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Abstract

Proving the correctness of sequential programs has been a research issue for the past decades.

Over time, a lot of approaches has been developed on proving sequential programs.

Over the last ten years computers have slowly stopped becoming faster and instead started to gain

multiple execution units. This change triggers a need for concurrent programs and the verification

of these programs.

This project looks at Chalice, an object based programming language with a compiler and verifier

which is able to verify the absence of deadlocks and race conditions in concurrent programs, and

tries to verify the Composite pattern in a concurrent setting.
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Chapter 1

Introduction

1.1 Aim

The goal of this project is to extend current technologies and methodologies to support the veri-

fication of concurrent programs which feature complex software design patterns. The verification

of concurrent programs includes verifying their correctness, with regards to the specification of

the program, verifying the absence of deadlocks and verifying the absence of race conditions. The

programming pattern which is to be verified is a concurrent version of the Composite pattern.

The technology which will be used is the Chalice programming language[2].

1.2 Motivation

Writing correct sequential programs is hard. Writing correct concurrent programs is a lot harder, as

concurrent programs have multiple threads which can possibly interact with each other. Addition-

ally the resulting bugs may appear randomly, as the execution order of threads is non-deterministic,

which makes debugging very difficult.

Figure 1.1 shows the adoption of multiple processors in home computers[3]. This data is taken

from an online gaming platform called Steam, which performs monthly hardware surveys. In

2004 most home computers were still single processor machines. This started to change in 2006

when computers with two physical processors started to push out the single processor machines.

This trend continued and in 2010 there are more multi processor machines than single processor

machines in use. Unfortunately sequential programs, which only have a single thread of execu-

tion, cannot make use of this new technology. Therefore there is a growing need for concurrent

programs, which are able to use the additional processors. Because concurrent programs are a

lot more complex, successful verification of the correctness of these programs would help reduce

overall costs of software development.

Currently the majority of software developers rely solely on testing when writing software. Unfor-
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tunately, testing can only ever prove the presence of bugs, but never the absence. Testing cannot

check for all possible inputs as there might be potentially a very large number of combinations in

a non-trivial program. Additionally, it does not help at all that testing usually needs to be done

manually, whether it is writing unit tests cases or specifying the input classes, and in most cases it

is monotonous and unrewarding. Furthermore, some bugs are very hard to find, especially when

it comes to the area of concurrency. The most common bugs are dead locks and race conditions,

both of which are very hard to find, because they may appear to at random and sometimes race

conditions bugs are discovered at a much later stage than they actually happen.

Another use of verification is in environments where testing is simply not reliable enough due to

the large number of possible inputs and the consequences of failure are very high. In the last years,

drive by wire cars have become popular, especially among the premium class cars. These cars do

not have any physical connections between the pedals and their respective mechanical hardware

to execute the function of the pedals. The computer on the car has sensors which checks whether

a break pedal was pressed and then engages the breaks. The software running on such a computer

should rather be verified than tested as the software must execute the function in almost any

condition. A software fault could potentially cost the life of the driver.

On the other hand, the Composite pattern is a challenging example of a software engineering

pattern. The Composite pattern has been proposed as a verification challenge[1] was the 2008

challenge problem at the SAVCBS workshop. This makes it therefore even more interesting to

verify in a concurrent setting.
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1.3 Overview

The rest of the report is structured in the following way. Chapter 2 will discuss the background

information which is needed to understand the topic and issues discussed in the report. The

following chapter 3 will discuss the first attempt at verifying the Composite pattern, including

the issues which were faced during the implemention. Section 4 describes the issues of extending

the first attempt to handle a more complete Composite pattern, which includes the issues which

were faced and a potential solution. Chapter 5 will provide information on additional work which

was done during the project. This will include the description of bugs found in Chalice and the

Eclipse plugin developed for the programming language. Finally, the last chapter 6 concludes the

report, summarizing the work done during the project and listing the possible future work on the

topic.
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Chapter 2

Background

This chapter of the report provides the information which is required to understand the issues which

were faced and the solutions proposed in this report. Section 2.1 briefly describes concurrency in

general, describing threads, dead locks and race conditions. The following section 2.2 gives a brief

introduction to the Chalice programming language, including the syntax, features, examples and

usage of the language. Finally, the last section 2.3 provides a quick introduction to the composite

pattern.

2.1 Concurrency

Concurrent programs are applications which have multiple threads. This section provides a brief

overview of threads, race conditions and dead locks.

2.1.1 Threads

Threads are the basic building blocks of concurrent programs. A thread is a unit of execution

which can share memory with other threads running in the same process. Threads are scheduled

according to the scheduling policy of the underlying operating systems and the scheduling cannot

be predicted from the application level. Additionally, each thread usually gets only a small time

quantum for execution, which usually allows the thread to execute couple of commands before it

is interrupted. Therefore the processor interleaves commands from all running threads. The same

applies for computers with multiple processors, but on these machines the commands are actually

executed concurrently.

2.1.2 Race conditions

Race conditions are bugs which may result from multiple threads accessing and writing the same

memory locations at once. Consider the following pseudo code found in listing 2.1.

The code describes a simple bank account class which contains one variable called debit. The debit

variable stores the amount of money currently in the account. Note, that this is an account which

17



18 2 Background

1 class BankAccount{
2 //describes the amount of money on the bank account

3 debit : int

4

5 method deposit(amount : int){
6 debit = debit + amount

7 }
8

9 method withdraw(amount : int){
10 debit = debit − amount

11 }
12 }

Listing 2.1: Näıve pseudo code implementation

allows for infinite credit, therefore allowing for negative credit. It is a highly generous bank where

one can always withdraw money. This piece of code works as expected in a sequential setting,

incrementing the debit variable when the deposit method is called and also subtracting from the

debit variable when the withdraw method is called.

The problem appears once these methods may be called concurrently from different threads. Imag-

ine that this account is connected to two people, Bob and Eve, who both want to deposit money

(at different ATM machines) at the same time. The account has initially three hundred Euros

(which is represented by the debit variable). Bob places an additional fifty Euros into the ATM

and Eve places an additional hundred Euros into the ATM. At the end of the transactions, they

should have four hundred and fifty Euros in the bank account. Let’s however consider the following

execution sequence.

1. Thread Bob enters the deposit method call with an argument of 50

2. Thread Eve enters the deposit method call with an argument of 100

3. Thread Eve reads the value of debit which is 300

4. Thread Bob reads the value of debit which is 300

5. Thread Eve adds 100 to 300 (which is 400)

6. Thread Bob adds 50 to 300 (which is 350)

7. Thread Eve writes the result (400) to the debit variable

8. Thread Bob writes the result (350) to the debit variable

9. Thread Eve leaves the method body

10. Thread Bob leaves the method body
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Clearly, one can see that the end result in the debit variable is only three hundred and fifty in-

stead of four hundred and fifty. This might not be a huge problem since the bank is not losing any

money, but gaining. Unfortunately (for the bank) this can work both ways and may also happen

with the withdraw method call. This is a classic example of race conditions. A race condition is

a bug which appears when two threads read and write to the same memory location at the same

time. Operations such as writing and reading cannot be done atomically and there is always the

danger of being interrupted with other commands being interleaved. This is even more likely when

there are multiple processors in the machine. The biggest problem with race conditions is that

they are very hard to detect with regular testing. The above example may fail only very rarely as

the possibility of the sequence of commands interleaving is low.

One solution to this problem is mutual exclusion. Mutual exclusion, also called locking, guarantees

that a given set of commands will never be executed concurrently but always sequentially, therefore

removing the possibilities of race conditions. Locking is usually done over a monitor object, which

depending on the implementation can be the object itself. Locking a monitor ensures that no

other thread is able to lock that monitor until it is release. Consider the example in listing 2.2.

1 class BankAccount{
2 //describes the amount of money on the bank account

3 debit : int

4

5 method deposit(amount : int){
6 lock this

7 debit = debit + amount

8 unlock this

9 }
10

11 method withdraw(amount : int){
12 lock this

13 debit = debit − amount

14 unlock this

15 }
16 }

Listing 2.2: A thread-safe code implementation

This piece of code now adds two commands called lock and unlock which create a mutually exclusive

section of code for one object. This means that no two threads can be between lock and unlock at

the same time for the same object. Instead, if one thread enters the critical section (i.e. executes

the lock command) then the other thread which arrives at that command needs to wait until the

first thread calls unlock. Now, the sequence of commands resulting in a race condition is no longer

possible and therefore this code avoids race conditions.

2.1.3 Dead locks

The previous section (2.1.2) described how race conditions can be avoided with the help of locking.

Unfortunately, locking also comes with a potential danger called dead locks. Dead locks happen
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when two threads each have locked a given resource which the other one requires. Consider the

pseudo code shown in listing 2.3.

1 class BankAccount{
2 //describes the amount of money on the bank account

3 debit : int

4 owner : Person

5

6 method deposit(amount : int){
7 lock this

8 lock owner

9 debit = debit + amount

10 owner.deposited(amount)

11 unlock this

12 unlock owner

13 }
14

15 method withdraw(amount : int){
16 lock owner

17 if (owner is allowed to withdraw)

18 {
19 lock this

20 debit = debit − amount

21 owner.withdrew(amount)

22 unlock this

23 }
24 unlock owner

25 }
26 }

Listing 2.3: An implementation with deadlocks

This is an extended example of the bank account class. In this example every bank account has

an associated person, which is described by the owner field. This bank account now only allows

to withdraw money if the owner has the required permission from the bank (e.g. this might be

a time deposit where the person needs to wait some time before they can withdraw the money

from the bank). Now, consider that Bob and Eve (who are both registered to this account) try to

deposit and withdraw money at the same time. The following sequence of events is possible.

1. Thread Bob enters the deposit method call

2. Thread Eve enters the withdraw method call

3. Thread Bob locks the bank account object

4. Thread Eve locks the owner object

5. Thread Bob tries to lock the owner object, but that is already locked by Eve

6. Bob waits for Eve to unlock the owner object
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7. Eve checks if the owner is allowed to withdraw money (turns out to be true)

8. Eve tries to lock bank account object, but fails as its already locked

9. Eve waits on Bob to unlock the bank account object

In the described situation, it becomes apparent that the two threads will never finish because Eve

waits on Bob to unlock the bank account object, but Bob can only unlock the object after it has

locked the owner object which is held by Eve. Therefore, we have a dead lock and the program

will never finish executing. The solution for this problem is quite simple as it is enough to switch

the locking order of this and owner in the deposit method, such that the owner object is always

locked first.

As with race conditions, dead locks do not happen every time the program is run, but rather

depend on how the threads get scheduled. Therefore it is also very difficult to test for deadlocks.

