ful�lls a given speci�cation—for instance, f could be an argument to a
higher-order function—, we can write

f |=
�� params

�� { requires: pre, ensures: post }

to express that the concrete (potentially unknown) speci�cation of f entails the given speci�cation (call
it spec3). Assuming this is part of the precondition of a higher-order function, the caller, who might
know the concrete closure instance f (and, therefore, its speci�cation), would have to check whether
the entailment holds. But even if f ’s concrete speci�cation is not known, we may know that a di�erent
entailment holds (e.g. f |= spec1) and use that to prove the above entailment (spec1 |= spec3 in this
example).
In order to encode these entailments without pushing them down to the SMT solver—in other

words, to know even which entailments to encode (such as spec1 |= spec3 in the example above)—,
we need to keep track of the entailments. For this reason, Hader mandates that speci�cations may
occur only in conjunctions and as consequents (but not antecedents) in implications, and not under
quanti�ers, disjunctions, and negations. That way, we know which entailments hold at each program
point (perhaps conditionally, depending on the implications) and can use this information for encoding
further entailments and function calls. For instance, assume we don’t know the concrete speci�cation
of f , but we do know f |= spec1. Then, to encode a call to f , we must assert pre1 and assume post1
(with proper variable substitutions for the arguments to the call, etc.), because we can’t assert/assume
the actual, unknown speci�cation of f .
This presents certain challenges and limitations. In particular, assume that, at some point in our

program, we know both f |= spec1 and f |= spec2; then, to check whether f |= spec3, we need special
handling to encode that spec1 and spec2 together entail spec3, such as in the example given in Figure 2.1.
It is also not clear how to extend this approach to support quanti�ers, at least without reimplementing
triggering/instantiation logic from the SMT solver.
Another issue is the fact that there is no straightforward way to specify, say, the classicmap higher-

order function (given for integers here, for simplicity):

// requires: f |= |i: i32| { requires: true, ensures: ??? }
fn map (self, f: impl Fn (i32) -> i32) -> ...

What should we substitute for ??? above? We can’t give a more concrete postcondition than true,

9Some object-oriented languages may additionally allow the argument types to be contravariant and the return type to
be covariant; here, we assume matching signatures, because Rust does not support subtyping of function/closure types
with di�erent signatures.

10Hader de�nes entailment the other way round, but then uses it the way it’s de�ned here; we believe this to be an error in
his work.

17

spec1 : | i : Int | { requires: i ≥ 0, ensures: result > 0 }
spec2 : | i : Int | { requires: i ≤ 0, ensures: result > 0 }
spec3 : | i : Int | { requires: true, ensures: result > 0 }

Figure 2.1.: Example of two speci�cations together entailing a third.

because map should work for all argument closures; but placing true in the speci�cation above will give
us a very weak postcondition of map.
Hader proposes passing a ghost argument into map:

// ghost_args: P: Pred (i32, i32)
// requires: f |= |i: i32| { requires: true, ensures: P (i, result) }
// ensures: forall idx :: 0 <= idx && idx < self.length
// ==> P (self [idx], result [idx])
fn map (self, f: impl Fn (i32) -> i32) -> ...

Predicates (used here in the sense of boolean pure functions) as ghost arguments are indeed a useful and
powerful feature, but they are not a satisfactory solution to this problem: First, map doesn’t really care
about f’s postcondition, so it would be desirable to have a way to “decouple” f’s behavior from that of
map, and second, the caller of map typically already knows f’s postcondition, so it is a nuisance to have to
specify P explicitly (although this problem could be solved by trying to infer a suitable P automatically
at the call-site, which, although not discussed in Hader’s work, might be doable in principle).
Some other problems remain, too. Most notably, to allow the caller of a higher-order function

to reason about modi�cations to the closure’s captured state, we have to expose the captured state
to the higher-order function, so that it can reason about it in its speci�cation. This is in�exible and
non-modular, however, because the higher-order function shouldn’t, and in fact can’t, know which
kinds of captured state its argument closures may have, how they modify it, etc. We need a way to
opaquely reason about the closure’s behavior and captured state, so that they don’t have to be exposed to
higher-order functions, but the caller still knows what the higher-order function did with the closure.

18

3. Classi�cation

By studying closure occurrences in real-world Rust code on GitHub (informally; that is, without a
representative, statistical analysis), we have identi�ed four di�erent classes of closure uses, each one
describing a di�erent (although potentially overlapping) use case, and, in particular, each one entailing
di�erent veri�cation challenges and thus motivating di�erent veri�cation techniques, which will be
discussed in Chapter 4. Afterwards, as part of the evaluation, Section 6.1 will discuss fully worked out
example speci�cations for instances of each of the classes given in this chapter.
In this chapter, we will sometimes refer to standard library functions as examples for the various

categories; formore information about these functions, refer to the standard library documentation [34].

3.1. Higher-Order Functions over Collections

This category encompasses the traditional, “classic” higher-order functions like map() and fold().
Their de�ning characteristic is that they take an argument closure and call it an unbounded amount
of times while iterating over a collection of elements, each time passing di�erent arguments to the
closure. The precise order of the calls typically isn’t extremely relevant from a veri�cation perspective, as
most map()s and filter()s work in a point-wise fashion, and even many fold()s are associative and
commutative (for instance, using fold() to sum up integers). Furthermore, while argument closures
to these higher-order functions can have side-e�ects, it is often unidiomatic to depend on the order of
these side-e�ects.

The challenge here is to write speci�cations that are

• flexible, from the caller’s perspective: We want to be able to pass any function into map() or
fold(), regardless of their concrete behavior. At the same time, we want to be able to integrate
knowledge about the collection we’re working on—for instance, if we know that a Vec<i32>
contains only positive values, we’d like to be able to pass a closure into map()whose precondition
states that its argument must be nonnegative.

• modular—the higher-order function should not need to know anything about the closure’s
behavior (or the collection’s contents, for that matter); rather, it should have a “parametric”
speci�cation, allowing the caller to use her knowledge of the closure and the collection to reason
about the higher-order function’s precise e�ects at the call-site.

• powerful—of course, we want to capture the higher-order function’s behavior as well as possible.
For instance, for a call to fold(), it is not enough to prove that, say, its result has a certain
property that is implied directly by the closure’s postcondition. Rather, we want to capture the
actual functional behavior of fold():1

1At least to the extent permitted by our underlying veri�cation infrastructure; for instance, at the time of writing, Viper

19

let nums = vec! [1, 2, 3, 4];
let cl =

// requires: a >= 0 && c >= 0
// ensures: result == a + c
// ensures: result >= 0
|a, c| { a + c };

let a = nums.iter ().fold (0, cl);
assert! (a >= 0); // easy
assert_eq! (a, 10); // hard(er)

To verify programs from this category, we will need a way to specify for which arguments (namely,
the ones in the collection we are working on) the higher-order function must be able to call the closure.
Additionally, we need a way to describe how the original collection has been changed (in case we’re
iterating over mutable references), and what the result (a collection for map() and filter(), a scalar
for fold()) looks like.

3.2. Higher-Order Functions with Fixed Behavior

“Fixed behavior” in this case means that it is known statically which closures will be called,2 how often,
with which arguments, in what order, and in which states. This is in contrast with the functions from
the previous section, which call their argument closures an unbounded amount of times and where the
order of the calls is often irrelevant and/or hard to capture.
The challenge here is to write a speci�cation which is as precise as possible, because we know exactly

what calls will happen. But at the same time, the speci�cation should remain modular, so that a client
can reason about the e�ects on, say, the argument closure’s captured state, without needing to expose
it to the higher-order function. This would be non-modular and in�exible, because the higher-order
function’s speci�cation would have to be adapted every time for the precise kind of captured state.

A classic example that would �t into this category is function composition:

fn compose<A, B, C> (mut f: impl FnMut (A) -> B,
mut g: impl FnMut (B) -> C) -> impl FnMut (A) -> C

{
move |a: A| g (f (a))

}

Furthermore, in Rust, every higher-order function that takes an FnOnce closure (and thus calls it at
most once, typically in a speci�c state under speci�c circumstances) falls into this category; the ample set
of examples includes Option::map(), Result::map_err(), hash_map::Entry::or_insert_with,
and more.

does not support set comprehensions, which would be necessary for even expressing things like a sum over a collection
of integers formally. However, these are orthogonal problems; the techniques presented in this thesis should work out
of the box with a potential future implementation of set comprehensions in Viper.

2The closure de�nition that gets called may not be known; what is meant here is that it is known, say, that some argument
closure f is called exactly once.

20

For this category, we need precise tools for describing exactly in which state(s) the closure’s precondi-
tion must hold, as well as for describing and relating the precise state(s) in which the call(s) happened
and which e�ects they manifested.

3.3. sort_by()

sort_by() sorts a vector according to some ordering relation, given by an argument closure. sort_by()
warrants a category of its own, because its speci�cation needs to express non-trivial properties about its
argument closure as well as its result:

• The comparator closure needs to be re�exive, antisymmetric, and transitive. The latter two
properties, in particular, are not even readily expressible in normal speci�cations, because they
relate pairs and triples of calls together (e.g. “for all pairs of calls f (a, b) and f (b, a), if both calls
return true, then a = b”).

• The order of elements in the result not only matters but needs to be expressed in terms of the
argument closure’s behavior: “The result is sorted according to the ordering relation implemented
by the comparator function.”.

Other examples that go in a similar direction are the Vec::dedup_by() and slice::partition_de-
dup_by() functions, which deduplicate vectors/slices according to the equality relation given by their
argument closures. These comparator closures thus need to be re�exive, symmetric, and transitive.

3.4. Boxed Closures, Dynamic References to Closures, and
Function Pointers

This category is less about how the closure gets used, and more about how it is stored. Every closure
gets a unique type in Rust, so it is impossible to reassign closure variables except to di�erent instances
from the same de�nition, as described in Section 2.2.1. This provides framing information in the sense
that a closure (meaning the executable part of it) stored in a variable can’t ever be changed, and thus its
behavior also cannot change, only the value of its captured state (which may, of course, in�uence the
behavior, but nonetheless it is always the same code that is being executed). The same is not true for
closures stored in boxes or accessed through dynamic references and function pointers:

// Function pointer:
let mut cl_fp: fn (i32) -> i32 = |i: i32| -> i32 { i };
cl_fp = |i: i32| -> i32 { i + 1 };

// Boxed closure ("dyn" because the concrete type is a dynamic subtype):
let mut cl_box: Box<dyn Fn (_) -> _> = Box::new (|i: i32| -> i32 { i });
cl_box = Box::new (|i: i32| -> i32 { i + 1 });

// Dynamic reference:
let mut cl_ref: &dyn Fn (i32) -> i32 = &(|i: i32| -> i32 { i });
cl_ref = &(|i: i32| -> i32 { i + 1 });

21

This is a useful feature for storing a closure in a �eld of a struct, for instance; imagine a callback function
of sorts that can be accessed and changed via getter and setter functions as an example. However, this
feature also poses additional challenges from a veri�cation perspective: Knowing that, say, *cl_ref
was called with a certain argument no longer tells us anything about the result if we don’t also know
which closure cl_ref referred to at the time of the call (in fact, we wouldn’t even be allowed to call the
closure because we wouldn’t know whether the precondition holds).

22

4. Methodology

In this chapter, wewill present techniques for the basic veri�cation of (�rst-order) closures in Section 4.1,
before examining higher-order function (and, in principle, closure) veri�cation from two di�erent
angles: First, the ahead-of-time, a priori angle, which allows us to reason about future closure calls in
unknown states and with unknown arguments. The questions we need to answer here include: Are we
allowed to call a certain closure? If so, in which state(s)? What behavior do we expect from the closure?
These challenges are solved by specification entailments, discussed in Section 4.2.

Second, and dually/complementarily to the previous point, there is an a posteriori perspective, to
reason about the e�ects that have manifested in concrete calls, with known arguments and relating
speci�c states. The challenge here is to describe a higher-order function’s behavior, which depends on
the behavior and side-e�ects of its argument closures,modularly (or parametrically); that is, without
relying on any speci�c behavior of the argument closures in the higher-order function’s speci�cation.
In other words, we want to decouple the higher-order function’s speci�cation from that of its argument
closures, which is achieved by the arrow notation presented in Section 4.3.
Finally, we will present ghost arguments and results, particularly ghost argument/result functions,

which will prove especially useful for the veri�cation of certain higher-order functions such as fold()
in Section 4.4.

4.1. Closure Speci�cations

Before we can talk about the speci�cations and e�ects of higher-order functions, we need a way to
express the behavior of closures themselves, i.e. a way to attach speci�cations to closure de�nitions.1
Just as regular functions, closures will have pre- and postconditions:

let cl =
// requires: i >= 0
// ensures: result % 2 == 0
|i: i32| -> i32 { ... };

In addition, though, closure speci�cations may depend on captured state. Just as a function’s
speci�cation must be proved in all states, for all arguments, so does a closure speci�cation have to
be proved in all states, for all arguments, and for all values of the captured state. This is a sound
overapproximation—but not all values of the captured state are actually reachable, depending on the
closure’s behavior. In Section 4.1.3, therefore, wewill examineways to restrict this implicit quanti�cation
over states to “relevant” states, using invariants. We will also look at how to reason about the captured
state from the outside using “views” (Section 4.1.1), how to include knowledge about the values in the
enclosing scope in that reasoning (Section 4.1.2), and a possible extension of the captured state with
ghost state for additional �exibility (Section 4.1.4).
1The foundations for this section are fromHader’s work [12].

23

4.1.1. Exposing the Captured State through Views

The captured state can be made visible to the outside (for speci�cation purposes only) as views, which
are expressions composed of constants and captured state; in adherence to the principle of information
hiding, the speci�cationmay only talk about views (and not the invisible, unexposed rest of the captured
state). Views must not have side-e�ects; in particular, they cannot be used to mutate the captured state,
and they may only have copy (i.e., implementing the Copy trait) or reference types—it is not allowed to
move out values from the captured state through views. Here is a simple example:

let mut dist: i32 = 0;
let mut walk =

// views: km: i32 = dist / 1000
// requires: meters >= 0
// ensures: old(km) <= km // OK
// ensures: old(dist) <= dist // Error
|meters: i32| -> i32 { dist += meters; dist };

Views are conceptually attached to the closure type, so whenever a closure of a certain type exists,
the views associated with it are also visible. In particular, though, a higher-order function receiving
a closure argument of unknown type (say, T: impl Fn...) won’t be able to access its views (which
makes sense, because it should work for any concrete type, which could have any set of views).

Unlike Hader, we also allow for views to take arguments; for instance:2

let mut nums = vec! [1, 2, 3];
let cl =

// view: el: (idx: usize) -> Option<i32> = nums.get(idx)
|i: usize, v: i32| {

let r = nums[i];
nums[i] = v;
r

};

4.1.2. Reasoning about the Enclosing Scope

Mutable captured state must be havoced when proving speci�cations, as it may be modi�ed at will by
the closure:

let mut j: i32 = 42;
let mut cl =

// does not ensure anything (except true)
|| { j = rand::random (); j };

On the other hand, we might expect information about immutable captured state to be preserved when
proving the speci�cation:

let i: i32 = 42;
let cl =

2The view returns an Option, to account for the possibility of idx being out of range for nums. Views are ghost code and
thus must not have side e�ects; in particular, they may not cause panics.

24

// ensures: result == 42
|| { return i; };

Unfortunately, this won’t work, because the Rust compiler will encode a closure de�nition as a regular
function, taken out of the context wherein it was de�ned, and thus the information about the enclosing
scope will be lost. In particular, for the example above, when proving the closure body, we won’t know
modularly (with the closure de�nition taken out of context) that i == 42, and thus we won’t be able
to prove the speci�cation. Instead, we can prove the following:

let i = 42;
let cl =

// view: captured_i: i32 = i
// ensures: result == captured_i
|| i;

assert_eq! (42, cl ());

This may be slightly less explicit and intuitive, but it essentially does not lose any information, because
at the instantiation-site of the closure (where the closure instance is created, i.e. the assignment to
cl above), we can combine the closure speci�cation with our knowledge of the captured state (i in
this case). In addition to the assert_eq!(), we could also prove cl |= || { ensures: result ==
42 } (using a speci�cation entailment from Section 4.2), because that, too, would be evaluated at the
instantiation-site.

4.1.3. Invariants

Single-State Invariants

Speci�cations talk about behavior that a closure must adhere to in all states, for all arguments. But
sometimes, when working with mutable captured state, this interpretation is too restrictive. Consider
the following example:

let mut count: i32 = 0;
let mut inc =

// view: count: i32 = count
// ensures: result >= 0 // fails
move || { let r = count; count += 1; r };

We cannot currently prove this postcondition, because count is mutable captured state, and so we need
to havoc it when proving the speci�cation, as an overapproximation to guarantee correctness (at the
expense of completeness). This suggests that there should be a way of attaching invariants to closures,
which must be established by the initialization and preserved by every call (thanks to the guarantees
made by Rust’s type system, we know that nobody else can have mutable access to the captured state,
so calls (and assignments, see below) are the only way in which the captured state can be modi�ed):

let mut count: i32 = 0;
let mut inc =

// view: count: i32 = count
// invariant: count >= 0
// ensures: result >= 0
move || { let r = count; count += 1; r };

25

This allows us to prove the postcondition of inc. The invariant will be checked “on entry” (i.e., when
the closure instance is created) and then implicitly added to the pre- and postcondition, to ensure
preservation and to allow it to be used when proving the body. Again, the invariants may only talk
about views, i.e. the exposed part of the captured state, and not “hidden” captured variables.

History Invariants

Single-state invariants are useful, but not yet su�cient to prove examples like the following:
let a = inc ();
// arbitrary code in between (but no assignments to inc)
let b = inc ();
assert! (a < b);

Here, a simple invariant is not enough: We need a way to relate di�erent “versions” of the captured state
across potentially many (and a statically-unknown number of) calls. Luckily, the captured state is not
modi�ed in a completely haphazard manner, but in an orderly fashion, and we can capture this using
a history invariant. History invariants (or constraints) have originally been introduced by Liskov and
Wing [23]; here, we will use the de�nition by Leino and Schulte [22] of history invariants as re�exive
and transitive two-state invariants, relating any earlier to any later state of an object during a program’s
execution. Intransitive two-state invariants (as used e.g. by Cohen et al. [2] for their work on concurrent
programs), relating only successive states, are un�t for our purposes, because they would be redundant
with the pre-/postcondition and insu�cient for reasoning about multiple (perhaps even an unknown
number of) closure invocations.

Returning to our example, we can specify old(count) <= count as a history invariant for inc:
let mut count: i32 = x;
let mut inc =

// view: count: i32 = count
// invariant: old(count) <= count
// ensures: result == old(count) && count == old(count) + 1
move || { let r = count; count += 1; r };

Note that old(), when used in an invariant de�nition, does not refer to an immediate prestate, as it
would in a postcondition; rather, as noted above, old() refers to any former state (and, indeed, thanks
to the re�exivity requirement, this could even be the current state). This allows us to prove the example
from above, by instantiating the history invariant for our concrete pair of states:

// label L1
let a = inc ();
// label L2
// ...
// label L3
let b = inc ();
assert! (a < b);

We can now reason that a == old[L1](inc.count) (with inc.count referring to the view count
of inc) and old[L2](inc.count) == old[L1](count) + 1. Furthermore, by the history invariant,
we know that old[L2](inc.count) <= old[L3](inc.count); and so b == old[L3](inc.count)
gives us a < b as desired.

26

Preservation of History Invariants Across Assignments

There is one remaining challenge for working with history invariants, which is exempli�ed by this piece
of code:

let hocl = |i: i32| {
let mut count = i;
return move || {

let r = count;
count += 1;
return r;

};
};

let mut a = hocl (5); // invariant old(count) <= count (count == 5 here)
let mut b = hocl (1); // count == 1
a = b; // history invariant violated

Although we haven’t de�ned a syntax for this situation yet, assume hocl guarantees that its result will
have a view3 count: i32 and an invariant old(count) <= count. The assignment a = b; is valid
only because the instances a and b both originate from the same de�nition (if not, they would have
di�erent (and thus unassignable) types, as every closure de�nition gets a unique, anonymous type in
Rust). This means that we can only ever assign instances of the same closure de�nition to each other,
which means that they will always have the same speci�cation, but they may di�er in their captured
state, and so assignments can violate history constraints.
However, is the history invariant really violated? After all, one can argue that after the assignment,

a contains a di�erent instance, and that invariants should only be preserved along the lifetime of the
same instance. The problem is that “objects” (such as closure instances) in Rust do not have a clear
identity, meaning it is not actually possible to check whether a variable still holds the same instance or
not—testing for equality (if it were allowed; closure instances can’t be tested for equality in Rust, but
the same issue applies to other aggregate types, like structs) would simply compare the values of the
captured state, but not any notion of identity.

Further di�culties arise when working with references: Assume that we borrow a mutably, and pass
the reference to a higher-order function; how do we know whether a still holds the “same” instance
afterwards, and so, in particular, whether the history invariant has been preserved? Without this
knowledge, history invariants are rather useless because we never know whether or not they have been
preserved whenever passing closures around; but passing closures around is precisely one of the use
cases that motivate history invariants in the �rst place.

