
Tool Support for Termination
Proofs

Bachelor’s Thesis

Fabio Streun

May 2019

Advisors: Prof. Dr. Peter Müller, Dr. Malte Schwerhoff

Department of Computer Science, ETH Zürich

Contents

Contents 1

1 Introduction 1
1.1 Introduction to Viper . 1

1.1.1 Proving Termination . 3
1.2 Chapter Overview . 4

2 Proving Termination of Functions 5
2.1 Variant . 5

2.1.1 Proof Encoding . 7
2.1.2 Limitations of the Variant Termination Proof Approach 11
2.1.3 Function Inlining Transformation 12
2.1.4 Unsoundness of Previous Work 13
2.1.5 Limitations of FIT . 14

2.2 Transition Invariants . 15
2.2.1 Definitions and Theorems 16
2.2.2 Notation for Transition Invariants 18
2.2.3 Proof Encoding in Viper 20
2.2.4 Advantage over Variant Termination Proof Approach . . 22
2.2.5 Mutually Recursive Functions 24

3 Termination Plugin 29
3.1 Decreases Clause . 29
3.2 Plugin Overview . 30
3.3 Modifying PAST . 32
3.4 Generating Decreases Nodes . 32
3.5 Termination Proof Encoding . 33

3.5.1 Proof Method Generation 33
3.5.2 Termination Check . 34
3.5.3 Predicates . 36

1

Contents

3.5.4 Implementation of Function Inlining Transformation . . 38
3.6 Errors Reporting . 40

3.6.1 Viper Error Structure 40
3.6.2 Error Transformation 41
3.6.3 Termination Error . 42
3.6.4 Further Errors . 44
3.6.5 Improvements to Previous Implementation 45

4 Proving Termination of Methods 47
4.1 Termination Check Adjustments 48

4.1.1 Fields . 48
4.1.2 Predicates . 49

4.2 FIT for Methods . 52
4.3 Termination of Loop . 52

5 Standard Import 55
5.1 The Import Feature . 55
5.2 Providing Files . 56

6 Conclusion 59
6.1 Future Work . 60

A Appendix 61
A.1 Variant Termination Proof . 61

Bibliography 63

2

Chapter 1

Introduction

Program verification is used to check correctness of program code and helps to
detect programming errors. In deductive verification, additional mathematical
statements, referred to as contracts or specifications, are used to express what
a program is supposed to do. A verifier then checks if the statements are
satisfied by the program.

Viper [9], a deductive verification infrastructure developed at ETH Zurich,
offers the possibility to encode a source language such as Rust and Java with
specifications into an intermediate language. A Viper back-end is then used to
verify correctness of the program. One of the back-ends is based on symbolic
execution, whereas the other one is based on verification condition generation.
A diagram of the Viper infrastructure can be seen in figure 1.1.

1.1 Introduction to Viper

The Viper intermediate language is a simple imperative programming lan-
guage. The following example shows a function that calculates the sum of the
first n positive integers.

1 function sum(n: Int): Int
2 requires n >= 0
3 ensures result == n * (n+1)/2
4 {
5 n == 0 ? 0 : n + sum(n-1)
6 }

Listing 1.1: sum of the first n positive integers

Preconditions of a function are declared with the keyword requires and spec-
ify how a function is allowed to be invoked. In the example above, the function
sum can only be invoked with a non-negative argument n. The postcondition,

1

1. Introduction

Figure 1.1: diagram of the Viper infrastructure with the front-ends and its dependencies.

declared with the keyword ensures, defines which guarantees are given (as-
suming the precondition is satisfied) after the function terminates. For the
function sum the postcondition guarantees that the result is really the sum
over the first n numbers (written in a non recursive mathematical expression).

To reason about a program heap, Viper uses a permission-based approach. A
simple example of a method increment that increments the value of the field
ref.val by the absolute value of i, is shown in listing 1.2. The precondition
states that the method needs exclusive permission to the field, which is neces-
sary to modify the field. This requires any caller of this method to also hold
exclusive permission of the filed and transfer it to this method when invoking
it. The postcondition states that the permission is transferred back to the
caller. Additionally, in line 12 an assertion is added to the method, which
verifies that the value of the field ref.val did not decrease. This is done by
comparing the current value of the field with the value at the beginning of the
method, denoted by old(ref.val).

Viper distinguishes functions and methods because they have some important
differences. Methods can be viewed as sequences of statements, which might
read and modify fields, i.e. affect the program state. Functions, on the other
hand, consist only of expressions, which might depend on the program state,
i.e. read fields, but may never modify it. Thus, functions in Viper are side-

2

1.1. Introduction to Viper

1 field val: Int
2

3 method increment(ref: Ref, i: Int)
4 requires acc(ref.val)
5 ensures acc(ref.val)
6 {
7 if (i >= 0){
8 ref.val := ref.val + i
9 } else {

10 ref.val := ref.val - i
11 }
12 assert ref.val >= old(ref.val)
13 }

Listing 1.2: simple method, which increments the value of a field by a particular value

effect free and can be used in assertions (e.g. precondition).

1.1.1 Proving Termination

Viper verifies partial correctness of a program. Function postconditions, for
example, are proven to be satisfied by assuming the precondition and assuming
termination of the function body. Because all function invocations are checked
to satisfy the precondition, the first assumption is justified. However, Viper
does not prove that a function terminates. Therefore, the second assumption
can be wrong and lead to unsound results, as the following example shows.

1 function bad(): Int
2 ensures 0 == 1
3 {
4 bad()
5 }

Listing 1.3: non-terminating function which causes unsound result

Because the precondition of the recursive call of bad is trivially satisfied, the
postcondition of the invocation is assumed, hence the postcondition is un-
soundly proven to be satisfied. By showing that the function actually does not
terminate, such unsound verification can be prevented. In a previous project,
a termination proof for functions was implemented for Viper [6]. It used the
standard variant termination proof approach [2](described in section 2.1). A
Viper-to-Viper transformation appended additional assertions to the Viper
program, which check that a given value decreases at every recursive function
call with respect to a well-founded order. This approach allowed to extend the
functionality of Viper without having to modify the back-end verifiers.

3

1. Introduction

However, the tool created unsound results, i.e. it unsoundly verified functions
which do not terminate (further described in section 2.1.4). Therefore, the
main goal for this Bachelor’s thesis is to develop and implement a sound, but
still reasonably complete approach to verify termination of recursive functions
in Viper. Ideally an approach which is more complete than the one used
in other verifiers, e.g. Dafny. Additionally, the implementation should use
a Viper-to-Viper transformation, as in the previous project, to encode the
additional required checks and avoid changes to the back-end verifiers. Also
the Viper syntax must not be modified, such that no front-end is effected by
the implementation.

A further goal of this thesis is to adapt the termination proof and extend the
support to methods, which are another source of non-termination in Viper.

1.2 Chapter Overview

The thesis is divided into a conceptual part and an implementation part. The
conceptual part is mainly chapter 2, in which two different termination proof
approaches are presented. For both approaches, it is shown how they can be
applied to Viper functions and how the termination proofs can be encoded into
Viper. The implementation part consists of chapter 3, 4 and 5. In chapter
3 the implementation of the variant termination proof approach as a Viper
plugin [12] is described. Chapter 4 describes the adjustments made to the
termination proof implemented in the previous chapter, such that it is appli-
cable to recursive methods. Chapter 5 presents the new import mechanism,
which provides a new way for users to import files provided by Viper. In
the last chapter a brief conclusion to the work is given and ideas for further
improvements and projects regarding termination checks are presented.

4

Chapter 2

Proving Termination of Functions

Various approaches to prove termination of programs exist, such as the one
presented 1993 by Floyd using well-founded orders [2] and the one presented
2004 by Podelski and Rybalchenko using Ramsey’s theorem [10]. In section
2.1, we show how the approach by Floyd can be applied to Viper functions and
propose an encoding of the termination proof into a Viper method, such that, if
verified successfully, the method implies the termination proof. Additionally,
we introduce a function transformation, which, applied prior to the proof,
allows a more intuitive application of the approach in some cases. In section
2.2, the same is presented for the approach by Podelski and Rybalchenko. We
show how it can be applied to Viper functions and propose an encoding of the
termination proof into Viper methods, such that, if verified successfully, the
methods imply the termination proof.

2.1 Variant

In general, to prove termination of a function f using the approach presented
by Floyd, a variant is used, sometimes also referred to as measure [11] or
termination measure [3], and a well-founded order over the type of the variant.
It is then sufficient to show that for any invocation of f the variant becomes
strictly smaller for all succeeding recursive invocations of f with respect to
the defined well-founded order. Because the order is well-founded, no infinite
decreasing sequence of the variant exists, hence no infinite sequence of recursive
invocations of f exists and therefore the function f must terminate.

Directly Recursive Functions

A function f is considered directly recursive if it contains calls to f and calls
to functions which do not invoke f directly or indirectly. Figure 2.1 shows the
static call graph (CG) of two directly recursive functions.

5

2. Proving Termination of Functions

f g

Figure 2.1: CG of directly recursive functions

To prove termination of a directly recursive function f , it is sufficient to check
that the variant decreases for every recursive invocation in f ’s body with re-
spect to a well-founded order. Consider the function sum from the example in
listing 1.1, again shown in listing 2.1.

1 function sum(n: Int): Int
2 requires n >= 0
3 {
4 n == 0 ? 0 : n + sum(n - 1)
5 }

Listing 2.1: sum of the first n positive integers

To prove termination of the function sum, the parameter n can be used as the
variant. It is easily shown that n becomes strictly smaller in the one existing
recursive invocation of sum. Because of sum’s precondition n can also not be
smaller than 0. Thus, the variant decreases with respect to the well-founded
order of positive integers and the function sum is proven to terminate.

Mutually Recursive Functions

Two functions are considered to be mutually recursive if both call each other,
i.e. both contain potentially indirectly recursive calls to the other function,
and thus, potentially recurse via the other function. If multiple functions
recurse via each other, we have a set of mutually recursive functions. Such
sets can be found by analyzing the static control flow graph of a program.
Figure 2.2 shows the CG of mutually recursive functions. The functions f , g
and h together build a set of mutually recursive functions.

f

gh

Figure 2.2: CG of mutually recursive functions

Considering a set of mutually recursive functions F :“ tf1, f2, ..., fku with
k ě 1. To prove termination of the functions in F , a common approach is

6

2.1. Variant

to define a variant for each function, i.e. vfj for all j P r1, ks, and one well-
founded order for F . For all functions in F it has then to be shown that at
each directly or indirectly recursive call, i.e. call to a function in F , the variant
of the callee is strictly smaller than the variant of the caller with respect to the
well-founded order. This is sufficient because the well-founded order implies
that no infinite decreasing sequence of variants exists, hence also no infinite
sequence of invocations of functions in F and therefore all functions in F
terminate.

This approach is used in many other program verifiers, such as Dafny [3] and
F* [13]. Hereinafter we refer to this approach as variant termination proof.

Listing 2.2 shows an example of two mutually recursive functions, which are
equivalent to the identity function for non-negative integers.

1 function id1(x: Int): Int
2 requires x >= 0
3 {
4 x == 0 ? 0 : 1 + id2(x-1)
5 }
6

7 function id2(y: Int): Int
8 requires y >= 0
9 {

10 y == 0 ? 0 : 1 + id1(y-1)
11 }

Listing 2.2: example of two mutually recursive functions

To prove termination of the two functions in listing 2.2, the parameters x and
y can be used as variants for the functions id1 and id2, respectively, and the
well-founded order over positive integers. For the function id1 it has to be
checked that at the call id2(x-1) the variant y is smaller than variant x with
respect to the well-founded order. This succeeds because for this call y “ x´1,
which is strictly smaller than x, and due to the precondition of id1 it can be
assumed 0 ď x. For the function id2 the same check is done.

2.1.1 Proof Encoding

In this section we describe how the variant termination proof can be encoded
into a Viper program, such that, if verified successfully, the program implies
the termination proof. The approach is similar to the one used in the previous
project [6]. However, soundness and completeness were improved. Further
details to the changes are listed in section 6.1.

