
Automatic Test-Generation for Spec#
Master Thesis Proposal

Florian Egli
Supervisor: Prof. Dr. Peter Müller, Valentin Wüstholz

November 18, 2011

1 Introduction

Spec# [12, 1] is a superset of C# 2.0 that provides language extensions for contracts.
These contracts can be checked statically using a theorem prover to verify the correct-
ness of the code with respect to its specification, or they can be checked at run-time.
Microsoft’s CodeContracts specification language [4] has similar goals, but is supported
by a growing number of tools.

To allow Spec# users to benefit from these tools (e.g., Clousot [7], Pex [11]), we will
translate Spec# programs to CodeContracts programs.

For the translation we will use an extended variant of CodeContracts that provides
additional specification constructs (e.g., for ghost state or framing). The main challenge
will be the encoding of the Spec# methodology (e.g., ownership, invariant semantics).

2 Project Proposal

2.1 Core

The goal of this project is to transform Spec# code into CodeContracts code on the
intermediate language (IL) level, as can be seen in Figure 1, so that the transformed
Spec# code can be further processes with CodeContracts tools.

One benefit of this translation will be to have automatic test generation for Spec#
programs, using Pex, which allows programmers to easily discover bugs in their code via
generated counterexamples that violate specified contracts. Another benefit will be to
test the Spec# code with the Clousot analyzer.

For the translation, the Spec# IL code has to be rewritten to CodeContracts com-
patible IL code. The main parts of this projects are, defining the translation rules to
translate Spec# code into CodeContracts code, and to implement these rules in the
Spec# compiler.

Some Spec# features (e.g., ownership methodology) are only checked statically but
not at runtime [10], and make use of implicit background predicates integrated in the

1



verification logic. In order to provide runtime support, Boogie assertions and verification
conditions have to be reintegrated into the IL code as well as additional ghost state. For
this, the Spec# compiler and verifier have to be extended to emit CodeContracts++
(CC++) code, instead of Boogie code [3, 2]. CC++ is an extension of CodeContacts, which
provides extensions for modifies clauses, ghost state and explicit assumptions, features
that otherwise are not supported by CodeContracts.

Figure 1: Tool Chain

In the first iteration only a subset of all Spec# language features are translated to
CC++.

Required core features:

• All Spec# programming language instructions are supported. All Spec# pro-
grams with valid syntax can be translated (even if not all language features are
supported).

• Method contracts (pre-/postconditions)

• Object invariants (ownership-based and visibility-based), local expose

• The ownership model [9], including peers, is represented in the CC++ code to work
with aggregated objects

• Frame conditions (modifies clauses)

• Contract inheritance (virtual methods)

• Arrays (with covariance tests)

• Loop invariants

The generated CC++ code can be tested with Pex and analyzed with Clousot.

CC++ was partially inspired by Dafny [5] and provides similar specification constructs.
In order to have higher confidence in the defined transation rules, the Spec# features

2



will first be translated into verifiable Dafny code. This can be done only for a subset
of the translation rules, because not all features supported by Spec# and CC++ are
supported by Dafny (e.g., inheritance).

2.2 Extension Points

Additional features are implemented after the core features of this thesis have been
completed and enough time is left.

2.2.1 Extended Language Vocabulary / Language Features

Support for the following language features will be added to the implementation accord-
ing to their suitability for finding good test cases:

• Reads clauses

• Pure methods

• Model fields [8]

• Non-null types

• Delayed types [6]

• Interfaces

• Exception handling (Exceptional postconditions, checked exceptions)

• Parameter capturing

• Structs

• Additive fields

• Additive expose

2.2.2 Background Predicates

The Spec# source language guarantees additonal properties that are not explicitly de-
clared in the source code [2]. These background predicates, which include axioms, func-
tion definitions, and invariant semantics, that are implicitly assumed in Spec#, must
also be encoded in the CC++ code. For example, the ownership structure is always a
tree and can not be cyclic.

