
Verifying Fine-Grained Concurrent
Data Structures

Master Thesis

Felix Wolf

August 21, 2018

Advisors: Prof. Dr. Peter Müller, Dr. Malte Schwerhoff

Department of Computer Science, ETH Zürich

Abstract

There are many verifier for fine-grained concurrent code out there.
However, many of them have a one sided bias either towards fully-
automation or towards complete declaration of proofs. With our proof
outline checker named Voila, we attempt to reap the benefits from both
sides by letting the user focus on the key steps of a verification while
the tool deals with the rest. Voila is a verifier for the TaDA logic, a
powerful verification language for fine-grained concurrent programs.

i

Contents

Contents iii

1 Introduction 1

2 TaDA Basics 5

3 TaDA Proof Outline 9
3.1 Single Statement Implementation 9
3.2 Abstract Atomic Implementation 10

4 Viper Basics 15

5 Voila Language 19
5.1 Voila Overview . 19
5.2 Voila Syntax . 20

6 Viper Encoding 27
6.1 Verification Approach . 27
6.2 Encoding . 33

6.2.1 Declarations . 35
6.2.2 Types and Expressions 38
6.2.3 Non-Atomic Statements 38
6.2.4 Abstract Atomic Statements 41
6.2.5 Inspection Rules . 41
6.2.6 Make-Atomic Rule . 43
6.2.7 Guards and Actions . 45
6.2.8 Stabilization . 48
6.2.9 Interference Inference 49
6.2.10 Well-definedness Checks 51

6.3 Differences from the Prototype 53

iii

Contents

7 Soundness 55
7.1 Voila Subset . 55
7.2 Proof Sketch . 55

7.2.1 Invariants on generated Viper Programs 56
7.2.2 Viper Specification Mapping 56
7.2.3 Lemmas . 58
7.2.4 Soundness of Statement Encoding 61
7.2.5 Soundness of the Method Encoding 66
7.2.6 Extension of the Proof Sketch 67

8 Evaluation 69
8.1 Proof aiding statements . 69
8.2 Performance . 69
8.3 Optimizations . 71
8.4 Limitations . 71

9 Conclusion 75
9.1 Related Work . 75
9.2 Future Work . 76
9.3 Encoding to Viper . 77
9.4 Final Conclusion . 77

A TaDA rules 79

Bibliography 83

iv

Chapter 1

Introduction

Verification of concurrent code is hard, because different threads may inter-
fere with each other. Consider the code z := x.val; x.val := z + 2
where x.val is the value of some shared heap location. From the point of
view of a single thread the value of x.f can change arbitrarily in between
field read and field write because the execution of multiple threads running
this code may overlap.

On the programming side, locks and atomic hardware instructions are some
of the existing solutions to combat interference. Locks are used to enforce
exclusive memory access: in the above example, interference in between the
field read and field write cannot occur if a lock associated with the memory
location is acquired before the field read and then released after the field
write. However, many high-performance applications eschew the potential
runtime overhead of coarse-grained concurrent locks and instead rely on
fine-grained concurrent data structures and algorithms, implemented using
atomic hardware instructions such as compare-and-swap.

These more flexible synchronization techniques make reasoning about shared
state and thus reasoning about interference more complicated, because, in
general, the heap locations manipulated by some code can be modified by
another thread virtually at any moment. Typically, developer of fine-grained
concurrent code think about self-imposed restriction to control the interfer-
ence by limiting its capabilities. The task of concurrent code verification is to
specify those self-imposed restrictions and reason about them. Those speci-
fications are not part of the program state, but instead part of the auxiliary
state, also referred to as ghost code, that aids the verification of the code.

Rely-guarantee reasoning [9] and separation logic [16] are two approaches that
aid reasoning about heap locations are accessed and how access to those
heap locations is distributed, respectively. For example regarding rely-guarantees
on heap accesses, protocols specifying permitted resource transitions can es-

1

1. Introduction

l s−→ a • b ∧ l o−→ c⇒ (l s−→ a ∧ l o−→ b • c)~ (l s−→ b ∧ l o−→ a • c)

Figure 1.1: FCSL [15] part of the subjective separation conjunction definition.

tablish invariants on heap values. If for the code z := x.val; x.val :=
z + 2 the field x.val is associated with a protocol only permitting even
values then we know, even in the presence of interference, that the field
value directly after the write is even. For resource distribution, separation
logic can be applied to reason about the ownership of resources, i.e. which
resources are exclusively held and which resources might be shared with the
environment. Exclusively owned resources are by definition not exposed to
interference. FCSL [15] introduced the subjective separation conjunction ~
to reason about the resources distributed between multiple threads. For ex-
ample the formula in figure 1.1 illustrates how resources are redistributed be-
fore the fork of two threads; The resources first exclusively owned (l s−→ a • b)
are distributed between two threads so that the part exclusive in one thread
(e.g. l s−→ a) belongs to the environment in the other thread (e.g. l o−→ a • c).

As mentioned before access protocols on heap resources can establish invari-
ants. However, it is hard to establish two-state invariants, i.e. specifying
how a resource changes over time. For the code z := x.val; x.val :=
z + 2, we were able to enforce the invariant that the field value is even. But
now consider the two-state invariant that the field value is only permitted to
increase. The code is not able to satisfy this condition because interference
can take place in between the read and write, hence the write can actually
decrease the value, for example when the write shadows two other writes.
Such interleaving can be avoided with atomicity. Atomicity describes that
an operation happens in a single, discrete instant in time, without possible
interference from other threads. Hence, atomic operations allow to satisfy
two-state invariants in a concurrent setting. However, atomicity is too strict
for more complex operations such as operations on data structures because
in those cases the operations are typically not atomic. Furthermore, it is
often enough to know that a set of operations appears to behave atomic
relative to each other. We describe this concept as abstract atomicity.

Iris [10], FCSL [15], and TaDA [1] are just a few of the programming logics
that incorporate a synthesis of rely-guarantee reasoning, separation logic,
and abstract atomicity. All of those logics already have a tool support to vary-
ing degrees: Iris and FCSL are verified in Coq, a declarative proof checker.
The versatility of declarative proof checker allows Coq to thoroughly verify
programs. As a trade-off, Coq offers less automation and hence requires
more developer effort. On the other side, Caper [4] supports a subset of
TaDA with a noteworthy high degree of automation. However, its high de-

2

gree of automation comes at the cost of termination issues since the missing
user input results in a larger proof search space.

We developed Voila, a verification language heavily based on TaDA, together
with the Voila outline checker that takes as input a source program enriched
with proof annotations and outputs if the verification was successful and,
in the case of failure, emits meaningful error messages. With an outline
checker the user focuses on the key steps of a proof and lets the tool handle
the rest. The main goal is to find a good trade-off between fully-automatic
verifier, where the tool tries to search for the correctness proof on its own,
and a declarative proof checker, where the tool only checks the validity of a
correctness proof given by the user.

We did not build the tool from scratch, but built it on top of the Viper inter-
mediate verification language [14], a verification infrastructure for permission-
based reasoning. This choice was motivated by Viper’s claim to provide
a backend that simplifies the development of more complex, permission-
based verifiers.

Our contribution is the development of the Voila verifier that can verify a
bigger subset of TaDA core mechanics than existing verifier, and illustrates
the benefits of an outline checker. Furthermore, we tested the capabilities
of Viper as an intermediate verification language for more complex logics.
Finally, we also provide a soundness sketch for the majority of the encoding.

3

Chapter 2

TaDA Basics

In the introduction we introduced several constructs derived from a syn-
thesis of rely-guarantee reasoning, separation logic, and time abstraction,
namely protocols, resource ownership, and abstract atomicity. In this chap-
ter we present how TaDA incorporates these constructs.

Memory Resources We start with how TaDA models memory resources.
TaDA distinguishes between shared and exclusive resources, i.e. whether or
not multiple threads can hold them at the same time. An exclusive resource
is denoted as x. f 7→ v where f is a field with value v of a reference x. Since
the assertion is exclusive, x. f 7→ v also expresses ownership of the field.
Furthermore, x. f is not exposed to interference and is hence by definition
stable. In concurrent programs shared state is necessary because otherwise
multiple threads would not be able to synchronize their actions. Therefore,
every verification language for concurrent code requires some way to repre-
sent shared state. In Voila, shared state is modeled by shared regions which
can be held by multiple threads. Formally, a shared region assertion tλ

a (~e, s)
consists of a region type t, a region id a, a level λ, parameters ~e, and an ab-
stract state s. The region id is used as a unique identifier of a region instance,
hence the following holds:

tλ
a (~e, s) ∧ t′λ

′

a (~e′, s′)⇒ t = t′ ∧ λ = λ′ ∧ ~e = ~e′

The region interpretation defines resources contained inside a region to-
gether with invariants on those resources as well as the composition of the
abstract region state. For example, the shared region type ECounter with
the interpretation I

(
ECounterλ

a (x, v)
)
, x.val 7→ v ∗ even(v) encapsulates

a points-to predicate x.val 7→ v together with the invariant of the value being
even. Furthermore, the interpretation defines the abstract state of ECounter
as the value of the contained field resource x.val. It might seem contradict-
ing that points-to predicates are one side exclusive, but on the other side

5

2. TaDA Basics

can be placed into shared regions. The solution to that dilemma is given by
threads can interact with shared regions: first, the resources contained in the
interpretation can only be retrieved by opening a region. Second, a region
cannot be opened again before it is closed. Lastly, opening a region is only
allowed at an abstractly discrete instant in time, i.e. when it appears as if no
other thread has opened the region. As a consequence of these constraints
on shared regions, points-to predicates inside a region interpretation can
still be treated as if they were actually exclusive. In the next chapter we
discuss how to open a region and how to change the state of a region.

Abstract Atomicity Judgment Consider we want to specify a method that
operated on the previously defined ECounter region. In figure 2.1 two dif-
ferent kind of method specifications offered by TaDA are shown. They are a
non-atomic and abstract atomic specification, respectively. As described in
the introduction, for non-atomic code it is hard to prove interesting proper-
ties in a fine-grained concurrent setting. The non-atomic specification states
that if before a ECounter instance existed with some region state, then after
the call the state of the region instance will be at least two. The assertion [G]a
denotes a regioned guard, an auxiliary resource that does not model program
state and is only used to verify a program. Intuitively, in TaDA, guards rep-
resent permissions to perform a state change on a region. For example, the
provided non-atomic specification cannot be verified if the guard [G]r does
not permit a transition of the ECounter state to a state larger or equal to 2.
More interesting is the abstract atomic specification. Intuitively, it specifies
that the region state of ECounter will increase by two as if the transition
happened atomically. More formally, the specification states that, if the func-
tion terminates, as long as the state of the ECounter instance is contained
in the set V an update to v + 2 will be performed by the callee where v is
the state in V that the region had at the point of the update. The method
level λ′ specifies the group of functions for which the update will appear
to have happened atomically, namely all functions that have a method level
of at least λ′. Regarding the terminology, we refer to Γ as the functional
environment that contains the specifications of all TaDA methods in the cur-
rent program. As mentioned before λ′ is the method level. The set V is the
interference rely-guarantee of the method. It specifies an upper-bound of
interference caused by the environment under which a method can still sat-
isfy its specification. Finally, the atomicity context A stores which updates
on region state might currently happen, i.e. if a : X Y is an entry of
the atomicity context, then the region state belonging to a has to be guaran-
teed to be in X until the currently pending update will be performed that
changes the region state to a value in Y. TaDA offers the same specifications
for statements. In this case we refer to λ, A, and V as the level, atomicity
context, and interference rely-guarantee for the judgment on the statement.

6

Γ; λ′;A `
{∃v ∈ V. ECounterλ

a (x, v) ∗ [G]a}
addEven

{∃v ∈ V. ECounterλ
a (x, v) ∗ [G]a ∗ v ≥ 2}

Γ; λ′;A ` ∀\ v ∈ V.
〈ECounterλ

a (x, v) ∗ [G]a〉
addEven

〈ECounterλ
a (x, v + 2) ∗ [G]a〉

Figure 2.1: Non-atomic and abstract atomic specification of a TaDA method addEven.

Abstract atomic specification in general is referred to as an atomic triple
whereas non-atomic specification is referred to as a non-atomic triple.

Guard-labeled State Transition Systems and Stability As we have seen
before, in TaDA guard denotes the permission to perform a state transition
on a region. A guard is an element of a guard algebra (G, •, 0, 1) which is a
partially commutative monoid with the guard conjunction •, the unit 0, and
the max element 1. G is the carrier set every guard is contained in. A
resource order on guards G is defined in the usual way:

G1 ≤ G2 ⇔ ∃G3. G1 • G3 = G2

Since 1 is the max element of a guard algebra G ≤ 1 always holds. Differ-
ent guard algebras are discussed in section 6.2.7. For now we only show-
case two of them: first, we call a guard G unique if it is from the algebra
({0, G}, •, 0, G) where G •G is always undefined. Second, we call a guard
G duplicable if it is from the algebra ({G}, •, G, G). Each region instance
tλ

a (~e, s) has its own guards written as [G]a, as seen before, we refer to those
as regioned guards. The guard conjunction • is lifted to regioned guards
[g1]a • [g2]a = [g1 • g2]a.

The guard-labeled transition system then defines state transitions on regions
that are permitted if the associated guard is owned. For example consider
the ECounter region from before. Because we want an increasing counter,
a possible transition system can be specified by G : ∀n, m. n m | n <
m ∧ even(m) where G is a unique guard. In other words, the unique
guard G permits a transition on ECounter if the state is only increased
and if the new state is even. Formally, the transition system of a region
type t is defined by Tt(g) which maps guards associated with the region
to a subset of permitted transitions. For ECounter we get TECounter(G) =
{ (n, m) | n < m ∧ even(m)}. Transition can be guarded by more than one
guard, but Tt(g1) ⊆ Tt(g1 • g2) has to hold to satisfy the resource order on
guards.

7

2. TaDA Basics

ϕ � P

ϕ � tλ
a (~e, s)

ϕ ∼ [g]a
(s, s′) ∈ T?

t (g)
ϕ � a Z⇒ �⇒ s′ ∈ dom(A(a)

⇒ P ∼ tλ

a (~e, s′)

Figure 2.2: Formal definition of stability of an assertion P. Regarding the notation, ϕ entailing
Q (ϕ � Q) is defined as ϕ ∈ JQK, ϕ compatible with Q (ϕ ∼ Q) is defined as ∃ϕ′ ∈ JQK. ϕ • ϕ′,
and Q1 ∼ Q2 is defined accordingly where J·K is the assertion semantics of TaDA.

With a state transition system we can now define stability. Intuitively, an
assertion P is stable, if for each state ϕ satisfying P where some region
tλ

a (~e, ·) is in state s and where the environment can perform the transition
from s to s′ in ϕ, then P should not contradict the region tλ

a (~e, ·) being in
state s′. This condition corresponds to P holding even in the presence of
interference because all states that can be reached by the environment still
satisfy P. A transition from s to s′ on a region tλ

a (~e, ·) in a state ϕ can be
performed by the environment if the environment may hold a guard [g]a
which permits the transition and if s′ satisfies current rely-guarantees on the
region state. As seen before, rely-guarantees on the region state is expressed
through the atomicity context A that specifies for the region states currently
being updated in which set the region state has to be guaranteed to be in.
The diamond resource r Z⇒ � denotes that oneself is currently performing
an update on the region instance belonging to the region identifier r. Hence,
stability also has to guarantee that condition. A formalization of stability
is given in figure 2.2. Regarding the notation, ϕ � Q expresses state ϕ
satisfying the assertion Q. Furthermore, ϕ ∼ Q states ϕ not contradicting
Q holding for the environment. For example ϕ ∼ [g]a from the stability
definition holds if the environment might own the guard [g]a. Therefore,
ϕ � [G]a would be false for ϕ � [G]a where G is a unique guard, but would
hold if G is a duplicable guard.

8

Chapter 3

TaDA Proof Outline

Consider the addEven method from the previous chapter. As specified for-
mally in figure 2.1, it abstract atomically increases the state of the region
ECounter by 2. In this chapter we will proof two different implementa-
tion of the addEven method in TaDA. As a reminder, the interpretation of
ECounter is I

(
ECounterλ

a (x, v)
)
, x.val 7→ v ∗ even(v) and the region is

guarded by a single guard G which permits all transitions to even integers
that increase the state.

3.1 Single Statement Implementation

The first implementation of addEven given in figure 3.1 consists of a single
call to the fetch-and-add primitive written as FAA val where val specifies
the field that is modified. The primitive atomically increases the value of
a field location by the provided argument. Our goal is to prove that the
first implementation adheres to the abstract atomic specification of addEven
given in figure 2.1.

Such a proof of an atomic triple in TaDA has two objectives: proving func-
tional correctness and proving abstract atomicity. For functional correctness,
we will have to open the region to justify the change of the abstract state
through a change inside the region interpretation. On the other side, the out-
line of the abstract atomicity proof depends always on the implementation.
The proofs can be categorized into two groups, referred to as delegation and
abstraction, both of which are presented in this section and in the next one
respectively.

If the implementation, as in our case, consists of a single statement, then we
can delegate the atomicity proof to a lower level; note that whereas addEven
operates on ECounter regions, fetch-and-add operates on heap locations
directly. In TaDA the delegation of an atomicity proof to a lower level is

9

3. TaDA Proof Outline

method addEven(x) {
FAA_val(x, z, z+2)

}

Figure 3.1: A trivial implementation for addEven.

a /∈ A {(s, y) | s /∈ S, y ∈ Y} ⊆ T?
R(G)

Γ; λ;A ` ∀\ s ∈ S.
〈I
(
Rλ

a (~e, s)
)
∗ [G]a ∗ P(s)〉
C

〈∃y ∈ Y. I
(
Rλ

a (~e, y)
)
∗Q(s)〉

UseAtomic

Γ; λ + 1;A ` ∀\ s ∈ S.
〈Rλ

a (~e, s) ∗ [G]a ∗ P(s)〉
C

〈∃y ∈ Y. Rλ
a (~e, y) ∗Q(s)〉

Figure 3.2: The UseAtomic TaDA proof rule.

method addEven(x) {
∀\ v ∈ V.
〈ECounterλ

r (x, v) ∗ [G]r〉
〈x.val 7→ v ∗ even(v)〉
FAA_val(x, z, z+2)
〈x.val 7→ v + 2 ∗ even(v + 2)〉
〈ECounterλ

r (x, v + 2) ∗ [G]r
}

Figure 3.3: A TaDA proof for the trivial implementation of addEven.

captured by UseAtomic rule shown in figure 3.2. This rule allows to open a
region t and then to perform an update on it if the performed state change of
t is permitted by an owned guard and if no other modification of t is tracked.
A TaDA proof for the addEven implementation using the UseAtomic is
given in 3.3. The proof proceeds as directed by the UseAtomic rule: While
the ECounter region is opened, the fetch-and-add rule is applied. The
state transition is allowed because the state has increased and stayed even.

3.2 Abstract Atomic Implementation

Typically an implementation will consist of more than one method call, thus
requires more advanced reasoning about abstract atomicity. The second im-
plementation of addEven given in figure 3.4 illustrates such a case: Inside
a loop the value of the heap location x is successively read until it is suc-
cessfully modified. The modification is done by the compare-and-swap

10

3.2. Abstract Atomic Implementation

primitive, which in case the heap value is equal to the provided argument,
updates a heap location to some value and returns true, or otherwise returns
false without a modification.

In TaDA to proof a implementation consisting of multiple statements the
MakeAtomic rule from figure 3.5 is required. This rule captures the core me-
chanic of abstract atomicity. Similar to the UseAtomic rule, MakeAtomic al-
lows an update to the region state if an owned guard permits the performed
state change. The difference is that the MakeAtomic rule allows the update
to be performed in multiple steps on the same level, expressed through the
transition from atomic-triple to Hoare-triple. Performing the region update
in more than one step leads to two requirements: First, because the atomic-
triples in TaDA specify a single linearization point, only one region update
is allowed. Second, because interference may happen after the linearization
point, the region update is tracked. As mentioned in the TaDA basics chap-
ter, the two tracking resources a Z⇒ � and a Z⇒ (x, y) track the uniqueness,
and the source and target of the update transition respectively. The atomic
tracking context A is updated with the mapping a : x ∈ X Y to store the
permitted transitions and to ensure that the region is not updated without
the diamond resource, for example through the use of use atomic.

