
Implementation of Frozen Objects into
Spec#

Florian Leu

Master Thesis Report

Chair of Programming Methodology
Department of Computer Science

ETH Zurich

http://www.pm.inf.ethz.ch/

September 2009

Supervised by:
Joseph N. Ruskiewicz
Prof. Dr. Peter Müller

Chair of Programming Methodology

http://www.pm.inf.ethz.ch/

2

Abstract

The Spec# programming system allows declaring immutable classes to support the familiar con-
cept of object immutability. However, this class-based approach is restrictive, because it prevents
making instances of arbitrary classes immutable or to decide when an object should become im-
mutable. This thesis describes the implementation of the frozen objects methodology, which allows
overcoming the aforementioned restrictions, into Spec# and shows how to replace the previous
implementation for immutable classes with one depending on frozen objects.

3

4

Contents

1 Introduction 7

2 Background 9
2.1 Spec# . 9
2.2 Boogie . 10

2.2.1 BoogiePL . 10
2.2.2 Prelude . 12

2.3 Immutable Classes . 14
2.3.1 General Concept . 14
2.3.2 Limitations . 15
2.3.3 Implementation . 16

2.4 Frozen Objects . 17
2.4.1 General Concept . 17
2.4.2 Benefits over Immutable Classes . 18

3 Extending Spec# 21
3.1 Characteristics of Spec# . 21
3.2 Freeze Keyword and IsFrozen Check . 22
3.3 [Frozen] Modifier . 24
3.4 [ElementsFrozen] Modifier . 26
3.5 [ElementsCaptured] Modifier . 27

4 Axiomatization of Frozen Objects 29
4.1 Freezer . 29
4.2 Freezing an Object . 29
4.3 Frozen Objects . 30
4.4 Frozen Fields . 31
4.5 Peer Validity . 32
4.6 Forever Frozen . 32
4.7 Immutability of Fields . 33
4.8 Triggers . 33
4.9 Prelude Class . 34

5 Translation into BoogiePL 35
5.1 Freeze Keyword . 35
5.2 IsFrozen Check . 36
5.3 [Frozen] Modifier . 37
5.4 [ElementsFrozen] Modifier . 39
5.5 [ElementsCaptured] Modifier . 41

5

6 CONTENTS

6 Immutable Classes and Strings 45
6.1 Removing Immutable Classes Axiomatization . 45
6.2 New Implementation for Immutable Classes . 46
6.3 Precondition for Generic Parameters . 49
6.4 Strings . 50

7 Conclusion 53
7.1 Testing and Open Source Integration . 53
7.2 Limitations . 53
7.3 Experience . 54

A Examples 55
A.1 Weather Report . 55

A.1.1 Version with Immutable Classes . 55
A.1.2 Version with Frozen Objects . 57

A.2 Traveler . 59

B Changes in Preexisting Test Cases 63
B.1 Different Error Messages for Same Error . 63
B.2 New Errors . 64
B.3 Previous Errors . 64

C Uncovered Bugs 67
C.1 Spec# . 67
C.2 Prelude . 67
C.3 Boogie . 67

Chapter 1

Introduction

Immutability of objects is an extremely useful concept, because it allows other objects to depend on
the fact that the state of such objects is never modified. In particular, this means that other objects
may have invariants depending on an immutable object without owning it, allowing multiple
objects to have invariants depending on the same object. Especially for static program verification,
it is important to have strong contracts, enabling a verifier to prove certain conditions. The
guaranteed immutability of an object is therefore of great use, because it gives the strongest
possible contract for an object’s state, namely that it is never altered.

The Spec# programming system supports the concept of immutable types by means of im-
mutable classes. A class can be declared as immutable by prefixing an [Immutable] modifier, as
seen here for class Foo:

[Immutable]
public class Foo {
...

}

An object that is of an immutable type may only be initialized by its constructor, but is
immutable as soon as the constructor has terminated. This concept is helpful in many practical
applications, particularly because it allows mentioning objects of an immutable type in other
objects’ invariants, but there are also some severe drawbacks and limitations. With immutable
classes, it is for example not possible to have mutable as well as immutable instances of one
particular type.

In the following, we take a look at and address those limitations of immutable classes by im-
plementing the frozen objects methodology, originally described by Leino, Müller, and Wallenburg
[7], into Spec#. We also extend the static program verifier Boogie, which is able to verify Spec#
programs, to support the newly implemented frozen objects. This technique allows us to declare
immutability on an object level instead of a class level. Amongst other advantages discussed later,
frozen objects help to overcome the above mentioned problem of not being able to have mutable
as well as immutable instances of one class.