To resolve this conundrum, we propose a special operator hist_inv(T, T) -> bool, with T being
some closure type, that returns true i� the history invariant holds between the two arguments. This
is automatically true for every closure call (i.e., between the old and new instance value) but must
be preserved explicitly otherwise. For instance, in the example above, just before the assignment,
hist_inv(a, b) is false but hist_inv(b, a) would be true.
A higher-order function could require this in its precondition:

3Actually, this will be solved with ghost result functions instead of views; see Section 4.4.2, where we will revisit this very
example in Figure 4.2.

27

// requires: hist_inv(*f, g)
// ensures: hist_inv(old(*f), *f)
fn foo<T: FnMut () -> i32> (f: &mut T, g: T)
{

*f = g;
}

Here, foo’s speci�cation says that f’s history invariant is preserved across the call to foo. In fact,
considering how the vast majority of higher-order functions never assign any closure instances to
each other, it makes sense to add a default “invariant preservation” postcondition of the form hist_-
inv(old(*f), f) to every higher-order function, for every mutable argument closure reference f that
it takes. A higher-order function that does, in fact, “break” history invariants by assigning “incompatible”
instances could be marked with a special breaks_invs annotation, which would compel the veri�er to
refrain from adding these defaults.

Invariants for Boxed Closures

Say cl is a boxed closure (of type Box<dyn Fn...>). Then an expression of the form hist_inv(old(
cl), cl) would not be well-formed, because the box could have been reassigned to a completely
di�erent instance, meaning old(cl) and cl do not refer to instances of the same de�nition, and thus
may have di�erent captured variables, di�erent invariants, etc.Wemust therefore adjust our conception
of hist_invwhen the argument has a dynamic type (such as dyn Fn () -> i32; either in a box or as a
dynamic reference): Speci�cally, hist_inv(a, b) should hold i� both a and b have the same concrete
type (at runtime), and hist_inv(a, b) holds for a and b as their concrete type.

4.1.4. Ghost State for “Tracing”

Consider the following example, where we de�ne a closure that returns a unique identi�er:

let count = 0;
let id =

// view: count: i32 = count
// invariant: old(count) <= count
// ensures: result == count && count == old(count) + 1
|| -> i32 { count += 1; count };

This speci�cation works in that we can prove that every returned value is, indeed, unique (because we
know the invariant old(count) <= count and the postcondition count == old(count) + 1, and
thus the result is always strictly larger by at least one than all previous values of count). However, the
speci�cation does not straightforwardly express this, and it also violates information hiding, because it
exposes too much about the implementation. For instance, the following implementation should be
equally correct for our purposes:4

let mut vals = vec! [];
let mut id2 =

// view: vals: Vec<i32> = vals

4At least when reasoning about partial correctness, because this version is no longer guaranteed to terminate.

28

// invariant: old(vals) subset vals
// ensures: result in vals && !(result in old(vals))
|| -> i32 {

let mut r: i32;
while { r = rand::random (); !vals.contains (&r) } {}
vals.push(r);
r

};

What we really want to express is that the returned value has never previously been returned, which
is similar to what the previous example guarantees in its postcondition, but we want a built-inway to
express this, so that both the former and the latter implementation will adhere to the same speci�cation.

For this, we propose additional ghost state prev_args, which is a multiset of tuples, corresponding
to the closure’s signature, containing, conceptually, one tuple for every call to the closure, with the
arguments of that call (deeply, i.e. containing not only references, but also their contents). This allows
us to describe the captured state more precisely; for instance, we can now express what a counter actually
does:

let mut count = 0;
let inc =

// view: count: i32 = count
// invariant: count == |prev_args|
|| -> i32 { let r = count; count += 1; r };

where |prev_args| is the cardinality of prev_args, which contains only empty tuples here, as the
closure does not take any arguments.
Here is a slightly more complex example, using set comprehensions to describe how the view s

changes over time:

let mut s = 0;
let add =

// view: s: i32 = s
// invariant: s == sum { i for (_, i) in prev_args }
|a: i32, b: i32| -> i32 { s += b; s + a };

Similarly, prev_results contains all previous results, which allows us to give a precise and abstract
speci�cation for both of the “unique identi�er” implementations above, and does not require any
exposure of the captured state:

let mut id =
// ensures: !(result in old(prev_results))
|| -> i32 { ... };

Note that we don’t need to add result in prev_results to the postcondition, as this is implicit
in the meaning of prev_results. To prove the above speci�cation, we might need some additional
invariants:

let count = 0;
let id =

29

// view: count: i32 = count
// invariant: old(count) <= count
// invariant: forall r: i32 :: {r in prev_results}
// r in prev_results ==> r <= count
// ensures: !(result in old(prev_results))
|| -> i32 { count += 1; count };

Of course, actually keeping track of all previous arguments and results would be quite heavyweight.
But this is not usually necessary; as with the other invariants described in the preceding sections, their
value lies mostly in instantiations for speci�c states; for instance:

let a = id ();
let b = id ();
assert_ne! (a, b);

We don’t actually need to know all previous results of id here, only that at the time of the second call, a
was in prev_results but b wasn’t; that’s su�cient to assert inequality.

We can also use this feature to express that a closure was only called a certain number of times;
for instance, map() could guarantee something like f.prev_args == old(f.prev_args) union {
(x,) for x in old(self.vals) } for its argument closure f. This allows for even more precise
reasoning about the closure’s captured state at the higher-order function’s call-site.

4.2. Speci�cation Entailments

Speci�cation entailments are primarily motivated by two applications. First, higher-order functions
need a way to express a “lower bound” on the behavior of its argument closures; for instance, map()
will call its argument closure once for every element of the collection it is operating on, and thus,
the precondition of the argument closure should hold at least for all of these elements as arguments.
Similarly, a higher-order function might require that its argument closure’s postcondition implies at
least that the result is, say, non-negative. Thus, we need a way for higher-order functions to express
such constraints on the behavior of their argument closures.

Furthermore, any concrete closure that is passed into such a higher-order function will usually have a
stronger, more precise speci�cation. Thus, we also need a way to check whether the concrete speci�ca-
tion satis�es the “lower bound” given by the higher-order function’s speci�cation—in other words, we
need a way to check whether the latter is a valid weakening of the concrete speci�cation. Both of these
purposes will be served by speci�cation entailments.

Second, we need a way to restrict, or strengthen, closure speci�cations in order to take additional
call-/instantiation-site information into account. Consider this example:

let create_cl = |i: i32| {
move || i

};
let mut f = create_cl (1);
let mut g = create_cl (2);

30

Assuming we add proper speci�cation annotations to this snippet, we’d like to be able to prove f |=
|| { ensures: result == 1 } and g |= || { ensures: result == 2 }, even though f and g
are both instances of the same de�nition. Therefore, speci�cation entailments should also serve the
purpose of concretizing speci�cations, of “tying” them to speci�c instances. Note, however, that this
creates a framing problem:

f = g;
assert_eq! (f (), 1); // fails

In other words, our knowledge about f’s behavior was invalidated by the assignment (in fact, we know
the new behavior, i.e. that f is going to always return 2 from now on). At the same time, we want
entailed speci�cations to be framed across calls, otherwise the speci�cation would not be of much use;
but calling a closure can also change its captured state, i.e. the instance value. This conundrum will be
resolved in Section 4.2.3 by introducing history invariants and using them for a precise de�nition of
when a speci�cation is framed and when it is not.

The main idea behind speci�cation entailments has already been discussed in Section 2.3.2. In the
remainder of this section, we build on and extend Hader’s work in several respects.

4.2.1. Components of |=

This is the basic syntax for speci�cation entailments:

cl |= |a1: T1, a2: T2, ...| { requires: P, ensures: Q, invariant: I }

where

• cl is the closure instance whose behavior we are describing;

• |a1: T1, a2: T2, ...| is a list of binders for the closure arguments, whose types may be
given explicitly but could also be inferred from the type of cl;

• P is an assertion representing the precondition;

• Q is an assertion representing the postcondition; and

• I is an assertion representing the invariant.

The closure instance could be any expression that evaluates to a closure (or function) type. The pre-
and postcondition may refer to the arguments (and to the variables of the enclosing scope through
outer(), as described in Section 4.2.5), and the postcondition may additionally refer to result and
old(). The invariant will be described in Section 4.2.3. The arguments a1, a2, . . .must not shadow
variables bound in the enclosing scope, to avoid confusion and ambiguities.

31

4.2.2. Entailments in Conjunctions, Pattern Matches, and under Quanti�ers

Traditionally, a function will have exactly one speci�cation. Similarly, in Section 4.1, every closure
was annotated with one speci�cation.5 But any closure or function usually adheres to more than one
speci�cation: Most speci�cations can be strengthened and weakened. Strengthening means adjusting
the speci�cation to match the closure’s behavior more precisely, which requires full knowledge about
the closure implementation and is not always desirable, even if that knowledge is available, as it may
expose too many implementation details.

Weakening, on the other hand, doesnot require any additional knowledge about the closure: Anybody
who knows that some speci�cation holds for the closure may weaken it by strengthening the pre- and
weakening the postcondition, without needing any additional information. Additionally, speci�cation
weakening is “harmless” in that it won’t interfere with information hiding. And �nally, speci�cation
weakening is necessary when passing closures around, e.g. as arguments to higher-order functions: Any
concrete closure we pass into a higher-order function will have its own speci�cation, possibly stronger
than what is required by the higher-order function’s precondition; thus, the closure’s speci�cation
must be weakened in order to prove the precondition.

We can also indirectly weaken a speci�cation by putting the speci�cation entailment operator under
an implication or pattern match, as in this example, which shows a possible precondition for the map()
function of Option<T>:

// requires: match self {
// None => true,
// Some(x) => cl |= |i| { requires: i == outer(x) }
// }
fn map<U, F: FnOnce(T) -> U> (self, cl: F) -> Option<U> { ... }

Putting the speci�cation entailment under the pattern match is a relaxation of the precondition: The
caller only has to prove the entailment if the option actually contains (or may contain) a value. Similarly,
di�erent speci�cation entailments could be given for the di�erent branches of the match. Also, note
how this pattern match is conceptually very similar to two conjoined implications; informally speaking:

// requires: (self is None ==> true)
// && (self is Some(x) ==> cl |= |i| { requires: i == outer(x) })

Entailments in consequents of implications are therefore also supported. This can be useful when
learning something retroactively about the closure’s captured state:

// ensures: (result == 0) || (result == 1)
fn coin_toss () -> i32 { rand::random () % 2 }

fn foo () {
let i = coin_toss ();

let mut x = 0;
if i % 2 == 0 { x = 3; } else { x = 5; }

5Technically, every closure was annotated with at most one speci�cation, because pre- and postcondition can default to
true if left unspeci�ed, but this still yields exactly one speci�cation per closure de�nition.

32

let cl =
// view: x: i32 = x
// invariant: x == old(x)
// ensures: result == 2*x
move || { 2 * x };

if i == 0 {
assert_eq! (cl (), 6);

}
}

Instead of exposing x (as in this example) and carrying that information around, we can write, after the
closure de�nition (informally speaking, because actual Rust assertions, of course, take Rust expressions
and thus don’t support speci�cation entailments):

assert (i == 0 ==> cl |= || { ensures: result == 6 })
&& (i == 1 ==> cl |= || { ensures: result == 10 });

This example also demonstrates the utility of conjoining speci�cations. Conjoined speci�cation entail-
ments also occurred in Figure 2.1:

assume cl |= |i: i32| { requires: i >= 0, ensures: result > 0 }
assume cl |= |i: i32| { requires: i < 0, ensures: result > 0 }
assert cl |= |i: i32| { requires: true, ensures: result > 0 }

Our methodology explicitly aims to account for and support such scenarios.
Universal quanti�cation over speci�cation entailments, too, can prove highly useful, as we will see in

Section 4.4.4 and Figure 4.3 in particular. For now, we have to content ourselves with this contrived
example, which nonetheless illustrates the idea:

assert forall k: i32 :: cl |= |i| { requires: i >= outer(k),
ensures: result >= 2*outer(k) }

Although of perhaps a lesser practical utility, our encoding will also, in principle, allow for speci�-
cation entailments to occur in disjunctions, under existential quanti�ers, and even in negations and
antecedents of implications. Decisions on the extent to which these should be supported in practice
thus become a language design choice, rather than being constrained by technical limitations.

4.2.3. Entailments with Invariants

Entailing Invariants

Recall the discussion of invariants fromSection 4.1.3, and refer to Section 4.4 for ourmethod of exposing
captured state. It is useful to be able connect the two, i.e. we want a way to express invariants on exposed
parts of the captured state in speci�cation entailments.

To illustrate, consider this contrived example of a higher-order function taking a counter closure:

// ghost_arg: cnt: (T) -> i32
// requires: c |= || { ensures: result == old(cnt(self))
// && cnt(self) == old(cnt(self)) + 1 }
fn take_counter<T: FnMut () -> i32> (c: T) {}

33

This speci�cation implies that cnt(c) is non-decreasing. But we can make this explicit by including an
invariant in the speci�cation entailment in the precondition:

// requires: c |= || { ensures: result == old(cnt(self))
// && cnt(self) == old(cnt(self)) + 1,
// invariant: old(cnt(self)) <= cnt(self) }

From take_counter’s perspective, this invariant has the standard meaning (as in Section 4.1.3), i.e. we
can instantiate it for every concrete pair of states and so on. To prove it, take_counter’s caller can use
her knowledge about the de�nition of cnt and c’s actual invariant to see whether the invariant in the
speci�cation entailment actually holds.
We can also use prev_args and prev_results from Section 4.1.4, which always have the implicit

invariants of being non-shrinking, i.e. every previous value is a submultiset of every later value. For
example, a higher-order function taking a unique identi�er closure could be speci�ed as follows:

// requires: c |= || { ensures: !(result in old(prev_results)) }
fn take_id<T: FnMut () -> i32> (id: T) { ... }

Entailments using Invariants

Consider, once again, the counter example:
let mut count = 0;
let inc =

// view: count: i32 = count
// invariant: old(count) <= count
// ensures: result == old(count) && count == old(count) + 1
move || -> i32 { let r = count; count += 1; r };

Now suppose we call inc once. Afterwards (with inc.count == 1), should the following entailment
be considered to hold?

inc |= || { ensures: result >= 1 }

It certainly does not hold in all states; indeed, the previous, �rst call to the closure returned 0 and
therefore violated this speci�cation. On the other hand, taking the history invariant into account, we
know that from now on, all calls will certainly return a value not less than one.

We can therefore re�ne our understanding of closure speci�cations and speci�cation entailments to
talk only about reachable states: Knowing the current value of count, namely 1 in our example, and
the history invariant old(count) <= count, we can prove the entailment above, for all future calls.
Note, however, that assignments can interfere with this:

// count and inc defined as above
let mut save = inc;
inc ();
// inc |= { ensures: result >= 1 }
inc = save;
assert_eq! (inc (), 0);

So how do we know whether an assignment preserves an entailed speci�cation? The answer lies in the
hist_inv operator from Section 4.1.3: For any two instances cl1 and cl2 of the same closure type,
knowing cl1 |= 〈spec〉 implies cl2 |= 〈spec〉 if we can prove hist_inv(cl1, cl2).

34

Entailments for Single Calls: |=!

We can re�ne the entailment operator even further: Instead of reasoning about all calls “from now on”,
sometimes it makes sense to talk about the very next call only. For this purpose, we de�ne a special
operator |=!, which checks whether the next call to the closure ful�lls a certain speci�cation.
To illustrate, consider the Option::map() function from Rust’s standard library:

pub fn map<U, F: FnOnce(T) -> U>(self, f: F) -> Option<U> {
match self {

Some(x) => Some(f(x)),
None => None,

}
}

Note, in particular, how map calls its argument closure at most once; thus, its precondition should
only have to reason about the single next call to the argument closure f. This can make a di�erence for
examples such as this one:

let mut count = 0;
let mut cl =

// view: count: i32 = count
// requires: i != count
// ensures: count == old(count) + 1
|i: i32| -> f32 { let r = 1.0 / ((i - count) as f32);

count += 1; r };

let opt = Some (1);
let a = opt.map (&mut cl); // works
let b = opt.map (&mut cl); // fails, precondition of cl does not hold

Here, cl can only be passed once to opt.map(), because the second call would violate cl’s precondition
i != count. We can express the precondition for map using the |=! operator:

// requires: match self {
// Some(x) => f |=! |i| { requires: i == outer(x) }
// None => true
// }

If map’s precondition had instead been expressed using the |= operator, even the �rst call would have
been invalid, because i == outer(x) is not su�cient to imply cl’s precondition in all states; it is,
however, su�cient to conclude that the precondition will hold for the very next call (only), i.e. with the
captured variables in the current state (with cl.count == 0).

4.2.4. Nested |=

It is possible to nest speci�cation entailments. The most obvious application for this is for higher-order
closures:

// requires: g |= || { ensures: result >= 0 }
// requires: f |= |x| { requires: x |= || { ensures: result >= 0 } }

35

fn foo<G: Fn () -> i32, F: Fn (G) -> i32> (f: F, g: G) -> i32 {
f (g)

}

This precondition for foo expresses that g has to return a nonnegative value and that we must be able
to call f with any closure (with the correct signature) that returns only nonnegative values.

However, nested entailments are more generally useful than that. Consider an “immediate” function
composition (“immediate” meaning that instead of returning the composition, the result for a given
input is returned):

fn compose_imm<A, B, C, F, G> (mut f: F, mut g: G, a: A) -> C
where F: FnMut (A) -> B,

G: FnMut (B) -> C
{

g (f (a))
}

What we need to express in the precondition of compose_imm is that we can call f with argument a and
g with whatever result f produced. We can express this using nested entailments:

// requires: f |=! |x| { requires: x == outer(a),
// ensures: outer(g) |=! |b| { requires: b == outer(result) } }

Remember that preconditions are contravariant, sowriting requires: x == outer(a)doesnotmean
that f can only be called with this argument; instead, it means that knowing x == outer(a) must be
sufficient to imply f’s precondition. For instance, assume A is i32 and compose_imm’s caller passes 42
in a. Then f(a)’s actual precondition could be true, a > 0, a % 2 == 0, . . .

The same strategy also works for g’s precondition: Instead of stating it explicitly (which is impossible
to do modularly, because we don’t know which concrete gs will be passed into compose_imm) or with
the help of ghost speci�cation arguments (which is inelegant and causes extra speci�cation overhead),
we can write that “knowing g’s argument was the result of the call to f must be su�cient to imply g’s
precondition”. This is modular as well as powerful and �exible: For instance, assume f(a)’s postcondi-
tion implies a % 2 == 0 ==> result > 0, and that compose_imm’s caller passes 42 in a, then a valid
argument for g would be any closure whose precondition requires that its argument is positive, despite
the fact that f does not in general guarantee positivity of its result.

4.2.5. The outer() Keyword

The purpose of the outer() keyword is to relocate the evaluation of its argument subexpression into
the context of the speci�cation entailment itself. For instance, in the following example, we want to
express that we can call f(i), with the value of i from foo’s prestate:

// requires: f |= |x| { requires: *x == *i } // WRONG
fn foo (f: impl Fn (&mut i32) -> i32,

i: &mut i32) -> i32 {
f (i)

}

36

What is the meaning of *i in this example? Remember that |= contains an implicit quanti�cation over
states: It checks that the speci�cation holds in all states.6 In particular, then, writing *x == *i above
is misleading, because we don’t want to quantify over the state of *i; rather, we want *i to be evaluated
in the context of the |= itself—namely, foo’s prestate. This is made explicit by writing outer(*i):

// requires: f |= |x| { requires: *x == outer(*i) }
fn foo (f: impl Fn (&mut i32) -> i32,

i: &mut i32) -> i32 {
f (i)

}

Plain *i is forbidden because it is misleading and, depending on how the ambiguity of its meaning is
resolved, either redundant with outer(*i) (if it is interpreted as being evaluated in the outer state) or
meaningless (if it is interpreted in the inner state, where its value is unknown). The expressions inside
the braces of the speci�cation entailment may thus only refer to variables bound by the argument list
(|x| in the example above) and literals; everything else needs to be wrapped in outer() to pre-empt
ambiguities.

Entailments can also occur in a higher-order function’s postcondition, as in this example:

// ensures: result |= || { ensures: result == outer(*i) }
fn bar (i: &mut i32) -> impl Fn () -> i32 {

*i += 1;
let val = *i;
return move || val;

}

// ensures: result |= || { ensures: result == outer(old(*i)) }
fn baz (i: &mut i32) -> impl Fn () -> i32 {

let val = *i;
*i += 1;
return move || val;

}

Note the subtle di�erence between the two speci�cations: One evaluates *i in the context of |=,
which occurs in the higher-order function’s postcondition, thus referring to bar’s poststate value of *i,
whereas the other refers to old(*i) in the outer (baz’s) poststate, which yields the outer prestate.

4.2.6. |= Across Multiple Calls

Consider the sort_by higher-order function, which receives a comparator closure as a parameter that is
supposed to implement an ordering relation that is re�exive, antisymmetric, and transitive. Expressing
re�exivity is straightforward:7

// requires: cl |= |a, b| { ensures: a == b ==> result }

6Notwithstanding the extension of |= with history invariants from Section 4.2.3.
7We will assume in this section, for simplicity, that the closure won’t modify its arguments (which could be mutable refer-
ences). Of course, it would be easy to add this as an explicit postcondition: a == old(a) etc.