The actual state change is proven with the UpdateRegion rule from figure
3.5. The rule allows to open a region and to update the state if the state
transition is contained in the atomicity tracking context. The atomicity con-
text together with the diamond resource take the role of the guard to permit
transitions. The rule considers the case in which an update happens, as
well as the case in which an update did not happen, to be coherent with
typical concurrent programming semantics employed in primitives such as
compare-and-swap, in which an update may or may not take place.

The complete proof sketch of the second addEven method can be seen in
figure 3.6. The MakeAtomic rule switches the context from atomic-triple
to Hoare-triple. The OpenRegion rule, which can be seen as a variation of
the UseAtomic that does not change the abstract state of the region, opens
the region to write the value of the heap location into the variable v. Lastly,
the region is updated depending on the success of the compare-and-swap
primitive with UpdateRegion.

11

3. TaDA Proof Outline

method addEven(x) {
do {
z := x.val
b := CAS_val(x, z, z+2)

} while(b);
}

Figure 3.4: A more advanced implementation for addEven.

Γ; λ;A ` ∀\ s ∈ S. 〈 I
(
Rλ

a (~e, s)
)
∗ P(s) 〉 C 〈 I

(
Rλ

a (~e, s)
)
∗Q(s) 〉

OpenRegion

Γ; λ + 1;A ` ∀\ s ∈ S. 〈 Rλ
a (~e, s) ∗ P(s) 〉 C 〈 Rλ

a (~e, s) ∗ Q(s) 〉

a /∈ A {(s, y) | s /∈ S, y ∈ Y} ⊆ T?
R(G)

Γ; λ; a : s ∈ S Y,A `
{∃s ∈ S. Rλ

a (~e, s) ∗ a Z⇒ � }
C

{∃s ∈ S. ∃y ∈ Y. a Z⇒ (s, y)}
MakeAtomic

Γ; λ;A ` ∀\ s ∈ S. 〈 Rλ
a (~e, s) ∗ [G]a 〉 C 〈 ∃y ∈ Y. Rλ

a (~e, y) ∗ [G]a 〉

a /∈ A {(s, y) | s /∈ S, y ∈ Y} ⊆ T?
R(G)

Γ; λ;A ` ∀\ s ∈ S.

〈I
(
Rλ

a (~e, s)
)
∗ P(s)〉

C〈
∃y ∈ Y. I

(
Rλ

a (~e, y)
)
∗Q1(s, y) ∨

I
(
Rλ

a (~e, s)
)
∗Q2(s)

〉
UpdateRegion

Γ; λ + 1; a : s ∈ S Y,A ` ∀\ s ∈ S. 〈Rλ
a (~e, s) ∗ a Z⇒ � ∗ P(s)〉

C〈
∃y ∈ Y. Rλ

a (~e, y) ∗Q1(s, y) ∗ a Z⇒ (s, y) ∨
Rλ

a (~e, s) ∗Q2(s) ∗ a Z⇒ �

〉
Figure 3.5: The MakeAtomic, UpdateRegion, and OpenRegion proof rule from TaDA.

12

3.2. Abstract Atomic Implementation

method addEven(x) {
∀\ v ∈ V.
〈ECounterλ

r (x, v) ∗ [G]r〉
r : v ∈ V v + 2
{∃v ∈ V. ECounterλ

r (x, v) ∗ r Z⇒ �}
do {

{∃v ∈ V. ECounterλ
r (x, v) ∗ r Z⇒ �}

∀\ v ∈ V.
〈x.val 7→ v ∗ even(v)〉
z := x.val
〈x.val 7→ v ∗ even(v) ∗ even(z)〉
{∃v ∈ V. ECounterλ

r (x, v) ∗ r Z⇒ � ∗ even(z)〉}
∀\ v ∈ V.
〈x.val 7→ v ∗ even(v) ∗ even(z)〉
b := CAS_val(x, z, z + 2)
〈b ? x.val 7→ v : x.val 7→ v + a ∗ even(v)〉
{∃v ∈ V. b ? ECounterλ

r (x, v) ∗ r Z⇒ � : r Z⇒ (v, v + 2) ∗ even(v + 2)〉}
} while(b);
{∃v ∈ V. r Z⇒ (v, v + 2) ∗ even(v + 2)〉}
〈ECounterλ

r (x, v + 2) ∗ [G]r〉
}

Figure 3.6: A proof of the more advanced implementation for addEven.

13

Chapter 4

Viper Basics

The Viper intermediate verification language [14] is a verification infrastruc-
ture for permission-based reasoning. The key concept is that access permis-
sions are necessary to access the heap. As a consequence, because code can
only manipulate heap memory that it has permission to and because access
permissions of resources themselves are disjoint, local reasoning is enabled.

The ownership of the permission amount p to the field f of reference x is ex-
pressed by the accessibility predicate acc(x.f, p). The permission p is a ra-
tional between 0 and 1, also notated as none and write respectively, where
1 corresponds to write permission and any non-zero amount corresponds
to read permission. As comparison, the points-to predicate x.val 7→ s can
be expressed as acc(x.val, write) && x.val == s where && notates
the Viper separating conjunction. Access permissions aggregate under the
separation conjunction so acc(x.f, 1/2) && acc(x.f, 1/2) amounts
to write permissions.

Permissions are gained either implicitly at the beginning of a method through
the method precondition, or explicitly through the use of an inhale state-
ment. Vice versa, the same for the loss of permissions through method
postconditions or the exhale statement. Figure 4.1 shows two Viper exam-
ples: on the right side, permission to a field x.f is acquired and then 42 is
written to the field. Note that acc(x.val) is a shorthand for acc(x.val,
write). Afterwards, the permission is first asserted, then removed, and
finally acquired again, all of which succeeds. The exhale after the assert
succeeds since assert does not remove permissions. Lastly, it is asserted
that the field still has its old value. This assertion fails because the value of a
field is chosen arbitrarily if permission to the field is inhaled when currently
no permission to that field is held. This mechanic can be used to havoc
the value of a field by successively exhaling and inhaling the permissions to
that field. One way to access an old value of a field is with labels and old
as shown on the right side: a label is placed before the field permission is

15

4. Viper Basics

inhale acc(x.f)
x.f := 42
assert acc(x.f)
exhale acc(x.f)
inhale acc(x.f)
assert x.f == 42 // fail

inhale acc(x.f)
x.f := 42
label l
exhale acc(x.f)
assert old[l](x.f) == 42
assert perm(x.f) == none

Figure 4.1: Two Viper snippets with fields, field permissions, and inhale exhale statements.

exhaled, and after the exhale the label is used together with old to assert
that the old value of the field is equal to 42, which succeeds. Furthermore,
in the right example, the last assertion successfully checks that no permis-
sion to the field is held by using the perm predicate which queries the held
permission amount. The old expression can be combined with acc and
perm so we define the following shorthands: first, perm[l](e) is short
for old[l](perm(e)). Second, acc[l](e) is a shorthand for acc(e,
perm[l](e)).

Besides fields, Viper also offers predicates [17] and heap-dependent functions [7].
Figure 4.2 shows example declarations: the predicate pair has in its body
two access predicates to the fields x.f and x.g. Intuitively, pair abstracts
over part of the heap by representing a pair heap structure. The getFirst
heap-dependent function then corresponds to a getter for that pair struc-
ture. The footprint of the heap-dependent function provided through the
requires clause specifies the part of the heap on which the function de-
pends on. For example getFirst depends only on cell. Another way
to write a predicate expression p(e) is acc(p(e)). This notation is use-
ful if we want only a fraction of the permissions specified in the predi-
cates body: for example getFirst can only be used if write permission to
cell(x) is held. If the precondition were acc(cell(x), 1/2) instead,
then getFirst could also be applied with half permission to cell. In the
encoding we often use access predicates around predicates to facilitate the
distinction between predicates and functions.

The body of a heap-dependent function is an expression with the same type
as the specified return type. Important is that heap-dependent function do
not modify the heap, i.e. are side-effect free by definition. Inside the func-
tion body of getFirst, the predicate instance is unfolded, meaning the
predicate instance is replaced with its corresponding predicate body, and
the integer value of x.f is returned. In Viper predicate definitions are iso-
recursive [22], meaning that the predicate instance is not treated equally
to the corresponding body. Instead, predicate instances need to be explic-
itly folded and unfolded by the Viper statements fold p(e) and unfold
p(e), or inside an expression with unfolding p(e) in (...). Figure

16

predicate pair(x: Ref) { acc(x.f) && acc(x.g) }

function getFirst(x: Ref): Int
requires cell(x)

{ unfolding cell(x) in x.f }

Figure 4.2: Viper snippet with predicate and heap-dependent function declarations. Ref is the
Viper reference type.

inhale cell(x)
unfold cell(x)
x.f := 42
fold cell(x)
assert getFirst(x) == 42

Figure 4.3: Viper snippet with predicates, heap-dependent functions, and fold and unfold.

predicate fp(x: Ref, y: Ref)

function f(x: Ref, y: Ref): Int
requires acc(fp(x))

inhale acc(fp(x,y))
assume f(x,y) == 42
exhale acc(fp(x,y))
inhale acc(fp(x,y))
assume f(x,y) == 41

Figure 4.4: Two Viper snippets with abstract predicate and function declaration the left side,
and use of those predicate and function on the right side.

4.3 illustrates the cell predicate and its getter in use: first, cell is inhaled.
Then, the predicate is unfolded and folded where in between the field x.f
originating from the predicate body is modified. Lastly, it is asserted with
getFirst that the value was changed.

Abstract predicates[17] or abstract heap-dependent functions[7] do not have a
body. Figure 4.4 shows on the left side a declaration of an abstract predicate
fp(x,y) and an abstract heap-dependent function f(x,y) that depends
on fp(x,y). On the right side, we illustrate how we employ abstract pred-
icates in the encoding: f is used similarly to a field with the difference of
being parameterized in x and y. The value of a function instance is declared
by assuming some constraint on the value of the function instance. In the
example we assume that the value of f(x,y) is 42. Before reassignment,
the function has to be havoced by exhaling and inhaling the predicate per-
mission.

17

Chapter 5

Voila Language

As mentioned in the introduction, a proof outline only contains the inter-
esting key steps of a full proof. Consider the TaDA proof sketch of the
addEven method: we only gave the three important rule applications that
require deeper knowledge about the program, for example, the position of
the linearization point indicated by the UpdateRegion rule. The other re-
quired rule applications that mainly transform the auxiliary state were omit-
ted. Furthermore, multiple side conditions checks of the three important
rule applications are omitted as well: we did not check that the transition is
permitted by the guard and neither did we check that the atomicity context
does not contain a mapping for the region identifier. As mentioned before,
the goal of Voila is to enable the verification of similar proof outlines that
only contain the interesting key steps. In this section, we discuss the Voila
language and show how the concept of proof outlines was built into the
language.

5.1 Voila Overview

Voila is a Java-like imperative language with a TaDA-like assertion language.
Furthermore, Voila has additional statements for TaDA’s core rules. We ap-
ply the existing TaDA terminology to Voila: for example, Voila also has
interference rely-guarantees, a judgment level, or an atomicity context. Fur-
thermore, we apply the TaDA logic to Voila as well: we call a well-defined
Voila program correct if there exists a proof for the corresponding TaDA
specification that applies the core rules in the same positions as annotated
in the Voila implementation. Assertion stability is lifted in the same manner.

A verified Voila implementation for the addEven method is shown in fig-
ure 5.1. The specification consists of three parts: the pre- and postcondition
of a method together with the interference clause, indicated by requires,
ensures, and interference, respectively. Assertions for pre- and post-

19

5. Voila Language

conditions are the same as in TaDA specifications, only the notation differs
slightly: region identifier and region level are written as normal region ar-
guments. Furthermore, the regioned guard [G]r is written as G@r. The
interference clause specifies the interference rely-guarantee of the addEven
method that in TaDA would be bound by ∀\ . Different from TaDA the inter-
ference context is bound for each region instance separately to simplify the
encoding. Regarding the method body, addEven has the same implemen-
tation as given in chapter 3. However, the implementation is enriched with
TaDA annotations for the applied proof rules together with an invariant for
the while loop. The proof rules are almost the same as in the previously
presented proof sketch with the difference that the targeted region, as well
as required guards, are explicitly provided with the using and with clause,
respectively. The invariant is new and expresses that as long as the compare-
and-swap did not successfully perform a heap modification, the diamond
resource is held, and otherwise the executed modification is captured in the
transition resource. Regarding the TaDA rules, a Voila program is similar
to a proof sketch as the user only has to use the four core rules shown in
section 3: UseAtomic,MakeAtomic, UpdateRegion, and OpenRegion; the
automatic verifier deals with all other required TaDA rule applications. Fur-
thermore, Voila automatically proofs the side conditions.

The Voila implementation of addEven also uses an ECounter region, hence
ECounter requires a region declaration as shown in figure 5.2. The region
arguments are the region id, the region level, and the cell. The resource
x.val 7→ ?s together with the invariant even(s) contained in the inter-
pretation of ECounter are specified inside the interp clause. The value of
the field x.val is bound by the binding operator ? so that it can be specified
as the state of ECounter in the state clause. The G guard associated with
ECounter is captured in the guards clause. The duplicable specifies the
guard algebra the guard belongs to. Finally, the actions clause defines
that the region state is allowed to be increased to an even number if the
ECounter guard is held. Besides region declarations also structure declara-
tions are necessary. Figure 5.3 shows a straightforward structure declaration
for cell that is used inside the ECounter region.

5.2 Voila Syntax

In the previous section, we gave a rough overview of Voila. In this section,
we show the formal syntax of Voila that will be used in the encoding.

Before we discuss the Voila syntax, we introduce some of our employed no-
tations. The letters x, n, r, F, R, S range over variables, integers, region
identifiers, fields, region types, and structure names, respectively. As a gen-
eral guideline, capital case variables such as R, F, M are used for names, and

20

5.2. Voila Syntax

abstract_atomic procedure
addEven(id r, int lvl, cell x)

interference ?n in Nat on ECounter(r,lvl,x);
requires ECounter(r,lvl,x,n) && G@r;
ensures ECounter(r,lvl,x,n+2) && G@r;

{
int z; bool b;
make_atomic using ECounter(r,lvl,x) with G@r {
do
invariant ECounter(r,lvl,x,?s);
invariant b ? r Z⇒ � : r Z⇒ (s,s+a);

{
open_region using ECounter(r,lvl,x) {
z := x.val;

}
update_region using ECounter(r,lvl,x) {
b := CAS_val(x, z, z+2);

}
} while (b)

}
}

Figure 5.1: The addEven implementation in Voila.

region ECounter(id r, int lvl, cell x)
guards { duplicable G; }
interp { x.val 7→ ?s && even(s) }
state { s }
actions
{ int n, m | n < m && even(m) | G: n → m; }

Figure 5.2: Declaration of the ECounter region in Voila.

struct cell { int val; }

Figure 5.3: Declaration of a cell structure with a single field val of type int in Voila.

21

5. Voila Language

lowercase is used for other syntactic elements. Furthermore, ~v is a shorthand
for the sequence v1, v2, . . . , vn, and operations to such sequences are applied
pointwise, e.g. ~x : ~t stands for x1 : t1, . . . , xn : tn.

Expressions Similar to other verification languages, Voila distinguishes be-
tween expressions used by the implementation and assertions used to verify
the implementation. We refer to the latter also as ghost code. A syntax
definition of the basic elements of Voila is given in figure 5.4. Regarding
types, Voila has ids, booleans, integers, structure types, rationals, sets, and
tuples. The latter three, namely Rationals, sets, and tuples, are mathematical
data types used in specifications. Structure types are the types of references.
The syntax for Booleans and expressions is the standard for separation logic
notation, but also contains operations for rationals, sets, and tuples: for ex-
ample, Set(?x | b) is a set comprehension and Geti(e) is a getter for the
i-th tuple element. Assertions are composed of standard separation logic
assertions together with TaDA assertions: on one hand, points-to predicates
x.F 7→ q, guard expressions g@r, as well as both tracking resources r Z⇒ �,
r Z⇒ (qfrom, qto) are directly taken from TaDA. On the other hand, region as-
sertions R(~ein;~qout; qstate) have an extended syntax: we distinguish between
in- and out-arguments. In-arguments are the standard TaDA region argu-
ments together with the region identifier and the region level. On the other
side, out-arguments, known from VeriFast [8], are parameters that must be
uniquely determined by the interpretation. They are used to bind a value
of a region that is useful in the proof outline. Often out-arguments and the
state are omitted in a region assertion, then R(~ein) is written instead. An-
other special type of expression is the binding expression ?x. They have a
similar use as in VeriFast: they allow to bind the value of a field or a region.
For example x.val 7→ ?y && y > 42 binds the value of x.val to y and checks
that this bound value is larger than 42. For simplicity we will assume that
all binder variables are globally unique, i.e. only bound once, hence we do
not have to worry about scopes.

Structures As seen in the previous section, we use typed fields to access
values on the heap. Each reference is of a structure type and provides field
accesses according to the structure definition. The structure definition syn-
tax is given in figure 5.5.

Regions As mentioned in chapter 2, in TaDA three different components
define the semantics of a region: first, the region interpretation defines the
region state based on lower level state together with resources and invariants
on those resources hidden in the region. Second, the state transition system
defines which state transitions are permitted by which guards. Lastly, the
guard algebra defines the semantics of the used guards. In Voila we took

22

5.2. Voila Syntax

t ::= id | bool | int | frac | S | set〈t〉 | tuple〈~t〉
b ::= b1 && b2 | b1 || b2 | !b | b1 ⇒ b2 | e1 � e2

where � ∈ {=, 6=, <, >, ∈, ⊆}
e ::= x | n | b | Set(~e) | Set(?x | b) | Tuple(~e) | Geti(e) | e1 ⊕ e2

where ⊕ ∈ {+, −, <, ∗, /, ∪}
q ::=?x | e

w ::= R(~ein;~qout; qstate) | x.F 7→ q | r Z⇒ � | r Z⇒ (qfrom, qto) | g@r
| w1 && w2 | b | b ⇒ w

Figure 5.4: Type, expression, and assertion syntax of Voila, respectively.

struct S{~t ~F}

Figure 5.5: Structure syntax.

the same approach as Caper [4]: A single region declaration defines the
region interpretation together with the state transition system. Furthermore,
predefined guard algebras are provided. In figure 5.6 the syntax for region
declarations is given. A region definition consists of four components: first,
the guard set declares the guards associated to the region. Moreover, the
guard set defines for each associated guard the guard algebra the guard
belongs to. For simplicity we will assume that guard names are unique in
the Voila program. The predefined guard algebras are for now not important
and will be discussed in section 6.2.7. Second and third, we split the region
interpretation into an interpretation and state definition. The corresponding
region interpretation in the TaDA style is I

(
Rλ

a (. . . , n)
)
, winterp && n =

estate. We will discuss the reason for the separation in section 6.1. Lastly,
the action set defines the state transition system through actions: an action
~t ~x | c | g : α → β (where the action variables ~x can occur in c, α, β, and
g) permits a transition from some a to some b if there exist some ~x such that
a = α, b = β, and c hold and g is owned. We require and check that actions
are transitively closed. Therefore, the complete transition system of a region
type R can be defined as follows:

(a, b) ∈ T?
R(g)⇔ a = b ∨ ∃A ∈ Actions(R). (a, b) ∈ TA(g)

(a, b) ∈ TA(g)⇔ ∃~xA. a = αA ∧ b = βA ∧ cA ∧ gA ≤ g

The symbols gA, ~xA, αA, βA, and cA notate action guard, action variables,
pre- and post-state, and action condition of an action A, respectively. Fur-
thermore, Actions(R), State(R), Interp(R), Formalin(R), Formalout(R),

23

5. Voila Language

region R(~tin ~xint;~tout ~xout)

guards{ ~gdef}
interp{winterp}
state{estate}
actions{ ~action}

gdef ::= k G(~t ~x) where k ∈ {unique, duplicable, divisible}
action ::=

(
~t ~x | b | g : α → β

)
Figure 5.6: Region syntax and an region definition example. In the example the types of the
action variables are omitted.