We still keep the concept of immutable classes for reasons of backward compatibility, but also
because if one needs only immutable objects of a specific class, it is more convenient to just declare
this directly on the class level instead of separately on each individual object.

However, we replace the previous implementation of immutable classes with one that makes
use of the frozen objects methodology. Doing so guarantees that the concept of immutability is
not implemented in two different ways afterwards. It also allows us to remove many special case
distinctions from the source code of Boogie, which have been necessary to distinguish between the
handling of objects of a mutable or an immutable type.

The frozen objects technique, on the other hand, relies mainly on already existing checks from
Spec#’s ownership model, which not only simplifies the source code of Boogie, but also reduces
the size of files compiled for static verification into the BoogiePL language.

7

8 1 Introduction

The remainder of this thesis is structured as follows. Chapter 2 provides all the necessary
background information about Spec#, Boogie, immutable classes, and frozen objects. Chapter
3 discusses the implementation of the frozen objects methodology into Spec#, Chapter 4 the
encoding of the frozen objects theory, and Chapter 5 the necessary extensions in Boogie, enabling
us to verify programs using frozen objects. In Chapter 6, we show how the concept of immutable
classes is implemented with frozen objects, and discuss why strings are a special case and have to
be treated differently. In Chapter 7, we conclude this thesis by talking about the testing of the
implementation and pointing out the limitations of frozen objects.

Chapter 2

Background

2.1 Spec#

The Spec# programming language [1] [8] is an extension of C#, adding features to the language
that help verifying the correctness of a program. We discuss here in detail only those features of
Spec# relevant for the implementation of the frozen objects methodology.

Spec# adds non-null types, method pre- and postconditions, as well as object and loop invari-
ants to C#. Pre- and postconditions need to hold on entry and exit of a method respectively. The
caller of a method is obligated to satisfy the preconditions and can assume the postconditions to
hold at the end of the method call.

Spec# includes an ownership model [2], where each object can be owned by at most one other
object. An owner consists of an (object, class frame) pair, where the class frame is a type of
the object. Ownership transfer is not allowed in Spec#, meaning that once an object has been
assigned an owner, this owner cannot be changed anymore.

A field of an object may be declared as either [Peer], meaning that the field has the same owner
as the object in which it is declared, or [Rep], meaning that the field is owned by the object in
which it is declared. Thus, the [Peer] and [Rep] modifiers structure the object instances into an
ownership graph with sibling (peer) and child (rep) nodes.

With the modifiers [ElementsPeer] and [ElementsRep], the elements of an array can be declared
as either peer or rep. Also, the type parameters of a generic class may be marked with those two
modifiers. For example, if we have a generic list field in an object o with its type parameter
specified as [ElementsPeer], then all fields typed with this parameter in the list class are peers of
object o.

Object fields mentioned in an invariant have to be exposed before they are allowed to be
modified. This can be achieved either with the expose keyword of Spec#, which locally exposes
the object for the current class frame only, or with additively expose, which requires the object to
already be additively exposed for all subclass frames and guarantees that the object is exposed for
the current and all subclass frames. Invariants of an object may temporarily be broken as long as
this object is exposed, but they need to hold again at the end of the expose block.

In order to modify the state of an owned object, it is required that the owner object is locally
or additively exposed for the class frame given in the (object, class frame) pair denoting the owner.
This implies that an assignment to a [Rep] field requires this to be exposed.

On entry of a method, the parameters and the receiver of the method are by default required
to be peer consistent, meaning that the object and all of its peers have to be consistent. An object
is consistent, if it has been fully constructed, is not exposed, and has either no owner or the owner
is exposed. This implies that if an object is peer consistent, its invariants are guaranteed to hold,
because it cannot be peer consistent and exposed at the same time.

A method is pure, if it does not alter the state of any object. The receiver and the parameters
of a pure method do not need to be peer consistent but only peer valid, where valid is defined as an

9

10 2 Background

object being fully constructed and not exposed. In contrast to being consistent, being valid does
not say anything about the owner, the reason being that neither the receiver’s nor a parameter’s
state gets modified inside a pure method. Hence, it does not matter whether the owner is exposed.

If an object is not valid, then it is mutable, allowing its invariants to be broken. A mutable
object can either be locally mutable, meaning that the object has been exposed only for its current
class frame, or additively mutable, meaning that the object has been additively exposed for its
current class frame and all subclass frames. Being valid or mutable for an object of class T can
also be encoded with two variables inv and localinv [5]:

valid if o.inv <: T ∧ o.localinv 6= base(T)
additively mutable if ¬(o.inv <: T)
locally mutable if o.localinv = base(T) ∨ ¬(o.inv <: T)

where base(T) is the immediate superclass of T and <: denotes a subtype relationship. All
subclasses of the class the variable inv is set to are additively exposed, while localinv is set to the
base class of the class frame that is currently locally exposed.