2.2 Chalice

Chalice is a programming language built on top of the Boogie a verifier that can prove the correct-

ness of concurrent programs. Chalice is able to verify programs with the help of method contracts,

invariants, permissions and lock ordering. These will be explained in the sections which follow.

For now consider the simple Chalice example found in listing 2.4.

1 class Math {
2 method sqrt(n: int) returns (res: int)

3 requires 0 <= n;

4 ensures square(res) <= n && n < square(res+1);

5 {
6 res := 0;

7 while (square(res + 1) <= n)

8 invariant square(res) <= n;

9 {
10 res := res + 1;

11 }
12 }
13

14 function square(n : int) : int

15 { n ∗ n }
16 }

Listing 2.4: Simple Chalice example

The piece of code presents a rather simple example of a (incomplete) math class. The class features

a simple function square which multiplies any value by itself. The class also features a method

sqrt which computes the square root of a number n using a simple iterative approach. The re-

sult of the computation which is returned to the caller of the function is written to the res variable.
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2.2.1 Methods and functions

Chalice differentiates between methods and functions. Syntactically they look very similar both

allowing for contracts (see Section 2.2.2), however there is a significant difference between them.

A Method body, in Chalice, are a statement (or a sequence of statements) whereas the body of a

function is only an expression. Thus methods are in the group of statements and functions in the

group of expressions. This is a subtle, yet very important difference.

Since functions can only contain expressions, they can never change any object state, because

Chalice expressions are side-effect free. Functions can be thought of as a way of abstracting over

expressions. Therefore functions are expressions, which also means that they can be used in other

expressions. Methods on the other hand cannot be called in expressions because they may possi-

bly alter the heap. Additionally, methods can have multiple return values, whereas functions are

allowed to only return one value.

Methods are called using a special call keyword. Another important difference is that functions

are not are inlined into the places where they are used and only the preconditions are checked at

a function level. Functions in general do not use post-condtions as the Chalice verifier will be able

to deduce them.

2.2.2 Method Contracts

Method contracts take the form of requires and ensures and are part of the method (or function)

signature. They appear after the return declaration (if there is any) and before the method body.

Listing 2.5 shows only the method declaration of the math class example.

1 method sqrt(n: int) returns (res: int)

2 requires 0 <= n;

3 ensures square(res) <= n && n < square(res+1);

4 {
5 //implementation here...

6 }

Listing 2.5: The sqrt method signature

The signature of the method defines that any thread calling the method needs to make sure that

it does not give an argument which is negative. This is called the pre-condition and is denoted by

the keyword requires. If the thread passes an argument which is negative or did not ensure that

the variable passed down is never negative, the chalice verifier will complain and will produce an

error message. Consider the following.

1 call math.sqrt(4); //OK

2 call math.sqrt(−3); //NOT OK
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The post-condition is defined by the keyword ensures. The post-condition states which assump-

tions the thread can make after the method execution has finished. In the example of the sqrt

method (defined in listing 2.4) the caller of the method can assume that the square of the value

returned will never be bigger than the argument and that the argument will be smaller than the

square of the result plus one.

Additionally post-conditions can make use of the old(expression) expression which denotes the

value of the expression at the start of the method call. The listing 2.6 shows an example on how

to use the old(expression) expression.

1 class Counter {
2 var value : int;

3 method increment()

4 ensures getValue() == old(getValue()) + 1

5 {
6 value := value + 1;

7 }
8 function getValue() : int

9 { value }
10 }

Listing 2.6: A simple counter with an increment method

Note that the listing 2.6 will not verify as some details have been omitted (see Section 2.2.3) to

make the example easier to read. The example shows a counter class with a method which will

increment the variable value every time the method is called. The value can be read by calling the

getValue() function, therefore hiding the implementation details. The post-condition states that

getValue() will return the old value ofgetValue() plus one after the method increment() is finished.

2.2.3 Permission

In the previous section (section 2.2.2) the counter class (listing 2.6) had some parts of the contract

removed to simplify the example. The missing code from the contract are permissions. In Chalice

permissions are used to define “access rights” to given fields, which means that a thread needs

to have permissions to read and write a particular field. This is the main mechanism by which

Chalice prevents race conditions.

Listing 2.7 is now an example of the counter class with all the permissions in place. This example

will now successfully verify.

1 class Counter {
2 var value : int;

3 method increment()

4 requires acc(value, 100)

5 ensures acc(value, 100)

6 ensures getValue() == old(getValue()) + 1
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7 {
8 value := value + 1;

9 }
10 function getValue() : int

11 requires rd(value)

12 { value }
13 }

Listing 2.7: A simple complete counter with an increment method

The contracts now define that any thread which wants to call the method needs to have full access

permissions to the field value. This is done using the acc(field) expression. Permissions can be split

into percentages ranging from zero to one hundred. Therefore, one can also mention half of the

permissions to a memory location by using acc(field, 50). Additionally one can have ε permission

which is an arbitrary small yet positive value, which can be denoted using the rd(field) expression.

Note, that a special access command is acc(this.*,x) which describes access permissions to all the

fields in the object.

Chalice defines a clear set of rules on how field reads and writes may be performed. In particular,

a thread needs to have at least ε permissions to a given field to be allowed to read it. This can be

seen in the counter class (listing 2.7) where the function getValue() requires ε permission to the

value field. Therefore, the getValue() function is allowed to read the value field.

On the other hand, a thread may only write to a particular field if it has one hundred percent

permission to the field. Therefore the method increment() may read and write to the value field.

Note that in Chalice, one cannot forge permissions and the total is always one hundred percent.

Therefore if a particular thread has acquired one hundred percent permission to a particular field,

no other thread may be reading or writing to this memory location. Thus no race conditions may

happen in such a situation. Similarly if a thread has only obtained a small amount of permissions,

no other thread may gain one hundred percent permission to that field, which results in reads

being safe from race conditions.

Any post or pre-condition which mentions fields requires permissions as well. Therefore the fol-

lowing example will not verify.

1 class InValid{
2 var x : int;

3 method m()

4 requires x > 0

5 ensures x > 0

6 {
7 //some implementation here

8 }
9
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10 }

Without access permissions to the x variable the pre-condition may hold at the beginning of the

contract, but there is a possibility that the valie of x may change before the body of m() is ex-

ecuted. This does not limit the programmer in practical way, because if the method has some

pre-condition with regards to x it will most likely be using x and requiring the access permissions.

Any method which requires permissions inhales the permissions when it is called. If a method

states in the pre-condition that it requires certain access to a field, it will not automatically return

these permissions. These permissions have to be given back using the post-conditions. This is

called exhaling of the permissions. Methods are not required to return permissions if they choose

to implement some functionality. The most typical usage would be invariants which are described

in section 2.2.5. Note, that functions automatically return the permissions.

2.2.4 Predicates

The previous section (2.2.2) described contracts and how they are used in Chalice. The examples

shown in that section are correct, however they lack information hiding. The code has to reveal

the internal implementation even if the method used functions instead of variable names in the

contract. This can be seen in listing 2.8.

1 class NoEncapsulation{
2 var x : int

3

4 method m()

5 requires rd(x) && getX() > 0

6 ensures rd(x) && getX() > 0

7 {
8 //some implementation here

9 }
10 function getX() : int

11 requires rd(x)

12 { x }
13

14 }

Listing 2.8: A simple class with contracts

The method m() and the function getX() both expose the internal representation of x. The solution

to this problem is the use of predicates. Predicates provide an abstraction over permissions as well

as expressions describing conditions. Predicates (similar to functions) have a single expression for

their body. The difference is that the expression may (and in most cases need to) contain access

permissions. Any field mentioned in the predicate needs have its the correct access permissions.

Listing 2.9 now shows an example with predicates.

1 class Encapsulation{
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2 var x : int;

3

4 predicate valid

5 { acc(x) }
6

7 method Init()

8 requires acc(this.∗)
9 ensures valid && getX() > 0

10 {
11 //some implementation here

12 x := 5

13 fold valid

14 }
15

16 method m()

17 requires valid && getX() > 0

18 ensures valid && getX() > 0

19 {
20 //some implementation here

21 }
22

23 function getX() : int

24 requires valid

25 { unfolding valid in x }
26 }

Listing 2.9: A simple class with predicates

In this example the methods and functions do not reveal the internal representation of the class.

In fact, any programmer using this class does not need to be concerned with what valid actually

means. After calling the Init() method call, valid can be assumed to be true.

Chalice provides two views of predicates. Each program point has either an abstract view (also

called folded view) or a concrete view (also called unfolded view). The abstract view is independent

of the implementation, whereas the concrete view expands the predicate and makes the contents

accessible.

Unlike functions, whose implementation is always available at any program point, predicates need

to be switched from one view to another manually, using the statements fold and unfold. To be

able to fold a predicate, the expression of the body needs to hold. One can think of fold q as a

method requiring the body of q and then returning q. In the case of the example provided in

listing 2.9 one can think of the fold valid to be a method call with the following contract.

1 method fold valid()

2 requires acc(x)

3 ensures valid
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Unfolding of a predicate is the reverse operation. An unfold q requires q to hold and ensures that

the expression defined in the predicate holds. Therefore the example provided in listing 2.9 one

can think of the unfold valid to be a method call with the following contract.

1 method unfold valid()

2 requires valid

3 ensures acc(x)

Additionally, Chalice adds support for a unfolding x in y expression, where x is a predicate and y

is an expression. This allows the code to unfold any predicate temporarily in an expression. This

is especially useful for functions.

2.2.5 Invariants

Chalice provides support for two kinds of invariants: loop invariants and monitor invariants. The

loop invariant deals only with while loops whereas the monitor invariant is defined for an object.

Loop invariant

The loop invariant is a boolean expression which needs to hold at every loop entry and loop exit.

The invariant expressions typically contain variables which change in the loop body. This is called

successive approximation. In fact, most programming loops work by successive approximation.

The listing 2.4 on page 21 shows an example of a loop invariant. The invariant square(res) <= n

requires that at each loop entry, the square of res is never greater than the n value. What follows

is that when the loop finishes the verifier can assume square(res) <= n to be true. Additionally

it can deduce that the negation of square(res + 1) <= n (which is square(res + 1) > n) is also

true, since the loop has exited. Therefore, the post condition of sqrt method can be successfully

verified to hold.

Monitor invariant

Most programming languages which have support for contracts, also provide support for class

invariants. It is important to note that Chalice does not use class invariants, but instead uses

monitor invariants, which are different from the class invariants.

Class invariants typically define some expression which is assumed to be true of an object at any

function or method entry, and then this boolean expression needs to be ensured at the very end

of the method. Inside the method the invariant may be broken.