Guards(R) refer to the region’s action set, state, interpretation, formal in-
and out- arguments, and associated guards, respectively.

Statements A syntax definition for statements is given in 5.7. We distin-
guish between abstract atomic and non-atomic statements: non-atomic state-
ments are the standard sequential composition, if-else, while loop, variable
assignment, and calls to non-atomic methods. Abstract atomic statements
are the TaDA rule statements, heap read and write, and calls to the compare-
and-swap primitive, as well as calls to abstract-atomic methods. Because a
Voila program can have multiple fields, we define a compare-and-swap state-
ment x := CASF(e1, e2, e3) for each field F. The distinction between both
kinds of statements is motivated by the TaDA logic: as mentioned in 2, TaDA
differentiates between atomic and non-atomic triples; because of our separa-
tion, it is unambiguous which triple kind is required for which statement:
atomic triples are used to verify abstract-atomic statements, and non-atomic
triples are used to verify non-atomic statements. In order to get this sep-
aration, we extended the syntax with an explicit atomic{a} statement that
switches from non-atomic statements to atomic ones. The atomic{a} state-
ment is not used in Voila programs because the Voila tool can detect the
required triple transitions on its own. Similarly, we added footnotes to calls
to indicate whether the callee is atomic or non-atomic. These annotations
are also not required in a real Voila program.

Methods Similar to statements, we distinguish between abstract atomic
and non-atomic methods. Again, the differentiation is motivated by TaDA’s
separation of atomic and non-atomic triples. The method syntax is given
in figure 5.8. Both kinds of methods have the standard pre- and postcondi-
tion clauses. In contrast to non-atomic methods, abstract atomic methods

24

5.2. Voila Syntax

h ::= h1; h2 | if(b) {h1} else {h2} | while(b) invariant w {h}
| x := e | ~x := MH(~e) | atomic{a}

a ::= use atomic using R(~ein) with g {a} | make atomic using R(~ein) with g {h}
| update region using R(~ein) {a} | open region using R(~ein) {a}
| x := y.F | x.F := e | x := CASF(e1, e2, e3) | ~x := MA(~e)

Figure 5.7: Statement syntax; we distinguish between abstract atomic statements and non-
atomic statements. As common for deductive verification techniques, while statements are
extended with an invariant that holds before and after each loop iteration in which the loop
condition is satisfied.

have an additional interference clause ?y in eset on R(~ein) that specifies, for
a specific region instance R(~ein), an upper-bound on the interference caused
by the environment. The interference upper-bound is given in the form of
the expression eset that specifies the set of all values the environment may
change the region state into. Interference clauses, as the name suggests,
correspond to the TaDA interference rely-guarantee which is specified by
the variables and their respective domains bound by the pseudo-quantifier
∀\ . We allow the variable y bound in the interference clause to occur inside

the set definition. This is useful to model the absence of interference: for
example, the clause ?y in Set(y) on ECounter(~ein) declares that the environ-
ment is allowed to change the state only to itself, which is equivalent to no
interference occurring at all.

Recall that a TaDA method specification for abstract atomic methods is of
the form Γ; λ;A ` ∀\ ~x ∈ ~X. 〈 P(~x,~z) 〉 f (~z) returns (~r) 〈 Q(~x,~z, r) 〉. As al-
ready discussed, the pre- and postcondition as well as the interference rely-
guarantee is specified by the requires, ensures, and interference
clause, respectively. The function environment is implicitly defined by the
set of methods contained in a Voila program. The level λ and the atomic-
ity context A are not specified explicitly by additional clauses, but instead
through the precondition of the method. The method level is defined as the
highest level occurring in wpre plus one. The atomicity context of a method
is then any mapping that is not defined on a region with a level lower than
the method level. More formally, for a precondition wpre the method level λ
as well as the atomicity context A is defined as follows:

λ := 1 + max Levels(wpre)

A ∈ { M | ∀r ∈ dom(M). level associated to r is ≥ λ }

The function Levels(·) extracts region levels from an assertion, i.e. it is de-
fined as Levels(R(~ein)) = {lvl(~ein)} where lvl(·) returns the level from an

25

5. Voila Language

abstract atomic procedure M(~tin ~xin) returns (~tout ~xout)
interference ?y in eset on R(~ein)
requires wpre

ensures wpost

{~tvar ~tvar; abody}

procedure M(~tin ~xin) returns (~tout ~xout)
requires wpre

ensures wpost

{~tvar ~tvar; hbody}

Figure 5.8: Method syntax: we distinguish between abstract atomic and non-atomic methods.
Abstract atomic methods can specify arbitrary many interference clauses.

argument sequence. Otherwise levels are aggregated. In Voila a verified
method holds for all possible atomicity contexts that satisfy the aforemen-
tioned constraint. The method level is defined that way because the only
constraint on judgment levels enforced by TaDA rules is that a judgment
level has to be larger than the level of a used region. Similarly for the atom-
icity context, where the definition guarantees that no region occurring in the
precondition has an entry in the atomicity context of the method. The func-
tions Pre(M), Post(M), Inter(M), Formalin(M), and Formalout(M) refer
to the method’s pre- and postcondition, interference clause, and formal in-
and out-arguments, respectively.

Well-Definedness A Voila program has several well-definedness conditions:
first, regarding stability, region interpretations, loop invariants, as well as
method pre- and postconditions are required to be stable. This requirement
comes directly from TaDA. Furthermore, the transition system defined be
the action set of each region has to be transitively closed, i.e. for some states
a, b, c, some guard g, and some actions A1 and A2, if (a, b) ∈ TA1(g) and
(b, c) ∈ TA2(g) hold, then there has to be a guard A3 with (a, c) ∈ TA3(g).
As a consequence, our definition of the state transition system T?

R(g) is
sound. Variables that are bound by the binding operator ? are not allowed
to occur before they are bound. Lastly, all expressions have to be well-typed
and all variables have to be properly declared. All well-definedness condi-
tions can be checked by the Voila verifier.

26

Chapter 6

Viper Encoding

As seen in section 5.2, a Voila program consists of structure, region, and
method declarations. A Voila program is correct if it is well-defined and if
for each contained method the implementation satisfies its specification. We
have developed the Voila verifier to decide whether or not a Voila program
is correct. Moreover, if the program is incorrect the tool tries to return a
useful error message. The verification approach taken by the Voila verifier
goes as follows: the source Voila program is encoded to the Viper verifica-
tion language. One of the Viper verifiers then verifies the generated Viper
program. The Voila verifier returns a verification success if the Viper verifier
successfully runs on the generated Program. Otherwise, if the Viper veri-
fier does not run successfully, i.e. the generated Viper program is incorrect,
the Viper error message is translated back to a Voila error message. In this
chapter, we first introduce the basic encoding techniques showcased on the
addEven method. Afterwards, we show the complete encoding.

6.1 Verification Approach

In figure 6.1 we give the encoding of the cell structure, as well as part of
the encoding of the region. For the cell structure, a single field of type int
is generated. More interesting are the predicate and the heap-dependent
function generated for the ECounter region declaration. The region inter-
pretation, in this case the points-to predicate x.val 7→ ?s as well as the
invariant even(s), is encoded as the ECounter interp predicate. In the
encoding permission to the predicate R interp(a, λ,~e) correspond to the
knowledge of the existence of the region instance Rλ

a (~e). The state definition
of ECounter, i.e. the value of the x.val field being the state of the region,
is encoded by the ECounter state heap-dependent function.

Next, is the encoding of the addEven method given in figure 6.2. The pre-
and postcondition of the Voila method are directly encoded into the pre- and

27

6. Viper Encoding

field val: Int

predicate ECounter interp(r: Ref, lvl: Int, x: Ref)
{ x.val 7→ ?s && even(s) }

function ECounter state(: Ref, lvl: Int, x: Ref): Int
requires acc(ECounter interp(r, lvl, x))

{ unfolding acc(ECounter interp(r, lvl, x) in x.val }

Figure 6.1: Encoding of the cell structure as well as the encoding of the interpretation and
state clause of the ECounter region declaration.

postconditions of the generated Viper method: the previously introduced
ECounter interp(r,lvl,x) asserts the existence of an ECounter region
instance, and ECounter state(r,lvl,x) asserts constrains on the state of
the region instance. Because levels are encoded using integer, the pre- and
postcondition also contain lvl >= 0. The held G guard is encoded as held
permission to an abstract predicate with the same name. The interference
clause of the Voila method is encoded inside of the Viper method body: the
for ECounter(r,lvl,x) specified interference set Nat is assumed to be
the value of ECounter ictxt(r,lvl,x). In general, the abstract function
R ictxt is used to encode the Voila interference rely-guarantees. We refer
to the set of values in R ictxt also as the interference context, i.e. the interfer-
ence rely-guarantee on the Viper level. The abstract function has the abstract
predicate ECounter ifp as its footprint, hence permission to that predicate
is inhaled before the function is used. In the encoding we inhale the permis-
sion to ECounter ifp for all region instances because in Viper this code
has a better performance than inhaling the permission only if permission
to ECounter interp is held. Lastly, the level of the method is stored in
the variable level. At the beginning of the Viper method body level is
assumed to be larger than the region level lvl occurring in the Voila pre-
condition because, as defined in section 5.2, the level of a Voila method is
one plus the highest region level from the precondition. After the initializa-
tion of the interference context and the level, the declared Voila variables are
declared in Viper and the encoding of the Voila addEven method body is
generated.

A sketch of the addEven body encoding is given in figure 6.3. The encod-
ing of the assignment as well as the encoding of the compare-and-swap
call are straightforward. For the while loop, the invariant and the loop
condition are encoded. Furthermore, some initialization code is generated
inside the while body. Each Voila rule application is split into a prelude
and postlude. For now, we do not show explicitly how the inferred atomic
statements are encoded. As mentioned before, some Voila assertions have

28

6.1. Verification Approach

predicate ECounter ifp(r: Ref, lvl: Int, x: Ref)

function ECounter ictxt(r: Ref, lvl: Int, x: Ref): Set[Int]
requires acc(ECounter ifp(r,lvl,x))

predicate G(r: Ref)

method addEven(r: Ref, lvl: Int, x: Ref)
requires acc(ECounter interp(r,lvl,x)) && acc(G(r))
requires lvl >= 0
ensures acc(ECounter interp(r,lvl,x)) && acc(G(r))
ensures lvl >= 0
ensures ECounter state(r,lvl,x) ==

old(ECounter state(r,lvl,x)) + 2
{
inhale forall r: Ref, lvl: Int, x: Ref ::

acc(ECounter ifp(r,lvl,x))
assume ECounter ictxt(r,lvl,x) == Nat

var level: Int
assume level > lvl

var z: Int
var b: Bool
// encoding of Voila addEven method body

}

Figure 6.2: Encoding of the addEven method without the method body.

to be stable. Analogously, the knowledge of the verifier, in other words, the set
of all assertions that are derivable at some position in the encoding, has to
be stabilized as well. Otherwise, the verifier could prove unsound proper-
ties, such as the value of x.val at the compare-and-swap call being always
equal to z, which is false because the environment might change the field
value in between. Therefore, in the encoding, code to stabilize the verifier
knowledge is generated after the open region and update region application.
In the rest of this section, we show how different components of a TaDA
proof appear in the Voila encoding.

Level Checks In the method encoding of addEven given in figure 6.2, we
saw how the method level is initialized. Afterwards in the method body,
the level variable is used as the level of the current judgment, i.e. as the
level with which the current atomic or non-atomic triple is proven. In figure

29

6. Viper Encoding

// make atomic pre
do
invariant // encoded invariant

{
// while pre
// open region pre
z := x.val
// open region post
// stabilize verifier knowledge
// update region pre
b := CAS_val(x, z, z+2)
// update region post
// stabilize verifier knowledge

} while (b);
// make atomic post

Figure 6.3: Encoding sketch of the addEven body.

6.4 we extended the previously shown encoding sketch with the generated
checks on the judgment level. As mentioned in 2, rule applications that
open a region require that the judgment level is larger than the opened
region level. Furthermore, when the region is opened, the judgment level
is set to the used region level. Corresponding checks and assignments are
generated in the example for open region and update region. The variable
store level is used to temporarily store the value of level so that the
judgment level can be restored after the region is closed again.

Atomicity Context Recall that the atomicity context is another part of a
TaDA judgment. The atomicity context is only extended by MakeAtomic,
and loses the added entry at the use of UpdateRegion. Figure 6.5 shows the
proof sketch extended with atomicity context checks. In the prelude of the
make atomic statement, the atomicity context for the used region, in this case,
the ECounter instance, is first checked to not already be defined and is then
stored. Similarly to the interference context, the atomicity context is encoded
trough an abstract function R actxt. However, we do not encode the atom-
icity context as a mapping, but instead encode the domain of each mapping
with R actxt. We refer to those encoded domains also as rely context. For
our example the rely context of the region instance is stored by assuming it
to be the value of ECounter actxt(r,lvl,x). Again, the abstract function
has a single abstract predicate ECounter afp as its footprint. Therefore, be-
fore using the function the permission to the predicate has to be inhaled first.
The check that the atomicity context was not defined beforehand is done by
asserting that no permission to the ECounter afp(r,lvl,x) is held. After-

30

6.1. Verification Approach

// make atomic pre
do
invariant // encoded invariant

{
// while pre
// open region pre
assert level > lvl
store_level := level
level := lvl
z := x.val
// open region post
level := store_level
// stabilize verifier knowledge
// update region pre
assert level > lvl
store_level := level
level := lvl
b := CAS_val(x, z, z+2)
// update region post
level := store_level
// stabilize verifier knowledge

} while (b);
// make atomic post

Figure 6.4: Encoding sketch of the addEven body with level checks included.

wards, in the postlude of the make atomic statement, the atomicity context
is brought back to its former state by exhaling the predicate permission. In
accordance to the aforementioned rules, the inverse, i.e. first exhaling, then
inhaling the permission to the predicate, is done at the update region state-
ment. Inside of the while-loop, the knowledge of the verifier regarding the
rely context is framed inside the loop from before the loop.

Guards and Tracking Resources As shown in the encoding of the addEven
specification, guards are encoded as permissions to abstract predicates. Not
yet introduced is the encoding of tracking resources: for the diamond re-
source a field diamond is generated, and for the transition resource fields
from and to are generated. In general, because the type of the from and
to fields depend on the region state type, versions of both transition re-
source fields are generated for each declared region. Figure 6.6 shows the
proof sketch extended with guard checks and tracking resources. In our ex-
ample the make atomic statement is the only statement that enforces checks
on guards: first, before make atomic the ECounter guard specified in the

31

6. Viper Encoding

predicate ECounter afp(r: Ref, lvl: Int, x: Ref)

function ECounter actxt(r: Ref, lvl: Int, x: Ref): Set[Int]
requires acc(ECounter afp(r,lvl,x))

...
// make atomic pre
assert perm(ECounter afp(r,lvl,x)) == none
inhale acc(ECounter afp(r,lvl,x))
assume ECounter actxt(r,lvl,x) == ECounter ictxt(r,lvl,x)
label preLoop
do
invariant // encoded invariant

{
inhale acc(ECounter afp(r,lvl,x))
assume ECounter actxt(r,lvl,x) ==

old[preLoop](ECounter actxt(r,lvl,x))
// open region pre
z := x.val
// open region post
// stabilize verifier knowledge
// update region pre
exhale acc(ECounter afp(r,lvl,x))
b := CAS_val(x, z, z+2)
// update region post
inhale acc(ECounter afp(r,lvl,x))
// stabilize verifier knowledge

} while (b);
// make atomic post
exhale acc(ECounter afp(r,lvl,x))

Figure 6.5: Encoding sketch of the addEven body with the atomicity context encoding included.

32

6.2. Encoding

with clause has to be owned. Second, the state transition performed in the
make atomic body has to be permitted by the specified guard. Recall that
in MakeAtomic the performed state transition is tracked by the transition
resource, hence the transition on ECounter is permitted if r.to is even as
well as larger than r.from. Besides the guard checks, in the make atomic
prelude, the guard is exhaled and replaced with the diamond resource. In
the postlude, the new region state is set as the target of the transition re-
source, the transition resource is removed, and finally, the guard is inhaled
again. With the encoding of the transition resources, we can now encode the
invariant of the while loop straightforwardly. Lastly, the update region
encoding requires the diamond resource being held in its prelude, and in
the postlude either inhales the transition resources and assigns them accord-
ingly if a state change occurred, or otherwise inhales the diamond resource
again.

6.2 Encoding

In the encoding, we use sub-routines, written in italics, generating Viper
code. Expressions and statements are encoded with an encoding context
ϑ. The context maps variables to viper expressions. We write ϑ0 for the
initial context that respects all bindings. More formally, for each expression
e occurring in the encoding at a Viper label l the initial context is defined as
follows:

ϑ0 (x) =

old[l](R state(~ein)), if R(~ein;~qout; ?x) = e
old[l](R state(~ein)), if (?x in eset on R(~ein)) = e
old[l](R out i(~ein)), if R(~ein; q1, . . . , qi−1, ?x, . . . ; qstate) = e
old[l](r.R from), if (r Z⇒ (?x, qto)) = e

and r belongs to R
old[l](r.R to), if

(
r Z⇒ (q f rom, ?x)

)
= e

and r belongs to R
old[l](y.F), if (y.F 7→ ?x) = e
x, otherwise

In the real implementation we simply assign the corresponding function
value to the variable when it is bound. This trivially, guarantees that heap-
dependent expressions are evaluated in the same state in which they are
bound. The R out i function returns the i-th region out-argument for re-
gion type R (See section 5.2). As a reminder, we make the simplifying as-
sumption that each binding variable is globally unique, i.e. it is only bound
once. Otherwise, the context has to be initialized differently for each scope.
Furthermore, to identify which region type belongs to which region identi-
fier, the Voila tool tracks the region identifier used inside region assertions.

33

6. Viper Encoding

field diamond: Bool
field from: Int
field to: Int

// make atomic pre
exhale acc(G(r))
inhale acc(r.diamond)
do
invariant acc(ECounter interp(r,lvl,x))
invariant b ? acc(r.diamond) :
acc(r.from) && r.from == ECounter state(r,lvl,x) &&
acc(r.to) && r.to == ECounter state(r,lvl,x) + a

{
// while pre
// open region pre
z := x.val
// open region post
// stabilize verifier knowledge
// update region pre
exhale acc(r.diamond)
lable preUpdate
b := CAS_val(x, z, z+2)
// update region post
if (ECounter state(r,lvl,x) ==

old[preUpdate](ECounter state(r,lvl,x))) {
inhale acc(r.diamond)

} else {
inhale acc(r.from) && acc(r.to)
r.from := old[preUpdate](ECounter state(r,lvl,x))
r.to := ECounter state(r,lvl,x)

}
// stabilize verifier knowledge

} while (b);
// make atomic post
assert r.from < r.to && even(r.to)
assume ECounter state(r,lvl,x) == r.to
exhale acc(r.from) && acc(r.to)
inhale acc(G(r))

Figure 6.6: Encoding sketch of the addEven body with guard checks and tracking resources
included.

34

6.2. Encoding

In case the tool cannot resolve a region identifier, an error is returned. Lastly,
in the encoding we treat Voila variables and Viper variables synonymously.
This property is sometimes exploited by using Viper variables inside Voila
expressions.

Intuitively, to guarantee soundness of our verification approach, the encod-
ing satisfies that for each Voila statement s, if Viper verifies on the encoding
of s for some encoded pre- and postcondition JPKϑ0, JQKϑ0, then the same
non-encoded pre- and postcondition P, Q are a correct specification for s in
Voila. The encoding satisfies a similar property for method declarations. For
a more detailed soundness discussion, see chapter 7.