The frame condition of a method states, which objects and fields are allowed to be modified by
the method. The fields of the this instance are the only ones that by default are included in the
frame condition. If other objects are to be modified inside a method, then those objects have to
be added to the modifies clause of this method. However, objects owned by the object containing
a method do not have to be included in its modifies clause. Methods are also not allowed to call
other methods with less restrictive frame conditions.

The Spec# compiler takes a Spec# source code file and emits .NET assemblies either as process
assemblies (.exe) or library assemblies (.dll). In addition, the compiler also generates runtime
checks for method contracts, object invariants, and loop invariants. For performance reasons, not
more checks are done during runtime.

Checking for the correct use of the ownership model or verifying that the frame condition of a
method is never violated is the task of static program verification. We introduce one such static
program verifier, with which we may verify Spec# programs, in the next section.

2.2 Boogie

Boogie [3] is a static program verifier that takes a BoogiePL program (.bpl) and generates veri-
fication conditions which are then passed to an SMT solver (by default the Z3 SMT solver [6]).
Boogie can also take a compiled Spec# program (.exe or .dll) as input and first translate it to a
BoogiePL program, before generating the verification conditions.

Boogie verifies a program method by method, i.e. it follows a modular approach. For that to
work, it relies heavily on strong method contracts. If a method is called inside another method,
Boogie removes the method call and just asserts the preconditions of the method and assumes the
postconditions of it. By doing so, the dependency between caller and callee is removed, enabling
modularity of the methods.

A verification failure is returned, when Boogie cannot verify a program. This either indicates
an error in the program code, or that too few information is available to prove a certain verification
condition, indicating that the contracts are not strong enough.

2.2.1 BoogiePL

BoogiePL [4] (or Boogie 2 as the new version of the language is called) is an intermediate verifi-
cation language used not to run but to statically verify a program. A compiled Spec# program
is translated into BoogiePL by applying some transformations. We briefly discuss those parts of
BoogiePL that are relevant to understand this thesis.

2.2 Boogie 11

Type

A type is defined in BoogiePL with the keyword type, followed by the type name.

This example defines a reference type:

type ref;

Constant

A constant in BoogiePL is defined with the keyword const, followed by the name of the constant
and its type.

This example defines the null constant:

const null : ref;

Function

A function is defined in BoogiePL with the keyword function, followed by the function name, its
parameter types, and the return value type. There is no actual implementation of the function,
which is why it is also called an uninterpreted function. The function gets its intended meaning
through axioms as discussed below.

This example defines a function that determines for a given type whether it is a value type:

function $IsValueType(TName) returns (bool);

Axiom

An axiom in BoogiePL is defined with the keyword axiom, followed by an expression that evaluates
to a boolean value.

This example defines an axiom saying that the type System.Boolean is a value type, thereby
giving meaning to the function above:

axiom $IsValueType(System.Boolean);

Procedure

A procedure is defined in BoogiePL with the keyword procedure, followed by the procedure name
and its parameter names and types. In addition, the procedure is described by contracts, i.e.
modifies, requires, and ensures clauses. A procedure can optionally also have an implementation.

This example shows a procedure Bar with two parameters, the first being the receiver object.
In BoogiePL, the implicit receiver gets always turned into an explicit parameter. The procedure
requires this to be not null, and ensures o not to be null on return:

procedure Bar(this: ref, o: ref);
requires this 6= null;
ensures o 6= null;

implementation Bar(this: ref, o: ref)
{ ... }

12 2 Background

Local Variable

A local variable is declared inside a method implementation in BoogiePL. With a where-clause,
additional properties of the variable may be described.

In this example, a local variable is declared with the additional properties that it is of type
Foo and allocated:

var local0: ref where $Is(local0, Foo) ∧ $Heap[local0, $allocated];

Generics

The generic parameter alpha is used in BoogiePL to allow a function or an axiom to be instanti-
ated with different types.

The function IsStaticField, in this example, takes a field reference as input and determines whether
it is a static field:

function IsStaticField(f: Field ref) returns (bool);

But if we also want to know whether integer or boolean fields are static, we would have to add
another two functions similar to the one above:

function IsStaticField(f: Field int) returns (bool);
function IsStaticField(f: Field bool) returns (bool);

A better solution is to use the generic type parameter alpha, allowing all three functions to be
combined into one, which can then be called with fields of all different types as input parameter:

function IsStaticField<alpha>(f: Field alpha) returns (bool);

Trigger

A trigger is used to tell an SMT solver how to instantiate universal quantifiers, which is crucial for
getting desired results with a good performance. Usually, a prover has to instantiate a quantified
variable with each possible instance. A trigger reduces this workload by telling a prover, such as
Z3, which instances to pick. In BoogiePL, triggers can be added in curly braces after a universal
quantifier and have to mention all the bound variables of it.