37

Antisymmetry and transitivity, however, aren’t as straightforward. The problem is that these are
properties that talk about pairs and even triples of calls, rather than individual calls; thus, the meaning
of speci�cations as an implicit quanti�cation over all possible calls is insu�ciently expressive here.

To solve this, we propose a natural extension of this implicit quanti�cation to allow for quanti�cation
over more than one state; for instance:

// requires: cl |= |a, b|, |c, d| {
// ensures: result0 && result1 && a == d && b == c
// ==> a == b }

Here, we provide two sets of binders (|a, b| and |c, d|) for the closure arguments; one for the �rst
call and one for the second call (which implies that we would like to quantify over two calls here). In
the postcondition, we have to distinguish the two results from the two calls, which may, of course,
di�er—result0will refer to the result of the call with the arguments (a, b), and likewise for result1.
Themeaning of this example is to express the property of antisymmetry (∀a, b : a ≤ b∧b ≤ a ⇒ a = b
for some binary relation ≤); transitivity can now also be expressed using three sets of argument binders
and thus quantifying over three calls at once.

Somewhat more esoterically, we can even quantify over calls to di�erent closures:

// requires: f, g |= |x|, |y| { ensures: result0 >= result1 }
fn foo (f: impl FnMut (i32) -> i32, g: impl FnMut (i32) -> i32) { ... }

This expresses that for any possible pair of calls to f and g, f will always return a result not less than g’s
result. Note that we wouldn’t be able to call f and g directly in the speci�cation, because they may be
impure.

4.2.7. Boxed Closures, Dynamic References to Closures, and Function
Pointers

Let us now revisit the di�erent ways of storing closures from Section 3.4. We will focus on boxed
closures here, but the same principles should be applicable to dynamic references and function pointers
as well.
Recall that our de�nition of speci�cation entailment always involves some speci�c instance, and

an entailment may not be preserved across an instance assignment if the history invariant is violated.
This careful de�nition will prove very useful now, because speci�cation entailments for boxed closures
will also be preserved as long as no assignment takes place. Assignments can invalidate speci�cation
entailments whenever the history invariant is violated, as in Section 4.2.3:

let hocl = |i: i32| { move || i };
let mut f: Box<_> = Box::new (hocl (1));
let mut g = hocl(2);
// assert *f |= || { ensures: result == 1 }
*f = g;
assert_ne! ((*f) (), 1);

In fact, this example could be veri�ed with the techniques presented so far: Let T denote the return
type of hocl, then f will have type Box<T>, meaning we can only assign di�erent instances of the

38

same de�nition to f, as before. But in general, and what makes boxed closures more interesting and
challenging from a veri�cation perspective, boxes can be reassigned to instances of completely unrelated
de�nitions. Note the type of f in the following example, which denotes a box containing some statically-
unknown (in general) subtype of FnMut () -> i32:

let mut f: Box<dyn FnMut () -> i32> = Box::new (|| 42);

let mut count = 0;
let cl = move || { let r = count; count += 1; r };
f = Box::new (cl);

Recall our de�nition of hist_inv() for dynamic types from Section 4.1.3: hist_inv(a, b) can only
hold if both a and b are instances of the same de�nition. In particular, then, the assignment to f above
invalidates all speci�cation entailments known to hold for the old (overwritten) value of *f. This aligns
nicely with our previous de�nition of entailments—namely, that entailments are preserved as long as
hist_inv(old instance, new instance) holds.

Similarly, knowledge about the new value should be preserved; for instance:

let mut f: Box<dyn Fn () -> i32> = Box::new (|| 1);
let g: Box<dyn Fn () -> i32> = Box::new (|| 2);
// assert *f |= || { ensures: result == 1 }
// assert *g |= || { ensures: result == 2 }
f = g;
// assert *f |= || { ensures: result == 2 }

This approach also works in the presence of nondeterminism:

let mut f: Box<dyn FnMut () -> i32>;

if coin_toss () {
f = Box::new (|| 42);
// assert *f |= || { ensures: result >= 0 }

} else {
let mut count = 0;
f = Box::new (

// view: count: i32 = count
// invariant: count >= 0
// ensures: result >= 0
move || { count += 1; count });

// assert *f |= || { ensures: result >= 0 }
}

// assert *f |= || { ensures: result >= 0 }

Given that both branches of the if/else-block establish the desired entailment for *f, it should hold
at the join point after the if.

39

Boxed Closures as Struct Fields

So far, we have been arguing that it is necessary to keep track of whether hist_inv(old_cl, cl) holds
between some old instance value old_cl and the current value cl in order to preserve entailments
known to hold for the old value.
To preserve modularity, higher-order functions have to guarantee this in their postcondition; this

could be made the default in the implementation:

// ensures: hist_inv(old(**f), **f)
fn foo (f: &mut Box<dyn Fn () -> i32>)
{

f ();
}

let mut f: Box<dyn Fn () -> i32> = Box::new (|| 1);
// assert *f |= || { ensures: result == 1 }
foo (&mut f);
// assert *f |= || { ensures: result == 1 }

This is impractical for structs, however. Consider this example (assuming history invariants are also
supported for structs):

struct StoreCl {
// invariant: hist_inv(old(cl), cl)
cl: Box<dyn Fn () -> i32>

}

By itself, this does not tell us anything about cl’s behavior, because we do not know the concrete
closure type stored in cl and thus cannot know what hist_inv even implies. Additionally, without
knowing this concrete type, we also cannot reassign the cl �eld, because there would be no way to
prove hist_inv(old(cl), cl). Thus, this invariant on the StoreCl type is not particularly useful;
it would make more sense to track hist_inv as before (e.g. hist_inv(old(s.cl), s.cl) for some
instance s of StoreCl).
Instead, we can give a speci�cation entailment as a (single-state) invariant:

struct StoreCl {
// invariant: *cl |= || { ensures: result >= 0 }

cl: Box<dyn Fn () -> i32>
}

This way, the speci�cation entailment becomes part of the StoreCl type, and preservation is guaranteed
because every assignment to cl will have to maintain the type invariant for StoreCl and, therefore, the
entailment. At the same time, this invariant is useful even without knowing the concrete type of *cl,
and it is �exible enough to allow for reassigning cl, as long as the speci�cation entailment is preserved.

For a more complex example and a pragmatic discussion of di�erent speci�cation approaches for this
situation, refer to Section 6.1.4.

40

4.3. Arrow (~~>) Notation

To describe the e�ects of a higher-order functionmodularly, without relying on or exposing the concrete
speci�cation of an argument closure, we present a novel notation which we shall refer to as the arrow
notation, named for its central syntactic element, a squiggly arrow (~~>).
Consider the following example code:

// requires: f |= |x| { requires: *x == outer(*i) + 1 }
fn foo (f: impl Fn (&mut i32) -> i32,

i: &mut i32) -> i32 {
*i += 1;
f (i)

}

What should the postcondition of foo be? We could add a postcondition to the speci�cation entailment;
for instance:

// requires: f |= |x| { requires: *x == outer(*i) + 1,
// ensures: result > 0 && *x > old(*x) }
// ensures: result > 0 && *i > old(*i) + 1

This would be non-modular and in�exible, though, because a client might want to pass in some f with
a di�erent behavior/postcondition (but couldn’t with this speci�cation). We can solve this by making
the postcondition parametric, using a ghost argument, similar to Hader’s work:

// ghost_arg: P: Pred(i32, i32, i32)
// requires: f |= |x| { requires: *x == outer(*i) + 1,
// ensures: P(old(*x), *x, result) }
// ensures: P(old(*i) + 1, *i, result)

As is evidenced by this small example already, this approach quickly becomes unwieldy, as the ghost
predicate needs to relate more and more arguments in di�erent states. It is also impractical to have
to specify P manually (unless it could be inferred automatically, as already suggested in Section 2.3.2).
Furthermore, this approach won’t work for mutable captured state: Unless the captured state is exposed
statically, whichwould again be in�exible and non-modular, foo’s speci�cation doesn’t know about and
can’t access the captured state. In particular, thismeans that foo’s speci�cation cannot pass (parts of) the
captured state to P; but then foo’s speci�cation would be too weak to reason about how the captured
state has changed during foo’s execution. It would be possible, though, to extend the speci�cation
language in such a way as to allow f, the closure instance, to be passed to the ghost predicate directly,
and to allow foo’s caller to access the captured state when de�ning P.

Instead, let us consider the following properties we want to express about foo’s behavior, which
illustrate the needs that our speci�cation language must address:

1. f was called with argument i,

2. in a state where *i == old(*i) + 1; that

3. foo’s result is whatever result f produced, and

41

g

closure that
gets called

(a1, a2, ...)

arguments of call
(expressions or binders (:x))

/ { P (a1, a2, ...) }

description of prestate
(may contain outer(...))

~~>

“leads to”,
“produces state”

{ Q (a1, a2, ...) }

description of poststate
(may contain old(...),

outer(...) and result)

Figure 4.1.: Components of the arrow notation.

4. i is in the state that f left it in (in other words, foo didn’t modify *i further after calling f).

To ful�ll those requirements and capture all of this information, we have devised a novel notation,
whose components are described in Figure 4.1; Section 4.3.1 will go into more details for each of the
components. But as a preview, let us look at a formalization of the points described above:

f (:k) // f was called with some k: &mut i32
/ { *k == outer(old(*i)) + 1 } // in a state where *k == old(*i) + 1
~~> // producing a state where
{ outer(result) == result // foo's result equals f's result, and

&& outer(i) == k } // i is equal to k in f's poststate

This belongs into foo’s postcondition:

// requires: f |= |x| { requires: *x == outer(*i) + 1 }
// ensures: f (:k) / { *k == outer(old(*i)) + 1 }
// ~~> { outer(result) == result && outer(i) == k }
fn foo (f: impl Fn (&mut i32) -> i32,

i: &mut i32) -> i32 {
*i += 1;
f (i)

}

4.3.1. Components of ~~>

Closure that Gets Called

Any expression that evaluates to a closure (or function) type is valid here. It will be evaluated in the
current state, meaning in the context enclosing the ~~>. For instance:

42

// requires: *f |= |i| { requires: i == 42 }
// ensures: old(*f) (42) / {} ~~> { outer(result) == result }
fn foo<T: Fn (i32) -> i32> (f: &mut T, g: T) -> i32 {

let r = (*f) (42);
*f = g;
r

}

Replacing old(*f) with *f in foo’s postcondition would be wrong, because *f in foo’s poststate is
di�erent from *f when f was called. This is of particular relevance to FnMut closures, whose instance
value (which includes the captured state) can change during every call:

// requires: *f |= || { requires: true }
// ensures: old(*f) () / {} ~~> { outer(result) == result }
fn bar (f: &mut FnMut () -> i32) -> i32 {

f ()
}

Again, plain *f in bar’s postcondition (instead of old(*f)) would be wrong, because *f (i.e., the
instance value, including the captured state) in the poststate is di�erent8 from *f at the point where *f
was called.

When calling FnMut closures multiple times, we have to introduce an existential quanti�cation to talk
about intermediate closure instance values (for the use of self in this example, refer to Section 4.4.3):

// requires: *f |= || { requires: true }
// ensures: exists fi: T ::
// old(*f) () / {} ~~> { self == fi }
// && fi () / {} ~~> { self == outer(*f) }
fn baz<T: FnMut () -> ()> (f: &mut T) { f (); f (); }

This speci�cation allows us to prove call-site assertions such as this one:

let mut count = 0;
let mut inc =

// view: count: i32 = count
// ensures: count == old(count) + 1
|| { count += 1; };

baz (&mut inc);
assert_eq! (count, 2);

Because quantifying over closure instances as in the previous example would be so commonly neces-
sary in practice, we propose a shorthand notation :f, which refers to some (existentially-quanti�ed)
instance f_ such that hist_inv(old(f), f_). For instance, a map() on a collection can then have a
postcondition similar to this:

// ensures: forall x: T :: old(self.vals).contains(x) ==>
// :f (x) / {} ~~> { outer(result).contains(result) }

Note that this is unnecessary for Fn closures because their instance value does not change during calls
(although they, too, can be reassigned, but this is not too common in practice).
8At least potentially; we do not know f’s concrete behavior at this point.

43

Arguments of the Call

Arguments are expressions (of appropriate types, as given by the type of the closure/function that
gets called) that will be evaluated in the current state, but must evaluate to the values they had at the
time of the call. The rationale for evaluating them in the current state is that the actual state in which
the call happened is internal to the higher-order function and not known to the caller (except that it’s
“somewhere between” pre- and poststate). Thus, attempting to evaluate expressions in that state would
be meaningless at the call-site for mutable locations. For instance, the following postcondition is valid
and useful for foo’s caller, expressing that “f was called with some reference (deeply) equal to i in foo’s
poststate”:

// ensures: f (i) / {} ~~> { result == outer(result) }
fn foo (f: impl Fn (&i32) -> i32, i: &mut i32) -> i32 {

*i += 1;
f (i)

}

This creates a di�erent issue, though: What if we can’t name the reference that was passed to the closure?
For instance:

fn bar (mut f: impl FnMut (&mut i32) -> i32) -> i32 {
let mut x = 42;
let y = f (&mut x);
y + x

}

Onemight be tempted to try to express this function’s behavior as “there exists r: &mut i32 such that
*r == 42 and f was called with r”. Prusti does not support quanti�cation over references, though, and
especially not over mutable references, which are “non-copy” types in Rust (i.e., they don’t implement
the Copy trait and thus must be moved instead of being copied). It is also unclear how quanti�cation
over references would work, especially when trying to evaluate the reference in multiple states.
To avoid all of these di�culties, we propose a custom variable binder syntax that binds a function

argument for the express purpose of describing it in both the pre- and poststate of the call. The bound
variables will be pre�xed with a colon to mark them as bound; for instance, the foo function presented
above could be annotated with a postcondition such as:

// ensures: old(f) (:r) / { *r == 42 } ~~> { outer(result) == *r + result }

This is conceptually equivalent to an existential quanti�cation over r, but it is restricted to this speci�c
use case of binding a function argument, and thus avoids the aforementioned di�culties incurred by
quanti�cations over references in general.
For types that can be quanti�ed over in Prusti, the binder notation is a convenient shorthand; for

instance, the following two postconditions are equivalent:

// ensures: exists k: i32 :: k % 2 == 0
// && f (k) / {} ~~> { outer(result) == result }
// ensures: f (:k) / { k % 2 == 0 } ~~> { outer(result) == result }
fn bar (f: impl Fn (i32) -> i32) -> i32

44

{
let i = rand::random::<i32> () * 2;
f (i)

}

Using this binder notation is necessary if a mutable reference is passed into a closure:

// ensures: f (:r) / { *r == outer(old(*i)) + 1 } ~~> { *r == outer(*i) }
fn foo (f: impl Fn (&mut i32) -> (), i: &mut i32) {

*i += 1;
f (i);

}

We could also do without the binder notation in some cases; for instance:

// ensures: f (old(i)) / {} ~~> {}
fn f1 (f: impl Fn (&mut i32) -> (), i: &mut i32) {

f (i);
}

But then we would not be able to describe the �nal value of i, because we don’t have a way of referring
to f’s argument in the poststate description of ~~>.

Prestate Description

The prestate description is an assertion that must evaluate to true in the function call’s prestate. It may
only refer to variables bound in the argument list of the arrow notation; variables from the enclosing
scope must be wrapped in outer(), which is discussed in more detail in Section 4.3.2. The prestate
description defaults to true if none is given.

Poststate Description

Similarly, the poststate description is an assertion that must hold in the call’s poststate. The same
restrictions apply as for the prestate description, although the poststate description may additionally
use old() to refer to the call’s prestate (not to be confused with outer(old()), which would refer to
the enclosing higher-order function’s prestate) as well as result, the value returned by the call (again,
not to be confused with outer(result)).

4.3.2. The outer() keyword

The outer() keyword here has the same function and meaning as the one discussed in Section 4.2.5:
It relocates the evaluation of its argument subexpression into the context enclosing the ~~>. The
expressions inside of the braces of the ~~> syntax have the meaning of being evaluated in speci�c states,
and so referring to variables from the enclosing scope can lead to confusion and is therefore not allowed
except if wrapped in outer().

Recall this higher-order function example from above:

45

// requires: f |= |x| { requires: *x == outer(*i) + 1 }
// ensures: f (:k) / { *k == outer(old(*i)) + 1 }
// ~~> { outer(result) == result && outer(i) == k }
fn foo (f: impl Fn (&mut i32) -> i32,

i: &mut i32) -> i32 {
*i += 1;
f (i)

}

Here, the ~~> occurs in foo’s postcondition; thus, outer(i) will refer to i in foo’s poststate. Similarly,
outer(old(*i)) will also evaluate old(*i) in the context of ~~>—i.e., as if it occurred in foo’s
postcondition—and thus yield *i, evaluated in foo’s prestate. outer(result) is a special overload
referring, in this case, to foo’s result: Referring to f’s result in foo’s poststate would not make sense
because foo might call f many times, and so it would not be clear which result is meant.

To further illustrate the meaning of outer(), consider this example, where we use ~~> to describe a
call to foo:

fn bar (g: impl Fn (&mut i32) -> i32,
k: &mut i32) -> i32 {

foo (g, k)
}

bar’s postcondition could be expressed as follows:

// ensures: foo (g, :k1) / { *k1 == outer(old(*k)) } ~~> {
// g (:k2) / { *k2 == outer(old(*k1)) + 1 }
// ~~> { outer(result) == result
// && outer(k1) == k2 }
// && outer(result) == result
// && outer(k) == k1
// }

Here, we have a nested ~~>, and thus, the innermost occurrences of outer() refer to the poststate of
the call to foo, whereas the �rst and last two outer() refer to bar’s poststate.
But outer() may also refer to the prestate; for instance:

// requires: h (42) / { } ~~> { result == outer(*l) }
fn baz (h: impl Fn (i32) -> i32, l: &mut i32) -> ...

In this, admittedly obscure, example, baz requires that when it is called (i.e., in its prestate), *l must
have a value that was produced by calling h with argument 42. outer() thus refers to baz’s prestate,
which is consistent with our de�nition, because ~~> itself occurs in the precondition.

This construction can be particularly useful whenever one function needs to ensure the precondition
of the next. We have already seen an example of this in Section 4.2.4, where we used a nested entailment
to express that the �rst function must ensure that the second function can be called. Rather elegantly,
we can also express the same fact from the second function’s point of view: Instead of the �rst function
ensuring the precondition of the next, the second function can require the postcondition of the �rst:

46

// requires: f |= |k| { requires: k == outer(x) }
// requires: g |= |m| {
// requires: f (outer(x)) / {} ~~> { result == outer(m) } }
fn compose_imm<A, B, C> (

f: impl Fn (A) -> B, g: impl Fn (B) -> C, x: A) -> C
{

g (f (x))
}

Writing a suitable postcondition for compose_imm, too, is straightforward with the ~~> notation:

// ensures: g (:b) / {
// f (outer(old(x))) / {} ~~> { result == outer(b) }
// } ~~> { result == outer(result) }

The arrow notation provides us with the means to reason about the e�ects of closure calls abstractly,
without requiring anyknowledge about their concrete behavior. Togetherwith speci�cation entailments,
they serve as the foundation of our approach for reasoning about higher-order functions. We will now
turn to solving the remaining problems of reasoning about captured state across function boundaries,
and of describing complex functional behavior, such as that of fold().

4.4. Ghost Arguments and Results

4.4.1. Basics Ideas

Ghost code is a part of the program that is added for the purpose of speci�cation. Ghost
code must not interfere with regular code, in the sense that it can be erased without
observable di�erence in the program outcome. [7]

We have already encountered ghost state in Section 4.1.4. Here, we want to extend our speci�ca-
tion language with ghost arguments and results, i.e. values that are passed in and out of functions for
veri�cation purposes, but that don’t actually occur anywhere in the code the compiler will generate.

As a simple example (inspired by the one from Filliâtre et al. [7]), consider this piece of code:

// pure
fn fib (n: u32) -> u32
{

match n {
0 => 0,
1 => 1,
k => fib (k - 1) + fib (k - 2)

}
}

// ghost_arg: k: i32
// requires: a == fib (k) && b == fib (k + 1)
// ensures: result == fib (k + 2)

47

fn next_fib (a: u32, b: u32) -> u32
{

a + b
}

Here, next_fib doesn’t actually need to know that its arguments are the k-th and (k+1)-th Fibonacci
number; this fact happens to be irrelevant for next_fib’s computation. But it is relevant for verifying
the postcondition, so we can use a ghost argument. Ghost results work in the analogous way—instead
of being passed into the function (conceptually, because the transfer doesn’t actually take place, only
for veri�cation), they are passed out of the function.