Regarding terminology, we refer to the assertions that would be pre- and
postcondition of a Viper judgment for an encoded statement as the pre- and
postcondition of the encoding.

6.2.1 Declarations

The encoding of structures and regions given in figure 6.7 is a straightfor-
ward generalization of the shown ECounter encoding: for each field de-
clared in a structure, a Viper field declaration is generated. For a region type
R, the interp and state clauses are encoded as predicate R interp and
function R state with return type TR, respectively, where TR is the state
type of R. For all guard declarations k G(~x) an abstract predicate G(r,~x)
is generated where the first argument is the region identifier of a regioned
guard. The guard algebra k does not influence the generated predicate. As
shown in the previous section, to encode the interference rely-guarantee and
atomicity context of a region instance, the function-predicate pairs R ictxt
and R ifp, as well as R actxt and R afp are used. Lastly, the diamond
tracking resource is encoded as a diamond field, and the transition tracking
resource is encoded as the pair of fields R from and R to for each region.
The transition resource fields are generated for each region because they
hold values of the region state type. Another option would be to generate
them for each occurring region state type.

Figure 6.8 shows the encoding of abstract atomic methods. Similar to re-
gions, the method encoding is a straightforward generalization of the shown
addEven encoding: the pre- and postcondition of the Voila method are en-
coded as the pre- and postcondition of the generated Viper method. The
interference clause is encoded inside the Viper method body by first inhal-
ing permissions to R ifp and then storing the interference clauses with
R ictxt. The current judgment level is encoded as the level variable.
Hence, at the beginning, the level is initialized as the method level by as-
suming level to be larger than all region levels occurring in the method
precondition. This level initialization is sound because the exact method
level, i.e. one plus the maximum occurring region level, is included as a

35

6. Viper Encoding

field diamond: Bool

Jstruct S{~t ~F}K
foreach (t F) ∈ (~t ~F):
field F: JtK

end

Jregion R(~tin ~xin; ~tout ~xout){ ~gdef}{winterp}{estate}{ ~action}K
predicate R interp(~xin : J~tinK) { JwinterpKϑ0 }

function R state(~xin : J~tinK): JTRK
requires acc(R interp(~xin))

{ unfolding acc(R interp(~xin)) in JestateKϑ0 }

foreach (ti xi) ∈ (~tout ~xout):
function R out i(~xin : J~tinK): JtiK
requires acc(R interp(~xin))

{ unfolding acc(R interp(~xin)) in JxiKϑ0 }
end

field R from: JTRK
field R to: JTRK

predicate R afp(~xin : J~tinK)

function R actxt(~xin : J~tinK): Set[JTRK]
requires acc(R afp(~xin))

predicate R ifp(~xin : J~tinK)

function R ictxt(~xin : J~tinK): Set[JTRK]
requires acc(R ifp(~xin))

foreach k G(~t ~x) ∈ ~gdef:
predicate G(r : JidK, ~x : J~tK)

end

Figure 6.7: Encoding of structures and regions. Foreach loops are statically expanded in the
translation.

36

6.2. Encoding

Jabstract atomic procedure { ~rely}{wpre}{wpost}{~tvar ~xvar; a}K
method M(~xarg : J~targK) returns (~xret : J~tretK)
requires JwpreKϑ
ensures JwpostKϑ

{
var level: Int
var atomicity_level: Int

foreach l ∈ LEVELS(wpre):
assume level > JlKϑ

end
atomicity_level := level

foreach R(~t ~x) ∈ FORMAL in(REGIONS):
inhale forall ~x : J~tK :: acc(R ifp(~x))

end

foreach (y in eset on R(~earg)) ∈ ~rely:
assume R ictxt(J~eargKϑ) == JesetKϑ &&

R state(J~eargKϑ) in R ictxt(J~eargKϑ)
end

var ~xvar: J~tvarK
JaKϑ

foreach R(~t ~x) ∈ FORMAL in(REGIONS):
exhale forall ~x : J~tK :: acc(R ifp(~x))

end
}

Figure 6.8: Encoding of abstract atomic methods. For non-atomic methods the encoding is the
same, but without inhaling permissions for R ifp and without constraining R ictxt.

potential value of level. The variable atomicity level is used to store
a lower bound of the region levels whose region is in the atomicity context
of the current judgment. As mentioned in section 5.2, in Voila the atomicity
context of a method is any mapping that has no entry for a region with a
level lower than the method level. Hence, a lower bound of the region levels
whose region is in the method atomicity context is the method level. The
encoding for non-atomic methods is equal, except the interference clause is
not present, hence not encoded, i.e. no permissions to R ifp are inhaled
and R ictxt is not constraint.

37

6. Viper Encoding

JidK Ref
JboolK Bool
JintK Int
JfracK Perm
JSK Ref
Jset〈t〉K Set[JtK]
Jtuple〈~t〉K Tuple[J~tK]

JxKϑ ϑ(x)
J?xKϑ ϑ(x)
JnKϑ n
Je1 + e2Kϑ Je1Kϑ + Je2Kϑ
...

Figure 6.9: Encoding of types and expressions.

6.2.2 Types and Expressions

The encoding for types and some of the expressions are given in figure 6.9.
Regarding types, id, bool, int, frac, set types, and tuples types are mapped to
the corresponding primitive types of Viper. Furthermore, structure types are
encoded as the Viper reference type Ref. Regarding expressions, variables
and binders are encoded through the context. The remaining expressions are
encoded straightforwardly since each Voila operation has a corresponding
Viper operation.

For assertions, we only discuss the encoding of the added TaDA assertions
given in figure 6.10. A region assertion R(~ein;~qout; qstate) is encoded as ac-
cess to its interpretation R interp(~ein). Furthermore, conditions similar to
well-formedness checks are generated guaranteeing that the region level is
positive and that the out-arguments as well as the state are equal to their
specified values. Points-to predicates are encoded as access permissions
to the provided field as well as an equality constraint on the value of the
field. The tracking resources are encoded similarly but instead operate on
the fields diamond, R from, and R to.

6.2.3 Non-Atomic Statements

As mentioned in section 5.2, non-atomic triple pre- and postconditions, as
well as preconditions of atomic triples are required to be stable. As a con-
sequence, the encoding of non-atomic statements has to guarantee that the
encoding postcondition is stable as well. As mentioned before, the verifier
knowledge is stabilized by explicitly generating stabilization code which is
done by the stabilize subroutine.

Figure 6.11 shows the encoding of sequential composition, pure assignments,
if-else branches, and while loops. None of these encodings requires stabiliza-
tion because the assigned value of the pure assignment, the if-else condition,
and the while condition, respectively, do not change the knowledge of the
heap. Furthermore, the invariant of the while loop is stable according to the
well-definedness condition shown in 5.2. The encoding of sequential com-

38

6.2. Encoding

JR(~ein;~qout; qstate)Kϑ
acc(R interp(J~einKϑ)) && Jlvl(~ein)Kϑ >= 0 &&
JqstateKϑ == R state(J~einKϑ)
foreach qi ∈ ~qout:
&& JqiKϑ == R out i(J~einKϑ)

end

Jx.F 7→ qKϑ acc(JxKϑ.F) && JxKϑ.F == JqKϑ
Jr Z⇒ �Kϑ acc(JrKϑ.diamond)
Jr Z⇒ (q f rom, qto)Kϑ
acc(JrKϑ.R from) && JrKϑ.R from == Jq f romKϑ &&
acc(JrKϑ.R to) && JrKϑ.R to == JqtoKϑ

where the identifier r belongs to region R

Figure 6.10: Encoding of assertions. lvl(~ein) returns the second entry of ~ein which corresponds
to the region level of the region assertion.

position, pure assignments, and if-else branches is straightforward because
the same statements exist in Viper. For while loops, the knowledge about
the atomicity context has to be framed inside the loop. This framing is per-
formed in two steps: first, inhaling all the permissions to the rely context
footprint R afp that were held before the loop. Second, if permission was
held, then the value of R actxt is constrained to be the same as before.
Regarding the notation, Formalin(Regions) is the set of all regions together
with their respective formal in-arguments. Furthermore, • indicates that
variables or labels are fresh, i.e. do not occur elsewhere in the encoding.

The encoding of non-atomic method calls is given in figure 6.12. Intuitively,
a call to a non-atomic method consists of four steps: first, the current judg-
ment level is checked to be at least the method level. As mentioned in section
5.2, in Voila the method level is equal to the highest occurring level from the
precondition plus 1. Hence, it suffices if the judgment level is larger than
every level from the callee precondition. Second, the atomicity context of the
current judgment has to be the same as one of the callee atomicity contexts.
Recall, the atomicity context of a method is any mapping with no entry for
a region with a level lower than the method level. Hence, the atomicity
context of the current judgment has to guarantee that it does not contain a
region with a level lower than the callee method level. Furthermore, recall
that atomicity level stores a lower bound on the levels of regions in
the atomicity context of the current judgment. Thus, it is enough to check
that atomicity level is larger or equal to the callee method level. Third,
the callee precondition has to hold. Lastly, the postcondition is assumed to
hold. As we will discuss in chapter 7, the TaDA logic requires to stabilize

39

6. Viper Encoding

Jh1; h2Kϑ Jh1Kϑ; Jh2Kϑ
Jx := eKϑ JxKϑ := JeKϑ
Jif(b) {h1} else {h2}Kϑ if(JbKϑ) {Jh1Kϑ} else {Jh2Kϑ}

Jwhile(b) invariant winv {h}Kϑ
label •preLoop
while (JbKϑ) invariant JwinvKϑ {
foreach R(~t ~x) ∈ FORMAL in(REGIONS):
inhale forall ~x : J~tK :: acc[preLoop](R afp(~x))
assume forall ~x : J~tK ::

perm[preLoop](R afp(~x)) > none ==>
R actxt(~x) == old[preLoop](R actxt(~x))

end
JhKϑ

}

Figure 6.11: Encoding of sequential composition, if-else branches, while-loops, and assignments.

J~x := MH(~e)Kϑ call(~x, M, J~eKϑ)

call(~x, M, ~v)
label •preCall
foreach l ∈ LEVELS(PRE(M)):
assert level > JlKϑ′ && atomicity_level > JlKϑ′

end
exhale JPRE(M)Kϑ′

stabilize
havoc(~x)
inhale JPOST(M)Kϑ′′

where (~tin ~yin) = FORMAL in(M) and ϑ′ = ϑ[~yin 7→ ~v]
(~tout ~yout) = FORMALout(M) and ϑ′′ = ϑ′[~yout 7→ ~x]

Figure 6.12: Encoding of calls to non-atomic methods.

assertions that are not in the premise of a method call. This is achieved
by stabilizing in between the precondition exhale and postcondition inhale
because at his point, in a TaDA sense, only the assertions not required by
the call remain. The postcondition of the encoding does not have to be stabi-
lized because, as mention before, method postconditions are stable, and the
separating conjunction of two stable assertions is stable itself.

As mentioned in section 5.2, the statement atomic{a} switches for a from a
non-atomic triple to an atomic triple and switches back afterwards. Recall

40

6.2. Encoding

Jatomic{a}Kϑ
infer-interference-context
JaKϑ

foreach R(~t ~x) ∈ FORMAL in(REGIONS):
exhale forall ~x : J~tK :: acc(R ifp(~x))

end
stabilize

Figure 6.13: Encoding of the switch from non-atomic triples to atomic triples.

that atomic triples in TaDA specify an interference rely-guarantee express-
ing an upper bound on the interference caused by the environment under
which the specification has to hold. The infer-interference-context subroutine
generates Viper code that infers for each region instance an upper bound
on the interference caused by the environment and stores it with R ictxt.
The generated code of the infer-interference-context subroutine is given in sec-
tion 6.2.9. The encoding of the atomic{a} statement is shown in figure 6.13:
first infer-interference-context is called to infer the interference context. Af-
terwards, the interference context is forgotten by exhaling all the footprint
permissions. Finally, because postconditions of atomic statement encodings
do not have to be stable, the stabilize sub-routine is called.

6.2.4 Abstract Atomic Statements

We split the atomic statements into three groups: Basic statements, rule
statements that open and close a region interpretation, and the make atomic
statement. The encoding of the basic statements, namely heap read and
write, compare-and-swap calls, and calls to abstract atomic methods are
given in figure 6.14. Heap read and writes are directly encoded to Viper. For
the compare-and-swap call, a generated compare-and-swap Viper method is
called. Lastly, calls to abstract atomic methods are encoded similar to calls to
non-atomic methods, except an additional check that the interference clauses
of the callee are satisfied. An interference clause is satisfied if the tracked
interference context of a region, i.e. the upper bound on the interference
caused by the environment on a region instance, is contained in the interfer-
ence set specified by the callee interference clause. Intuitively, then the callee
does not have to deal with more interference than the callee is specified to
tolerate.

6.2.5 Inspection Rules

The encoding of all rule statements that open and close a region, namely
use atomic, open region, and update region, is given in figure 6.15. The general
encoding pattern for those rule statements goes as follows: first, we store

41

6. Viper Encoding

Jx.F := eKϑ JxKϑ.F := JeKϑ
Jx := y.FKϑ JxKϑ := JyKϑ.F
Jx := CASF(e1, e2, e3)Kϑ x := CAS_F(Je1Kϑ, Je2Kϑ, Je3Kϑ)

J~x := MA(~e)Kϑ
foreach (?y in eset on R(~ein)) ∈ INTER(M):
assert R ictxt(J~einK)ϑ′ subset JesetKϑ′

end
call(~x, M, J~eKϑ)

where (~tin ~zin) = FORMAL in(M) and ϑ′ = ϑ[~zin 7→ J~eKϑ]

Figure 6.14: Encoding of heap mutations, heap lookups, and calls to abstract-atomic methods.

all the arguments of the region instance and guard instance specified by
the using and with clause, respectively. For guards, Args(g) returns a
sequence ~e of the guard arguments. Moreover, a sequence of arguments ~e
can be applied to a guard with g(~e) where the existing guard arguments of
g are replaced with the new arguments ~e. The region and guard arguments
are stored to trivially guarantee that the region and guard instance is always
the same. We store the arguments by writing their values to fresh variables,
annotated with •. Next, if required, some checks before opening the region
are generated. Then, the region is opened and closed with a call to the inspect
subroutine. Lastly, checks after closing the region are generated. We first
discuss the code generated by inspect and then go through the additional
checks for each rule statement.

The inspect subroutine handles the following tasks: first, the current judg-
ment level is checked to be larger than the region level of the opened region.
Afterwards, the judgment level is set to the region level. Next, the region is
opened by unfolding the interpretation predicate R interp. Furthermore,
the R state function for the opened region is havoced to prevent Viper
from framing information about the region state around the fold and un-
fold. The footnote of the havoc-state subroutine indicates the Viper label
relative to which the region state is havoced. The label now notates the cur-
rent Viper label. The link-interference-context subroutine infers and stores the
interference contexts of the region instances inside the region interpretation.
Lastly, after the body of the statement rule is emitted, the region is closed
again by folding the interpretation predicate. Furthermore, the judgment
level is restored.

Now we go through the additional checks for each rule statement. The
use atomic statement requires in the prelude that the guard specified in
the with clause is held and that the modified region instance is not con-

42

6.2. Encoding

tained in the atomicity context of the current judgment. The access func-
tion rid(·) returns the region identifier of a region argument sequence. In
the postlude, the action-permitted subroutines is called to check that the per-
formed transition of the region state is permitted by the specified guard. For
the open region statement, we only need to check at the end that the region
state was not changed. Lastly, the update region statement: in the prelude,
the diamond resource is checked to be held and removed. Furthermore, the
region instance has to been added to the rely context by make atomic and
the entry is removed. Both those tasks are performed by exhaling the per-
mission to R afp. In the postlude, the if condition checks whether or not
the region state was changed. In case the state was changed the encoding
of the transition resource is inhaled and constrained to be the old and new
region state accordingly. Otherwise, the encoded diamond resource is in-
haled again. Lastly, the rely context entry that was removed in the prelude
is restored again.

Regarding the encoding of update region, the transition resource is only ob-
tained if a change on the region state occurred. This encoding is weaker
than the UpdateRegion rule in TaDA because there the transition resource
can also be obtained if no state change occurred. It is difficult to encode a
stronger version because Viper does not support angelic choice of permis-
sions, i.e. we cannot inhale both tracking resources conditioned on proper-
ties we do not know yet. Hence, we have to choose a condition deciding
when which resource is inhaled which in our case is whether or not the old
state is equal to the new region state.

6.2.6 Make-Atomic Rule

Recall the MakeAtomic rule given again in 6.16 and its attributes: first, in
the precondition of the premise, the specified held guard is replaced with
a diamond resource and in the postcondition the guard is returned back.
Second, the atomicity context is extended with an entry for the modified
region. Third, the atomic triple is changed to a non-atomic triple. Fourth,
the region state change tracked by the transition resource has to be permitted
by the specified guard. Lastly, the rule has strict constraints on the form of
the pre- and postcondition.

The same behavior is encoded in the encoding of the make atomic statement
shown in figure 6.17: first, the guard is checked and removed in the be-
ginning by exhaling the guard. In return the diamond resource is inhaled.
Then in the postlude, the specified guard is inhaled again. Second, the rely
context is extended by inhaling the permission to R afp and assuming the
value of R actxt to be the same as the interference context stored with
R ictxt. Furthermore, the atomicity level variable that stores a lower
bound on the region levels whose regions are in the atomicity context of

43

6. Viper Encoding

Juse atomic using R(~e) with g {a}Kϑ
var •~rz := J~eKϑ
var •~gz := JARGS(g)Kϑ
label •preUse
assert Jg(~gz)@rid(~rz)Kϑ
assert perm(R afp(~rz)) == none
inspect(R interp(~rz), JaKϑ)
action-permitted(

R, g(~gz), old[preUse](R state(~rz)), R state(~rz)
)

Jopen region using R(~e) {a}Kϑ
var •~rz := J~eKϑ
label •preOpen
inspect(R interp(~rz), JaKϑ)
assert R state(~rz) == old[preOpen](R state(~rz))

Jupdate region using R(~e) {a}Kϑ
var •~rz := J~eKϑ
label •preUpdate
exhale acc(rid(~rz).diamond)
exhale acc(R afp(~rz))
inspect(R interp(~rz), JaKϑ)
if (R state(~rz) != old[preOpen](R state(~rz))) {
inhale acc(rid(~rz).from) && acc(rid(~rz).to)
rid(~rz).from := old[preUpdate](R state(~rz))
rid(~rz).to := R state(~rz)

} else {
inhale acc(rid(~rz).diamond)

}
inhale acc(R afp(~rz))
assume R actxt(~rz) == old[preUpdate](R actxt(~rz))

inspect(R interp(r, lvl,~v), c)
assert level > lvl
var •level store := level
level := lvl
unfold R interp(r, lvl,~v)
havoc-statenow(R state(r, lvl,~v))
link-interference-context(R ictxt(r, lvl,~v))
c
fold R interp(r, lvl,~v)
level := level store

Figure 6.15: Encoding of use atomic, open region, and update region.

44

6.2. Encoding

a /∈ A {(s, y) | s /∈ S, y ∈ Y} ⊆ T?
R(G)

Γ; λ; a : s ∈ S Y,A `
{∃s ∈ S. Rλ

a (~e, s) ∗ a Z⇒ � }
C

{∃s ∈ S. ∃y ∈ Y. a Z⇒ (s, y)}
MakeAtomic

Γ; λ;A ` ∀\ s ∈ S. 〈 Rλ
a (~e, s) ∗ [G]a 〉 C 〈 ∃y ∈ Y. Rλ

a (~e, y) ∗ [G]a 〉

Figure 6.16: The MakeAtomic TaDA rule.

the current judgment is updated accordingly. In the postlude, the atomicity
context as well as the value of atomicity level is restored. Third, the
triple is changed to a non-atomic triple by exhaling all the permissions to
R ifp, i.e. forgetting the interference context. In the postlude, the triple is
changed back by inhaling the permissions again. Fourth, the region state
change tracked by the transition resource is checked to be permitted by
the specified guard through a call to the action-permitted subroutine in the
postlude. Furthermore, the region state is constrained according to the tran-
sition resource. Afterwards, the transition resource is exhaled. Lastly, to
satisfy the strict constraints on the form of the pre- and postcondition, ex-
plicit frames are inserted where necessary by calling the explicit-frame-pre
and explicit-frame-post subroutines.