In this example, the trigger g(t) tells the prover to only select those instances of type T that
occur as terms g(t) in the current proof context:

axiom (∀ t: T • { g(t) } f(g(t)) ≥ 4);

2.2.2 Prelude

Boogie is a program verifier that is independent from Spec# and, therefore, initially knows nothing
about the rules of this language. Prelude is a file that provides Boogie with background theory
of the Spec# language. In this file, amongst other things, the type system, the base types, the
handling of arrays, and the ownership model are described in BoogiePL.

When the Boogie verifier is invoked for a compiled Spec# program, it not only translates the
given assembly file into a BoogiePL file, but also prefixes the content of Prelude to it. Because
only by having the background theory of the language available, is a prover then able to prove the
verification conditions generated by Boogie for this program.

In what follows, we are discussing those parts of the Prelude file that are important to under-
stand the addition of the frozen objects theory to it as discussed in Chapter 4.

2.2 Boogie 13

Heap

The heap of a Spec# program, which is the part of memory where dynamically allocated objects
are stored, is modeled in BoogiePL as a global array, mapping a given field of an object to a value.

In this example, the value 4 is stored in the field intField of the Foo object referenced by stack0o:

$Heap[stack0o, Foo.intField] := 4;

Ownership

Ownership of an object is encoded with the two constants $ownerRef and $ownerFrame, which
represent the owner object and the owner class frame of an (object, class frame) owner tuple
respectively:

const unique $ownerRef : Field ref;
const unique $ownerFrame : Field TName;

Whenever an object is yet unowned, its $ownerFrame field is set to the special $PeerGroup-
Placeholder type that, as the name suggests, is a placeholder for the nonexistent owner and cannot
be used in any other way:

const unique $PeerGroupPlaceholder : TName;

No owned object can have $PeerGroupPlaceholder as its class frame. This placeholder type is
used mainly in axioms, assertions, pre-, and postconditions to distinguish between unowned and
owned objects by checking whether $ownerFrame is equal to $PeerGroupPlaceholder.

Object Consistency and Validity

Whether an object is valid or mutable is encoded with the two constants $inv and $localinv :

const unique $inv : Field TName;
const unique $localinv : Field TName;

The constant $inv contains the name of the most derived class for which an object invariant
holds, whereas $localinv holds the immediate supertype of the class for which an object invariant
is allowed to be broken. Hence, in order for an object to be valid, $localinv may not be set to
the immediate supertype of the object’s type and $inv not to any supertype of it. The actual
implementation guarantees even more by saying that if an object is valid, $inv and $localinv are
both set to the exact type of the object:

$Heap[o, $inv] == $typeof(o) ∧ $Heap[o, $localinv] == $typeof(o)

Peer validity has to guarantee the above not only for the object itself but also for all of its
peers, i.e. for all allocated objects with the same owner:

(∀ p: ref • p 6= null ∧ $Heap[p, $allocated] ∧ $Heap[p, $ownerRef] ==
$Heap[o, $ownerRef] ∧ $Heap[p, $ownerFrame] == $Heap[o, $ownerFrame] ⇒
$Heap[p, $inv] == $typeof(p) ∧ $Heap[p, $localinv] == $typeof(p))

Peer consistency can be expressed as an object being peer valid and having either no owner or
an exposed owner. Thus, we not only have to ensure that the above expression for peer validity
holds, but also that the following expression about the owner of the object is satisfied:

$Heap[o, $ownerFrame] == $PeerGroupPlaceholder ∨
¬($Heap[$Heap[o, $ownerRef], $inv] <: $Heap[o, $ownerFrame]) ∨
$Heap[$Heap[o, $ownerRef], $localinv] == $BaseClass($Heap[o, $ownerFrame])

14 2 Background

The first part of this expression checks whether the object is unowned. In the second part, we
check if the $inv field of $ownerRef does not contain a subtype of the type stored in $ownerFrame,
because that would make the owner additively exposed. The last part then checks whether $localinv
of $ownerRef is equal to $ownerFrame, as else the owner would be locally exposed.