A monitor invariant works differently. A monitor invariant in Chalice is a boolean expression guar-

anteed to be true whenever an object is not locked by any thread. The main difference between a

monitor invariant and a class invariant is the locations at which the expression can be assumed to



28 2 Background

be true. The monitor invariant of an object can be assumed true right after the point the object

was locked. Consequently any thread which releases a lock or shares an object needs to ensure

that the invariant holds at that point. Therefore invariants can be thought of holding only when

the object is shared (available for multiple threads to take).

Monitor invariants are also allowed to hold permissions. Similarly to the predicates, permissions

which are in the invariant are acquired when the object gets locked and have to be given up when

the object gets shared or released. Therefore the thread needs to hold the required access permis-

sions to release/share a given object.

These differences have quite an impact on how one deals with invariants in Chalice. Monitor

invariants do not need to hold in between method calls. More importantly, they do not need to

hold at all if an object is never shared or if it gets never released.

1 class Car{
2 var wheels : int

3 invariant valid && getWheels() == 4

4

5 predicate valid

6 { acc(wheels, 100)}
7

8 function getWheels() : int

9 requires valid

10 { unfolding valid in wheels }
11

12 method Init()

13 requires acc(this.∗)
14 ensures valid && getWheels() == 4

15 {
16 wheels := 4;

17 //valid needs to hold here

18 fold valid

19 }
20

21 method drive()

22 requires valid

23 ensures valid

24 { /∗broom brooom...∗/ }
25 }
26

27 class Main{
28 method main()

29 {
30 var car : Car := new Car;

31 car.wheels := 3;

32 //monitor invariant doesnt need to hole here ...

33 call car. Init () ;

34 //monitor invariant needs to hold here
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35 share car

36 acquire car

37 //monitor invariant holds here

38 unfold car.valid

39 car.wheels := 3

40 fold car. valid

41 call car.drive() ;

42 unfold car.valid

43 //monitor invariant does not need to hold here

44 car.wheels := 4

45 fold car. valid

46 //monitor invariant needs to hold here

47 release car

48 }
49 }

Listing 2.10: A simple example with monitor invariants

Listing 2.10 shows an example of monitor invariants. In this example, there is a class Car and a

class Main. The Main class defines the entry point into the program with the method main(). The

class Car defines a simple object which has 1 variable called wheels. This denotes the number of

wheels of the car. A Car usually has 4 wheels (unless it is being serviced or it is a Scott Sociable).

Therefore the car class defines an invariant which states the car should always have 4 wheels.

The main method shows however, that with the provided implementation it is still possible to

drive the car even though the method sets the number of wheels to 3. Therefore, the drive method

should either have a precondition with getWheels() == 4 or getWheels() == 4 should be included

in the valid predicate. It should also be noted, that between the share and acquire statements,

the method has zero access permissions to the wheels field. That permission is stored inside the

predicate, which is stored in the monitor invariant.

2.2.6 Lock Ordering

As previously mentioned Chalice is able to prove the absence of dead locks. This is achieved with

the help of a field called mu. Any object in Chalice has this special field. It defines the order in

which the objects may be locked. Recall that dead locks usually occur when threads lock objects

in different orders. Therefore, this mu field disallows locking objects in different orders.

When an object is created the mu field is automatically initialized to the special value lockbot-

tom, which indicates that the object cannot be locked. When an object is shared, the mu field is

written to. Therefore, sharing requires a hundred percent access rights to the mu field, otherwise

the write would not be safe from race conditions (Section 2.1.2) (and could possibly lead to dead

locks). It is not possible to write to the mu field directly, but rather with the share keyword. The

default behavior of the share statement is share x above maxlock, where x is the object to be shared.
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The special value maxlock defines the maximum mu value of all locked objects at that point. That

means that one can only lock objects which have a mu value above the maxlock to avoid deadlocks.

The full share command takes the form of share x below y above z where x, y and z are all objects

to which the thread has at least read access to the mu fields of y and z. Optionally, y or z can

be exchanged for maxlock. Listing 2.11 shows a simple example showing how objects are shared.

Note, that the object y has a mu field which is above the mu field of the x object. Therefore,

Chalice will complain about the order in which the method m() tries to lock the items. The correct

order would be acquire x; acquire y;. This also means that any piece of code wanting to lock a

particular object, requires at least read access to the object’s mu field.

1 class Foo{
2 }
3

4 class Main{
5 method m()

6 {
7 var x : Foo := new Foo

8 var y : Foo := new Foo

9

10 share x

11 share y above x

12

13 acquire y;

14 acquire x; //NOT OK, x.mu is below y.mu

15 }
16 }

Listing 2.11: A simple example with locking

Chalice introduces a special operator << which is used to compare mu values. An expression

x.mu << y.mu evaluates to true if and only if the value of the mu field of x is lower than that of

y.

2.2.7 Threads

Chalice also provides support for the creation of threads. Without that functionality, all the previ-

ously mentioned complexity would not be of much use. Chalice can create threads with the use of

the fork statement. The fork statement works very similarly to the call statement. The difference

is that the fork statement does not return the return values of the method, but instead the state-

ment returns a token which can be used to wait on the result of the method. That method is then

executed in a newly created thread. Listing 2.12 an example where two threads are created both

of which compute the sum of the arguments. Notice that the return value is not the actual result,

but a token which can then be waited on by using the join command. This command returns the

actual sum.

1 class Main{
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2

3 method main()

4 {
5 var sum1 : int;

6 var sum2 : int;

7

8 fork thread1 := add(3, 4);

9 fork thread2 := add(4, 6);

10

11 join sum1 := thread1

12 join sum2 := thread2

13 }
14

15 method add(x : int, y : int) returns (sum : int)

16 ensures sum == x + y;

17 {
18 sum := x + y;

19 }
20 }

Listing 2.12: A simple example with forking

Similarly, if the method call requires permissions, these permissions will be consumed at the fork

statement and if a method ensures permissions these will be first received at the join statement.

Otherwise two threads would be able to acquire a hundred percent permission to memory locations.

2.3 Composite Pattern

The Composite pattern is a software design pattern, which is the research subject in this master

thesis. This section describes the Composite pattern, motivation for usage and finally gives a small

examples on how the composite pattern may be used.

2.3.1 Description

The pattern describes groups of objects which can be treated as a single instance of an object.

Figure 2.1 shows a UML diagram of the Composite pattern. The pattern is made up of three

classes: Component, Leaf, Composite. The Component is the actual abstraction, and the Leaf

and Composite both inherit from the Component. The Leaf and Composite can only have 1 parent

and the Composite may have multiple children. Therefore, the structure forms a tree.

2.3.2 Motivation

The main motivation behind using the composite pattern is to simplify the resulting code which

is required to support a certain feature. The code does not need to differentiate between a group

of objects and single instances neither does it need to differentiate between a composite or leaf.
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Component

+operation()

Leaf

+operation()

Composite

+operation()
+add()
+remove()
+getChild()

parent

1

child
0..*

Figure 2.1: UML diagram of the Composite pattern

Consider the example of a windowing system. These are usually built using the Composite pattern.

Any window component (e.g. panel, button, checkbox...) can be added to another. Therefore,

one can add a button to a panel and the panel to the main window frame. Now if all of these

components support a setVisible() method, then it is enough to call the method on any component

to hide all the children of that component. Otherwise, one would have to iterate through all the

children manually.

2.3.3 Example

Lets consider a slightly modified version of the Composite pattern. Chalice does not support in-

heritance, therefore one actually has to modify the pattern. The modified version of the pattern

only uses one class, the Composite class. This class can both act as a leaf or as a composite and

therefore there is no need for the component object.

Figure 2.2 shows an example of a Composite pattern instance. That instance of the Composite

pattern represents a Dinner at a restaurant. Every object inside that pattern represents a meal and

the associated calories. Additionally, one would want to define an invariant which states that the

calories value of a given meal is the sum of all the calories values from all its children. Therefore,

the root contains the calories for the whole tree. This is a property which should always hold.
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Name: Dinner

Calories: 2000

Name: First Course
Calories: 1500

Name: Salad
Calories: 300

Name: Main Dish
Calories: 1200

Name: Fish
Calories: 900

Name: Chips

Calories: 300

Name: Desert
Calories: 500

Figure 2.2: An example of a Composite pattern instance
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Chapter 3

Writing to the Composite

This Chapter describes the a simple implementation of a Composite pattern in chalice. This

implementation supports writing to the data structure, in the form of adding composite objects to

the structure. This chapter begins with describing the instance of the Composite pattern which will

be used, followed by the details of the implementation and finishes with issues this implementation

faces.

3.1 Composite Instance

The implementation of the Composite pattern slightly differs from the one described in the back-

ground section (2.3). Chalice does not support inheritance, therefore, there are only objects of

the same class used to implement the pattern. This does not limit the project in any way, as the

interest is in verifying the invariant and not the pattern usage.

The Composite pattern had to be simplified to a binary tree, as Chalice did not support specifying

access permissions to fields inside of arrays. Therefore, the implementation only allows for a “left”

and “right” child. This again does not limit the implementation in any way as the simplification

does not simplify the main problem, which is verifying that the invariant holds. On a side note,

this bug has been fixed in lates Chalice build.

The invariant in which the project is interested in, is counting the total number of nodes in a

sub-tree of the Composite pattern. Figure 3.1 shows an example of the Composite pattern which

is implemented.

The diagram shows the total fields of each individual node. Each node has the total value which

is the number of nodes in the subtree rooted at that particular node. For instance, the root node

contains the number seven, and every leaf node contains the number seven.

35
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total: 7

total: 5

total: 1 total: 3

total: 1 total: 1

total: 1

Figure 3.1: An example of a possible instance in the implementation

3.2 Implementation

Lets look at the implementation of the composite pattern. The full code for the implementation

can be found in the appendix (see appendix A). This report describes the implementation step

by step starting with the invariant(section 3.2.1), followed by the implementation of the most

important method calls(section 3.2.2) and concludes with general comments about the approach

taken(section 3.3).

3.2.1 Specifying the invariant

Listing 3.1 shows only the code responsible for the invariant in the class. The invariant for the

Composite class is split into two, the valid predicate and the correctTotal() function. The correct-

Total() function corresponds to the actual invariant of interest.

1 class Composite{
2

3 var parent : Composite;

4 var left : Composite;

5 var right : Composite;

6

7 var total : int;

8 ghost var index : int;
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9

10 invariant valid && correctTotal()

11

12 /∗ ... ∗/
13 }

Listing 3.1: The invariant part of the write only implementation

Listing 3.2 shows the implementation of the correctTotal() function. This function requires valid

to hold ( the details of the predicate are shown in this section ), and computes the correct total

amount. This is achieved by checking whether the composite object has any children, summing

up their total fields and adding one. This assumes that the total fields of the children satisfy the

invariant, which can only be assumed true if the children are shared or are going to be released.

In this implementation that does not pose a problem as every newly added object gets released.

