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Chapter 1

Introduction

Correctness is an important property of a software system. During the last couple of
years, software systems have affected more and more aspects of our lives. Increasingly,
software controls systems that interact with humans. When a software system controls
critical components of an airplane or a self-driving car, the confidence in that system must
be very high in order to offset the risks. Testing is a well-known and widely-used dy-
namic technique to ensure software quality, but it cannot offer strong guarantees because
for non-trivial programs the number of possible inputs is too large to cover with tests.
Software verification on the other hand can be used to verify that the runtime behavior of
a program matches the specified behavior under all circumstances. A common approach
to automated software verification is to use code contracts to specify functional proper-
ties of programs in combination with a verifier that can prove those functional properties.

Over the last decade, there has been quite some progress in the area of software verifi-
cation, especially due to improvements in computing power and in automatic theorem
provers. Also over the last few years, automatic verifiers for various languages emerged,
for example Microsoft’s Spec# for C# [1], Autoproof for Eiffel [28], Verifast for C and Java
[17] and Dafny [18].

A recent development in this area is the Viper verification infrastructure developed at
ETH. It provides an intermediate language, Silver, for software verification based on im-
plicit dynamic frames [22] and fractional permissions [6]. The goal of the Viper project is
to provide a solid verification infrastructure for developers of software verification tools.
At the moment, there exist front-ends for languages such as Java [5], Chalice [23] and
Scala [8], which generate Silver code in order to verify functional properties of programs
in those languages using the Viper verification infrastructure.

In this project, we aim to build a tool for verifying functional properties of Rust pro-
grams based on the Viper verification infrastructure. We identified Rust as a good match
for supporting verification for two reasons. First, Rust comes with a powerful type system
centered around ownership and borrowing, which will be introduced in the next section
in more detail. This means types in Rust capture a lot of information about the program.
We plan to use this information during the translation to generate permission specifi-
cation automatically, which reduces the amount of specification programmers have to
provide drastically. Second, Rust is already focused on safety. For example, Rust’s type
system prevents common memory errors by compile-time checks. Those compile-time
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1.1. Motivating Example

checks mean that Rust programmers must already make an additional effort to make the
compiler accept their programs. Therefore they trade some convenience for safety. Be-
cause of this we think there are at least some Rust programmers interested in verifying
functional properties of their programs in order to increase the guarantees proved stati-
cally and there is hope that they are willing to spend additional time on adding contracts
for their programs.

1.1 Motivating Example

In this section we show an example program with functional specification that highlights
some of the features of Rust we plan to support. Listing 1.1 shows an enum representing
a linked list and some functions for linked lists with contracts. It contains functions to
calculate the length of a list, access an element of a list as well as a function to increment
all elements of a list. The functions length and item at are pure, which means they
do not have any side effects and can be used in contracts. The item at function has
additional preconditions that state that it can only be called with non-empty lists and
the index must be valid. Finally the increment function is not pure, because it modifies
the list. In its postconditions length and item at are used to specify the behavior of
increment: the length of the list stays the same, but all elements are incremented. Note
that no permission-related specification is needed throughout the contracts in this exam-
ple, as we intend to generate permission-related specification automatically from the Rust
source program.
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1.1. Motivating Example

1 pub enum List {

2 Node(i32, Box<List>),

3 Nil

4 }

5 #[pure_fn]

6 pub fn length(l: &List) -> i32 {

7 match *l {

8 List::Node(_, ref tail) => 1 + length(tail),

9 List::Nil => 0

10 }

11 }

12 #[pure_fn]

13 #[precond= "length(l) > 0"]

14 #[precond= "i >= 0 && i < length(l)"]

15 pub fn item_at(l: &List, i: i32) -> i32 {

16 match *l {

17 List::Node(ref c, ref tail) if i == 0 => *c,

18 List::Node(ref c, ref tail) => item_at(tail, i-1),

19 List::Nil => panic!()

20 }

21 }

22 #[postcond= "length(l) == old(length(l) )"]

23 #[postcond= "forall i: Int :: i >= 0 && i < length(l) ==>

24 item_at(l, i) == old(item_at(l, i)) + v"]

25 pub fn increment(l: &mut List, v: i32) {

26 match *l {

27 List::Node(ref mut c, ref mut t) => {

28 *c = *c + v;

29 increment(t, v);

30 }

31 List::Nil => {}

32 };

33 }

Listing 1.1: A recursive list implementation in Rust with contracts

3



Chapter 2

Background

2.1 The Viper Verification Infrastructure

In this section we briefly introduce Viper, a verification infrastructure for permission-
based reasoning developed at ETH. It consists of an intermediate language, Silver, that
includes a flexible permission model, and two back-end verifiers for Silver: Silicon and
Carbon. Silicon uses symbolic execution while Carbon uses verification condition gener-
ation. In this section, we mainly focus on the intermediate language Silver and the most
important features used in our encoding of Rust programs. A more in-depth introduction
to Viper can be found in [20].

Silver is an imperative, object-based language with built in support for a heap and reason-
ing about permissions to access fields of objects on that heap based on implicit dynamic
frames [22]. A Silver program consists of pure functions, imperative methods, global field
declarations, predicate definitions and mathematical domains.

Silver’s object model is quite simple. Silver objects do not belong to any class, but they
potentially have access to all fields declared in the program. More specifically, permis-
sions are used to model which locations can be accessed on the heap.

2.1.1 Permissions

Permissions are a central concept of Silver. They are used to control access to the heap
and during the verification of a Silver program, a set of permissions is held at each
program point. This set of permissions specifies which parts of the heap can be accessed
at a certain program point. During the verification of a Silver program, permissions to
certain locations on the heap can change, e.g. additional permissions can be gained or
some permissions can be lost. Permissions are tied to field locations on the heap and the
amount of permission is specified using fractions of a maximum amount of permission.
In Silver, write is used to refer to this maximum amount and a location on the heap can
only be modified while holding write permissions to that location. At any given program
point, at most write permissions can be held for each location of the heap. All other strictly
positive fractions that are less than write are referred to as read permissions. In order to
read a location on the heap, holding some read permissions is sufficient. Silver provides
an access predicate acc which can be used to specify permissions to a single location in
assertions, e.g acc(x.val, write) states that write permissions to the location x.val on the
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2.1. The Viper Verification Infrastructure

heap must be held. Assertions that contain access predicates are called non-pure while
assertions without access predicates are called pure. Silver supports the following types
of permission expressions:

• a positive fraction p for which none ≤ p ≤ write, where none means no permissions

• arithmetic expressions over two permissions: addition, subtraction, division and
multiplication

• the special value wildcard, which denotes some unspecified positive permission
amount

Functions and methods in Silver have to explicitly state to which part of the heap they
require access. When calling a method, the permissions required by the method’s pre-
conditions are transferred from the caller to the called method. In a similar fashion, the
permissions stated in the post-conditions of the called method are transferred back to the
caller after the call. A major advantage of using permissions during verification is that
permissions can be used to restrict modifications of locations on the heap. While some
permissions to a location are held, the value stored at a location can be reasoned about
sequentially, i.e. as long as some permissions are held, it is safe to assume that the value
cannot be changed from outside the current function, e.g. by another thread. Because
of that, proving that an assertion is not affected by a method call (framing) is straight
forward. As long as the caller of a method retains some positive amount of permission to
a location, it can assume that the value of that location cannot be changed by the called
method.

The example in Listing 2.1 shows some of the core features mentioned above. It contains
a get method, that requires read access to x.val and specifies that it returns x.val. In
the method client, a new object with a field val is created on the heap and then passed
to get. After creating an object with new, we have write permissions to all specified fields.
When get is called, 1/2 of the permissions to x.val are transferred to get. After the call,
those permissions are returned again. Note that by only requiring read permissions in the
contract of get, client retains a positive amount of permission to x.val and can assert
that it cannot be changed by the call.

Silver also provides statements to add or remove permissions from the program state in
method bodies. Additional permissions can be gained with the inhale statement. inhale
A assumes all pure assertions in A and adds the permissions specified by the access
predicates in A. The exhale statement can be used to remove permissions. exhale A asserts
all pure assertions in A and removes the permissions specified with access predicates in
A. With those two statements, permissions can be modified liberally, but this flexibility
comes with a price. Using those statements may cause inconsistencies which allow the
verifiers to assert false, which in most cases is undesirable. One way to cause such an
inconsistency is by violating the fundamental assumption that the amount of permission
to a location on the heap is at most write. Consider the example in Listing 2.2. More than
write permissions are inhaled which means any assertion holds after that point.

2.1.2 Predicates

There is one important area not covered by the permission system discussed above,
namely unbounded data structures on the heap. So far we have only shown how the
access predicate acc can be used to specify permissions to a single location. In order
to support unbounded data structures we need additional tools. Recursive predicates
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1 field val: Int

2

3 method get(x: Ref) returns (res: Int)

4 requires acc(x.val, 1/2)

5 ensures acc(x.val, 1/2)

6 ensures res == old(x.val)

7 {

8 res := x.val

9 }

10 method client() {

11 var x: Ref

12 x := new(val)

13 x.val := 10

14

15 var r: Int

16 r := get(x)

17

18 assert r == x.val

19 }

Listing 2.1: Simple Silver example

1 field x: Int

2 method test(){

3 var ref1: Ref

4 inhale acc(ref1.x, write)

5 inhale acc(ref1.x, write)

6 assert false

7 }

Listing 2.2: Silver program using inhale incorrectly

are a well known tool from separation logic [24] that Silver supports in order to express
unbounded data structures. A predicate in Silver consists of a list of arguments and
an optional body. The body consists of a single, self-framing assertion. An assertion is
called self-framing in Silver when the assertion contains appropriate permissions to all
fields used in it. For example, if a field is accessed in a self-framing assertion, there must
be an appropriate acc predicate giving permissions to the field in the assertion.

Instances of predicates can be used in assertions and are handled similarly to permissions.
In particular, instances of predicates can be used as arguments for access predicates. For
example, consider the predicate Tree which describes a node in a binary tree in Listing 2.3.
It gives access to a field containing the value of the node as well as access to the left and
right children. When the children are not null, they in turn point to instances of the
Tree predicate, which means the children are instances of the Tree predicate themselves.
Note that t.left and t.right cannot alias, because the predicate Tree requires write
permissions to both of them.

In Silver there are two basic operations on predicates, unfold and fold. The unfold oper-
ation exchanges the predicate for its body. This means that after unfolding a predicate
instance, the assertions of the predicate’s body can be used, but access to the predicate
instance itself is lost. The fold operation does exactly the opposite, it exchanges the predi-
cate’s body for an instance of the predicate. In order to avoid unfolding recursive defini-
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2.1. The Viper Verification Infrastructure

1 predicate Tree(t: Ref) {

2 acc(t.val, write) &&

3 acc(t.left, write) &&

4 acc(t.right, write) &&

5 (t.left != null ==> acc(Tree(t.left), write)) &&

6 (t.right != null ==> acc(Tree(t.right), write))

7 }

Listing 2.3: Silver predicate modeling a binary tree

tions indefinitely, those operations have to be specified manually. This way, the verifiers
only have to inspect data structures up to the depth at which the program to be veri-
fied has explicitly inspected the corresponding data structure [16]. While unfold and fold
are statements in Silver, there also are unfolding and folding expressions which can be
used to temporarily fold or unfold a predicate instance when evaluating an expression.
For example unfolding acc(Tree(x), write) in x.val == 10 unfolds the instance of
the Tree predicate, then evaluates the inner expression and folds the predicate predicate
instance Tree(x) again.

2.1.3 Mathematical Domains

Domains in Silver are used to encode first order theories. A domain introduces a new
type and contains uninterpreted functions, as well as axioms for those functions. The
domain Natural below highlights the features of domains in Silver. It contains zero, succ
and add functions to model natural numbers, as well as two Silver axioms corresponding
to the addition axiom of the Peano axioms.

1 domain Natural {

2 function zero(): Natural

3 function succ(n: Natural): Natural

4 function add(x: Natural, y: Natural): Natural

5

6 axiom addition_zero {

7 forall x: Natural :: add(x, zero()) == x

8 }

9 axiom addition_nonzero {

10 forall x: Natural, y: Natural ::

11 add(x, succ(y)) == succ(add(x, y))

12 }

13 }

Listing 2.4: Silver domain modeling parts of the Peano axioms

2.1.4 Magic Wands

Magic wands, or separating implications, are a key component of separation logic and
where first introduced in the initial paper about separation logic [21]. The semantics of
the connectives are defined as:

σ |= A−∗ B ⇔ ∀σ′⊥ σ · (σ′ |= A ⇒ σ ] σ′ |= B)
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Here, σ′ and σ′ refer to partial program states consisting of a heap and a store function
mapping local variables to their values. With σ′⊥ σ we refer to two compatible states
σ′ and σ, meaning they neither disagree on the value of any local variable nor do they
require access to the same heap locations. We use σ] σ′ to denote the combination of two
compatible states. Intuitively, a magic wand A−∗ B can be used to get to a state where B
holds by providing a state σ′ where A holds. Magic wands can be used to specify future
additions to the state and therefore they can also be used to describe partial versions of
data structures. While most verifiers for permission-based logics do not support magic
wands, Schwerhoff and Summers added support for magic wands to the Silver language
and the Silicon verifier [25]. In the following paragraphs we briefly describe their ap-
proach.

In Silver, a magic wand P −∗ Q can be used by using the ghost statement apply. This
statement removes the assertions specified on the left side of the wand from the current
program state and adds the assertions on the right side. In terms of Silver ghost opera-
tions, applying a wand P−∗Q in a program state where P holds is equivalent to:

exhale P−∗Q; exhale P; inhale Q

In order to apply a magic wand, an instance of the magic wand is needed. Similar to
predicate instances, magic wand instances must be created using ghost operations. In
Silver, magic wand instances can be created with the package statement. When creating a
magic wand instance, the state σ in the semantics above must belong to the magic wand
instance. This state is called footprint of the wand and when a wand is packaged, a state σ
must be computed, that guarantees the wand’s semantics. This footprint is then removed
from the current state and the wand representing it is added.

Listing 2.5 shows the syntax for the aforementioned ghost operations. The package state-
ment in the example creates a magic wand instance that given a state where write permis-
sions to x.f are held, can be used to acquire write permissions to x.y. When the wand
is packaged, write permissions to x.y are removed from the program state. The magic
wand instance is then applied in line 3. When the wand is applied, write permissions to
x.f are removed and added to x.y.

1 method foo(x: Ref)

2 requires acc(x.f, write) && acc(x.y, write)

3 ensures acc(x.f, write) && acc(x.y, write)

4 {

5 package acc(x.f, write) --* acc(x.y, write)

6

7 apply acc(x.f, write) --* acc(x.y, write)

8 }

Listing 2.5: Silver ghost operations for creating and applying a magic wand

Besides the package and apply ghost operations, there also are magic wand related ghost
operations that can be used on the right side of a magic wand when packaging a new
magic wand instance. In this thesis, we will make use of the applying and unfolding
ghost operations. Those ghost operations indicate that they should be applied during
the footprint computation, not in the current state. The applying ghost operation allows
applying a magic wand w′ while packaging another wand w. The method e applying
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in Listing 2.6 shows how applying can be used. In order to package the wand w =
acc(a.x) −∗ acc(a.y), the wand w′ = acc(a.x) && acc(b.x) −∗ acc(a.y) has to be applied.
But in order to apply this wand, access to a.x is required. By using applying, the wand
w′ can be applied when packaging the wand w, because w must be applied in a state
where permissions to access a.x are held. The folding ghost operation on the other hand
can be used to fold a prediacte while packaging a wand. The method e folding in
Listing 2.6 shows how folding can be used. When packaging the wand acc(a.x)−∗ acc(P(a),
folding can be used to fold a predicate instance P(a), because acc(a.x)−∗ acc(P(a) must
be applied in a state where permissions to a.x are held.

1 field x: Int

2 field y: Int

3

4 method e_applying(a: Ref, b: Ref)

5 requires acc(b.x)

6 requires acc(a.x) && acc(b.x) --* acc(a.y)

7 ensures acc(a.x) --* acc(a.y)

8 {

9 package acc(a.x) --*

10 applying (acc(a.x) && acc(b.x) --* acc(a.y)) in acc(a.y)

11 }

12

13 predicate P(self: Ref) {

14 acc(self.x)

15 }

16

17 method e_folding(a: Ref)

18 ensures acc(a.x) --* acc(P(a))

19 {

20 package acc(a.x) --* folding acc(P(a)) in acc(P(a))

21 }

Listing 2.6: Applying and Folding ghost operations for magic wands.

2.2 Rust

Rust is a modern general purpose programming language with the goal of being “safe,
concurrent and practical” [12]. Since we present a first verifier for a subset of Rust in
this thesis, it will contain plenty of Rust source code in examples. Therefore we briefly
introduce the most important syntax constructs, as well as the concepts of Rust’s type
system that are important for the remainder of this thesis. For an in-depth introduction
of Rust, we refer to The Rust Programming Language [12], an introductory book written by
the Rust developers.

2.2.1 Syntax

Rust has two different composite data types: structs and enumerations. Structs define
product types and are declared with the keyword struct. Structs are similar to structs in
C: they contain a set of fields. Those fields can be accessed with the dot operator (e.g.
p.x). For example, Listing 2.7 declares a type Point, which contains two integer fields: x
and y.

9
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2.2. Rust

1 struct Point {

2 x: i32,

3 y: i32,

4 }

Listing 2.7: Rust struct declaration with two integer fields

Enumerations, or enums, on the other hand define sum types and are declared with the
keyword enum. An enum contains one or more variants. Each of those variants has a
constructor which takes a fixed number of arguments with specified types. For example,
Listing 2.8 shows an enum OptionI32, which declares two variants: Some and None. The
Some constructor takes a single integer as an argument while None takes no arguments at
all.

1 enum OptionI32 {

2 Some(i32),

3 None

4 }

Listing 2.8: Rust enum declaration with two variants

As for control structures, Rust comes with the “usual suspects”: if, while and return, which
behave similarly to their Java or C counterparts. Notable additional control structures are
the match and for constructs. The match construct provides a way of pattern matching on
enums. Listing 2.9 shows how pattern matching can be used to distinguish the variants
of the OptionI32 enum.

In contrast to languages like C or Java, some control structures in Rust are expressions,
not statements. For example, if and match are expressions, which means they yield a re-
sult value. For blocks with multiple expressions, the last expression is used as the result
value, similar to e.g. Scala.

1 // if x is of variant Some, use its value, otherwise use 0

2 match x {

3 Some(v) => v // result of this pattern is v

4 None => 0 // result of this pattern is 0

5 }

Listing 2.9: Pattern matching in Rust

The fn keyword is used for function definitions. In Rust, functions take zero or more
arguments and have either zero or one return type. Listing 2.10 shows two function dec-
larations.

Local bindings can be created using the let keyword. Those local bindings are stored on
the stack. By default, local bindings are immutable. In order to get mutable bindings, let

10
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1 // a function without arguments or return value

2 fn foo() {}

3

4 // an identity function that takes and returns a value of type i32

5 fn id(x: i32) -> i32 {

6 x

7 }

Listing 2.10: Function declarations in Rust

mut has to be used.

1 // creates a struct Point on the stack and binds it to x;

2 // the content of x cannot be modified

3 let x = Point { x: 0, y: 0};

4

5 // create a binding y;

6 // the content of y can be modified

7 let mut y = 1;

Listing 2.11: Creation of new bindings in Rust

2.2.2 Affine types and ownership

Unique ownership is a very important feature in Rust which is used to achieve one of
Rust’s main goals: memory safety. Rust’s unique ownership model is similar to affine
type systems [2], where every variable can only be used once. Next, we describe how
Rust handles ownership.