2.3 Immutable Classes

2.3.1 General Concept

In Spec#, a class may be specified with an [Immutable] modifier. Objects that have a type
corresponding to such an immutable class are guaranteed to be immutable after their initialization.
Thus, after the constructor of such an object has terminated, the state of this object cannot be
altered anymore for the rest of the object’s lifecycle. Objects of an immutable type are therefore
not allowed to be exposed, as that would allow them to be modified.

public class WeatherReport {
private TempMeasurement temp;
private WindMeasurement wind;
public Location loc;

invariant temp == null || loc == temp.loc;
invariant wind == null || loc == wind.loc;

public void AddTemp(TempMeasurement! tm)
requires loc == tm.loc;
ensures loc == temp.loc;
modifies this.temp;

{ temp = tm; }

public void AddWind(WindMeasurement! wm)
requires loc == wm.loc;
ensures loc == wind.loc;
modifies this.wind;

{ wind = wm; }
}

[Immutable]
public class Measurement {

public Date date;
public Location loc;

}

[Immutable]
public class TempMeasurement : Measurement {

public Temp airTemp
public Temp waterTemp;

}

[Immutable]
public class WindMeasurement : Measurement {

public Velocity windVelocity;
}

Example 1

2.3 Immutable Classes 15

The main benefit of immutable classes is that the fields of object instances of such a class
may be mentioned in invariants of any other object. Without immutable classes, to be allowed to
mention the fields of another object in an invariant, this object has to be declared as [Rep]. But
an object can only be declared as [Rep] by at most one other object. Therefore, this is no suitable
solution, when an object should be mentioned in multiple objects’ invariants.

The reason, why it cannot be allowed to mention arbitrary objects in an invariant, is that
otherwise after each modification of an object, all classes would have to be checked for a potential
invariant violation. This contradicts the principle of modular verification, which says that in order
to verify the correctness of a class, one should not need to have access to all the code of classes that
use or extend this class. A program verifier, therefore, cannot check every invariant of all classes
after each modification of an object, as not all of those invariants might be known. However, this
problem does not exist for immutable classes, because an object of such a class cannot be modified
anyway, and no invariant can therefore be violated by an undetected modification of this object.

Instances of immutable classes are not allowed to be owned or have [Peer] fields. This implies
that all those objects are peer consistent after they have been constructed, as they are always
valid, have no owner, and their peers are guaranteed to be always consistent, because they have
none. Hence, objects of an immutable type may always be used as receiver, parameter, or return
value of a method call.

Example 1 shows a potential application for immutable classes. We have a class WeatherReport
in which different kinds of measurements are stored. If we assume that once a measurement has
been taken, the values of this measurement do not change anymore, then we can declare the class
Measurement and its two subclasses TempMeasurement and WindMeasurement as immutable.

One restriction of immutable classes is that a class can only be declared as immutable, if its
base class is System.Object or another immutable class. Conversely, that means that an immutable
class cannot have mutable subclasses. Therefore, it would not be allowed to have a subclass of
Measurement that is not immutable or to only declare TempMeasurement and WindMeasurement
as immutable but not their base class Measurement.

The class WeatherReport contains a Location, a TempMeasurement, and a WindMeasurement
field. It also has two invariants saying that as long as temp and wind are not null, their locations
have to be the same as the one stored in field loc of the WeatherReport object. These invariants
are only legal, because Measurement and its subclasses are declared as immutable. Otherwise,
the loc fields of temp and wind would not be visible in those invariants, i.e. they could not be
mentioned there, unless we would declare temp and wind as [Rep]. But as mentioned above, this
would exclude the possibility of those Measurement objects being used by another class that also
has an invariant depending on their fields.

2.3.2 Limitations

The concept of immutable classes is far from being perfect and has some severe limitations. For ex-
ample, we might also want to have a class CurrentWeather, in which measurements are continually
updated to always reflect the most current weather data:

public class CurrentWeather {
private TempMeasurement temp;
private WindMeasurement wind;

public void UpdateTemp(Date d, Temp airT, Temp waterT)
{ ... }

public void UpdateWind(Date d, Velocity windVel)
{ ... }

}

In this case, we need mutable instances of TempMeasurement and WindMeasurement and,
therefore, cannot use the same Measurement class hierarchy that we defined in Example 1, because

16 2 Background

all those instances are immutable. A first potential solution would be to use an immutable wrapper
class that has an instance of the corresponding mutable class as a field:

[Immutable]
public class ImmutableMeasurement { public class Measurement {

private Measurement measurement; // implementation

} }

However, we see that the two classes need to have a different name, despite being exactly the
same aside from the [Immutable] modifier. From the compiler’s point of view, the mutable and
immutable instances are therefore not even of the same type, and we cannot, for example, assign
an object of type Measurement to a field of type ImmutableMeasurement with this solution.