1 function correctTotal() : bool

2 requires valid

3 {
4 unfolding valid in (total == (1 + ite(left == null, 0, left . total ) + ite(right == null, 0,

right . total )))

5 }

Listing 3.2: The correctTotal() implementation

Listing 3.3 shows the implementation of the valid predicate. The valid predicate contains the

access permissions and structural invariants of the Composite pattern. The access permissions

are set up in the following way. Every composite object has at least half access permission to all

its own internal fields, which includes the parent, right, left, index, and total fields. The valid

predicate can therefore read the fields and define additional restrictions.

1 predicate valid

2 {
3 acc(parent, 50) && acc(right, 50) && acc(index, 50) && acc(left,50) && acc(total, 50)

4

5 && (index == 0 || index == 1 || index == 2)

6 && (index == 0 ==> parent == null)

7 && ((index == 1 || index == 2) ==> parent != null )

8

9 && (left != null ==> acc(left.total, 50) && acc(left.parent, 50) && left.parent == this

10 && acc(left.index, 50) && left.index == 1)

11 && (right != null ==> acc(right.total, 50) && acc(right.parent, 50) && right.parent ==

this

12 && acc(right.index, 50) && right.index == 2)

13 && (parent != null ==> ite(index == 1, acc(parent.left, 50), acc(parent.right, 50)))

14 && (parent != null ==> acc(mu,1) && acc(parent.mu,1) && this << parent)

15

16 && (index == 1 ==> parent.left == this)

17 && (index == 2 ==> parent.right == this)

18
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19 && (left == null ==> acc(left, 50))

20 && (right == null ==> acc(right,50))

21 && (parent == null ==> acc(total, 50) && acc(parent, 50) && acc(index, 50))

22 }

Listing 3.3: The valid predicate

First of all, consider the index variable. This is a ghost variable, which is only used for verifica-

tion purposes and never used in the actual implementation. This variable is required so that the

composite object knows if its the left or right child in the parents fields. In general, if the parent

had an array of objects as children, this variable would be the index the child reference is stored

at. The index value can be used to hold the proper permissions and inspect the proper element.

The next expressions (line 9 up to 12) checks for children. For every child of the object, the com-

posite object should hold the access permissions to at least the total, the parent and the index. The

access to the total is required so that correctTotal() can read the value in the function. Read access

to the parent and index variables are required so that the parent and index fields can be checked for

consistency, i.e. the parent of the child should always point to this object and the index should also

be correct (in this case, if the child is left then the index of the child should be one, otherwise two).

Expressions (on line 13 and 14) deal with the case when the object has a parent object. In here,

the predicate states the access permissions to the parents left or right field. This is where the

index ghost field is required. Without that field, the predicate would have to require both access

permissions, to the left and to the right field. That might not seem to pose a problem, but it

would not be possible to implement the locking as there is no locking order between the children,

and therefore it would not be possible to lock another sibling object without locking the parent.

The line 14 specifies that the parent object needs to have a higher mu field than the this object,

so that one can lock up the tree.

The lines 16 to 17 are for consistency. They make sure that if the index is non-zero (i.e. the object

has a parent), then the parent left field (in the case of index being one) or right field (in the case

of index being two) has a value which points to the this object. Otherwise the structure would be

inconsistent. Again, if there would no be an index value, then the expressions would have to look

like the following.

1 (parent. left == this || parent. right == this) && (parent.left != parent.right)

The major drawback with this approach is the fact that this code would not scale very well. In the

case of an array of children, doing such an expression would be very cumbersome and less elegant

than the index field. In contrast, the index field would work very well with arrays.

The last line deals with the case when either the left, right or parent fields are empty. In the case

of the left or right field, the access permissions to left or right are completed. That means, that

if there is no left object, then the this object may change this field because no object’s invariant
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depends on the left field. Similarly, if there is no parent object, then there is no object, which

invariant depends on the total, parent and index field. Therefore, the valid predicate may contain

one hundred percent access to these fields.

3.2.2 Method Implementation

The implementation is split into two methods which do most of the work. Listing 3.4 shows the

addLeft() method along with its contracts. Note, that the implementation does not have an ad-

dRight() method as it’s symmetric to the addLeft() method.

1 method addLeft(newLeft : Composite)

2 requires newLeft != null

3

4 requires holds(this)

5 requires holds(newLeft)

6

7 requires valid

8 requires newLeft.valid

9

10 requires !hasLeft()

11 requires newLeft.addable()

12

13 requires correctTotal()

14 requires newLeft.correctTotal()

15

16 requires acc(mu,1)

17 requires acc(newLeft.mu,1)

18 requires newLeft << this

19 requires maxlock == this.mu

20

21 lockchange this

22 lockchange newLeft

23 {
24 unfold valid

25 unfold newLeft.valid

26 left := newLeft;

27 left .parent := this;

28 left .index := 1

29 fold newLeft.valid

30 fold valid

31 call addTotal(unfolding valid in newLeft.total)

32 }

Listing 3.4: The addLeft() method

The method requires for both, the current object and the newLeft (the object which is to be added)

to be locked. In this implementation it is not enough to have the valid predicate hold, because

this method will be releasing the locks later on in the code. Since the objects are locked, the

method also requires the valid predicates to hold and also requires that the total fields are correct
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by requiring correctTotal() on both objects. This is a consequence of monitor invariants, which

are not required to hold in between method calls (in contrast to class invariants. See section(2.2.5)).

The lines 10 and 11 mention the actual pre-conditions for the logic of the method. The method re-

quires that the current object does not have a left child and similarly, that the object which is to be

added does not have a parent. Otherwise the method would have to deal with current objects child.

The last lines of the contract (lines 16 to 22) deal with lock ordering and lock changes. In section

3.2.1 , the valid predicate was described. The predicate requires access to the current object’s mu

field as long as there is a parent. This is important so that the method described later can acquire

locks on parent objects. Therefore the method also needs to require access permissions to the

mu fields. There is also a requirement of newLeft being lower in the lock order than the current

object, which is required for the valid predicate to hold. Finally, the last two lines indicate that

the locks of this and newLeft might change in the method.

The method body of the addLeft() is straightforward. The valid predicates are unfolded, the cor-

rect values are set and then the predicates are folded again. Note, that at that point, it is only

possible to release the newLeft object, as it’s correctTotal() is satisfied. The current object has

a total field which does not satisfy the correctTotal() expression. Consequently, the addTotal()

method is called to fix the local invariant.

Listing 3.5 shows the implementation of the addTotal() method. Note that this method is meant

for the class’ internal use, therefore the requirements may rely on internal fields. The method

requires that the current object is locked and that the object is in a consistent state, which is

achieved by requiring the valid predicate. It is also important to notice that the method can only

be called if the maxlock is below the current object’s parent.mu field, since this method will have

to lock the parent object if such one exists. Line 6 requires that the total field contains a value

which is smaller than the value described by the invariant. In particular, the value needs to be

smaller by the amount argument.

1 method addTotal(amount : int)

2 requires holds(this)

3 requires valid

4

5 requires unfolding valid in (parent != null ==> maxlock << parent.mu)

6 requires (unfolding valid in total) == correctTotalAmount() − amount

7 lockchange this

8 {
9 var current : Composite := this

10 var parent : Composite;

11 while(current != null)

12 invariant current != null ==> holds(current)

13 invariant current != null ==> current.valid

14 invariant current != null ==>
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15 unfolding current.valid in (current.parent != null ==> maxlock << current.

parent.mu)

16 invariant current != null ==>

17 (unfolding current.valid in current. total ) == current.correctTotalAmount() −
amount

18 {
19 unfold current.valid

20 parent := current.parent;

21 if (parent != null){
22 acquire parent

23 unfold parent.valid

24 }
25 current. total := current. total + amount;

26 fold current. valid

27 release current

28

29 current := parent

30 if (parent != null){
31 fold current. valid

32 }
33 }
34 }

Listing 3.5: The addTotal() method

The implementation of the addTotal() method is entirely in the while loop. Recall the valid pred-

icate from listing 3.3 from page 37. Notice that any object which has a parent, only has fifty

percent access to the total field and the rest of the access is held by the parent object. Therefore,

before the thread can change the total field, it needs to lock the parent object, if such one exists.

Then the current object can be released because it’s invariant has been fixed by correcting the

total field (line 25). At that point, the parent object has the invariant broken, because the child

has a new value in the total value. The loop will also fix the parents invariant by repeating the

process until the loop has reached the root object (e.g. a node with no parent object).

This implementation is also known as hand over hand locking. In that solution, the thread has

only ever two objects locked, the object which has it changes done and the object which invariant

depends on these changes. Such an implementation allows for a high degree of concurrency.

3.3 Remarks

The implementation described in this section is correct, yet rather incomplete. One problem with

that particular solution is that it is impossible to remove children objects from parents, when

having the parent object locked and the children objects not locked. For a method which would

remove children to be useful, it would have to support removing children without knowing the

children beforehand. The problem in this implementation is that the code can only ever lock up

the tree, but not down the tree. To remove a node from the tree, both objects (the parent node,

and the node to be removed) need to be locked. Since the client code cannot know the child object
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before locking the parent object, it cannot lock the child object before the parent object. It is

neither allowed to first lock the parent and then the child as the locking order would be incorrect

and the resulting implementation could deadlock.

On the other hand, removing a parent from a composite object is fine, but was not implemented.

The implementation is very analogue to the add implementation, but instead of giving it a positive

amount, the argument to the addTotal method would be negative. This is only possible since the

only other object relying on the current objects parent field is the parent.

It should also be noted that this implementation has a high degree of concurrency due to the

hand over hand locking implementation. Composite objects may be added (and removed) to the

structure concurrently, with these additions to be happening at the same time.

The implementation stumbles on another problem which involves contracts. The addLeft() method

requires that the current object is already locked and therefore is able to mention any preconditions

on the objects, such as having an available slot for the left object. However, the hand over hand

locking released the lock before the method finishes, and therefore it has zero access permissions

to any of the objects field. The result of this is that the method cannot ensure anything as the

object might have already changed. This is a huge disadvantage as the code inside the method

cannot be verified according to the method contract. One could also swap the implementation

of the addLeft() method for a single line which releases both objects and the code would still verify.

The biggest problem of the implementation is that the structure cannot ensure a consistent reading

of all the values in the composite tree. Consider the case of a graphical user interface (in short

GUI) renderer. A renderer is a piece of software which visualizes a particular gui window on the

screen by drawing each element inside the window. The gui window can be represented using the

Composite pattern where every element, such as a panel or button, is a composite object. The

renderer may want to query the sizes required for particular elements in the composite structure

to know how much space to reserve for a given element.