In Rust, variable bindings “own” the resource they are bound to. As mentioned above,
Rust enforces unique ownership. In particular this means that Rust’s type system ensures
that there is exactly one owner for any given resource. This property is ensured by Rust’s
move semantics. Consider a location that stores some data, for example an instance of
the struct Point in Listing 2.12. This location is the current owner of that data. When
this location is assigned to another location or passed to a function by value, ownership
of the data is transferred to the new location. The new location gains access to the data
and the old location loses access. In particular, this means the owner of a resource knows
it has exclusive access to the resource and that the resource cannot be changed without
the owner’s permission. This information is also useful when it comes to deallocating
objects, as it allows deallocating resources when their owner goes out of scope.

Any uses of the original owner after a move are forbidden and result in a compile time
error. In Rust, it is also possible to move parts of a data structure. For example, a field
of a struct could be moved to a new location as in the last line in Listing 2.12. The struct
instance containing the moved field is now referred to as partially moved. In this case, the
other fields of the struct instance can still be used, but the partially moved struct instance
cannot be used as a whole. In our example, this means line.end can still be accessed,
while line as a whole cannot be used where a variable of type Line is expected. In Rust
all composite types use move semantics by default.
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1 // p1 owns Point { x: 0, y: 0 }

2 let p1 = Point { x: 0, y: 0 };

3

4 // Point { x: 0, y: 0 } is moved from p1 to p2

5 let p2 = p1;

6

7 // use of moved value p1, compile time error

8 let x = p1.x;

9

10 let line = Line { start: Point { x:0, y: 0 }, end: p2 };

11 // move field

12 let start = line.start;

Listing 2.12: Moves in Rust

Note that while unique ownership is the default behavior for composite types, Rust also
provides a way to change from move to copy semantics, if that makes sense for the data
type. Instead of moving the content, a deep copy of the content is performed. This means
after the copy, both source and destination location can access their respective content. In
order to get copy semantics for a struct or enum, all types used in the definition of the
struct or enum must use copy semantics as well.

2.2.3 Borrows and Lifetimes

To complement the ownership system, Rust provides a way to share data without giv-
ing up ownership. The process is called borrowing and the rules described below are
enforced by a sub-system of the Rust compiler, called borrow checker.

Rust allows sharing of data without moving (or copying) it through references by using
the idea of region-based memory management as introduced by Grossman et al. [14] for
the Cyclone programming language. The main idea is that each reference to some data
has a corresponding lifetime (in Cyclone those are referred to as regions) which repre-
sents the scope in which the reference can be used to access the data. In order to prevent

“use after free” errors, the lifetime of a reference cannot be greater than the lifetime of the
content it points to.

In Rust there are two types of references: immutable and mutable ones. Creating an
immutable reference to some data means the data is borrowed immutably for the lifetime
of the reference. The reference can then be used to access the data in a read-only fashion.
This in turn also means that the owner of the data is not allowed to modify the data for
the lifetime of the reference. Because the data cannot be modified as long as there is a sin-
gle immutable borrow active, it is allowed to have one or more immutable references to
the same data. Rust does not require manual lifetime annotations inside function bodies
because it uses the lexical scopes of let bindings as lifetimes. The example in Listing 2.13
highlights immutable borrows.

Mutable references on the other hand can also be used to modify the contents they point
to. But in order to prevent concurrent and potentially conflicting updates, Rust restricts
the use mutable references. At any given time, there can only be a single mutable refer-
ence pointing to the same data. For the lifetime of a mutable reference, the owner of the
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1 let mut p1 = Point { x: 0, y: 0 };

2 {

3 // ref1 borrows p1 immutably;

4 // the lifetime of the borrow is equal to the lexical

5 // scope of ref1

6 let ref1 = &p1;

7

8 // for the remainder of the block, we cannot use p1

9 // to modify its contents, but we can use it for read access

10 let x = p1.x;

11 // ...

12

13 // the borrow of p1 expires at the end of this block

14 }

15 // p1 can be used to mutate its contents again, because all

16 // borrows have expired

Listing 2.13: Immutable borrows in Rust with different lifetimes

data itself is not allowed to access the data in any way. In fact, handing out a mutable
reference can be seen as temporary transfer of ownership from the owner to the mutable
reference. After the lifetime of the reference expires, ownership is transferred back to the
original owner. In the example shown in Listing 2.14, creating a mutable reference to
p1 means that while this reference is active, ownership of p1’s value is transferred to the
reference ref1, which means p1 cannot by used in any way as long as ref1 is in scope.

1 let mut p1 = Point { x: 0, y: 0 };

2 {

3 // ref1 borrows p1 mutably;

4 let ref1 = &mut p1;

5

6 // for the remainder of the block, we cannot use p1

7 // ...

8

9 // the borrow of p1 expires at the end of this block

10 }

11 // p1 can be used to mutate its contents again, because all

12 // borrows have expired

Listing 2.14: Mutable borrows in Rust

The Borrow Checker

In order to check Rust’s borrow rules the borrow checker tracks information about bor-
rows in terms of loans. The loans are collected using dataflow analysis. Table 2.1 shows
the loan information gathered by the borrow checker for the function foo in Listing 3.9.
For both borrows, a loan is created. The recorded information includes the path of the
borrowed value, providing detailed information about the parts that are borrowed, the
type of the loan as well as the start and end of the loan.

Currently Rust’s borrow checker is clever enough to track borrows of struct fields pre-
cisely within the scope of the current function. In particular, mutable references to fields
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id path type start end

0 x.* immutable line 3 line 4
1 x.b.* mutable line 6 line 7

Table 2.1: Simplified loan information for Listing 3.9

of structs or enums can be used to modify the contents of the fields. Other constructs
of the language are not handled as precisely, for example the borrow checker does not
track enough information to distinguish between borrows to disjoint locations of an array.
Listing 2.15 shows the two cases.

1 let mut p1 = Point { x: 0, y: 0 };

2 // borrowing two different fields of a struct works

3 let ref1 = &mut p1.x;

4 let ref2 = &p1.y

5

6 // a mutable borrow to an element of the array x borrows

7 // the whole array

8 let mut x = [1, 2, 3];

9 let a = &mut x[0];

10 let b = &mut x[1]; // error, x already borrowed mutably

Listing 2.15: Special cases for the borrow checker

2.2.4 Lifetime parameters

As mentioned previously, Rust automatically infers appropriate lifetimes for references in
function bodies. For function arguments and return values, manual lifetimes are required
in general in order to allow checking the borrow rules in an intra-procedural fashion.
But to reduce the annotation overhead, Rust allows lifetime parameters to be elided for
some common use cases. The Rust compiler will then try to use distinct lifetimes for
each parameter. For references as return values, the lifetime can only be elided if the
function has exactly one reference parameter without lifetime annotation. Listing 2.16
shows some examples of lifetimes in function signatures. Note that using references in
structs or enums always requires explicit lifetime annotations to ensure references to a
struct cannot outlive references inside the struct or enum.

1 fn foo(x: &str) -> &str // OK lifetimes elided

2 fn foo<’a>(x: &’a str) -> &’a str // expanded

3

4

5 fn bar(x: &str, y: &str) -> &str // illegal

6 fn bar<’a>(x: &’a str, y: &’a str) -> &’a str // OK

7 fn bar<’a, ’b>(x: &’a str, y: &’b str) -> &’b str // OK

Listing 2.16: Function declarations with and without lifetime parameters

14



Chapter 3

Verifying Rust Programs

In this section, we describe our approach for verifying Rust programs using the Viper
verification infrastructure. It is based on translating Rust programs to Silver programs,
which then can be verified with either Silicon or Carbon. Besides generating Silver code
for Rust language constructs, we also generate appropriate predicates and permissions
for Rust programs automatically. In the following sections we describe how Rust2Viper
handles different constructs of Rust.

3.1 From Mutability to Permissions

A fundamental task when writing Silver programs by hand is choosing suitable permis-
sion amounts at various program points, e.g. in pre- and postconditions or when folding
and unfolding predicates. In this section, we present how Rust’s type information can
be used to automatically choose appropriate permissions. For now we will only focus
on distinguishing between write permissions and some amount of read permissions. We
will also not account for borrows in this section, but we will discuss the effect of borrows
on permissions in Sections 3.2.2 and 3.3. The basic idea is straightforward. References
in Rust provide information about the mutability of their content at the type level. Mu-
table references can be used to modify the content they point to. This corresponds to
write permissions to the content in Silver. Immutable references provide read-only access,
which corresponds to some amount of read permissions. For value types, the mutability
of the content is defined by the mutability of the binding that stores the value and a
value type does not contain information about mutability on the type level. For example,
mutable and immutable integer variables both have the same integer type, e.g. i32. The
mutability of the variables is a property of the bindings themselves. A mutable binding
corresponds to write permissions, while an immutable binding corresponds to some read
permissions. More formally, we define a function perm, which takes a variable binding in
a Rust function and returns permissions for the content of that variable. In order to de-
fine this function, we also need a function typeof which returns the Rust type for a given
binding and a set mutable bindings, which contains the names of the mutable bindings in
a function. Now perm(v) can be defined as follows:

• typeof(v) = &mut T⇒ perm(v) = write

• typeof(v) = &T⇒ perm(v) = read

• typeof(v) = T ∧ v ∈ mutable bindings⇒ perm(v) = write

• typeof(v) = T ∧ v 6∈ mutable bindings⇒ perm(v) = read
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3.2. Structs and Moves

3.2 Structs and Moves

3.2.1 Structs

As mentioned briefly in the section about Viper, objects in Silver do not belong to a par-
ticular class, but potentially have access to all declared fields. Which fields of an object
can be accessed is defined by the permissions held at the current program point.

In Rust, on the other hand, each struct declaration defines a new data type. Each struct
declaration consists of a list of fields and all instances of a struct type contain exactly
those declared fields. Fields of structs can have arbitrary types, which means structs can
be nested (the type of a field is another composite type) or recursive (the type of a field
contains the type of the defining struct).

This means the encoding of structs must be flexible enough to support complex aggre-
gations of structs, field accesses, moving of struct instances, as well as expressing type
information of arguments and return values of Rust functions. The key idea for our en-
coding is centered about capabilities as described by Boyland et al. [7]. Each reference
has a set of capabilities associated with it. Those capabilities describe what fields can be
accessed with this reference and how they can be accessed (e.g. read or write access).

A type in Rust defines the capabilities each instance of that type provides. Reference
types define the mutability of instances of that type, e.g. an immutable reference &T
gives immutable access to an instance of T, while a mutable reference &mut T gives ex-
clusive, mutable access. Value types such as T with move semantics provide exclusive
access to their value. In addition, struct types provide the capabilities to access their field
and enum types provide the capabilities to access their variants. For example, in order
to access a field f on a struct instance x, the type of x must provide the capability to ac-
cess that field. Note that the type information provides the maximum set of capabilities.
Throughout a Rust program, those capabilities can be reduced, for example by borrowing
or moving parts of a data structure. For now we focus on encoding this maximum set
of capabilities. We will discuss the effect of moves and borrows on capabilities in Sec-
tions 3.2.2 and 3.3.

The concept of capabilities can be mapped to Silver quite nicely. In this section we focus
on structs, but we will discuss enums in section Section 3.4 as well. Access permissions
can be used to express capabilities of references. But before going into the details, we
have to describe the data representation of structs in Silver first. Rust structs are mapped
to Silver objects with appropriate fields. Listing 3.1 shows the translation of struct dec-
larations in Rust to Silver fields. The listing on the left side contains Rust code, while
the listing on the right contains the corresponding translation to Silver. Throughout this
thesis, we use a similar structure for listings. For each field in the Rust struct a corre-
sponding Silver field declaration is created. For integer fields, Silver’s integer type Int
is used. 1 Fields with composite types are translated to Silver references which point to
another object representing an instance of the respective composite type. Note that in con-
trast to Rust, objects in Silver can only be created on the heap. This means all instances of
structs are stored on the heap in Silver, whereas in Rust they could be stored on the stack

1Integers are represented in a slightly different manner in the final translation. We go into more detail in
Section 3.6, but for now we use the simpler representation to avoid unnecessary overhead when explaining the
basic idea.
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or the heap. While the distinction where objects are created in memory matters when
executing actual Rust programs, it is not important from a verification perspective.

1 struct Bar {

2 vb: i32

3 }

4

5 struct Foo {

6 b: Bar,

7 vf: i32,

8 }

1 //

2 field Bar__vb: Int

3

4

5

6

7 field Foo__b: Ref

8 field Foo__vf: Int

Listing 3.1: Translation of a struct declaration in Rust to Silver fields

Note that the data representation presented above only accounts for part of the Rust type
information. In particular, for the field Foo.b, a Silver field of type Ref is created. But it
does not include any information about the target of the reference. This is due to the fact
that all objects in Silver belong to the same class. This information must be captured by
the translation of struct types as well.

Now that we discussed the data representation, we take a closer look at how capabilities
are encoded. The fact that a Silver reference ref, that points to an instance of the struct
Bar, can be used to mutably access an integer field vb can be encoded by acc(ref.vb,

write). This implies that the capabilities of a struct type can be modelled using a con-
junction of access predicates for each field. Rust2Viper uses predicates to bundle the
capabilities of a type. For each Rust type, a corresponding predicate is created, which
gives access to all fields of the struct. Moreover, with those predicates, Rust’s mutability
information can be encode as well, by using appropriate permissions for the predicate
instances. For the structs from Listing 3.1, the predicates shown in Listing 3.2 are cre-
ated. Each predicate takes a single reference as an argument and gives permissions to the
proper fields. Note that by using a predicate for each type, the information that Foo.b has
type Bar can be reflected concisely in the translation by using the predicate generated for
Bar. Another possibility would be to unfold the body of valid Bar in valid Foo, but
this would only work for non-recursive structs. For recursive types, it would be necessary
to detect cycles in the type structure to avoid unfolding the definitions indefinitely.

1 predicate valid__Foo(self: Ref) {

2 acc(self.Foo__b) &&

3 acc(valid__Bar(self.Foo__b)) &&

4 acc(self.Foo__vf)

5 }

6

7 predicate valid__Bar(self: Ref) {

8 acc(self.Bar__vb) &&

9 }

Listing 3.2: Predicates encoding the capabilities of the structs Foo and Bar from Listing 3.1

Instances of Rust structs can now be encoded by a Silver object with the appropriate
fields and a corresponding predicate instance. Consider Listing 3.3. In order to create a
new instance of struct Bar, a new object with the required fields is created on the heap
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first. Then the values are assigned to the fields and finally the predicate for the struct
type is folded. The Silver reference x now points to an object representing the Rust struct
instance from the example. In the example in Listing 3.3, the Rust variable x owns the
created instance of the struct Bar. When folding the predicate, Rust2Viper has to use the
correct permissions. For bindings that own an object, the permissions depend on the
mutability of the binding. A mutable binding implies write permissions. That reflects the
fact that the content of the binding can be modified in Silver. An immutable binding on
the other hand implies read-only permissions.

1 let mut x = Bar { vb: 10 };

2

3

4 //

1 var x: Ref

2 x := new(Bar__vb)

3 x.Bar__vb := 10

4 fold acc(valid__Bar(x), write)

Listing 3.3: Creation of a struct instance

In the remainder of this section, we discuss how field accesses are handled with our en-
coding. In the following paragraphs, we use the perm function defined in Section 3.1,
which either returns read or write permissions. At the moment, we do not focus on choos-
ing suitable fractions for read permissions, because as long as we discuss isolated field
accesses without borrows, the actual amount of read permissions is not important. We
will discuss choosing suitable read permissions in Section 3.3. Whenever we have access
to a struct instance x in the Rust program, we also hold an instance of the corresponding
predicate with perm(x) permissions in the Silver translation. We will first focus on structs
and discuss enums in Section 3.4.

When translating an access to a field in a struct, the predicate for the struct has to be
unfolded in order to gain access to the fields. After a field access, the predicate has to be
folded again, to restore all capabilities. During the translation, Rust2Viper has to emit the
required fold and unfold operations automatically. We use the following rule to generate
fold and unfold statements for Rust statements. First consider a single field access of the
form x0.x1..xn−1.xn. For such an access, we need to unfold the appropriate predicates
for x0, x0.x1 up to x0.x1..xn−1 with permissions p = perm(x0). After the field access,
all predicates are folded again in the reverse order. For statements containing multiple
field accesses, we first collect all accesses and then generate unfold and fold statements for
all unique sub-paths. For a statement containing three accesses x. f , x. f .g and x. f .h, all
unique sub-paths would be x, x. f , x. f .g and x. f .h and we would only fold and unfold
the predicates for x and x. f once. This is important in order to avoid unfolding the same
predicate instance multiple times, which would fail, e.g. when p = write. The way p is
chosen ensures that the emitted unfold and fold statements always succeed.

In the remainder of this section we use some examples to show how this rule is applied.
First consider the example in Listing 3.4. When translating the access x.vb in the Rust
program to Silver, Rust2Viper first emits an unfold statement with write permissions (be-
cause x is a mutable binding to a value type). After the assignment, a fold statement is
emitted to restore the predicate.

Accesses to nested structs can be handled in a similar fashion. In the example below,
x.b.vb is accessed in a read-only fashion. To fold and unfold the predicates, permission
variables are used. Both rd1 and rd2 must be valid read permissions When there are no
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1 let mut x = Bar { vb: 10 };

2

3 x.vb = 20;

1 unfold acc(valid__Bar(x), write)

2 x.vb := 20

3 fold acc(valid__Bar(x), write)

Listing 3.4: Translation of a statement updating a field

borrows, it is sufficient that rd1 = rd2, but once there are borrows the constraints on the
permissions become more complicated. This will be discussed in detail in the Section 3.3.

1 let x = Foo { /* .. */ };

2

3

4

5 let y = x.b.vb;

1 unfold acc(valid__Foo(x), rd1)

2 unfold acc(valid__Bar(x.Foo__b), rd2)

3 y := x.Foo__b.Bar__vb

4 fold acc(valid__Bar(x.Foo__b), rd2)

5 fold acc(valid__Foo(x), rd1)

Listing 3.5: Translation of a statement reading a field

3.2.2 Moves

By default composite types have move semantics in Rust. This means unless a special
Copy trait is implemented by a composite type, instances of that type are moved instead
of copied when they are assigned to a new binding or passed as a function argument.

An important property when it comes to moves is the following. The borrow checker
guarantees that when a binding x is moved, there are no other references to the value in
scope. Likewise, as long as there are references to a binding x in scope, nothing can be
moved into it. Hence there must be exclusive access to both the source and the target of
a move.

There are two potentially ways to translate moves. The first possibility is to generate code
that copies all the fields of a struct or enum. The second possibility is to just update the
reference of the source to point to the moved object. At first, the second option seems
to be the better one, as it results in more concise Silver code, but there is a technical
reason making that option not viable in all cases. The problematic case manifests when
moving to a mutable reference, which is illustrated in Listing 3.6. In this case, Rust2Viper
cannot simply update the reference x with the address of the newly created instance
of Bar, because it is a parameter, which cannot be modified in Silver. For this reason,
Rust2Viper uses the second option only when the target of the move cannot be a function
argument. For example, this is the case for new variables introduced with let. In this
case, the mutability of the target of the move may change, e.g. by moving an immutable
instance to a mutable binding. In this case we use inhale to upgrade the permissions
of the struct instance to write permissions. This can be done because the Rust compiler
ensures the source of the move is never used again until a new value is moved to it. The
Silver translation in Listing 3.7 highlights this permission upgrade. For other moves the
first option is used.

Of course it is also possible to move values stored in a struct. When parts of a struct
instance are moved out, this struct instance loses the capability to access the moved parts.
The Rust compiler will prevent subsequent uses of moved parts of struct instances. The
changed capabilities are also reflected by Rust2Viper. When a field is moved out of
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1 fn foo(x: &mut Bar) {

2 *x = Bar { .. };

3 }

Listing 3.6: Move to reference

a struct instance, the predicate of the struct is unfolded in order to gain access to its
content. But once a field is moved out of a struct instance, the struct itself cannot be
used any longer, so the predicate is not folded after the move operation. The example
in Listing 3.7 illustrates that behavior. In the example, the field foo.b is moved to the
binding b. In the Silver translation the valid Bar predicate is unfolded but not folded
again.

