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Introduction

Program verification is used to check correctness of program code and can
help detect programming errors. Proving termination of a program, i.e.
showing that a program finishes in finite time, is an important but also
difficult part of the verification process. Different kinds of verification ap-
proaches exist to prove termination of a program.

In deductive software verification, programs are usually annotated with
specification (or contracts) to express what the program is supposed to do.
A function’s specification, for example, usually consists of a precondition
and a postcondition. They summarize the expected program state before a
function call and after, respectively. In order to reason about termination,
it is common to specify a termination measure: an expression whose value
is bounded from below and decreases in every loop iteration or recursive
invocation.

Consider, for example, the following recursive function which calculates the
sum of the first n natural numbers.

1 function sumFirst ( n : Int ) : Int
2 requires 0 <= n
3 decreases n
4 {
5 n == 0 ? 0 : n + sumFirst ( n−1)
6 }

The decreases clause specifies the termination measure, here n. Assuming the
precondition (specified with requires) holds and thanks to the well-ordering
principle of natural numbers one can prove that this function terminates
in finitely many steps. Every time sumFirst invokes itself recursively, n
decreases (here exactly by one) until it reaches 0, in which case the recursion
stops and the function terminates.

Viper, a verification infrastructure developed at the ETH Zurich [Vip18], of-
fers the possibility to encode a source language with specifications (for ex-
ample, Rust) into an intermediate verification language, also called Viper,
which in turn can be verified by two verifiers.

In a previous project, support for termination proofs for recursive functions
was implemented [Gru17]. A Viper to Viper transformation is used to en-
code the required checks in additional Viper code, also sometimes referred
to as proof code. The output then can be normally verified. This approach
allowed to extend the functionality of Viper without having to modify the
verifiers.

1



The following sections show some of the remaining open problems regard-
ing termination proofs in Viper.

Mutually Recursive Functions

To reason about mutually recursive functions, the transformation uses an
approach which explores static, “direct” execution paths and substitutes ar-
guments on the way until it encounters a call to an already checked function.
However the approach is unsound, as it does not account for all possible ac-
tual executions, and therefore can produce a wrong result. Consider the
following example of the non-terminating functions f and g:

1 function f ( x : Int ) : Int
2 requires 0 <= x
3 decreases x
4 { x == 0 ? g ( x +1) : f ( x−1) }
5
6 function g ( x : Int ) : Int
7 requires 0 <= x
8 decreases x
9 { x == 0 ? f ( x +1) : g ( x−1) }

Calling f with x = 1 invokes f recursively with x = 0, then g with x = 1,
then g with x = 0 and then again f with x = 1, which is the same input as
we started with and shows non-termination of the function.

To prove termination of f , the current approach explores the following paths,
with a as an arbitrary integer: f (a) → f (a− 1) if a 6= 0 on which the termi-
nation measure decreases. The path f (a)→ g(a + 1) if a = 0 is also checked
but the recursive call f (a + 1 + 1) in g(a + 1) is considered infeasible since
its guard a = 0 contradicts the first guard in combination with the precondi-
tion. The other call, g(a + 1− 1), is unsoundly considered harmless, since g
is separately checked for termination (which succeeds equally unsoundly).

In summary: the current approach works for self-recursive functions, but
not for mutually recursive ones.

Heap-Dependent Functions as Termination Measure

A heap-dependent function used in the decreases-clause could depend on
the function currently checked for termination. This would create termina-
tion checks which mutually depend on each other, which is not trivially
solved. Because the current approach does already not support functions
that are mutually recursive through their bodies it also does not support
functions that are mutually recursive through their contracts.
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Public Functions Used by User and Viper Back-End

To check if termination measures decrease and are bounded, the Viper-to-
Viper transformation and the Viper back-ends use the functions decreasing
and bounded, which can be axiomatised by the user. To make this user-
provided axioms type-check, users are currently also expected to declare
these functions. This expectation, as well as the required function signatures,
is currently not apparent to users, which can be confusing and makes the
whole setup brittle and error prone.

Import Files Provided by Viper

For Viper’s built-in types, such as integers and sequences, suitable declara-
tions and axiomatisations of decreasing and bounded can be imported from
Viper files that are part of Viper’s code base. However, Viper’s import fea-
ture currently expects either a relative or an absolute path to a file, which
has two significant limitations: users need the sources of Viper to import
such standard definitions, and the import paths depend on where the cur-
rent and the imported files are located. Other programming languages, e.g.
C, offer a dedicated, simplified way to include such standard library func-
tions (include “../my/file.h” vs. include <stdlib.h>). The implementation of a
similar alternative for importing files will improve the usability of Viper.

Predicates

Besides functions also predicates, which are parameterized assertions, can
be defined recursively [PB05]. In Viper, a predicate instance that has an infi-
nite number of predicate instances folded within it is, by definition, equiva-
lent to false. Using such a predicate as a precondition is semantically equiva-
lent to requiring false. A user defining a predicate wrongly by mistake, such
that the predicate only has non-terminating interpretations, could therefore
cause methods to verify only due to their false precondition.
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Core Goals

The core goals of this thesis are divided into conceptual goals and imple-
mentation goals.

Conceptual

• Develop and implement a sound, but still reasonably complete ap-
proach to verify termination of mutually recursive functions. Dafny,
another deductive verifier, is sound but fails with simple mutually re-
cursive functions, which seem easily verifiable (see Dafny Example on
the next page).

• Support heap-dependent functions as termination measures.

Implementation

• Use a Viper to Viper transformation, as in the previous project, to en-
code the additional required checks and avoid changes to the verifiers.
Recently added features, which allow to add plugins [Sch17] and to
extend the Viper AST with custom nodes [Mei18], could be used to
achieve this goal in an way that is more elegant and easier to maintain
than the previous ad-hoc solution.

• Implement an alternative way for users to import files provided by
Viper.

• Design and implement a less error prone approach for declaring and
using functions that are not part of the Viper core language, but which
nevertheless are expected to have a particular signature, by compo-
nents at different steps of the verification infrastructure.

• Improve termination-related error reporting to provide more helpful
messages when verification fails.

Extension Goals

• Extend the support for termination proofs to loops and methods.

• Support termination proofs also for predicates and warn the user of
possible definitions which are equal to false.

• Implement termination checks for a Viper front-end (e.g. Python, Rust,
Voila)

• Decrease annotation overhead by automatically trying to infer termi-
nation measures e.g. by simple syntactic heuristics.

4



Dafny Example

Following simple example of mutually recursive functions fails to be verfied
by Dafny (version: 2.2.0.10923).

1 function f ( x : i n t ) : i n t
2 requires 0 <= x
3 decreases x
4 {
5 i f x == 0 then 0 e lse g ( x−1)
6 }
7
8 function g ( y : i n t ) : i n t
9 requires 0 <= y

10 decreases y
11 {
12 f ( y )
13 }
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