Now the problem with the provided implementation is that the gui renderer will not be able to

read the sizes from a consistent state. It may lock every object one by one (and only ever holding

the lock to one element). This approach will result in unexpected behavior as other threads are

allowed to modify the tree concurrently while the renderer is reading the objects in the composite

tree.

Figure 3.2 a simple sketch of an example window, which confirms if the user wants to a quit

or not and figure 3.3 shows the corresponding representation in composite form. Additionally,

every element features a size field which represents the required size of that component taking

into consideration all of the children element sizes. Notice that the elements have a very similar

behavior as the code implemented in section 3.2.
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Window

Panel

OK Button

Would you like to quit - Label

Figure 3.2: A sketch of a graphical user interface window

Window

Panel

Label Button

Label

Figure 3.3: The composite tree representing the window from 3.2
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Consider now that the gui renderer wants to draw the window on the screen. The first action

would be to lock the top level element (which represents the window) and ask for its size. Now the

renderer needs to make a copy of the list of all the children in the window and unlock the window

object (since all children have a smaller mu field than the window element). Before the gui renderer

is able to lock the panel element, another thread decided to add another button which allows the

user of the program to cancel the quitting of the program. It is likely that this now increased the

size of the panel as it received another component. The problem here will be the that the write

may propagate now upwards before the gui renderer is able to lock the panel element. Imagine

that the gui renderer locks the panel element after the write has completed. Now the panel seems

to require more space than the window anticipated and might not fit inside the window anymore.

This problem is attempted to be solved in the next chapter.



Chapter 4

Reading the Composite

The Chapter 3 described a simple and incomplete solution to verifying the composite pattern. It

was shown that the Composite pattern implementation also requires a way to keep a steady state.

This Chapter will describe ideas on potential solutions, prerequisites for a proposed solution and

finally describe that proposed solution.

4.1 Potential Solutions

During the project, there were multiple ideas taken into consideration which were supposed to

help in the successful verification of the Composite pattern with respect to reading a consistent

state. This section describes the most important ideas.

4.1.1 Considerate Reasoning

The first idea was to look into into Considerate Reasoning[4], which is able to verify the Compos-

ite pattern in a sequential setting. It would have seemed that the approach taken by Considerate

Reasoning could also be applied in a concurrent setting.

In short, Considerate reasoning is a technique for verifying sequential programs in which the ver-

ifier knows which fields (and their updates) break the invariant of which objects. This is useful,

as the verifier can then check whether an object invariant has been reestablished. Additionally,

Considerate Reasoning allows for temporarily broken invariants, which allows method to mention

broken invariants and allows them to fix these invariants.

Unfortunately, Chalice would not benefit at all from using Considerate Reasoning. As a matter

of fact, Chalice already uses a very similar approach. In Considerate Reasoning, the dependencies

between fields and object invariants are implicitly defined. Chalice on the other hand has the

dependencies defined explicitly in the form of permissions. If a particular invariant depends on

another object and its field, then the invariant has to have at least read access to that particular

field of that object. Therefore, Chalice does not benefit from Considerate Reasoning and was not

45
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used in the project.

4.1.2 Multiple Lock types

Chalice only supports for locking objects in a single way which acquires all the access permissions

and predicates stored in the monitor. The exception to this is the read/write lock in Chalice which

is not completely implemented. The introduction of multiple locks would enable a higher degree

of concurrency and possibly enable the implementation of read and write locks on the Chalice level.

The main idea behind multiple lock types is the following. Every object would define its invariant

as it does right now in Chalice. Additionally, classes would be allowed to define lock types. These

lock types would then define a subset of the monitor invariants permissions. The actual boolean

expressions could be assumed at the time of acquiring the lock and would have to be ensured at

release time. Consider the following example.

1

2 class Simple{
3

4 var x : int;

5

6 invariant acc(x, 100) && x > 0

7

8 locktype write: acc(x,100)

9 locktype read: rd(x)

10 }

This simple example defines a class Simple with a single integer memory location called x. The

invariant states that the monitor holds a hundred percent access to the x field and that the x field

should always be bigger than zero when the object is in a shared and unlocked state. Additionally,

it defines two lock types which write and read. According to that specification, only one thread

will be able to lock the write lock and all the other threads would have to wait until that lock is

released. Similarly, there may be multiple threads with a read lock, but no thread with a write

lock at any given time.

Every memory location which is mentioned in the invariant, requires to be in every definition of

every locktype. This is a consequence of the fact that the invariant needs to be ensured when the

object gets released. Imagine a class where the specification looks as follows:

1

2 class Simple{
3

4 var x : int;

5 var y : int;

6

7 invariant acc(x, 100) && acc(y,100) && x != y

8

9 locktype write x: acc(x,100)



4.1 Potential Solutions 47

10 locktype write y: acc(y,100)

11 }

In this example, when a thread acquired the write x lock there would be no way of determining

the if the boolean expression of x != y still holds. Therefore, in most cases the locks would be

exclusive to one another.

This idea would not require a lot of modifications to the current Chalice compiler and verifier.

The locks would be treated similarly as they are treated in the current implementation, with the

only difference being the permissions the thread receives after acquiring a lock. The verifier would

actually not have to deal with the number of threads which may lock a particular lock type at any

given moment because the verifier is based on access permissions and does not care about other

threads (which may have the same access permissions). As long as the thread has a fraction of

permissions to certain memory locations, no other thread will be able to modify these locations.

This idea was not developed further as it suffers from couple of problems which make the solution

undesirable. Firstly, it would be of an advantage if threads was able to upgrade the lock types to

either full locks or different types of locks. This approach would unfortunately lead to deadlocks,

as there is the possibility of two threads wanting to perform the upgrade simultaneously. This

would result in both thread having a fraction of permissions which the other thread requires to

get full access permissions.

These lock types would be mutually exclusive for most practical purposes, e.g. if there are threads

which have obtained one of these lock types, no other thread may acquire the different lock type

until all threads are done. This may not be clear at first, but becomes apparent upon further

inspection. For lock types to actually make sense, the permissions in the types needs to vary,

otherwise if the permissions are the same, then there is no point in having multiple lock types. If

the permissions vary (e.g. one lock type provides total access to a particular memory location)

then no other lock type may be locked at that time. In reality, the problem is even worse, as only

one thread will be able to lock on the objects, and the additional complexity of this idea would

not provide any benefit at all to Chalice.

There is also the issue on how to handle predicates in such a setting. Predicates actually hide

the details on the permissions. Therefore, there would have to be some kind of mechanism which

would provide a way to infer if a predicate contains a subset of permissions of another predicate.

With all the issues identified for this idea, it was rather clear that there is little merit in imple-

menting such a feature into Chalice, as the implementation would not provide any more flexibility

or concurrency for Chalice.
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4.1.3 Object Groups

Since the Composite structure deals with a number of objects, it makes sense to group these ob-

jects into one structure which could restrict access to the objects or change properties of the whole

group of objects without dealing with every single instance inside the group. There are multiple

issues to consider for such a setting. The first issue deals with ensuring that the structure is dead-

lock free and the second issue is how a particular representation helps in verifying the Composite

pattern. It turns out that this is not as straightforward as it would seem.

An object group would require to support at least two different modes of operation. The first

mode of operation would be the write mode and the second mode would be the read mode. These

two modes would be incompatible with each other, e.g. if an object group is in read mode and

threads are currently accessing the objects inside the group, another thread which wants to set the

group into write mode would have to wait for all threads to finish reading objects in that group.

According to these modes different operations should be possible on the objects. The following

sub sections deal with possible structure implementations.

Owners for every object

The simplest way of representing the structure is to enforce an owner field, which points to the

structure the object belongs to. Additionally, every object requires every neighbor object to have

the same owner. In the case of the Composite pattern, every object would require the parent

object to have the same owner as the current object, so that one can ensure a consistent state

when the read mode is active.

This results in a problem as suddenly it is not possible to add new objects to the composite

structure. Consider the following piece of code.

1

2 class Composite{
3

4 var total : int;

5

6

7 predicate valid{
8 /∗ all old invariants here ∗/
9 && acc(this.owner, 50)

10

11 //assumes at least rd(parent)

12 && (parent == null ==> acc(this.owner, 50))

13

14 //assumes at least rd( left ) present

15 && (left != null ==> acc(left.owner, 50) && left.owner == this.owner)

16

17 //assumes at least rd(right)

18 && (right != null ==> acc(right.owner, 50) && right.owner == this.owner

19 }
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20 }

This could be supplementary to the implementation provided in chapter 3. Notice that in this case

it is easier to enforce the condition that the child object requires the same owner as the current

object, then requiring that the current object has the same owner object as the parent. Otherwise,

the permissions would be hard to set up as every child would require access to a field in the parent

object. In a binary tree that would not be that difficult, but for a general m-tree that could get

very difficult to set up.

Now recall the addLeft() method from section 3.2.2. To ensure that the method does not break

the parent invariant, the method has to change the owner field of the current object to the owner

field of the parent object. Consider the following piece of code.

1 class Composite{
2

3 /∗ ... ∗/
4

5 method addLeft(newLeft : Composite)

6 /∗contract here∗/
7 {
8 unfold valid

9 unfold newLeft.valid

10 left := newLeft;

11 left .parent := this;

12 left .index := 1

13 left .owner := owner

14

15 //At this point newLeft.valid is not satisfied !

16 fold newLeft.valid

17 fold valid

18 release newLeft;

19 call addTotal(unfolding valid in newLeft.total)

20 }
21 }

The fold newLeft.valid will not be satisfied as the children objects might have different owner

objects. The code at that point cannot lock the children objects anymore because these have a

lower mu field than the maxlock. Therefore it is impossible to add new objects when having such

a structure defined.

This implementation would also suffer from deadlocks. Consider two threads (called Bob and Eve

for readability) who want to access the data structure. Bob wants to read from the structure and

Eve wants to write to the structure. None of them actually know to which structure the objects

they have references to belong. Assume that both Bob and Eve have references to different objects

from the same structure. Bob and Eve both lock their object to acquire access to the owner field

of the object. Eve manages to change the mode to write mode and continues with the write. Now

if Bob and Eve are lucky, they will be able to finish the execution. On the other hand, it might
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happen that Bob who wants to read the structure from a particular object, holds the reference to

a parent object of Eve’s object. Bob will try to set the mode of the structure to read mode and

will have to wait until Eve is finished. Eve will be doing the update until it tries to lock Bobs

object, which is held by Bob. Both threads are now deadlocked. This happens because the locking

order is not satisfied. In general the owner structure should have a lower mu field than any object

inside the structure.

Only Root has owner

Another way of representing the object groups would be to keep the owner in only the root object.

This already assumes that the structure is a tree structure with a single root which can hold the

structure field. For the Composite pattern this approach can be taken as the Composite pattern

forms a tree structure.