1 struct Bar {

2 f: i32

3 }

4 struct Foo {

5 b: Bar,

6 f: i32

7 }

8

9 let foo = Foo {..};

10 let mut b = foo.b;

1 //

2

3

4

5

6 unfold acc(valid__Foo(foo), rd)

7 var b: Ref

8 b := foo.Foo__b

9 inhale acc(valid__Bar(foo.Foo__b),

10 write-perm(valid__Bar(foo.Foo__b)))

Listing 3.7: Translation of Rust struct declaration to Silver fields

3.2.3 Function Arguments

When translating Rust functions to Silver, a central aspect is encoding the capabilities of
the argument types. In Rust, function arguments can be passed either by value or by
reference. When an argument is passed to a function, all capabilities of the argument’s
type are available at the beginning of the function. Reference types as arguments also
convey additional information, namely that at the end of the functions, the capabilities
are restored again. For example, consider a function that takes a mutable reference as an
argument. In the function body, the capabilities to mutate the content of the reference
could be lost temporarily by creating an immutable reference to the content. But as long
as this reference expires at the end of the function body, the capabilities to modify the
content of the argument are restored. The only exception are functions in which refer-
ences escape the function body. This case is discussed in Section 3.3.3.

In our encoding, complex types are represented as Silver objects, which means they are
passed as Silver references to methods and functions. The capabilities of the Silver objects
are reflected by the predicates of the Rust types they represent. Those predicates can be
used in pre- and postconditions of Silver methods and functions to specify the capabili-
ties of arguments.

Before we go more into the technical details of the translation, we would like to briefly
point out a difference between permissions in Silver and mutability of references in Rust
to avoid any confusion later on. In Silver, permissions are tracked on a per-object basis.
This means it is possible to have multiple references to the same object, and all those
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references can be used to modify the object, as long as write permissions for that object
are held at the current program point. In Rust this is not the case. At any given point
in time, at most one mutable reference to the same object can exist. The Rust compiler
does not reason about permissions on objects, but uses the additional restrictions of the
borrow rules to statically ensure that every mutable borrow has exclusive access to its
data at compile-time.

As the first step in our translation we introduce a permission argument rd to all meth-
ods. This parameter represents some read permissions (which means none < rd < write
must hold). It is used to specify the permissions of arguments that are immutable ref-
erences and allows the caller to choose an appropriate permission amount when calling
the method, depending on the permissions it holds at the time of the call. Listing 3.8
illustrates this translation step. When calling a Silver method in our encoding, choos-
ing a suitable permission amount to pass as rd is crucial. It must be small enough
that the caller holds at least rd permissions to the predicate instances reflecting the ca-
pabilities of the arguments for the call to succeed. One way to find a value satisfying
this constraint is using Silver’s abstract read permissions [15]. For abstract read permis-
sions the verifier adds additional constraints depending on the use of permission vari-
ables. In Silver, constraining can be used to add such constraints for permission vari-
ables. For the example in Listing 3.8, the following constraints will be generated for
rd: rd < current perm(valid Foo(x1)) ∧ rd < current perm(valid Bar(b1)) where
current perm returns the permissions held for a predicate at the current program point.
Throughout the following sections we will use abstract read permissions in all our exam-
ples. In Section 3.3.4 we will also discuss a static over-approximation that can be used to
calculate appropriate read permissions without using abstract read permissions in many
cases.

1 fn test(x1: &Foo,

2 b1: &Bar)

3 {}

4

5

6

7

8

9 test(x)

1 method test(x1: Ref, b1: Ref rd: Perm)

2 requires none < rd && rd < write

3 requires acc(valid__Foo(x), rd)

4 requires acc(valid__Bar(b1), rd)

5 ensures acc(valid__Foo(x), rd)

6 ensures acc(valid__Bar(b1), rd) {}

7

8 fresh rd

9 constraining (rd) { test(x1, x2, rd) }

Listing 3.8: Translation of a Rust function to a Silver method

3.3 Borrows

Borrows are another important feature of Rust that is interesting from a permission per-
spective for our translation. Borrows are references to some data, e.g. to a struct or parts
of a struct. In Rust, those references also have an additional property, namely an associ-
ated lifetime. The lifetime of a borrow reflects the program region for which the reference
is active and can be used to access the data. In this section we describe how this lifetime
information is used to handle permissions to borrowed data.
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3.3.1 Basic Idea

When dealing with borrows it helps to think about them in terms of capabilities, in par-
ticular how a borrow affects the capabilities of the borrowed content. When a value is
borrowed, its capabilities are restricted according to Rust’s borrow rules, for as long as
the borrow is “alive” (which means it is active with respect to its lifetime). We use the ex-
amples in Listing 3.9 to highlight the effect of borrows on the capabilities of the borrowed
content. The immutable borrow ref1 of the mutable borrow x prevents modification of
the value as long as ref1 is active. In terms of capabilities, x lost the capabilities to mod-
ify its contents as long as ref1 is active, even though the static type of x is still &mut Foo.
This means as long as ref1 is active, x cannot be used as &mut Foo, because this would
allow modifications of x while there is another borrow to x alive. In fact, informally one
could say the borrow ref1 “downgrades” the current type of x to &Foo. However this
fact is not captured directly by Rust’s type system. Rust’s type-checker will treat the type
of x as &mut Foo throughout the whole body of the function foo. Those restrictions of
capabilities are enforced in a separate step by the borrow checker.

When borrowing a field of a struct, the capabilities to modify that field are lost. But even
more capabilities are lost. Borrowing a field of a struct also restricts the capabilities of
the instance containing the field. In Listing 3.9, x cannot be used as &mut Foo while ref2

is active, because without that restriction, x could be used to modify x.b to which an
immutable borrow is alive. This shows that relying on only static type information is not
enough when translating Rust programs to Silver; this is the main motivation to include
the information Rust’s borrow checker provides into our translation.

1 fn foo(x: &mut Foo) {

2 {

3 let ref1 = &*x;

4 }

5 {

6 let ref2 = &mut x.b;

7

8 // While ref2 is active, x cannot be used as &mut Foo.

9 // For this reason, the compiler rejects the function call below.

10 foo(x)

11 }

12 }

Listing 3.9: Borrows highlighting restriction on capabilities

The main idea of our translation of borrows is centered around the effect of borrows on
the capabilities of references. In our translation there are cases in which the capabilities
lost due to a borrow are modeled explicitly. One such case is borrowing a field of a struct.
In this case, the top-level predicate instance of the struct has to be unfolded in order to
get access to the field. By unfolding the predicate instance, permissions to the predicate
instance are lost and they cannot be restored as long as the borrow to the field is active.
Otherwise the reference could not be used to access the field. From a permission perspec-
tive we model this loss of capabilities by removing some permissions to the borrowed
content. Those permissions are regained when the lifetime of the borrow ends.
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Magic wands (introduced in Section 2.1.4) can be used to express this behavior quite nat-
urally. The “borrowed-from” structure can be explicitly encoded by a magic wand. Such
a wand allows restoring the permissions removed temporarily by a borrow by giving
up permissions to the borrowed content. This explicit encoding encoding is a good fit
in general, but in some cases it is not necessary to encode the “borrow-from” structure
explicitly. For example, when returning a borrow from a function, the information what
permissions need to be restored once the returned borrow goes out of scope must be en-
coded explicitly in the function’s postconditions. For borrows that do not outlive function
bodies on the other hand, this explicit encoding is not necessary in many cases.

3.3.2 Translating Function Local Borrows

In this section we describe our translation of function local borrows. By function local
borrows we mean borrows that do not outlive the function body. First, we discuss how
magic wands, in general, can be used to encode the ”borrowed-from” structure explic-
itly. Later we will discuss when and how magic wands can be omitted for function local
borrows. We will not discuss the handling of loops in this section. Those two cases are
discussed in detail in Sections 3.3.3 and 3.5.

The most interesting aspect of function local borrows is that Rust2Viper has to ensure
that the capabilities of the borrowed content are restored correctly after a borrow expires.
First we will show how magic wands can be used to do that. Consider the borrows in
Listing 3.9 and the corresponding Silver translation without any code to restore the orig-
inal capabilities in Listing 3.10. Note that in our translation, when borrowing top-level
structs (e.g. the first borrow ref1 in the example) no ghost code is emitted to account for
the loss of capabilities.

When parts of structs are borrowed (e.g. the second borrow ref2 in Listing 3.9), the
translation becomes more interesting. In order to access a field, the top-level predicate
has to be unfolded first. After the new reference ref2 to the field is created, the top-level
predicate cannot be folded again until this borrow expires. If the top-level predicate were
folded straight after the assignment, ref2 would immediately lose the capabilities to ac-
cess the field. Because the top-level predicate remains unfolded until the borrow expires,
the loss of capabilities of x is reflected in our translation, by the fact that permissions to
the top-level predicate instance were removed by the borrow.

Now we will address restoring the capabilities using magic wands. Consider a borrow of
the form x = &y, where x and y are Rust expressions. The magic wand for this borrow
has to specify that by giving up permissions to x, the permissions to y can be restored.
We use the following rule to create such magic wands. Let Plhs be the predicate instance
describing the capabilities of the borrower x. For ref2 in Listing 3.9, this would be
acc(valid Bar(re f 2), write). Let Prhs be the top-level predicate instance of the value that
is borrowed from, y. For ref2 in Listing 3.9, this would be acc(valid Foo(x), write). Us-
ing Plhs and Prhs, the resulting wand is Plhs−∗ Prhs. When packaging this wand, additional
ghost operations may be required, e.g. when a field of a struct is borrowed, additional
folding expressions are needed on the right side of the wand to restore the top-level pred-
icate instance. A folding expression is generated for each predicate that was unfolded in
order to access the field.
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Now we apply those rules to Listing 3.9. For the first borrow, the trivial wand

acc(valid Foo(re f 1), rd)−∗ acc(valid Foo(x), rd)

can be created in order to restore the original capabilities of x when ref1 goes out of scope.
For the second borrow, a more interesting wand is created. This wand has to specify that
by giving up write permissions to valid Bar(ref2) we regain write permissions to
valid Foo(x), which the following wand does:

acc(valid Bar(re f 2), write)−∗ acc(valid Foo(x), write).

Listing 3.11 shows the ghost operations required in Silver to create this magic wand and
how it is applied in order to restore the original capabilities.

1 method foo(x: Ref, rd: Perm)

2 requires none < rd && rd < write

3 requires acc(valid__Foo(x), write)

4 ensures acc(valid__Foo(x), write)

5 {

6 var ref1: Ref

7 ref1 := x

8

9 unfold acc(valid__Foo(x), write)

10 var ref2: Ref

11 ref2 := x.Foo__b

12 }

Listing 3.10: Translation of Listing 3.9 without code for restoring capabilities after bor-
rows expired

1 // borrow start

2 unfold acc(valid__Foo(x), write)

3 var ref2: Ref

4 ref2 := x.Foo__b

5 package acc(valid__Bar(ref2), write) --*

6 folding acc(valid__Foo(x), write) in acc(valid__Foo(x), write)

7

8 // borrow expires

9 apply acc(valid__Bar(ref2), write) --* acc(valid__Foo(x), write)

Listing 3.11: Creating and applying a magic wand to encode borrows

Note that while magic wands provide a nice formalism to handle function local borrows,
they have a few disadvantages. First, using magic wands would clutter the generated
Silver code with magic wand related ghost operations. Second, at the moment there ex-
ists an inconvenience related to magic wands in Silicon and Carbon. When using magic
wands in combination with write permissions, they do not automatically track updates to
fields that appear on the right side of the wand. Listing 3.12 and Listing 3.13 illustrate
the problem. In Listing 3.12 a magic wand is used to restore write permissions to Foo(x).
Between packaging and applying the wand, x.f is updated. When the wand is applied
however, the information that x was updated (x.f := 10) is lost. For this simple example,
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1 field f: Int

2 predicate Foo(x: Ref) {

3 acc(x.f)

4 }

5 method foo(x: Ref)

6 requires acc(Foo(x), write)

7 {

8 unfold acc(Foo(x), write)

9 package acc(x.f, write) --* folding acc(Foo(x)) in acc(Foo(x), write)

10 x.f := 10

11 apply acc(x.f, write) --* acc(Foo(x), write)

12 assert unfolding acc(Foo(x), 1/2) in x.f == 10

13 }

Listing 3.12: Use of a magic wand to restore permissions

1 field f: Int

2 predicate Foo(x: Ref) {

3 acc(x.f)

4 }

5 method foo(x: Ref)

6 requires acc(Foo(x), write)

7 {

8 unfold acc(Foo(x), write)

9 x.f := 10

10 fold acc(Foo(x), write)

11 assert unfolding acc(Foo(x), 1/2) in x.f == 10

12 }

Listing 3.13: Use of fold to restore permissions

it would be possible to add additional assertions to the right side of the wand to preserve
this information. But once there are mutable borrows to multiple fields, it becomes tricky
to generate those assertions automatically. When using fold to restore the permission to
Foo(x) as in Listing 3.13, the verifiers automatically preserve the required information.

However, function local borrows can be handled without magic wands, because as long
as the borrow is limited to the scope of the current function, there is no need to explicitly
encode the “borrowed-from” structure. In this case, fold statements can be used to restore
the permissions. For function local borrows we therefore do not need to create magic
wands explicitly and when a borrow goes out of scope, the permissions are restored us-
ing appropriate fold statements for the predicates on the right side of the wand. This can
be done as long as there are no loops in the function that repeatedly create new borrows
that outlive a loop body. For borrows that outlive a loop body, the information how to
restore the permissions once a borrow goes out of scope must be preserved in a loop in-
variant, because the permissions cannot be restored at the end of the loop iteration. This
information cannot be expressed in terms of fold statements. In Section 3.5 we discuss
how loops can be handled using magic wands.

So far we have only discussed relatively simple borrow scenarios. In the following subsec-
tions we present some technical details that are used to handle more complicated borrow
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scenarios.

Borrowing Data Multiple Times

When borrowing parts of a struct multiple times, calculating suitable permissions when
unfolding the top-level predicate becomes more complicated than in the previous exam-
ple. In the example in Listing 3.14, the field x.b is borrowed twice, and x.b.c is borrowed
using one of the borrows of x.b. For field accesses, Rust2Viper has to unfold the corre-
sponding predicate instances for the struct types, in order to get access to the fields in
the Silver program. For each field access, a corresponding unfold statement is added and
we have to chose suitable permissions for those unfold statements. Now let us take a
closer look at the Silver encoding in Listing 3.14, with permissions in mind. The first
observation is that when unfolding valid Foo(x) for the first time, we cannot use all
permissions we currently hold for valid Foo(x), because then the second unfold of
valid Foo(x) a would fail. For both rd1 and rd2 we have to choose fractions of rd, so
that rd1 + rd2 < rd holds. If this constraint is satisfied, there are enough permissions for
the unfold statements to succeed and there are still permissions left for further borrows.
This means an arbitrary number of immutable borrows to the same struct instance can be
handled with our encoding. Those constraints can be encoded with Silver’s constraining
statement, similarly to the example in Listing 3.8.

The second observation is that the permissions used to unfold valid Bar(ref2) de-
pend on the permissions used to unfold valid Foo(x) when creating ref2. This adds
another constraint rd3 < rd2. Similar constraints can be added for arbitrary nesting of
field accesses and borrows.

Instead of unfolding and folding predicate instances with some permissions for each
field access, we could also use a more coarse-grained approach and only focus on the
distinction between read and write permissions. We could only unfold the corresponding
predicate instance for the first immutable field access and then keep the instance unfolded
as long as there are no statements that need write permission to the field. For statements
that require write permissions, we could unfold the predicate instance with the remaining
permissions, to get write permissions to the field. When all mutable borrows have expired,
we would fold the predicate instance with read permissions again. We decided not to use
this approach, because it requires additional logic to check if a predicate instance was
already unfolded for previous field accesses. Such a check could be implemented using
the information the borrow checker provides. But this approach must also take to control
flow into account. Consider a function with two possible flows of control. Along one
program path, a field x.f is accessed, but along the other it is not. After the two paths
are merged again, x.f is accessed again. Additional care would have to be taken to ensure
the predicate for x is unfolded along both paths before the second access is reached.

While our system works well for immutable borrows, because it is always possible to gen-
erate smaller fractions of read permissions, this does not apply to mutable borrows. When
a field of a struct is borrowed mutably in Rust, this field cannot be borrowed again as
long as the first mutable borrow is active. Additional borrows to the same struct instance
must be to different fields. These two properties are ensured by the borrow checker. In
our encoding, when a field of a struct is borrowed mutably, the top-level predicate has to
be unfolded with full write permissions. Before unfolding a predicate with write permis-
sions, we have to check if there are other mutable borrows to different fields of the same
struct instance alive in the current scope. For this check, the loan information the borrow
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checker provides can be used. When a field x.f is borrowed mutably, we have to check
if any of the active loans at the current program point involve other parts of x. If that
is the case, the predicate was already unfolded with write permissions when the existing
borrow was created, hence there are already write permissions to all fields of the struct
and there is no need to unfold the predicate again. In this case it may be necessary to
update the point where the predicate is folded again. If the lifetime of the existing borrow
is smaller than the lifetime of the new borrow, the predicate has to be folded when the
borrow with the longest lifetime goes out of scope.

1 fn foo(x: &Foo) {

2 let ref1 = &x.b;

3

4

5 let ref2 = &x.b;

6

7

8 let ref3 = &ref2.c;

9

10

11

12

13 }

1 //

2 unfold acc(valid__Foo(x), rd1)

3 ref1 := x.Foo__b

4

5 unfold acc(valid__Foo(x), rd2)

6 ref2 := x.Foo__b

7

8 unfold acc(valid__Bar(ref2), rd3)

9 ref3 := ref2.Bar__vb

10

11 fold acc(valid__Bar(ref2), rd3)

12 fold acc(valid__Foo(x), rd2)

13 fold acc(valid__Foo(x), rd1)

Listing 3.14: Borrowing parts of a struct multiple times

Control-Flow Dependent Borrows

The last interesting scenario for local borrows we discuss are borrows that depend on the
control flow of the program. The Rust function in Listing 3.15 illustrates the problem. In
this example, a mutable variable ref1 is used to store two borrows. For the borrow of
x2.b in the then branch this means the lifetime of the borrow is extended to the end of the
function, when ref1 goes out of scope. Without additional care, this example would fail
with our encoding. When only looking at the lifetimes of the borrows both the borrow of
x1.b and x2.b expire at the end of the function. This means Rust2Viper would emit code
to fold both valid Foo(x1) and valid Foo(x2) and the verifier would rightfully
reject that code, because valid Foo(x2) only gets unfolded if cond is true. Therefore
our encoding must contain additional ghost code to avoid folding predicates that were
not unfolded. Rust2Viper introduces additional boolean variables to track which borrows
actually happened along a possible execution path. The Silver encoding in Listing 3.15
includes a variable ref1 a1 which is set to true if x2.b is borrowed in the then branch or
to false otherwise. This variable is then used to conditionally fold the predicate when the
borrow expires. Note that Silver’s perm function could also be used to check if a predicate
is folded with some permissions, which would be helpful in this case. In our encoding
however, we avoid using perm in this case, because the solution with boolean variables is
straight-forward and does not rely on perm which is not thoroughly tested at the moment.

3.3.3 Returning references from functions

Besides function local borrows, borrows can also escape function bodies. This is the case
when returning references to any of the input arguments. Before going further into the
details of our encoding of references as return values, we briefly discuss how lifetimes of
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1 fn foo(x1: &Foo, x2: &Foo) {

2 let mut ref1 = &x1.b;

3 if cond {

4 ref1 = &x2.b;

5 }

6 }

7

8

9

10

11

12

13 //

1 var ref1_a1: Bool := false

2 unfold acc(valid__Foo(x1), rd)

3 var ref1: Ref

4 ref1 := x1.Foo__b

5 if (cond) {

6 unfold acc(valid__Foo(x2), rd)

7 ref1 := x2.Foo__b

8 ref1_a1 := true

9 }

10 if (ref1_a1) {

11 fold acc(valid__Foo(x2), rd)

12 }

13 fold acc(valid__Foo(x1), rd)

Listing 3.15: Control-flow dependent borrow

borrows interact with returning references in Rust.