Another problem is the use of library classes. If we, for instance, want to have an immutable
linked list, then not even a wrapper class can help, because the list would be immutable right after
construction, and no elements could be added to it anymore, making it virtually useless. What
we would need is the possibility to declare an object like this linked list as immutable only after
a certain time and not already after its initialization, but this is not possible with the concept of
immutable classes as implemented in Spec#.

A method CorrectMeasurement in class Measurement, that checks the validity of the different
fields and fills in missing information if necessary, is another example where we would need an
object to become immutable only after some time. Because if we want to call CorrectMeasurement
every time before adding a measurement to the weather report, this is only possible if the object
is still mutable at that point, which is not the case with immutable classes:

public void AddTemp(TempMeasurement! tm)
requires loc == tm.loc;
ensures loc == temp.loc;
modifies this.temp;

{
// not allowed: tm.CorrectMeasurement();

temp = tm;
}

The concept of immutable classes offers no good solution for this problem, and so we either
have to omit calling CorrectMeasurement and accept having potentially faulty data, or we have
to leave the measurements mutable and, therefore, cannot write any invariants for their fields, or
we could go back to using wrapper classes with the above mentioned disadvantages.

2.3.3 Implementation

The implementation of immutable classes is based on static type checks. In the Prelude file, those
three functions declare whether a type is mutable or immutable:

function $IsImmutable(T:TName) returns (bool);
function $AsImmutable(T:TName) returns (theType: TName);
function $AsMutable(T:TName) returns (theType: TName);

Function $IsImmutable returns true, if the provided type is immutable. Function $AsImmutable
returns the provided type again, if it is an immutable type, and null otherwise, while function
$AsMutable is just the opposite.

With axioms, it is determined for each type, which functions hold for it. For classes Weather-
Report and Measurement from Example 1, the following axioms would be added by Boogie while
translating the program into BoogiePL:

axiom ¬$IsImmutable(WeatherReport) ∧ $AsMutable(WeatherReport) == WeatherReport;
axiom $IsImmutable(Measurement) ∧ $AsImmutable(Measurement) == Measurement;

2.4 Frozen Objects 17

With those axioms, a prover is able to check whether an object’s type is immutable and has
to be treated differently. Some operations have to be executed only when the type is mutable or,
conversely, when it is immutable. On the one hand, assigning an owner to the object requires it
to be mutable, as objects of an immutable type cannot be owned. On the other hand, it has to be
checked for all invariants that when an object is not declared as [Rep], its fields are only mentioned
in the invariant, when the type of the object is immutable. This introduces many additional checks
that have to be executed by a prover whether the program has immutable classes or not.

2.4 Frozen Objects

The frozen objects methodology is a concept designed to overcome the restrictions of immutable
classes and has been introduced by Leino, Müller, and Wallenburg [7]. They have shown, how
this technique can work based on a simplified Spec#-like language. Their paper also describes the
theoretical background of the methodology in detail.

In this section, we introduce the methodology and compare it with immutable classes. In the
following chapters, we then describe, how we implemented this technique into Spec# and extended
the verifier Boogie with the capabilities to verify programs using frozen objects.

2.4.1 General Concept

The main idea of frozen objects is to provide immutability on an object level instead of on a class
level as with immutable classes. Declaring an object as immutable (called frozen) should be as
easy as assigning an owner to an object. The frozen objects methodology, thus, introduces a new
object called Freezer, with the intention that every object directly or transitively owned by this
Freezer is frozen.

To achieve this, the Freezer object is not allowed to be referred to by the rest of the program.
As there are no references to it, the Freezer in particular can never be exposed by a programmer
and, hence, is always valid.

If the Freezer object is assigned as the owner of another object, this object cannot be exposed
anymore either from that point on, because exposing an object requires its owner (if it has any)
not to be valid, which would contradict the ever validity of the Freezer. And this applies not
only to objects directly owned by the Freezer, but also to objects transitively owned by it. The
reasoning is exactly the same, namely that their respective owner is always valid, because either
it is the Freezer object, or an object that is itself (transitively) owned by the Freezer.

With this technique, one can thus declare any object as frozen by just assigning the Freezer as
its owner (called freezing the object). The keyword freeze executes exactly this operation, i.e. the
Freezer is assigned as new owner of the provided object.

The keyword frozen can be put before a field or method parameter declaration. A field or
parameter specified as frozen may only hold null or a reference to a frozen object, but not a
reference to a mutable object. The following small example shows how to use those two keywords:

public class Foo {
frozen Foo f = null;

public void Bar() {
Foo temp = new Foo();
freeze temp;
f = temp;

}
}

We first create a local variable temp of type Foo, then call freeze on this variable, and finally
assign it to the field f that has been declared with the frozen keyword.