In such an implementation, there is no problem with keeping all the owners consistent, as there is

only one structure field in all the objects.

This approach, similar to the others, also has it’s issues. The first issue is that its not clear how

objects could ensure locally that they are indeed in the same object group. One possible solution

would be ensuring that the root of the tree for the current object is exactly the same as the root

for the parent object. It might be possible to define a function rootOf() which recursively finds

the root of the a particular object. Such a function could be defined in the following way.

1 class Composite{
2 /∗ ... ∗/
3 function rootOf() : Composite

4 /∗ contract ∗/
5 {
6 ite(parent == null, this, parent.rootOf())

7 }
8 }

This function would require a complex contract and would also require all the objects to be parent

objects to be locked. If someone were to write a contract which would look state parent != null

==> (this.rootOf() == parent.rootOf()) Chalice would not be able to compute the statement

without having all the permissions. That statement can easily be shown to be true by expanding

the first function which would result in parent != null ==> ( (ite(parent == null, this, par-

ent.rootOf())) == parent.rootOf() ) . Since parent is not null in the implication, the expression

can further be simplified to parent != null ==> parent.rootOf() == parent.rootOf() which is

trivially true without even evaluating the rootOf() function.

The above problem could be avoided by possibly adding an additional rule for the verifier to

assume the expression to be true at all times. Although that might work, the problem of the

locking order still remains. To reach the root object one has to lock and keep the lock of all the
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objects which are on the path to the root. Firstly, this is very inefficient, in the worst case, a

thread might have to lock a large number of objects just to read two values from the tree in a

consistent state. More importantly, this approach still does not solve the locking order issue. This

technique still requires the actual object to be locked first in order to gain access to the correct

structure object. As it was shown before, the actual structure needs to be set to a given mode

before any operations on the actual objects are done.

4.2 Solution Proposal

This section of the report proposes a potential solution for verifying the Composite pattern, which

supports reading and writing to the structure, with the additional support for setting the structure

in a read or write state. The section starts with describing all the features required to support

the solution but which are not currently present in Chalice and then continues with the actual

proposal of a solution and finishes with remarks about the solution.

4.2.1 Prerequisites

Specifying Permissions over arrays

Chalice allows the handling of arrays and supports expressions specifying conditions over items in

arrays. Unfortunately, at the time of the writing it was not possible to specify any access permis-

sions over objects which were stored in arrays. Consider the example shown in listing 4.1.

1 class Test{
2 var tests : seq<Test>;

3 var total : int;

4

5 invariant acc(tests, 100);

6 invariant acc(total, 50);

7

8 //Problem 1

9 invariant forall { i in [0: size ()−1]; acc(at(i) . total ,50) } //acc not expected here exception

10

11 //Problem 2

12 invariant forall { i in [0: size ()−1]; at( i ) .pre } //assertion failed

13

14 function at(loc : int) : Test

15 requires acc(tests);

16 requires loc >= 0 && loc < size();

17 {
18 tests [ loc ]

19 }
20

21

22 function size() : int

23 requires acc(tests);

24 ensures result >= 0;
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25 {
26 | tests |
27 }
28

29 predicate pre

30 { acc(total, 50) }
31 }

Listing 4.1: A simple example which produces an error

Line 9 and 12 both contain invariants which specify access permissions over a sequence of objects.

Unfortunately, both these lines will produce an error in the Chalice compilation. The error pro-

duced is an internal exception which indicates this is a bug in the current implementation.

Specifying access permissions over objects in the array seems to be a very useful, for multiple

purposes. Firstly, it is not possible to implement the Composite pattern which allows for multiple

children without the ability to specify the access permissions to the children. Additionally, this

would very useful for providing access to multiple object fields without having to lock these objects

separately.

As a matter of fact, this bug was recently fixed and now Chalice is able to specify permissions

overs objects in arrays.

Read-write Lock

Chalice currently only fully supports one type of locks on a monitor. This is a regular lock which

provides full access to the permissions which are held by the monitor. The monitor can only be

held by one thread at one given time.

It would be of big advantage if Chalice supported read/write locks. A read/write lock would allow

any monitor to be locked in at least two state. The read state would only provide partial (e.g. ε)

permission to all the permission specified in the monitor invariant. Additionally, since only partial

permissions are used from the monitor invariant, that would imply that more than one thread is

allowed to acquire a read lock on an object.

A write lock on the other hand would behave exactly the same as the locks behave right now. Once

a write lock is acquired on an object full access permissions, as defined in the monitor invariants,

are granted. In contrast to read locks, no other thread may acquire the object in any state when

another thread has acquired the write lock

Ideally, the read/write lock has support for upgrading a held read lock into a write lock. This adds

a higher degree of concurrency in certain situations. Consider the pseudo code shown in listing 4.2.

1 method doWork()
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2 {
3 acquire this

4

5 if (this.x > 0){
6 this.x = 0;

7 }
8

9 /∗ Do some work here which requires ∗
10 ∗ only read access to the field of x ∗/
11

12 release this

13 }

Listing 4.2: Pseudo code showing regular locking in Chalice

This example shows how locks can currently be used in Chalice. The method doWork() first locks

the current object and then changes the value of x to zero if x is greater than zero. The method

then does some potentially time consuming work (possibly locking other objects) and only ever

reads memory locations from the current object. Finally the method releases the lock.

The pseudo code shown in listing 4.2 is sound, but in general it does not allow for as much con-

currency as it would seem to be possible. Note, that the only place which requires full access to

the current object is line 6. All the other computation just requires read access to the x field.

Consider now the pseudo code shown in listing 4.3. This listing shows a modified example of the

locking. Instead of using regular locks, one is now allowed to use acquire.read and acquire.write to

indicate which lock one requests for the monitor

1 method doWork()

2 {
3 acquire.read this

4

5 if (this.x > 0){
6 acquire.write this

7 this.x = 0;

8 release.write this

9 }
10

11 /∗ Do some work here which requires ∗
12 ∗ only read access to the field of x ∗/
13

14 release this

15 }

Listing 4.3: Pseudo code showing read write locking in Chalice

In such a setting, it becomes apparent that there is higher degree of concurrency, since now mul-

tiple threads are allowed into the block which takes up a longer amount of time, since that block

only requires partial permissions instead of full permissions. Also, keep in mind that the write
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permissions are only ever needed when the value in the x field is bigger than zero. Depending on

the application, this might actually happen very rarely, therefore reducing the degree of concur-

rency.

The pseudo code in listing 4.3 is not without issues. If there are only two modes (read and write),

upgrading to a read from a write lock has a high probability of deadlocking. Consider two threads

entering the do work method and assume that the monitor for the current object is unlocked. Both

of these methods will successfully acquire the read lock on the current object and proceed to check

the x value. Now assume that the value of the x field happens to be five. In this case both threads

will try to upgrade their lock to a write lock. Unfortunately, the upgrade to a write lock requires

that all readers release the read lock. This is not possible since both threads acquired read locks

and wait for the other thread to release the read lock. Therefore the threads will deadlock and

never finish execution.

The solution to this problem is to introduce another state for the lock called upgradable read mode.

The upgradable read mode behaves just like the regular read mode when it comes to permissions.

The major difference is, that threads which have acquired a regular read mode are not allowed to

upgrade the lock to write mode. The threads which may upgrade to write mode are only threads

which hold an upgradable read lock. Additionally the following rules are set on the locks.

In any given moment, there may only ever be one thread holding the upgradable read lock, but

there may be arbitrary many threads holding a regular lock when a thread is holding an upgradable

read lock. This is now sound as there will always be only one thread which will try to upgrade the

lock mode to writable mode. Additionally, a thread holding an upgradable read mode lock, may

downgrade to a regular read mode. This operation is non-reversible as a thread may not upgrade

from a read lock to an upgradable read lock. Consider the pseudo code in listing 4.4.

1 method doWork()

2 {
3 acquire.upgradable this

4

5 if (this.x > 0){
6 upgrade this

7 this.x = 0;

8 downgrade this

9 }
10 downgrade this

11

12 /∗ Do some work here which requires ∗
13 ∗ only read access to the field of x ∗/
14

15 release this

16 }

Listing 4.4: Pseudo code showing read write and upgradable read locking in Chalice
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read lock upgradable lock write lock

upgrade not allowed write lock not allowed

downgrade not allowed read lock upgradable lock

Table 4.1: Resulting lock from calling downgrade or upgrade

Two new keywords upgrade and downgrade are introduced. These keywords are used to upgrade

or downgrade a particular lock to a different level. Table 4.1 shows the resulting lock from using

either the upgrade or downgrade statement. In general neither upgrade or downgrade may be used

on a lock which is only a read lock, only downgrade may be used on the write lock and both

statements can be used on an upgradable read lock.

The pseudo code in listing 4.4 is now thread safe. If two threads enter the doWork() method at

once, both will try to capture the upgradable read mode. However, only one thread may acquire

the upgradable mode at any time. Therefore only one thread will be able to proceed until the

thread who has acquired the lock downgrades to a read lock. Then the other thread can acquire

the upgradable read lock.

This approach does not suffer from any dead locks and maximizes the concurrency in the given

application. Additionally, it does not require a lot of modification to the verifier, as upgrading

just increments the permissions and downgrading decrements the permission.

Shadow Permissions

The last requirement to be introduced are shadow permissions. Chalice supports the concept of

permissions, which can be used to read and write memory locations. These permissions will now

be called real permissions. Shadow permissions are an extension of the concept, which allows for

permissions, which can only be used to supplement regular permissions in order to write memory

locations. In general shadow permissions may not be used to read any memory locations.

Shadow permissions follow similar rules to regular permissions. One would use the expression

acc(x, y, z) to express shadow permissions. If z happens to be a hundred, then the shadow per-

missions become regular permissions. The y value may never be equal to a hundred, as this would

create permissions with which anyone can write to a memory location, but no one could actually

read the location.

As regular access permissions can be split into permissions fractions so can shadow permissions.

If at a point in the program a thread holds five percent regular access permissions to a particular

field, then these can be split in a hundred pieces of one percent shadow permissions. This would

mean that a thread may gain access to one percent of 5 percent of access to a given field. The

verifier when actually checking for permissions to write to a given location will now have to check

the shadow permissions and add these to the real permissions. Additionally, shadow permissions

can also be summed up to form the original real permissions. Consider the example in listing 4.5.
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1 class Simple{
2 var x : int;

3 invariant acc(x, 95) && x > 0;

4

5 method setX(y : int)

6 requires rd(mu) && maxlock << this

7 requires rd(x, 5) //equivalent to acc(x, 5, epsilon)

8 ensures rd(x, 5)

9 ensures rd(mu)

10 {
11 acquire this;

12 //acc(x, 95) + rd(x,5) == 100% write permission

13 x := y;

14 release this;

15 }
16 }

Listing 4.5: Pseudo code showing how shadow permissions work

The monitor invariant only contains ninety-five percent access to the x field which means that

acquiring the lock on the object alone is not enough to write to the field. Therefore the setX

method additionally requires shadow permissions (of five percent real permissions) to be able to

write to the memory location.