As already described, the variant termination proof approach requires a variant
for each function. For the proof encoding, we expect the variant to be provided

7

2. Proving Termination of Functions

by the user, as either a Viper expression or a tuple of Viper expressions1. Any
variable used in an expression has to be a parameter of f and any call in an
expression has to be pure, i.e. has to be a function call. Further, no recursive
calls are allowed in the expressions, i.e. calls to functions which are mutually
recursive to f .

To prove termination of a function f , it has to be shown that at each recursive
call in f ’s body the variant of the callee is strictly smaller than the variant of
the caller with respect to a well-founded order (hereinafter we refer to this check
as termination check). To encode the termination proof of f , a semantically
equivalent method, so-called proof method, is used. Each termination check
for a recursive call is encoded as an assertion and prepended to the recursive
call in the proof method’s body such that the assertion only verifies if the
termination check holds or the recursive call is not reachable.

To demonstrate the proof encoding, the function sum from listing 2.1 is used
with the same variant as before, i.e. the parameter n. The proof method is
shown in listing 2.3.

1 method sum_termination_proof(n: Int) returns (res: Int)
2 requires n >= 0
3 {
4 if (n == 0) {
5 res := 0
6 } else {
7 assert n-1 ă n // termination check
8 res := n + sum(n-1)
9 }

10 }

Listing 2.3: proof method of the function sum (listing 2.1)

The termination check assertion in line 7 verifies successfully because n´ 1 is
smaller than n with respect to the well-founded order over positive integers.
Note that the ă symbol is not a valid operator in Viper and is only used as an
abstraction. We write v1 ă v2 if v1 precedes v2 with respect to a well-founded
order. In section 3.5.2 we present how ă can be encoded in Viper, which is
not relevant for this chapter.

In this chapter we mainly use the well-founded order over positive integers,
which is defined as follows for the Viper built-in type Int:

@i1, i2 : Int. v1 ă v2 ðñ v1 ă v2 ^ 0 ď v2

I.e. if an integer strictly decreases and is bounded by 0, it decreases with
respect to a well-founded order.

1How a variant can be defined for a function is presented in section 3.1.

8

2.1. Variant

As mentioned, a variant can also be defined as a tuple of Viper expressions.
A function for which a tuple as variant is useful to prove termination is the
Ackermann function [1] (listing 2.4).

1 function Ack(m: Int, n: Int): Int
2 requires m >= 0
3 requires n >= 0
4 {
5 m == 0 ? n + 1 :
6 n == 0 ? Ack(m - 1, 1):
7 Ack(m - 1, Ack(m, n - 1))
8 }

Listing 2.4: Ackermann function

To prove termination of Ack the tuple rm,ns can be used as variant. In a
termination check tuples are compared lexicographically. I.e. if the first ele-
ment of the tuple, here m, decreases with respect to a well-founded order then
the tuple is considered to decrease with respect to a well-founded order. The
second element, here n, is only checked to decrease if the first element does
not change. The third is only checked to decrease if the first and second do
not change, etc.

The proof method of the function Ack is shown in listing 2.5.

1 method Ack_termination_proof(m: Int, n: Int)
2 requires m >= 0
3 requires n >= 0
4 {
5 if (m == 0){
6 // n + 1
7 } else {
8 if (n == 0){
9 assert m-1 ă m || (m-1 == m && 1 ă n)

10 // Ack(m - 1, 1), [m-1, 1] ă [m, n]
11 } else {
12 assert m ă m || (m == m && n-1 ă n)
13 // Ack(m, n - 1), [m, n-1] ă [m, n]
14 assert m-1 ă m || (m-1 == m && Ack(m, n-1) ă n)
15 // Ack(m - 1, Ack(m, n - 1)), [m-1, Ack(m, n-1)] ă [m, n]
16 }
17 }
18 }

Listing 2.5: proof method of the Ackerman function (listing 2.4)

9

2. Proving Termination of Functions

All of the termination checks in 2.5 verify, which proofs termination of the
function Ack in listing 2.4.

Because the result value of the proof method does not affect the result of
the termination check, it can be omitted, which also keeps the proof method
smaller. This was done in the proof method in listing 2.5 and also in further
examples in this thesis.

Function Calls as Arguments

Consider the following listing showing the McCarthy 91 function [7]. The Mc-

1 function mc(n: Int): Int
2 ensures n <= 100 ==> result == 91
3 ensures n > 100 ==> result == n-10
4 {
5 (n>100) ? n-10 : mc(mc(n+11))
6 }

Listing 2.6: McCarthy 91 function

Carthy 91 function is a recursive function that evaluates to 91 for all arguments
n ď 100 and to n´10 for any other argument. By using 100´n as the variant
one is able to prove its termination. The generated proof method can be seen
in listing 2.7.

1 method mc_termination_proof(n: Int)
2 {
3 if(n > 100){
4 // n - 10
5 } else {
6 assert 100-(n+11) ă 100-n
7 // mc(n+11)
8

9 assert 100-mc(n+11) ă 100-n
10 // mc(mc(n+11))
11 }
12 }

Listing 2.7: proof method of the McCarthy 91 function (listing 2.6)

In the proof method, the assertion in line 6 checks that the variant decreases for
the call mc(n+11), which is nested inside another mc call. Afterwards it can be
assumed that the function terminates for that call. The termination check in

10

2.1. Variant

line 9 verifies because the postcondition of the call mc(n+11) is assumed by the
verifier, as usual, since its precondition is trivially satisfied. This could give the
impression that in the proof a cyclic dependency exists because termination of
the function is proven by assuming that the function terminates. But actually,
termination of a function f is proven by showing that f terminates with any
possible variant value v while assuming f terminates with any variant value
v1 ă v. This is sound because it implies an induction scheme over the well-
founded order of the variants.

Postcondition Check

As described above, recursive function calls can be assumed to terminate if
the variant is smaller. This allows us to assume the postcondition of recursive
function calls if needed. To ensure well-formedness of postconditions, they too
have to be proven to terminate. Therefore, in an additional proof method, all
postconditions are proven to terminate in the same way as a function body.

2.1.2 Limitations of the Variant Termination Proof Approach

While the variant termination proof is trivial to apply to a function if the vari-
ants for it is given, finding such a variant is not. Listing 2.8 shows an example
of two mutually recursive functions f and g. The function f is terminating
because it invokes itself via g always with a smaller x and x cannot become
negative. Function g terminates for the same reason. Since x decreases in each
recursive invocation of f it would be intuitive to choose it as f ’s variant. The
same can also be said about y for g. However, the variant termination proof
would not succeed because at the call g(x+1) in f the variant actually increases
by 1.

1 function f(x: Int): Int
2 requires x >= 0
3 ensures result == 0
4 {
5 x == 0 ? 0 : g(x+1)
6 }
7

8 function g(y: Int): Int
9 requires y >= 2

10 ensures result == 0
11 {
12 f(y-2)
13 }

Listing 2.8: mutually recursive functions, which require an extended variant

11

2. Proving Termination of Functions

A solution for this particular example would be to adjust and extend both
variants to tuples containing an additional constant. E.g. the variants rx, 0s
and ry ´ 2, 1s for the functions f and g, respectively, would work. Because
such examples can become arbitrarily complex and finding suitably extended
variants more difficult, we propose another approach, which in many cases
allows to directly use the intuitively chosen variants.

2.1.3 Function Inlining Transformation

The general idea of the approach we suggest is to apply a transformation to
the function, prior to the variant termination proof.

Definition 2.1 (Function Inlining Transformation (FIT)). The FIT trans-
forms a function by transitively inlining each indirectly recursive function call
until a cycle is detected.

The result of FIT applied to f (listing 2.8) is shown in listing 2.9.

1 function f(x: Int): Int
2 requires x >= 0
3 ensures result == 0
4 {
5 x == 0 ? 0 : f((x+1)-2)
6 }

Listing 2.9: result of FIT applied to function f (listing 2.8)

The transformed function now only contains the directly recursive call f(x+1)-
2)) and thus, the more intuitive expression x can be used as the variant to prove
termination. Function g can also be proven to terminate using the variant y
after applying FIT to it. The proof method of the function f after applying
FIT to it is shown in listing 2.10.

1 method f_termination_proof(x: Int)
2 requires x >= 0
3 {
4 if (x == 0){
5 // 0
6 } else {
7 assert (x+1)-2 ă x // termination check
8 // f((x+1)-2)
9 }

10 }

Listing 2.10: proof method of function f (listing 2.9)

The termination check in line 7 verifies successfully, as expected.

12

2.1. Variant

Lemma 2.1 (Termination of FIT). The transformation of an arbitrary func-
tion with the FIT always terminates.

Informal Proof. Because the number of functions is finite, only a finite number
of calls can be inlined until a cycle is detected.

Lemma 2.2 (Semantical Preservation of FIT). The transformation of an ar-
bitrary function with the FIT does not change its semantics.

Informal Proof. Because inlining function calls does not change the semantical
meaning of a function, FIT also does not.

Theorem 2.3 (Soundness of Termination Proof after FIT). A valid termi-
nation proof for a function transformed with FIT is also a valid termination
proof for the original function.

Informal Proof. Because of lemma 2.2 there is no function for which a non-
terminating execution exists before, but not after, it is transformed with FIT.

2.1.4 Unsoundness of Previous Work

In the previous work [6] an approach was chosen which explores static, "di-
rect" execution paths and substitutes arguments on the way, i.e. inlines func-
tion calls, until a cycle is detected. This part is similar to FIT, but not equal
because it inlines any call and not just the recursive ones as FIT does. After
the path exploration, only directly recursive calls were checked to decrease the
variant, instead of also indirectly recursive calls, as is done in the variant ter-
mination proof approach. This causes the approach from the previous project
to be unsound for mutually recursive functions. Listing 2.11 shows an example
of non-terminating, mutually recursive functions.

1 function f(x: Int): Int
2 requires 0 <= x
3 decreases x
4 { x == 0 ? g(x+1) : f(x-1) }
5

6 function g(y: Int): Int
7 requires 0 <= y
8 decreases y
9 { y == 0 ? f(y+1) : g(y-1) }

Listing 2.11: non-terminating, mutually recursive functions

The non-termination can be shown by the following execution. Calling f with
x “ 1 invokes f with x “ 0, then g with y “ 1, then g with y “ 0 and then
again f with x “ 1, which is the same input as we started with.

13

2. Proving Termination of Functions

As an attempt to prove termination of f, the previous approach explores the
following paths with a as an arbitrary integer: fpaq Ñ fpa ´ 1q if a ‰ 0 on
which the variant decreases. The path fpaq Ñ gpa`1q if a “ 0 is also checked
but the recursive call fpa ` 1 ` 1q in gpa ` 1q is considered infeasible since
its guard a “ 0 contradicts the first guard in combination with the precondi-
tion. The other indirectly recursive call, gpa` 1´ 1q, is unsoundly considered
harmless, since g is separately checked for termination (which succeeds equally
unsoundly).

In summary: the previous approach works only for directly recursive functions,
but not for mutually recursive functions.

2.1.5 Limitations of FIT

Even though with FIT some functions can be proven to terminate with a more
intuitive variant, it has its limitations. Listing 2.12 shows an example for which
FIT does not allow to use the more intuitive variants.

1 function f(x: Int): Int
2 {
3 x <= 0 ? 0 : g(x+1, x)
4 }
5

6 function g(y: Int, z: Int): Int
7 {
8 z <= 0 ? f(y-2) : g(y, z-1)
9 }

Listing 2.12: mutually recursive functions that demonstrate the limitations of FIT

Intuitively, x is a good variant for f, since it decreases in each recursive in-
vocation of f and is bounded. For g the variant ry, zs would be an intuitive
choice, for the same reasons. However, the termination proof approach fails
with those variants, even in combination with FIT. The result of FIT applied
to f is shown in listing 2.13.

