
Rust2Viper: Building a static verifier for Rust

Florian Hahn

November 10, 2015

1 Context

Rust is a modern general purpose programming language with the goal of being “safe, concurrent
and practical”. The language comes with a powerful type system based on the concepts of ownership
(including transfer of ownership) and borrowing. Rust’s ownership system ensures that there is exactly
one owner of any given resource. The owner of a resource can change by moving the resource from
one binding to another. In addition, Rust allows the sharing of resources via references. The owner
of a resource can hand out references to the resource, e.g. to pass it to a function as a parameter. The
receiver of the references is said to borrow the resource, e.g. until the function returns in the case that
the reference is passed as a function parameter. Furthermore Rust makes a distinction between mutable
and immutable borrows. At any give time, a resource can be immutably borrowed one or more times or
mutably borrowed exactly once, but not both.

Silver is an intermediate language with a flexible notion of permissions built in. It provides basic
features such as methods, loops and conditionals and also provides a way to specify contracts using pre-
and postconditions, loop invariants and assertions. A verifier for a high-level language can use the basic
features of Silver to encode complex language constructs. After a program has been translated to Silver
the Viper tool chain can be used to verify it using different back-ends [3]. At the moment there already
exist front-ends for some programming languages, e.g. Chalice2Silver for Chalice and Scala2Silver for
Scala [1].

A major difference between the existing front-ends and a front-end for Rust is that the Rust type
system already provides information about the scope and mutability of bindings, which can be used to
automatically infer permission specifications in Silver.

The main goal of this project is to implement a front-end which allows the verification of Rust
programs using the Viper infrastructure.

2 Core Goals

This project focuses on a subset of Rust, which should be powerful enough to write meaningful
programs, while being small enough to be implemented in the available time. This subset includes

• data structures (struct)

• enumerations (enum)

• basic control structures (if, while, let)

• functions (fn)

• pattern matching (match)

• implementation of structs and enums (impl)

• basic support for some data types (e.g. Vec<T>, including specification for functions such as
Vec.len())

• basic support for ownership, borrows and Box<T> pointers.

1

With this subset, it should be possible to verify a reasonably wide range of programs. As part of the
core goals we do not plan to support converting Rust functions to Silver functions or predicates, but
there is an extension goal which tackles this problem. In order to circumvent this initial limitation and
verify interesting properties, we provide the user with a mechanism to specify functions and predicates
as Silver code and use them in the contracts of the Rust program. In a similar fashion, users can provide
specification for library Rust functions (e.g. Vec.len())

The listings at the end of the document illustrate the supported features using three examples. The
first example shows how to verify a saturating counter and illustrates almost all the syntax supported
as part of the core goals. The second example shows a verified implementation of binary search and the
third example shows how to verify properties of recursive data structures. Note that the #[pure_function]
annotations in the third example are the only feature that is not supported as part of the core goals.
To verify this example without the respective extension goal, Silver definitions for itemAt() and length()
would have to be provided.

The examples are inspired by real world Rust code; the binary search implementation in the Rust
standard library and the specification in [7], provided the foundation for the second example, while the
third example was inspired by [6] and [2].

For specifying contracts, we want to use the same syntax as libhoare, a syntax extension for specifying
function contracts, which are checked dynamically [4]. This way, it should be possible to verify some
code statically that uses libhoare’s dynamic checks at the moment. However, we want to extend libhoare’s
syntax to allow programmers to express more powerful specification, e.g. by using quantifiers or simple
pattern matching in contracts.

The tool will be implemented in Rust, because the Rust compiler allows reusing infrastructure such
as the parser and type checker. This means that the tool will not be able to generate a Silver AST directly
and instead has to emit Silver code as text. Therefore special care has to be taken in order to map Silver
verification errors back to the Rust source code.