2.2.3 Pex

Pex results are analyzed and interesting examples with good test results are evaluated.
The generated CC++ code is optimized for Pex, to achieve better results and to find
better test cases.

3



2.2.4 Clousot

Clousot results are analyzed. The generate CC++ code is optimized for Clousot, to
achieve better results and more meaningful output messages.

2.2.5 SscBoogie Verification Result Integration

SscBoogies verification results are reintegrated into the CC++ code, so that other tools,
such as Pex, can use this additional information. Methods that are proven incorrect by
SscBoogie can be extended with additional assert statements that help finding suitable
test cases to reproduce this error.

2.2.6 Visual Studio Integration

All tools are integrated into Visual Studio 2010 and can be used within this environment.
This provides a better user experience than working in the command prompt.

2.3 Excluded Features

The following Spec# features are not considered in this thesis, because they are not
supported by the current Spec# implementation itself, CodeContracts or are out of
scope for this thesis:

• Delegates

• Generics

3 Schedule

Total time available: 6 months (24.10.2011 - 23.04.2012)

• Milestone: Initial presentation

• 1 month: Analysis & Design

Acquire knowledge in Spec#, CodeContracts, CC++, Boogie, Clousot, Pex,
IL, Dafny

Translate selected Spec# examples manually to CC++ and Dafny

Test tool chain manually

Specify translation rules

Create system design

• Milestone: Concept presentation

4



• 3 months: Core implementation & Testing

Iterative implementation and improvement of the system

System tests

• 2 months: Extension implementation & Documentation

Prioritize extensions and implement according to their value for the system

Final documentation write-up

• Milestone: Final presentation

References

[1] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. “The Spec# Program-
ming System: An Overview”. In: Construction and Analysis of Safe, Secure and In-
teroperable Smart devices. Vol. 3362. Lecture Notes in Computer Science. Springer-
Verlag, 2005, pp. 49–69.

[2] Mike Barnett et al. “Boogie: A modular reusable verifier for object-oriented pro-
grams”. In: Formal Methods for Components and Objects: 4th International Sympo-
sium, FMCO 2005, volume 4111 of Lecture Notes in Computer Science. Springer-
Verlag, 2006, pp. 364–387.

[3] Boogie. url: http://boogie.codeplex.com/.

[4] CodeContracts. url: http://msdn.microsoft.com/en-us/devlabs/dd49199
2.aspx.

[5] Dafny. url: http://research.microsoft.com/en-us/projects/dafny/.

[6] Manuel Fahndrich and Songtao Xia. “Establishing object invariants with delayed
types”. In: Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications. OOPSLA ’07. New York, NY,
USA: ACM, 2007, pp. 337–350.

[7] Manuel Fähndrich and Francesco Logozzo. “Static contract checking with ab-
stract interpretation”. In: Proceedings of the 2010 international conference on For-
mal verification of object-oriented software. FoVeOOS’10. Paris, France: Springer-
Verlag, 2011, pp. 10–30.

[8] K. Rustan M. Leino and Peter Müller. “A verification methodology for model
fields”. In: European Symposium on Programming (ESOP). Ed. by P. Sestoft.
Vol. 3924. Lecture Notes in Computer Science. Springer-Verlag, 2006, pp. 115–
130.

[9] K. Rustan M. Leino and Peter Müller. “Object Invariants in Dynamic Contexts”.
In: European Conference on Object-Oriented Programming (ECOOP). Ed. by M.
Odersky. Vol. 3086. Lecture Notes in Computer Science. Springer-Verlag, 2004,
pp. 491–516.

5



[10] K. Rustan M. Leino and Peter Müller. “Using the Spec# Language, Methodol-
ogy, and Tools to Write Bug-Free Programs”. In: Advanced Lectures on Software
Engineering—LASER Summer School 2007/2008. Ed. by Peter Müller. Vol. 6029.
Lecture Notes in Computer Science. Springer-Verlag, 2010, pp. 91–139.

[11] Pex. url: http://research.microsoft.com/en-us/projects/pex/.

[12] Spec#. url: http://specsharp.codeplex.com/.

6