4.4.2. Exposing Captured State via Ghost Arguments/Results

One useful application for ghost argument/result functions is for exposing captured state. Hader [12]
relies on views (as described in Section 4.1.1) and even includes them in speci�cation entailments, as
follows:

// requires: f |= || { views: [mut cnt: i32],
// ensures: cnt == old(cnt) + 1 }
// ensures: f.cnt == old(f.cnt) + 1
fn foo (f: &mut impl FnMut () -> i32) { f (); }

This is confusing, because for f.cnt to even be well-formed, f has to ful�ll the speci�cation entailment
(otherwise the view cnt may not even exist). This implicit dependency is not obvious and can further
be complicated if the speci�cation entailment occurs, say, under a quanti�er or in an implication.
In addition, since Hader matches the views by name (i.e., the speci�cation entailment requires f to

have a view named cnt of type i32 that the closure may mutate), this creates a structural subtyping
situation: Any closure with a view named “cnt” could pass the speci�cation entailment, even if that
view might have nothing to do with the intended cnt (although this situation is hard to imagine for
the simplistic example given here). And �nally, this is non-modular, because the higher-order function
should not depend on its argument closure having a particular view, of a particular name and type.
To solve all of these issues, we propose the use of ghost argument functions, which can take the

closure instance as a parameter (for the use of self here, refer to Section 4.4.3):

// ghost_arg: cnt (T) -> i32
// requires: f |= || { ensures: cnt(self) == old(cnt(self)) + 1 }
// ensures: cnt(f) == old(cnt(f)) + 1
fn foo<T: FnMut () -> i32> (f: T) { f (); }

On the surface, it might look as though the two speci�cations are almost identical. However, the latter
speci�cation features several advantages by introducing this additional layer of abstraction between the
closure’s captured state and the higher-order function:

• The ghost argument is de�ned separately, so the speci�cation entailment could be in a disjunction,
under a quanti�er, there could be multiple entailments, etc., all without a�ecting the availability
of cnt.

48

• The closure no longer has to have a view named cnt; it could have a view of the same type with a
di�erent name, or even something completely di�erent, as long as the user can come up with a
value for cnt. This also avoids the “accidental” structural subtyping situation.

• This solution is also more modular, because it forces the user, at the call-site, to think about the
proper value for cnt. Otherwise, in Hader’s solution, the closure definition needs to anticipate
the higher-order function call and de�ne the appropriate view(s), and the higher-order function
de�nition needs to specify some name and type for the view, which it can’t possibly know
modularly.

This solution is also simpler, because we already need ghost arguments for Section 4.4.4 (and, in fact,
Hader uses them, too), so we don’t need any additional machinery.
Ghost result functions can also make sense, especially whenever a higher-order function returns a

closure; to illustrate, let us revisit an example from Section 4.1.3, now with ghost result annotations, in
Figure 4.2. Note that we must introduce a special keyword ReturnT9 to refer to the type of the result
(in the signature of cnt); the outer closure returns another closure, which has an anonymous type, so
we can’t write it down. In fact, even for functions, which, unlike closures, can have generic arguments
in Rust, it is not possible to write down the returned closure type explicitly, because it is an existential
type, whereas generic arguments are interpreted as universal types; for instance, the following function
returns “some” type implementing Fn () -> i32:

fn return_cl () -> impl Fn () -> i32 { ... }

Note that for a meaningful de�nition of such ghost argument/result functions, it is necessary for
their de�nitions to be able to access the captured state (i.e., the views), such as t.c in the de�nition of
cnt in Figure 4.2. This is not a technical problem, because encoding closure types as (or similar to)
structs allows us to do this very easily, but it is nonetheless worth keeping in mind that this transcends
Rust syntax, where accessing the captured state by any means from outside the closure body is not
allowed.10

4.4.3. self: Accessing the Captured State Opaquely

Although not directly related to ghost arguments/results, this feature is necessary for and motivated
(though not exclusively) by them. Recall this example from above:

// ghost_arg: cnt (T) -> i32
// requires: f |= || { ensures: cnt(self) == old(cnt(self)) + 1 }
// ensures: cnt(f) == old(cnt(f)) + 1
fn foo<T: FnMut () -> i32> (f: T) { f (); }

Here, in the speci�cation entailment, f needs to pass “itself” to cnt (i.e., the closure instance denoted
by f containing, in particular, its captured state). Writing cnt(f) would be awkward, because the
speci�cation doesn’t depend on the name of the closure instance; in fact, if we assigned the instance,
say by writing let mut g = f;, then the same speci�cation should now hold for g. Furthermore,
9Given that the returned value can be referred to via the result keyword in speci�cations, a more obvious choice for this
keyword might have been “Result”; however, this name is already taken by the std::result::Result type.

10Save for unsafe code.

49

let hocl =
// ghost_result: cnt: (ReturnT) -> i32
// ensures: result |= || { ensures: result == old(cnt(self))
// && cnt(self) == old(cnt(self)) + 1,
// invariant: old(cnt(self)) <= cnt(self) }
|i: i32| {

let mut count = i;
let cl =

// view: c: i32 = count
// ensures: result == old(c) && c == old(c) + 1
move || {

let r = count;
count += 1;
return r;

};
// ghost_return: cnt(t) := t.c
return cl;

};

Figure 4.2.: An illustration of the utility of ghost result functions for exposing captured state.

writing f inside of the entailment is misleading because the closure instance referred to doesn’t have to
be the current instance, denoted by f; it could also be some future instance, because the speci�cation is
preserved across calls.

Thus, we propose using the self keyword for this purpose. Note that thisdoes interferewithmember
functions of structs, i.e. if foo above was actually implementing a method for some struct in an impl
block, self should refer to the other struct members; but this issue can be solved easily using the outer
keyword discussed before: self in the speci�cation entailment above refers to f, whereas outer(self)
in the same position would refer to the object that foo is attached to. Note that outer(self) does not
refer to the outer value of the closure instance; for this, one would have to write outer(f), or whatever
the name of the instance may be in the enclosing scope.

self can also be used as part of the arrow notation, not just in speci�cation entailments; for instance,

// ensures: (old (f)) () / { cnt(self) == outer(old(cnt(self))) }
// ~~> { cnt(self) == old(cnt(self)) + 1 }

would be another valid postcondition for foo. In fact, using self can make sense even without ghost
functions:

// ensures: (old (f)) () / {} ~~> { outer(f) == self }

This tells the caller that the instance value of f in the poststate was achieved by calling f once.

50

// ghost_arg: inv: (MultiSet[i32], i32) -> bool
// requires: inv({}, init)
// requires: forall prev_els: MultiSet[i32] ::
// prev_els subset self.vals ==>
// cl |= |c, a| { requires: inv(prev_els, a) && c in outer(self).vals,
// ensures: inv(prev_els union {c}, result) }
// ensures: inv(self.vals, result)
fn fold (init: i32, cl: impl Fn (i32, i32) -> i32) -> i32 { ... }

Figure 4.3.: A functional speci�cation for fold().

4.4.4. Ghost Arguments as Invariants

To verify the functional behavior of a fold(), say, or a custom while-loop implementation,11 it is
useful to work with invariants—just as with regular loops (accordingly, we use the term “invariant” in
this section in the sense of “loop invariant”, not as an invariant on the captured state, as in previous
sections).
To verify its functional behavior, fold() could maintain some additional ghost state; namely, the

multiset of elements seen so far. An example speci�cation for fold is given in Figure 4.3. We will
stick with i32 in this section for simplicity, but of course the approach readily generalizes to a generic
implementation.
Let us walk through this speci�cation step-by-step:

• inv represents the invariant for the entire folding operation: It relates a multiset—the multiset
of elements seen so far—and an integer, the current accumulated value, and returns true i� the
accumulated value satis�es the invariant, given themultiset of elements seen so far. Note how this
de�nition ismore general than having inv take only themultiset and return an integer: The latter
de�nition is “deterministic” (i.e., for every multiset, there can be only one accumulated value),
whereas our de�nition allows for multiple di�erent integers satisfying the invariant; for instance,
as a contrived example, imagine we only care about the absolute value of the accumulated value,
then both inv(s, i) and inv(s, -i) could return true for some s and i.

As an example, sayweusefold for summingup a sequence of integers—avery commonoperation
in practice, alongwith other accumulations such asmaxima/minima, products, etc.—then inv(s,
a) couldbe de�ned assum(s) == a, assuming the availability of asumoperatorwith the expected
semantics.12

11Kassios andMüller actually discuss a custom while-loop implementation using closures and invariants in their paper. The
di�culty for us is that they use two closures, one for checking the condition and one for the body—but inRust, the body
closurewouldmost likely have to capture some variablesmutably, and then the condition closure could not refer to those
variables, becausemutable borrows are exclusive. Wehave thus refrained from including the example here. (Actually, they
use three closures, with a third closure for the invariant; but since the invariant is only needed for speci�cation and proof
purposes, it could be implemented as a ghost argument function in our model and thus wouldn’t pose a problem. The
condition can’t be a ghost function, because it a�ects the program behavior.)

12While this is not currently available in Viper, previous research e.g. by Leino and Monahan [20] has demonstrated the
feasibility of set comprehension operations in an automatic veri�er.

51

• Requiring inv({}, init) to hold on entry is necessary for ensuring the initial value does, in
fact, establish the invariant when no elements have been visited yet, i.e. for the empty set of
elements seen so far.

• We do not want to depend on the order of operations in fold, as this would complicate matters
heavily. Therefore, we put the speci�cation entailment under a quanti�er: For any subset of
self.vals (assuming, for simplicity,13 that this is the collection we are folding over), the closure
may assume that the invariant holds with regard to this multiset and the current accumulated
value, its argument a. Further, it may assume that its �rst argument, c, the current value, is in the
collection we are folding over.14 Then, it must ensure that the invariant holds for the enlarged
multiset and its result, the new accumulated value.

• Finally, fold can guarantee that the invariant holds in the end for the entire collection and the
resulting accumulated value.

Note that the invariant could also involve the closure instance; this would allow the argument closure,
for instance, to accumulate a result in its captured state, in addition to or instead of the more explicit
accumulation done by fold().

4.5. Summary

This chapter has introduced a variety of techniques that work together to provide the means for
verifying use cases from all of Chapter 3’s four categories. Our aim has been to re�ne the di�erent
tools (speci�cation entailments, history invariants, etc.) in such a way as to promote their integration
and con�uence, so that, �rst, the di�erent techniques are orthogonal and can be combined and used
together, and second, the techniques are powerful and �exible enough to work for all of the four classes
of closure uses, instead of necessitating completely di�erent techniques for di�erent classes.

Section 6.1 will discuss the application of the techniques from this chapter to more complex, realistic
examples. Before that, Chapter 5 will explain how to encode the methodology presented in this chapter
in Viper.

13Usually, fold will work on iterators in Rust, but this is not important for our purposes here.
14We cannot guarantee !(c in prev_els), because the collection could contain duplicates.

52

5. Implementation

In this chapter, we shall explore how the methodology described in Chapter 4 is implemented in our
veri�cation toolstack, described in Chapter 2. We will begin by examining how to encode the user-
level closure and higher-order function speci�cation constructs in Viper, an intermediate veri�cation
language, in Section 5.1; Section 5.2 will then discuss how to automate this translation as part of the
Prusti front-end veri�cation tool.

5.1. Encoding in Viper

We will now return to the speci�cation functions from Section 2.3.1, adapted to our purposes and the
Viper environment. Remember that we had to quantify over heaps and pass heaps to the speci�cation
functions in Section 2.3.1, which we deemed incompatible with our approach based on separation
logic and Viper. Luckily, though, we do not need to reason about entire heaps when talking about
closure calls in Rust, only the parts of the heap reachable (by following references, boxes, etc.) from the
closure instance (which includes the captured state), the arguments, and the result; furthermore, for
the instance value and the arguments, we need to distinguish their prestate and poststate values.1
We can capture all of this data by using snapshots,2 which are mathematical abstractions of Rust

types. They abstract heap-dependent values deeply into a domain type in Viper, which means that they
are state-independent. They can be copied, passed around, etc., all without worrying about permissions,
states, and so on. We can even quantify over them easily, and/or use them in conjunction with pure
functions in powerful ways, because reasoning about snapshots (e.g. for framing pure function results)
is easier than reasoning about heap-dependent values, which depend on the current state, require certain
permissions, etc. To illustrate, consider the example in Figure 5.1 of how a struct X { a: i32 } is
modeled with a snapshot type snap_X, together with a conversion function X_to_snap, which “lifts” a
reference to the snapshot type.

We now de�ne the following speci�cation functions per closure type T. All of them receive their
arguments as snapshots, so that we can, among other things, quantify over them for the encoding of
various constructs in the remainder of this section:

• pre$T(), taking the closure instance and all of its arguments as parameters, and returning true
i� the precondition holds for the given closure instance and arguments.

• post$T(), taking the closure instance (in its poststate, conceptually), the old closure instance
(from its prestate), all of its arguments and old arguments, and the result as parameters, and

1Global state is considered unidiomatic inRust, as it interferes with the ownership system. In particular, all global variables
should be immutable compile-time constants; mutable global variables are considered unsafe. [16, Section 19.1]

2Snapshots were added to Prusti by ChristophMatheja to facilitate reasoning about pure functions.

53

field int_val: Int
field f_X_a: Ref

predicate X (x: Ref) {
acc(x.f_X_a) && acc(i32(x.f_X_a))

}

predicate i32 (i: Ref) {
acc(i.int_val)

}

domain snap_X {
function get_a (x: snap_X): Int

}

function X_to_snap (x: Ref): snap_X
requires acc(X(x))
ensures get_a(result) ==

unfolding X(x) in
unfolding i32(x.f_X_a) in x.f_X_a.int_val

Figure 5.1.: The snapshot type encoding for struct X { a: i32 }. Some details, such as an injectivity
axiom for the conversion, have been omitted here for simplicity.

returning true i� the postcondition holds for the given old/new instances, arguments, and the
result. This does not necessarily imply that the precondition held for the old arguments; use
pre$T() for that.

Immutable arguments (i32, &U, . . .) need not be passed twice to post$T(), because their old
and new value would always be the same. For example, for an argument i of type i32, post$T()
would receive only one argument i: Int (instead of oldi: Int and i: Int).

• hist_inv$T(), taking two closure instances (of the same type) and checking whether the history
invariant holds between them (the �rst argument is the old instance). This also checks all single-
state invariants for the two argument instances; in particular, to check whether the single-state
invariants hold for a given instance cl, one can call hist_inv$T(cl, cl). Note that this means
that hist_inv$T(a, b) is not a re�exive relation: hist_inv$T(a, a) does not hold for all a,
only the ones that ful�ll the single-state invariants. hist_inv$T() is transitive, though; and we
can even give this weakened version of re�exivity (which is also used by Cohen et al. [3] to express
that two-state invariants and old() “should [. . .] only [be] used to describe how objects change,
and not what [. . .] their proper values [are]”), which we refer to as pseudo-re�exivity:

∀ f : T.
((
∃ f ′ : T. hist_inv$T

(
f ′, f

))
=⇒ hist_inv$T

(
f, f

))

54

let x = 42;
let cl_add = |y: i32| -> i32 { x + y };

let mut count = 0;
let mut inc = || -> i32 { let r = count; count += 1; r };

let mut bx = Box::new (42);
let mut cl_drop = || -> i32 { let r = *bx; std::mem::drop(bx); r };

Figure 5.2.: Three examples of Rust closures, one for each of the Fn, FnMut, and FnOnce traits.

or, equivalently [4, Section “Transformation Rules for Implication”]:

∀ f, f ′ : T.
(
hist_inv$T

(
f ′, f

)
=⇒ hist_inv$T

(
f, f

))
This rule gives us re�exivity of the history invariants modulo the single-state invariants. For
instance, after a call to f, we can inhale hist_inv$T(old(f), f) (because calls preserve the in-
variants), which then allows us to deduce hist_inv$T(f, f), i.e. that the single-state invariants
hold for the new instance.

5.1.1. Basics

Proving the Closure Code

Proving closure speci�cations works the sameway as proving regular functions: Inhale the precondition,
insert the closure code, exhale the postcondition. In fact, in Rust’s MIR (Mid-level Intermediate
Representation [11]), which serves as the basis for the Viper encoding in Prusti, closures are encoded as
regular functions (with an extra argument for the captured state).
This also causes some restrictions, as already discussed in Section 4.1.2; in particular, all knowledge

about the enclosing scope, such as the values of immutable captures, is lost and must be encoded
somewhat more verbosely through views, to allow the instantiation-site to reason about the closure’s
captured state using its knowledge about the captured variables at the time of the capture. On the plus
side, though, this leads to greater modularity and performance, because encoding closures as separate
functions means they can be veri�ed independently, even in parallel, and/or cached, and because the
bodies of the Rust functions containing the closure de�nition are made smaller this way, their veri�ca-
tion should also become faster and more easily manageable for the SMT solver (as opposed to inlining
the closure bodies into the context of the containing function).

To illustrate how closures are encoded in the MIR, consider the three examples in Figure 5.2; concep-
tually, the translation to MIR will generate the code shown in Figure 5.3. In other words, there will be a
fresh aggregate (“struct-like”) type for every closure de�nition, with �elds for every captured variable,
taking into account the type of the captured variable and the capture kind (by immutable or mutable
reference or by value), as well as a function pointer �eld that points to the closure code (not shown
here, because it is implicit in the type, but every ClAdd object, for instance, would point to the cl_add

55

struct ClAdd<'x> {
x: &'x i32

}

fn cl_add(cs: &ClAdd, y: i32) -> i32 {
*cs.x + y

}

struct Inc<'count> {
count: &'count mut i32

}

fn inc(cs: &mut Inc) -> i32 {
let r = *cs.count;
*cs.count += 1;
r

}

struct ClDrop {
bx: Box<i32>

}

fn cl_drop(cs: ClDrop) -> i32 {
let r = *cs.bx;
std::mem::drop(cs.bx);
r

}

Figure 5.3.: The MIR encoding of the three examples from Figure 5.2, written in standard Rust, for
legibility.

56

function).
As explained above, encoding the closure bodies works just as for regular functions. The body

may assume pre$T(self, ...) && hist_inv$T(self, self), i.e. it may assume the precondition
and the invariants on the captured state. At the end of the encoding of the body, we must be able
to prove post$T(oldself, self, ...) && hist_inv$T(oldself, self), i.e. that the postcondi-
tion holds and the invariants have been preserved. Additionally, the relevant permisions for self, the
arguments, and the result need to be encoded, as given by the signature (again, as for regular functions).
As an example, recall the cl_add closure from above, this time with a simple speci�cation:

let x = 42;
let cl_add =

// view: x: i32 = x
// ensures: result == y + x
|y: i32| -> i32 { x + y };

The body of cl_addwould be encoded as shown in Figure 5.4. Note how the precondition speci�cation
function references the view x of cl_add by calling the pure ClAdd$view$x() function, which encodes
the view, with the snapshot instance; the to_snap$ClAdd() conversion function establishes the corre-
spondence between the view and the relevant �eld on the heap. Additionally, the closure guarantees that
the old and new instance values are equal, because the body only receives a partial permission to self;
this is because cl_add implements the Fn trait and thus receives only an immutable self reference;
FnMut and FnOnce closures would need a full permission here, and FnOnce closures would not give
back any permissions to self.

Checking Well-Formedness of Invariants

Checking well-formedness of invariants needs to happen somewhere, but it does not matter whether
this is done as part of the encoding of the closure body or elsewhere, e.g. in a separate method.
Recall that all invariants must be pseudo-re�exive and transitive. Assume that the closure type will

be named T; then we can check pseudo-re�exivity and transitivity by quantifying over the snapshot
type for T (no triggers are necessary here, because we are only interested in proving these assertions):

assert forall cs: T :: (exists cs_: T :: hist_inv$T(cs_, cs))
==> hist_inv$T(cs, cs)

assert forall cs1: T, cs2: T, cs3: T ::
(hist_inv$T(cs1, cs2) && hist_inv$T(cs2, cs3))

==> hist_inv$T(cs1, cs3)

We cannot encode these properties as axioms, because this would interfere with actually checking these
properties (they would be trivially satis�ed by those axioms in that case). Therefore, every Rust function
that works with the closure type T has to inhale those properties in its body.

Encoding Views

Views are pure functions with a special argument, the closure instance, similar to how closures receive
an implicit “self” argument. We can encode them as follows, for instance for the inc example already
encountered above:

57

1 // Define snapshot type and specification functions for cl_add
2 domain ClAdd {}
3 function ClAdd$view$x(cl: ClAdd): Int
4 function pre$ClAdd(cl: ClAdd, i: Int): Bool { true }
5 function post$ClAdd(oldcl: ClAdd, cl: ClAdd, i: Int, r: Int): Bool {
6 r == i + ClAdd$view$x(cl)
7 }
8 function hist_inv$ClAdd(oldcl: ClAdd, cl: ClAdd): Bool { true }
9

10 // The captured variable, encoded as Int for simplicity
11 field cl_capture$ClAdd$x: Int
12
13 predicate ClAdd$pred(r: Ref) {
14 acc(r.cl_capture$ClAdd$x)
15 }
16
17 function read(): Perm
18 ensures result > 0/1 && result < 1/1
19
20 // Conversion function from reference to snapshot type
21 function to_snap$ClAdd(r: Ref): ClAdd
22 requires acc(ClAdd$pred(r), read())
23 ensures ClAdd$view$x(result) ==
24 unfolding acc(ClAdd$pred(r), read()) in r.cl_capture$ClAdd$x
25
26 // The actual encoding of the body
27 method encode_body$ClAdd (self: Ref, y: Int) returns (r: Int)
28 requires acc(ClAdd$pred(self), read())
29 requires let ss == (to_snap$ClAdd(self)) in
30 pre$ClAdd(ss, y) && hist_inv$ClAdd(ss, ss)
31 ensures acc(ClAdd$pred(self), read())
32 ensures let oldss == (old(to_snap$ClAdd(self))) in
33 let ss == (to_snap$ClAdd(self)) in
34 post$ClAdd(oldss, ss, y, r)
35 && hist_inv$ClAdd(oldss, ss)
36 {
37 unfold acc(ClAdd$pred(self), read())
38 r := self.cl_capture$ClAdd$x + y
39 fold acc(ClAdd$pred(self), read())
40 }

Figure 5.4.: Encoding of the cl_add closure’s body.