When returning a reference from a function, the lifetime of this reference must not outlive
the lifetime of the data it references. An interesting restriction of this rule is that it is not
possible to return a reference to some data allocated in the function body unless this data
also escapes the method, because otherwise the lifetime of the reference would be greater
than the lifetime of the data. One common way for allocated data to escape a method is
by storing it in a field of a parameter that is borrowed mutably.

Checking that the lifetimes of the function arguments and return value are compatible is
also done by the borrow checker. For all further examples in this subsection, we will use
explicit lifetime annotations for references to make things clearer, even though in some
examples they could be elided. First, we discuss a simple Rust function that returns a
reference, shown in Listing 3.16, with a focus on lifetimes and borrows. The function
borrow1 takes a reference with lifetime ’a as parameter and returns a reference with
lifetime ’a. When checking borrow1, the borrow checker records that r escapes the func-
tion and later on checks if the lifetimes of all escaping borrows are compatible with the
lifetime of the return value. When borrow1 is called, its concrete argument b has to be
borrowed for the function call. But now the fact that borrow1 returns a reference with
the same lifetime as its argument comes into play. As long as the returned reference is
alive, it can be used to access the content it points to. This in turn means that the argu-
ment the returned reference points to must remain borrowed until the returned reference
goes out of scope. Otherwise the rule that data cannot be modified while there is an
active immutable borrow could not be enforced by the borrow checker. This means the
borrow checker needs some information about the relationship between the references
passed as function arguments and the reference returned by the function. The lifetime
information provided in the function signature provides this information and allows the
borrow checker to analyze each function modularly. All arguments with the same life-
time as the returned reference can potentially be returned from the function, hence all
those arguments must remain borrowed until the returned reference goes out of scope.
For the example in Listing 3.16, this means because the return value of borrow1 has the
same lifetime as the only argument, the argument b is borrowed as long as ref1 is scope.
In the case of the example, b is borrowed until the end of client1’s body after the call
borrow1.
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1 fn borrow1<’a>(r: &’a Bar) -> &’a Bar {

2 r

3 }

4

5 fn client1(b: &mut Bar) {

6 let ref1 = borrow1(b);

7 }

Listing 3.16: Simple example returning a reference from a function

The main observation we use in our encoding is the fact that when returning a reference,
the arguments the reference may refer to are borrowed until the returned reference goes
out of scope after a function call. In our encoding, we use magic wands to model this
behavior. The general idea is straight-forward. When returning a reference from a func-
tion, a magic wand is created that reflects the fact that by giving up permissions to the
returned reference the permissions to the borrowed arguments are re-gained. For the
simple example above, the postconditions of borrow1 have to state that the returned refer-
ence provides read access to an instance of Bar and by giving up access to this reference
we re-gain read access to the argument r. Using the appropriate predicates, this can be
achieved by the following wand:

acc(valid Bar(res), rd)−∗, acc(valid Bar(r), rd).

Now consider the complete Silver encoding of Listing 3.16 in Listing 3.17. It models two
important aspects of borrow1:

1. the returned reference provides the capabilities of type Bar (line 4) and the capabili-
ties of the argument r are removed temporarily (by requiring them, but not adding
them to the postconditions)

2. a wand to restore r’s capabilities is created (line 8) and “returned” (line 5).

Note that in our encoding, the caller of a function returning a reference gives up some
permissions to the borrowed arguments until the returned reference goes out of scope.
The wand “returned” by the function is then used to restore the permissions. When it
comes to applying the wand, the variables used in the wand have to be substituted by
their counterparts in the calling function, i.e. res by ref1 and r by b in Listing 3.17.

Next, we discuss how the temporary removal of permissions to borrowed arguments ef-
fects other borrows of those arguments after calling a function returning a reference. Tem-
porarily giving up permissions to an immutably borrowed argument and transferring it
into a magic wand does not cause any problems further on, because they are restored
when the borrow expires. For subsequent borrows of the same borrowed argument we
always generate smaller fractions of read permissions, so removing some permissions
temporarily is not an issue in this case either. The last case to consider involves mutable
borrows. If a mutable reference is returned from a function, the argument it was bor-
rowed from cannot be used until the returned reference expires. This means Rust2Viper
will never generate Silver code that tries to use the argument with write permissions as
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1 method borrow1(r: Ref, rd: Perm) returns (res: Ref)

2 requires none < rd && rd < write

3 requires acc(valid__Bar(r), rd)

4 ensures acc(valid__Bar(res), rd)

5 ensures acc(valid__Bar(res), rd) --* acc(valid__Bar(r), rd)

6 {

7 res := r

8 package acc(valid__Bar(res), rd) --* acc(valid__Bar(r), rd)

9 }

10

11 method client1(b: Ref, rd: Perm)

12 requires none < rd && rd < write

13 requires acc(valid__Bar(b), rd)

14 ensures acc(valid__Bar(b), rd)

15 {

16 var ref1: Ref

17 ref1 := borrow1(b, rd)

18

19 apply acc(valid__Bar(ref1), rd) --* acc(valid__Bar(b), rd)

20 }

Listing 3.17: Silver encoding of Listing 3.16

long as the returned borrow is active.

To conclude this section we show how returning control-flow dependent borrows and
returning borrows of fields are handled. Listing 3.18 shows a function borrow2 which
borrows either the first or the second parameter, depending on a condition. In terms
of escaping borrows, this means that either r1 or r2 can escape, so the borrow checker
has to treat them both as escaping when checking borrow2. This also means that both
arguments remain borrowed until the returned reference goes out of scope. To express
this behavior, the created wand must also account for this over-approximation. This
can be done by a wand which specifies that by giving up permissions to the returned
reference, the permissions to all escaping arguments are restored. This way there is no
need to differentiate between the possible return values. In our encoding, the following
magic wand will be created for Listing 3.18:

acc(valid Bar(res), rd)−∗ acc(valid Bar(r2), rd) && acc(valid Bar(r2), rd)

.

In the other example in the listing, a reference to a field of an argument is returned. In
order to access the field f.b, the predicate for f must be unfolded and it has to remain
unfolded as long as the returned reference is alive. In this case, magic wands again can
be used to encode this behavior, namely with the following wand

acc(valid Bar(res), rd)−∗ acc(valid Foo( f ), rd)

.
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1 fn borrow2<’a>(r1: &’a Bar, r2: &’a Bar) -> &’a Bar {

2 if r1.v > 10 {

3 r1

4 } else {

5 r2

6 }

7 }

8 fn borrow3<’a>(f: &’a Foo) -> &’a Bar {

9 &f.b

10 }

Listing 3.18: Two more interesting borrow scenarios

3.3.4 Over-Approximation of Permissions

So far we have used abstract read permissions and Silver’s constraining to express read
permissions. In this section, we present a system to statically choose fractions of read
permissions that satisfy the constraints described in the previous sections. This static ap-
proach allows us to compare the performance of abstract read permissions in Silicon and
Carbon to a static approach, where fractions are calculated manually. In the remainder
of this section, we first outline our system to find suitable fractions and then compare the
performance of that system to abstract read permissions.

To begin with, we summarize the constraints that need to be handled. Note that this
approach excludes loops, which are discussed in Section 3.5. In the following we use
base perm(x) to refer to the amount of permission with which the predicate for x was
held initially. In some sense, it refers to the total amount of permission available for x.
For example, for a function argument x, base perm(x) refers to the amount of permission
specified in the preconditions for the predicate of x. For fields, base perm(x. f ) returns
the amount of permission with which the predicate for x.f was held initially. In our
encoding, this equals the amount of permission used to unfold the top-level predicate
of x in order to get access to x. f . Note that the permission amount used to unfold the
top-level predicate depends on the use of the field. If it is used in a read-only fashion,
the top-level predicate is unfolded with read permissions, even if the containing struct is
mutable.

1. the sum of the permissions used to unfold the predicate for a single location l must
be less than or equal to base perm(l)

2. for field accesses such as x. f , base perm(x. f ) ≤ base perm(x)

3. the permissions passed to a function call must be less than or equal to the minimum
permissions held for the function arguments at the call site

In the following, we will motivate the three constraints. When the first constraint is
satisfied, there are enough permissions for all unfold statements in a function, which
means all unfold statements will succeed. The second constraint ensures that there are
enough permissions when a reference to a field is used. When a field is accessed, the
top-level predicate is unfolded with some permissions p which means there is access to
the predicate instance of the field with p permissions. This means for this field, at most
p permissions can be used for the constraints involving this field. The third constraint
ensures that there are enough permissions to the argument predicates at the function call
site. The caller has to choose the amount depending in the permission it holds at the
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current program point.

We use the example in Listing 3.19 to illustrate the constraints. To satisfy the first
constraint, rd1 + rd2 < rd ∧ rd3 < rd2 must hold. To satisfy the second constraint,
rd1 < rd ∧ rd2 < rd ∧ rd3 < rd2 must hold. The first two constraints ensure that there are
enough permissions for all unfold statements in a function. To satisfy the third constraint,
rd4 < rd1 ∧ rd4 < rd3 must hold. This constraint ensures that there are enough permis-
sions to the predicates of all arguments of the called function at the call site.

1 method test(x: Ref)

2 requires acc(valid__Foo(x), rd)

3 {

4 var ref1: Ref

5 unfold acc(valid__Foo(x), rd1)

6 ref1 := x.Foo__b

7

8 var ref2: Perm

9 unfold acc(valid__Foo(x), rd2)

10 unfold acc(valid__Bar(x.Foo__b), rd3)

11 ref2 := x.Foo__b.Bar__c

12

13 call1(ref1, ref2, rd4)

14 }

Listing 3.19: Silver example to illustrate the constraints for our over-approximation.

The first constraint can be satisfied by dividing the base permissions of each type by the
total number of unfold statements in the function. The total number of unfold statements
for a type is an upper bound of the number of unfolds involving a single location of that
type. We refer to this fraction of a type A as f rac(A). For the second constraint, we have to
analyze the type structure. We choose the base permissions for each type according to the
following rule: if type A appears as a field in type B we set f rac(A) = f rac(A) · f rac(B).
The predicate of a variable of type A can be unfolded at most f rac(A) times, which means
constraints (1) and (2) are satisfied. Note that this system does not work for cyclic data
structures 2 or when accessing multiple elements of a recursive data structure in a single
function execution, and those two cases are not supported by our over-approximation.
To satisfy the third constraint, we choose the minimum fraction among the fractions for
all types. This is the minimum fraction that can be used to unfold any predicate, which
means all predicates are held at least with this minimum permission.

Listing 3.20 shows the program from Listing 3.19 with the concrete fractions chosen using
the rules described above.

Benchmark

To compare the performance of our encoding with the over-approximation described
above and with abstract read permissions [15], we used a set of 59 test cases from the
Rust2Viper test suite. They represent a wide array of use cases and also contain test cases
that contain a lot of unfold and fold statements. For each test case, we measured the verifi-
cation run-time using abstract read permissions and our over-approximation, with both

2Cyclic data structures cannot be created in the subset of Rust we support.
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1 method test(x: Ref)

2 requires acc(valid__Foo(x), rd)

3 {

4 var ref1: Ref

5 unfold acc(valid__Foo(x), rd / 2)

6 ref1 := x.Foo__b

7

8 var ref2: Perm

9 unfold acc(valid__Foo(x), rd / 2 )

10 unfold acc(valid__Bar(x.Foo__b), rd / (2 * 1))

11 ref2 := x.Foo__b.Bar__c

12

13 call1(ref1, ref2, rd / (2 * 1)

14 }

Listing 3.20: Listing 3.19 with concrete fractions

Verifier # abstract permissions # approximation

Silicon 50 9
Carbon 24 35

Table 3.1: Number of test cases that verify faster with abstract read permissions and our over-approximation.

Silicon and Carbon. We report the average verification run-time of 5 runs for each test
case. The run-time only includes the time the verifiers took to verify the Silver versions
of the test cases. The verification results are the same for all test cases. The Silver version
of the test cases were generated by Rust2Viper before the benchmark. The verification
is done using Viper-as-a-Service (introduced in Section 5.2), which avoids restarting the
JVM for each test case. The benchmarks were executed on a Linux machine with an Intel
i5-4670S CPU with 3.10GHz and 8 GB of RAM and the run-times are measured using perf,
which uses the performance counter subsystem of the Linux kernel.

Table 3.1 shows the number of test cases that verify faster with abstract read permissions
and our over-approximation, for both Silicon and Carbon. In our benchmark, abstract
read permissions are slower in most cases when using Carbon, but faster in most cases
when using Silicon. Figure 3.1 shows the verification run-time of the test cases translated
with abstract read permissions and our over-approximation using Silicon and Carbon. In
most cases, the difference between abstract read permissions and our over-approximation
is very small. Those results indicate that even though abstract read permissions add
additional constraints the verifiers have to track, they do not have a big impact on the
performance of the verification, because they are relatively simple compared to the other
proof obligations from the input program. Interestingly, reasoning about abstract read
permissions is slightly faster in most cases in Silicon.

3.4 Enums

Besides structs, enums can also be used to declare composite types in Rust. In this sec-
tion we discuss our encoding for enums and pattern matching. We will discuss pattern
matching in contracts in Chapter 4.

For our encoding of enums, we reuse the basic ideas we also used for structs and were
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Figure 3.1: Verification run-time of programs translated with abstract read permissions and our over-
approximation using Silicon and Carbon.

presented in Section 3.2.1. We use Silver objects to store the data associated with an enum.
The major difference to structs is that for enumerations, the encoding also has to include
information about which variant is stored in the object at the moment. In this section we
will use the MyOption enum shown in Listing 3.21 as a running example. Instances of
that enum either contain some struct Bar or nothing.

1 enum MyOption {

2 MySome(Bar),

3 MyNone

4 }

Listing 3.21: Rust enum declaration of an option type

To represent the different variants, we introduce a Silver domain for each enum. This do-
main contains functions and axioms to distinguish the different variants of an enum type.
More specifically, a unique function for each enum variant is created. The value returned
by a unique function is assumed to be different from all other unique functions with the
same return type. The unique values of those functions are used to differentiate objects
representing different enum variants. Additionally, an uninterpreted variantOf function
is introduced. This function takes a reference as an argument and returns the value of
the variant the reference points to. Finally another uninterpreted function isEnum is intro-
duced. This function takes a reference as an argument and returns true if it points to an
enum instance. For our running example, the domain shown in Listing 3.22 will be cre-
ated. At the beginning the functions mentioned before are declared. They are followed by
two axioms which describe their behavior. Note the expression { variantOfMyOption(x)

} in the universal quantifiers. Those expressions define triggers for the quantifiers. Theo-
rem provers typically use triggers to control how they instantiate universally quantified
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expressions. They are a set of expressions the theorem prover must have discovered
before the quantifier is instantiated and they are used to guide the theorem prover in
the right direction to avoid infinite instantiations of quantifiers. For the axioms in the
domains created for enums, the trigger is just variantOfMyOption(x) , which means
when the theorem prover discovers such an expression (modulo equality), the universal
quantifiers are instantiated.

1 domain MyOption {

2 unique function MyOption__MySome(): MyOption

3 unique function MyOption__MyNone(): MyOption

4 function variantOfMyOption(self: Ref): MyOption

5 function isMyOption(self: Ref): Bool

6

7 axiom ax_variantOfMyOption {

8 forall x: Ref :: { variantOfMyOption(x) }

9 variantOfMyOption(x) == MyOption__MySome()||

10 variantOfMyOption(x) == MyOption__MyNone()

11 }

12 axiom ax_isMyOption {

13 forall x: Ref :: { variantOfMyOption(x) }

14 isMyOption(x) == (

15 variantOfMyOption(x) == MyOption__MySome()||

16 variantOfMyOption(x) == MyOption__MyNone())

17 }

18 }

Listing 3.22: Domain for Listing 3.21

The actual data that is contained in an enum instance is stored in fields of a Silver object.
Similarly to structs, Silver fields are created for each unnamed field of the enum variants.
In addition to the data fields, the object also contains a field to store the current enum vari-
ant. To set up the variant information, the functions from the enum’s domain are used,
e.g. to encode that an enum instance x contains a MySome variant, the following is as-
sumed: variantO f MyOption(x.MyOption variant) == MyOption MySome(). The
reason we use an additional field to store this information is the following: in Rust it is
possible to move an instance of an enum to another binding that already contains a differ-
ent enum instance. This means the enum variant stored in a binding can change, which
means after a move it is necessary to update the variant information of the target bind-
ing. To do that, Rust2Viper cannot simply add another assumption with the new variant,
because it could conflict with the existing variant information and cause an inconsistency.
To prevent such inconsistencies, the existing variant information must be invalidated first.
In Silver, which does not contain a separate havoc statement to remove all assumptions
for a location, this can be done by exhaling and then inhaling all permissions to a field.

Finally a predicate representing instances of the enum is created. Listing 3.23 shows the
field declarations and the predicate created for our running example. Note that in the
predicate the functions of the MyOption domain are used to conditionally give access to
the data stored in the MySome variant.
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1 field MyOption__variant: Ref

2 field MyOption__MySome__0: Ref

3

4 predicate valid__MyOption(this: Ref) {

5 acc(this.MyOption__variant) &&

6 isMyOption(this.MyOption__variant) &&

7 acc(this.MyOption__MySome__0) &&

8 (variantOfMyOption(this.MyOption__variant) == MyOption__MySome() ==> (

9 acc(valid__Bar(this.MyOption__MySome__0))

10 ))

11 }

Listing 3.23: Data representation for Listing 3.21

3.4.1 Pattern Matching

The second aspect of our enum encoding discussed in this section is the handling of pat-
tern matching. When doing pattern matching on a variable x in Rust, this means this
variable is borrowed for the body of the match statement. We will refer to this variable as
match argument later on. Note that in Rust it is possible to create mutable references to
fields in a match arm and those references can be used to modify the content of the enum
instance. Thus the type of the borrow depends on the match arms. If any arm creates a
mutable reference to parts of the enum instance, the instance is borrowed mutably. Other-
wise it is borrowed immutably. So in order to translate Rust’s match statement, we have to
unfold the appropriate enum instance first to get access to the contents of the correspond-
ing Silver object. For each match arm, an if statement is generated. In the conditions of
the if statements, the functions defined in the enum’s domain are used to differentiate the
match arms based on the variant of the enum instance. In the bodies of those if statements,
new variables for the bindings in the match arms are created. Note that in Rust, the match
arms must be exhaustive; all possible cases must be covered. Finally, at some point after
the match, the predicate instance of the match argument must be folded again. The exact
program point depends on the borrow information. There are two general cases. In the
first case, no references to the content of the enum instance escape the body of the match.
In this case, the predicate can be folded right after the match body. Listing 3.24 shows the
translation of a match block in which no references escape the block.

1 match x {

2 MySome(ref v) => {}

3

4

5

6

7 None => {},

8

9

10

11

12

13 }

1 unfold acc(valid__MyOption(x), rd)

2 if (variantOfMyOption(x.MyOption__variant) ==

3 MyOption__MySome()) {

4 var v: Ref

5 v := x.MyOption__MySome__0

6 } else

7 if (variantOfMyOption(x.MyOption__variant) ==

8 MyOption__MyNone()) {

9 } else {

10 assert false

11 }

12 }

13 fold acc(valid__MyOption(x), rd)

Listing 3.24: Translation of pattern matching in Rust to Silver
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In the second case, references to the content escape the match body, e.g. by returning
a reference from the match block or by assigning a reference to a variable defined in an
enclosing scope. In this case, the predicate cannot be folded immediately after the match
block, because then the escaped reference could no longer be used to access the content.
In fact, the predicate cannot be folded before all escaping references expire. In this case,
Rust2Viper has to use information from the borrow checker again. When a reference
escapes from the body of a match block, the lifetime of the borrow of the match argument
is extended to the lifetime of the escaping references. This extension is required in order
to enforce the borrow rules and can be used to fold the predicate instance at the right
program point in our encoding. Listing 3.25 shows a match statement where a reference
escapes when the MySome variant is matched. When None is matched, the program
panics 3 and terminates. By assigning the escaping reference to ref1, the borrow of x is
extended to the lifetime of ref1. When ref1 goes out of scope, the predicate instance
unfolded at the beginning of the match can be folded again. Note that it is also possible
for multiple references to escape. In this case, the borrow checker uses the longest lifetime
of the escaping references to extend the lifetime of the borrowed match argument and the
predicate instance is folded at the right program point in this case as well.