18 2 Background

2.4.2 Benefits over Immutable Classes

The frozen objects methodology solves many limitations of immutable classes. There is no more
restriction in subclassing, there can be mutable and immutable object instances of the same type,
objects from library classes can also easily be frozen, and objects can be frozen at any point in
time, not only just after they have been initialized.

Because fields declared as frozen are guaranteed to never be modified, an invariant depending
on their state cannot be violated anymore, once it has been established. Writing such invariants
is therefore allowed, providing frozen objects with the same advantage as objects of an immutable
type.

Example 2 shows the same classes as Example 1, just without declaring them as immutable.
Apart from that, Measurement and its subclasses stay exactly the same. Instead of the [Immutable]
modifier before the classes, we add the frozen keyword before the declaration of each field that we
want to be frozen. This allows us to keep the invariants mentioning the fields temp and wind.

public class WeatherReport {
frozen private TempMeasurement temp;
frozen private WindMeasurement wind;
public Location loc;

invariant temp == null || loc == temp.loc;
invariant wind == null || loc == wind.loc;

public void AddTemp(frozen TempMeasurement! tm)
requires loc == tm.loc;
ensures loc == temp.loc;
modifies this.temp;

{ temp = tm; }

public void AddWind([Captured] WindMeasurement! wm)
requires loc == wm.loc;
ensures loc == wind.loc;
modifies this.wind;

{
freeze wm;
wind = wm;

}
}

public class Measurement {
public Date date;
public Location loc;

}

public class TempMeasurement : Measurement {
public Temp airTemp
public Temp waterTemp;

}

public class WindMeasurement : Measurement {
public Velocity windVelocity;

}

Example 2

2.4 Frozen Objects 19

The frozen keyword before parameter tm in method AddTemp requires that the provided
TempMeasurement object has to be already frozen. Therefore, we can just assign this object to
the frozen field temp.

Another possibility is shown by the method AddWind, where we do not get an already frozen
object. Hence, we freeze the provided object first, before assigning it to the frozen field wind.
Because the owner of wm is changed by the freeze keyword, the parameter has to be declared
with the [Captured] modifier, as only the owner of a captured parameter is allowed to be modified
inside a method.

A first benefit we get in this example for using frozen objects, is that we are now allowed to
modify an object between its construction and the time when the object is frozen. For example,
we can now have a method CorrectMeasurement, which checks the validity of all the fields and
fills in missing information for fields that have not been initialized with a meaningful value:

public virtual void CorrectMeasurement()
ensures loc == old(loc);

{
// check validity of measurement and fill in missing information

}

We define this virtual method in the class Measurement and then override it in each subclass
to additionally check the newly defined fields in that class. With immutable classes, such a
method has been useless, because the objects were already immutable after their initialization,
and values could therefore not be corrected anymore. With frozen objects, however, we may call
CorrectMeasurement before freezing the wm object in method AddWind :

public void AddWind([Captured] WindMeasurement! wm)
requires loc == wm.loc;
ensures loc == wind.loc;
modifies this.wind, wm.*;

{
wm.CorrectMeasurement();
freeze wm;
wind = wm;

}

At the time CorrectMeasurement is called, wm is still mutable and the method call therefore
perfectly legal. The postcondition in CorrectMeasurement ensures that a call to this method does
not invalidate the invariant ’wind == null || loc == wind.loc’ of class WeatherReport. Without
this postcondition, Boogie would detect a possible invariant violation when assigning wm to wind.

We cannot do the same in method AddTemp, where we already get a frozen object as parameter.
In that case, we have to call CorrectMeasurement already earlier, before freezing the tm object
and calling AddTemp:

WeatherReport wr = new WeatherReport(loc);
TempMeasurement tm = new TempMeasurement(date, loc, airT, waterT);
tm.CorrectMeasurement();
freeze tm;
wr.AddTemp(tm);

Another benefit of frozen objects is that we may also have a class CurrentWeather that con-
tinually updates the measurements without ever wanting them to become frozen, but still uses the
same measurement type hierarchy, which has not been possible with immutable classes:

public class CurrentWeather {
[Rep] private TempMeasurement! temp;
[Rep] private WindMeasurement! wind;

20 2 Background

public CurrentWeather(Date d, Location l) {
temp = new TempMeasurement(d, l, null, null);
wind = new WindMeasurement(d, l, null);

}

public void UpdateTemp(Date d, Temp airT, Temp waterT) {
expose (this) {
temp.date = d;
temp.airTemp = airT;
temp.waterTemp = waterT;

}
}

public void UpdateWind(Date d, Velocity windVel) {
expose (this) {
wind.date = d;
wind.windVelocity = windVel;

}
}

}

We declare the fields temp and wind as [Rep]. In methods UpdateTemp and UpdateWind, we
may update those fields by exposing the this object reference, because this is the owner of both
fields.