58

let mut count = 0;
let mut inc =

// view: cnt: i32 = count
|| -> i32 { let r = count; count += 1; r };

This would be encoded in Viper as follows:
1 domain Inc {}
2 function inc$view$cnt(cl: Inc): Int
3
4 field cl_captureinccount: Int
5
6 predicate inc$pred(r: Ref) {
7 acc(r.cl_captureinccount)
8 }
9

10 function read(): Perm
11 ensures result > 0/1 && result < 1/1
12
13 function to_snap$inc(r: Ref): Inc
14 requires acc(inc$pred(r), read())
15 ensures inc$view$cnt(result) ==
16 unfolding acc(inc$pred(r), read()) in
17 r.cl_captureinccount

Note how the to_snap$inc() function, which converts a reference to the snapshot type, creates
the correspondence between the view and its de�nition—in other words, between the view function
inc$view$cnt() and the value of the cl_captureinccount �eld.

The same technique can be applied for views with extra arguments; consider this example:

let mut nums = vec! [1, 2, 3];
let cl =

// view: el: (idx: usize) -> Option<i32> = nums.get(idx)
// ensures: result == el(i)
|i: usize| { nums.get(i) };

The view could conceptually be encoded as follows (we show the roughly corresponding Rust code
here, for simplicity, to avoid having to encode Vec and Option in Viper):

#[pure]
fn cl_view_el (cs: &Cl, idx: usize) -> Option<i32> {

cs.nums.get (idx)
}

Proving Closure Instantiations

Closure instantiation conceptually works just like struct instantiation; for instance, the instantiations
of the three examples from Figure 5.2 could be encoded as follows:

let x = 42;
let cl_add = ClAdd { x: &x };

59

let mut count = 0;
let mut inc = Inc { count: &mut count };

let mut bx = Box::new (42);
let mut cl_drop = ClDrop { bx: bx };

Additionally, we need to prove that every newly created instance establishes its invariants. This can be
achieved using the hist_inv$T() speci�cation function, thanks to the (pseudo-)re�exivity requirement
on history invariants: Asserting hist_inv$T(cl, cl) for some newly-created closure instance cl will
check that all invariants have been established; in particular, the single-state invariants, because all
two-state invariants must hold trivially (otherwise they would not be well-formed, i.e. re�exive).

Proving Closure Calls

Encoding closure calls is very simple, thanks to the speci�cation functions: We only have to assert
pre$T(cl, a1, a2, ...) (where cl is the closure instance of type T and a1, a2, etc. are the arguments
to the call, all as snapshots) and hist_inv$T(cl, cl) (to make sure the instance is valid, i.e. satis�es all
single-state invariants), exhale the relevant permissions (as for regular function calls; this is necessary for
havocingmemory locations that couldbemutatedby the closure), inhale the resulting permissions (again
as for regular function calls), and assume post$T(old_cl, cl, old_a1, a1, ...). Additionally,
we can assume hist_inv$T(old_cl, cl), because history invariants are always preserved by calls
to the closure (and that allows us to infer hist_inv$T(cl, cl) for the new instance cl, using the
pseudo-re�exivity requirement on hist_inv$T() discussed earlier).

5.1.2. Speci�cation Entailments

Basic Idea

The main advantage of the speci�cation function approach is that it allows us to delegate reasoning
about closure speci�cations to the SMT solver, so that we can take advantage of the full capabilities of
the SMT solver for instantiating/proving entailments under conjunctions, quanti�ers, implications, etc.
Consider this example:

let cl =
// requires: a >= -10
// ensures: result == a
|a: i32| a + 10;

Now assume we want to prove cl |= |a| { requires: a >= 0, ensures: result >= 0}. This
strengthens the precondition and weakens the postcondition (assuming the strengthened precondition,
as explained in Section 2.3.2). The basic idea for encoding this in Viper is shown in Figure 5.5 (the
assertions could also be condensed into a single statement). We can thereby leave it up to the SMT solver
to �gure out the precise instantiations of the quanti�ers. CL refers to the snapshot type of the closure
type. Note that whenever we are reasoning about a closure’s pre- or postcondition (e.g. when encoding
a call, or another entailment), we will refer to the pre$CL()/post$CL() speci�cation functions, and
thus the triggers provided will be su�cient.

60

// This is what we get from the closure definition
function pre$CL (cl: CL, a: Int): Bool {

a >= -10
}
function post$CL (oldcl: CL, cl: CL, a: Int, res: Int): Bool {

res == a
}

// This represents the entailed specification we want to prove
assert forall cl: CL, a: Int :: {pre$CL(cl, a)}

a >= 0 ==> pre$CL(cl, a)
assert forall oldcl: CL, cl: CL, a: Int, res: Int ::

{post$CL(oldcl, cl, a, res)}
a >= 0 ==> (post$CL(oldcl, cl, a, res) ==> res >= 0)

Figure 5.5.: Preliminary encoding of a speci�cation entailment, demonstrating the basic idea but ne-
glecting, for the moment, the invariants.

Inparticular, this approachwillworknicely for instantiatingmultiple entailments at once, as discussed
in Figure 2.1. Here is a simpli�ed version:

// assume cl |= |i| { requires: i >= 0 }
// assume cl |= |i| { requires: i < 0 }
// assert cl |= |i| { requires: true }

which could be encoded as follows:
assume forall cl: CL, i: Int :: {pre$CL(cl, i)}

i >= 0 ==> pre$CL(cl, i)
assume forall cl: CL, i: Int :: {pre$CL(cl, i)}

i < 0 ==> pre$CL(cl, i)

assert forall cl: CL, i: Int :: {pre$CL(cl, i)}
true ==> pre$CL(cl, i)

In other words, all of the applications discussed in Section 4.2.2 are natively supported without any
extra e�ort on our part by pushing the reasoning down to the SMT solver. The nested entailments
from Section 4.2.4 can also be straightforwardly encoded using nested quanti�ers, without the need for
special handling.

Encoding outer() doesn’t need any special attention, because it is mostly just a disambiguation
device, anyway; for instance, cl |= |x: i32| { requires: x >= outer(*y) } is encoded as fol-
lows:

forall cl: CL, x: Int :: {pre$CL(cl, x)}
x >= y.int_val ==> pre$CL(cl, x)

And �nally, entailments across multiple calls can be handled by quantifying over multiple instances
and sets of arguments, making sure that all the respective preconditions are implied, etc. For instance,

61

say we want to encode an antisymmetry check for a comparator function on integers (cl |= |a, b|,
|c, d| { ensures: a == d && b == c && result0 && result1 ==> a == b }):

forall cl1: CL, cl2: CL, a: Int, b: Int, c: Int, d: Int ::
{pre$CL(cl1, a, b), pre$CL(cl2, c, d)}
true ==> (pre$CL(cl1, a, b) && (pre$CL(cl2, c, d)))

forall oldcl1: CL, cl1: CL, oldcl2: CL, cl2: CL,
a: Int, b: Int, c: Int, d: Int, res0: Bool, res1: Bool ::
{post$CL(oldcl1, cl1, a, b, res0),
post$CL(oldcl2, cl2, c, d, res1)}

true ==>
(post$CL(oldcl1, cl1, a, b, res0)
&& post$CL(oldcl2, cl2, c, d, res1)) ==>

(a == c && b == d && res0 && res1 ==> a == b)

Introducing Invariants

We now want to restrict the quanti�cation over closure instances to reachable instances, meaning only
those instances that ful�ll the single-state invariants and the history invariants with regards to the current
instance value. For instance, assuming the current closure instance is called cl and its snapshot type is
CL, we can encode cl |= |i| { requires: i >= 0, ensures: result >= 0 } as follows:

assert forall cl_: CL, i: Int :: {pre$CL(cl_, i)}
hist_inv$CL(cl, cl_) ==>

(i >= 0 ==> pre$CL(cl_, i))
assert forall oldcl: CL, newcl: CL, i: Int, res: Int ::

{post$CL(oldcl, newcl, i ,res)}
hist_inv$CL(cl, oldcl) ==>

(i >= 0 ==>
((post$CL(oldcl, newcl, i, res)

&& hist_inv$CL(oldcl, newcl)) ==> res >= 0))

i.e., we only talk about “future” instances, as permitted by the invariants. This is the �nal rule for
encoding speci�cation entailments. Note how hist_inv$CL() occurs twice in the postcondition
encoding: This is necessary because post$CL() does not have to imply anything about the invariants; of
course, the closure body does guarantee preservation of the invariants, but in our approach, invariants
are handled separately in the hist_inv$CL() function. Here is a short example which demonstrates
the problem:

let mut x = 0;
let mut cl =

// view: x: i32 = x
// invariant: x % 10 == 0
// ensures: result == x
|| -> i32 { x += 10; x };

// assert cl |= || { ensures: result % 2 == 0 }

62

1 domain CL {}
2 function CL$view$x(cl: CL): Int
3 function pre$CL(cl: CL): Bool { true }
4 function post$CL(oldcl: CL, cl: CL, r: Int): Bool {
5 r == CL$view$x(cl)
6 }
7 function hist_inv$CL(oldcl: CL, cl: CL): Bool {
8 CL$view$x(oldcl) % 10 == 0
9 && CL$view$x(cl) % 10 == 0

10 }
11
12 method test ()
13 {
14 var cl: CL
15 assume CL$view$x(cl) == 0
16
17 // Fails:
18 // assert forall oldcl_: CL, cl_: CL, r: Int ::
19 // hist_inv$CL(cl, oldcl_) ==> (true ==>
20 // (post$CL(oldcl_, cl_, r) ==> r % 2 == 0))
21
22 assert forall oldcl_: CL, cl_: CL, r: Int ::
23 hist_inv$CL(cl, oldcl_) ==> (true ==>
24 ((post$CL(oldcl_, cl_, r)
25 && hist_inv$CL(oldcl_, cl_)) ==> r % 2 == 0))
26 }

Figure 5.6.: Encoding of a speci�cation entailment that relies on the invariant being established in the
poststate (heap encoding and precondition entailment omitted for simplicity).

In order to prove the postcondition in the speci�cation entailment, we need to know that the invariant
holds for the captured state in the poststate. The Viper encoding is shown in Figure 5.6.

Encoding |=!

To encode speci�cation entailments for single calls, expressed via the |=! operator, we can simply use the
current closure instance (instead of quantifying over instance values). For instance, assume we want to
prove an entailment cl |=! |i: i32| { requires: i > 0, ensures: result > 0 } with the
snapshot type for cl being called CL:

assert forall i: Int :: {pre$CL(cl, i)}
i > 0 ==> pre$CL(cl, i)

assert forall cl_: CL, i: Int, res: Int ::
{post$CL(cl, cl_, i, res)}
i > 0 ==> ((post$CL(cl, cl_, i, res)

&& hist_inv$CL(cl, cl_)) ==> res > 0)

63

Here, we don’t quantify over the prestate instance cl, which is taken from the current state; we do,
however, quantify over the arguments, the poststate instance cl_ (which isn’t known yet), and the
result.

Invariants in Speci�cation Entailments

Finally, entailing invariants works by quantifying over two instances at once; for instance, we can encode
cl |= || { invariant: cnt(self) >= old(cnt(self)) } as

exhale forall oldcl: CL, newcl: CL ::
{hist_inv$CL(oldcl, newcl)}
hist_inv$CL(oldcl, newcl) ==> (cnt(newcl) >= cnt(oldcl))

Note that we have to encode well-formedness checks for the weakened invariant separately; an argument
for why neither pseudo-re�exivity nor transitivity are necessarily preserved when weakening invariants
is given in Appendix A.

A Complete Example

To illustrate how the previously discussed concepts and encoding strategies �t together, consider this
Rust example:

let mut count = 0;
let inc =

// view: cnt: i32 = count
// invariant: old(cnt) <= cnt
// ensures: result == old(cnt) && cnt == old(cnt) + 1
move || -> i32 { let r = count; count += 1; r };

// assert inc |=! || { ensures: result == 0 }
let x = inc ();
assert! (x == 0);

// assert inc |= || { ensures: result >= 1 }

The following Viper code, which has been successfully veri�ed (as all the other Viper examples in this
section), demonstrates the encoding of the example above, using the techniques just described. The
heap encoding is slightly simpli�ed: Integers are encoded as just Int.

1 // Snapshot type and specification functions for the closure type
2 domain Inc {}
3
4 function pre$inc (inc: Inc): Bool {
5 true
6 }
7
8 function post$inc (old_inc: Inc, inc: Inc, res: Int): Bool {
9 (res == inc$view$cnt (old_inc))

10 && (inc$view$cnt (inc) == inc$view$cnt (old_inc) + 1)
11 }

64

12
13 function hist_inv$inc (old_inc: Inc, inc: Inc): Bool {
14 inc$view$cnt (old_inc) <= inc$view$cnt (inc)
15 }
16
17 function inc$view$cnt (inc: Inc): Int
18
19
20 // Heap encoding and snapshot conversion function
21 field cl_captureinccount: Int
22
23 predicate inc$pred (r: Ref) {
24 acc (r.cl_captureinccount)
25 }
26
27 function read (): Perm
28 ensures result > 0/1 && result < 1/1
29
30 function inc$to_snapshot (inc: Ref): Inc
31 requires acc (inc$pred(inc), read())
32 ensures inc$view$cnt(result) ==
33 (unfolding acc(inc$pred(inc), read()) in
34 inc.cl_captureinccount)
35
36
37 // Encoding of closure body
38 method encode_inc_body (self: Ref) returns (res: Int)
39 requires acc(inc$pred(self))
40 requires let self_snap == (inc$to_snapshot(self)) in
41 hist_inv$inc(self_snap, self_snap)
42 && pre$inc(self_snap)
43 ensures acc(inc$pred(self))
44 ensures let self_snap == (inc$to_snapshot(self)) in
45 let old_self_snap == (old(inc$to_snapshot(self))) in
46 hist_inv$inc(old_self_snap, self_snap)
47 && post$inc(old_self_snap, self_snap, res)
48 {
49 {
50 // Check well-formedness of the invariants; these
51 // quantifiers do not need triggers, because we only
52 // prove but never use them (in this method)
53 assert forall cl: Inc ::
54 (exists cl_: Inc :: hist_inv$inc(cl_, cl))
55 ==> hist_inv$inc (cl, cl)
56 assert forall cl1: Inc, cl2: Inc, cl3: Inc ::
57 hist_inv$inc (cl1, cl2) && hist_inv$inc (cl2, cl3)
58 ==> hist_inv$inc (cl1, cl3)
59 }
60

65

61 // Encode body
62 unfold inc$pred(self)
63 var r: Int := self.cl_captureinccount
64 self.cl_captureinccount := self.cl_captureinccount + 1
65 res := r
66 fold inc$pred(self)
67 }
68
69 // Encodes the enclosing function, in principle, but details
70 // omitted here
71 method encode_test ()
72 {
73 var count: Int := 0
74
75 // Encode well-formedness property of the invariants
76 assume forall cl: Inc :: {hist_inv$inc(cl, cl)}
77 (exists cl_: Inc :: hist_inv$inc(cl_, cl))
78 ==> hist_inv$inc(cl, cl)
79 assume forall cl1: Inc, cl2: Inc, cl3: Inc ::
80 {hist_inv$inc(cl1, cl2), hist_inv$inc(cl1, cl3)}
81 {hist_inv$inc(cl2, cl3), hist_inv$inc(cl1, cl3)}
82 (hist_inv$inc(cl1, cl2) && hist_inv$inc(cl2, cl3))
83 ==> hist_inv$inc(cl1, cl3)
84
85 // Encode instance creation
86 var inc: Ref
87 inhale acc (inc$pred(inc))
88 && unfolding inc$pred(inc) in
89 inc.cl_captureinccount == count
90
91 // Encode |=! specification entailment
92 var inc_snap: Inc := inc$to_snapshot (inc)
93 exhale true ==> pre$inc (inc_snap)
94 && forall new_inc: Inc, res: Int ::
95 {post$inc(inc_snap, new_inc, res)}
96 true ==> ((post$inc (inc_snap, new_inc, res)
97 && hist_inv$inc (inc_snap, new_inc))
98 ==> res == 0)
99

100 // Encode call
101 var inc_pre_snap: Inc := inc$to_snapshot (inc)
102 assert pre$inc (inc_pre_snap)
103 && hist_inv$inc(inc_pre_snap, inc_pre_snap)
104 exhale acc (inc$pred(inc))
105 inhale acc (inc$pred(inc))
106 var x: Int
107 var inc_post_snap: Inc := inc$to_snapshot (inc)
108 assume post$inc (inc_pre_snap, inc_post_snap, x)
109 && hist_inv$inc(inc_pre_snap, inc_post_snap)

66

110
111 // Encode assertion
112 assert x == 0
113
114 // Encode specification entailment
115 inc_snap := inc$to_snapshot (inc)
116 exhale (forall cl: Inc :: {pre$inc(cl)}
117 hist_inv$inc(inc_snap, cl)
118 ==> (true ==> pre$inc (cl)))
119 && (forall old_cl: Inc, new_cl: Inc, res: Int ::
120 {post$inc(old_cl, new_cl, res)}
121 hist_inv$inc (inc_snap, old_cl) ==>
122 (true ==> ((post$inc (old_cl, new_cl, res)
123 && hist_inv$inc(old_cl, new_cl))
124 ==> (res >= 1))))
125 }

This concludes our discussion of the encoding of speci�cation entailments. Typically, speci�cation
entailments will occur in the speci�cations of higher-order functions; thus, we will look at how to
encode them next.

5.1.3. Higher-Order Functions and Boxed Closures

We have described above how speci�cation functions are de�ned for every individual closure type (such
as pre$T() for closure type T). This is necessary because the captured state, views, and history invariants
may di�er between di�erent closure types. However, this poses a problem for generic higher-order
functions with closure type arguments (such as fn foo<T: FnMut () -> i32> (...)), because the
concrete type will not be known at the de�nition site, and in fact the same generic function can be
called frommultiple locations with di�erent type arguments.

We propose two methods for solving this problem: Rewriting the speci�cations and using “abstract”
speci�cation functions. We will discuss both of them here, to discuss their respective advantages and
drawbacks.

Rewriting Speci�cations

To verify a generic higher-order function modularly, we may not make any assumptions about its type
arguments (beyond any type bounds, as given e.g. in where clauses). Therefore, in order to verify
the higher-order function, we de�ne a fresh closure snapshot type F, along with a set of speci�cation
functions (pre$F() etc.), for which we do not provide bodies. Then, we can encode the pre- and
postcondition (meaning, in particular, the speci�cation entailments and arrows they contain) in terms
of these speci�cation functions.

At the call-site of the higher-order function, we do know the concrete type arguments.3 This means
that when encoding the pre- and postcondition at the call-site (asserting the former and assuming the

3In fact, Rustmonomorphizes generic functions, meaning calls are always to a speci�c instantiation, separate from all other
instantiations, of a generic function.

67

latter), we can perform this encoding in terms of the concrete speci�cation functions (pre$T() etc.) for
the concrete type T. Note that if one generic higher-order function calls another, the “concrete” type T
would again be a fresh type, used in the encoding of that higher-order function.