6.2.7 Guards and Actions

So far we have not discussed the different predefined guard algebras of
Voila. The syntax for guard expressions is shown in figure 6.18. We differ-
entiate between primitive guards and normal guards. The primitive guard
expressions Gu(~e) and Gd(~e) notate unique and duplicable guards, respec-
tively, as defined in section 2. A set of each those guards is written as Gi〈e〉
for some i ∈ {u, d} where e is the set of all guard arguments, i.e. Gi〈e〉
is the same as ∀~x ∈ e. Gi(~x). Next, G[p] is a divisible guard defined by
G[p1] • G[p2] = G[p1 + p2] where p1 ≥ 0, p2 ≥ 0, and p1 + p2 ≤ 1 has
to hold. We refer to G[p] as a p fraction of G. Lastly, the product guard
g1 && g2 combines two guards and is defined by (g1 && g2) • (g′1 && g′2) =
(g1 • g′1) && (g2 • g′2). For simplicity we assume that all guard expressions
are normalized, i.e. under the product operator && guards are aggregated
and ordered in a global order: for example A[p1] && Bu(x) && Bu〈e〉 && A[p2]
is normalized to A[p1 + p2] && Bu〈e union Set(x)〉.

Figure 6.19 shows the encoding of guards. We have two different kinds
of encoded assertions: first, Jg@rKϑ asserts that the regioned guard is held.
The encoding of those assertions for each guard type is straightforward: a
held guard is encoded as held permission to an abstract guard predicate.
For divisible guards, the permission amount corresponds to the permission

45

6. Viper Encoding

Jmake atomic using R(~e) with g {a}Kϑ
var •~rz := J~eKϑ
var •~gz := JARGS(g)Kϑ

exhale Jg(•~gz)@rid(~rz)Kϑ
exhale acc(R interp(~rz))

label •preFrame
explicit-frame-pre

var •atomicity level store := atomicity_level
atomicity_level := min(atomicity_level, lvl(~rz))

assert perm(R afp(~rz)) == none
inhale acc(R afp(~rz)) && R actxt(~rz) == R ictxt(~rz)
inhale acc(rid(~rz).diamond)
inhale acc(R interp(~rz)) && R state(~rz) in R actxt(~rz)

foreach R(~t ~x) ∈ FORMAL in(REGIONS):
exhale forall ~x : J~tK :: acc(R ifp(~x))

end

JaKϑ

action-permitted(R, g(~gz), rid(~rz).from, rid(~rz).to)

foreach R(~t ~x) ∈ FORMAL in(REGIONS):
inhale forall ~x : J~tK :: acc(R ifp(~x))

end

explicit-frame-pre
inhale acc(R interp(~rz))
inhale R state(~rz) == rid(~rz).to
exhale acc(rid(~rz).from) && acc(rid(~rz).to)
inhale Jg(~gz)@rid(~rz)Kϑ
exhale acc(R afp(~rz))

atomicity_level := atomicity level store

explicit-frame-postpreFrame

Figure 6.17: Encoding of the make atomic statement.

46

6.2. Encoding

pg ::= Gi(~e) | Gi〈e〉 | G[p] where i ∈ {u, d}
g ::= pg | g1 && g2

Figure 6.18: Guard syntax. We differentiate between primitive guards pg and guards g.

JGi(~e)@rKϑ acc(G(JrKϑ, J~eKϑ))
JG[p]@rKϑ acc(G(JrKϑ), JpKϑ)
JGi〈e〉@rKϑ forall ~x: TG :: ~x in JeKϑ ==> JGi(~x)@rKϑ
J(g1 && g2)@rKϑ Jg1@rKϑ && Jg2@rKϑ

JGd(~e)@rKϑ true
JGu(~e)@rKϑ perm(G(JrKϑ, J~eKϑ)) == none
JG[p]@rKϑ perm(G(JrKϑ)) <= 1 - JpKϑ

JGi〈e〉@rKϑ forall ~x: TG :: ~x in JeKϑ ==> JGi(~x)@rKϑ

J(g1 && g2)@rKϑ Jg1@rKϑ && Jg2@rKϑ

Figure 6.19: Encoding of regioned guard expressions.

argument of the Voila guard. The type of the guard arguments for a guard G
is notated as TG. Second, Jg@rKϑ asserts that the environment might hold the
regioned guard. Duplicable guards can always be held by the environment.
On the other side, unique guards can only be held by the environment if the
guard is not held by oneself. Similar for divisible guards, the environment
can only hold a p fraction of a guard if oneself does not hold more than a
1− p fraction of the same guard.

For the encoding of the make atomic and use atomic statements we used
action-permitted(R, g, a, b) to check whether or not the transition on re-
gion type R from a to b is permitted by guard g. The code generated by that
subroutine is given in figure 6.20. As mentioned in section 5.2, a transition
from a to b is permitted by g if the following condition holds:

a = b ∨ ∃A ∈ Actions(R). (a, b) ∈ TA(g)
where (a, b) ∈ TA(g)⇔ ∃~xA. a = αA ∧ b = βA ∧ cA ∧ gA ≤ g

The action-permitted subroutine generates this condition as an assert directly
where an expression checking g′ ≤ g is generated by less-guard(g′, g). The
code generated by the sub-routine less-guard follows directly from the defi-
nition of the respective guard algebras: for a product of guards, less-guard is
split into calls to less-guard on primitive guards where the operands belong
to the same guard type. For unique and duplicable guards, a guards G is
less than or equal to another guard G′ if the set of guard arguments for G is

47

6. Viper Encoding

action-permitted(R, g, v f rom, vto)
assert v f rom == vto

foreach
(
~t ~x | b | g′ : α → β

)
∈ ACTIONS(R):

|| exists ~x: J~tK :: JαKϑ0 == v f rom && JβKϑ0 == vto &&
JbKϑ0 && less-guard(g′, g)

end

less-guard(pgreq && greq, pgown && gown)
less-guard(pgreq, pgown) && less-guard(greq, gown)

where pgreq and pgown belong to the same guard types

less-guard(pgreq && greq, pgown && gown)
less-guard(pgreq && greq, gown)

where pgreq and pgown belong to different guard types

less-guard(pgreq && greq, pgown) false

where pgreq and pgown belong to different guard types

less-guard(Gi(~ereq), Gi(~eown)) J~ereqKϑ0 == J~eownKϑ0
less-guard(Gi[preq], Gi[pown]) JpreqKϑ0 <= JpownKϑ0
less-guard(Gi(~ereq), Gi〈~eown〉) J~ereqKϑ0 in J~eownKϑ0
less-guard(Gi〈~ereq〉, Gi(~eown)) J~ereqKϑ0 subset Set(J~eownKϑ0)
less-guard(Gi〈~ereq〉, Gi〈~eown〉) J~ereqKϑ0 subset J~eownKϑ0

less-guard(pgreq, pgown) false

where pgreq and pgown belong to different guard types

Figure 6.20: Encoding of action checks.

contained in the set of guard arguments for G′. Lastly, for divisible guards,
a guard is less or equal if its argument is less or equal.

6.2.8 Stabilization

Recall the TaDA stability definition shown again in figure 6.21. As men-
tioned in section 2, intuitively, an assertion is stable if the assertion still
holds even if the environment performs any allowed state transition. Hence,
in our encoding the verifier knowledge can be stabilized by encoding the
environment performing potentially any possible state transition. The corre-
sponding Viper code generated by the subroutine stabilize is shown in figure
6.22. The basic layout of the code is that for every region type, first the
state of all region instances is havoced, then, for each region instance, the

48

6.2. Encoding

ϕ � P

ϕ � tλ
a (~e, s)

ϕ ∼ [g]a
(s, s′) ∈ T?

t (g)
ϕ � a Z⇒ �⇒ s′ ∈ dom(A(a)

⇒ P ∼ tλ

a (~e, s′)

Figure 6.21: Formal definition of stability of an assertion P. Regarding the notation, ϕ � Q is
defined as ϕ ∈ JQK, ϕ ∼ Q is defined as ∃ϕ′ ∈ JQK. ϕ • ϕ′, and Q1 ∼ Q2 is defined accordingly
where J·K is the assertion semantics of TaDA.

new state is constrained so that only the stable knowledge about the state
remains. Next, we discuss in more detail how the new state of each region
instance is constrained.

First of all, we can only constrain the new state of a region instance if we are
know of the region instance’s existence in the first place. The corresponding
condition in the encoding is that permission to R interp is held. If the envi-
ronment has performed potentially any state transition, then from the stabil-
ity definition we still know two properties: first, if the diamond resource is
held, then the environment can only change the state to a value from the do-
main of the atomicity context entry. In the encoding, this corresponds to the
new state being in the rely context R actxt if permission to the diamond
field is held. Second, the new state must be reachable from the old state
with an action that the environment is permitted to perform. Recall that the
environment is permitted to perform an action (~t ~x | c | g : α → β)
if there exists ~x such that the new state is equal to α, the old state is equal
to β, the condition c holds, and the environment might hold guard g for the
respective region instance. The trivial action where the new state is equal
to the old state is always permitted. The encoding expresses this property
straightforwardly where, as mentioned before, the check whether or not the
environment may hold a guard g for a region instance with identifier r is
generated by Jg@rKϑ0.

6.2.9 Interference Inference

As shown in section 6.2.3, the encoding of the atomic{a} statement uses
the infer-interference-context subroutine to infer an upper bound on the inter-
ference caused by the environment. Inferring this upper bound is closely
related to our encoding of stabilization because both deal with the set of
all allowed state transitions performed by the environment. The difference
from the stabilization encoding is that all possible new states are stored in
a set, more specifically R ictxt which represents the interference context.

49

6. Viper Encoding

havoc-state-alll(R state)
exhale forall ~x: J~tK :: acc[l](R interp(~x))
inhale forall ~x: J~tK :: acc[l](R interp(~x))

where (~t ~x) = FORMAL in(R)

havoc-statel(R state(~v))
exhale acc[l](R interp(~v))
inhale acc[l](R interp(~v))

stabilize
label •preStabilize
foreach R(~t ~x) ∈ FORMAL in(REGIONS):
havoc-state-allpreStabilize(R state)
assume forall ~x: J~tK ::
none < perm[l](R interp(~x)) ==>
(
none < perm(rid(~x).diamond) ==>
R state(~x) in R actxt(~x)
) && (
R state(~x) == old[l](R state(~x))
foreach

(
~t ~x | b | g : α → β

)
∈ ACTIONS(R):

|| exists ~x: J~tK :: JαKϑ0 == old[l](R state(~x)) &&
JβKϑ0 == R state(~x) && JbKϑ0 && Jg@rid(~x)Kϑ0

end
)

end

Figure 6.22: Encoding of state stabilization.

Figure 6.23 shows the encoding of infer-interference-context: first, the permis-
sions to R ifp are inhaled. Next, the stabilization constraint from figure
6.22 is emitted where the new state R state is replaces with a variable m
that is contained in R ictxt if and only if the modified stabilization con-
straint holds. Afterwards, every state is havoced and assumed to be in its
corresponding interference context.

Besides inferring the interference context in atomic{a}, we also need to in-
fer the interference context of regions that come from an opened region
interpretation. Let the state of a region be expressed as ϕ(~s) where the
arguments ~s are the states of all regions occurring in the opened region
interpretation. Then, because we know ϕ(m1, . . . , mn) ∈ S′ where S′ is the
interference context of the opened region, the interference contexts S1, . . . , Sn

50

6.2. Encoding

infer-interference-context
label •preInfer
foreach R(~t ~x) ∈ FORMAL in(REGIONS):
inhale forall ~x : J~tK :: acc(R ifp(~x))
assume forall m: JTRK, ~x: J~tK ::
none < perm[l](R interp(~x)) ==>
m in R ictxt(~x) ==
(
none < perm(rid(~x).diamond) ==>
m in R actxt(~x)
) && (
R state(~x) == old[l](R state(~x))
foreach

(
~t ~x | b | g : α → β

)
∈ ACTIONS(R):

|| exists ~x: J~tK :: JαKϑ0 == old[l](R state(~x)) &&
JβKϑ0 == m && JbKϑ0 && Jg@rid(~x)Kϑ0

end
)

havoc-state-allpreInfer(R state)
assume forall ~x: J~tK ::
none < perm[l](R interp(~x)) ==>
R state(~x) in R ictxt(~x)

end

Figure 6.23: Encoding of interference inference.

of all regions occurring in the region interpretation can be defined by m1 ∈
S1 ∧ . . . ∧ mn ∈ Sn ⇔ ϕ(m1, . . . , mn) ∈ S′. This condition is encoded di-
rectly by the link-interference-context subroutine as shown in figure 6.24: first,
footprints R ifp are havoced for the regions inside the region interpreta-
tion. Then the interference context is constrained accordingly. The function
REGIONS(·) returns all region assertions from a Voila assertion.

6.2.10 Well-definedness Checks

Recall that in a well-defined Voila program loop invariants, region interpre-
tations, as well as pre- and postconditions have to be stable. Furthermore,
action declarations have to be transitively closed. Figure 6.25 shows how
we check whether or not assertions are stable. The check is straightforward:
first, inhale the assertion, then stabilize, and finally assert the assertion. For
loop invariants as well as pre- and postconditions the check depends on
the constrained atomicity context, hence, for example for preconditions, the
check is generated instead of inhaling the precondition. Region interpreta-
tions have to be stable under any atomicity context, so the check is emitted

51

6. Viper Encoding

havoc-ictxtl(R ictxt(~v))
exhale acc[l](R ifp(~v))
inhale acc[l](R ifp(~v))

link-interference-context(R ictxt(~v))
label •preLink
foreach R′(~e) ∈ REGIONS(INTERP(R)):
havoc-ictxtpreLink(R′ ictxt(JeKϑ′))

end
assume forall
foreach R′(~e) ∈ REGIONS(INTERP(R)):

mR′: TR′

end
::
JSTATE(R)Kϑ′[y 7→ mR′ | ϑ′(y) = R′ state(~e)] in R ictxt(~v) ==
foreach R′(~e) ∈ REGIONS(INTERP(R)):
&& mR′ in R′ ictxt(JeKϑ′)

end

where (~t ~x) = FORMAL in(R) and ϑ′ = ϑ0[~x 7→ ~e]

Figure 6.24: Encoding of interference inference for hidden regions.

stability-check(w)
inhale w
stabilize
assert w

Figure 6.25: Encoding of the stability check.

into an extra method with an empty atomicity context. Being stable with
an empty atomicity context implies being stable with any atomicity context
since the atomicity context only provides restrictions on the interference.

Regarding the transitivity of action, recall from section 5.2 that the state
transition system T?

R(g) in Voila is defined as follows:

(a, b) ∈ T?
R(g) :⇐⇒ a = b ∨ ∃A ∈ Actions(R). (a, b) ∈ TA(g)

The benefit of this definition is that the verifier knowledge can be stabilized
without having to infer the transitively closed state transition system. In-
stead, the action state transition systems can be used directly. However, for

52

6.3. Differences from the Prototype

transitivity-check(R)
var ~gz := ARGS(g)
var x, y, z: TR

assume action-permitted(R, g, x, y)
assume action-permitted(R, g, y, z)
assert action-permitted(R, g, x, z)

where g is
foreach m G(~t ~x) ∈ GUARDS(R):
&& as-guard(m, G,~t)

end

as-guard(unique, G, ~t)
Gu〈•x〉 where x is of type Set[~t]

as-guard(duplicable, G, ~t)
Gu〈•x〉 where x is of type Set[~t]

as-guard(divisible, G, ~t)
G[•x] where x is of type Perm

Figure 6.26: Encoding of the transitivity check.

this definition to be sound, we require the following condition to hold:

(a, b) ∈ TA1(g) ∧ (b, c) ∈ TA2(g)
=⇒ a = c ∨ ∃A ∈ Actions(R). (a, c) ∈ TA(g)

Intuitively, if some state b can be reached from some state a with an action
A1, and if then some state c can be reached from b with an action A2, then
there has to be an action that permits to reach c from a with the same amount
of guards. We refer to this condition as action transitivity. Figure 6.26 shows
the code generated to check action transitivity for a region. An arbitrary
guard expression is encoded by taking every guard declared for a region and
instantiating it with fresh variables. The rest is a straightforward encoding
of the transitively closed actions condition.

6.3 Differences from the Prototype

As mentioned in the introduction, our thesis was build upon a Voila pro-
totype. In our work, we added support for interference rely-guarantees,
atomicity contexts, and region levels. Accordingly, the Voila assertion lan-
guage for sets and tuples was improved to aid specifications. Furthermore,
we added the encoding for unique and divisible guards, as well as products

53

6. Viper Encoding

and sets of guards. Moreover, the well-definedness checks were developed
and added to the verifier as well. All of the rule statements encodings were
unsound, such as MakeAtomic whose Voila encoding did not follow the
strict pre- and postcondition limitations of the TaDA rule. Those encodings
were revised too. Lastly, we reduced the amount of generated stabilizations.
Regarding the implementation of the prototype, we restructured the imple-
mentation to increase modularity.

54

Chapter 7

Soundness

In this chapter we give a detailed proof sketch for the soundness of a subset
of our encoding. Furthermore, we discuss how the proof can be extended to
cover the complete Voila encoding.

7.1 Voila Subset

The Voila subset contains the encoding of all statements with the excep-
tion of make atomic, open region, and update region, but with the encoding
of use atomic. This selection allows us to focus on Voila components such
as stabilization and interference rely-guarantee inference, without worrying
about tracking resources or the use of R actxt. Furthermore, we only cover
unique and duplicable guards with no arguments, and assume that interfer-
ence clauses do not reference themselves. The set of used TaDA rules is
listed in appendix A

7.2 Proof Sketch

We split the proof sketch into fife parts. First, we determine invariants on
the Viper programs generated by our encoding. Second, For Viper programs
satisfying those invariants we define a mapping from Viper judgments on
encoded Voila statements to TaDA judgments on a statement corresponding
to the source Voila statement. Intuitively, this mapping expresses the current
position in a TaDA proof. Third, we show that the mapping applied to the
encoding of Voila statements results in derivable TaDA triples provided that
the generated Viper program successfully verifies. Forth, we show for Voila
methods that if the mapping is applied to the encoded method body, the
resulting TaDA triple corresponds to the specification of the Voila method.
Lastly, we show that an entailment automatically deduced by Viper corre-

55

7. Soundness

E ::= field(x.F; l) | R state(a, λ,~x; l) | R ictxt(a, λ,~x; l) | . . .
A ::= B | A1 && A2 | B ⇒ acc(H) | acc(P)

H ::= field(x.F; l) | R interp(a, λ,~x; l) | G(a; l)
P ::= R ifp(a, λ,~x; l)

Figure 7.1: Normalized Viper assertions.

sponds to an application of the Consequence rule in TaDA. This part is
necessary to guarantee that Viper does not deduce unsound knowledge.

7.2.1 Invariants on generated Viper Programs

We represent the verifier knowledge, which includes pre- and postcondi-
tions of encoded statements, as normalized Viper assertions. The syntax for
normalized Viper assertions is given in Figure 7.1: different from normal
Viper assertions, we notate fields, predicates, and functions together with
their Viper label at which they are evaluated. For example, the assertion
old[l](x. f) = 42 is represented as field(x. f ; l) = 42. Those labels do not have
to be explicitly defined in the Viper program. Furthermore, we write the
current label of an assertion P as label(P).

Some invariant on the generated Viper programs are already defined by
the normalized assertion syntax: first, access predicate always have write
permission because without divisible guards the encoding never generates
other permission amounts. Second, permissions to R ifp are never held
conditionally since the same holds for the encoding. The remaining required
invariant will be defined in section 7.2.3 in the form of lemmas.