1 {

2 let ref1 = match x {

3 MySome(ref v) => v

4 None => panic!()

5 };

6 // ...

7

8 // borrow of x ends here

9 }

Listing 3.25: A reference escapes from a match statement

3.5 Loops & Structural Specification Using Magic Wands

Specification for loops in Silver can be provided by loop invariants. In the body of a loop,
only properties ensured by loop invariants can be relied on. This includes functional spec-
ification, but also permission-related information. In order to access a field in the body of
a loop, the loop invariants must guarantee permissions to access the field in the current
loop iteration. The translation of loops proved to be particularly challenging, because
one goal of Rust2Viper is to hide all permission-related specification from the user. This
means appropriate loop invariants to preserve the required permission-related properties
have to be created automatically. In this section, we first discuss how permission-related
loop invariants are generated for loops that do not traverse recursive data structures. The
handling of loops that traverse recursive data structures is more involved and will be
discussed later in this section.

For loops, Rust2Viper has to generate loop invariants automatically for the structs and
enums used in the loop body. To do that, we again use Rust’s type information. The basic
idea is the following: when a variable or field in the loop body is accessed or updated

3A panic in Rust causes the current thread to unwind its stack and while unwinding, all objects owned by
the thread are destroyed. Single-threaded programs are terminated by a panic. The panic!() macro can be
used to cause a panic in a Rust program.
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in a safe Rust program, this means that the objects involved can be accessed or updated
for sure, because Rust guarantees that there are no null pointers or invalid memory ad-
dresses, which could cause run-time errors like segmentation faults. More specifically,
the types of the variables used in the loop body reflect the capabilities required in the
loop body. In the Silver encoding those capabilities are reflected by the generated predi-
cates for each type and those predicates can be used in the loop invariants.

To generate the permission-related loop invariants, Rust2Viper first collects the type infor-
mation of all variables used in the loop body, the loop condition and the user-provided
loop invariants. It then adds a loop invariant for each used variable using the predicate
reflecting the capabilities of the type of the variable. By default, we use the top-level
predicate for variables and field accesses, e.g. for a field access x.f, we would use the
predicate reflecting x’s capabilities. The amount of permission depends on the use of
each variable. For variables that are updated, e.g. because they appear on the left side
of an assignment, write permissions are used. For all other variables, read permissions
are used. Another possibility would be to use only Rust’s type information to get the
permissions for the loop invariants. This would mean however, that users would have to
add loop invariants for mutable variables that are only read in the loop body. We use the
example in Listing 3.26 to illustrate what kind of invariants are generated by Rustviper
for a simple loop. Note that the Silver translation on the right side only shows the encod-
ing of the loop for brevity. In the loop the field c.v is accessed and updated. This means
in the loop body, write permissions to c are needed. The Rust compiler guarantees that
during each loop iteration the variable c can be mutated and that the variable c has the
capabilities of its type, Counter. This means that during each loop iteration the predicate
instance valid Counter(c) is held with write permissions and thus can be used as a loop
invariant.

1 struct Counter {

2 v: i32,

3 }

4 let mut c = Counter {

5 v: 0

6 };

7 while c.v < 10 {

8 c.v += 1;

9 }

1 while (unfolding acc(valid__Counter(c), rd) in

2 c.v < 10)

3 invariant acc(valid__Counter(c), write)

4 {

5 unfold acc(valid__Counter(c), write)

6 c.v := c.v + 1

7 fold acc(valid__Counter(c), write)

8

9 }

Listing 3.26: Simple counting loop

There is a case however, which must be handled with additional care: loops where only
parts of a data structure are accessible, e.g. because a field of a struct was moved or
borrowed mutably. Listing 3.27 shows such a case. Before the loop, the field f.a is
moved. This means that in the loop body, only f.b can be accessed. In our encoding,
the reduced capabilities are reflected as follows. After the move in line 7, the predicate
instance for f remains unfolded. Hence in the loop invariants, the top-level predicate
cannot be used. Instead the predicate for f.b has to be used. To detect those cases, we
keep a set of all moves and when generating the loop invariants we check if parts of a
struct used in the loop body were moved before. Note that we use boolean variables, if
a loop can be reached through different paths in the control-flow graph, to track along
which paths a move happened. This is similar to the technique we use to handle control-
flow dependent borrows which was described in Section 3.3.2.
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1 struct Foo {

2 a: Bar,

3 b: Bar,

4 }

5

6 let f = Foo {...};

7 let a = f.a;

8 while cond {

9 let ref1 = &f.b;

10

11 // ..

12 }

1 unfold acc(valid__Foo(f), rd)

2 var a: Ref

3 a := f.Foo__a

4

5 while (cond)

6 invariant acc(f.Foo__b, rd)

7 invariant acc(valid__Bar(f.Foo__b), rd)

8 {

9 var ref1: Ref

10 ref1 := f.Foo__b

11 // ...

12 }

Listing 3.27: Loop in which only parts of a data structure can be accessed in the body

3.5.1 Loop and Break

In addition to while loops which iterate as long as a condition is satisfied, Rust also has
a loop construct which loops forever, unless break or return are used to exit the loop. The
loop construct is commonly used in Rust programs, because Rust’s for and while let loop
constructs are desugared to a loop with pattern matching in the loop body. The example
in Listing 3.28 shows how loop and break can be used to calculate the length of a linked
list. In the optimal Silver encoding, loop would be mapped to a while loop with with
true as condition, and break would be mapped to a goto to a label just after the loop body.
However at the moment there is a bug 4 in Silicon which makes that encoding unfeasible:
using goto to jump out of a loop body is not supported. In the actual encoding, we
introduce an additional boolean variable which is used as the condition of the while loop.
A break statement is then translated to setting this boolean variable to false and a goto to
the end of the loop body.

1 let mut current = &list;

2 loop {

3 match *current {

4 List::Node(_, ref tail) => {

5 current = tail;

6 },

7 _ => break

8 }

9 }

10

11 //

Listing 3.28: Traversing a list iteratively

3.5.2 Traversing Recursive Data Structures

When traversing a recursive data structure using a loop in our encoding, in each iteration
the predicate of the current element has to be unfolded in order to get access to the next
element. This means as the loop traverses the data structure, the predicates of the visited
elements get unfolded. However those predicates cannot be folded again at the end of

4Silicon Bug #210 https://bitbucket.org/viperproject/silicon/issues/210/
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each loop iteration, because then access to the next element would be lost immediately.
So after the last loop iteration, the predicates of all traversed elements remain unfolded.
This is problematic however. For example, if a loop traversed a list that was passed as
a function argument, the List predicate of the head of the list must be restored at some
point after the loop before returning from the function. This is the main challenge when
encoding loops that traverse recursive data structures.

In Silver there are two possible ways to refold the predicates unfolded while traversing
data structures described in [20]. First, additional predicates and specification-only meth-
ods could be used. Alternatively, magic wands can be used. In our encoding, we use
magic wands to restore predicate instances after loops, because the wands follow nicely
from our encoding of borrows. Note that in order to traverse a data structure iteratively
in Rust, a reference to the beginning of the data structures is needed to start with. In each
iteration of the loop, parts of the data structure are borrowed subsequently. Applying
the basic idea for our encoding of borrows, a new magic wand is created for the borrows
in each loop iteration. Those magic wands can be used to restore permissions to the
capabilities of the traversed data structure, by giving up the capabilities of the current
element. First, we will present how magic wands can be used to restore the capabilities
of traversed data structures after a loop conceptually. Afterwards, we will discuss how
those magic wands can be encoded in Silver.

Now consider the loop in Listing 3.28 again. In each iteration, the tail of the current

element is borrowed, which reduces the capabilities of current as long as the borrow is
alive. Intuitively those borrows provide the following information: when the borrow of
tail ends, the full capabilities of current are restored. In the following, we use P(x) to
refer to the predicate instance reflecting the capabilities of variable x. In our encoding,
the loss of capabilities in each iteration is reflected by the fact that P(current) is unfolded.
The promise, that when the borrow of tail ends P(current) can be restored, can be
expressed by the magic wand P(tail)−∗ P(current). Such a wand can be created for each
loop iteration resulting in a set of magic wands P(taili) −∗ P(currenti) where taili and
currenti refer to the values tail and current pointed to at the beginning of the i-th loop
iteration. Note that current1 = list and currenti = taili−1. After the loop, those wands
can be applied in order to restore P(list):

P(currentn)−∗ P(currentn−1)−∗ · · · −∗ P(current1)−∗ P(list)

where n refers to the last loop iteration.

However, this approach cannot be used directly in our Silver encoding. Unfortunately the
set of magic wands described in the previous paragraph cannot be specified in terms of
loop invariants conveniently, because currenti and taili can only be referred to in iteration
i. However, it is possible to summarize the set of magic wands in a way that avoids refer-
ring to all currenti and taili. For each element currenti, the chain of wands from currenti
to the beginning of the list list can be summarized by P(currenti)−∗ P(list). This wand
only refers to the current state and the final state, which can be restored with the wand.
Therefore this wand can be maintained in each loop iteration and can be used as a loop
invariant. After the loop, it can be used to restore P(list), when the borrow to current
expires, be giving up P(current) which now points to the end of the list, currentn.
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Now consider the encoding of the loop shown in Listing 3.29. In this example, valid List(x)
reflects the capabilities of a list node x. Note that in Silver, asserting that a predicate
instance P is held with permission p is done with acc(P, p). In the example, the loop tra-
verses all elements of an immutable list, which means the predicates for the list elements
are held with some read permissions. Therefore we use P(x) = acc(valid List(x), rd).
The loss of capabilities in each iteration is reflected by unfolding P(current) in line 11.
Throughout the loop, we maintain the wand P(current)−∗ P(list). In each loop iteration,
the wand is maintained by applying the wand packaged in the previous loop iteration
and packaging the wand again. The required ghost operations are shown in lines 16 and
17 of Listing 3.29. In order to apply the wand packaged during the previous iteration,
we first need access to the value current pointed to at the beginning of the current iter-
ation. We introduce an additional variable prev, to store this value. Now this variable
can be use on the right side of the wand to fold P(prev) and apply the wand from the
previous iteration P(prev)−∗ P(list) and finally the new wand P(current)−∗ P(list) can
be packaged. Note that we have to used f olding on the right side of the wand because
the reference tail points to a field inside prev, hence it cannot be folded with a fold
statement. Otherwise access to the field tail points to would be lost. Finally after the
loop, when current goes out of scope, the wand can be applied to restore P(list).

1 define P(e) acc(valid__List(e), rd)

2 var current: Ref

3 current := list

4 package P(e) --* P(list)

5

6 while (loop_cond)

7 invariant P(current)

8 invariant P(current) --* P(list)

9 {

10 prev := current

11 unfold P(current)

12 if (variantOfList(current.List__variant) == List__Node()) {

13 var tail: Ref

14 tail := current.List__Node__1

15 current := tail

16 package P(current) --* folding P(prev) in

17 applying (P(prev) --* P(list) in P(list)

18 } else {

19 fold acc(valid__List(current), rd)

20 loop_cond := false

21 goto loop_end

22

23 }

24 label loop_end

25 }

26

27 apply P(current) --* P(list)

Listing 3.29: Translation of Listing 3.28, with ghost operations to maintain the magic
wand
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Detecting when to generate Wands

Detecting for which loops magic wands are needed and where to package them is a key
aspect of our translation of loops. Magic wands are needed for loops where a borrow
outlives the loop body, because in those cases, the permissions removed by the borrow
cannot be restored at the end of the loop body. They have to be restored after the loop,
which means we have to preserve the information of how to restore the permissions
through a loop invariant. We will refer to variables storing borrows that outlive a loop
body as variables that require a magic wand.

The first step is to detect borrows that outlive the loop body. For immutable borrows,
the borrow checker provides this information. Consider Listing 3.30, which shows List-
ing 3.28 and also highlights the lifetime of the loans. In this example, the borrow checker
tracks loans for list and current. The loan for current is created inside the loop body,
but the assignment current = tail; extends the lifetime of the loan to the scope of
current (which is until the end of the loop), because tail points inside the object the
loan was created for initially. In those cases, it is necessary to use magic wands to restore
the permissions lost by the borrow.

Listing 3.30: Listing 3.28 with borrow lifetime information

The second step is to package the magic wands correctly. Once we know for which
variables magic wands are needed, ghost operations must be generated to create and
maintain the wands for those variables. Whenever a variable x that needs a magic wand
is updated with a value y, a magic wand must be created. This magic wand specifies that
by giving up P(x), P(y) can be restored: P(x)−∗ P(y).

Limitations

While our implementation can handle common loop patterns that traverse recursive data
structures, there are some limitations which we discuss in this section.

First, when traversing a recursive data structure using a mutable reference, the informa-
tion the borrow checker provides is not precise enough, because a trick is needed in order
to make the borrow checker accept such loops in the first place. Listing 3.31 highlights
the problem. The structure is very similar to Listing 3.28, but in Listing 3.31 a mutable
reference is used instead of an immutable one. Note that an additional variable temp is
needed for the borrow checker to accept the loop. Without the additional variable temp,
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the borrow checker would complain that current would be borrowed mutably multiple
times, because in each iteration current is borrowed mutably until after the loop. The
borrow checker does not track the fact that by updating current, the previous mutable
borrow expires. By moving current to temp at the beginning of the loop, the scope of
the loan for temp is limited to the loop body and the borrow checker can guarantee the
borrow rules are satisfied. This in turn however means that we cannot rely on the borrow
checker alone to find borrows that outlive the loop body in this case. Therefore we have
to manually track alias information inside loop bodies to find out which borrows outlive
the loop body. At the moment, our analysis supports loops that use a single reference to
iterate over a recursive data structure, but does not support loops that iterate over multi-
ple data structures.

The second limitation is related to traversing recursive data structures with immutable
references. In our encoding, we use a fixed amount of permission rd when specifying
that the predicate instance for the current element is held at the beginning and end of a
loop iteration in the invariant, e.g. as in line 7 in Listing 3.29. This means when getting
the next element of the data structure, the predicate has to be unfolded with the same
permissions rd in order to maintain the loop invariant. If fewer permissions than rd are
used, then there will be fewer permissions to the next element. But this also means that
after unfolding the predicate, we do not hold any permissions to this predicate instance
any longer and we cannot use the current element any longer. Note that this limitation
does not apply for mutable references, because once the reference to the current element
is borrowed mutably it cannot be used to access the current element any longer in the
Rust program.

1 let mut current: &mut List = list;

2

3 loop {

4 let temp = current;

5 match *temp {

6 List::Node(_, ref mut tail) => {

7 current = tail;

8 },

9 List::Nil => {

10 break;

11 }

12 };

13 }

Listing 3.31: Traversing a list using a mutable reference

3.6 Encoding Rust’s Integer and Boolean Types

Up to this point, we used Silver’s Int type for all integer types in Rust. Our actual encod-
ing of Rust’s integer types is more involved. There are two aspects of Rust’s integer types
that are not captured by Silver’s Int type.

First, in Rust it is possible to create references to all kinds of data. In particular, it is
possible to create references to integer variables and integer struct or enum fields. Note
that mutable references to a location storing an integer can be used to modify the stored
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integer. In Silver on the other hand, references can only point to objects, not to other data
types, like Int. This means Silver objects must be used to represent Rust integer variables
in general. By representing integer variables through objects on the heap, references
to integer variables can be modeled by references to those objects in Silver. Therefore
we create a Silver object with with a single field Int v for each integer variable in a
Rust program. For integer fields in structs or enums, we directly embed the objects
representing the integer fields in the predicate for the struct’s or enum’s type. Listing 3.32
illustrates this embedding. Note how the integer field Bar.f is encoded by a field Bar f,
which points to an object containing a field Int v, which contains the actual integer
value.

1 struct Bar {

2 f: usize

3 }

4

5

6

7

8 //

1 field Int__v: Int

2

3 field Bar__f: Ref

4

5 predicate valid__Bar(self: Ref) {

6 acc(self.Bar__f)&&

7 acc(self.Bar__f.Int__v)

8 }

Listing 3.32: Translation of Rust integer field using an additional object

Immutable references to integers in Rust can be encoded by references to objects on the
heap, where some read permissions are held to a field Int v. For mutable references
to integers, write permissions to the field Int v must be held. When integer variables
or references to integers are passed as function arguments, references are used as well.
Pre- and postconditions giving access to the field Int v must be generated. For loops
that use integer variables, similar loop invariants must be created. Listing 3.33 shows the
translation of a Rust function that takes a reference to an integer as an argument.

1 fn foo(x: &usize) {}

2

3

4

5 //

1 method foo(x: Ref, rd: Perm)

2 requires none < rd && rd < write

3 requires acc(x.Int__v, rd)

4 ensures acc(x.Int__v, rd)

5 {}

Listing 3.33: Translation of a Rust function that takes a reference to an integer as an
argument

Note that with this encoding many objects are added to the heap. It also increases the
size of the resulting Silver code, because instead of just assigning to an variable of type
Int, a new object must be created and the value must be assigned to the Int v field of
the object. As it turns out, in some cases, normal variables of type Int v can be used.
The main reason why integers are stored on the heap is to encode mutable references
to integers. But when no mutable references to a location storing an integer are created,
the integer does not necessarily have to be stored on the heap. For example, consider a
function that takes an immutable reference to an integer as an argument. In safe Rust,
no mutable references to the argument can be created and this immutable reference can
be used to for exactly two things: accessing the integer value it points to or using the
address the reference points to as an integer value. The second case is uncommon in
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Rust, because in order to use the address as an integer value, the reference must be cast
to a raw pointer first, which can then be cast to an integer type. Also note that comparing
two references in Rust will not compare the addresses but the content they point to. This
means, as long as an immutable reference to an integer is not cast to a raw pointer, only
the value it points to can be used. In those cases it would be sufficient to use Silver’s Int
type to store the value instead of creating objects on the heap. While this will probably
result in in a slightly reduced verification runtime, this optimization is not implemented
in Rust2Viper at the moment.

The second aspect of Rust’s integer types not covered by Silver’s Int type is the fact that
integer types in Rust only cover a finite subset of mathematical integers. In Rust there are
integer types with different sizes and types that either include or exclude negative val-
ues, e.g. u8 represents a 8-bit unsigned integer and i32 represents a 32-bit signed integer.
Silver’s Int type, on the other hand, represents the infinite set of mathematical integers.
In Silver, the range constraints of Rust’s integer types can be encoded as assertions, e.g.
the set of possible values of Rust’s u8 type can be encoded by 0 ≤ x < 256, where x
refers to the values that can be stored in variables of type u8. In Rust, the semantics of
the built-in integer types define integer overflows as program errors, while in many other
programming languages, integers wrap around on overflows. The RFC [11] introducing
this behavior requires Rust implementations to dynamically check for integer overflows
at least when debug assertions are enabled and permits checks for overflows at any time.
In the official Rust compiler, dynamic checks for overflows are only added in debug mode.
In Silver, those checks can be encoded as assertions, which could potentially be used to
remove the need for dynamic overflow checks, by proving the absence of overflows. The
constraint that an unsigned integer operation x ◦ y does not overflow can be expressed as
follows: min(x) ≤ (x ◦ y) ≤ max(x), where ◦ denotes an arithmetic operation and min(x)
and max(x) return the minimum and maximum value which can be represented by the
type of x 5. Constraints of that form could be used to add proof obligations to verify no
integer overflows occur in a given Rust program. Once the absence of integer overflows
is verified, the dynamic overflow checks could be removed. At the moment, Rust2Viper
does not automatically add proof obligations for each integer operation, but the user can
add those constraints by hand easily.