For illustration, consider the following example:

// requires: cl |= |i| { requires: i == 42, ensures: result >= 0 }
// ensures: result >= 0
fn hof<F: FnMut (i32) -> i32> (mut cl: F) -> i32 {

cl (42)
}

let cl =
// ensures: result == i
|i| i;

let r = hof (cl);
assert! (r >= 0);

Using the speci�cation rewriting approach, this would be encoded as follows; note how the speci�cation
used for hof() at its de�nition-site talks about di�erent speci�cation functions than the call to hof(),
which is implicit in theexample()methodby asserting the pre- and assuming the postcondition. Details
of the heap encoding, the closure body proof, and the pseudo-re�exivity and transitivity properties of
the history invariants are omitted here to focus the example on the higher-order function encoding:

1 // Fresh snapshot type and specification functions for hof's
2 // generic type parameter F
3 domain FCL {}
4 function pre$fcl(cl: FCL, i: Int): Bool
5 function post$fcl(oldcl: FCL, cl: FCL, i: Int, res: Int): Bool
6 function hist_inv$fcl(oldcl: FCL, cl: FCL): Bool
7
8 // Encoding of the higher-order function hof
9 method hof (cl: FCL) returns (r: Int)

10 requires hist_inv$fcl(cl, cl)
11 requires forall cl_: FCL, i: Int :: {pre$fcl(cl_, i)}
12 hist_inv$fcl(cl, cl_) ==> (i == 42 ==> pre$fcl(cl_, i))
13 requires forall oldcl_: FCL, cl_: FCL, i: Int, res: Int ::
14 {post$fcl(oldcl_, cl_, i, res)}
15 hist_inv$fcl(cl, oldcl_) ==> (i == 42 ==>
16 ((post$fcl(oldcl_, cl_, i, res)
17 && hist_inv$fcl(oldcl_, cl_)) ==> res >= 0))
18 ensures r >= 0
19 {
20 assert pre$fcl(cl, 42) && hist_inv$fcl(cl, cl)
21 var newcl: FCL
22 var res: Int
23 assume post$fcl(cl, newcl, 42, res)
24 && hist_inv$fcl(cl, newcl)
25 r := res
26 }

68

27
28
29 // Snapshot type and specification functions for the concrete
30 // closure type used in the example at hof's call-site
31 domain CL {}
32 function pre$cl(cl: CL, i: Int): Bool { true }
33 function post$cl(oldcl: CL, cl: CL, i: Int, res: Int): Bool {
34 res == i
35 }
36 function hist_inv$cl(oldcl: CL, cl: CL): Bool { true }
37
38 // Encoding of hof's call-site
39 method example ()
40 {
41 var cl: CL
42 var r: Int
43 assert hist_inv$cl(cl, cl)
44 assert forall cl_: CL, i: Int :: {pre$cl(cl_, i)}
45 hist_inv$cl(cl, cl_) ==> (i == 42 ==> pre$cl(cl_, i))
46 assert forall oldcl_: CL, cl_: CL, i: Int, res: Int ::
47 {post$cl(oldcl_, cl_, i, res)}
48 hist_inv$cl(cl, oldcl_) ==> (i == 42 ==>
49 ((post$cl(oldcl_, cl_, i, res)
50 && hist_inv$cl(oldcl_, cl_)) ==> res >= 0))
51 assume r >= 0
52
53 assert r >= 0
54 }

Here, we de�ne two snapshot types (and, accordingly, two sets of speci�cation functions): First, the
FCL type, which we use throughout the higher-order function’s encoding. The FCL type represents the
generic argument to the higher-order function; thus, we may not make any assumptions about it and
provide speci�cation functions without bodies.
Second, the CL type is used to encode the concrete closure type used at the higher-order function’s

call-site. The speci�cation functions for CL have bodies, which re�ect the (known) speci�cation for the
cl closure. When encoding the higher-order function call to hof, we have to rewrite hof’s pre- and
postcondition to substitute the calls to FCL’s speci�cation functions with the respective calls to CL’s
speci�cation functions.

The advantage of this approach is that it is relatively simple to implement, and that we can readily use
all of the knowledge available at the higher-order function’s call-site about the concrete closure’s (CL’s
in the example) speci�cation functions in order to prove the higher-order function’s precondition.
The downside is that this approach only works as long as we have a concrete type (which could

be another generic type, as noted above) to rewrite the higher-order function’s speci�cation for. In
particular, this means that boxed closures are not supported by this approach: Boxes containing a
dynamic type (Box<dyn Fn...>) can point to di�erent concrete types at di�erent program points;
thus, there is no single type we can rewrite the speci�cation for. The next section presents a di�erent

69

approach better suited to this application.

Abstract Speci�cation Functions

The second possibility for encoding higher-order functions and their speci�cations is to globally de�ne
one more set of speci�cation functions (pre$S() etc.) per closure signature S (such as (i32, i32) ->
i32), along with a fresh snapshot type for S. Then, any generic higher-order function that does not
know the concrete types of its argument closures could be encoded in terms of these “abstract” (because
they do not belong to any concrete closure type) speci�cation functions.
At the call-site, then, we could reuse the same speci�cation without the need for any rewriting;

instead, at the de�nition-site of every closure, we need to add information about the correspondence
between the concrete (pre$T() etc. for the concrete closure type T) and abstract (pre$S() etc. for the
signature S) speci�cation functions.

Here is the same example from the previous section again, this time encoded using abstract speci�ca-
tion functions, and without rewriting any speci�cations. Note how the abstract snapshot type is used
in the encoding of the higher-order function and at its call-site, and how the correspondence axioms
{pre,post,hist_inv}_corr establish the relation between the speci�cation functions of the concrete
closure type and the abstract ones:

1 // Snapshot type and specification functions for signature |i32| -> i32
2 domain S {
3 function pre$S(cl: S, i: Int): Bool
4 function post$S(oldcl: S, cl: S, i: Int, res: Int): Bool
5 function hist_inv$S(oldcl: S, cl: S): Bool
6 }
7
8 // Encoding of the higher-order function hof
9 method hof (cl: S) returns (r: Int)

10 requires hist_inv$S(cl, cl)
11 requires forall cl_: S, i: Int :: {pre$S(cl_, i)}
12 hist_inv$S(cl, cl_) ==> (i == 42 ==> pre$S(cl_, i))
13 requires forall oldcl_: S, cl_: S, i: Int, res: Int ::
14 {post$S(oldcl_, cl_, i, res)}
15 hist_inv$S(cl, oldcl_) ==> (i == 42 ==>
16 ((post$S(oldcl_, cl_, i, res)
17 && hist_inv$S(oldcl_, cl_)) ==> res >= 0))
18 ensures r >= 0
19 {
20 assert pre$S(cl, 42) && hist_inv$S(cl, cl)
21 var newcl: S
22 var res: Int
23 assume post$S(cl, newcl, 42, res) && hist_inv$S(cl, newcl)
24 r := res
25 }
26
27
28 // Snapshot type and specification functions for the concrete
29 // closure type, with correspondence axioms for the abstract

70

30 // specification functions
31 domain CL {
32 function pre$cl(cl: CL, i: Int): Bool
33 axiom { forall cl: CL, i: Int :: {pre$cl(cl, i)}
34 pre$cl(cl, i) <==> true
35 }
36 function post$cl(oldcl: CL, cl: CL, i: Int, res: Int): Bool
37 axiom { forall oldcl: CL, cl: CL, i: Int, res: Int ::
38 {post$cl(oldcl, cl, i, res)}
39 post$cl(oldcl, cl, i, res) <==> res == i
40 }
41 function hist_inv$cl(oldcl: CL, cl: CL): Bool
42 axiom { forall oldcl: CL, cl: CL :: {hist_inv$cl(oldcl, cl)}
43 hist_inv$cl(oldcl, cl) <==> true
44 }
45
46 function upcastCLS(cl: CL): S
47 function downcastSCL(s: S): CL
48
49 axiom upcast_injective {
50 forall cl: CL :: {upcastCLS(cl)}
51 downcastSCL(upcastCLS(cl)) == cl
52 }
53
54 axiom pre_corr {
55 forall cl: CL, i: Int, s: S ::
56 {upcastCLS(cl), pre$S(s, i)}
57 hist_inv$S(upcast$CL$S(cl), s) ==>
58 (pre$S(s, i) <==> pre$cl(downcastSCL(s), i))
59 }
60
61 axiom post_corr {
62 forall cl: CL, olds: S, s: S, i: Int, res: Int ::
63 {upcastCLS(cl), post$S(olds, s, i, res)}
64 hist_inv$S(upcast$CL$S(cl), olds) ==>
65 (post$S(olds, s, i, res) <==>
66 post$cl(downcast$S$CL(olds),
67 downcastSCL(s), i, res))
68 }
69
70 axiom hist_inv_corr {
71 forall oldcl: CL, cl: S ::
72 {hist_inv$S(upcast$CL$S(oldcl), cl)}
73 hist_inv$S(upcast$CL$S(oldcl), cl) <==>
74 hist_inv$cl(oldcl, downcast$S$CL(cl))
75 }
76 }
77
78 // Encoding of the higher-order function's call-site

71

79 method example ()
80 {
81 var cl: CL
82 var r: Int
83 r := hof(upcastCLS(cl))
84 assert r >= 0
85 }

Notice how we can simply call hof() in the body of the example() method, i.e. no rewriting takes
place. Two main di�culties arise for this approach: First, the correspondence axioms need to relate
not only the current instance and its upcasted value, but also all future instances that we can produce
by encoding calls via the abstract speci�cation functions (e.g. in a higher-order function) and then
downcasting the resulting instances again. This is why choosing triggers for the correspondence axioms
is not straightforward; we are not certain whether the choice made here is indeed su�cient in all cases.
Second, we should avoid downcasting an abstract instance of type S into CL unless we know that it

actually is an instance of the concrete CL type; some further work may be necessary in this regard to
encode this properly. Perhaps a kind of “discriminator” function that maps an instance of the abstract
snapshot type to an integer denoting the concrete type could be used for this purpose (together with
corresponding pre-/postconditions for the up-/downcasting functions).

Our implementation (cf. Section 5.2) uses the speci�cation rewriting approach, but we have shown
the abstract speci�cation function approach here as well to demonstrate an alternative with di�erent
strengths and weaknesses; in particular, unlike the speci�cation rewriting approach, abstract speci�ca-
tion functions can be used when working with boxed closures, as discussed in the following section.

Boxed Closures

Boxed closures containing a dyn Fn* type (as well as dynamic references and function pointers) can
point to instances of di�erent closure/function types/de�nitions at di�erent times; this means they
pose a quite similar problem to generic higher-order functions, with one di�erence being that boxes
can be reassigned to di�erent instances (and thereby concrete types) at any point, whereas the closure
type argument of a higher-order function is constant per instantiation/call.
Still, the approach using abstract speci�cation functions described above works well for boxed

closures: We can encode entailments involving a boxed closure with signature S in terms of the cor-
responding abstract speci�cation functions (pre$S() etc.), just as before in the case of higher-order
functions. For example:

// requires: **f |= || { ensures: result >= 0 }
// ensures: **f |= || { ensures: result < 0 }
fn foo (f: &mut Box<dyn FnMut () -> i32>) {

f ();
// assert hist_inv(old(**f), **f)
*f = Box::new (

// ensures: result == -42
|| -42);

}

72

Using abstract speci�cation functions, this example would be encoded as follows (details of the heap
encoding are completely omitted here, for simplicity; the poststate value of the argument reference is
modeled as a return value). Notice how we only use one set of speci�cation functions despite the fact
that the concrete type stored in the box changes; we simply encode the new behavior in terms of the
same abstract speci�cation functions. This allows us to deal with the dynamic aspect of boxed closures
(i.e. that the concrete type can change):

1 domain FCL {}
2 function pre$fcl (cl: FCL): Bool
3 function post$fcl (oldcl: FCL, cl: FCL, res: Int): Bool
4 function hist_inv$fcl (cl1: FCL, cl2: FCL): Bool
5
6 method havoc_fcl () returns (f: FCL)
7
8 method foo (f: FCL) returns (f_: FCL)
9 requires hist_inv$fcl(f, f)

10 requires forall nf: FCL :: {pre$fcl(nf)}
11 hist_inv$fcl(f, nf) ==> (true ==> pre$fcl(nf))
12 requires forall of: FCL, nf: FCL, res: Int ::
13 {post$fcl(of, nf, res)}
14 hist_inv$fcl(f, of) ==>
15 (true ==> ((post$fcl(of, nf, res)
16 && hist_inv$fcl(of, nf)) ==> res >= 0))
17 ensures hist_inv$fcl(f_, f_)
18 ensures forall nf: FCL :: {pre$fcl(nf)}
19 hist_inv$fcl(f_, nf) ==> (true ==> pre$fcl(nf))
20 ensures forall of: FCL, nf: FCL, res: Int ::
21 {post$fcl(of, nf, res)}
22 hist_inv$fcl(f_, of) ==>
23 (true ==> ((post$fcl(of, nf, res)
24 && hist_inv$fcl(of, nf)) ==> res < 0))
25 {
26 assert pre$fcl(f) && hist_inv$fcl(f, f)
27 f_ := havoc_fcl()
28 var r: Int
29 assume post$fcl(f, f_, r) && hist_inv$fcl(f, f_)
30
31 // Encoding of closure body omitted; we model only the assignment here
32 // by assuming the new specification (this would be derived from the
33 // correspondence axioms on the concrete closure type in a complete
34 // encoding):
35 f_ := havoc_fcl()
36 assume hist_inv$fcl(f_, f_)
37 assume forall nf: FCL :: {pre$fcl(nf)}
38 hist_inv$fcl(f_, nf) ==> (true ==> pre$fcl(nf))
39 assume forall of: FCL, nf: FCL, res: Int ::
40 {post$fcl(of, nf, res)}
41 hist_inv$fcl(f_, of) ==> ((post$fcl(of, nf, res)
42 && hist_inv$fcl(of, nf))

73

43 ==> res == -42)
44 }

Recall the framing issue from Section 4.2.7: hist_inv(a, b) for boxed closures a and b should only
hold if a and b are instances of the same de�nition. This is achieved implicitly here, by inhaling
hist_inv$fcl(f, f_) after the call but not after the assignment. Again, future work could improve
on this, e.g. by using a discriminator function as mentioned above.

5.1.4. Arrow Notation

The arrow notation expresses that there has been a call such that certain assertions were true in the pre-
and poststate. Consequently, we can easily encode this using existential quanti�ers; for instance, take
the following example:

// requires: f |= |i| { requires: i >= 0 }
// ensures: old(f) (:i) / { *i == 42 } ~~> { outer(result) == *i }
fn foo (f: impl FnMut (&mut i32) -> i32) -> i32 {

let mut x = 42;
f (&mut x);
x

}

We can encode foo’s postcondition as follows (with details of the heap encoding omitted again, for
simplicity):

method foo (f: F) returns (res: Int)
ensures exists postf: F, i: Int, posti: Int, r: Int ::

{pre$F(f, i), post$F(f, postf, i, posti, r)}
pre$F(f, i) && post$F(f, postf, i, posti, r)
&& hist_inv$F(f, postf)
&& i == 42 && res == posti

Note how we do not quantify over f, because it is a known instance (namely, the one from foo’s
prestate). We do quantify over the poststate instance value, the old/new arguments, and the result. The
quanti�er body expresses that the pre- and postcondition as well as the invariants hold for these values,
by calling the respective speci�cation functions, and encodes the pre- and poststate descriptions (the
last two conjuncts above). Observe, in particular, how *i is encoded di�erently (i for encoding the
prestate description, and posti for the poststate), and how outer(result) has been resolved to res,
the result of the foo() method.

5.1.5. Ghost Arguments and Results

Prusti does not, at the time of writing, support ghost arguments/results; and to some extent, choices
regarding their implementation are orthogonal to their application to the veri�cation of closure code.
Nonetheless, we can describe some general ideas here.

Note, �rst of all, that ghost arguments and results in speci�cations of higher-order functions do not
actually have to be transferred between caller and callee; in a modular veri�cation setting, both will be
veri�ed independently from each other, including the ghost arguments. This means that the callee will

74

have to be veri�ed without any assumptions about the ghost arguments (except what is given by its
precondition), and the caller has to check whether their concrete choice of ghost arguments satis�es the
callee’s precondition. Similarly, the caller can’t assume anything about the ghost result except what is
given by the callee’s postcondition.
With this in mind, the callee can treat the ghost arguments as unknown constants, similar to an

existential quanti�er. The caller knows their values, because the responsibility for choosing them lies
with the caller; thus, she may substitute the concrete values in the callee’s speci�cation and thereby
proceed to prove the pre- and assume the postcondition. The reverse strategy can be applied to ghost
results.
As for ghost argument/result functions, they can be encoded similarly: The callee de�nes a fresh

function without a body in Viper, meaning this represents some unknown function with the given
signature, and uses it to prove its (the callee’s) body by substituting it for the ghost argument function.
The caller de�nes a Viper function with a body, because she knows the ghost function’s de�nition, and
substitutes it in the callee’s speci�cation, or just substitutes the ghost function’s de�nition directly in
the higher-order function’s speci�cation. Then, she uses that to encode the function call.

To illustrate, consider this example:

// ghost_arg: cnt: (F) -> i32
// requires: f |= || { ensures: cnt(self) == old(cnt(self)) + 1 }
fn foo<F: FnMut () -> i32> (mut f: F) {

// ...
}

let mut count = 0;
let mut cl =

// view: c: i32 = count
// invariant: c % 3 == 0
// ensures: c == old(c) + 3
|| -> i32 { let r = count; count += 3; r };

// ghost_arg: cnt(f) := f.c / 3
foo (cl);

Here is a possible encoding in Viper, using the speci�cation rewriting approach for the higher-order
function call. Note how the higher-order function’s speci�cation is expressed in terms of the fresh
bodyless ghost_argfoocnt() function in foo’s precondition to make sure it will work for any
concrete choice of the ghost argument. On the other hand, in the examplemethod, when encoding the
call to foo, the ghost argument is substituted with (the encoding of) its concrete de�nition (f.c / 3).

1 domain Inc {}
2 function inc$view$c(cl: Inc): Int
3 function pre$inc(cl: Inc): Bool { true }
4 function post$inc(oldcl: Inc, cl: Inc, res: Int): Bool {
5 inc$view$c(cl) == inc$view$c(oldcl) + 3
6 }
7 function hist_inv$inc(oldcl: Inc, cl: Inc): Bool {

75

8 inc$view$c(oldcl) % 3 == 0
9 && inc$view$c(cl) % 3 == 0

10 }
11
12 // Encoding of closure body omitted
13
14 method example ()
15 {
16 var cl: Inc
17 assume inc$view$c(cl) == 0
18 assert hist_inv$inc(cl, cl)
19
20 // Encode foo's precondition (i.e., the call to foo)
21 assert forall cl_: Inc :: {pre$inc(cl_)}
22 hist_inv$inc(cl, cl_) ==> (true ==> (pre$inc(cl_)))
23 assert forall oldcl_: Inc, cl_: Inc, r: Int ::
24 {post$inc(oldcl_, cl_, r)}
25 hist_inv$inc(cl, oldcl_) ==>
26 ((post$inc(oldcl_, cl_, r)
27 && hist_inv$inc(oldcl_, cl_)) ==>
28 (inc$view$c(cl_) / 3) ==
29 (inc$view$c(oldcl_) / 3) + 1)
30 }
31
32 domain F {}
33 function pre$f (cl: F): Bool
34 function post$f (oldcl: F, cl: F, res: Int): Bool
35 function hist_inv$f (oldcl: F, cl: F): Bool
36
37 function ghost_argfoocnt (cl: F): Int
38
39 method foo (cl: F)
40 requires forall cl_: F :: {pre$f(cl_)}
41 hist_inv$f(cl, cl_) ==> (true ==> pre$f(cl_))
42 requires forall oldcl_: F, cl_: F, r: Int ::
43 {post$f(oldcl_, cl_, r)}
44 hist_inv$f(cl, oldcl_) ==>
45 ((post$f(oldcl_, cl_, r)
46 && hist_inv$f(oldcl_, cl_)) ==>
47 ghost_argfoocnt(cl_) ==
48 ghost_argfoocnt(oldcl_) + 1)
49 {
50 // ...
51 }

In this section, we have investigated strategies for the Viper encoding of the methodology from
Chapter 4. All of the examples presented so far have been manually encoded, though; in the next
section, we will look at how to automate this translation.

76

5.2. Implementation in Prusti

This section outlines some aspects of the current implementation, which automates the previously
discussed encoding techniques as part of the Prusti veri�er. Not all of the previously discussed features
have been implemented yet; please refer to Section 6.2 for a discussion of several supported example
programs, as well as of the current implementation’s limitations.

Speci�cation Parsing

Before thinking about the Viper encoding, we need to extend the Prusti parser to recognize and accept
speci�cation annotations for closures (and not only functions) and, as part of the speci�cation language,
speci�cation entailments (and, later, the arrow notation, ghost arguments, etc.). This is achieved via
so-called procedural macros [16, Section 19.5], which allow us to rewrite the abstract syntax tree of the
input program after parsing. Closure speci�cations currently have the following syntax:

let cl = closure!(
requires (i > 0),
ensures (result >= i),
|i: i32| -> i32 { i + 1 })

);

Wemust check the syntax of the pre- and postcondition expressions andmake sure they type-check. For
this purpose, we add dummy functions prusti_pre() and prusti_post(), with the same arguments
as the closure (plus an extra result argument for prusti_post), and encode the pre- andpostcondition
expressions in their bodies, respectively:4

let cl = {
|i: i32| -> i32 {

if false {
#[prusti::spec_only]
fn prusti_pre(i: i32) {

#[prusti::spec_only]
|| -> bool { i > 0 };

}
}

let result = { i + 1 };

if false {
#[prusti::spec_only]
fn prusti_post(i: i32, result: i32) {

#[prusti::spec_only]
|| -> bool { result >= i };

4The fact that the expressions are encoded as bodies of closures within prusti_{pre,post} is an implementation detail
motivated by how Prusti encodes assertions that transcend Rust syntax—for instance, an assertion A ==> B (consisting
of Rust expressions A and B and the non-Rust implication operator) in the precondition would be encoded with two
closures in prusti_pre’s body, one for encoding A and one for B. The two would be stitched back together in a later
stage of Prusti.