1 function f(x: Int): Int
2 {
3 x <= 0 ? 0 : x <= 0 ? f((x+1)-2) : g(x+1, x-1)
4 }

Listing 2.13: result of FIT applied to function f (listing 2.12)

In listing 2.13, the directly recursive call f((x+1)-2) is not reachable because
of the conditions and therefore must not be checked. The indirectly recursive

14

2.2. Transition Invariants

call g(x+1, x-1) does not decrease the variant because x`1 ă x is false, hence
the proof fails. The proof method generated for the function f after applying
FIT to it and using the intuitively chosen variants, i.e. x and ry, zs for the
functions f and g, respectively, is shown in listing 2.14.

1 method f_termination_proof(x: Int)
2 {
3 if (x <= 0) {
4 // 0
5 } else {
6 if(x <= 0) {
7 assert (x+1)-2 ă x // termination check
8 // f((x+1)-2)
9 } else{

10 assert x+1 ă x // termination check
11 // g(x+1, x-1)
12 }
13 }
14 }

Listing 2.14: proof method of function f (listing 2.13)

The termination check in line 10 fails to verify, as expected. A possible solution
for this example is to use the extended variants rx, 0s and ry ´ 2, 1, zs for
the functions f and g, respectively, for which the termination proof for both
functions succeeds.

However, in the next section we present an approach that allows us to use the
more intuitive variants to prove termination of f and g.

2.2 Transition Invariants

In this section we describe the termination proof approach proposed by Podel-
ski and Rybalchenko [10] and show how it can be applied to Viper functions.
Further, some examples will be presented to demonstrate its advantages over
the variant termination proof approach. Last, the example from section 2.1.5
will be solved with more intuitive variants.

In the approach by Podelski and Rybalchenko transition invariants are used to
proof termination. For a recursive function f in Viper, a transition invariant is
a binary relation over f ’s parameter values, which describes how f ’s parameter
values change transitively over recursive invocations of f . This is similar to
a variant, which, if proven to be correct, describes a value which decreases in
each recursive invocation with respect to a well-founded order, and due to the
transitivity of a well-founded order, also decreases transitively over recursive

15

2. Proving Termination of Functions

invocations. If f ’s transition invariant is disjunctively well-founded, i.e. it is a
finite union of well-founded relations, then the function f terminates.2

Podelski and Rybalchenko presented this approach with an algorithm which
finds the transition invariant automatically. However, this is not relevant in
our case because in Viper, users are expected to provide specifications to a
function, which would also include a function’s transition invariant.

2.2.1 Definitions and Theorems

In this section, we show definitions for transition invariants and disjunctive
well-foundedness, all within the context of Viper functions. The definitions
correspond to the ones introduced by Podelski and Rybalchenko [10], but are
adjusted to our use case.

We define a function f “ xW,Ry, where

• W is a set of f ’s parameter values, which are allowed by f ’s precondi-
tion3.

• R is a transition relation over recursive invocations of f , such that R Ď
W ˆW .

To illustrate the newly introduced definition, function sum from listing 1.1 is
used (shown again in listing 2.15).

1 function sum(n: Int): Int
2 requires n >= 0
3 {
4 n == 0 ? 0 : n + sum(n - 1)
5 }

Listing 2.15: sum of the first n positive integers

The function sum“ xWsum, Rsumy is defined as follows:

Wsum “ tn | n ě 0u

Rsum “ tpn, rnq | n ‰ 0^ rn “ n´ 1u X pW ˆW q

Wsum is the set representation of the precondition of sum. Rsum describes the
relation between the values of sum’s parameter, i.e. n, for which sum invokes
itself recursively and the parameter values of the recursive invocation. The
function sum only recursive invokes itself if n ě 0 ^ n ‰ 0. The parameter’s
value in the recursive invocation (here denoted with rn) is then rn “ n´1^rn ě 0.

2Further descriptions of the definitions used are shown in section 2.2.1.
3The value of a reference parameter includes the values of fields referenced by the pa-

rameter and accessible to the function f .

16

2.2. Transition Invariants

Because sum only contains directly recursive calls in its body, Rsum is defined
by sum’s body. This is generally the case for directly recursive functions. The
transition relation of a mutually recursive function f , however, can also depend
on the body of functions, via which f recurses.

Using the transition relation, the transition invariant can formally be defined
as follows:

Definition 2.2 (Transition Invariant). A transition invariant T for a function
f “ xW,Ry is a superset of the transitive closure of the transition relation R.
Formally, R` Ď T .

E.g. the relations tpn, n1q | 0 ă n ^ 0 ď n1u, tpn, n1q | n1 ă nu and tpn, n1q |
trueu are all transition invariants for the function sum in listing 2.15 because
they are all supersets of R`sum. The relation tpn, n1q | n1 “ n ´ 1u does
not contain the transitive closure of Rsum, and therefore, is not a transition
invariant for sum.

Any termination proof approach for recursive functions (known to us), basi-
cally tries for a function f “ xW,Ry to show that R is well-founded. Well-
foundedness of R implies non-existence of an infinite sequence s0, s1, . . . such
that psi, si`1q P R for all i ě 0; hence, there cannot exists a infinite sequence
of recursive invocations of f and f therefore terminates4. Because a transition
invariant T for f is a superset of R`, and thus, also a superset of R, i.e. R Ď T ,
it would be sufficient to show well-foundedness of T to prove termination of f .
However, Podelski and Rybalchenko introduced the weaker property disjunc-
tively well-foundedness for T , which also implies well-foundedness of R, and
therefore termination of f [10].

Definition 2.3 (Disjunctive Well-Foundedness). A relation T is disjunctively
well-founded if it is a finite union T “ T1 Y ... Y Tn of well-founded relations
Ti.

Theorem 2.4 (Termination). The function f is terminating if there exists a
disjunctively well-founded transition invariant for f .

Consider function sum from listing 2.15. Because n decreases in each recursive
invocation of sum and is never negative, the following is a valid transition
invariant for sum:

Tsum :“ tpn, n1q | n1 ă n^ 0 ď nu

I.e. R`sum Ď Tsum is satisfied.
Since n1 ă n^ 0 ď n holds for all pn, n1q P Tsum, there cannot exist a infinite
sequence n0, n1, . . . of integers such that pni, ni`1q P Tsum for every natural

4In the variant termination proof approach, this was done by showing that a variant
decreases with respect to a well-founded order at each recursive invocation.

17

2. Proving Termination of Functions

number i ě 0, hence Tsum is well-founded. Therefore also disjunctively well-
founded, and sum is proven to terminate.

As already mentioned, we expected the user to provide the transition invariants
for the functions. Therefore, to prove termination of a function f by using the
provided transition invariant T , the following two properties have to be shown:

• T is a transition invariant for f .

• T is disjunctively well-founded.

In the following sections, we describe how this can be done in Viper, i.e. in a
Viper program which, if verified successfully, implies the two properties. The
approach for the former is described in section 2.2.3, the approach for the
latter in section 2.2.2.

2.2.2 Notation for Transition Invariants

In this section we introduce a notation for transition invariants by using the
formal notation of Tsum (used in section 2.2.1), which is then adjusted over
multiple steps, with the goals that the notation is short and simplifies the
well-foundedness proof for the transition invariant.

As shown in section 2.2.1, the binary relation

Tsum :“ tpn, n1q | n1 ă n^ 0 ď nu

is a well-founded transition invariant for the function sum (listing 2.15).

Since the function definition already declares all parameters, a transition in-
variant can completely be defined by the assertion of the set definition. In the
assertion, for a parameter x, x1 represents the same parameter after arbitrary
many recursive function invocations and we refer to it as future x. Because
the function sum (listing 2.15) is defined with the parameter n, Tsum can be
written as the following assertion:

Tsum : n1 ă n^ 0 ď n

We refer to this form of notation for a binary relation as assertion form. Note
that for a function f , the assertion form of transition invariant only contains
variables which are either a parameter of f or are of the form p1 and p is a
parameter of f .

Proving disjunctive well-foundedness of an arbitrary binary relation is not
simple and to encode such a proof into Viper might even be more difficult, if
not impossible. Therefore, we suggest a notation which guarantees disjunctive
well-foundedness of a transition invariant, so that this proof can be omitted.
First, the definition of a transition invariant T for a function f is split into
finitely many binary relations T1, T2, ..., Tn such that T :“ T1 Y T2 Y ...Y Tn.

18

2.2. Transition Invariants

Secondly, for each binary relation Ti it is required to define a variant vi and to
prepend it to the assertion, separated by a comma. A variant can be defined
as described in section 2.1.1, e.g. as a Viper expression or a tuple of Viper
expressions, whereas any variable used in the expressions has to be a parameter
of f . Let wi be the binary relation defined by the assertion form v1i ă vi

5. The
relation wi is implicitly conjoined to Ti, i.e. the effective transition invariant
is defined as T :“ pw1 X T1q Y ... Y pwn X Tnq. Because the binary relations
wi is well-founded, wi X Ti is well-founded. And because T is a finite union
over well-founded relations, it is disjunctively well-founded. The transition
invariant Tsum has therefore to be defined as follows:

Tsum1 : n, n1 ă n^ 0 ď n

The effective transition invariant is then tpn, n1q | n1 ă n ^ n1 ă n ^ 0 ď nu.
Because n1 ă n implies n1 ă n ^ 0 ď n (due to the definition of ă given in
section 2.1.1), the effective transition invariant is equal to Tsum. Further, the
following definition generates also equivalent effective transition invariant but
is shorter.

Tsum1 : n, true

the following definition generates an equivalent effective transition invariant.

Tsum1 : n, true

For brevity it is also allowed to only define the variant of a relation, without
any assertion:

Tsum1 : n

The assertion is then implicitly assumed to be true.

The following example shows the sum function from listing 2.16 with a possible
encoding of the transition invariant Tsum in a Viper program.

1 function sum(n: Int): Int
2 requires n >= 0
3 t_inv n // T_sum_1: n
4 t_inv n, n’ < n // T_sum_2: n, n’ < n
5 {
6 n == 0 ? 0 : n + sum(n - 1)
7 }

Listing 2.16: function sum with transition invariant specifications

Here, the keyword t_inv is used to specify the transition invariant. Line 4
serves only for demonstration purpose and would not be necessary to define
Tsum.

5We use ă as defined in section 2.1.1.

19

2. Proving Termination of Functions

In summary, we presented a transition invariant notation, which can be of the
same size as the variant notation in the variant termination proof approach.
Additionally, the notation guarantees disjunctive well-foundedness of any user-
provided transition invariant. Hence, there is no need to show disjunctive
well-foundedness of the transition invariant and it only remains to encode the
transition invariant correctness proof into Viper, which is shown in the next
section.

2.2.3 Proof Encoding in Viper

In this section we describe how the transition invariant correctness proof can
be encoded into a Viper program, which, if successfully verified, implies the
transition invariant correctness proof. In this section, only directly recursive
functions are considered. In a later section, we show an approach which also
works for mutually recursive functions.

Podelski and Rybalchenko guaranteed correctness of their automatically gen-
erated transition invariants by using inductive relations [10]. The following
definition corresponds to the inductive relation definition given by Podelski
and Rybalchenko [10], but is adjusted to our use case.

Definition 2.4 (Inductive Relation). Given a function f “ xW,Ry, a binary
relation T on W is inductive if it contains the transition relation R and it is
closed under the relational composition R. Formally, RY pT ˝Rq Ď T 6

Technically, proving RY T ˝R Ď T for some transition relation R and binary
relation T is an inductive proof, which shows that the property Rn Ď T holds
for any n ą 0. Hence, an inductive relation for a function f is also a transition
invariant for f .

We also make use of inductive relations and prove correctness of a user-
provided transition invariant T for a function f by showing that T is an
inductive relation for f . This prove can also be encoded in a Viper program.