Booleans are handled similarly to integers. For each boolean, a new object with a field
Bool v is created. This field has the type Bool, Silver’s boolean type. Besides that, objects
representing boolean values are handled exactly as objects handling integer values. Note
that Silver’s Bool type covers the same set of values as Rust’s bool type, so there is no need
for additional constraints.

3.7 Pure Functions

So far we have discussed how functions in Rust can be translated to Silver methods. But
methods in Silver cannot be used to specify functional properties in contracts, because
they can have side effects, such as creating new objects on the heap or modifying existing
objects. In order to specify functional behavior, Silver provides heap-dependent functions
that can be used in assertions and statements. In the following paragraph, we briefly
describe some key aspects of functions in Silver. For more detailed description we refer

5Note that there are no implicit type conversions in Rust, so x and y must have the same static type.
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to [20].

Functions in Silver are free of side-effects and this property is enforced syntactically. In
Silver, the body of a functions consists of a single expression and all expressions in Silver
are side-effect free. Note that this also means Silver methods cannot be called in Silver
expressions. Similar to methods, functions must specify the permissions required to eval-
uate the function body in their preconditions. But because functions cannot modify the
heap, they do not consume those permissions, which means there is no need to return
permissions using postconditions. Functions can be used to encode functional properties
of recursive data structure, e.g. the length of a linked list, as well as provide abstractions
of the underlying data representation, e.g. creating a set of elements for a given linked
list. The Viper verifiers automatically relate a function invocation to the function’s body
and control the unrolling of recursive function definitions [16].

In Rust2Viper, we support encoding Rust functions as pure Silver functions. This way,
Rust functions can be used to specify functional properties in contracts. But only side-
effect free Rust functions can be translated to Silver functions and in Rust, there is no
notion of side-effect free function, there only exists the notion of general functions, which
may or may not be side-effect free. Therefore we introduced an attribute pure fn, which
can be used to annotate functions that are side-effect free and should be translated to
Silver functions. During the translation, Rust2Viper checks if the function bodies of Rust
functions marked as pure adhere to Silver’s definition of pureness. This check is mostly
syntactic, namely: a Rust function is considered pure by Rust2Viper if its body can be
translated to a single Silver expression. Only function calls in the function body need to
be handled more carefully, because only Silver functions and not methods can be called
in Silver expressions. Therefore we first collect all Rust functions marked as pure. When
translating function bodies, we assume all functions marked as pure can be translated
to Silver functions. If one of those functions marked as pure cannot be translated to a
Silver function, an error is raised when translating this function. Note that Silver does
not support any IO operations, therefore Rust programs containing such operations are
not handled by Rust2Viper at the moment and there is no need to consider IO related
side-effects.

As mentioned earlier, functions in Silver require the permissions to evaluate the function
body to be specified in the function’s preconditions. But because functions can neither
modify objects nor consume permissions, there is no need to specify a concrete amount
of permission in the precondition. We only need to specify that there is some positive
amount of permission, in order to access fields in the function body in a read-only fashion.
For this use case, Silver provides a special permission amount, wildcard, which denotes
some positive, unspecified permission amount that is chosen automatically. We use wild-
card in our translation for all permissions in Silver functions.

Now consider the pure function length in Listing 3.34. We use this example to highlight
the actual translation of pure functions. For recursive functions, it is essential to contain
conditionals to differentiate the base cases and the recursive cases. In the Rust exam-
ple, pattern matching is used, but if statements could be used as well. Silver provides a
ternary operator cond ? a : b, which evaluates a boolean expression cond and eval-
uates the expression a if cond is true and evaluates b otherwise. Listing 3.35 shows the
Silver translation of Listing 3.34. The translation of the pattern matching is very similar
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to the encoding of match statements in non-pure functions (described in Section 3.4.1).
The only differences are that in order to generate a single expression for pure functions,
the ternary ? operator is used instead of if statements, let is used instead of local variable
declarations and unfolding is used instead of unfold statements.

1 #[pure_fn]

2 pub fn length(l: &List) -> i32 {

3 match *l {

4 List::Node(_, ref tail) => {

5 1 + length(tail)

6 },

7 _ => 0

8 }

9 }

Listing 3.34: Pure Rust function to calculate the length of a linked list.

1 function length(l: Ref) : Int

2 requires acc(valid__List(l), wildcard)

3

4 {

5 (unfolding acc(valid__List(l), wildcard) in

6 (variantOfList(l.List__variant) == List__Node()) ?

7 (let tail == (l.List__Node__1) in 1 + ( length(tail))) : 0)

8 }

Listing 3.35: Translation of Listing 3.34

Note that not all side-effect free Rust functions can be translated to Silver functions. For
example, a Rust function that creates a struct instance on the function-local stack can be
considered pure, as this does not modify any state observable outside the function. But
there is no way to translate this function to a Silver function, because new objects can
only be created using the new statement. This also means that we cannot use the integer
encoding described in Section 3.6. Therefore in our encoding, we always use Silver’s
Int and Bool types, instead of objects, for integer and boolean arguments, return values
and bindings. The only limitation of this approach is that the addresses of references to
integers and boolean value cannot be compared. But as already mentioned in Section 3.6,
such comparisons are discouraged in Rust.

3.8 Unsafe Rust

So far we only discussed translating safe Rust code, but in Rust there is a distinction be-
tween safe and unsafe code. For safe Rust, the compiler ensures strong static guarantees
about behavior, such as the guarantees provided by the borrow rules or the guarantee that
references always point to a valid memory address. In our translation so far, we relied
on some of those guarantees. But the safety checks by the compiler are conservative and
the compiler rejects some safe programs because it cannot verify all guarantees statically.
In unsafe code, the restrictions by the compiler are partly relaxed. In Rust, unsafe code
is marked with the keyword unsafe. There are a few places in Rust source code where
unsafe can be used, but we will focus on unsafe blocks, blocks of Rust code that are
preceded by the keyword unsafe.

47



3.8. Unsafe Rust

Unsafe blocks allow programmers to do the following things, which are forbidden in safe
Rust:

1. Access or update a static mutable variable

2. Dereference a raw pointer

3. Call unsafe functions.

Static mutable variables in Rust represent global mutable state, which means multiple
threads can access and modify the same global variable. When dealing with mutable
global state, the user has to take additional care to avoid data races. Reasoning about
shared mutable data is discussed for example in [19]. A similar technique could be used
to reason about unsafe code involving static mutable variables. The existing techniques
however do not solve the problem in a general fashion and we focus on the remaining
two unsafe scenarios in the remainder of this section.

Besides references, Rust’s type system also provides raw pointer types. Raw pointers sup-
port operations similar to C pointers, e.g. pointer arithmetic, and raw pointers are not
tracked by the borrow checker. Dereferencing raw pointers is unsafe in Rust, because for
raw pointers, the type system does not guarantee that they point to valid memory, which
can be dereferenced or the memory they point to is initialized correctly. For example, a
raw pointer can point to an invalid memory address and then dereferencing will cause a
segmentation fault.

Calling unsafe functions on the other hand allows calling arbitrary C functions. This is
probably the most powerful and widespread usage of unsafe code in Rust. There are
two important use cases in particular. First, Rust’s core library provides unsafe functions
for interacting with the underlying operating system on a low level. For example, it pro-
vides functions to allocate and deallocate memory using raw pointers and functions to
cast Rust types to arbitrary other types. Second, functions from user-provided libraries
written in any language can be called from Rust as an unsafe function, as long as they
provide a C interface. In this section, we will not discuss calling unsafe functions from
user-provided libraries. A key issue when it comes to unsafe functions is how to specify
that the called functions do not violate any guarantees Rust’s type system provides across
programs written in different programming languages.

After briefly introducing unsafe code, we will now discuss potential benefits of reasoning
about unsafe code. As mentioned initially in this section, some restrictions are relaxed for
unsafe code, because the compiler cannot reason precisely enough about the code. For ex-
ample, consider an unsafe code block that uses pointer arithmetic to calculate an address,
which is then dereferenced. Guaranteeing the absence of segmentation faults for such an
unsafe block would require reasoning about the valid ranges of memory addresses in a
general fashion, which the Rust compiler does not support. In some sense, the burden to
ensure an unsafe block does what it is supposed to do is partly shifted from the compiler
to the programmer. In particular, the programmer has to ensure that all the invariants of
Rust’s type and borrow system are maintained by unsafe code. When such an invariant is
violated by a Rust program, the behavior of that program is undefined. Listing 3.36 con-
tains two functions that illustrate how two invariants can be violated using unsafe code.
In the first function, two mutable references, two mutable references to the same vari-
able x are created by casting a reference to a raw pointer and then dereferencing that
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pointer. This violates the rule that there can be at most one mutable reference to the
same data at any given time and the behavior of this function is undefined. The second
function, null pointer, creates a raw null pointer and dereferences it, which violates
the invariant that only valid memory addresses are accessed by a Rust program. Again,
the behavior of this function is undefined.

1 fn two_mutable_references() {

2 let mut x: u8 = 1;

3 let ref_1: &mut u8 = &mut x;

4 let ref_2;

5 unsafe {

6 let xp = ref_1 as *mut u8;

7 ref_2 = &mut *xp;

8 }

9 // oops, ref_1 and ref_2 point to the same piece

10 // of data (x) and are both usable

11 }

12

13 fn null_pointer() -> i32 {

14 let x: i32;

15 let xp: *const i32 = ptr::null();

16 unsafe {

17 // oops, dereferencing a null pointer

18 x = *xp;

19 }

20 x

21 }

Listing 3.36: Two functions illustrating how unsafe code can be used to cause undefined
behavior in Rust.

At the moment, Rust programmers have to ensure the correctness of their unsafe code
manually, for example by introducing run-time checks or by documenting important in-
variants. But as we showed in the previous listing, unsafe code can cause undefined
behavior rather easily and the correctness of unsafe code is essential for the safety of a
Rust program. And even though most Rust programs do not require unsafe code explic-
itly6, most parts of Rust’s core and standard library rely on unsafe code, which in turn
means programs using those libraries also rely on unsafe code. Providing better tools
to ensure properties of unsafe code statically can therefore improve the safety of a wide
range of Rust programs.

There is a growing research interest in this area. Recently, the Foundations of Program-
ming group at the Max Planck Institute for Software Systems announced a research
project focused on the safety of Rust [26] and Toman et al. introduced Crust [27], a tool
to verify properties of unsafe Rust code using model checking. In their running example
they show how their tool can be used to find a bug in a simplified version of Rust’s array
implementation. In this thesis, we investigated how Rust2Viper can be used to prevent
similar problems. Note that while Rust2Viper at the moment can only deal with a small
subset of unsafe Rust code, this subset gives an idea how unsafe code could be handled

6Rust2Viper, which is implemented in Rust, does not require a single unsafe block, for example
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by Rust2Viper in a more general setting.

1 struct Array {

2 ptr: * mut u32,

3 len: usize,

4 }

5

6 impl Array {

7 fn get_mut(&self, index: usize) -> &mut u32 {

8 if index >= self.len { panic!(); }

9 unsafe {

10 let ptr = self.ptr.offset(index as isize);

11 &mut *ptr

12 }

13 }

14 }

15

16 fn client(a: &mut Array) {

17 let r1: &mut u32 = a.get_mut(0);

18 let r2: &mut u32 = a.get_mut(0);

19 }

Listing 3.37: Simplified implementation of an array type in Rust.

3.8.1 Initial Work on Verifying Unsafe Code Dealing with Raw Pointers

In this subsection, we present our initial work on verifying unsafe code dealing with raw
pointers. We focus on a very specific use case, namely specifying permissions for raw
pointers that point to a continuous region of memory. At the moment, the user has to
specify permissions to continuous regions of memory manually, which is a major differ-
ence to the way Rust2Viper handles safe Rust code.

To begin with, let us introduce the example from [27], which is shown in Listing 3.37.
Note that our example does not contain generics, while the original version in [27] does,
but this does not have any effect on the problem at hand. In the example, an array con-
sists of a raw pointer to a continuous region of memory containing the array elements
and a length. The function get mut can be used to get a mutable reference to the el-
ement of the array at a given index. There are two important invariants that could be
violated by get mut. First, the pointer that is dereferenced could point to an invalid
memory location. This invariant is preserved by the run-time check in line 8, given that
Array.ptr points to a memory region that can hold at least Array.len elements. The
second important invariant that needs to be maintained is that there can be at most one
mutable reference to each array element at any given point in time. This invariant is not
maintained by get mut, however. As the calls in client show, get mut can be used to
get multiple mutable references to the same array element, meaning the aforementioned
invariant is violated. The recommended fix for this problem was using &mut self instead
of &self as first argument of get mut. This way, the scenario in client is rejected by
the borrow checker, because the first call to get mut will extend the mutable borrow to a

until the returned reference r1 goes out of scope. When get mut is called for the second
time, a cannot be borrowed as mutable again, hence the borrow checker will reject the
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function call. Note that this fix relies on the over-approximation of the borrow checker
and prevents calls to get mut that are unproblematic, e.g. as long as the indices do not
overlap, calling get mut for multiple indices would, in principle, be fine.

To handle data types such as Array in the previous listing, we first need a way to repre-
sent pointers to continuous regions of memory. In Silver, quantified permissions can be used
to specify unbounded heap data structures [20]. They are similar to separation logic’s
iterated separating conjunction [24] and can be used to specify permissions pointwise.
Syntactically, quantified permissions are expressed using a quantifier and accessibility
predicates. For example, forall x: Ref :: x in Y ==> acc(x.f) states permissions
to x.f are held for each reference x in the set Y. In [20], Müller et al. also show how arrays
can be encoded in Silver. In Rust2Viper, we use a similar approach to model continuous
regions of memory. The basic idea is to introduce a new type Ptr using a mathematical
domain and encode accessing a pointer ptr with offset x with loc(ptr, offset).val,
where loc(ptr: Ptr, offset: Int): Ref is a function mapping a base pointer and
an offset to distinctive elements. Permissions to a continuous region of memory can then
be expressed by quantified permissions ranging over all valid offsets.

With such an encoding, permissions can be used to reason about some aspects of pointers.
In Rust2Viper we provide a way to handle the requirements of functions like get mut

more precisely. More specifically, we provide a way to make the assumptions and in-
variants explicit, so they can be verified using a Viper verifier. In particular, we want to
encode to following property: as long as no mutable reference was returned by get mut

for index i, calling get mut with index i is allowed. To handle this and similar cases,
we add additional ghost state to keep track to which offsets for a pointer permissions
are held currently. For a raw pointer, a new set, called accSet, is added in the encod-
ing. The accSet of a pointer contains the offsets to which permissions are held currently.
Listing 3.38 shows how the specification for get mut can be expressed in terms of an
accSet. The first precondition ensures the index can be accessed, given that Array.len
refers to the maximum number of accessible elements. This property could be ensured
by appropriate contracts for functions responsible for allocation memory for Array.ptr.
The second precondition states that permissions to access the array element with offset
i are required. Finally the postcondition states that after calling get mut with index i, i
is removed from the accSet of self.ptr. Once the returned reference expires, the corre-
sponding index can be added to the accSet again. Therefore we have to track additional
state for the returned references: the pointer to the continuous memory region and the
index the returned reference points to. At the moment, Rust2Viper only tracks this ad-
ditional state in the method that called get mut. Using the accSet allows Rust2Viper to
reason more precisely about permissions to memory locations than the Rust compiler
currently does. Also note that while the Array struct presented is rather simple, the same
problem exists for widely used data types, like Rust’s Vec or HashMap types.

The quantified permissions for the array elements are expressed in terms of the accSet of
Array.ptr in the following form:

forall j: Int :: j in accSet(self.Array ptr) ==>

acc(loc(self.Array ptr, j).pval),

where accSet(ptr) returns the accSet for pointer ptr. The pre- and postconditions gener-
ated for get mut from Listing 3.38 are shown in Listing 3.39. Note that in our encoding,
we require read access to an instance of valid Array(self), which means unfolding
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1 struct Array {

2 #[use_acc_set(Array__len)]

3 ptr: * mut u32,

4 len: usize,

5 }

6

7 impl Array {

8 #[precond= "index >= 0 && index < self.len"]

9 #[precond= "inAccSet(self.ptr, index)"]

10 #[postcond= "getAccSet(self.ptr) ==

11 old(accSetWithout(self.ptr, index))"]

12 fn get_mut(&self, index: usize) -> &mut u32 {

13 unsafe {

14 let ptr = self.ptr.offset(index as isize);

15 acc_set_remove!(self.ptr, )

16 &mut *ptr

17 }

18 }

19 }

Listing 3.38: Simplified implementation of an array type in Rust, with specification.

expressions must be used to access the fields of self. In this listing, the unfolding expres-
sions are emitted when accessing fields of self for brevity.

Finally, we want to point out some interesting points of our design for pointers. First, note
that the accSet and the quantified permissions are not added to the predicate generated
for the Array struct, but are carried around outside the predicate. That way, we can
require write access to the accSet of a pointer ptr, even though we only have immutable
access to the pointer ptr. In order to be able to modify the accSet, the function accSet

returns a reference with a field acc set, storing the accSet.
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1 method Array__get_mut(self: Ref, index: Int, rd: Perm)

2 returns (res: Ref)

3 requires none < rd && rd < write

4 requires acc(valid__Array(self), rd)

5 requires acc(accSet(self.Array__ptr).acc__set, write)

6 requires index in accSet(self.Array__ptr).acc__set

7 requires index >= 0 && index < self.Array__len

8 requires forall j: Int :: j in accSet(self.Array__ptr).acc__set

9 ==> acc(loc(self.Array__ptr, j).pval)

10 requires forall j: Int :: j in accSet(self.Array__ptr).acc__set

11 ==> acc(loc( self.Array__ptr, j).pval)

12 requires inAccSet((self.Array__ptr), index)

13 ensures acc(valid__Array(self), rd)

14 ensures acc(accSet(self.Array__ptr).acc__set, write)

15 ensures forall j: Int :: j in accSet(self.Array__ptr).acc__set

16 ==> acc(loc(self.Array__ptr, j).pval)

17 ensures forall j: Int :: j in accSet( self.Array__ptr).acc__set

18 ==> acc(loc(self.Array__ptr, j).pval.Int__v)

19 ensures acc(res.Int__v, write)

20 ensures accSet(self.Array__ptr).acc__set ==

21 old(accSetWithout(self.Array__ptr, index))

22 {

23 //...

24 }

Listing 3.39: Simplified implementation of an array type in Rust, with specification.
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Functional Specification

So far we only discussed permission-related specifications and how Rust2Viper gener-
ates this kind of specification automatically. But in order to verify functional properties,
the user has to provide functional specifications. In Rust2Viper, the user can provide
specifications at several places. Function pre- and postconditions can be added to Rust
functions using the precond and postcond attributes. The invariant attribute can be used
to add invariants to Rust’s loop constructs. Assertions in function bodies can be added
using the static assert! macro. Listing 4.1 shows how these attributes and macros can be
used to provide functional specification for a simple Rust function.

1 #[precond= "x > 0"]

2 #[postcond= "res > 0"]

3 fn example(x: usize) -> usize {

4 let mut c = 0;

5

6 #[invariant= "c <= x "]

7 #[invariant= "x > 0"]

8 while c < x {

9 c += 1;

10 }

11 static_assert!("x == c");

12

13 c

14 }

Listing 4.1: A simple Rust function with pre- and postconditions, as well as loop invari-
ants and a static assertion.