At a first glance, the shadow permissions do not seem to bring any benefit to Chalice. One could

argue that the code provided in listing 4.6 is equivalent to the one provided in listing 4.5. As a

matter of fact, the code in the method body behaves in exactly the same way.

1 class Simple{
2 var x : int;

3 invariant acc(x, 95) && x > 0;

4

5 method setX(y : int)

6 requires rd(mu) && maxlock << this

7 requires acc(x, 5)

8 ensures acc(x, 5)

9 ensures rd(mu)

10 {
11 acquire this;

12 x := y;

13 release this;

14 }
15 }

Listing 4.6: Pseudo code without shadow permissions

The major difference lies in the how many threads can call that particular method. If the contract

used real permissions (listing 4.6) then at any given time, only one thread may have enough access
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permissions to call that method, as permissions in Chalice cannot be forged. On the other hand,

if the contract uses shadow permissions (listing 4.5) there may be an arbitrary number of threads

which have access to the same object instance and may have the correct shadow permissions to

actually call this method. Without the use of the shadow permissions, only one thread would be

able to call the setX() method.

This approach is free from any race conditions as pure shadow permissions may not be used to

read values from memory locations and only one thread may hold the remainder of the permissions

which are required to write into that memory location.

4.2.2 Solution

This section describes a proposal for a solution for verifying the Composite pattern. Unfortunately,

due to time constraints it was not possible to implement the solution and required prerequisites

into Chalice. What follows is a description on how one would go about implementing the Com-

posite pattern so that it can be verified in Chalice assuming all the requirements are met.

The solution adds to every composite object a field, called structure, which points to the owner.

The owner can then be locked to change the particular mode of operation, which can be either

read or write. In read mode, no objects in the structure may change and therefore all the reads

will be consistent. In write mode threads are allowed to write to the composite objects. The

remainder of the report will extend on the code provided explained in chapter 3.

Composite simplification

The Composite pattern had to be slightly modified in order to for the implementation to work.

Section 4.1 gave ideas for representing structures for objects and the issues which accompany that

approach. The biggest issue which could not be solved was keeping the lock order, e.g. a thread

would have to set the desired mode to a particular structure before accessing the object itself.

To solve that particular issue, it was decided that the structure field is immutable as long as mul-

tiple threads may have access to the field. This is very similar in which the mu field works. Note,

that this does not imply that the composite structure itself is immutable. Consider the fragment

of code shown by listing 4.7.

1 class Composite{
2

3 var parent : Composite;

4 var left : Composite;

5 var right : Composite;

6

7 var total : int;

8 ghost var index : int;

9
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10 var structure : Structure;

11

12 invariant valid && correctTotal()

13

14 predicate valid

15 {
16 /∗ ... ∗/
17 && acc(this.structure, 50) && rd(this.structure.mu) && this >> structure

18 && (left != null ==> acc(left.structure, 1) && structure == left.structure)

19 && (right != null ==> acc(right.structure, 1) && structure == right.structure)

20 }
21

22 /∗ ... ∗/
23 }

Listing 4.7: Extension of Composite code to hold the invariant for structures

This invariant does restrict the concurrency slightly. In that setup it is not possible to add com-

posite objects which already contain children, as that would break the invariant for the current

object. Consider the fragment of code present in listing 4.8

1 method addLeft(newLeft : Composite)

2 /∗ ... ∗/
3 requires acc(newLeft.structure, 100)

4 requires newLeft >> structure

5 requires !newLeft.hasLeft()

6 requires !newLeft.hasRight()

7

8 ensures acc(newLeft.structure, 49)

9 {
10 unfold valid

11 unfold newLeft.valid

12 left := newLeft;

13 left .parent := this;

14 left . structure := this.structure

15 left .index := 1

16 fold newLeft.valid

17 fold valid

18 release newLeft;

19 call addTotal(unfolding valid in newLeft.total)

20 }

Listing 4.8: Extension of Composite code showing how to add a new composite object to the

structure

The code fragment shows the new additions to the old method contract. Most importantly, it is

important to note that the method requires full access to the structure memory location of the

object which is to be added. Additionally, the thread calling this method will then only be left

with forty nine percent access to the structure field. This is because the monitor invariant itself

holds fifty percent and the parent object of newLeft requires also at least read access to that field
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to make sure that all objects which are linked together are in the same structure.

Now the thread which actually calls methods on the object, knows the structure field of that

a particular object. Intuitively, there seems to be now another problem in actually sharing the

access permissions to that particular field. In fact however, there are no additional restrictions

placed on the code, since any thread wanting to lock any object would first have to acquire the mu

field of said object. This is also the time when the thread can acquire access to the structure object.

Finally, that modification still does not guarantee absence of changes in read mode. The addLeft

method has no precondition which would actually the code to first acquire a write mode on the

current object.

Read/Write mode for the Structure

Having set up the code in such a way that would allow locking of the structure object before lock-

ing the actual object, it is possible to introduce multiple modes for the structure. The main modes

which are interesting are read and write modes and how those could potentially be implemented

in Chalice.

Firstly, let’s remove some permissions from the composite object, so that locking the composite

object is not enough to be able to write to any of the fields. It is enough to subtract 5 percent

of access permissions from every field, which is in the same object, from the invariant. These

permissions will now be stored inside the structure object. Therefore it is impossible to write to

any of the fields of any composite object when the object is in a structure.

The next step is to set up the composite structure in such a way that setting the mode of the

structure will return permissions to the caller such that having the mode set to read mode will

result in fractions of real permissions. If the caller requested the write mode, then the resulting

permissions will be shadow permissions.

Listing 4.9 shows pseudo code on how that functionality could be implemented in chalice.

1 class Permissions{
2 var structure : Structure;

3 var mode : int;

4 var users : int;

5

6 invariant acc(mode, 100);

7 invariant acc(structure, 50) && structure != null

8 invariant acc(structure.members, 100)

9 invairant acc(structure.mode, 10) && structure.mode == mode

10 invariant acc(users, 100)

11

12 invairant mode == 1 ==> acc(members[∗].∗, 5 − users ∗ epsilon);
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13 invairant mode == 2 ==> acc(members[∗].∗, 5, 100 − users∗epsilon);
14 }
15

16 class Structure{
17

18 var members : seq<Composite>;

19 var mode : int;

20 var permissions : Permissions;

21

22 method setMode(x : int)

23 requires rd(mu)

24 requires maxlock << this.mu

25 requires x == 1 || x == 2

26 //where x == 1 ==> read mode

27 // x == 2 ==> write mode

28

29 ensures maxlock == this.mu

30

31 //read permission to all member fields

32 ensures x == 1 ==> rd(members[∗].∗)
33

34 // shadow permissions to all member fields

35 ensures x == 2 ==> rd(members[∗].∗, 5)
36 {
37 acquire this.upgradable

38

39 if (mode != x){
40 upgrade this

41 acquire permissions

42 mode := x

43 permissions.mode := x;

44 release permissions

45 downgrade this

46 }
47

48 downgrade this

49

50 acquire permissions

51 permissions.users := permissions.users + 1

52 release permissions

53 }
54

55 method releaseMode()

56 requires rd(mu)

57 requires holds(this)

58 requires maxlock == this.mu

59 requires mode == 1 ==> rd(members[∗].∗)
60 requires mode == 2 ==> rd(members[∗].∗, 5)
61 ensures malock << this.mu

62 {
63 acquire permissions

64 permissions.users := permissions.users − 1
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65 release permissions

66 release this

67 }
68 }

Listing 4.9: Pseduo code for the structure

From the client perspective, there are not too many changes. The addLeft() method would ad-

ditionally require at least shadow permissions to all the fields the method writes to. The client

can only gain those permissions by setting the correct mode on the structure. On the other hand,

if the client sets the mode to read mode, there is no need for the client to do any locking of the

composite objects anymore. The client will be able to read any value from any object in the

structure.
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Chapter 5

Additional Work

This chapter of the report describes the additional work which was done during the project, which

did not contribute directly to the main goal. The first section 5.1 briefly describes the Chalice

plugin which was developed for Eclipse. Section 5.2 quickly described the bugs which were found

while working with Chalice and finally finishes with section 5.3 describing some changes which

could make Chalice even more interesting and useful.

5.1 Eclipse Plugin

This section describes the Eclipse plugin which adds support for Chalice into the Eclipse integrated

development environment. Eclipse is a development environment almost fully written in Java and

initially developed for Java. Eclipse was developed to be plugin based and soon new plugin arrived

adding support for other different languages such as C, C++, Python and many more. Eclipse is

released under the terms of the Eclipse public License, which makes the software open source and

therefore easier to develop plugins for.

Figure 5.1 shows a screen shot of Eclipse running the Chalice plugin with an open Chalice program

file. Note, that the Eclipse window was resized so that it could fit the page. In common usage

there is a lot more space provided in the frames. The following features are supported by the

plugin.

• Syntax highlighting of keywords

• Syntax Parsing on the fly when typing. This allows for displaying syntax errors while the

user types

• Outline which shows the building blogs of the program, including classes, predicates, meth-

ods, functions, variables, etc.

• Running the Chalice compiler from within the IDE

• Highlighting errors found by the Chalice compiler in the text
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Figure 5.1: A screen shot of Eclipse running the Chalice plugin
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• Hyperlinks from the compiler output to the Chalice program file

• Very basic auto completion of code

All these features have been very helpful while working on the project. The two most useful

features were certainly the syntax error highlighting while typing and the invoking of the Chalice

compiler from within the IDE. The syntax error highlighting was useful because it would give

immediate feedback of syntactically incorrect Chalice program. This was most helpful at the be-

ginning where one would easily revert back to using Java styles syntax.

The invocation of the Chalice compiler gave the Eclipse plugin a very important functionality.

The output of the Chalice compiler was post processed by the plugin, allowing hyperlinks from

the output to the program file. Therefore, the programmer does not need to manually count the

line numbers which Chalice has objections to.

5.2 Finding Bugs

This section of the report describes bugs which have been found during the project. The bugs

which were already discussed in the report will not be listed here.

5.2.1 Generated Chalice Code uses default package

Chalice was developed using Scala, a general purpose language compiling to Java bytecode. There-

fore any Java Virtual Machine (JVM) can run the Chalice compiler if the Scala libraries are present.

The problem with Chalice was that the code produced belonged to the default package and there-

fore disabled any properly designed Java program to call the compiler from within the same JVM.