77

}
}

result
}

};

Many additional annotations that Prusti uses to keep track of the speci�cation (which expressions
it consists of, etc.) are omitted here for legibility. The prusti_pre() and prusti_post() functions
will now be type-checked by the compiler; for instance, if the precondition was not well-typed, then
the Rust compiler would report a type error in prusti_pre’s body (speci�cally, the || -> bool { i
> 0 } helper closure, which could then be traced back by Prusti to the original closure!() macro
expression the user wrote).
Encoding closure speci�cations as described is simple and similar to how Prusti encodes regular

functions, thus allowing us to reuse parts of the existing code. However, it is not without drawbacks:
Unlike functions, closure signatures may be inferred, i.e. the above example closure cl could also be
de�ned as |i| i + 1. Because our rewriting step happens after parsing but before type-checking, we
have to rely on explicit type annotations for closures in order to be able to generate the prusti_pre()
and prusti_post() functions. Usually, this is at most an inconvenience for the user; the only serious
restriction this causes is that higher-order closures are not supported by this approach, because giving
explicit type annotations for them is not possible (as closures have anonymous types in Rust). This is a
limitation that should be overcome in the future, given that supporting higher-order closures was one
of our goals (our methodology and Viper encoding strategy already support higher-order closures). For
the time being, note that higher-order functions are supported, which are more common in practice
than higher-order closures.

Note that turning prusti_pre and prusti_post into closures (rather than functions, so that their
argument types could be inferred as well) would not immediately solve this problem; assume we de�ned
the closure as |i| -> i32 { i }, i.e. without type annotations for i. We might then be tempted to
rewrite the code as follows:

let cl = {
|i| -> i32 {

if false {
#[prusti::spec_only]
let prusti_pre = |i| {

#[prusti::spec_only]
|| -> bool { i > 0 };

};
}

[...]
}

};

Type inference for this fragment would fail, however, because we never use (e.g. call) the prusti_pre
closure; thus, the compiler cannot infer its type. We could add a dummy call prusti_pre(i); after its
de�nition, but if i turns out to be a non-copy type, this would move out i.

78

One more problem exists when rewriting prusti_{pre,post} as closures, even with type annota-
tions; consider this slightly modi�ed example:

let k: i32 = 42;
let cl = closure!(

requires (k > 0),
ensures (result >= i),
|i: i32| -> i32 { i + 1 }

);

The precondition accesses some variable k, de�ned in the enclosing scope but neither shadowed by a
closure argument nor captured by the closure. Now imagine we were to rewrite this example as follows:

let k: i32 = 42;
let cl = {

|i: i32| -> i32 {
if false {

#[prusti::spec_only]
let prusti_pre = |i: i32| {

#[prusti::spec_only]
|| -> bool { k > 0 };

};
}

[...]
}

};

This would be accepted by the Rust compiler (k would simply be added to the list of variables captured
by prusti_pre and cl), even though the precondition is illegal. Additional checks could circumvent
this issue, but this would require non-trivial parsing logic in the implementation to handle shadowing,
variable scopes, etc. properly.

Finally, note that without type annotations, the way a closure argument is used in the pre- or post-
condition can in�uence type inference, which may also be undesirable, given that speci�cations are
ghost code and should not in�uence the rest of the program. Future work should try to �gure out an
overall, comprehensive strategy for rewriting and type-checking closure speci�cations that prevents all
of these issues.

Closure calls do not need any special syntax, i.e. the above closure could simply be called as, say,
cl(42). What we do still need to extend the parser for are speci�cation entailments, e.g. as part of a
higher-order function’s speci�cation. For instance, the following example is accepted by our parser:

#[requires(f |= |i: i32| [requires(i >= 0), ensures(result >= 0)])]
fn example<F: Fn (i32) -> i32> (f: F) { ... }

Again, some rewriting will take place to type-check the right-hand side of the entailment operator, with
the aforementioned restrictions and di�culties.

79

Viper Encoding

Because closure bodies are encoded as regular functions in Rust’s MIR, we can reuse Prusti’s Proce-
dureEncoder to encode them as if they were regular functions. To encode closure calls, we need some
special handling, because closures are not called directly in the MIR; for instance:

_4 = const <[closure@/tmp/cl.rs:5:13: 9:6]
as std::ops::Fn<(i32, i32)>>

::call(move _5, move _6) -> [return: bb2, unwind: bb1];

Here, [closure@/tmp/cl.rs:5:13: 9:6] is a placeholder for the anonymous closure type, which is
then upcasted to the std::ops::Fn<(i32, i32)> trait, on which the actual call happens by calling
the call method. This method receives two arguments: The closure instance (_5 in the example) and
the arguments to the call, stored in a single tuple (_6).

Therefore, we can retrieve the actual closure de�nition that gets called through the type of _5; then,
we can deconstruct the tuple _6 to get the individual arguments to the call, and the result will be stored in
_4. This is all the information we need to encode this call, again reusing some of the existing machinery
for regular function calls, such as the logic for encoding which permissions need to be exhaled/inhaled
during the call.

For the speci�cation functions, we have constructed a dedicated encoder SpecFunctionEncoder,
which encodes closure contracts and creates the relevant Viper functions (pre$T() and post$T() so
far). Encoding speci�cation entailments happens as part of the existing SpecEncoder (which is the
module that also encodes quanti�ers, implications, etc.) by expressing the entailment as quanti�ers and
calls to the respective speci�cation functions, as explained in Section 5.1.

Higher-order function calls are implementedusing the speci�cation rewriting approach (Section 5.1.3),
i.e. the higher-order function’s speci�cation is rewritten at the call-site to refer to the concrete closure
type’s set of speci�cation functions.

This concludes our discussion of the Viper encoding techniques and how our implementation auto-
mates them. The following chapter will look at examples of user-level speci�cations for various closures
and higher-order functions; in particular, Section 6.2 will demonstrate and discuss the capabilities of
our implementation.

80

6. Evaluation

6.1. Example Speci�cations

In this section, we will look at how examples from each of the four categories described in Chapter 3
can be equipped with speci�cations, using the tools presented in Chapter 4.

6.1.1. Higher-Order Functions over Collections

Let us begin with a simple example: The filter() method of the Iterator trait. For simplicity,
though, instead of working with lazy iterators, we will assume that filter works on some collection
self.vals and returns the �ltered collection, and for the moment, we will assume that the closure
does not modify the elements (which is guaranteed by the postcondition in the speci�cation entailment
below). Whatwewant to express is, in the precondition, thatwemust be able to call the argument closure
f with every element in the collection, and in the postcondition, that f was called on every element, and
that its result determined whether the particular element ended up in the resulting collection:

// requires: f |= |x| { requires: outer(self.vals).contains(x),
// ensures: x == old(x) }
// ensures: forall el: T :: {result.contains(el)}
// old(self.vals).contains(el) ==>
// :f (el) / {} ~~> { result == outer(result).contains(el) }
fn filter (self, f: impl FnMut (&T) -> bool) ...

With this choice of triggers in the postcondition, we can verify call-site examples such as this one:

let nums: Vec<_> = (0 .. 10).collect();
let filtered: Vec<_> =

nums.into_iter().filter(
// ensures: result <==> (i % 2 == 0)
|i| i % 2 == 0).collect();

// assert forall i: i32 :: filtered.contains(i) ==> i % 2 == 0

Next, consider the classic map() function, operating (for our purposes) on a vector self.vals of
elements of type T and returning a vector of elements of type U. We will now lift the restriction from
the previous example, i.e. if T is a mutable reference, we allow the closure to modify it. It is therefore
not su�cient to describe the resulting collection, we also have to describe how the original collection
changed, which is illustrated by this example:

let mut a = 0;
let mut b = 1;
let mut nums = vec! [&mut a, &mut b];

81

let r = nums.iter_mut ()
.map (|x| { **x += 1; 42 })
.collect::<Vec<_>> ();

assert_eq! (r, vec! [42, 42]);
assert_eq! ((a, b), (1, 2));

Here is a possible speci�cation. Again, we need to require that we can call the closure for every element
of self.vals. In the postcondition, we can ensure, �rst, that the result and self.vals will have the
same length as old(self.vals). This allows us to give a more precise postcondition, because we can
now reason about indices (instead of just, say, set membership) and thus about the order of elements
in the result. We want to express that f has been called with every element from old(self.vals),
that its result is at the corresponding index in result, and that the poststate value of the element in
self.vals is what f left it in:

// requires: f |= |el| { requires: outer(self.vals).contains(el) }
// ensures: old(self.vals).len() == self.vals.len()
// ensures: old(self.vals).len() == result.len()
// ensures: forall idx: usize :: {result[idx]} {self.vals[idx]}
// 0 <= idx && idx < result.len() ==>
// :f (:x) / { x == outer(old(self.vals[idx])) }
// ~~> { outer(self.vals[idx]) == x
// && outer(result[idx]) == result }
fn map<U, F: FnMut (T) -> U> (&mut self, f: F) -> ...

Describingmodi�cations to f’s captured state is tricky, because map()may call f an unbounded amount
of times, and so we cannot reason about speci�c instance values. We can, however, give an invariant as a
ghost argument function, which relates the captured state of f with the multiset of elements seen so far
during map’s execution. We can then guarantee inv(f, old(self.vals)) at the end, but for this to
work, we must require that f maintains the invariant, and that it is established at the beginning:

// ghost_arg: inv: (F, MultiSet[T]) -> bool
// requires: inv(f, {})
// requires: forall s: MultiSet[T] :: {s subset self.vals}
// s subset self.vals ==>
// f |= |el| { requires: inv(self, outer(s))
// && outer(self.vals).contains(el),
// ensures: inv(self, outer(s) union {old(el)}) }
// ensures: inv(f, old(self.vals))

This would allow us, for instance, to implement a fold in terms of map; admittedly, the manual
introduction of the closure speci�cation via an assumption in the following example is rather inelegant,
but it is necessary: What we would like to express in f2’s speci�cation is that it preserves the invariant
for all s ⊆ self.vals. But such a quanti�cation over s is not possible in a speci�cation, only with
speci�cation entailments, because we can put them under quanti�ers. Perhaps future work could
improve on this.

// ghost_arg: inv: (A, MultiSet[T]) -> bool
// requires: inv(init, {})
// requires forall s: MultiSet[T] :: {s subset self.vals}

82

// s subset self.vals ==>
// f |= |acc, cur| {
// requires: inv(acc, outer(s))
// && outer(self.vals).contains(cur),
// ensures: inv(result, outer(s) union {old(cur)})
// }
// ensures: inv(result, old(self.vals))
fn fold<T, A: Clone> (self, init: A, f: impl Fn(A, &T) -> A) -> A
{

let mut a = init;

let mut f2 =
// view: a: i32 = a
|el: &T| -> () {

a = f (a.clone (), el);
};

// assume forall s: MultiSet[T] :: {s subset self.vals}
// s subset self.vals ==>
// f2 |= |el| { requires: inv(self.a, outer(s))
// && outer(self.vals).contains(el),
// ensures: inv(self.a, outer(s) union {old(el)})
// }

// ghost_arg: inv(f2, s) := inv(f2.a, s)
self.map (f2);

return a;
}

Again, as a simpli�cation, we assume that map and fold work on self.vals instead of lazy iterators.
At the call-site, the speci�cation shown above would allow us to verify calls to fold such as:

let vals = vec! [1, 2, 3, 4];
let acc = vals.into_iter()

// ghost_arg: inv(x, s) := (x == sum(s))
.fold(0, // ensures: result == a + c

|a, c| a + c);
assert_eq! (acc, 10);

Using fold to accumulate numbers by addition/multiplication/. . . is very common in practice. Once
support for set comprehensions is made available in Viper (which is an orthogonal issue to closure
veri�cation), we will be able to encode examples like these in Viper.

6.1.2. Higher-Order Functions with Fixed Behavior

Consider the Option<T>::map() function: It calls its argument closure once with the stored value, if
the Option stores a value, and never otherwise. Therefore, in case there is no value in the Option, we
do not have to require anything about the closure’s behavior; otherwise, we require that the closure can
be called with the stored value and ensure that it has indeed been called:

83

// requires: match self {
// None => true,
// Some(val) => f |=! |x| { requires: x == outer(val) }
// }
// ensures: match old(self) {
// None => result == None,
// Some(val) => old(f) (val) / {}
// ~~> { outer(result) == Some(result) }
// }
fn map<U, F: FnOnce (T) -> U> (self, f: F) -> Option<U> { ... }

We can also specify function composition. A precise speci�cation for this operation turns out to be
surprisingly involved; our strategy here is to expose the captured “sub-closures” f and g as views, and
to express the result closure’s speci�cation in terms of the speci�cations of f and g. Note the use of
ReturnT to refer to the anonymous existential return type (as in Section 4.4.2).

We do not need a precondition for compose—everything is expressed in terms of result’s behavior
in the postcondition. In the postcondition, we guarantee the initial values of the ghost functions cf and
cg, which are equal to the two closures f and g we passed in. The behavior of result is then expressed
in terms of the behavior of cf and cg. This allows compose’s caller to apply all of her knowledge about
f’s and g’s concrete behavior; she can even reason about precise instance values (as given by the arrows in
result’s postcondition) and therefore keep track of how the captured state evolves in detail. result’s
precondition is similar to what we have encountered in Section 4.2.4, i.e. the caller must prove that
we can call cf (again, we are reasoning about precise instances to give a speci�cation as detailed and
powerful as possible) with result’s argument, and then cg with cf’s result.

// ghost_result: cf: (&ReturnT) -> &F
// ghost_result: cg: (&ReturnT) -> &G
// ensures: cf(result) == old(f) && cg(result) == old(g)
// ensures:
// result |= |x| {
// requires: cf(self) |= |a| {
// requires: a == outer(x),
// ensures: cg(outer(self)) |= |b| {
// requires: b == outer(result) } },
// ensures: old(cg(self)) (:b) / {
// outer(old(cf(self))) (outer(old(x))) / {}
// ~~> { result == outer(b)
// && outer(outer(cf(self))) == self } }
// ~~> { result == outer(result)
// && outer(cg(self)) == self } }
fn compose<A, B, C, F: FnMut (A) -> B, G: FnMut (B) -> C>

(mut f: F, mut g: G) -> impl FnMut (A) -> C
{

// view: cf: &F = &f
// view: cg: &G = &g
move |a: A| g (f (a))
// ghost_return cf(r) := r.cf

84

// ghost_return cg(r) := r.cg
}

6.1.3. sort_by()

For sort_by(), we need to specify that the comparator closure cl is re�exive, antisymmetric, and
transitive. Assume, for simplicity, that the comparator closure returns a bool (true if the comparison
of the arguments evaluates to true, false otherwise), and that sort_by() returns the sorted vector.
Note that in the following precondition for sort_by(), we not only need to di�erentiate multiple
results, but also multiple old()s, because each call has its own prestate:

// requires: cl |= |a, b| { ensures: old(a == b) ==> result == true }
// requires: cl |= |a, b|, |c, d| { ensures:
// (old0(a) == old1(d) && old0(b) == old1(c)) && result0 && result1
// ==> old0(a == b) }
// requires: cl |= |a, b|, |c, d|, |e, f| { ensures:
// ((old0(b) == old1(c) && old0(a) == old2(e) && old1(d) == old2(f))
// && result0 && result1) ==> result2 == true }

We could also require that cl must be “deterministic” (meaning, in this case, that it always returns the
same result for the same arguments):

// requires: cl |= |a, b|, |c, d| { requires: a == c && b == d,
// ensures: result0 == result1 }

This is weaker than requiring cl to be pure, because it may still mutate its captured state, as long as the
result is deterministic.
Writing a suitable postcondition is harder, but the following should work. The idea is to express

the resulting vector in terms of cl’s behavior; speci�cally, if we were to compare result[i] with
result[j] for some i ≤ j using the cl comparator closure, cl should return true, because result is
sorted according to cl:

// ensures: forall i, j :: {result[i], result[j]}
// 0 <= i <= j < result.len() ==>
// cl |= |a, b| { requires: a == outer(result[i])
// && b == outer(result[j]),
// ensures: result == true }

This would allow us to verify call-sites such as:
let cl = |a: &i32, b: &i32| *a <= *b;
let mut nums = vec! [3, 2, 1];
assert! (cl (&nums[0], &nums[1]) == false);
nums.sort_by (cl);
assert! (cl (&nums[0], &nums[1]));

Additionally, we should ensure that result is a permutation of self.vals, i.e. contains the same
elements. This could be expressed as follows, assuming the availability of a to_multiset operator that
returns a multiset containing the elements in a given vector:

// ensures: self.vals == old(self.vals)
// ensures: to_multiset(self.vals) == to_multiset(result)

85

6.1.4. Boxed Closures

Consider this example from the Rust Book [16, Section 13.1], adapted to use a boxed closure rather than
a generic type parameter. The idea of this (arti�cial) example is that Cacher stores a closure and an
option, and only calls the closure if there is not already a value stored in the option (in which case it will
put the closure’s result into the option):

struct Cacher
{

calculation: Box<dyn Fn(u32) -> u32>,
value: Option<u32>,

}

impl Cacher
{

fn new(calculation: Box<dyn Fn(u32) -> u32) -> Cacher {
Cacher {

calculation,
value: None,

}
}

fn value(&mut self, arg: u32) -> u32 {
match self.value {

Some(v) => v,
None => {

let v = (self.calculation)(arg);
self.value = Some(v);
v

}
}

}
}

Note that even though Cacher’s �elds are not declared pub (public), code in the same module can
still access and modify them, so for our purposes, the visibility of those �elds does not really make a
di�erence. In particular, the value �eld can be set back to None at any time, the calculation �eld can
be reassigned, etc.

We will present two di�erent speci�cation strategies for this example. Either one might be the more
appropriate solution, depending on the concrete use case. The �rst one leaves Cacher unchanged and
equips the two functions with the following speci�cations:

// ensures: result.calculation == old(calculation)
// ensures: result.value == None
fn new (calculation: Box<dyn Fn(u32) -> u32) -> Cacher { ... }

// requires: match self.value {
// None => self.calculation |= |i| { requires: i == outer(arg) },
// Some(_) => true

86

// }
// ensures: match old(self.value) {
// Some(v) => (self.value == Some(v) && result == v
// && self.calculation == old(self.calculation)),
// None => (old(self.calculation) (arg) / {}
// ~~> { result == outer(result)
// && outer(self.value) == Some(result)
// && outer(*self.calculation) == self })
// }
fn value(&mut self, arg: u32) -> u32 { ... }

Here, it is the caller’s responsibility to keep track of what’s stored in Cacher::calculation; in partic-
ular, value() requires a speci�cation entailment in its precondition.
The second strategy adds an invariant to Cacher:

struct Cacher {
// invariant: calculation |= |i| {
// requires: i >= 10, ensures: result <= 100
// }
// invariant: match value {
// Some(i) => i <= 100,
// None => true
// }
...

}

// requires: calculation |= |i| {
// requires: i >= 10, ensures: result <= 100 }
// ensures: result.value == None
fn new (calculation: Box<dyn Fn(u32) -> u32) -> Cacher { ... }

// requires: arg >= 10
// ensures: result <= 100
fn value(&mut self, arg: u32) -> u32 { ... }

This is a much more concise speci�cation. It is also more modular in the sense that the caller no longer
has to keep track of which closure is stored in the Cacher::calculation �eld—instead, the invariant
guarantees that any closure that might be stored in that �eld will always have a certain behavior.
On the downside, this speci�cation is less �exible (because every closure we might want to store in

the calculation �eld has to obey the given speci�cation) and less precise: We might know a stronger
speci�cation for the closure we pass into new(), but this information will be lost by the time we call
value(). Also, value() does not specify how its result is calculated, i.e. whether it actually implements
a caching behavior.

Again, it will be up to the programmer writing the speci�cation to decide which of the two strategies
better �ts her particular purposes. A trade-o� has to be made between �exibility and precision on the
one hand and modularity, information hiding, and simplicity of the speci�cation on the other hand.
Our methodology supports both strategies.

87

6.2. Our Implementation

Our implementation allows closures to be de�ned, equippedwith speci�cations, and called. For instance,
the following program

extern crate prusti_contracts;
use prusti_contracts::*;

fn test() {
let f = closure! (

requires (a > b),
ensures (result > b),
|a: i32, b: i32| -> i32 { a }

);

let a = 5;
let b = 3;
let c = f (a, b);
assert! (c > b);

}

fn main() {}

veri�es with

Verification of 3 items...
Successful verification of 3 items

Changing the closure call to, say, f(b, a) correctly results in a veri�cation error:

Verification of 3 items...
error: [Prusti: verification error] precondition might not hold.

--> /tmp/cl.rs:13:13
|

13 | let c = f (b, a);
| ^^^^^^^^
|

note: the failing assertion is here
--> /tmp/cl.rs:6:19
|

6 | requires (a > b),
| ^^^^^

Verification failed
error: aborting due to previous error

Our implementation also handles speci�cation entailments. As an example, we are able to cor-
rectly verify this program, containing a closure speci�cation as well as a speci�cation entailment that
strengthens the closure’s precondition and weakens the postcondition, assuming the strengthened
precondition:

88

extern crate prusti_contracts;
use prusti_contracts::*;

fn test () {
let f = closure! (

requires (i >= 0),
ensures (result == i + 1),
|i: i32| -> i32 { i + 1 }

);

test2 (f);
}

#[requires(f |= |i: i32| [requires(i >= 5), ensures(result >= 6)])]
fn test2<F: Fn (i32) -> i32> (f: F) {}

fn main () {}

Changing the precondition of test2() to, say,

#[requires(f |= |i: i32| [requires(i >= -1), ensures(result >= 0)])]

which strictly weakens the precondition of f when calling test2, correctly results in a veri�cation error:

Verification of 4 items...
error: [Prusti: verification error] precondition might not hold.