Let f “ xW,Ry be a directly recursive function and T the transition invariant
provided for f . For simplicity, f only has one parameter p of type P . To
prove correctness of T , first, in the base case, it is checked that R Ď T holds.
Secondly, in the step case, it is checked that T ˝R Ď T holds.
Base Case: To be able to add assertions to the body of f , for the proof
encoding a semantically equivalent method is used. In order to prove R Ď T ,
it is shown @a : P. pp, aq P R ùñ pp, aq P T . Since R describes the relation
between the values of the parameter of f and the values of the argument of
recursive calls in f ’s body, it is sufficient to show that for each recursive call,
here fpaq, pp, aq P T is satisfied. This check is encoded in an assertion, called
transition check, which is prepended to the recursive call fpaq and only verifies

20

2.2. Transition Invariants

successfully if pp, aq P T . Let t be T in assertion form, then the transition
check for fpaq is tra{p1s.

To demonstrate the encoding of the base case, we use the function sum (listing
2.15) with the same transition invariant as before, i.e. the user-defined relation
Tsum1 : n and effective transition invariant Tsum :“ tpn, n1q | n1 ă nu. Listing
2.17 shows the base case proof method of function sum, which contains the
transition check.

1 method sum_bc(n: Int) returns (res: Int)
2 requires n >= 0
3 {
4 if (n == 0)
5 {
6 res := 0
7 }
8 else
9 {

10 // argument of the recursive call
11 var n_1: Int := n - 1
12

13 // transition check
14 assert n_1 ă n
15

16 // recursive call
17 res := n + sum(n_1)
18 }
19 }

Listing 2.17: base case proof method of sum

Line 14 in listing 2.17 shows the transition check for the recursive call in line
17, which, as expected, successfully verifies. For clarity, the argument of the
recursive call is assigned to a new variable.

Step Case: As in the base case, a semantically equivalent method is used. In
order to prove T ˝R Ď T it is shown that @p0 : P. pp0, pq P T it is satisfied that
@a : P. pp, aq P R ùñ pp0, aq P T . Therefore, at the beginning of the method,
a new variable p0 is introduced, for which it is assumed that pp0, pq P T .
Similar to the base case, at each recursive call in f , here fpaq, it is shown that
pp0, aq P T . Again, let t be T in the assertion form. As in the base case, a
transition check is prepended to the recursive call fpaq, but with the assertion
trp0{p, a{p

1s.

We again use the function sum (listing 2.15) and the same transition invariant
as before to demonstrate the encoding of the step case proof. The result is
shown in listing 2.18. Line 5 in listing 2.18 shows the declaration of the newly

21

2. Proving Termination of Functions

1 method sum_sc(n: Int) returns (res:Int)
2 requires n >= 0
3 {
4 // new variable
5 var n_0: Int
6 // assume transition invariant
7 inhale n ă n_0
8

9 if (n == 0)
10 {
11 res := 0
12 } else {
13 // argument of the recursive call
14 var n_1: Int := n - 1
15

16 // transition check
17 assert n_1 ă n_0
18

19 // recursive call
20 res := n + sum(n_1)
21 }
22 }

Listing 2.18: step case proof method of sum

introduced variable. In line 7 the transition invariant is assumed for the new
variable and the parameter, i.e. pn0, nq P Tsum. The transition check in line
17 verifies as expected.

The encoding of both parts, base case and step case, can be optimized in many
ways. E.g. any statement which is not relevant to the proof, such as the result
value of the proof methods, can be omitted without affecting the result of the
method verification, i.e. the result of the proof.

2.2.4 Advantage over Variant Termination Proof Approach

In this section we briefly compare the transition invariant termination proof
approach with the variant termination proof approach. Listing 2.19 shows an
example7 of a function for which it is difficult to prove termination using the
variant termination proof approach because it is difficult to find a variant. In
each recursive invocation of the functions, y decreases while x increases, until
y is negative, then x decreases down to 0.

7The example in listing 2.19 is an adaption from Program 7 by William Gasarch [5].

22

2.2. Transition Invariants

1 function p7(x: Int, y: Int): Int
2 {
3 x > 0 ? p7(x + y, y - 1) : x + y
4 }

Listing 2.19: p7 function

Even though x is bounded by 0, it cannot be used as the variant because it
does not decrease if y is not negative. Also, y cannot be used as the variant
because for any bound b the invocation p7(1, b) would decrease y below b for
the following recursive call. We were also not able to find a variant which is
a combination of x and y, including tuples, without changing the function’s
definition8.

However, because it is known that either y decreases and is positive or x
decreases and is positive, a disjunctively well-founded transition invariant can
easily be found for p7:

Tp71 : x, y ą y1

Tp72 : y

The effective transition invariant for p7 is then defined as follows:

Tp7 :“ tppx, yq, px
1, y1qq | x1 ă x^ y ą y1 _ y1 ă yu

If y is negative, Tp71 is satisfied because x decreases and is bounded by 0,
hence, x decreases with respect to a well-founded order. If y is non-negative,
Tp70 is satisfied because y decreases and is bounded by 0, hence, decreases with
respect to a well-founded order. The assertion y ą y1 in the relation Tp71 is
necessary to prove that Tp7 is an inductive relation for p7. In particular, the
step case would not succeed without the additional assertion.

The transition invariant correctness proof encoding for the function p7 and the
transition invariant Tp7 is shown in listing 2.20 and listing 2.21. In this case,
the result value of the proof methods is omitted, which as already described,
does not affect the result of the proof.

Both proof methods (listing 2.20 and listing 2.21) verify as expected, and
hence, prove correctness of the chosen transition invariant Tp7. Therefore p7
is proven to terminate.

8Appendix A.1 shows an modified version of function p7 for which we were able to find
a variant termination proof

23

2. Proving Termination of Functions

1 method p7_bc(x: Int, y: Int)
2 {
3 if (x > 0){
4 var x_1: Int := x + y
5 var y_1: Int := y - 1
6 // transition check
7 assert x_1 ă x && y > y_1
8 || y_1 ă y
9 // p7(x + y, y - 1)

10 } else { // x + y }
11 }

Listing 2.20: base case of the transition invariant correctness proof encoding for function p7
(listing 2.19)

1 method p7_sc(x: Int, y: Int)
2 {
3 var x_0: Int // new variables
4 var y_0: Int // new variables
5 // assume transition invariant
6 inhale x < x_0 && 0 <= x_0 && y_0 > y
7 || y < y_0 && 0 <= y_0
8 if (x > 0){
9 // arguments for recursive call

10 var x_1: Int := x + y
11 var y_1: Int := y - 1
12

13 // transition check
14 assert x_1 ă x_0 && y_0 > y_1
15 || y_1 ă y_0
16

17 // p7(x + y, y - 1)
18 } else {
19 // x + y
20 }
21 }

Listing 2.21: step case of the transition invariant correctness proof encoding for function p7
(listing 2.19)

2.2.5 Mutually Recursive Functions

For a directly recursive function f “ xW,Ry, R is defined by the function’s
body. This fact is used to encode the transition invariant correctness proof for

24

2.2. Transition Invariants

a directly recursive function (shown in section 2.2.3), which places transition
checks before each recursive call in f ’s body. If function f is not directly re-
cursive, R can also depend on the body of f ’s mutually recursive functions.
Therefore, the transition invariant correctness proof encoding cannot be di-
rectly applied to a mutually recursive function. We propose in this section
a function transformation, which, applied in advance to a mutually recursive
function, allows to use the proof encoding proposed for directly recursive func-
tions. We demonstrate the transformation on an example and also informally
argue its correctness.

Basically, for a mutually recursive function f “ xW,Ry, the transformation
creates a directly recursive representation of f , f 1 “ xW,R1y, such that its
transition relation is a superset of the transition relation of f , i.e. R Ď R1.
Therefore, for a transition invariant T , a transition invariant correctness proof
for f 1, i.e. a proof that T is a transition invariant for f 1, implies that T is a
transition invariant for f because, R1 Y T ˝R1 Ď T implies RY T ˝R Ď T .

For simplicity, we assume all functions to have one parameter.

Definition 2.5 (Advanced Function Inlining Transformation (AFIT)). The
AFIT traverses the body of a function f depth-first top-down and recursively
applies the following to each indirectly recursive call:
Let gppq be the indirectly recursive function call and Tg the transition invariant
for the function g.

1. If no inlining of a call to g preceded this one then inline gppq.

2. If one inlining of a call gpqq preceded the call gppq then a new variable q1

is introduced, which represents g’s parameter for any recursive invocation
after gpqq by assuming pq, q1q P Tg. The call gppq is replaced with the call
gpq1q, which is then inlined.

3. If two other inlining of calls to g preceded this one, then gppq is removed.

Intuitively, in case 2 in the definition 2.5, a cycle of unknown length starting
with a call gpqq and ending with a call gppq is detected and replaced by a cycle
starting at gpqq and ending at an arbitrary, potential successor gpq1q.

Because AFIT introduces new variables and requires assumption statements,
in Viper, the result of AFIT has to be encoded in a method and not a function.
However, this is irrelevant in our case since the result is only used to encode
the transition correctness proof, which is done in a Viper method.

To demonstrate AFIT the example from listing 2.13 is used, for which the
variant termination proof approach did not work with the intuitively chosen
variants. The example is shown again in listing 2.22.

25

2. Proving Termination of Functions

1 function f(x: Int): Int
2 {
3 x <= 0 ? 0 : g(x+1, x)
4 }
5

6 function g(y: Int, z: Int): Int
7 {
8 z <= 0 ? f(y-2) : g(y, z-1)
9 }

Listing 2.22: mutually recursive functions from listing 2.13

Because in f, x decreases in each recursive invocation of f down to 0, it can
be used as its transition invariant:

Tf1 : x

The effective transition invariant for f is T “ Tf1 . In g, the tuple ry, zs de-
creases with respect to the well-founded lexicographical order in each recursive
invocation of g and therefore can be used as its transition invariant:

Tg1 : ry, zs

The effective transition invariant for g is Tg “ Tg1 .

To encode the transition invariant correctness proofs for the mutually recursive
functions f and g, first AFIT has to be applied to both the functions. For
brevity, we only show AFIT applied to f. The result of applying AFIT to the
function f is shown in listing 2.23.

All the indirectly recursive function calls, that are encountered by AFIT are
mentioned in the comments. Line 6 shows the first inlined function call. For
clarity, instead of propagating f’s parameter, when inlining the call g(x + 1, x),
new variables are introduced to represent the arguments. In line 13 is the sec-
ond function call to g on this path, which is replaced with the function call
in line 20. In line 15 and 16 the variables y_new and z_new, respectively, are
declared, which represent the parameters of all further invocations of g on this
path. The assumption ppy, zq, py_new, z_newqq P Tg is encoded as an inhale
statement in the lines 18 and 19. In line 24 is the third encountered call to g
on this path, which was removed by AFIT.

The method f_afit can now be used to encode the transition correctness proof
for the function f as described in section 2.2.3.

Soundness of Advanced Function Inlining Transformation (AFIT)

In this subsection we show an informal proof for the soundness of AFIT, i.e. a
proof that a valid transition invariant correctness proof for a function obtained

26

2.2. Transition Invariants

1 method f_afit(x: Int) returns (res: Int)
2 {
3 if (x <= 0) {
4 res := 0
5 } else {
6 // g(x + 1, x) inlined
7 // parameters of the inlined call
8 var y: Int := x + 1
9 var z: Int := x

10 if (z <= 0) {
11 res := f_afit(y - 2)
12 } else {
13 // g(y, z - 1) replaced
14 // new parameters
15 var y_new: Int
16 var z_new: Int
17 // assume transition invariant of g
18 inhale (y ă y_new)
19 || (y == y_new && z ă z_new)
20 // g(new_y, new_z) new and inlined
21 if (z_new <= 0) {
22 res := f_afit(y_new - 2)
23 } else {
24 // g(new_y, new_z-1) removed
25 }
26 }
27 }
28 }

Listing 2.23: AFIT applied to the function f in listing 2.22

by AFIT is also a valid proof for the original function.

Lemma 2.5 (Termination of AFIT). The transformation of an arbitrary func-
tion with AFIT always terminates.

Informal Proof. Because the number of functions is finite and AFIT stops
the inlining after encountering three calls to the same function, AFIT must
terminate.

Lemma 2.6 (Soundness of Termination Proof after AFIT). A valid transition
invariant correctness proof for a function obtained by AFIT, is also a valid
proof for the original function.