The assertions are provided as strings in the Rust program. For Rust2Viper, we decided
to create our own language for assertions and decided against using Silver’s assertion
syntax for the following reasons. First, the syntax for assertions should be closely re-
lated to the syntax of Rust expressions. For example, in assertions it should be possible
to refer to fields of struct instances in the same way as in normal Rust code. Second,
all permission-related specification is generated automatically, so the assertion language
does not have to provide permission-related constructs, such as Silver’s acc predicate
or folding and unfolding expressions. Third, we wanted the flexibility to introduce new
constructs that allow better interaction with Rust’s types and features in the assertion
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language.

Using Rust’s expression syntax for assertions would have been another possibility. This
syntax would be convenient for Rust programmers, because they are already used to it.
But for assertions, additional constructs, such as quantifiers, are very useful and there
is no equivalent Rust syntax for that. Also, Rust expressions are not as restrictive as Sil-
ver expressions. For example, expressions in Rust can have side-effects, e.g. by calling
a function with side-effects in an expression, while expressions in Silver cannot contain
side-effects; only calls to pure functions are allowed. Therefore having a separate syntax
for assertions makes sense, because this way there is a clear distinction between Rust
expressions and expressions in assertions.

Our assertion language contains key elements from Silver’s assertion language, however.
There is support for integer comparisons, quantifiers and old expressions, which can be
used to refer to the state as it was at the time a function was called. Those elements can be
translated directly to Silver. But once Rust structs or enums are involved in an assertion,
the translation becomes more involved. We describe those two cases in the next section.

4.1 Structs and Enums in Assertions

Before we discuss the handling of struct instances in assertions, we briefly summarize the
important aspects of our data representation described in Section 3.2.1. Struct instances
are represented by Silver objects and struct fields are translated to Silver fields. The field
name in Silver is prefixed by the type name of the struct. A predicate is created for each
struct type and this predicate can be used to get access to the fields of the struct. When a
struct instance is passed to a Rust function, we hold a predicate instance of the predicate
for that struct.

We discuss assertions in pre- and postconditions first, because there we do not have to
consider how borrows in the function body affect predicate instances of structs. Consider
the example in Listing 4.2 which contains a precondition with a field access. When it
comes to translating field accesses in pre- and postconditions, two things have to be done.
First, the predicate instance of the struct has to be unfolded in order to get access to the
fields. This can be done using unfolding expressions to unfold the predicate instance of
the struct with some read permissions. Second, we also have to translate the field name of
the struct in Rust to the appropriate field name in Silver. Listing 4.3 shows the translation
of Listing 4.2. Note how unfolding is used in line 11 of Listing 4.3 to get access to the field
of f.

1 struct Foo {

2 a: i32,

3 }

4

5 #[precond= "f.a == a"]

6 fn example(f: &Foo, a: i32) {

7 // ...

8 }

Listing 4.2: Rust function with precondition with field access.
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1 field Foo__a: Int

2

3 predicate valid__Foo(self: Ref) {

4 acc(self.Foo__a)

5 }

6

7 method new(f: Ref, a: Ref, rd: Perm)

8 requires none < rd && rd < write

9 requires acc(valid__Foo(res), rd)

10 requires

11 (unfolding acc(valid__Foo(res), wildcard) in res.Foo__a) == a

12 ensures acc(valid__Foo(res), rd)

13 {}

Listing 4.3: Translation of Listing 4.2

When it comes to translating assertions in the function body, we take a slightly differ-
ent approach, because moves or borrows in the function body can affect the predicate
instances of structs. In this case, we treat field accesses in assertions in the same way we
treat field accesses in other statements in the function body. We collect the predicates that
need to be unfolded to evaluate the expression and emit unfold statements for them. Then
the assertion is evaluated. After the assertion was evaluated, we emit fold statements for
the unfolded predicates.

To use enums in assertions, we added a pattern-matching construct to our assertion lan-
guage. Our matching construct is defined by the following grammar, where expr refers to
an arbitrary expression of our assertion language, path refers to an arbitrary Rust path
and ∗, refers to an arbitrary number of repetitions separated by a comma:

〈matching〉 ::= ‘matching’ 〈expr〉 ‘in’ ‘(’ 〈arm〉∗, ‘)’

〈arm〉 ::= 〈variant〉 ‘=>’ 〈expr〉

〈variant〉 ::= 〈path〉 | 〈path〉 ‘(’ 〈ident〉∗, ‘)’

Listing 4.4 shows how our matching construct can be used in the postcondition of unwrap or

to specify that either v or the default value d are returned, depending in the variant of x.

1 #[postcond= "matching *x in (

2 MySome(v) => res == v,

3 MyNone => res == d

4 )"]

5 fn unwrap_or(x: &MyOption, d: i32) -> i32 {

6 match *x {

7 MyOption::MySome(x) => x,

8 MyOption::MyNone => d

9 }

10 }

Listing 4.4: Pattern matching in a postcondition
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Intuitively, the semantics of matching constructs of the form

matching arg in ( v1 => a1, · · · , vn => an )

are the following: if arg is of variant vi, then the assertion ai must hold. Note that in
contrast to Rust’s match, the patterns in matching do not need to be exhaustive. For miss-
ing patterns, true is used by default. This means our matching construct is very flexible.
For example, the specification can be split in several pre- or postconditions, each dealing
with a single variant. Also, only the relevant cases need to be handled with our matching
construct. For example, consider a function with a precondition that limits the variants
of a function argument. When using this argument in another pre- or postcondition, only
the variants permitted by the first precondition need to be handled.

To translate the matching construct, we generate unfolding expressions to unfold the predi-
cate instance of the argument with some read permissions to get access to the fields of the
argument. For each arm vi => ai of a matching expression, we generate an implication
variantO f (arg) = vi =⇒ trans(ai), where variantO f (arg) returns the variant of arg and
trans(a) translates an assertion a in our specification language to Silver. For arms that
match a variant with some fields, e.g. MyOption :: MySome(x) in Listing 4.4, occurrences
of the binding on the right side of the implication are replaced with an expression access-
ing the field. The conjunction of the implications for all match arms is the expression
encoding a matching expression.

Listing 4.5 shows the translation of the matching expression in Listing 4.4. Note how
unfolding expressions are generated each time the argument x is accessed. The reason we
opted for this approach over just generating a single unfolding expression at the top-level
is related to using old in combination with matching. When a single unfolding expression
at the top-level is used, the whole matching expression could either be evaluated in the
current state or in the function’s pre-state using old. The advantage of our encoding is
that old can be used in two ways in combination with matching. First, the whole matching
expression can be evaluated in the old state: old(matching arg in (. . .)). Second, only the
actual pattern matching is done in the old state: matching old(arg) in (· · · ). In this case,
the check variantO f (arg) = vi is done in the old state. The assertion ai is evaluated in
the current state, but matched fields can be evaluated in the old state by wrapping them
in old(). Listing 4.6 shows how old and matching can be used to specify that the function
inc increments the value v if the variant of the argument x is MySome(v).

4.2 Interaction with Magic Wands

In two cases in our encoding, magic wands are created to restore permissions at a later
point: loops and when returning references. In those cases, parts of the specification
must be added to the right side of the generated wand, because full permissions are only
restored once the wand is applied.

4.2.1 Specification for Returned References

First we consider the simpler case, returning references from functions in Rust. To be-
gin with, we illustrate the problem using the example in Listing 4.7. In this exam-
ple, the function borrow takes a mutable reference to an instance of the struct type
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1 method unwrap_or(x: Ref, d: Ref, rd: Perm) returns (res: Ref)

2 requires none < rd && rd < write

3 requires acc(valid__MyOption(x), rd)

4 ensures acc(valid__MyOption(x), rd)

5 ensures

6 ((unfolding acc(valid__MyOption(x), rd) in

7 variantOf(x.MyOption__variant) == MyOption__MySome()) ==>

8 (res == (unfolding acc(valid__MyOption(x), rd) in

9 x.MyOption__MySome__0))) &&

10 ((unfolding acc(valid__MyOption(x), rd) in

11 variantOf(x.MyOption__variant) == MyOption__MyNone()) ==>

12 (res == d))

13 {}

Listing 4.5: Translation of the matching in Listing 4.4

1 #[postcond= "matching (old(*x)) in (

2 MySome(v) => matching *x in (MySome(v) => v == old(v) + 1),

3 )"]

4 fn inc(x: &mut MyOption) {

5 match *x {

6 MyOption::MySome(ref mut v) => {

7 *v += 1;

8 },

9 _ => {},

10 }

11 }

Listing 4.6: Pattern matching in combination with old in a postcondition

Foo and returns a reference to the field f.v. The listing also shows the pre- and post-
conditions generated for borrow during the translation to Silver. In particular, a wand
acc(res.Int v, write)−∗ acc(valid Foo( f ), write) to restore the original permissions of
the argument f is generated. This wand is applied when the returned reference goes out
of scope. In the preconditions of borrow, write permissions to the argument f are required.
This means, the caller of the method does not retain any permissions to f, the content
f points to can be modified by the called method borrow and the effect of borrow on
the content of f must be specified in borrow’s postconditions. In contrast, for immutable
references, the caller always retains some permissions in our encoding, which means the
content cannot be changed. If we want to preserve information about the content of f,
additional postconditions are required. But note that in the postconditions of borrow, no
permission to valid Foo( f ) is held. Therefore, postconditions involving f cannot be
translated using the techniques we described earlier.

From the borrow checker’s perspective, the borrowed argument f remains borrowed mu-
tably after the function returns, until the returned reference expires. This means, the
argument f cannot be used as long as the returned reference is in scope, otherwise Rust’s
borrow rules would be violated. Or in other words, until the returned reference expires,
only the returned reference can be used to access parts of the argument f. The borrow
rules also imply that there cannot be any active references to the content of f at the
time of a function call to borrow. In the remainder of this section we will refer to ar-
guments that remain borrowed after a function call as extended arguments. When using
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1 fn borrow<’a>(

2 f: &’a mut Foo)

3 -> &’a mut i32

4 {

5 f.v = 0;

6 f.z = 0;

7 &mut f.v

8 }

1 method borrow(f: Ref, rd: Perm)

2 returns (res: Ref)

3 requires none < rd && rd < write

4 requires acc(valid__Foo(f), write)

5 ensures acc(res.Int__v, write)

6 ensures acc(res.Int__v, write) --*

7 acc(valid__Foo(f), write)

8 {}

Listing 4.7: Postconditions generated by Rust2Viper for a function that returns a refer-
ence.

an extended argument in postconditions it is therefore sufficient if the postconditions
involving extended arguments hold when the returned reference expires, because only
then the extended argument can be accessed again. Or stated differently, the effects of
the function borrow on its argument f can only be observed once the returned reference
goes out of scope. We use this fact in our encoding by adding postconditions that involve
extended arguments to the right side of the wand generated for the returned reference.
Note that there is no need to add postconditions that refer to extended arguments only
in the function pre-state (using old()) to the generated magic wand.

1 fn client(f: &mut Foo) {

2 {

3 let r1 = borrow(f);

4 // f remains borrowed until r1 goes out of scope

5 static_assert!("*r1 == 0"); // OK

6 static_assert!("f.v == 0"); // not OK, f.v cannot be accessed while

7 // r1 is in scope

8 *r1 = 20;

9 }

10 static_assert!("f.v = 20");

11 static_assert!("f.z = 0");

12 }

Listing 4.8: Client code calling a function borrow.

1 #[postcond= "*res == 0"]

2 #[postcond= "res == &f.v"]

3 #[postcond= "f.z == 0"]

4 fn borrow<’a>(f: &’a mut Foo)

5 -> &’a mut i32

6 {

7 f.v = 0;

8 f.z = 0;

9 &mut f.v

10 }

Listing 4.9: A version of the function borrow from Listing 4.7 including functional speci-
fication

To illustrate this handling of postconditions, consider the function client in Listing 4.8,
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which calls borrow from Listing 4.7 and contains assertions involving the data passed to
borrow. In order to verify the assertions in client, the specification of borrow has to
include information about both fields f.v and f.z. Listing 4.9 includes postconditions
for borrow that are sufficient to verify the assertions in client. The generated postcondi-
tions are shown in Listing 4.10. Note that the two postconditions involving fields of the
argument f are added to the right side of the wand generated for the returned reference.

1 method borrow(f: Ref, rd: Perm) returns (res: Ref)

2 requires none < rd && rd < write

3 requires acc(valid__Foo(f), write)

4 ensures acc(res.Int__v, write)

5 ensures res.Int__v == 0

6 ensures acc(res.Int__v, write) --* acc(valid__Foo(f), write) &&

7 (res == ((unfolding acc(valid__Foo(f), rd) in f.Foo__v))) &&

8 ((unfolding acc(valid__Foo(f), rd) in f.Foo__z.Int__v) == 0)

9 {}

Listing 4.10: Postconditions generated for Listing 4.9

While the general rule is straightforward, we discuss two interesting cases in the remain-
der of this section. The first case involves postconditions that refer to an extended argu-
ment in the function’s pre- and post-state. Such postconditions are added to the right side
of the magic wand. The wand however is not applied in the called function but by a caller
further up the call stack. This means when applying a wand generated by a function f ,
old expressions in the wand must refer to f ’s pre-state, not to the pre-state of the current
function. This can be done using Silver’s labeled old expressions. When translating calls
to functions with escaping references, a new label is created just before the call. When
applying the generated wand, all old expressions are replaced by labeled old expressions
of the form old[l], where l refers to the generated label. Consider a function borrow, that
has the wand shown in Listing 4.11 as a postcondition.

1 acc(res.Int__v, write) --* acc(valid__Foo(f), write) &&

2 (unfolding acc(valid__Foo(f), rd) in f.Foo__z) ==

3 old(unfolding acc(valid__Foo(f), rd) in f.Foo__z)

Listing 4.11: Magic wand containing and old expression.

Listing 4.12 shows how a call to the function borrow is translated and how the generated
wand is applied. Note that while the wand in the postconditions of borrow refers to the
formal parameters of the function (the ones in the function declaration), when applying
the wand the formal parameters are replaced by the actual parameters of the call (the
ones supplied at the call site).

The second case deals with postconditions that refer to the same location the returned
reference points to. Listing 4.13 shows such a case. The function borrow returns a mutable
reference to f.v, but in the postcondition, f.v is used to refer to the same data. This
means there are two references to f.v: the return value res and f.v. In our translation,
we forbid the use of f.v in this case, because otherwise inconsistent magic wands could
be created. For example consider a wand for borrow, that contains an assertion for f.v
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1 label call1

2 cr := borrow(cf, rd)

3 // ...

4 apply acc(cr.Int__v, write) --* acc(valid__Foo(cf), write) &&

5 (unfolding acc(valid__Foo(cf), rd) in cf.Foo__z) ==

6 old[call1](unfolding acc(valid__Foo(cf), rd) in cf.Foo__z)

Listing 4.12: Translation of the call to borrow from Listing 4.8

== 0 on the right side. Between calling the function borrow and applying the generated
magic wand, the returned reference could be used to modify f.v which conflicts with the
assertion on the right side of the generated wand. From a Rust perspective, this restriction
also seems reasonable, because while the returned reference is active, f.v cannot be used.
Note that we allow the use of fields to which no references escape in postconditions,
because there can be no references that could be used to modify such fields while the
returned reference is active.

1 #[postcond= "f.v == 0"]

2 fn borrow<’a>(f: &’a mut Foo)

3 -> &’a mut i32

4 {

5 f.v = 0;

6 f.z = 0;

7 &mut f.v

8 }

Listing 4.13: Postcondition that refers to the field the returned reference points to.

4.2.2 Specification for Loops

For loops, the problem with functional specification is similar to the case discussed in
the previous section: functions that return references. Permissions to the data structure
traversed by a loop are restored at some point after the loop, which means the already
traversed parts of a data structure cannot be used in loop invariants. Invariants that talk
about the traversed data structure must reason about the state of the data structure as
it will be, once the permissions are restored after the loop. Again, this behavior can be
encoded by adding those assertions to the right side of the generated wand.

We will illustrate this approach using the example shown in Listing 4.14, which contains
a loop that traverses a linked list using a mutable reference. For this loop, the following
wand will be created and maintained:

acc(valid List(current), write)−∗ acc(valid List(list), write).

Note the two invariants in Listing 4.14, which use a function length which returns the
length of a list and elems, which returns the values stored in the list as a sequence. The
first two invariants involves current and list in the method’s pre-state and state that the
elements from the current element to the last element have not changed. Those assertions
can be maintained as a normal loop invariants. The third invariant however refers to list

in the state as it will be once the borrow to list ends. Therefore this assertion is added to
the right side of the generated wand, which allows us the reason about the state as it will
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be once the reference to list expires. Note that we also use current in the assertion that
goes on the right side of the wand. The reference current borrows list and permissions
to current are also on the left side of the wand. In our translation, those references refer
to the state in which the wand is applied, and we evaluate expressions using lhs() to
refer to this state. In Silver, lhs can be used on the right side of a magic wand to evaluate
an expression in the state in which the magic wand is applied. Listing 4.15 shows the
generated loop invariants in Silver.

1 fn append_iter(list: &mut List, element: i32) {

2 let mut current: &mut List = list;

3 let mut c = 0;

4

5 #[invariant= "0 <= c && c <= |old(elems(list))|"]

6 #[invariant= "elems(current) == old(elems(list))[c..]"]

7 #[invariant= "elems(list) == old(elems(list))[0..c] ++ elems(current)"]

8 loop {

9 let temp = current;

10 if let List::Node(_, ref mut tail) = *temp {

11 current = tail;

12 c = c + 1;

13 } else {

14 current = temp;

15 break;

16 }

17 }

18

19 *current1 = List::Node(element, Box::new(end));

20 }

Listing 4.14: Loop that traverses a linked list mutably with specification stating the ele-
ments remain unchanged.

1 define LHS acc(valid__List(current), write)

2 define RHS acc(valid__List(list), write) &&

3 elems(list) == old(elems(list))[0..c] ++ lhs(elems(current))

4

5 invariant acc(valid__List(current), write)

6 invariant 0 <= c && c <= |old(silver_elems(list))|

7 invariant elems(current) == old(silver_elems(list))[c..]

8 invariant LHS --* RHS

Listing 4.15: Translation of the loop invariants from Listing 4.14.

Now let us briefly summarize how loop invariants for mutable data structures are inter-
preted:

• assertions involving the beginning of the traversed data structure are added to the
right side of the wand generated for the loop

• expressions involving the current element of the loop iteration are evaluated in the
state the wand is applied in using lhs.

Finally, we briefly discuss functional specification for loops that traverse a data structure
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using an immutable reference. When using an immutable reference to traverse a data
structure in a loop, only a fraction of the available permissions are used to traverse the
data structure. This in turn means we retain some permissions to the data structure
outside the loop body and the verifiers can automatically deduce that the data cannot be
modified by the loop. It is therefore sufficient to refer to the data structure in the state
before the loop body. In our specification language, we provide a function pre to refer to
the state before the loop body. When translating a loop, a new label is added just before
the loop. Usages of pre in loop invariants are translated to labeled-old expressions using
the label generated for the loop. Listing 4.16 shows a Rust function to calculate the sum
of the elements in a list. In the invariant of the loop, pre is used to refer to the state before
the loop and can be translated to an invariant in Silver; there is no need to add it to the
generated magic wand.

1 #[postcond= "res == old(sum_rec(list))"]

2 fn sum_iter(list: &List) -> i32 {

3 let mut current = list;

4 let mut sum = 0;

5

6 #[invariant= "sum == pre(sum_rec(list)) - sum_rec(current)"]

7 loop {

8 match *current {

9 List::Node(ref v, ref tail) => {

10 sum += *v;

11 current = tail;

12 },

13 _ => break

14 }

15 }

16 sum

17 }

Listing 4.16: Loop to sum all elements of a list, with specification.
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Chapter 5

Technical Details

While the previous sections provided general rules used to translate Rust programs to
Silver, in this section we discuss some interesting technical aspects of Rust2Viper.