3 Extensions

Improve verification error messages using back-tracking When the Rust compiler detects an error
it tries hard to present a helpful error message by including helpful context (e.g. when the same data
is borrowed as mutable twice it also displays the location where the first mutable borrow occurs).
Therefore Rust programmers probably have high expectations with regard to error reporting. In the
scope of this extension, we would look into ways to provide better error messages if the verification
fails, e.g. by displaying the last location where a condition that is expected to hold later on was satisfied.
This would require extending the verifier (Silicon or Carbon) to back-track on a verification error and
inspect previous verifier states to find the cause of the error.

Pureness Checking This extension allows programmers to mark Rust functions as pure with an
attribute #[pure_function]. These pure Rust functions are then translated to Silver functions, which can
be used in contracts. As a first step, we just assume all functions marked as pure by the programmer
are indeed pure and used correctly in contracts. As a second step, we want to check if functions marked
as pure are well-formed, along the lines suggested in [5]. In particular we want to check whether the
functions are indeed pure and if they are well-defined by analyzing the dependency graph of the used
pure functions.

Handling unsafe blocks While Rust provides guarantees for normal Rust code (e.g. at any given time,
at most one mutable reference can point to any given data structure), in unsafe blocks arbitrary pointer
operations are allowed, which could be used to violate the guarantees after the unsafe block. This could
lead to undefined behavior and unexpected errors. This extension goal consists of two steps. First we
want to add basic support for unsafe blocks. At this stage, we assume that none of the guarantees is
violated at the end of the unsafe block, e.g. no reference contains a null value, and treat the whole block
as a black box. This means we forget all information about the values of bindings used in the unsafe
block and the user has to provide unchecked assumptions that reflect what is going on in the block.
Second we want to generate Silver code for unsafe blocks. Supporting every possible operation in unsafe
blocks is out of scope of this extension. Instead we want to focus on unsafe blocks that deal only with

2

pointer operations and memory allocations. Finally we want to verify some guarantees that should still
hold after an unsafe block, like all references still point to non-null values or that there is at most on
mutable reference to every resource, even though these properties might turn out too hard to verify in
the general case.

Support for iterators and closures When dealing with sequential data structures, most prominently
Rust’s Vec, iterators play an important role. For example, Rust’s for loop construct is just syntactic sugar
for a looping over an iterator. Iterators also provide functions like map(), filter() or fold() that take closures
as parameters. Using those functions when possible instead of for loops is considered good practice
in the Rust community. Due to their widespread use, supporting for loops and iterator functions with
closures would substantially increase the number of interesting programs the verifier can handle.

The aim of this extension goal is to add support for for loops and some of the iterator functions
mentioned above. First we want to add support for for loops that iterate over a vector, by handling the
loops before they are de-sugared. Then we want to look into ways of implementing basic support for
closures, which could be used with iterator functions.

References

[1] Bernhard Brodowsky. “Scala to SIL”. Master’s Thesis. ETH Zurich, 2012.

[2] ixlist — simpl doubly-linked list. url: https://github.com/bluss/ixlist (visited on 10/08/2015).

[3] U. Juhasz, I. T. Kassios, P. Müller, M. Novacek, M. Schwerhoff, and A. J. Summers. Viper: A
Verification Infrastructure for Permission-Based Reasoning. Tech. rep. ETH Zurich, 2014.

[4] libhoare — Design by contract style assertions for Rust. url: https://github.com/nrc/libhoare
(visited on 10/13/2015).

[5] Arsenii Rudich, Ádám Darvas, and Peter Müller. Checking well-formedness of pure-method specifications.
Springer, 2008.

[6] Rust by Example - Enums. url: https : / / japaric . github . io / rbe / enum . html (visited on
10/08/2015).

[7] silver test suite- binarySearchSeq.sil. url: https://bitbucket.org/viperproject/silver/src/
18254eeb64353043ef9da6668c7a274b6c5ba090/src/test/resources/all/sequences/binarySearchSeq.
sil (visited on 10/28/2015).