27

2. Proving Termination of Functions

Informal Proof. Let f “ xW,Ry be an arbitrary function and f 1 “ xW,R1y
the result of AFIT applied to f . Consider AFIT to be applied over multiple
iterations, such that in each iteration of the AFIT, one of the three operations
defined in definition 2.5 is applied to an indirectly recursive function call.
fi “ xW,Riy represents f after i iterations of AFIT. Therefore, f0 “ f and
fn “ f 1 for some n ě 0, if AFIT terminates after n iterations when applied to
f . We prove R Ď R1 by showing that, in each iteration of AFIT, the transition
relation never is reduced, i.e. show Ri Ď Ri`1 for all i P r0, n ´ 1s. In each
iteration, one of the three operations in definition 2.5 is applied to an indirectly
recursive call gppq. Let Tg be the transition invariant for g “ xWg, Rgy. The
numbering in definition 2.5 is used to distinguish the three possible cases.

• Case 1: Because inlining of a function call, in particular gppq, does not
change the semantics, it holds that Ri “ Ri`1. Hence, Ri Ď Ri`1.

• Case 2: Let gpqq be the inlined call preceding gppq and q1 the new pa-
rameter, for which pq, q1q P Tg is assumed. In the transition invariant
correctness proof of g it is, independently from f , proven that pq, pq P Tg

(base case). Therefore, the replacement of gppq with gpq1q and the inlin-
ing of gpq1q does not reduce the transition relation, i.e. Ri Ď Ri`1.

• Case 3: Let gpqq and gpq1q be the inlined calls preceding gppq in this
order, then it was already assumed that pq, q1q P Tg (because of second
operation in AFIT). In the transition invariant correctness proof of g
it is, independently of f , proven that pq, pq P Tg (step case). Since q1

also represents p, removing the function call gppq does not reduce the
transition relation, i.e. Ri Ď Ri`1 holds.

We have shown Ri Ď Ri`1 holds for all i P r0, n´ 1s. Hence, R “ R0 Ď Rn “

R1. Assume we have proved transition correctness for f 1, i.e., we have shown,
for the transition invariant Tf , that R1 Y R1 ˝ Tf is satisfied. This implies
RYR ˝T Ď Tf . Therefore, Tf is also a transition invariant for the function f .

It is important to emphasize that this is just a brief sketch of how the soundness
of AFIT could be proven.

28

Chapter 3

Termination Plugin

As part of this thesis we implemented the variant termination proof approach
for functions presented in section 2.1. As in the previous project, the termi-
nation proofs are encoded as additional Viper code, also referred to as proof
code. This made it possible to develope a single tool that can be used with
both of the Viper verifiers without having to modify them. Additionally, no
changes were made to the Viper syntax, which could have impacted different
Viper front-ends. The following sections in this chapter should give a brief
overview of the implementation.

3.1 Decreases Clause

As described in section 2.1, the variant termination proof approach uses a
variant to prove termination of a function. To be able to define such a variant
a decreases clause is used. The decreases clause is regarded as an additional
part of the function specification and can be used in two different ways:

1. A decreases tuple re1, ..., ens defines the variant of the function to be
the tuple re1, ..., ens of expressions ei.

2. Decreases star prevents the tool from doing any termination checks for
the function.

If no decreases clause is defined for a function, the parameters are automati-
cally chosen as the variant.

To avoid changes to the Viper syntax, the decreases clause has to be added to a
function’s specification in such a way that the parser will accept it. Therefore,
the following encoding was chosen:

1. Decreases tuple re1, ..., ens is encoded in a postcondition as a decreases
function call with the expressions of the tuple as the arguments:

requires decreases(e_1,..., e_n)

29

3. Termination Plugin

2. Decreases star is encoded in a postcondition as a decreasesStar func-
tion call with no arguments:

requires decreasesStar()

Listing 3.1 shows the sum function from listing 1.1 with the variant defined in
the decreases clause.

1 function sum(n: Int): Int
2 requires n >= 0
3 ensures result == n*(n+1)/2
4 ensures decreases(n)
5 {
6 n == 0 ? 0 : n + sum(n - 1)
7 }

Listing 3.1: sum function (listing 1.1) with a decreases clause

Because the decreases clause is part of a function’s specification, only pre- and
postconditions seemed to be suitable to place it. And since the termination
proof is done by analyzing a function’s body, it is rather a postcondition which
has to be satisfied. By using the postcondition for the decreases clause it is
also possible to place it at the end of the specification clauses, which is also
done by other verifiers such as Dafny [3], although in a specially dedicated
clause.

However, a decreases clause is not a real postcondition of a function, and there-
fore, it is removed from the program before it is actually verified (described in
section 3.5).

3.2 Plugin Overview

For the implementation of the termination proof, the newly added plugin sys-
tem of Viper [12] was used. When activated, a Viper plugin can (among other
things) use hooks, i.e. callbacks, to modify the AST at specific stages during
parsing and resolving, and this without changing any of Viper’s core-code.

The diagram in figure 3.1 shows the pipeline of our plugin. The ellipses describe
the expected form of the data going through the pipeline. The arrows are
labelled with the processes of Viper and the boxes represent the phases of the
termination plugin, which are further described in the following sections.

30

3.2. Plugin Overview

Viper Program with Decreases Clauses

Parser AST (PAST)

Phase 1: Modifying PAST

Viper AST

Phase 2: Generating Decreases NodesOther Front-Ends

Viper AST with Decreases Nodes

Phase 3: Termination Proof Encoding

Viper AST

Verification Result

Phase 4: Transforming Errors

Verification Result

Parser

Resolver, Type Checker and Translator

Verifier

Figure 3.1: pipeline of the termination plugin

The plugin expects a Viper program, potentially containing decreases clauses
as described in section 3.1, which is parsed by Viper into a so-called parse
AST (PAST). In phase 1 (section 3.3), the PAST is then modified such that
Viper can resolve and type check the decreases clauses and then translate the
PAST into a Viper AST. In phase 2 (section 3.4), the plugin transforms the
decreases clauses encoded as as functions calls into decreases clause nodes,
which are custom AST nodes. Viper front-ends which directly generate the

31

3. Termination Plugin

Viper AST can use the decreases clause nodes to define a decreases clause for
a function. The additional proof code for the termination proofs is generated
in phase 3 (section 3.5). After one of the Viper verifiers provided its result
for the program, termination-proof-related errors are transformed into more
user-friendly messages in phase 4 (section 3.6.2).

3.3 Modifying PAST

Because decreases clauses are defined with calls to functions that are not de-
fined in the program, the Viper resolver would report an error. Additionally,
Viper does not allow overloading of functions, which would happen if two
decreases clauses with different tuple sizes were defined in one Viper program.

To avoid these errors, in the first phase, the plugin modifies the PAST after
the Viper program was parsed. Each requires decreases(e_1,..., e_n) is
replaced with a requires decreasesN(e_1,..., e_n), where N is the number
n. This avoids overloading of the function decreases. Furthermore, all needed
decreasesN, as well as the decreasesStar function, are declared as domain
functions [9] returning a boolean. Appending the newly declared domain func-
tions to the program then enables the resolver to proceed as normal. The type
checker then firstly successfully verifies that the decreasesN and decreasesStar
functions return a boolean, which is required for postcondition assertions. Sec-
ondly, all the arguments of the decreasesN functions, i.e. the expressions of
the variant, are also type checked. This is crucial because all the expressions
are later expected to be well-typed.

3.4 Generating Decreases Nodes

As described in section 3.1, in any Viper program, a decreases clause for a
function is encoded in the function’s postcondition as a function call. This is
clearly not the best way to do it, but no changes to the Viper syntax had to be
made for this encoding. However, for the AST it is possible to define custom
nodes, so-called AST extensions [8]. Such nodes can be part of a Viper AST,
just like any other regular AST node. Our plugin makes use of this possibility
and offers custom AST nodes in Scala, which are used to represent a decreases
clause.

1. DecreasesTuple(tuple: Seq[Exp]) is the Scala class which represents a
decreases tuple specification.

2. DecreasesStar(): is the Scala class which represents the decreases star
specification.

Both nodes are subtypes of the abstract class DecreasesExp and are expected
to be appended to the postcondition list of a function.

32

3.5. Termination Proof Encoding

Viper front ends that directly generate Viper ASTs themselves must use a
DecreasesTuple or DecreasesStar node to define a decreases clause for a func-
tion, instead of a function the call decreases or decreasesStar.

If the plugin already modified the PAST in order to avoid resolver errors,
the decreasesN(e_1,...,e_n) and decreasesStar() function calls are replaced
with DecreasesTuple(Seq(e_1,...,e_n)) and DecreasesStar() nodes, respec-
tively. This replacement takes place in phase 2 of the plugin, directly after
Viper generated the AST.

Every AST reaching the next phase of the plugin, i.e. phase 3, is expected to
potentially contain decreases clauses as DecreasesExp nodes.

3.5 Termination Proof Encoding

In section 2.1.1, we described how the variant termination proof for functions
can be encoded in Viper. The described encoding is also used by the plugin.
In this section, we present how, in phase 4 of the plugin, the proof methods
for functions are generated. Additionally, we present how well-founded orders
over Viper types are defined, which is necessary to encode the termination
checks.

In general, the implementation is similar to the one in the previous project [6].
Any adjustments and improvements of the new implementation are listed in
section 3.6.5.

3.5.1 Proof Method Generation

For each function that should be proven to termination, i.e. for each function
which does not contain a DecreasesStar node in the postconditions, firstly, the
variant is determined. If the postcondition contains a DecreasesTuple(tuple),
the tuple is used as the variant. Otherwise, the parameter list of the function
is used. Secondly, a proof method, as described in section 2.1.1, is generated.
Therefore, the plugin traverses the function’s body in post-order and generates
a semantically equivalent method. For each recursive call a termination check
is encoded (further described in section 3.5.2) and prepended to the recursive
call call in the method’s body. As already mentioned, because the result value
of the proof method is not relevant to the termination proof of the function,
it can be omitted, which is done in the plugin.

Using the sum function with a defined decreases clause from listing 3.1 as
example, listing 3.2 shows the proof method generated by the plugin. The
encoding of the termination check in line 6 is further described in the following
section (section 3.5.2).

33

3. Termination Plugin

1 method sum_termination_proof(n: Int)
2 requires n >= 0
3 {
4 if (n == 0) {
5 } else {
6 assert decreasing(n-1, n) && bounded(n)
7 }
8 }

Listing 3.2: proof method generated by the plugin for the sum function (listing 3.1)

3.5.2 Termination Check

In order to encode termination checks, an encoding of the well-founded order
over the variants has to be defined. As shown in the previous project [6],
a well-founded order over a Viper type can be defined with the two boolean
functions decreasing and bounded. The functions have the following form:
Let T be a Viper type.

decreasing : T ˆ T Ñ Boolean

bounded : T Ñ Boolean

For two Viper expressions e1 and e2 both of the same type it is defined that1

e2 ă e1 ðñ decreasingpe2, e1q ^ boundedpe1q

The decreasing function ensures that the expressions are in a descendant order
and bounded ensures that the descendant order is bounded. As in the previous
project [6], the two functions are implemented as domain functions (listing
3.3).

1 domain TerminationOrder[T] {
2 function decreasing(arg1: T, arg2: T): Bool
3 function bounded(arg: T): Bool
4 }

Listing 3.3: declaration of decreasing and bounded function (from dec.vpr)

Definitions for the two function are expected to be provided by the user in form
of axioms. This allows the user to define well-founded orders for any Viper
type and yields significant flexibility. Axioms, which define a well-founded
order for Viper’s built-in types, are offered by the plugin and can be imported
using Viper’s import mechanism (presented in chapter 5). Listing 3.4 shows
the provided axioms which define a well-founded order over Viper’s built-in
type Int.

1We write v2 ă v1 if v1 precedes v2 with respect to a well-founded order.