This bug was not a major issue, but has been fixed in the latest version of Chalice.

5.2.2 Nullpointer exception at function post condition

It would seem that at one point Chalice would not ignore post conditions for function and would

try to do some computation with the post condition of a function. Consider the following code.

1

2 class Test{
3 var tests : seq<Test>;

4 var total : int;

5

6 invariant acc(tests, 100);

7 invariant acc(total, 50);

8

9 function at(loc : int) : Test

10 requires acc(tests);

11 requires loc >= 0 && loc < size();

12 {
13 tests [ loc ]
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14 }
15

16

17 function size() : int

18 requires acc(tests);

19 ensures result >= 0;

20 // PROBLEM

21 ensures result == |tests|; //nullpointer

22 {
23 | tests |
24 }
25

26 predicate pre

27 { acc(total, 50) }
28 }

The compiler did not handle the ensures result == |tests| very well and would crash with a Java

NullPointer Exception. This bug has also been fixed after it was reported.

5.2.3 Lockchange on return variables

Chalice allows to use the lockchange expression on variables which are return variables of methods.

This has been also done in the Chalice examples. The issue here was that the examples never

actually called the methods which would define the lockchange expression on return values as these

methods were designed to be main methods, methods only called at the program entry. The issue

only appears if the method is actually called, which will then cause Chalice to fail. The following

code will trigger the issue.

1 class Bug{
2

3 method Main()

4 {
5 var a : Bug;

6 call a:= m();

7 }
8

9 method m() returns (a : Bug)

10

11 lockchange a

12 {
13 a := new Bug;

14 share a;

15 acquire a;

16 }
17 }

This bug was not yet fixed.
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5.3 Interesting Chalice features

During the project, there were found some quite interesting features which could make Chalice

even more useful than it is. This section briefly describes those features.

5.3.1 Predicates and mu fields

A very important part of programming languages is information hiding. In Chalice predicates are

used to hide information about the implementation so that an external class does not need to

consider what the invariants actually mean, but just needs to know that they need to be somehow

ensured.

On the other hand, there exists the mu field which is actually not implementation dependent and

it always has the same meaning. Unfortunately, Chalice right now forces the code to hide any

access permission to the mu inside the predicate if the predicate contains a reference to the mu

field. This is very unfortunate because the external client code may have good reasons to manage

all the access permissions to the mu field of a particular object. This usually happens when a

thread wants to reorder a given object so that it has a different mu value. To do this operation,

the thread needs to acquire all access permissions to the field, which may be hard to do, since the

information about the mu field might be hidden away in predicates.

Chalice also faces another issue. If a predicate requires permissions to the mu field and the invari-

ant of an object consists of that predicate, it becomes impossible to share the object. This is due to

the fact that any predicate, which exists in the monitor invariant, must be folded before the object

can be shared. Once the predicate is folded, the permissions to the mu field are consumed, and

the current program point does not have a hundred percent access to the mu field, and therefore is

unable to share the object.

This is very unfortunate, as at that point in time only one thread has access to that variable.

Moreover, if the program is rewritten not to use predicates, but invariants which show all the

information, the program verifies without a problem. Therefore, it seems that it would actually

make sense to distinguish between public parts of a predicate and private parts of a predicate.

5.3.2 Destroying access permissions

Chalice does not currently support constructors. It would seem to be of benefit to add constructors

to Chalice, which could destroy fraction of access permissions on purpose. The real benefit from

destroying permissions comes from the fact that if no thread can obtain full permission to a given

field, this field will never change and therefore becomes a constant value. Therefore, threads would

not require any permission at all to read memory locations which they know are constant.
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Chapter 6

Conclusion

The verification of the Composite pattern in a concurrent setting turned out to be quite a challeng-

ing task. Most of the time spent on the project was used to investigate different ideas which would

help in verifying the Composite pattern. It turned out that most ideas either had issues which

would not be easily solved, concepts would be too complex to implement and give too little benefit

to Chalice and some other ideas would simply not work at all.

There was one Chalice Composite pattern implementation done, which was successfully verified by

Chalice. That implementation supports only writing to Composite objects and keeping the monitor

invariant. Unfortunately, due to time constraints, it was not possible to implement the a version

of the Composite pattern which would support writing to the objects and consistent reading from

the objects. It was, however, possible to give a detailed outline on how one would go abut about

implementing that Composite pattern instance so that it can be verified by Chalice.

Early on the project some time was spent to build the Eclipse plugin. This turned out to be a major

time saver when working on the implementations of the Composite pattern. Thanks to the ability

to quickly show syntax errors and the ability of invoking the Chalice compiler from within the editor

saved a lot of time from tedious switching of windows and executing command line commands.

Future work certainly includes finishing the implementation of the Composite pattern which sup-

ports reading consistent values and not just writing. To implement the proposed approach, it would

also be necessary to modify Chalice to support the prerequisites of said approach. In general, it

seems that these prerequisites are certainly implementable in Chalice.

Finally, summing up the project, it seems that it has been successful, although there is no concrete

implementation of the Composite pattern which would support all the required functionality, there

is a detailed description on how one would go about implementing the Composite pattern which

would be verifiable by Chalice.
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Appendix A

A simple implementation of the

Composite pattern

1 class Composite{
2

3 var parent : Composite;

4 var left : Composite;

5 var right : Composite;

6

7 var total : int ;

8 ghost var index : int ;

9

10 invariant valid && correctTotal()

11

12 /∗
13 PUBLIC

14 ∗/
15

16 predicate valid

17 {
18 acc(parent, 50) && acc(right, 50) && acc(index, 50) && acc(left,50) && acc(total, 50)

19

20 && (index == 0 || index == 1 || index == 2)

21 && (index == 0 ==> parent == null)

22 && ((index == 1 || index == 2) ==> parent != null )

23

24 && (left != null ==> acc(left.total , 50) && acc(left.parent, 50) && left.parent == this

&& acc(left.index, 50) && left.index == 1)

25 && (right != null ==> acc(right.total, 50) && acc(right.parent, 50) && right.parent ==

this && acc(right.index, 50) && right.index == 2)

26 && (parent != null ==> ite(index == 1, acc(parent.left, 50), acc(parent. right , 50)))

27 && (parent != null ==> acc(mu,1) && acc(parent.mu,1) && this << parent)

28

29 && (index == 1 ==> parent.left == this)

30 && (index == 2 ==> parent.right == this)

31
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32 && (left == null ==> acc(left, 50))

33 && (right == null ==> acc(right,50))

34 && (parent == null ==> acc(total, 50) && acc(parent, 50) && acc(index, 50))

35 }
36

37 method Init()

38 requires acc(parent) && acc(left) && acc(right) && acc(total) && acc(index);

39 requires acc(mu);

40 requires mu == lockbottom

41

42 ensures valid

43 ensures acc(mu, 100)

44 ensures mu == lockbottom

45 ensures correctTotal ()

46 {
47 parent := null;

48 left := null;

49 right := null;

50 total := 1;

51 index := 0;

52 fold valid

53 }
54

55 method addLeft(newLeft : Composite)

56 requires newLeft != null

57

58 requires holds(this)

59 requires holds(newLeft)

60

61 requires valid

62 requires newLeft. valid

63

64 requires ! hasLeft()

65 requires newLeft.addable()

66

67 requires correctTotal ()

68 requires newLeft. correctTotal ()

69

70 requires acc(mu,1)

71 requires acc(newLeft.mu,1)

72 requires newLeft << this

73 requires maxlock == this.mu

74

75 lockchange this

76 lockchange newLeft

77 {
78 unfold valid

79 unfold newLeft.valid

80 left := newLeft;

81 left .parent := this ;

82 left .index := 1

83 fold newLeft. valid
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84 fold valid

85 release newLeft;

86 call addTotal(unfolding valid in newLeft. total )

87 }
88

89 function hasLeft() : bool

90 requires valid

91 {
92 unfolding valid in left != null

93 }
94

95 function addable() : bool

96 requires valid

97 {
98 unfolding valid in parent == null

99 }
100

101

102 function correctTotal () : bool

103 requires valid

104 {
105 unfolding valid in ( total == (1 + ite(left == null, 0, left . total ) + ite( right == null,

0, right . total )))

106 }
107

108 function getLeft () : Composite

109 requires valid

110 {
111 unfolding valid in left

112 }
113

114 /∗
115 PRIVATE

116 ∗/
117

118 function correctTotalAmount() : int

119 requires valid

120 {
121 unfolding valid in (1 + ite( left == null, 0, left . total ) + ite( right == null, 0, right .

total ))

122 }
123

124 method addTotal(amount : int)

125 requires holds(this)

126 requires valid

127

128 // requires unfolding valid in maxlock == this.mu

129 requires unfolding valid in (parent != null ==> maxlock << parent.mu)

130 requires (unfolding valid in total ) == correctTotalAmount() − amount

131 lockchange this

132 {
133 var current : Composite := this
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134 var parent : Composite;

135 while(current != null)

136 invariant current != null ==> holds(current)

137 invariant current != null ==> current.valid

138 //invariant current != null ==> unfolding current.valid in maxlock == current.mu

139 invariant current != null ==> unfolding current.valid in (current.parent != null ==>

maxlock << current.parent.mu)

140 invariant current != null ==> (unfolding current.valid in current. total ) == current.

correctTotalAmount() − amount

141 //lockchange current

142 {
143 unfold current. valid

144 parent := current.parent;

145 if (parent != null){
146 acquire parent

147 unfold parent. valid

148 }
149 current . total := current. total + amount;

150 fold current . valid

151 release current

152

153 current := parent

154 if (parent != null){
155 fold current . valid

156 }
157 }
158 }
159 }
160

161 class Program{
162

163 method Main() returns (root : Composite, l1 : Composite, l2 : Composite, l3 : Composite)

164 {
165 root := new Composite;

166 l1 := new Composite;

167 l2 := new Composite;

168 l3 := new Composite;

169

170 call l1 . Init ()

171 call l2 . Init ()

172 call l3 . Init ()

173 call root . Init ()

174

175 share l1

176 share l2 above l1

177 share l3 above l2

178 share root above l3

179

180 fork addLeft(root , l3)

181 fork addLeft( l2 , l1)

182 fork addLeft( l3 , l2)

183 }
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184

185 method addLeft(parent : Composite, child : Composite)

186 requires parent != null && child != null

187 requires acc(parent.mu,1)

188 requires acc(child .mu,1)

189

190 requires maxlock << child.mu && child.mu << parent.mu

191 requires maxlock << parent.mu

192

193 lockchange parent

194 lockchange child

195 {
196 acquire child

197 acquire parent

198 if (! parent. hasLeft() && child.addable()){
199 call parent.addLeft( child )

200 }else{
201 release parent

202 release child

203 }
204 }
205 }
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