7.2.2 Viper Specification Mapping

Before we show the mapping of Viper judgments on encoded Voila state-
ments, we first discuss the mapping of normalized Viper assertions to TaDA
assertions as given in figure 7.2. The mapping of a Viper assertion P depends
on the current label label(P) of that Viper assertion. Intuitively, the label
indicates if a Viper resource constrains the TaDA assertions of the current
judgment or just resources from previous judgments. For fields, an access to
a field field(x.F; l′) is encoded as a variable Fl′

x . The meaning of that variable
is then provided by the field permission: if the field permission is held in
the current state then the variable mapped for the field access is bound by
the points-to predicate in the TaDA assertion. The Fl

x = F(x, l) constraint is
added to account for aliasing of the reference. Otherwise, if the field permis-
sion is hold in an older state, then only the aliasing constraint is mapped.
Similar for R state and R interp: the variable mapped for R state is

56

7.2. Proof Sketch

only the state of a region assertion if permission to R interp is held in the
current state. The same for guards. On the other side, R ictxt and R ifp
are not mapped to a TaDA assertion but to the interference rely-guarantee
of the TaDA judgment. Finally, the mapping for normal expressions E is
straightforward and not shown.

Next, the mapping for the complete Viper judgment on encoded Voila state-
ments is shown in figure 7.3. We distinguish between judgments on encoded
atomic and non-atomic statements. Note that we omit the encoding context
since for statements the encoding context is always the initial encoding con-
text as defined in section 6.2. For non-atomic statements the pre- and post-
condition of the TaDA judgment are the mapped pre- and postcondition of
the Viper judgment. The statement of the judgment is b h c, a non-atomic
Voila statement h mapped to a TaDA statement straightforwardly, i.e. ignor-
ing rule statements and atomic, removing invariants from while loops, and
mapping all occurring Voila expressions to their direct TaDA counterpart.
More interesting are the level, atomicity context, and functional environ-
ment of the judgment. The judgment level is minimum value the variable
level can have in the Viper assertion P. Regarding the notation, DP(e) re-
turns all values the expression e might have in assertion P. For example, for
Q ≡ 3 < x && x < 7 we have DQ(x) = {4, 5, 6}. The ∂ variable represents
the lower bound of the region levels occurring in the atomicity context. Ac-
cordingly, A∂ is defined as the atomicity contexts that contains entries on all
regions with a level of at least ∂. The TaDA judgment is then proven forall
atomicity contexts that are a subset of A∂. Note, that because we do not deal
with make atomic and update region, we can define the domain and image of
each atomicity context entry as the universe, i.e. the set containing all possi-
ble values. Lastly, the functional environment is the set of all Voila method
specifications mapped to TaDA. The mapping of Voila method specifications
to TaDA specifications follows directly from the Voila language syntax de-
fined in section 5.2. For simplicity we annotate the interference clause of an
atomic Voila method equivalent to the interference rely-guarantee of a TaDA
method specification.

For an encoded atomic statement the mapping L · M is similar to the map-
ping for an encoded non-atomic statement. However, the interference rely-
guarantee of the atomic TaDA triple also has to be specified. For simplic-
ity, we assume that we have a list notated as RegionInstancesP. of all
region instances for whose region interpretation we have a positive amount
of permission in P. Note that due to our invariants on the generated Viper
programs we know that a positive permission amount to a region interpre-
tation is always at least write permission. The interference rely-guarantee
for the TaDA judgment is then defined as the sequence of si ∈ Si where si
is the variable representing the region state of the i-th region according to
RegionInstancesP, and Si is the set of all possible values in R ictxt for

57

7. Soundness

L P M L P Mlabel(P)

L field(x.F; l′) Ml Fl′
x

L acc(field(x.F; l)) Ml x.F 7→ Fl
x ∗ Fl

x = F(x, l)
L acc(field(x.F; l′)) Ml Fl′

x = F(x, l′) where l 6= l′

L R state(a, λ,~x; l′) Ml Rl′
a,λ,~x

L acc(R interp(a, λ,~x; l)) Ml Rλ
a (~x, Rl

~x) ∗ Rl
a,λ,~x = R(a, λ,~x, l)

L acc(R interp(a, λ,~x; l′)) Ml Rl′
a,λ,~x = R(a, λ,~x, l′) where l 6= l′

L G(a; l) Ml [G]a

Figure 7.2: Mapping from normalized Viper assertions to TaDA assertions.

the same region instance.

7.2.3 Lemmas

Before we continue with the soundness of the statement encodings we first
show a set a lemmas that we will require in the following steps.

Lemma 7.1 `V {P} J s K {Q} implies that DP(level) = DQ(level) and
DP(atomcitiy level) = DQ(atomicity level) hold.

Proof Proof by induction over s: if any of those two variables is changed in
the encoding, then the value is written back at the end of the encoding. �

Lemma 7.2 L P(v) M � ∃s ∈ S. L P(s) M and ∃s ∈ S. L P(s) M � L P(v) M where
S = DP(v)(v).

Proof Proof by induction over P, follows directly from soundness of Viper.�

Lemma 7.3 L P[J e K/x] M � L P M[b e c/x] and L P M[b e c/x] � L P[J e K/x] M.

Proof Can be proven in two steps. First, show L P[t/x] M = L P M[L t M/x] via
induction on P. Afterwards, show L J e K M = b e c modulo variable renaming
by induction on e. �

Lemma 7.4 `V {P}stabilize{Q} implies L Q M is stable and L P M � L Q M holds.

Proof The second statement follows directly from the reflexivity of the gen-
erated assertion, i.e. that the old state is always a possible new state. In
other words, the generated code only changes the regions states and for
every region instance DP(R state(~x)) ⊆ DQ(R state(~x)) holds.

The proof of `V {P}stabilize{Q} implying L Q M being stable is a bit more
involved. We first prove three corollaries. We will omit the mapping of

58

7.2. Proof Sketch

A∂ := { r : U → U | level of r ≥ ∂ }

L `V {P} J h K {Q} M
∀A ⊆ A∂. Γ; λ;A ` { L P M } b h c { L Q M }
where
λ = min DP(level)
∂ = min DP(atomicity level)
Γ = { b T c | T is a Voila specification }

L `V {P} J a K {Q} M
∀A ⊆ A∂. Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 L P M 〉 b h c 〈 L Q M 〉
where
λ = min DP(level)
∂ = min DP(atomicity level)
Γ = { b T c | T is a Voila specification }
si = Rlabel(P)

~x
Si =

⋃
DP(R ictxt(~x; label(P)))

where (R,~x) = REGIONINSTANCESP(i)
true ∈ DP(perm(R interp(~x)) > none)

b {P} MH(~z) returns (~r) {Q} c
∀A ⊆ Aλ. λ;A ` { b P c } M(~z) returns { b Q c }

where λ = 1 + max LEVELS(P)

b ∀\ ~s ∈ ~S. 〈P〉 MA(~z) returns (~r) 〈Q〉 c
∀A ⊆ Aλ. λ;A ` ∀\ ~s ∈ b ~S c. 〈 b P c 〉 M(~z) returns 〈 b Q c 〉

where λ = 1 + max LEVELS(P)

Figure 7.3: Mapping from Viper judgments on encoded Voila statements for normalize Viper
pre- and postconditions to TaDA judgments.

expressions between Voila and TaDA since they behave isomorph to each
other.

Corollary 7.5 A TaDA assertion P is stable if ∀s′ ∈ ΦA
r (P). P ∼ Rλ

r (~z, s′) where
ΦA

r (P) := { s′ | ∃~xA. (P ∧ Rλ
r (~z, s) ∼ [gA]r), s = αA, s′ = βA, cA }

Proof For our Voila subset a TaDA assertion P is stable if (P ∧ Rλ
r (~z, s) ∼ [g]r)

and (s, s′) ∈ T?
R(g) imply P ∼ Rλ

r (~z, s′). In other words, if a guard [g]a might
be held by the environment when the state of some region is s, and if fur-
thermore a transition from s to s′ with g is permitted by the state transition
system, then P is not allowed to contradict with the same region being in
state s′. The corollary follows directly from this stability definition and the

59

7. Soundness

state transition system definition given as follows:

(s, s′) ∈ T?
R(g)⇔ s = s′ ∨ ∃A. ∃~xA. s = αA ∧ s′ = βA ∧ cA ∧ gA ≤ g

where gA, αA, βA, and cA are the corresponding action guard, action source,
action target, and action condition, respectively, that can depend on the
action variables ~xA. �

Corollary 7.6 For a Viper assertion P, s ∈ DP(R state(r, λ,~z; label(P))) im-
plies L P M ∼ Rλ

r (~z, s)

Proof Follows directly from the mapping shown in figure 7.3. �

Corollary 7.7 For a Viper assertion P the property L P M ∼ [g]r implies true ∈
DP(J g@r K)

Proof Proof by contradiction: true /∈ DP(J g@r K) implies that Viper can
deduce from P that J g@r K does not hold. Next, we proceed with a case
distinction on the type of the guard g. If g is a duplicable guard then J g@r K
always holds, hence a contradiction. Otherwise, if g is a unique guard then
the unsatisfiability of J g@r K contradicts with the assumption L P M ∼ [g]r.�

From the first two corollaries we know that L Q M is stable if ΦA
r (L Q M) ⊆

DQ(R state(r, λ,~z; label(Q))) holds. We show this property by proving
ΦA

r (L Q M) ⊆ ΦA
r (L P M) and ΦA

r (L P M) ⊆ DQ(R state(r, λ,~z; label(Q)))
separately.

First, we prove ΦA
r (L Q M) ⊆ ΦA

r (L P M) through the definition of ΦA
r by as-

suming ∃~xA. (L Q M ∧ Rλ
r (~z, s) ∼ [gA]r), s = αA, s′ = βA, cA and then show-

ing ∃s′′,~xA. (L P M ∧ Rλ
r (~z, s′′) ∼ [gA]r), s′′ = αA, s′ = βA, cA. The right side

follows directly by choosing s′′ as s. Note that (L Q M ∧ Rλ
r (~z, s) ∼ [gA]r)

implies (L P M ∧ Rλ
r (~z, s) ∼ [gA]r) because held guards do not change when

stabilizing.

Next, we show ΦA
r (L P M) ⊆ DL Q M(R state(r, λ,~z; label(Q))) through the

definition of ΦA
r by assuming ∃~xA. (L P M ∧ Rλ

r (~z, s) ∼ [gA]r), s = αA, s′ =
βA, cA and then showing s′ ∈ DL Q M(R state(r, λ,~z; label(Q))). Let l be
label(Q). From (L P M ∧ Rλ

r (~z, s) ∼ [gA]r) we can derive L P && Rl
r,λ,~z M ∼

[gA]r. Together with corollary 7.7 this implies true ∈ DP && Rl
r,λ,~z

(J gA@r K).
Combined with the previous assumption we now have that the assertion
∃~xA. s = J αA K ∧ s′ = J βA K ∧ J cA K ∧ J gA@r K holds. This assertion
corresponds to a constrain generated by stabilize, hence s′ is a possible new
state and thus contained in DL Q M(R state(r, λ,~z; label(Q))). �

Lemma 7.8 `V {P}infer-interference-context{Q} implies L Q M is stable and
L P M � L Q M holds . Furthermore, for every existing region instance in Q the
property DQ(R state(~x)) ⊆ ⋃DQ(R ictxt(~x)) holds.

60

7.2. Proof Sketch

W(s) := ∀P, Q. `V {P} J s K {Q}
∧ P, Q satisfy our invariants ∧ L P M is stable
=⇒ L `V {P} J s K {Q} M is derivable in TaDA

∧ L Q M is stable if s is a non-atomic statement

Figure 7.4: Induction predicate.

Proof The lemma follows directly from the encoding of infer-interference-context
and lemma 7.4. The new region state is constrained logically equivalent
to the constrain generated by stabilize. Furthermore, the last assertion that
R state(~x) is contained in R ictxt(~x) guarantees that DQ(R state(~x)) ⊆⋃

DQ(R ictxt(~x)) holds. �

Lemma 7.9 `V {P}action-permitted(R, g, a, b){Q} implies (L a M, L b M) ∈
T?

g(R)

Proof This lemma follows directly from the definition of the state transi-
tion system, from the assumption that actions are transitively closed, from
the encoding of action-permitted, and from the property less-guard(g, g′) ⇒
g ≤ g′ which trivially holds for unique and duplicable guards without argu-
ments. �

7.2.4 Soundness of Statement Encoding

We show with induction over the Voila statement s that our induction predi-
cate W shown in figure 7.4 holds for all statements. We proceed with a case
distinction on the Voila statements s.

Case s ≡ h1; h2 Let A∂, A, Γ, and λ be defined as specified by the map-
ping in figure 7.3. From the viper semantics and from the induction hy-
pothesis, we learn that there exists some R such that ∀A ⊆ A∂. Γ; λ;A `
{ L P M } b h1 c { L R M } and ∀A ⊆ A∂′ . Γ; λ′;A ` { L R M } b h2 c { L Q M }
hold. Furthermore, from lemma 7.1, we know that λ = λ′ and ∂ = ∂′. Fi-
nally, we know that P, Q, and R are all stable. Hence, the mapped triple can
be directly derived through Seqas shown below.

IH
Γ; λ;A ` { L P M } b h1 c { L R M }

IH
Γ; λ;A ` { L R M } b h2 c { L Q M }

Seq

Γ; λ;A ` { L P M } b h1; h2 c { L Q M }

Case s ≡ if(b) {h1} else {h2} Let A∂, A, Γ, and λ be defined as specified by
the mapping in figure 7.3. From the viper semantics and from the induction
hypothesis, we learn that ∀A ⊆ A∂. Γ; λ;A ` { L P && J b K M } b h1 c { L Q M }

61

7. Soundness

and ∀A ⊆ A∂′ . Γ; λ;A ` { L P M && !J b K } b h2 c { L Q M } hold. Furthermore,
from lemma 7.1, we know that λ = λ′ and ∂ = ∂′. Finally, we know that P,
and Q are stable. Hence, the mapped triple can be directly derived through
Ifand two application of ConsNAjustified by a variation of lemma 7.4 as
shown below.

IH
Γ; λ;A ` { L P && J b K M } b h1 c { L Q M }

ConsNA
Γ; λ;A ` { L P M ∗ b b c } b h1 c { L Q M }

IH
Γ; λ;A ` { L P M && !J b K } b h2 c { L Q M }

ConsNA
Γ; λ;A ` { L P M ∗ ¬b b c } b h2 c { L Q M }

If
Γ; λ;A ` { L P M } if(b b c) {b h1 c} else {b h2 c} { L Q M }

Case s ≡ while(b) invariant T {h} Let A∂, A, Γ, and λ be defined as speci-
fied by the mapping in figure 7.3. From the viper semantics and from the in-
duction hypothesis, we learn that for the mapped TaDA judgment from the
while body ∀A ⊆ A∂. Γ; λ;A ` { L T && J b K M } while(b b c) {b h c} { L T M }
holds. Furthermore, from lemma 7.1, we know that λ = λ′ and ∂ = ∂′. More-
over, T can be derived by P and Q can be derived by T && !J b K. Finally,
we know that P, T, and Q are all stable. Hence, the mapped triple can be
directly derived through Loopand two application of ConsNAjustified by a
variation of lemma 7.4 as shown below.

IH
Γ; λ;A ` { L T && J b K M } while(b b c) {b h c} { L T M }

ConsNA
Γ; λ;A ` { L T M ∗ b b c } while(b b c) {b h c} { L T M }

Loop

Γ; λ;A ` { L T M } while(b b c) {b h c} { L T M ∗ ¬b b c }
ConsNA

Γ; λ;A ` { L T M } while(b b c) {b h c} { L T && !J b K M }
ConsNA

Γ; λ;A ` { L P M } while(b b c) {b h c} { L Q M }

Case s ≡ x := e Let A∂, A, Γ, and λ be defined as specified by the map-
ping in figure 7.3. Because the generated Viper code verifies successfully,
we know that there exists some R that Viper can frame around the vari-
able assignment. Important is that this frame does not contain the assigned
variable. Furthermore, from the assumption that L P M is stable we know
that L R M, and subsequently L Q M, is stable. The derivation of the mapped
triple is shown below. First, from our invariants we know that the mapped
judgment level is positive, hence we can apply AWeakening3NAto weaken
the judgment level to 0. Next, we derive the frame R through ConsNAand
then frame it with FrameNA. Lastly, Assignmentis applied to finish the
derivation tree.

Assignment

Γ; 0;A ` { x = v } x := b e c { x = b e c[v/x] }
FrameNA

Γ; 0;A ` { L R M ∗ x = v } x := b e c { L R M ∗ x = b e c[v/x] }
ConsNA

Γ; 0;A ` { L P M } x := b e c { L Q M }
AWeakening3NA

Γ; λ;A ` { L P M } x := b e c { L Q M }

62

7.2. Proof Sketch

Case s ≡ x.F := e Let A∂, A, Γ, λ,~s, and ~S be defined as specified by the
mapping in figure 7.3. Similar to the previous case, because the generated
Viper code verifies successfully, we know that there exists some R that Viper
can frame around the field assignment. The derivation tree for the mapped
triple is given below. First, we weaken the judgment level as seen before.
Next, we derive the frame R and the context V = DP(v) of the field value v
with rule ConsA. This is step is justified by lemma 7.2 and the soundness of
Viper implications. Next, L R M is framed around with FrameA. The stability
of L R M and subsequently L Q M follows from the assumption that L Q M is
stable. Lastly, we apply AExiststo extends the interference context with the
field value, and then apply Mutationto complete the derivation tree.

Mutation

Γ; 0;A ` ∀\ ~s ∈ ~S, v ∈ V. 〈 x.F 7→ v 〉 x.F := b e c 〈 x.F 7→ b e c 〉
AExists

Γ; 0;A ` ∀\ ~s ∈ ~S. 〈 ∃v ∈ V. x.F 7→ v 〉 x.F := b e c 〈 ∃v ∈ V. x.F 7→ b e c 〉
FrameA

Γ; 0;A ` ∀\ ~s ∈ ~S. 〈 L R M ∗ ∃v ∈ V. x.F 7→ v 〉 x.F := b e c 〈 L R M ∗ ∃v ∈ V. x.F 7→ b e c 〉
ConsA

Γ; 0;A ` ∀\ ~s ∈ ~S. 〈 L P M 〉 x.F := b e c 〈 L Q M 〉
AWeakening3A

Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 L P M 〉 x.F := b e c 〈 L Q M 〉

Case s ≡ y := x.F The derivation tree is shown below, the proof goes
analogous to the previous case.

Lookup

Γ; 0;A ` ∀\ ~s ∈ ~S, v ∈ V. 〈 y.F 7→ v 〉 x := y.F 〈 y.F 7→ v ∗ x = v 〉
AExists

Γ; 0;A ` ∀\ ~s ∈ ~S. 〈 ∃v ∈ V. y.F 7→ v 〉 x := y.F 〈 ∃v ∈ V. y.F 7→ v ∗ x = v 〉
FrameA

Γ; 0;A ` ∀\ ~s ∈ ~S. 〈 L R M ∗ ∃v ∈ V. y.F 7→ v 〉 x := y.F 〈 L R M ∗ ∃v ∈ V. y.F 7→ v ∗ x = v 〉
ConsA

Γ; 0;A ` ∀\ ~s ∈ ~S. 〈 L P M 〉 x := y.F 〈 L Q M 〉
AWeakening3A

Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 L P M 〉 x := y.F 〈 L Q M 〉

Case s ≡ ~x := MH(~e) Let A∂, A, Γ, λ, and ∂ be defined as speci-
fied by the mapping in figure 7.3. Furthermore, let ∀A′ ⊆ Aλ′ . λ′;A′ `
{ b A c } M(~z) returns { b B c } where λ′ = 1 + max Levels(A) be the
mapped TaDA specification of the call.