34

3.5. Termination Proof Encoding

1 domain IntTerminationOrder {
2 axiom integer_ax_dec {
3 forall int1: Int, int2: Int :: {decreasing(int1, int2)}
4 int1 < int2 ==> decreasing(int1, int2)
5 }
6 axiom integer_ax_bound {
7 forall int: Int :: {bounded(int)}
8 int >= 0 ==> bounded(int)
9 }

10 }

Listing 3.4: Provided Int Axioms (from int_decreases.vpr)

By using the two functions decreasing and bounded, termination checks can
be encoded as Viper assertions. Line 6 in listing 3.2 shows the encoding of the
termination check for the recursive call sum(n-1) in sum’s body (listing 3.1).

Tuples

For tuples of Viper expressions the lexicographical well-founded order is used,
which is defined as follows:
Let t1 “ rv1, v2, ..., vns and t2 “ rw1, w2, ..., wns for some n ě 0 be two tuples
then

t1 ă t2 ðñ Dk P r1,minpm,nqs. vk ă wk ^ @i P r1, ks. vi “ wi

or (equivalently)

t1 ă t2 ðñ v1 ă w1 _ pv1 “ w2 ^ pv2 ă w2 _ v2 “ w2 ^ p...qqq

The definition is sufficient if the two tuples, which are compared, are of the
same size and commonly typed. Because variants of different functions are
sometimes compared in the termination checks, this is not guaranteed to be.
Consider the following example in listing 3.5, which shows two mutually re-
cursive functions with differently typed tules as variants. The definition of
decreasing requires that each invocation of it uses two arguments of the same
Viper type2. Therefore, the variants used in a termination check first have to
be trimmed to the longest commonly typed prefix. This is also done in other
deductive verifiers, such as Dafny [3].

Because the variants are of the same type until the third position, both are
trimmed to length 2 and the effective variants used for the termination check
are rx, ys and rm,ns for the function f and g, respectively. The proof method
with the termination checks for both functions is shown in listing 3.6.

2Theoretically, it could be allowed to define a well-founded order over two different types.
However, for proving termination this is rarely necessary and could probably also be avoided
with an additional layer of abstraction.

35

3. Termination Plugin

1 function f(x: Int, y: Int, z: Int): Int
2 ensures decreases(x, y, z)
3 {
4 ... g(x, y - 1, y == z) ...
5 }
6

7 function g(m: Int, n: Int, b: Bool): Int
8 ensures decreases(m, n, b)
9 {

10 ... f(m - 1, n*n, n+n) ...
11 }

Listing 3.5: two mutually recursive functions with differently typed variants

1 method f_termination_proof(x: Int, y: Int, z: Int)
2 {
3 ...
4 assert (decreasing(x, x) && bounded(x))
5 || (x == x && (decreasing(y - 1, y) && bounded(y)))
6 ...
7 }
8

9 method g_termination_proof(m: Int, n: Int, b: Bool)
10 {
11 ...
12 assert (decreasing(m - 1, m) && bounded(m))
13 || (m - 1 == m && (decreasing(n*n, n)))
14 ...
15 }

Listing 3.6: termination checks for the functions f and g (listing 3.5)

3.5.3 Predicates

In Viper, describing recursive heap data structure is done with predicates. The
following example (listing 3.7) shows a linked-list containing one integer field
for each element and a method which calculates the sum over all elements
in the list. Because of the precondition in line 9, the function listSum holds
permission to all fields within the predicate instance list(l), i.e. it holds
permission to l.elem, l.next and if l.next != null it also holds permission to
all fields within the predicate instance list(l.next). To use the permissions
to the fields and predicate instances within a particular predicate instance, the
latter is necessary to unfold. By unfolding a predicate, its current instance is
exchanged with its body. In the example above, after the unfold, the predicate

36

3.5. Termination Proof Encoding

1 field elem: Int
2 field next: Ref
3 predicate list(this: Ref) {
4 acc(this.elem) && acc(this.next) &&
5 (this.next != null ==> list(this.next))
6 }
7

8 function listSum(l: Ref): Int
9 requires list(l)

10 {
11 unfolding list(l) in l.next != null ?
12 l.elem + listSum(l.next) : l.elem
13 }

Listing 3.7: list represented by a recursively defined predicate

instance list(l.next) is accessible, which is necessary to call listSum(l.next).

In Viper, a predicate instance can only have a finite number of predicate in-
stances folded within it, which implies that a predicate instance q that is folded
within the predicate instance p has fewer predicate instances folded within it
than p. As in the previous project, this property is used to prove termination
of functions [6]. To this end, the nested relation is used, which for two predi-
cate instances q, p is defined as follows:

nestedpq, pq ðñ q is folded within p

Using the property from above about the number of folded predicate instances
folded within a given predicate instance, and the well-foundedness of non-
negative integers, we can conclude the following for two predicate instances q,
p:

q ă p ðñ nestedpq, pq

I.e. nested is a well-founded relation. Hence, a predicate instance can be used
as a variant for a function. For the function listSum in listing 3.7 the predi-
cate instance list(l) could be used as variant to proof termination. Because
list(l.next) is nested inside list(l) the variant decreases with respect to the
well-founded order at the recursive call, which implies termination of listSum.

To encode the described termination proof into Viper some additional encod-
ings have to be defined (most of it was already introduced in the previous
project [6]). For the nested relation, the domain function nested(q: T, p: T)
is used. Because predicate instances are not a first-class Viper type, it cannot
be used as an argument for the nested function. Therefore, a representation of
predicate instances is generated by the plugin. All predicate instance represen-

37

3. Termination Plugin

tations are of type PredicateInstance and are defined with help of a domain
function, which is generated for each predicate.

For the predicate list in listing 3.7, the domain function pred_list is gener-
ated (listing 3.8).

1 domain PredicateInstance {
2 function pred_list(this: Ref): PredicateInstance
3 }

Listing 3.8: PredicateInstance domain with the domain function pred_list

A predicate instance representation of list(l) would be defined as follows:

var list_0: PredicateInstance := pred_list(l)

By definition, a predicate instance is nested inside another if it is folded within
it. Therefore, at each unfold, predicate instances in the unfolded instance’s
body are added to the nested relation. This is done by first defining a represen-
tation of the unfolded predicate instance before the unfold. Second, after the
unfold, the predicate’s body is traversed and relevant expressions such as con-
ditions are transformed into method statements. For each predicate instance
in the predicate’s body, a representation is defined and the nested relation is
assumed.

At the termination check, the predicate instance of the callee’s variant is
checked to be nested inside the predicate instance of the caller’s variant. The
caller’s predicate instance representation is defined at the beginning of the
proof method and is referred to as initial predicate instance.

The generated proof method of the listSum function is shown, enhanced with
comments, in listing 3.9.

3.5.4 Implementation of Function Inlining Transformation

In section 2.1.3 the Function Inlining Transformation (FIT) was presented and
the advantages of using it in combination with the variant termination proof
were shown. As part of this thesis, we implemented FIT as an additional
feature for the termination plugin, which users can activate. The implementa-
tion of the proof method generation allows a simple integration of additional
features, which the implementation of FIT makes use of. If FIT is activated
the proof method generation, instead of placing a termination check directly
at a recursive function call, the call is first recursively inlined until a cycle is
detected.

Consider the example from listing 2.8, repeated in listing 3.10 with decreases
clauses defined for both functions. Listing 3.11 shows the generated proof
method of function f with FIT activated and enhanced with comments.

38

3.5. Termination Proof Encoding

1 method listSum_termination_proof(l: Ref)
2 requires list(l)
3 {
4 // initial predicate instance
5 var list_0: PredicateInstance := pred_list(l)
6 // predicate to be unfolded
7 var list_1: PredicateInstance := pred_list(l)
8 unfold list(l)
9 // predicate’s body

10 if(l.next != null){
11 // predicate instance in the body of unfolded predicate
12 var list_2: PredicateInstance := pred_list(l.next)
13 inhale nested(list_2, list_1)
14 }
15 if (l.next != null){
16 // predicate instance of callee’s variant
17 var list_3: PredicateInstance := pred_list(l.next)
18 // termination check
19 assert nested(list_3, list_0)
20 }
21 fold list(l)
22 }

Listing 3.9: Proof method of listSum function in listing 3.7

1 function f(x: Int): Int
2 requires x >= 0
3 ensures result == 0
4 ensures decreases(x)
5 {
6 x == 0 ? 0 : g(x+1)
7 }
8

9 function g(y: Int): Int
10 requires y >= 2
11 ensures result == 0
12 ensures decreases(y)
13 {
14 f(y-2)
15 }

Listing 3.10: mutually recursive functions (listing 2.8)

39

3. Termination Plugin

In line 7 the first inlined call and in line 8 the recursive call for which the

1 method f_termination_proof(x: Int)
2 requires x >= 0
3 {
4 if (x == 0){
5 // 0
6 } else {
7 // inlined g(x+1)
8 // f((x+1)-2)
9 assert decreasing((x+1)-2,x) && bounded(x)

10 }
11 }

Listing 3.11: proof method of f (listing 3.10) with FIT activated

termination check is created are shown as comments. The termination check
in line 9 verifies as expected and proofs termination of function f.

3.6 Errors Reporting

In program verification, error messages should help the user to detect prob-
lems in the program code. Therefore, additional information about the error,
e.g. position of occurrence or cause, are included in the messages. In this
section we briefly describe how the Viper error system works and which kind
of information are included in messages. Then we present how termination-
proof-related errors are generated by the plugin and what information the user
receives.

3.6.1 Viper Error Structure

In Viper, an error object always contains a message, an AST node which
represents the position of the error, and a reason. A reason describes the
cause of the error more precisely: it contains a message and an AST node,
which contains the position of the reason. Listing 3.12 shows an example of
an assertion for which Viper would issue an error.

1 var x: Int := -1
2 assert x != 0 && 0 < x && x == 1

Listing 3.12: assertion causing an error

The error message from Viper is shown in listing 3.13. In the first line is the
message from the error, which describes what kind of error occurred. The
second line is the message from the reason, which points out what caused the

40

3.6. Errors Reporting

Assert might fail.
Assertion 0 < x might not hold.
(2.1)

Listing 3.13: error message for example in listing 3.12

error. Because the short-circuiting evaluation of the assertion is taken into
account, only the first expression which might not hold is considered to be the
reason. The last line contains the position of the error.

Seqn

assertx := -1

&&

x != 0 &&

0 < x x == 1Reason

Error

Figure 3.2: graph showing a simplified AST structure of the program in listing 3.12 and the error
and reason connected to it.

3.6.2 Error Transformation

In section 3.5 we described how the plugin generates proof methods, which
contain termination checks in form of assertions. Because the user is unaware
of the added proof code, any error caused by it could be confusing. Consider
the non-terminating function f and its corresponding proof method in listing
3.14. Function f does clearly not terminate, therefore, the termination check
in the proof method fails. The error message for the failed assertion created
by Viper looks like the following:

Assert might fail.
Assertion decreasing(i, i) might not hold.
(No Position)

Firstly, the error message does not mention the non-termination of the function
f, which is an important information for the user. Secondly, the user did
nowhere declare an assertion, hence the assertion error might be irritating.

41

3. Termination Plugin

1 function f(i: Int, j: Int): Int
2 ensures decreases(i, j)
3 {
4 f(i, j)
5 }
6

7 method f_termination_proof(i: Int)
8 {
9 assert decreasing(i, i) && bounded(i) ||

10 (i == i && decreasing(j, j) && bounded(j))
11 }

Listing 3.14: non-terminating function and its proof method

The described problems are solved by transforming the termination-proof-
related errors before the user sees them. This is done with the Viper transfor-
mation framework [4], which allows to add error transformers to AST nodes.
If the verifier returns an error for an AST node which contains a transformer,
the transformer can be invoked by the plugin. The same also works for er-
ror reasons: if the error contains a reason for an AST node which contains
a transformer, then the transformer can be invoked by the plugin. The error
transformers are added to the AST when the plugin creates the proof meth-
ods in phase 3, whereas the transformers are invoked in phase 4. In the next
section, we describe the different error transformations used by the plugin.

3.6.3 Termination Error

An assertion error for a termination check is transformed to a termination
error with the following message.

Function might not terminate.