5.1 Rust Compiler Plugin

Compiler plugins in Rust provide an interface to access the high-level intermediate rep-
resentation HIR the compiler generates for a Rust program. Rust’s HIR is similar to an
abstract syntax tree representation, where Rust macros are expanded already. Most com-
monly, compiler plugins are used to implement static checks, that use the HIR to warn
about problematic patterns in the source program. Those plugins are referred to as lints
and there is a wide array of lints warning about common mistakes in Rust programs,
such as unused variables or variables that are written but never read. While such lints
are the most common use case for compiler plugins, a compiler plugin simply provides a
way to execute Rust code to analyze a Rust programs at compile time. Compiler plugins
are executed after the analysis passes of the compiler, such as type and borrow checking,
are done, but before code generation. This means compiler plugins have access to the full
type information computed by the compiler. The Rust compiler also provides infrastruc-
ture to emit error messages and warnings from compiler plugins.

Rust2Viper is implemented as a compiler plugin. From a high level, Rust2Viper operates
as follows to verify a Rust program. First, the compiler checks the program and gen-
erates the HIR for that program. Then the Rust2Viper plugin is executed. The plugin
then traverses the HIR and generates a Silver program from the HIR. This Silver program
is then passed on to a verifier. Error messages raised by a verifier are emitted using the
same infrastructure also used to emit error messages of the Rust compiler. Mapping error
messages from the verifiers back to error messages in the Rust program is discussed in
Section 5.3.

Implementing Rust2Viper as a compiler plugin comes with one disadvantage, however.
At the moment, compiler plugins are considered an unstable feature in Rust, because the
internal data structures (e.g. the HIR or the type representation) and APIs accessible by
compiler plugins are subject to change. Currently, unstable features are only supported
in “nightly” builds of the Rust compiler and this means only “nightly” builds can be used
to compile and run Rust2Viper. Because of the unstable nature of compiler plugins at the
moment, Rust2Viper most likely requires small updates over time, to account for changes
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in the unstable APIs and data structures used.

Another interesting aspect of Rust2Viper’s implementation is the integration of the bor-
row checker. While Rust programs are checked by the borrow checker before compiler
plugins are executed, the data generated by the borrow checker is just used to check
Rust’s borrow rules and is not passed on to later stages of the compiler. We therefore
ship a slightly modified version of the borrow checker with Rust2Viper. This version
of the borrow checker is then invoked directly from Rust2Viper to gather the necessary
borrow information for each function in the Rust program. For Rust2Viper, we also
had to make a small but important modification to the borrow checker. The original
version of the borrow checker does not track information about borrows of immutable
objects, because they can never be borrowed mutably, which makes checking the rele-
vant borrow rules trivial. For our translation however, the borrow information is used to
generate ghost operations and therefore we extended the borrow checker to track infor-
mation for immutable objects as well. This is convenient for our current implementation
of Rust2Viper, as the same procedures can be used to generate ghost operations for mu-
table and immutable data. But we think it should be possible the generate most ghost
operations for immutable data without borrow information for that data. Only our loop
analysis would require major changes, because it relies on the information provided by
the borrow checker quite heavily for both immutable and mutable data.

5.2 Viper as a Service

During this thesis, we also implemented Viper as a Service or VaaS. It provides a simple
HTTP API, that can be used to verify a Silver program with either Carbon or Silicon. In
order to verify a Silver program, a client sends a request containing the Silver source code
to VaaS, which runs either Silicon or Carbon and sends back the results. Vaas is useful
for two reasons.

First, while Rust2Viper is implemented in Rust, both Silicon and Carbon are implemented
in Scala and run on the Java Virtual Machine. This means, after Rust2Viper generated a
Silver translation, an instance of the JVM has to be started in order to run a Viper veri-
fier. This process takes a relatively long time, about one to two seconds on a on a Linux
machine with an Intel i5-4670S CPU with 3.10GHz and 8 GB of RAM, which slows down
the verification work-flow. VaaS eliminates the startup cost, because it is implemented
as a server in Java itself, which means many requests can be handled by a single VaaS
instance running in a single JVM instance.

Second, installing the tools of the Viper verification infrastructure requires some effort,
because the tools are spread out across different repositories and require the Z3 theorem
prover. Handing the actual verification off to VaaS means the users do not need to setup
the Viper tools locally, which reduces the barrier of entry and makes it easier for new
users to use Rust2Viper.

5.3 Mapping Error Messages from Silver to Rust

While Rust2Viper generates Silver programs and the Viper verifiers raise error messages
in terms of the Silver programs, those error messages are only loosely related to the as-
sertions the user provided in the original Rust program. Therefore the error messages for
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the generated Silver program must be mapped back to the original Rust program.

Unlike other frontends for the Viper verification infrastructure, such as Scala2Sil [8] or
Chalice2Sil [23], Rust2Viper is not implemented in a language that runs on the JVM.
This means Rust2Viper cannot build a Silver AST directly, as Scala2Sil does for example.
Rust2Viper has to generate a Silver source file, which is then passed on to a verifier. When
building the AST directly using a library provided by Viper, arbitrary information can be
attached to the generated AST nodes and this information can be retrieved in case errors
are raised by a verifier. Thus building the AST directly has the advantage that informa-
tion for error reporting can be attached to the nodes of the AST.

At a source level, the Silver language does not provide a similar way to add annotations
to statements, contracts or expressions. Therefore Rust2Viper has to manually track addi-
tional information to map error messages of the verifiers back to the original Rust file. In
order to do that, Rust2Viper operates under the following assumption: the automatically
generated contracts and ghost operations should never cause errors during verification.
Errors related to automatically generated parts of a Silver program are treated and re-
ported as bugs in Rust2Viper. This in turn means Rust2Viper only has to map error
messages involving assertions provided by the user back to the Rust source program.
We use the example in Listing 5.1 to showcase the mapping of error messages back to
the Rust program. Note that this listing includes all necessary attributes to invoke the
Rust2Viper plugin, which were omitted in the previous examples for brevity. Figure 5.1
shows the error messages reported by Rust2Viper for Listing 5.1. Both statements that
cause the verification to fail, the false assertion in line 6 of Listing 5.1 and the call in line
9, are highlighted. In addition to that, the failed precondition for the call in line 9 is
highlighted as well.

1 #![feature(plugin, custom_attribute)]

2 #![plugin(rust2viper)]

3 #![r2s_header]

4

5 fn main() {

6 static_assert!("1 == 2");

7 }

8 fn call() {

9 test1();

10 }

11 #[precond= "false"]

12 fn test1() {}

Listing 5.1: Rust functions with an assertion and a precondition that cannot be verified.

In order to emit such error messages, Rust2Viper tracks the locations in the Silver source
file that contain assertions provided by the user and maps those locations to the locations
in the original source file, where the user provided the assertions. The error messages
and line numbers reported by a Viper verifier can then be used to emit the correct error
message with respect to the Rust source file. While this approach works, having support
for high-level error messages in the Silver language would provide a cleaner way to
implement error reporting for tools that are not based on the JVM. This issue could
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Figure 5.1: Errors reported by Rust2Viper for Listing 5.1.

be addressed, for example, by adding annotations to the Silver language. Annotations
could then be used to add error messages in terms of the original source program to the
generated Silver assertions. When the verification of an assertion fails, the verifier could
report the user-provided message.
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Chapter 6

Evaluation

In this section we evaluate the following aspects of Rust2Viper:

• Which parts of Rust can be handled by Rust2Viper?

• What kind of assertions are required to verify functional properties of Rust pro-
grams?

• How does the verification run-times of Silver programs generated with Rust2Viper
compare against handwritten Silver programs?

6.1 Supported Subset of Rust

At the moment, Rust2Viper supports most of Rust’s basic control structures, such as
if, loop, while and match, struct and enum declarations, as well as statements and ex-
pressions. The supported expressions include boolean and arithmetic expressions, field
accesses as well as function calls. An EBNF grammar for the supported subset of Rust
can be found in Listing B.1. We use ∗, to refer to zero or more repetitions separated by
a comma. Not supported at the moment are arithmetic or boolean expressions that use
non-pure functions as operands. This however is only a minor limitation, because tem-
porary variables can be introduced for the results of non-pure functions, which then can
be used in arithmetic or boolean expressions. Besides that, there is currently no support
for Rust’s trait system. This is currently an essential limitation of Rust2Viper, because the
use of traits is very widespread in real-world Rust code. In fact, some features of Rust
are based on traits, e.g. for loops depend on the Iterator trait or using copy semantics for
a type is done by implementing the Copy trait.

But while Rust2Viper does not support traits, plenty of realistic code examples can be
handled. At the moment, the Rust2Viper test suite consists of about 100 test cases. Some
of those test cases are regression tests that test our encoding of certain features of Rust,
e.g. testing various borrow scenarios. The rest of the test suite consists of tests that are
inspired by existing Rust code. There are

• test cases inspired by Rust types, e.g by Rust’s Option type, such as the example in
Listing A.1

• test cases dealing with recursive data structures, e.g. linked list and binary tree
implementations, such as the example in Listing A.2

• test cases collected from existing libraries, such as the example in Listing A.3, which
shows parts of a parser written in Rust, including specification
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Name Silicon Carbon
Rust2Viper Manual Speedup Rust2Viper Manual Speedup

cell 0.199s 0.039s 5.10x 3.848s 3.263s 1.17x
counter 2.131s 0.096s 22.19x 5.619s 3.428s 1.63x
list 0.693s 0.222s 3.12x 5.992s 4.922s 1.20x

Table 6.1: Verification run-times and speedup of Silver programs generated by Rust2Viper and handwritten
versions.

Those examples show that our approach for generating permission-related specification
automatically based on Rust types and borrow information works well for a wide range
of programs. Functional specification for those test cases can be expressed without user-
provided permission specification. The only known limitation at the moment are loops.
Rust2Viper supports the common pattern where a single reference is used to traverse a
data structure. Some more complex loops, where multiple references are used to traverse
a data structure, are not supported at the moment.

6.2 Performance of Generated Silver Code

In previous sections we already discussed potential disadvantages of our encoding from
a performance perspective. In this section we compare the verification run-time of Sil-
ver programs generated by Rust2Viper to similar, handwritten Silver programs. Major
difference between our encoding and handwritten Silver programs are:

• Rust2Viper always uses predicate instances for arguments in contracts, which means
unfolding expressions must be used to access fields of arguments in contracts

• Rust2Viper uses objects to store integer and boolean values

For our benchmark, we use programs that are translated to Silver programs with several
unfolding expressions and integer objects, that can be removed in the handwritten ver-
sions. Table 6.1 shows the result of our benchmark. In the table we report the verification
run-times of the Silver programs generated by Rust2Viper and of the handwritten ver-
sions. We report the average run-time of 5 consecutive runs on a Linux machine with an
Intel i5-4670S CPU with 3.10GHz and 8 GB of RAM measured using perf, which uses the
performance counter subsystem of the Linux kernel. We also report the speedup of the
handwritten programs over the ones generated by Rust2Viper. The data clearly shows
that the handwritten versions beat the programs generated by Rust2Viper in all cases.
Interestingly, the speedup is bigger for Silicon than for Carbon by a large margin. This
suggests that Carbon deals better with the overhead introduced by Rust2Viper. By far the
biggest speedup is achieved for the counter test case with Silicon. This test case contains
contracts with pattern matching, which are translated to expressions with a high number
of unfolding expressions. The high speedup for this test case suggests that unfolding ex-
pressions are expansive in Silicon. Also, adding more objects to the heap increases the
verification run-time of Silicon quite substantially.
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Chapter 7

Conclusion

In this thesis, we presented the ideas and initial implementation of Rust2Viper, a verifier
for Rust, that translates Rust to Silver code, which can be verified using the Viper verifi-
cation infrastructure.

As main contribution in this thesis, we presented rules to use information provided by
Rust’s type system and borrow checker to generate permission-related specification au-
tomatically. We also showed how key concepts of Rust, such as ownership and bor-
rowing, can be encoded automatically. The ideas presented in this thesis are used to
implement Rust2Viper, a verifier that uses a permission-based logic internally, but hides
the permission-related specification form the user. This approach reduces the amount of
specification required and allows users to focus on functional specification.

Rust2Viper uses most features available in the Silver language to translate Rust programs,
which allowed us to analyze how well those features interact for a wide range of pro-
grams and we found about 20 new bugs in the existing tools. At the moment, Rust2Viper
is powerful enough to verify functional properties of recursive functions and data struc-
tures as well as simple loops that iterate over recursive data structures. We also describe
how specification can be added to magic wands generated by Rust2Viper in a way that is
transparent to the user.

7.1 Related Work

In this thesis, we use the notion of a capability-based type system introduced by Boyland
et al. [7]. We apply the idea of references with associated capabilities to Rust’s type sys-
tem, but capability-based type systems have also been proposed as extensions for other
languages, for example Gordon et al.’s subsequent type system for C# [13].

There also exist several other academic projects, that use expressive type systems for
software verification. For example, the SYMPLAR tool of Bierhoff [3] uses special type
annotations to express symbolic permissions on the type-level and the Plural tool of
Bierhoff and Aldrich [4] provides verification of typestate-based protocols using permis-
sions. Those systems typically focus on checking certain functional properties, while with
Rust2Viper we support verification of more general functional specification.

70



7.2. Future Work

7.2 Future Work

There are several directions for further work.

7.2.1 Extend Unsafe Support

At the moment, the support of unsafe Rust code is very limited. We think there is some
interest in the Rust community to increase the static safety guarantees of unsafe Rust
code, which makes improving the support for unsafe code in Rust2Viper very interesting.
Guarantees that could potentially be verified with Rust2Viper are for example, that raw
pointers point to a valid memory addresses or that accessed memory was initialized
correctly. A limitation of the current implementation is that information required to
verify unsafe code blocks must be carried around explicitly, which requires additional
specification in client code. An interesting direction for future work would also be to
evaluate if and how static analysis could be used to automatically generate specification
for unsafe code.

7.2.2 Support More Rust Features

Traits Traits are a fundamental element of Rust’s type system, but at the moment traits
are not supported by Rust2Viper. Adding support for traits would increase the number
of interesting programs that can be handled by Rust2Viper by a large margin. There
exists some related prior work on verifying traits. A deductive proof system for a trait-
based object-oriented language is introduced in [10] and Bühlmann presented a system
for permission-based verification of traits [9]. Traits in Rust are less powerful than traits
in Scala (traits in Rust cannot contain data), which means some ideas from [10] and [9]
could be applied to traits in Rust.

Type Parameters Type parameters are another feature not supported by Rust2Viper at
the moment, but they are used extensively in library code. If Rust2Viper should be used
to verify parts of Rust’s standard library, supporting type parameters is crucial.

Iterators & Closures Iterators are widely used in Rust and it is considered idiomatic to
use iterators and adapter functions like fold or map wherever possible. Encoding informa-
tion about the content of an iterator as well as closures that can be applied to elements
of an iterator poses interesting challenges. Rust’s type system distinguishes between clo-
sures that take and do not take ownership of objects in the enclosing environment. Also,
when a closure borrows some data from the enclosing environment, this data remains bor-
rowed until the closure goes out of scope. This additional information should be helpful
when adding specification for closures.
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Appendix A

Rust Examples

1 enum MyOption {

2 MySome(i32),

3 MyNone

4 }

5

6 #[postcond= "matching *x in (

7 MySome(v) => res == v,

8 MyNone => res == d

9 )"]

10 fn unwrap_or(x: &MyOption, d: i32) -> i32 {

11 match *x {

12 MyOption::MySome(x) => x,

13 MyOption::MyNone => d

14 }

15 }

Listing A.1: Rust implementation of an option type and an unwrap or function with
specification.
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1 pub enum List {

2 Node(i32, Box<List>),

3 Nil

4 }

5

6 #[pure_fn]

7 pub fn length(l: &List) -> i32 {

8 match *l {

9 List::Node(_, ref tail) => {

10 1 + length(tail)

11 },

12 List::Nil => 0

13 }

14 }

15

16 #[pure_fn]

17 #[precond= "length(l) > 0 && i < length(l)"]

18 pub fn item_at(l: &List, i: i32) -> i32 {

19 match *l {

20 List::Node(ref c, ref tail) =>

21 if i == 0 { *c } else { item_at(tail, i-1) },

22 List::Nil => 0

23 }

24 }

25

26 #[postcond= "length(l) == old(length(l) )"]

27 #[postcond= "forall i: Int :: i >= 0 && i < length(l) ==>

28 item_at(l, i) == old(item_at(l, i)) + v"]

29 pub fn increment(l: &mut List, v: i32) {

30 match *l {

31 List::Node(ref mut c, ref mut t) => {

32 *c = *c + v;

33 increment(t, v);

34 }

35 List::Nil => {}

36 };

37 }

Listing A.2: Rust implementation of linked list.
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1 struct TextPosition {

2 row: u64,

3 column: u64,

4 }

5

6 impl TextPosition {

7 #[postcond= "res.row == 0"]

8 #[postcond= "res.column == 0"]

9 pub fn new() -> TextPosition {

10 TextPosition { row: 0, column: 0 }

11 }

12

13 #[postcond= "self.column == old(self.column) + count"]

14 pub fn advance(&mut self, count: u8) {

15 self.column += count as u64;

16 }

17 // ...

18 }

Listing A.3: Parts of a parser written in Rust, with specification.
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Appendix B

Supported Subset of Rust

〈Rust-program〉 ::= ( 〈Struct〉 | 〈Enum〉 | 〈Function〉 )

〈Ident〉 ::= ‘[a-zA-Z_][a-zA-Z0-9_]*’ // a Rust identifier, specified as regex

〈Ty〉 ::= 〈Ident〉 | ‘&’ 〈Lifetime〉 ‘mut’ 〈Ty〉
〈Lifetime〉 ::= ‘’’ 〈Ident〉
〈Struct〉 ::= ‘struct’ 〈Ident〉 ‘{’ 〈Struct-Field〉 ∗, ‘}’

〈Struct-Field〉 ::= 〈Ident〉 ‘:’ 〈Ty〉
〈Enum〉 ::= ‘enum’ 〈Path〉 ‘{’ 〈Enum-Variant〉 ∗, ‘}’

〈Enum-Variant〉 ::= 〈Ident〉 | 〈Ident〉 ‘(’ 〈Ty〉 ∗, ‘)’

〈Function〉 ::= ‘fn’ 〈Ident〉 ‘<’ 〈Lifetime〉 ∗, ‘>’ ‘(’ 〈Fn-Arg〉 ∗, ‘)’ ‘{’ 〈Block〉 ‘}’

〈Block〉 ::= 〈Stmt〉 *

〈Stmt〉 ::= 〈StmtDecl〉 ‘;’ | 〈Expr〉 ‘;’

〈StmtDecl〉 ::= ‘let’ ‘mut’? ‘=’ 〈Expr〉
〈Expr〉 ::= ‘if’ 〈Expr〉 〈ExprBlock〉 ( ‘else’ 〈ExprBlock〉 )?

| ‘match‘ <Expr> ‘{’ 〈MatchArm〉 ∗, ‘}’
| ‘loop’ 〈ExprBlock〉
| ‘while’ 〈Expr〉 〈ExprBlock〉
| 〈Expr〉 ‘.’ 〈Ident〉 // field access
| ‘&’ ‘mut’? 〈Expr〉 // borrow
| 〈Expr〉 ‘(’ 〈Expr〉 ∗, ‘)’ // function call
| 〈Expr〉 〈BinOp〉 〈Expr〉
| 〈Ident〉 ‘{’ 〈Field-Init〉 ∗, ‘}’ // struct initialization
| ‘true’ | ‘false’ | 〈IntConst〉

〈ExprBlock〉 ::= ‘{’ 〈Stmt〉* ‘}’

〈MatchArm〉 ::= 〈EnumVariant〉 ‘=>’ 〈Expr〉
〈Field-Init〉 ::= 〈Ident〉 ‘:’ 〈Expr〉
〈BinOp〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘||’ | ‘&&’ | ‘==‘ | ‘!=’ | +=’ | ‘-=’ | ‘*=’ | ‘/=’

〈IntConst〉 ::= ‘[0-9]+’ // a integer constant, specified as regex

Listing B.1: Rust syntax supported by Rust2Viper
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