Because the encoded Viper program verifies successfully, we know four
properties: first, from Q Viper can derive some R that Viper can frame
around the call as well as a A[J ~e K/~z] which is the precondition of the
call. Second, there exists some T such that `V {R}stabilize{T} holds. Third,
Q can be derived from T and B[J ~e K/~z][~x/~r]. Fourth, with P the values
of level and atomic context are larger than all levels from the callee
precondition. The second property together with lemma 7.3 implies that
L R M � L T M as well as that L T M is stable. The fourth property together
with the mapping of Voila method specifications from figure 7.3 implies that
λgeqλ′ and ∂ ≥ λ′, i.e. that the current judgment level as well as the value
of atomicity context is larger or equals to the method level. Moreover,

63

7. Soundness

from the definition of A∂ we know that A∂ ⊆ Aλ′ , hence for every possible
judgment atomicity context there exists an equivalent callee method atomic-
ity context, i.e. A ∈ Aλ′ .

With that we have all ingredients for the derivation tree given below. First,
the judgment level is weakened through AWeakening3Ato λ′. Next, the L P M
is split into frame and precondition with ConsNA. Next, lemma 7.4 allows
us to move the variable substitution outside of the mapping. Lastly, L R M is
framed around as L T M and CallNAcompletes the proof. The postcondition
L Q M is stable it is derived from two stable assertions. As a reminder, we
assume that Voila method pre- and postconditions are stable.

CallNA
Γ; λ′;A ` { L A M[b ~e c/~z] } ~x := M(b ~e c) { L B M[b ~e c/~z][~x/~r] }

FrameNA
Γ; λ′;A ` { L R M ∗ L A M[b ~e c/~z] } ~x := M(b ~e c) { L T M ∗ L B M[b ~e c/~z][~x/~r] }

ConsNA
Γ; λ′;A ` { L R M ∗ L A[J ~e K/~z] M } ~x := M(b ~e c) { L T M ∗ L B[J ~e K/~z][~x/~r] M }

ConsNA
Γ; λ′;A ` { L P M } ~x := M(b ~e c) { L Q M }

AWeakening3A
Γ; λ;A ` { L P M } ~x := M(b ~e c) { L Q M }

Case s ≡ ~x := MA(~e) Most parts of the derivation are performed anal-
ogously to the non-atomic case. The difference is that from the successful
verification of the encoding we further know that the respective interference
context of the current judgment ~S is a subset of the method interference
context ~S′. Hence, the Substapplication before CallAcompletes the proof is
justified. The derivation tree is given below.

CallA
Γ; λ′;A ` ∀\ ~s′ ∈ ~S′. 〈 L A M[b ~e c/~z] 〉 ~x := M(b ~e c) 〈 L B M[b ~e c/~z][~x/~r] 〉

Subst

Γ; λ′;A ` ∀\ ~s ∈ ~S. 〈 L A M[b ~e c/~z] 〉 ~x := M(b ~e c) 〈 L B M[b ~e c/~z][~x/~r] 〉
FrameNA

Γ; λ′;A ` ∀\ ~s ∈ ~S. 〈 L R M ∗ L A M[b ~e c/~z] 〉 ~x := M(b ~e c) 〈 L T M ∗ L B M[b ~e c/~z][~x/~r] 〉
ConsNA

Γ; λ′;A ` ∀\ ~s ∈ ~S. 〈 L R M ∗ L A[J ~e K/~z] M 〉 ~x := M(b ~e c) 〈 L T M ∗ L B[J ~e K/~z][~x/~r] M 〉
ConsA

Γ; λ′;A ` ∀\ ~s ∈ ~S. 〈 L P M 〉 ~x := M(b ~e c) 〈 L Q M 〉
AWeakening3A

Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 L P M 〉 ~x := M(b ~e c) 〈 L Q M 〉

Case s ≡ atomic{a} Let A∂, A, Γ, and λ be defined as specified by the
mapping in figure 7.3.

Because the encoded Viper program verifies successfully, we know three
properties: first, there exists some R such that `V {P}infer-interference-context{R}
holds. Second, there exists some T, ~s, and ~S such that Γ; λ;A ` ∀\ ~s ∈
~S. 〈 L R M 〉 b a c 〈 L T M 〉 is derivable in TaDA where ~s and ~S are defined
according to the mapping in figure 7.3. Finally, `V {T}stabilize{Q} holds.
Similar to the previous case, from lemma 7.3 and 7.8 we know that L R M and
L Q M are stable, as well as that L P M � L R M and L T M � L Q M hold. The first

64

7.2. Proof Sketch

property together with lemma 7.8 and 7.2 implies that L R M � ∃~s ∈ ~S. L R M
holds.

With that we have all ingredients for the derivation tree below. First, ConsNAis
applied twice to get triple into the right form. Next, the non-atomic triple
is transformed into a atomic triple with AWeakening2and AExists. Then,
ConsArule is applied to guarantee that the postcondition is stable before the
atomic triple changes back to a non-atomic triple. Lastly, we complete the
derivation tree with the induction hypothesis.

IH
Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 L R M 〉 b a c 〈 L T M 〉

ConsA
Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 L R M 〉 b a c 〈 L Q M 〉

AExists

Γ; λ;A ` 〈 ∃~s ∈ ~S. L R M 〉 b a c 〈 ∃~s ∈ ~S. L Q M 〉
AWeakening2

Γ; λ;A ` { ∃~s ∈ ~S. L R M } b a c { ∃~s ∈ ~S. L Q M }
ConsNA

Γ; λ;A ` { L R M } b a c { L Q M }
ConsNA

Γ; λ;A ` { L P M } b a c { L Q M }

Case s ≡ use atomic using R(r, λ′,~e) with g {a} Let A∂, A, Γ, λ, ∂,~s, and ~S
be defined as specified by the mapping in figure 7.3.

As before, because the encoded Viper program verifies, we know fife prop-
erties: first, there exists some R such that acc(G(r)), acc(R interp(r, λ,~e)),
and R can be derived from P. Second, using the induction hypothesis on the
body of s we know that there exists some T such that Γ; λ′;A ` ∀\ ~s ∈ ~S, ~m ∈
~M. 〈 I

(
Rλ′

r (~e, z)
)
∗ [G]r ∗ L R M 〉 b a c 〈 I

(
Rλ′

r (~e, y)
)
∗ L T M 〉 is derivable in

TaDA. Here, ~M is the part of the interference context that was added by the
link-interference-context call. Furthermore, we mapped the region interpreta-
tion and guard to TaDA. Third, Q is derivable from T and the constrained
region assertion, i.e. the Viper assertion corresponding to ∃y ∈ Y. Rλ′

r (~e, y).
Fourth, the the current judgment level is larger than the specified region
level λ′. Fifth, the assertion generated by action-permitted(R, G, a, b) where
a and b are the old and new region state, respectively, is asserted suc-
cessfully. Furthermore, for the derivation tree we use lemma 7.2 to get
I
(

Rλ′
r (~e, y)

)
∗ L T M � ∃y ∈ Y. I

(
Rλ′

r (~e, y)
)
∗ L T M where Y is de-

fined as DZ(R state(r, λ,~e)) and Z is the viper assertion corresponding
to I

(
Rλ′

r (~e, y)
)
∗ L T M, i.e. the postcondition of the encoding of the sub-

statement h.

Below we give the derivation for the mapped triple. First, we use AWeak-
ening3Ato weaken the judgment level to the region level plus one. Next,

65

7. Soundness

ConsAbrings the pre- and post-condition into the correct form. Then, the
UseAtomicrule is applied. Here we have to satisfy the two side conditions:
first, the specified region is not contained in the interference context. This
condition can be derived from the atomicity context definition from figure
7.3 and the facts that the region level is smaller than the judgment level, a
judgment level is smaller than the method level, and in our considered sub-
set of Voila the atomicity context does not change. The second side condition
is that state transition is permitted by the the held guard. This condition fol-
lows from the definition of Y and lemma 7.9. Next, the ConsArule is used to
infer the interference contexts ~M of the regions hidden in the region interpre-
tation. From the encoding of link-interference-context we know that ~M is de-
fined by ~m ∈ ~M↔ ϕ(~m) ∈ S where ϕ is the region interpretation expressed
as a function from the regions states hidden in the interpretation and where
S is the interference context of the opened region. Similar to the proof of
lemma 7.2 this interference context definition is a sound choice because in
Voila a corresponding TaDA region interpretation contains z = ϕ(~m). Hence,
the ConsAapplication is justified. Next, the ~M is added to the judgment in-
terference context trough AExists. The last ConsAapplication is only to
infer Y and was already justified before. Lastly, the induction hypothesis is
used to complete the derivation tree.

IH
Γ; λ′;A ` ∀\ ~s ∈ ~S, ~m ∈ ~M. 〈 I

(
Rλ′

r (~e, z)
)
∗ [G]r ∗ L R M 〉 b a c 〈 I

(
Rλ′

r (~e, y)
)
∗ L T M 〉

ConsA
Γ; λ′;A ` ∀\ ~s ∈ ~S, ~m ∈ ~M. 〈 I

(
Rλ′

r (~e, z)
)
∗ [G]r ∗ L R M 〉 b a c 〈 ∃y ∈ Y. I

(
Rλ′

r (~e, y)
)
∗ L T M 〉

AExists

Γ; λ′;A ` ∀\ ~s ∈ ~S. 〈 ∃~m ∈ ~M. I
(

Rλ′
r (~e, z)

)
∗ [G]r ∗ L R M 〉 b a c 〈 ∃~m ∈ ~M. ∃y ∈ Y. I

(
Rλ′

r (~e, y)
)
∗ L T M 〉

ConsA
Γ; λ′;A ` ∀\ ~s ∈ ~S. 〈 I

(
Rλ′

r (~e, z)
)
∗ [G]r ∗ L R M 〉 b a c 〈 ∃y ∈ Y. I

(
Rλ′

r (~e, y)
)
∗ L T M 〉

UseAtomic

Γ; λ′ + 1;A ` ∀\ ~s ∈ ~S. 〈 Rλ′
r (~e, z) ∗ [G]r ∗ L R M 〉 b a c 〈 ∃y ∈ Y. Rλ′

r (~e, y) ∗ L T M 〉
ConsA

Γ; λ′ + 1;A ` ∀\ ~s ∈ ~S. 〈 L P M 〉 b a c 〈 L Q M 〉
AWeakening3A

Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 L P M 〉 b a c 〈 L Q M 〉

7.2.5 Soundness of the Method Encoding

Recall, we have to show for a Voila method if the mapping is applied to
the encoded method body, then the resulting TaDA triple corresponds to
the specification of the Voila method. The soundness of both, non-atomic
and abstract atomic, method encodings follows directly from the mapping
of method specifications shown in figure 7.3 as well as the mapping of
atomic and non-atomic statements. For both method types, the judgment
level and the judgment atomicity context are soundly initialized by assum-
ing the value of level to be larger than all region levels occurring in the
precondition and by assuming the value of atomicity context to be the
same as the value of level. Furthermore, for abstract atomic methods the
interference context is correctly initialized by assuming the interference con-

66

7.2. Proof Sketch

text R ictxt which is mapped to the judgment interference rely-guarantee
to be the same as the respective contexts specified in the interference clauses.

Soundness of Viper Implications

Lastly, we require that every implication deduced automatically by Viper
can be justified on the mapped TaDA judgment by TaDA’s rule of conse-
quence. In other words we require that if Viper can deduce Q from P then
J P K � J Q K and J Q K � J P K has to hold. Both directions are needed to
be sound inside of mapped atomic TaDA judgments. Entailments that do
not involve encoded assertions of Voila are trivially valid vie shifts in both
directions. The relevant encoded assertions of TaDA are the current judg-
ment level, atomicity context, interference rely-guarantee, as well as points-
to predicates and region assertions. Deduction on the first three compo-
nents are correct because of their definition shown in figure 7.3 and lemma
7.2. Points-to predicates are encoded using fields, hence Viper imposes the
same restriction on them as TaDA [18] [21]. Lastly, region assertions are
encoded with abstract predicates which in Viper are treated as black boxes,
i.e. nothing is deduced from them [21].

7.2.6 Extension of the Proof Sketch

Our proof sketch can easily be extended to cover all predefined guard al-
gebras by extended the proof of corollary 7.7 and lemma 7.9. We omitted
them mainly to not clutter the proof. Furthermore, the proof sketch for the
open region statement is a variation of the proof sketch for use atomic. More
involved is the extension to also cover update region and make atomic since
this requires a more precise mapping of the atomicity context. In particu-
lar, the mapping of the images of the atomicity is difficult because we do
not encode them. In order to fix this issue we propose that one first proofs
soundness of a modified TaDA rule set where the images of the atomicity
context are omitted. Instead, the modified rule set should associate the im-
ages only with the MakeAtomic and corresponding UpdateRegion rule
instance. That way one would have to map the images of the atomicity
context only for the encoding of update region and make atomic, which is
then feasible by defining the image to be the set of all states to which the
transition is permitted by the specified guard.

67

Chapter 8

Evaluation

8.1 Proof aiding statements

Besides method specifications and loop invariants, the user can also provide
additional specifications to aid the proof or to manually encode language
features.

On one side, to aid the verifier we added assert statements, lemma rules,
and view shift statements. Assertions can be used to help the verifier de-
duce intermediate steps. Lemma methods are abstract methods with only
a pre- and postcondition. Those lemma methods can be applied to manu-
ally deduce assertions. For example, some unsupported guard algebras can
be encoded in Voila by defining the guard algebra through lemma meth-
ods. Lastly, to aid the verifier we added two view shift statements that en-
code special instances of the TaDA rule of consequence: first, the statement
peak-into-region(R(~e)) unfolds and folds the region interpretation predicate
R interp(~e) so that the verifier can gain knowledge about invariants in-
side the region interpretation. Second, unique-guard(g) compensates for an
incompleteness in our encoding where for a unique guard g the verifier can-
not deduce g(x) && g(y) =⇒ x 6= y.

On the other side, to manually encode language features, we directly sup-
port some of the Viper statements such as unfold, fold, inhale, and
exhale.

8.2 Performance

Our verifier was tested on a variety of concurrent programs from literature
[2], [3], [4], [15]. Table 8.1 shows some interesting evaluated programs, to-
gether with their number of lines of program code, specification, generated
code, as well as the median execution time in seconds. The five benchmark

69

8. Evaluation

Name Loc Spec Viper Loc Time (s)

Counter 9 17 630 6
Counter Client 19 69 1426 5
Ticket Lock 1 11 39 971 92
Ticket Lock 2 11 29 880 23
Treiber Stack 106 217 2302 55

Table 8.1: Benchmark Programs

programs are a counter implementation similar to our running example, a
counter client where the counter is used by multiple threads, two variations
of ticket locks with atomic and non-atomic specifications, respectively, and
lastly, an implementation of the Treiber Stack [23] in Voila.

All measurements were carried out on an Aspirer A715-71G-78NZ with
an Intel Core i7-7700HQ and 16GB of RAM, running Windows 10 Home
(version 1803). The used JVM is Java HotSpotTM . Sbt version is 0.13.15,
Scala version is 2.11.11. All benchmarks were run without the optional well-
definedness checks and with the silicon Viper backend verifier. The verifier
was warmed up, with Voila programs from our collection, before the results
were measured. We measured 20 iterations and then took the median. We
do not take the results as a performance quantification, but instead use them
to compare between different specification patterns, such as excessive use of
lemma methods, atomic specifications, not-atomic specifications and so on.

The ratio of lines of code to lines specification is roughly 1 to 2.4, indicating
that the developer effort is successfully kept reasonably low. The existing
overhead is mainly caused by guard specifications and explicit encodings. In
more detail, the counter as well as the two ticket lock variants require only
the region declarations, method specifications, rule statements, and loop
invariants. The counter client uses an unsupported guard algebra, hence
requires explicit applications of lemma methods that specify the guard alge-
bra. Lastly, the Treiber stack requires additional help from the user because
of its complex region declaration.

Next, the number of generated lines of codes indicates the complexity of
the encoding. Regarding the measured execution time, we can make the
following observations: The ticket lock version with the atomic specifica-
tion is considerably slower than the version with a non-atomic specification.
We mainly, attribute this performance decrease to the explicit frames gener-
ated inside the make atomic encoding in combination with the used complex
guard algebra. Surprisingly, the counter client compares well compared to
its size, even though it makes heavy use of explicitly applies lemma meth-
ods.

70

8.3. Optimizations

8.3 Optimizations

In our verifier, we employ two optimizations. The first optimization is that
we replace multiple stabilizations with a single one. For example, when two
atomic statements are sequentially composed, then we remove the stabiliza-
tion in the postlude of the first atomic statement. This optimization is sound
since further stabilizations directly after a first one do not change the verifier
knowledge due to the reflexive transitivity of the state transition system.

The second optimization is that existentially bound variables are instantiated
if possible. As a reminder, in the encoding of the action state transition
system, existential quantification is used: for example, to check if the action
(x, y | x < y | G : x → y) permits a transition from a to b with guard G,
the assertion ∃x, y. x = a ∧ y = b ∧ x < y ∧ G ≤ G would be generated.
If such bound variables can be uniquely determined by the arguments a, b,
and G, then we try to instantiate them. For the previously shown assertion
we would get the simplified assertion a < b ∧ G ≤ G.

Quantified trigger [13] are another important part of the encoding that we do
not cover in this report. A quantified trigger belonging to a Viper forall
expression determines when the expression is instantiated. If a trigger is
not precise enough then too many instantiates can decrease performance.
On the other side, if a trigger is too conservative then the verifier might not
be able to derive a valid assertion. Because triggers are especially important
for the automation of guard algebra encodings, i.e. play a key role for a
proof outline checker, we decided to trade off some performance to gain
more automation.

8.4 Limitations

As mentioned in the introduction, Voila does not support all components of
TaDA. In this section, we discuss such unsupported components and their
impact on the set of programs Voila can verify.

Private and Public Assertion Parts Figure 8.1 shows a complete syntactic
judgment in TaDA. In an atomic triple, an assertion is split into a private
and public part. The public part is allowed to depend on variables bound by
the pseudo quantifier whereas the private part is not. A non-atomic triple
then is defined as an atomic triple without a public part, i.e. {P} C {Q}
corresponds to 〈P | true〉 C 〈Q | true〉. In Voila, for method specifications
we support either private assertions or public assertions, but not both. As
a consequence, we cannot prove triples specifying both, atomic and non-
atomic, behavior. For example, the triple given in figure 8.2 specifies that
a call to incTo(x, y) atomically increases the value of a ECounter region by

71

8. Evaluation

Γ; λ;A ` ∀\ ~x ∈ ~X. 〈 PP | P(~x) 〉 C |∃ ~y ∈ ~Y. 〈 QP(~x,~y) | Q(~x,~y) 〉

Figure 8.1: A complete syntactic judgments in TaDA. The assertions PP and QP(~x,~y) are
referred to as private whereas P and Q(~x,~y) are called public parts of the assertions.

∀\ v. 〈y.val 7→ z | ECounterλ
a (x, v)〉

Γ; λ;A ` incTo(x, y)

〈y.val 7→ v | ECounterλ
a (x, v + 42)〉

Figure 8.2: Example specification with private and public parts.

42 and at the same time non-atomically writes the old state value to a field
y.val. At least to our knowledge, adding a separation between private and
public assertions in Voila is feasible, but requires an extended encoding that
tracks whether resources are private or public.

View Shifts As mentioned in chapter 7, in TaDA view shifts are used to
update ghost state without changing the underlying program state. For
example, view shifts can be used to learn an invariant that is hidden in-
side a region interpretation. Furthermore, view shifts can transform guards
according to their guard algebras. Not all view shifts can be performed au-
tomatically by the Voila verifier: in general only surface level implications,
e.g. without opening regions, or predefined operations such as predefined
guard algebras are supported automatically. Some more complex view shifts
can be manually achieved through lemma methods or the special proof state-
ments mentioned in section 8.1. Further view shifts are not supported, hence
some correct Voila programs are not verifiable with the Voila verifier. Even
though such incompletenesses are an inherent flaw in our verification ap-
proach, we do not believe it to be a major obstacle for the verification of
real-world programs since such verifications do not require arbitrary view
shifts.