3

https://github.com/bluss/ixlist
https://github.com/nrc/libhoare
https://japaric.github.io/rbe/enum.html
https://bitbucket.org/viperproject/silver/src/18254eeb64353043ef9da6668c7a274b6c5ba090/src/test/resources/all/sequences/binarySearchSeq.sil
https://bitbucket.org/viperproject/silver/src/18254eeb64353043ef9da6668c7a274b6c5ba090/src/test/resources/all/sequences/binarySearchSeq.sil
https://bitbucket.org/viperproject/silver/src/18254eeb64353043ef9da6668c7a274b6c5ba090/src/test/resources/all/sequences/binarySearchSeq.sil

enum CounterState {
NotSaturated(i32),
Saturated,

}

impl CounterState {
#[precond= "NotSaturated(v)== self"]
fn unwrap(&self) -> i32 {

match self {
NotSaturated(v) => v,
Saturated => panic!(),

}
}

}

struct SaturatingCounter {
v: CounterState

}

impl SaturatingCounter {
#[postcond= "NotSaturated(v1) == old(self.v) &&

v1 + v < 256 ==>
NotSaturated(v1) == self.v && v1 < 256"]

#[postcond= "NotSaturated(v1) == old(self.v) &&
v1 + v >= 256 ==>

Saturated == self.v"]
#[postcond= "Saturated == old(self.v) ==>

Saturated == self.v"]
pub fn add(&mut self, v: i32) {

match self.v {
NotSaturated(v1) if v1 + v < 256 =>

self.v = NotSaturated(v1 + v),
_ => self.v = Saturated

};

}

fn main() {
let mut c1 = SaturatingCounter{v:NotSaturated(10)};

c1.add(100);
// OK
c1.v.unwrap();

let mut c2 = SaturatingCounter{v:NotSaturated(100)};
c2.add(300);
// not OK
c2.v.unwrap();

}

Example 1 – Saturating counter

#[precond= "forall i,j in [0..vec.len()-1] .
i < j ==> vec[i] < vec[j]"]

#[postcond= "result == Some(index) ==>
index < vec.len() && vec[result] == key"]

#[postcond= "result == None ==>
(forall i i in [0..vec.len()-1] .array[i] != key)"]

fn binary_search(vec: &Vec<i32>, key: i32)
-> Option<usize> {

let mut low: usize = 0;
let mut high: usize = vec.len();
let mut mid;
let mut index = None;

while low < high {
invariant!("0 <= low && low <= high && high <= |array|")
invariant!("forall i in [0..vec.len()-1] .

!(low <= i && i < high)) ==> vec[i] != key")
mid = (low + high) / 2;
if vec[mid] < key {

low = mid + 1;
} else if key < vec[mid] {

high = mid;
} else {

index = Some(mid);
}

}
index

}

Example 2 – Binary search

pub struct Cell {
pub v: i32

}

pub enum List {
Node(Cell, Box<List>),
Nil

}

#[postcond= "forall i in [0..length(list)-1] .
j != 0 ==> itemAt(j) == old(itemAt(j)) + v"]

pub fn add(l: &mut List, v: i32) {
match *l {

List::Node(ref mut c, ref mut t) => {
c.v = c.v + v;
add(t, v);

}
List::Nil => ()

};
}

#[pure_function]
#[postcond= "result >= 0"]
pub fn length(l: &List) -> u32 {

match *l {
List::Node(_, ref tail) => 1 + length(tail),
List::Nil => 0

}
}

#[pure_function]
#[precond= "i >= 0 && i < length(l)"]
pub fn itemAt(l: &List, i: u32) -> i32 {

match *l {
List::Node(ref c, _) if i == 0 => c.v,
List::Node(_, ref tail) => itemAt(tail, i-1),
List::Nil => panic!()

}
}

#[postcond= "length(list) == old(length(list)) + 1"]
#[postcond= "itemAt(0) == c.v"]
#[postcond= "forall i in [1..length(list)-1] .i

j != 0 ==> itemAt(j) == old(itemAt(j))"]
pub fn append(list: List, c: Cell) -> List {

List::Node(c, Box::new(list))
}

Example 3 – Recursive list implementation

4

	Context
	Core Goals
	Extensions