--> /tmp/specent.rs:11:5
|

11 | test2 (f);
| ^^^^^^^^^
|

note: the failing assertion is here
--> /tmp/specent.rs:14:12
|

14 | #[requires(f |= |i: i32| [requires(i >= -1), ensures(result >= 0)])]
| ^ ^^^^^^^ ^^^^^^^^^^^

Verification failed
error: aborting due to previous error

Note how the error report points to the precondition of test2, which is correct, since the speci�cation
entailment is part of that function’s precondition.

Calling f from inside test2 does not work yet, because the permission transfer to and from f
before/after the call is not yet handled properly. In particular, because f is of generic type, we cannot
know its precise signature (which includes the implicit self argument). The rest of the signature could
be read o� the type bound (F: Fn (i32) -> i32, i.e. the signature modulo the self argument is
|i32| -> i32), but even this is non-trivial, because giving contradictory type bounds is valid Rust
code:

89

fn foo<T> (f: T)
where T: (Fn (i32) -> i32) + (Fn (String) -> Option<i32>)

{}

Here, T must be a subtype of both the speci�ed traits (conjoined with the + operator), meaning it must
have two signatures (|i32| -> i32 and |String| -> Option<i32>) simultaneously. Such a type
does not exist, but generic types need not be proven to be inhabited in Rust; it is the caller’s responsibil-
ity to instantiate the generic parameters, hence foo above would compile without errors.

Views for the captured state (and, consequently, invariants), ghost arguments, and the arrow notation
have not been implemented yet due to time constraints. Some of them should be a rather straightfor-
ward addition, though—for instance, the arrow notation should be easy to implement because the
speci�cation functions are already implemented and working. Furthermore, we have already explained
possible implementation strategies for all of these features in Chapter 5; thus, the remaining work on
the implementation should mostly consist of engineering (rather than research) problems.

90

7. Conclusion

Modern automatic program veri�ers are often based on �rst-order logics, which makes the integration
of higher-order functional concepts, such as closures as �rst-class function-type objects, not straightfor-
ward. Nevertheless, we have demonstrated that extending a standard �rst-order speci�cation language
with a few relatively simple operators and notions su�ces to describe and prove a range of practical
examples of closure occurrences. Still, some issues remain, which is not surprising considering the wide
variety of applications for closures and higher-order functions, as well as the intrinsic di�culty of the
problem that lies in their higher-order nature. For this reason, the following section suggests some
opportunities for future research in this domain.

Future Work

This thesis has aimed to capture and highlight many ideas related to closure veri�cation, but not all
of them have been developed fully. For instance, the ghost state extension from Section 4.1.4 has only
relatively brie�y been discussed; further thought and research might be necessary to understand their
utility, limitations, and the feasibility of their implementation better. In particular, the integration of
this idea with the rest of our approach should be studied more deeply; for instance, one could attempt
to combine this ghost state with the ghost arguments and results from Section 4.4.
Moreover, not all of the features presented here have actually been implemented in Prusti so far.

Future work could therefore focus on extending the implementation, at least to the extent desired by
the maintainers.
Although this thesis has focused on Rust and occasionally relied on guarantees made by its type

system—for instance, preservation of the history invariants of Section 4.1.3 only works1 because Rust
does not allow mutable references to the captured state from outside the closure while the closure
instance is live—, the basic ideas should nonetheless be applicable to and valuable for veri�cation e�orts
in other languages. Another avenue for future research thus lies in the adaptation of the tools presented
here for di�erent programming languages and veri�cation toolstacks.
And �nally, as noted above, this thesis does of course not comprehensively solve all issues related

to closure and higher-order function veri�cation. For instance, side-e�ectful closures occurring as
arguments to the higher-order functions of Section 3.1 are not yet su�ciently covered by our approach
in case their behavior depends on the order of the calls. Therefore, future work could investigate such
limitations andweaknesses of our approach and try to overcome them, while simultaneously attempting
to simplify the user-level speci�cation language to allow for even more concise, expressive, and readable
speci�cations.

1At least without additional reasoning and restrictions.

91

A. Proofs about Weakened Relations

Here is a simple Coq script that demonstrates that neither pseudo-re�exivity (see Section 5.1) nor
transitivity are necessarily preserved when weakening pseudo-re�exive and transitive relations. Theorem
weaken_refl shows that pseudo-re�exive and transitive relations can be weakened so as not to be
pseudo-re�exive anymore, and weaken_trans shows that transitivity is not necessarily preserved either.

From Coq Require Import omega.Omega.

Definition Rel (T: Type) := T -> T -> Prop.
Definition pseudo_refl {T: Type} (R: Rel T) := forall x: T,

(exists y: T, R y x) -> R x x.
Definition trans {T: Type} (R: Rel T) := forall x y z: T,

(R x y) -> (R y z) -> (R x z).

Definition A (a: nat) (b: nat) := (a > 0) /\ (b > 0) /\ (a <= b).
Definition B (a: nat) (b: nat) :=

((a > 0) /\ (b > 0) /\ (a <= b)) \/ (a = 1 /\ b = 0).

Lemma Arefl: pseudo_refl A.
Proof.

unfold pseudo_refl, A. intros x [y H].
omega.

Qed.

Lemma Bnrefl: ~ (pseudo_refl B).
Proof.

unfold pseudo_refl, B. intro.
pose proof (H 0).
destruct H0.
- exists 1. right. omega.
- omega.
- omega.

Qed.

Lemma Atrans: trans A.
Proof.

unfold trans, A. intros. omega.
Qed.

Lemma Btrans: trans B.
Proof.

92

unfold trans, B. intros. omega.
Qed.

Lemma B_weakens_A: forall (a b: nat), (A a b) -> (B a b).
Proof.

unfold A, B. intros. omega.
Qed.

Theorem weaken_refl:
~ (forall (T: Type) (R1: Rel T) (R2: Rel T),

(pseudo_refl R1) -> (trans R1)
-> (forall x y: T, (R1 x y) -> (R2 x y))
-> (pseudo_refl R2)).

Proof.
intro. pose proof (H nat A B Arefl Atrans B_weakens_A).
pose proof Bnrefl. auto.

Qed.

Definition R (a: nat) (b: nat) := a <= b.
Definition S (a: nat) (b: nat) := (a <= b) \/ (a = 6 /\ b = 4).

Lemma Rrefl: pseudo_refl R.
Proof.

unfold pseudo_refl, R. intros. apply Nat.le_refl.
Qed.

Lemma Rtrans: trans R.
Proof.

unfold trans, R. intros. eapply Nat.le_trans; eassumption.
Qed.

Lemma S_weakens_R: forall (a b: nat), (R a b) -> (S a b).
Proof.

unfold R, S. intros. left. assumption.
Qed.

Lemma Sintrans: ~ (trans S).
Proof.

unfold trans. intro.
pose 6 as n. pose 4 as m. pose 5 as o.
assert (S n m).
{ unfold S. omega. }
assert (S m o).
{ unfold S. omega. }
pose proof (H n m o H0 H1).
unfold S in H2. subst n m o.
destruct H2; omega.

Qed.

93

Theorem weaken_trans:
~ (forall (T: Type) (R1: Rel T) (R2: Rel T),

(pseudo_refl R1) -> (trans R1)
-> (forall x y: T, (R1 x y) -> (R2 x y))
-> (trans R2)).

Proof.
intro. pose proof (H nat R S Rrefl Rtrans S_weakens_R).
pose proof Sintrans. auto.

Qed.

94

Bibliography

[1] Vytautas Astrauskas et al. “Leveraging Rust types for modular speci�cation and veri�cation”. In:
Proceedings of the ACM on Programming Languages 3 (OOPSLAOct. 10, 2019), pp. 1–30. doi:
10.1145/3360573.

[2] Ernie Cohen et al. “Local Veri�cation of Global Invariants in Concurrent Programs”. In: Com-
puter Aided Verification. Ed. by Tayssir Touili, Byron Cook, and Paul Jackson. Red. by David
Hutchison et al. Vol. 6174. Series Title: Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 480–494. doi: 10.1007/978-3-642-14295-6_42.

[3] Ernie Cohen et al.Verifying C Programs: A VCC Tutorial. Working draft, version 0.2. July 10,
2015. url: https://bit.ly/32BkCWN (visited on 09/16/2020).

[4] Robert L. Constable and Anne Trostle. Logical Investigations, with the Nuprl Proof Assistant,
Chapter 5: First-Order Logic: All and Exists. July 2014. url: http://www.nuprl.org/
MathLibrary/LogicalInvestigations/all_exists.html (visited on 09/16/2020).

[5] Ádám Darvas and K. Rustan M. Leino. “Practical Reasoning About Invocations and Imple-
mentations of Pure Methods”. In: Fundamental Approaches to Software Engineering. Ed. by
Matthew B. Dwyer and Antónia Lopes. Vol. 4422. Series Title: Lecture Notes in Computer
Science. Berlin,Heidelberg: Springer BerlinHeidelberg, 2007, pp. 336–351. doi:10.1007/978-
3-540-71289-3_26.

[6] K.K. Dhara and G.T. Leavens. “Forcing behavioral subtyping through speci�cation inheritance”.
In:Proceedings of IEEE 18th InternationalConference on SoftwareEngineering. Berlin,Germany:
IEEE Comput. Soc. Press, 1996, pp. 258–267. doi: 10.1109/ICSE.1996.493421.

[7] Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. “The spirit of ghost code”.
In: FormalMethods in System Design 48.3 (June 2016), pp. 152–174. doi: 10.1007/s10703-
016-0243-x.

[8] Jean-Christophe Filliâtre and Andrei Paskevich. “Why3—Where ProgramsMeet Provers”. In:
Programming Languages and Systems. Ed. by Matthias Felleisen and Philippa Gardner. Red. by
David Hutchison et al. Vol. 7792. Series Title: Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 125–128. doi: 10.1007/978- 3- 642-
37036-6_8.

[9] Robert Bruce Findler andMatthias Felleisen. “Contracts for higher-order functions”. In:Proceed-
ings of the seventhACMSIGPLAN international conference on Functional programming - ICFP
’02. Pittsburgh, PA, USA: ACM Press, 2002, pp. 48–59. doi: 10.1145/581478.581484.

95

https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-642-14295-6_42
https://bit.ly/32BkCWN
http://www.nuprl.org/MathLibrary/LogicalInvestigations/all_exists.html
http://www.nuprl.org/MathLibrary/LogicalInvestigations/all_exists.html
https://doi.org/10.1007/978-3-540-71289-3_26
https://doi.org/10.1007/978-3-540-71289-3_26
https://doi.org/10.1109/ICSE.1996.493421
https://doi.org/10.1007/s10703-016-0243-x
https://doi.org/10.1007/s10703-016-0243-x
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/581478.581484

[10] S. M. German, E.M. Clarke, and J. Y. Halpern. “Reasoning about procedures as parameters”. In:
Logics of Programs. Ed. by Edmund Clarke and Dexter Kozen. Red. by G. Goos et al. Vol. 164.
Series Title: LectureNotes in Computer Science. Berlin, Heidelberg: Springer BerlinHeidelberg,
1984, pp. 206–220. doi: 10.1007/3-540-12896-4_365.

[11] Guide to Rustc Development. url: https : / / rustc - dev - guide . rust - lang . org/
(visited on 08/16/2020).

[12] Thomas Hader. Proposal for supporting closures in Prusti. Aug. 2019. url: https://bit.ly/
2Ry7ZGj (visited on 04/21/2020).

[13] K. Honda, N. Yoshida, and M. Berger. “An Observationally Complete Program Logic for
ImperativeHigher-Order FrameRules”. In: 20thAnnual IEEESymposium onLogic inComputer
Science (LICS’ 05). Chicago, IL,USA: IEEE, 2005, pp. 260–279. doi:10.1109/LICS.2005.5.

[14] Johannes Kanig and Jean-Christophe Filliâtre. “Who: a veri�er for e�ectful higher-order pro-
grams”. In: Proceedings of the 2009 ACMSIGPLANworkshop onML -ML ’09. Edinburgh, Scot-
land: ACM Press, 2009, p. 39. doi: 10.1145/1596627.1596634.

[15] Ioannis T. Kassios and Peter Müller. Specification and verification of closures. ETH Zurich, 2010.
doi: 10.3929/ETHZ-A-006843251.

[16] Steve Klabnik and Carol Nichols. The Rust Programming Language. url: https://doc.
rust-lang.org/book/ (visited on 09/18/2020).

[17] NeelakantanR.Krishnaswami.VerifyingHigher-Order ImperativeProgramswithHigher-Order
Separation Logic. Advisor: Aldrich, Jonathan. 2012. url: http://reports-archive.adm.
cs . cmu . edu / anon / anon / home / ftp / 2012 / CMU - CS - 12 - 127 . pdf (visited on
05/07/2020).

[18] P. J. Landin. “TheMechanical Evaluation of Expressions”. In: The Computer Journal 6.4 (Jan. 1,
1964), pp. 308–320. doi: 10.1093/comjnl/6.4.308.

[19] K. RustanM. Leino. This is Boogie 2. Manuscript KRML 178, working draft 24 June 2008. url:
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/
12/krml178.pdf (visited on 07/04/2020).

[20] K. RustanM. Leino and Rosemary Monahan. Automatic verification of textbook programs that
use comprehensions. June 30, 2007. url: http : / / mural . maynoothuniversity . ie /
3935/ (visited on 04/29/2020).

[21] K. RustanM. Leino and Peter Müller. “Veri�cation of Equivalent-Results Methods”. In: Pro-
gramming Languages and Systems. Ed. by SophiaDrossopoulou. Vol. 4960. Series Title: Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 307–321.
doi: 10.1007/978-3-540-78739-6_24.

[22] K. RustanM. Leino andWolfram Schulte. “Using History Invariants to Verify Observers”. In:
Programming Languages and Systems. Ed. by Rocco De Nicola. Red. by David Hutchison et al.
Vol. 4421. Series Title: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 80–94. doi: 10.1007/978-3-540-71316-6_7.

96

https://doi.org/10.1007/3-540-12896-4_365
https://rustc-dev-guide.rust-lang.org/
https://bit.ly/2Ry7ZGj
https://bit.ly/2Ry7ZGj
https://doi.org/10.1109/LICS.2005.5
https://doi.org/10.1145/1596627.1596634
https://doi.org/10.3929/ETHZ-A-006843251
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
http://reports-archive.adm.cs.cmu.edu/anon/anon/home/ftp/2012/CMU-CS-12-127.pdf
http://reports-archive.adm.cs.cmu.edu/anon/anon/home/ftp/2012/CMU-CS-12-127.pdf
https://doi.org/10.1093/comjnl/6.4.308
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
http://mural.maynoothuniversity.ie/3935/
http://mural.maynoothuniversity.ie/3935/
https://doi.org/10.1007/978-3-540-78739-6_24
https://doi.org/10.1007/978-3-540-71316-6_7

[23] Barbara H. Liskov and Jeannette M. Wing. “A behavioral notion of subtyping”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 16.6 (Nov. 1994), pp. 1811–
1841. doi: 10.1145/197320.197383.

[24] Joel Moses. The Function of FUNCTION in LISP, or Why the FUNARG Problem Should be
Called the Environment Problem. AI Memo 199. June 1, 1970. url: http://hdl.handle.
net/1721.1/5854 (visited on 07/05/2020).

[25] PeterMüller,Malte Schwerho�, andAlexander J. Summers. “Viper: AVeri�cation Infrastructure
for Permission-Based Reasoning”. In:Verification,Model Checking, andAbstract Interpretation.
Ed. by Barbara Jobstmann and K. Rustan M. Leino. Vol. 9583. Series Title: Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 41–62. doi:
10.1007/978-3-662-49122-5_2.

[26] Martin Nordio et al. “Reasoning about Function Objects”. In: Objects, Models, Components,
Patterns. Ed. by Jan Vitek. Red. by David Hutchison et al. Vol. 6141. Series Title: Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 79–96. doi:
10.1007/978-3-642-13953-6_5.

[27] YannRégis-Gianas and François Pottier. “AHoare Logic forCall-by-Value Functional Programs”.
In: Mathematics of Program Construction. Ed. by Philippe Audebaud and Christine Paulin-
Mohring. Vol. 5133. Series Title: LectureNotes inComputer Science. Berlin,Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 305–335. doi: 10.1007/978-3-540-70594-9_17.

[28] John C. Reynolds. “Separation logic: a logic for shared mutable data structures”. In: Proceedings
17th Annual IEEE Symposium on Logic in Computer Science. Copenhagen, Denmark: IEEE
Comput. Soc, 2002, pp. 55–74. doi: 10.1109/LICS.2002.1029817.

[29] Rust by Example. url: https://doc.rust-lang.org/stable/rust-by-example/
(visited on 07/04/2020).

[30] Malte Schwerho� and Alexander J. Summers. “Lightweight Support for Magic Wands in an
Automatic Veri�er”. In: 29th European Conference on Object-Oriented Programming (ECOOP
2015). Ed. by John Tang Boyland. Vol. 37. Leibniz International Proceedings in Informatics
(LIPIcs). SchlossDagstuhl–Leibniz-Zentrum für Informatik, 2015, pp. 614–638. doi:10.4230/
LIPIcs.ECOOP.2015.614.

[31] Alexander J. Summers and Peter Müller. “Automating deductive veri�cation for weak-memory
programs (extended version)”. In: International Journal on Software Tools for Technology Trans-
fer (Mar. 6, 2020). doi: 10.1007/s10009-020-00559-y.

[32] Kasper Svendsen, Lars Birkedal, andMatthew Parkinson. “VerifyingGenerics andDelegates”. In:
ECOOP 2010 –Object-Oriented Programming. Ed. byTheoD’Hondt. Red. byDavidHutchison
et al. Vol. 6183. Series Title: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 175–199. doi: 10.1007/978-3-642-14107-2_9.

[33] Nikhil Swamy et al. “Verifying higher-order programs with the dijkstra monad”. In: ACM
SIGPLANNotices 48.6 (June 23, 2013), pp. 387–398. doi: 10.1145/2499370.2491978.

[34] The Rust Standard Library. url: https://doc.rust-lang.org/std/index.html
(visited on 07/04/2020).

97

https://doi.org/10.1145/197320.197383
http://hdl.handle.net/1721.1/5854
http://hdl.handle.net/1721.1/5854
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-642-13953-6_5
https://doi.org/10.1007/978-3-540-70594-9_17
https://doi.org/10.1109/LICS.2002.1029817
https://doc.rust-lang.org/stable/rust-by-example/
https://doi.org/10.4230/LIPIcs.ECOOP.2015.614
https://doi.org/10.4230/LIPIcs.ECOOP.2015.614
https://doi.org/10.1007/s10009-020-00559-y
https://doi.org/10.1007/978-3-642-14107-2_9
https://doi.org/10.1145/2499370.2491978
https://doc.rust-lang.org/std/index.html

[35] D. A. Turner. “SomeHistory of Functional Programming Languages”. In:Trends in Functional
Programming. Ed. by Hans-Wolfgang Loidl and Ricardo Peña. Red. by David Hutchison et al.
Vol. 7829. Series Title: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 1–20. doi: 10.1007/978-3-642-40447-4_1.

[36] Viper Tutorial. url: http://viper.ethz.ch/tutorial/ (visited on 07/04/2020).

[37] Benjamin Weber. Automating Modular Reasoning About Higher-Order Functions. Master’s
Thesis. Nov. 12, 2017. url: https://bit.ly/2zkCbhG (visited on 04/23/2020).

98

https://doi.org/10.1007/978-3-642-40447-4_1
http://viper.ethz.ch/tutorial/
https://bit.ly/2zkCbhG

	Introduction
	Related work

	Background
	Motivation
	Languages and Tooling
	Closures in Rust
	Viper
	Prusti

	Previous Methodology
	Specification Functions
	Specification Entailments

	Classification
	Higher-Order Functions over Collections
	Higher-Order Functions with Fixed Behavior
	sort_by()
	Boxed Closures, Dynamic References to Closures, and Function Pointers

	Methodology
	Closure Specifications
	Exposing the Captured State through Views
	Reasoning about the Enclosing Scope
	Invariants
	Ghost State for ``Tracing''

	Specification Entailments
	Components of |=
	Entailments in Conjunctions, Pattern Matches, and under Quantifiers
	Entailments with Invariants
	Nested |=
	The outer() Keyword
	|= Across Multiple Calls
	Boxed Closures, Dynamic References to Closures, and Function Pointers

	Arrow (~~>) Notation
	Components of ~~>
	The outer() keyword

	Ghost Arguments and Results
	Basics Ideas
	Exposing Captured State via Ghost Arguments/Results
	self: Accessing the Captured State Opaquely
	Ghost Arguments as Invariants

	Summary

	Implementation
	Encoding in Viper
	Basics
	Specification Entailments
	Higher-Order Functions and Boxed Closures
	Arrow Notation
	Ghost Arguments and Results

	Implementation in Prusti

	Evaluation
	Example Specifications
	Higher-Order Functions over Collections
	Higher-Order Functions with Fixed Behavior
	sort_by()
	Boxed Closures

	Our Implementation

	Conclusion
	Future Work

	Proofs about Weakened Relations
	Bibliography