The position of the function call for which the termination check was created
is used as the position of the error. A user then knows which recursive call
might cause non-termination of the function.

In the following, all the reason transformations for a termination check error
done by the plugin are described. The reason message is always appended to
the error message.

Variant not Decreasing

If a termination check fails because the variant does not decrease, the reason is
transformed into a reason with the following message (related to listing 3.14).

42

3.6. Errors Reporting

Termination measure might not decrease.
Assertion (i, j)ă(i, j) might not hold.

The reason shows the variant of the caller and callee, hence, the user then
exactly sees what was compared in the termination check.

Variant not Bounded

If a termination check fails because the variant is not bounded, the reason is
transformed into a reason with the following message (related to listing 3.14).

Termination measure might not be bounded.
Assertion 0ă(i, j) might not hold.

Decreases Star

Functions declared with a decreases-star clause are not proven to terminate. If
another function is recursive via this function and calls it, the following error
will be reported at the function call.

Cannot prove termination,
if function declared with decreasesStar is called.

The error is only reported if the call is actually reachable. This is accomplished
by placing a assert false at the position of the call in the proof method.

Error Messages with FIT

If the FIT transformation is activated, the reason messages are slightly ad-
justed to be more useful to the user. For an example we reuse the functions
from listing 2.12, which are repeated in listing 3.15.

1 function f(x: Int): Int
2 ensures decreases(x)
3 {
4 x <= 0 ? 0 : g(x+1, x)
5 }
6

7 function g(y: Int, z: Int): Int
8 ensures decreases(y, z)
9 {

10 z <= 0 ? f(y-2) : g(y, z-1)
11 }

Listing 3.15: example from listing 2.12.

43

3. Termination Plugin

We have already shown that we cannot prove termination of f by using FIT
and the variant termination proof. Listing 3.16 shows the proof method of the
function f, which fails to verify as expected.

1 method f_termination_proof(x: Int)
2 {
3 if (x <= 0) {
4 // 0
5 } else {
6 // inlined g(x+1, x)
7 if(x <= 0) {
8 // f((x+1)-2)
9 assert decreasing((x+1)-2, x) && bounded(x)

10 } else{
11 // g(x+1, x-1)
12 assert decreasing(x+1, x) && bounded(x)
13 }
14 }
15 }

Listing 3.16: proof method of the function f (listing 3.15)

The termination check in line 12 fails because f’s variant does not decrease in
the call g(x+1, x-1). Since this call only exists in f’s body after FIT inlined
the call g(x+1, x), the user does not know for which call the termination check
is done. Therefore, all the inlined calls and their position in the code, which
together represent the path to the function call causing the error, are appended
to the error reason message. The error and reason message for this particular
example is the following:

Termination measure might not decrease.
Assertion (x+1)ă(x) might not hold.
Path: g(x+1, x)@4.18 -> g(x+1, x-1)@10.23.

Such a path will also be provided if the variant is not bounded or a star function
is called recursively.

3.6.4 Further Errors

In this section, we present further errors issued by the plugin, which are not
transformed from verification errors.

Declaration not Provided

The plugin requires the user to provide declarations of functions, e.g. decreasing
and bounded, to create type safe termination checks. If a needed function dec-
laration is not provided, the tool reports an error and aborts the verification.

44

3.6. Errors Reporting

E.g. the following error message would be shown if the decreasing function
declaration was missing:

Function decreasing needed but not defined.

Multiple Decreases Clauses

If multiple decreases clauses are provided for one function, the plugin does
not know which one to choose. Therefore, it reports an error at the position
of the function definition and aborts the verification. E.g. if multiple de-
creases clauses are provided for a function f, the following error message will
be reported:

Function f contains more than one decreases clause.

Recursion Via Decreases Clause

As described in section 2.1, the variant of a function is not allowed to contain
a recursive (directly or indirectly) function call. If the a recursive call occurs
in the variant, e.g. of function f, the tool reports the following error message
and aborts the verification:

Function f recurses via its decreases clause.

If the function potentially recurses via other functions, e.g. g and h, a list of
them is appended to the error message:

The cycle contains the function(s) g, h.

This message helps the user to detect the forbidden recursive calls in the
decreases clause.

3.6.5 Improvements to Previous Implementation

As already mentioned, in a previous project, termination proofs for functions
in Viper were already implemented. However, it used an unsound approach
for mutually recursive functions. It was implemented into Viper’s core code
and affected Viper’s syntax. Because the current implementation uses the
variant termination proof approach, the soundness was improved. And since
the implementation is a Viper plugin and does not affect Viper’s syntax, it is
easier to maintain as the previous one. Some other changes and improvements
are described in the following paragraphs.

In section 3.5.2, the encoding of well-founded orders over Viper types was
changed to allow more intuitive choices of variants. Additionally, the encoding
of lexicographical well-founded order was changed to improve completeness.

45

3. Termination Plugin

This also affected the error transformation, which had to be adjusted to the
termination checks.

If the user does not provide a decreases clause for a functions, the plugin
automatically infers one, which reduced the annotation overhead. Further,
heap-dependent functions calls are now allowed in the decreases clause, which
improved expressiveness.

46

Chapter 4

Proving Termination of Methods

In Viper, methods, like functions, can be defined recursively and therefore
cause non-termination. While in the previous project [6] only termination
proofs for functions was implemented, we extended the support for termination
proofs to methods. In this chapter we describe the implementation of the
termination proof for methods in Viper. A variant termination proof for a
method can be done in the same way as for functions: at each recursive call it
is checked that a variant decreases with respect to a well-founded order. The
decreases clause is again used to define a variant and the well-founded order
is defined and encoded as for functions.

Reusing the sum function from listing 1.1, a semantical equivalent method can
be seen in listing 4.1.

1 method sum(n: Int) returns (res: Int)
2 requires n >= 0
3 ensures res == n * (n+1) / 2
4 ensures decreases(n)
5 {
6 if (n == 0) {
7 res := 0
8 } else {
9 res := sum(n-1)

10 res := n + res
11 }
12 }

Listing 4.1: function sum (listing 1.1) as method

The decreases clause in line 4 defines the variant for the method to be n. The
plugin places the termination check for the recursive call in line 9 directly in
front of the call. This avoids the creation of an additional proof method and
does not increase the code size by much.

47

4. Proving Termination of Methods

...
} else {

assert decreasing(n-1, n) && bounded(n)
res := sum(n-1)

...

4.1 Termination Check Adjustments

Because methods contain statements, in contrast to functions, which only con-
tain expressions, the program state may change within the method body. This
has to be taken into account when proving termination of a method. The
following sections describe necessary adjustments to the termination check for
functions (section 3.5.2) so that it is also applicable for methods.

4.1.1 Fields

Because expressions can only read the value of a field, it can be assumed that
in Viper, a function execution does not change the field value. Statements, on
the other hand, can also modify a field value, e.g. by an assignment, hence
a value of a field can change in a method execution. Consider the following
method (listing 4.2), which calls itself recursively as long as the value of r.val
is non-negative. The method terminates because it decreases r.val before each
call and terminates if the field value is negative. Using the r.val as the variant
is therefore reasonable.

1 field val: Int
2

3 method m(r: Ref)
4 requires acc(r.val)
5 ensures decreases(r.val)
6 {
7 if (r.val >= 0)
8 {
9 r.val := r.val - 1

10 m(r)
11 }
12 }

Listing 4.2: Recursive Method with Field as Variant

Also here the termination check is added just before the recursive call: How-
ever, this assertion would fail because r.val ă r.val can not be satisfied. The
problem is that the variant of the caller changed and the new value is used
instead of the one from the beginning of the method. In our example the value
decreased by one just before the termination check.

48

4.1. Termination Check Adjustments

...
r.val := r.val - 1
assert decreasing(r.val, r.val) && bounded(r.val)
m(r)
...

The solution that we implemented is to use old expressions whenever the
caller’s variant is used. old expressions make it possible to refer to the value of
a field at the beginning of the method, which is what we need. The termination
check for listing 4.2 therefore has to be changed to the following:

...
r.val := r.val - 1
assert decreasing(r.val, old(r.val)) && bounded(old(r.val))
m(r)
...

Now the assertion successfully verifies.

4.1.2 Predicates

As described in section 3.5.3, predicates are used to specify recursive data
structures and can also be used as variants to prove termination of functions.
The same approach should also be used for proving termination of methods.
However, as already shown in section 4.1.1, statements in a method body can
change the program state, which causes new challenges for termination proofs.
This also affects the use of predicates as variants.

Consider the example in listing 4.3. The method append traverses the predicate
list recursively. When the end of the data structure is reached, i.e. when the
this.next is null, a new element is appended to the list and the method calls
itself recursively with the new element as its argument, which is the cause of
the method’s non-termination.

Listing 4.4 shows the proof method of append as generated by the plugin,
enhanced with some comments. Suppose the predicate instance represen-
tation function pred_list were defined as described in section 3.5.3 (shown
in listing 4.5). The termination check in line 34 would unsoundly succeeds
even though the method does not terminate. The problem arises because the
predicate instance representation function pred_list is defined as a domain
function. In Viper, domain functions, unlike regular functions, are always
heap-independent. Thus, pred_list defined as domain function were heap-
independent and its result would only depend on the arguments. Therefore,
the variables list0 and list3 were unsoundly considered to be equal, even
though they represent possibly different predicate instances. And since the

49

4. Proving Termination of Methods

1 field next: Ref
2

3 predicate list(this: Ref) {
4 acc(this.next) &&
5 (this.next != null ==> list(this.next))
6 }
7

8 method append(this: Ref)
9 requires list(this)

10 ensures list(this)
11 ensures decreases(list(this))
12 {
13 unfold list(this)
14 if (this.next == null) {
15 var n: Ref
16

17 n := new(next)
18 n.next := null
19 this.next := n
20 fold list(n)
21 }
22 fold list(this)
23

24 unfold list(this)
25 append(this.next)
26 fold list(this)
27 }

Listing 4.3: non-nerminating method append

condition in line 27 is always true, list4 and list5 are considered to be equal
and the termination check in line 34 would unsoundly succeed.

The solution implemented for this problem is to define the predicate instance
representation functions as abstract functions instead of domain functions. For
the given example listing 4.6 shows the pred_list function as it is defined by
the plugin. The wildcard literal represents some unspecified positive amount
of permission. This is required to obtain the predicate the instance list(this).
Because the field this.next in the proof method in listing 4.4 may be different
when list0 and list3 are assigned in line 6 and line 25, respectively, they are
not guaranteed to be equals. Thus, the termination check correctly fails.

50

4.1. Termination Check Adjustments

1 method appendP(this: Ref)
2 requires list(this)
3 ensures list(this)
4 {
5 // initial predicate instance
6 var list0: Predicate_Instance := pred_list(this)
7 // unfolded predicate instance
8 var list1: Predicate_Instance := pred_list(this)
9 unfold list(this)

10 if (this.next != null) {
11 // nested predicate instance
12 var list2: Predicate_Instance := pred_list(this.next)
13 inhale nested(list2, list1)
14 }
15

16 if (this.next == null) {
17 var n: Ref
18 n := new(next)
19 n.next := null
20 this.next := n
21 fold list(n)
22 }
23 fold list(this)
24 // unfolded predicate instance
25 var list3: Predicate_Instance := pred_list(this)
26 unfold list(this)
27 if (this.next != null) {
28 // nested predicate instance
29 var list4: Predicate_Instance := pred_list(this.next)
30 inhale nested(list4, list3)
31 }
32 // predicate instance for termination check
33 var list5: Predicate_Instance := pred_list(this.next)
34 assert nested(list5, list0) // termination check
35 append(this.next)
36 fold list(this)
37 }

Listing 4.4: termination proof method for method append (listing 4.3)

51

4. Proving Termination of Methods

1 domain PredicateInstance{
2 function pred_list(x: Ref): PredicateInstance
3 }

Listing 4.5: wrong predicate instance representation function for predicate list

1 domain Predicate_Instance{}
2

3 function pred_list(this: Ref): Predicate_Instance
4 requires acc(list(this), wildcard)

Listing 4.6: new predicate instance representation function for predicate list

4.2 FIT for Methods

The FIT transformation presented in section 2.1.3 has been shown to be ad-
vantageous for proving termination of functions. The same approach could
theoretically also be applied to recursive methods.