Angelic Choice As mentioned in section 6.2.5, Viper does not support an-
gelic choice, hence some TaDA components cannot be directly encoded in
Viper. For example, the UpdateRegion rule employs angelic choice to ex-
press that an update might or might not have happened. In such cases, we
have to either employ approximations of similar behavior or push proof obli-
gations to the user. In the case of UpdateRegion we approximated the be-
havior by defining that an update only happened if the region state changed.
As a consequence, the user has to explicitly specify if an update occurred

72

8.4. Limitations

without the region state changing.

Heap Representation In Voila the heap is accessed through field reads and
writes. On the other side, in TaDA the heap is accessed with addresses.
As a consequence, TaDA allows address arithmetic whereas Voila does not.
Hence, programs that employ complex pointer arithmetic might not be veri-
fiable in Voila.

Artificial Cases In some cases, we decided to enforce limitations to increase
the performance of the verifier. Often, those limitations only rule out arti-
ficial programs. For example, in Voila a method cannot be called inside a
make atomic statement if the method’s level is higher than the level of the
region updated in make atomic. This restriction is weaker in TaDA where
such a method can be called inside a UpdateRegion rule. However, Up-
dateRegion opens a region interpretation and hence the judgment level
prevents such a method call if region interpretations are defined in a useful
way, meaning regions contained in an interpretation have a lower level than
the region they are contained in.

73

Chapter 9

Conclusion

9.1 Related Work

We group related work into three categories: other logics besides TaDA
for the verification of fine-grained concurrent code, other verifiers for such
logics, and finally other encodings to Viper.

Besides TaDA, FCSL [15] and Iris [10] are other logics for verification of
fine-grained concurrent code. FCSL offers the subjective separating conjunc-
tion to reason about the distribution of resources among multiple threads,
hence enable reasoning about interference caused by the environment. In
order to specify fine-grained concurrency, histories [20] that abstractly de-
scribe atomic actions can be employed as a distributed resource. Iris [10]
uses invariants and extended monoids to reason about fine-grained concur-
rency. Its generalized logic allows the implementation and verification of
specialized programming logics inside the Iris framework. Interestingly, Iris
and TaDA share deep commonalities. For example, even though shared
regions are not part of the Iris logic, they can be easily expressed within
the Iris framework by defining regions as Iris invariants. As a consequence,
opening a region in Iris has similar limitations as in TaDA, namely a region
interpretation is required to be stable before use, a region cannot be opened
twice, and a region can only be opened an abstractly discrete instance in
time. In TaDA functional correctness together with abstract atomicity are
both proven in a single proof. Some other logics [24] [6] show functional cor-
rectness and abstract atomicity separately: first, the functional correctness
of a coarse-grained implementation is proven. Afterwards, it is shown that
a fine-grained implementation contextually refines the coarse-grained one.

Regarding other verifiers, there exists the Caper verifier [4] for TaDA or
Coq for FCSL and Iris. Caper supports a smaller subset of TaDA core me-
chanics but shines with its higher degree of automation compared to Voila
and its powerful guard support. Some of the design choices for Voila, such

75

9. Conclusion

as the state transition system defined by actions or some of the guard al-
gebras, were motivated by Caper. On the other side, Coq is a declarative
proof checker. The versatility of declarative proof checker allows Coq to
thoroughly verify a logic or programs. As a trade-off, Coq offers less au-
tomation and hence requires more developer effort.

Regarding other encodings to Viper, in recent years more verifiers have been
build on top of the Viper infrastructure. Chalice [12], another verifier for con-
current code, got an implementation to Viper besides its older implementa-
tion to Boogie [11]. Nagini [5] is a powerful verification frontend for Python
that can verify more complex properties such as memory safety, deadlock
freedom, and input-output behavior. Nagini is currently used in the Veri-
fiedScion project to verify the python implementation of scion. Lastly, [21]
shows how weak-memory programs can be encoded and verified in Viper.

9.2 Future Work

Most of the future work follows directly from the limitations discussed in
section 8.4. In general, we identify two different directions: increasing the
set of verifiable programs inside the current logic or extending the supported
Voila logic. Future work regarding Viper is covered in the next section.

The set of verifiable programs could be increased by first investigating the
relation between programming patterns in fine-grained concurrent program-
ming and the required guard algebras together with view shifts to prove
these patterns. And then, developing and implementing guards and view
shifts that aid programming patterns in Voila.

For example, in many concurrent programs reduction is used to join the re-
sults of different threads. Assume a program that concurrently counts some
elements and then joins those partial counts to a total count by concurrently
increasing some heap cell. For such a program, part of a shared region that
contains the heap cell could be modeled with a guard W(p, x) where p is the
fraction of the result and x is the partial result. Combined with the algebra
defined by W(p1, x1) •W(p2, m2) = W(p1 + p2, m1 + m2) where p1 + p2 ≤ 1,
we could reason about the relation of partial count to total count.

On the other side, the Voila logic could be broadened to support Total-TaDA
[3], an extension of TaDA that enables total-correctness proofs. Another pos-
sibility would be to integrate weak-memory reasoning to enable verification
with a more realistic concurrent memory model.

76

9.3. Encoding to Viper

9.3 Encoding to Viper

Using Viper as an intermediate verification language has several advantages:
foremost, the powerful support for permission-based reasoning integrated
into Viper facilitates the encoding of other logics by offering higher-level
abstractions. For example, predicates and heap-dependent functions are
directly a good fit for the encoding region interpretations and region state,
respectively. Furthermore, inhale and exhale statements provide good
primitives to encode more complex logic components. Lastly, a strong tool
support for Viper as well as existing developing tools such as the Viper IDE
aid a faster development cycle.

However, during the development of the Voila verifier, we also encountered
a range of limitations. We mentioned some of them, such as the absence
of angelic choice, in section 8.4. In the rest of this section, we go into de-
tail on some of the more low-level limitations we encountered during the
development of the Voila verifier.

As mentioned before, quantified trigger are one of the core mechanics to en-
able automatic deductions. Intuitively, a trigger guards a quantified expres-
sion by only instantiating the expression if a corresponding ground term
derived by the verifier matches the specified trigger. The general limitations
of triggers make it difficult to enable more complex automations that are re-
quired, for example, for the automatic support of some guard algebras. One
future work regarding Viper could be to support more complex automation
strategies. An example of such strategy support can be found in Isabelle [19]
where the declaration of introduction, elimination, and destruction rules can
aid the automation process.

Havocing of permissions and values is one of the key technique employed
in our encoding. However, havocing as a primitive is not supported in Viper
and has to be performed through successive inhaling and exhaling of re-
sources. As a consequence, particularly, havocing of quantified resources is
made difficult because also the trigger support for such assertions is lacking.
Here, we identify that investigating the potential of havocing as a primitive
in Voila and a subsequent implementation is another suitable future work.
In a similar direction, as we have seen in the evaluation, explicit frames
as we employed them in the make atomic encoding can cause performance
issues. Hence, supporting explicit frames directly in Viper might fix such
performance issues.

9.4 Final Conclusion

In our work, we have shown how to encode more complex logics such as
TaDA into Viper. Furthermore, we outlined the soundness of a subset of

77

9. Conclusion

our encoding. The Voila verifier supports a larger subset of TaDA core com-
ponents than other existing verifier and poses a successful implementation
of an outline checker. However, the current Voila verifier is lacking in its
support for guards and more complex view shifts which limit the set of
verifiable programs.

Nevertheless, we illustrated the potential of outline checker that require
users to reason about key steps mainly and automatically deduce lower level
proof obligations. We believe that outline checkers are a suitable choice to
achieve a good trade-off between fully-automatic verification and declara-
tive proof checking.

78

Appendix A

TaDA rules

List of the TaDA rules we used in this thesis. The rules were adapted so
that points-to predicates have fields as receiver, that methods can have mul-
tiple return arguments, and that every judgment is either a completely non-
atomic or atomic judgment.

Γ; λ;A ` { P } C1 { R } Γ; λ;A ` { R } C2 { Q }
Seq

Γ; λ;A ` { P } C1; C2 { Q }

Γ; λ;A ` { P ∗ b } C1 { Q } Γ; λ;A ` { P ∗ ¬b } C2 { Q }
If

Γ; λ;A ` { P } if(b) {C1} else {C2} { Q }

Γ; λ;A ` { P ∗ b } C { P }
Loop

Γ; λ;A ` { P } while(b) {C} { P ∗ ¬b }

(λ;A ` { P(~z) } M(~z) returns (~r) { Q(~z,~r) }) ∈ Γ
CallNA

Γ; λ;A ` { P(~e) } ~x := M(e) { Q(~e,~x) }

(λ;A ` ∀\ ~s ∈ ~S. 〈 P(~s,~z) 〉 M(~z) returns (~r) 〈 Q(~s,~z,~r) 〉) ∈ Γ
CallA

Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 P(~s,~e) 〉 ~x := M(e) 〈 Q(~s,~e,~x) 〉

Assignment

Γ; λ;A ` { x = v } x := e { x = e[v/x] }

Mutation

Γ; 0;A ` ∀\ v ∈ V. 〈 x.F 7→ v 〉 x.F := e 〈 x.F 7→ e 〉

Lookup

Γ; 0;A ` ∀\ v ∈ V. 〈 x.F 7→ v 〉 x := y.F 〈 x.F 7→ v ∗ x = v 〉

79

A. TaDA rules

CompareAndSet

Γ; λ;A `
∀\ v ∈ V. 〈 y.F 7→ v 〉

x := CASF(y, e f rom, eto)

〈 v = e f rom ? y.F 7→ eto : y.F 7→ e f rom 〉

Γ; λ;A ` ∀\ s ∈ S. 〈 I
(
Rλ

a (~e, s)
)
∗ P(s) 〉 C 〈 I

(
Rλ

a (~e, s)
)
∗Q(s) 〉

OpenRegion

Γ; λ + 1;A ` ∀\ s ∈ S. 〈 Rλ
a (~e, s) ∗ P(s) 〉 C 〈 Rλ

a (~e, s) ∗ Q(s) 〉

a /∈ A {(s, y) | s /∈ S, y ∈ Y} ⊆ T?
R(G)

Γ; λ;A ` ∀\ s ∈ S.
〈I
(
Rλ

a (~e, s)
)
∗ [G]a ∗ P(s)〉
C

〈∃y ∈ Y. I
(
Rλ

a (~e, y)
)
∗Q(s)〉

UseAtomic

Γ; λ + 1;A ` ∀\ s ∈ S.
〈Rλ

a (~e, s) ∗ [G]a ∗ P(s)〉
C

〈∃y ∈ Y. Rλ
a (~e, y) ∗Q(s)〉

a /∈ A {(s, y) | s /∈ S, y ∈ Y} ⊆ T?
R(G)

Γ; λ; a : s ∈ S Y,A `
{∃s ∈ S. Rλ

a (~e, s) ∗ a Z⇒ � }
C

{∃s ∈ S. ∃y ∈ Y. a Z⇒ (s, y)}
MakeAtomic

Γ; λ;A ` ∀\ s ∈ S. 〈 Rλ
a (~e, s) ∗ [G]a 〉 C 〈 ∃y ∈ Y. Rλ

a (~e, y) ∗ [G]a 〉

a /∈ A {(s, y) | s /∈ S, y ∈ Y} ⊆ T?
R(G)

Γ; λ;A ` ∀\ s ∈ S.

〈I
(
Rλ

a (~e, s)
)
∗ P(s)〉

C〈
∃y ∈ Y. I

(
Rλ

a (~e, y)
)
∗Q1(s, y) ∨

I
(
Rλ

a (~e, s)
)
∗Q2(s)

〉
UpdateRegion

Γ; λ + 1; a : s ∈ S Y,A ` ∀\ s ∈ S. 〈Rλ
a (~e, s) ∗ a Z⇒ � ∗ P(s)〉

C〈
∃y ∈ Y. Rλ

a (~e, y) ∗Q1(s, y) ∗ a Z⇒ (s, y) ∨
Rλ

a (~e, s) ∗Q2(s) ∗ a Z⇒ �

〉

λ;A ` R � T A � T stable mods(C) ∩ pvars(R) = ∅
Γ; λ;A ` { P } C { Q }

FrameNA
Γ; λ;A ` { R ∗ P } C { T ∗Q }

λ;A ` ∀~s ∈ ~S. R(~s) � T(~s) A � T(~s) stable mods(C) ∩ pvars(R(s̃)) = ∅

Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 P(~s) 〉 C 〈 Q(~s) 〉
FrameA

Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 R(~s) ∗ P(~s) 〉 C 〈 T(~s) ∗Q(~s) 〉

80

f : Z → S
Γ; λ;A ` ∀\ s ∈ S. 〈 P(s) 〉 C 〈 Q(s) 〉

Subst

Γ; λ;A ` ∀\ z ∈ Z. 〈 P(f (z)) 〉 C 〈 Q(f (z)) 〉

λ;A ` P � P′ λ;A ` Q′ � Q
Γ; λ;A ` { P′ } C { Q′ }

ConsNA
Γ; λ;A ` { P } C { Q }

λ;A ` ∀~s ∈ ~S. Q′(~s) � Q(~s)
λ;A ` ∀~s ∈ ~S. P(~s) � P′(~s) ∧ P′(~s) � P(~s)

Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 P′(~s) 〉 C 〈 Q′(~s) 〉
ConsA

Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 P(~s) 〉 C 〈 Q(~s) 〉

Γ; λ;A ` ∀\ ~s ∈ ~S,~z ∈ ~Z. 〈 P(~s,~z) 〉 C 〈 Q(~s,~z) 〉
AExists

Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 ∃~z ∈ ~Z. P(~s,~z) 〉 C 〈 ∃~z ∈ ~Z. Q(~s,~z) 〉

Γ; λ;A ` 〈 P 〉 C 〈 Q 〉
AWeakening2

Γ; λ;A ` { P } C { Q }

λ′ ≤ λ Γ; λ′;A ` ∀\ ~s ∈ ~S. 〈 P(~s) 〉 C 〈 Q(~s) 〉
AWeakening3A

Γ; λ;A ` ∀\ ~s ∈ ~S. 〈 P(~s) 〉 C 〈 Q(~s) 〉

λ′ ≤ λ Γ; λ′;A ` { P(~s) } C { Q(~s) }
AWeakening3NA

Γ; λ;A ` { P(~s) } C { Q(~s) }

81

Bibliography

[1] Pedro da Rocha Pinto. Reasoning with time and data abstractions. PhD
thesis, Ph. D. thesis, Imperial College London, 2017.

[2] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.
Tada: A logic for time and data abstraction. In European Conference on
Object-Oriented Programming, pages 207–231. Springer, 2014.

[3] Pedro da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner, and
Julian Sutherland. Modular termination verification for non-blocking
concurrency. In European Symposium on Programming Languages and Sys-
tems, pages 176–201. Springer, 2016.

[4] Thomas Dinsdale-Young, Pedro da Rocha Pinto, Kristoffer Just Ander-
sen, and Lars Birkedal. Caper: Automatic verification for fine-grained
concurrency. In European Symposium on Programming, pages 420–447.
Springer, 2017.

[5] M. Eilers and P. Müller. Nagini: A static verifier for python. In Hana
Chockler and Georg Weissenbacher, editors, Computer Aided Verification
(CAV), LNCS, pages 596–603. Springer International Publishing, 2018.

[6] Dan Frumin, Robbert Krebbers, and Lars Birkedal. Reloc: A mecha-
nised relational logic for fine-grained concurrency. 2018.

[7] Charles Antony Richard Hoare. Proof of correctness of data representa-
tions. In Programming Methodology, pages 269–281. Springer, 1978.

[8] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Pen-
ninckx, and Frank Piessens. Verifast: A powerful, sound, predictable,
fast verifier for c and java. In NASA Formal Methods Symposium, pages
41–55. Springer, 2011.

83

Bibliography

[9] Cliff B Jones. Specification and design of (parallel) programs. In IFIP
congress, volume 83, pages 321–332, 1983.

[10] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. Iris: Monoids and invariants
as an orthogonal basis for concurrent reasoning. In ACM SIGPLAN
Notices, volume 50, pages 637–650. ACM, 2015.

[11] K Rustan M Leino. This is boogie 2. Manuscript KRML, 178(131), 2008.

[12] K Rustan M Leino, Peter Müller, and Jan Smans. Verification of con-
current programs with chalice. In Foundations of Security Analysis and
Design V, pages 195–222. Springer, 2009.

[13] Michał Moskal. Programming with triggers. In Proceedings of the 7th In-
ternational Workshop on Satisfiability Modulo Theories, pages 20–29. ACM,
2009.

[14] Peter Müller, Malte Schwerhoff, and Alexander J Summers. Viper: A
verification infrastructure for permission-based reasoning. In Interna-
tional Conference on Verification, Model Checking, and Abstract Interpreta-
tion, pages 41–62. Springer, 2016.

[15] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés
Delbianco. Communicating state transition systems for fine-grained
concurrent resources. In European Symposium on Programming Languages
and Systems, pages 290–310. Springer, 2014.

[16] Peter W O’hearn. Resources, concurrency, and local reasoning. Theoret-
ical computer science, 375(1-3):271–307, 2007.

[17] Matthew Parkinson and Gavin Bierman. Separation logic and abstrac-
tion. In ACM SIGPLAN Notices, volume 40, pages 247–258. ACM, 2005.

[18] Matthew J Parkinson and Alexander J Summers. The relationship be-
tween separation logic and implicit dynamic frames. arXiv preprint
arXiv:1203.6859, 2012.

[19] Lawrence C Paulson. Isabelle: A generic theorem prover, volume 828.
Springer Science & Business Media, 1994.

[20] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Specifying
and verifying concurrent algorithms with histories and subjectivity. In
European Symposium on Programming Languages and Systems, pages 333–
358. Springer, 2015.

84

Bibliography

[21] A. J. Summers and P. Müller. Automating deductive verification for
weak-memory programs. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), LNCS, pages 190–209. Springer-Verlag,
2018.

[22] Alexander J Summers and Sophia Drossopoulou. A formal semantics
for isorecursive and equirecursive state abstractions. In European Con-
ference on Object-Oriented Programming, pages 129–153. Springer, 2013.

[23] R Kent Treiber. Systems programming: Coping with parallelism. Inter-
national Business Machines Incorporated, Thomas J. Watson Research
Center New York, 1986.

[24] Aaron J Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and
Derek Dreyer. Logical relations for fine-grained concurrency. In ACM
SIGPLAN Notices, volume 48, pages 343–356. ACM, 2013.

85

EIH
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zürich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bacheior's thesis,
Master's thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

l hereby confirm that l am the sole author of the written work here enclosed and that l have compiled it
in my own words. Parts excepted are corrections of form and content by the Supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

Wo 'i f Td>x

With my signature l confirm that
- l have committed none of the forms of plagiarism described in the 'Citation_etigjjette' Information

sheet.
- l have documented all methods, data and processes truthfully.
- l have not manipulated any data.
- l have mentioned all persons who were significant facilitators of the work.

l am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	TaDA Basics
	TaDA Proof Outline
	Single Statement Implementation
	Abstract Atomic Implementation

	Viper Basics
	Voila Language
	Voila Overview
	Voila Syntax

	Viper Encoding
	Verification Approach
	Encoding
	Declarations
	Types and Expressions
	Non-Atomic Statements
	Abstract Atomic Statements
	Inspection Rules
	Make-Atomic Rule
	Guards and Actions
	Stabilization
	Interference Inference
	Well-definedness Checks

	Differences from the Prototype

	Soundness
	Voila Subset
	Proof Sketch
	Invariants on generated Viper Programs
	Viper Specification Mapping
	Lemmas
	Soundness of Statement Encoding
	Soundness of the Method Encoding
	Extension of the Proof Sketch

	Evaluation
	Proof aiding statements
	Performance
	Optimizations
	Limitations

	Conclusion
	Related Work
	Future Work
	Encoding to Viper
	Final Conclusion

	TaDA rules
	Bibliography