However, unlike functions, methods are treated modularly in Viper. Which
means that when a method is called, only the postcondition of it is assumed,
independently of the methods implementation. Therefore, a user assumes that
the verification of a method does not rely on the implementation of another
method. By inlining recursive calls, what FIT would do, this assumption would
be violated. Because of that we decided not to implement method termination
proofs using FIT.

4.3 Termination of Loop

Loops are another potential source of non-termination in Viper. To prove
termination of a loop, the same approach as the one applied to methods could
be used. A termination check at the end of the loop could verify that the
value of a variant at the end of the loop is smaller than the value at the
beginning, with respect to a well-founded order. This would imply that the
variant decreases in each iteration a finite number of times and therefore the
loop must terminate.

In Viper, a loop inside a method can be created in two ways: with while loops
or with goto statements. Because the goto statements create loops which are
not trivially recognizable in an AST, Viper creates a control flow graph of the
method. In the control flow graph each entry and exit of a loop is marked. This
information would be crucial to place the termination check for a loop correctly.
With the current Viper plugin system, however, is it not possible to access that
control flow graph. Because of that, any implementation of termination proofs

52

4.3. Termination of Loop

for loops would also require changes to the Viper framework. Therefore, it was
not implemented as part of this thesis.

53

Chapter 5

Standard Import

As mentioned in section 3.5.2, the termination plugin offers files containing
axioms that define well-founded orders for all Viper built-in types and users
should be able to use the axioms by importing the files into their programs.
However, how such files are exactly provided by Viper and accessed by the
user was not defined. Vipers normal import feature expects either an absolute
or a relative path to a file, which has two significant limitations: users need
the source of the termination plugin to import provided files, and the import
path depends on where the plugin is located. Therefore, as part of this thesis
we designed and implemented a new, additional import feature for Viper.

5.1 The Import Feature

In this section we introduce the syntax for the new import feature. Inspired
by the C file inclusion feature, the following two import possibilities are now
offered by Viper:

import "path/to/file"

and

import <path/to/file>

The first one, which was the already implemented one and hereinafter referred
to as local import, does not change its semantics and continuous to be uses
to include files with a relative or absolute path. The second one, hereinafter
referred to as standard import, is used to import files provided by Viper. The
file path enclosed in < and > is interpreted as a path to a file relative to the
standard import directory. The provided files can either be directly inside that
directory or in a sub-folder of it.

As an example, to import the axioms defining a well-founded order over the
Viper built-in type Int when using the termination plugin, the following stan-

55

5. Standard Import

dard import can be used:

import <decreases/int_decreases.sil>

5.2 Providing Files

To provide files through the standard import mechanism, they must be placed
onto the JVM classpath inside a directory named import. We show three
different ways how this can be achieved.

In Viper

Viper developers can find the directory named import in the resources of the
Silver project. The Silver project structure is shown in the following diagram:

silver
src

main
scala ...
resources

import ...
...

...
...

By packaging the project with sbt everything, in the recourses directory is
placed in the root of the JAR file, including the directory import containing
the provided files.

As JAR

Files can also be provided by placing them in a directory named import in-
side JAR files which are added to the classpath of the Viper execution. The
following shows a JAR structure containing a directory named import:

some.jar
import ...
...

A JAR file can be added to the classpath of a JVM by using the cp flag:

java [...] -cp "/path/to/some.jar" [...]

56

5.2. Providing Files

As Directory

The easiest way for a Viper user to extend the standard import library with
new files is by adding a directory, which contains a directory called import,
to the classpath of the Viper execution. Any file inside that import directory
can then be accessed through the standard import. The following shows a
directory structure containing a directory named import:

directory
import ...
...

A directory can be added to the calsspath of a JVM by using the cp flag:

java [...] -cp "/path/to/directory" [...]

57

Chapter 6

Conclusion

The main goal of this thesis was to develop and implement a sound, but
still reasonable complete approach to verify termination of recursive func-
tions in Viper. Therefore, we looked into two different termination proof ap-
proaches, the variant and the transition invariant termination proof approach,
and showed how they can be applied to Viper functions. The variant termi-
nation proof approach, which is also used by other deductive verifiers, has the
advantage that it can be applied modularly to functions, such that the proofs
for each functions are kept small. However, we showed mutually recursive func-
tions for which the modular approach does not allow an intuitive choice of the
variant. For this we presented a transformation (FIT), which inlines recursive
calls in the function’s body, and allows in some cases a more intuitive choice
of the variant to prove termination. With the transition invariant termination
proof approach a less known approach was shown. The approach allows, on
the one hand, to use specifications as simple as in the variant approach, but
on the other hand, also allows to express more complex specifications.

We implemented the variant termination proof approach with the optional
feature to use FIT. Additionally, because the implementation automatically
uses the parameters as variants, if none are explicitly defined, the annotation
overhead was reduced, which was another extension goal of this thesis. Further,
the termination proof support was extended to recursive methods, which was
another goal of this thesis. All termination proofs were implemented in a
Viper plugin and use a Viper to Viper transformation to encode the proofs.
The plugin can now be used by Viper users, which want to verify termination
of functions or methods in their Viper programs. For functions, users can use
the standard variant termination proof or the variant termination proof with
FIT.

A further goal of the thesis was to implement a new import mechanism for the
users to import files provided by Viper. This was accomplished by implement-

59

6. Conclusion

ing the standard import mechanism. Viper developers can now easily provide
Viper programs, which are often required, to the users. This mechanism is
also used by the termination plugin to provide pre-defined well-founded orders
for built-in Viper types.

6.1 Future Work

In this section we present briefly possible future work.

Implementation of Transition Invariant Termination Proof

We presented in section 2.2 a proof encoding for the transition invariant ter-
mination proof approach. The encoding could, in a future project, be imple-
mented and added to the termination plugin. This would make it possible
to further explore the advantages or disadvantages of this rather less known
approach in deductive program verification.

Furthermore, in this thesis, we only discussed the transition invariant termina-
tion proof approach applied to functions. A further goal would be to consider
applying the approach also to recursive methods and loops.

Termination Proof Support for Loops

In section 4.3 we discussed the difficulties of implementing termination proof
for loops in Viper. As already mentioned this would be another possible future
project to extend the termination proof support in Viper.

Avoid Duplicate Errors

In section 2.1 we presented the encoding of the variant termination proof ap-
proach, which uses a proof method. Because the method contains several
structures which are also contained in the function, such as conditions or un-
folds, an error in such a structure would be issued twice. Once in the function
and once in the proof method. Since the method is generated by the termina-
tion plugin the user is unaware of it and could be confused by the occurrence
of a second error. A solution would be to filter all the errors from the proof
method which are not termination proof related.

Termination Proof Support for a Viper Front-End

In a future project, the termination proof support could be extended to a Viper
front-end, such as the Python front-end. The front-end could then directly use
the designated AST nodes for the decreases clause, which were presented in
section 3.4.

60

Appendix A

Appendix

A.1 Variant Termination Proof

p7 Function

As mentioned in section 2.2.4, we were not able to find a variant for a ter-
mination proof of the program p7 without changing the function’s definition.
However, after extending p7’s signature with so-called starting values of x and
y, and extending p7’s specification with upper and under bounds of x and
y based on the starting values, we were able to find a variant termination
proof. The following two listings show the modified function and its by the
termination plugin generated proof method.

1 function p7(x: Int, y: Int, x0: Int, y0: Int, i: Int): Int
2 requires 0 <= i
3 requires y == y0 - i
4 requires y <= y0
5 requires x - x0 <= (y0 - y) * y0
6 requires x <= x0 + y0 * y0
7 requires 0 <= x ==> -2 * (x0 + y0 * y0) <= y
8 {
9 (x > 0 ? p7(x + y, y - 1, x0, y0, i + 1) : x + y)

10 }

61

A. Appendix

1 method p7_termination_proof(x: Int, y: Int, x0: Int, y0: Int, i: Int)
2 requires 0 <= i
3 requires y == y0 - i
4 requires y <= y0
5 requires x - x0 <= (y0 - y) * y0
6 requires x <= x0 + y0 * y0
7 requires 0 <= x ==> -2 * (x0 + y0 * y0) <= y
8 {
9

10 if (x > 0) {
11 assert decreasing(y - 1 + 2 * (x0 + y0 * y0), old(y + 2 * (x0 + y0 * y0)))
12 && bounded(old(y + 2 * (x0 + y0 * y0)))
13 } else {
14 }
15 }

62

Bibliography

[1] Wilhelm Ackermann. Zum hilbertschen aufbau der reellen zahlen. Math-
ematische Annalen, 99(1):118–133, Dec 1928.

[2] Robert W. Floyd. Assigning Meanings to Programs, pages 65–81. Springer
Netherlands, Dordrecht, 1993.

[3] Richard L. Ford and K. Rustan M. Leino. Dafny Reference
Manual. http://www.divms.uiowa.edu/~tinelli/classes/181/Papers/
dafny-reference.pdf. Accessed: 2019-05-11.

[4] Simon Fritsche. A Framework for Bidirectional Program Transformations.
Master’s thesis, ETH Zurich, 2017.

[5] William Gasarch. Proving Programs Terminate Using Well-Founded Or-
derings, Ramsey’s Theorem, and Matrices, volume 97, pages 147–200. 12
2015.

[6] Patrick Gruntz. Checking Termination of Abstraction Functions. Bache-
lor’s thesis, ETH Zurich, 2017.

[7] Zohar Manna and John McCarthy. Properties of programs and partial
function logic. Machine Intelligence, 5:24, 10 1969.

[8] Severin Meier. Verification of Information Flow Security for Python Pro-
grams. Master’s thesis, ETH Zurich, 2018.

[9] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A Verification
Infrastructure for Permission-Based Reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag,
2016.

63

http://www.divms.uiowa.edu/~tinelli/classes/181/Papers/dafny-reference.pdf
http://www.divms.uiowa.edu/~tinelli/classes/181/Papers/dafny-reference.pdf

Bibliography

[10] Andreas Podelski and Andrey Rybalchenko. Transition Invariants. In
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science, LICS ’04, pages 32–41, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[11] Arsenii Rudich, Ádám Darvas, and Peter Müller. Checking well-
formedness of pure-method specifications. In Jorge Cuellar, Tom
Maibaum, and Kaisa Sere, editors, FM 2008: Formal Methods, pages
68–83, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[12] Benjamin Schmid. Abstract Read Permission Support for an Automatic
Python Verifier. Bachelor’s thesis, ETH Zurich, 2017.

[13] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, et al. Dependent types and multi-
monadic effects in F*. In ACM SIGPLAN Notices, volume 51, pages
256–270. ACM, 2016.

64

	Contents
	Introduction
	Introduction to Viper
	Proving Termination

	Chapter Overview

	Proving Termination of Functions
	Variant
	Proof Encoding
	Limitations of the Variant Termination Proof Approach
	Function Inlining Transformation
	Unsoundness of Previous Work
	Limitations of FIT

	Transition Invariants
	Definitions and Theorems
	Notation for Transition Invariants
	Proof Encoding in Viper
	Advantage over Variant Termination Proof Approach
	Mutually Recursive Functions

	Termination Plugin
	Decreases Clause
	Plugin Overview
	Modifying PAST
	Generating Decreases Nodes
	Termination Proof Encoding
	Proof Method Generation
	Termination Check
	Predicates
	Implementation of Function Inlining Transformation

	Errors Reporting
	Viper Error Structure
	Error Transformation
	Termination Error
	Further Errors
	Improvements to Previous Implementation

	Proving Termination of Methods
	Termination Check Adjustments
	Fields
	Predicates

	FIT for Methods
	Termination of Loop

	Standard Import
	The Import Feature
	Providing Files

	Conclusion
	Future Work

	Appendix
	Variant Termination Proof

	Bibliography