All the benefits listed in this section make frozen objects much more flexible to use than
immutable classes in most application scenarios. In the following chapters, we explain how we
transferred this methodology from the simplified language of the original paper [7] to Spec#,
and how we extended Boogie, so that we may verify properties of frozen objects with this static
program verifier.

Chapter 3

Extending Spec#

Adding the frozen objects methodology to Spec# is split in three main parts. First, we have to
extend the Spec# compiler to add the new keyword and modifiers required by the methodology.
Next, we have to encode the theory of frozen objects in the Prelude file. And finally, we also have
to extend the Boogie verifier in order to be able to verify programs using frozen objects.

In this chapter, we describe in detail the modifications in the source code of Spec# that have
been necessary to implement the frozen objects methodology. The modifications for Prelude and
Boogie are explained in the next two chapters.

3.1 Characteristics of Spec#

We begin by pointing out the differences between Spec# and the simplified language used in
the paper introducing frozen objects [7]. Spec# is a more complex language and has several
characteristics that make the implementation of the frozen objects methodology more challenging.
We discuss the implications of those characteristics in this section, before continuing with the
actual implementation.

In the simplified language, assigning the Freezer as the owner of any object is indeed a straight
forward way of declaring that object as frozen. This only works in every case, however, because
ownership transfer is allowed in that language.

Spec# does not support ownership transfer. Therefore, objects that already have an owner
cannot be frozen anymore. On the one hand, this means that no [Peer] or [Rep] object may be
frozen. On the other hand, it guarantees that once an object is frozen, it can never be unfrozen
again, because that, too, would require an ownership transfer.

We have to be careful what being frozen exactly means in Spec#. If we freeze an object, then
only those fields that are declared as either [Peer] or [Rep] also get frozen. [Peer] fields have the
same owner as the object in which they are declared. So if we assign the Freezer as owner of an
object, then also all of its peers have to be frozen. [Rep] objects are owned by the object in which
they are declared, and after freezing this object, all [Rep] fields are thus transitively owned by the
Freezer as well.

However, we may also have fields that are not specified as [Peer] or [Rep] in Spec#. Such
fields have no ownership relation to the object they are contained in. Hence, even if the object
containing a non-peer, non-rep field gets frozen, this field is not guaranteed to be transitively
owned by the Freezer afterwards and may still be mutable.

A non-peer, non-rep field cannot be modified via an assignment ’frozenObj.field = newValue’,
because this would require the target object to be peer consistent. However, a frozen object can
never be peer consistent, as that would require its owner to be exposed. Therefore, it is guaranteed
that the object reference of a non-peer, non-rep field always stays the same in a frozen object.
Nevertheless, there can be aliases pointing to the same object, and over such an alias, we may still
modify the state of an object referenced by a non-peer, non-rep field. So we have to be aware that

21

22 3 Extending Spec#

freezing an object in Spec# not necessarily ensures the immutability of every object referenced by
it. This can be seen here:

public class Foo {
public A! af;

public Foo(A! a) {
af = a;

}

public void Bar() {
A a = new A();
Foo foo = new Foo(a);
freeze foo;

// not allowed: foo.af = new A();

// allowed, because ’a’ is not transitively owned by the Freezer

a.i = 4;
}

}

public class A {
public int i;

}

In method Bar, we create an object a of type A, give it to the constructor of Foo, which
initializes its field af with it, and then freeze object foo. Afterwards, we are not allowed anymore
to assign a new A object to field af of foo. However, we may still modify the integer field i of
object a, even though it is the same object as referenced by the field af of frozen object foo. This
is only possible, because a is still unowned and not owned by the Freezer like foo.

If field af would have been declared as [Peer] or [Rep], it would not be possible to modify a at
this point in the code anymore, because it would be directly or transitively owned by the Freezer,
making it impossible to satisfy the requirement of this assignment statement that the owner of a
has to be exposed first.

3.2 Freeze Keyword and IsFrozen Check

Starting with the implementation of the methodology, we first have to add the new freeze keyword
to the Spec# compiler which, amongst some other new definitions, includes adding the following
statement to the Scanner class:

keyword = new Keyword(Token.Freeze, ”freeze”, true, keyword);

This allows the compiler to recognize the string ”freeze” in a program as a keyword during the
scanning process. In the Parser class, we then add a new method ParseFreeze that gets called,
whenever the compiler encounters a use of freeze. This method creates a new Freeze object and
sets the Expression field of that object to the value returned by parsing everything between the
freeze keyword and the next semicolon.

After being scanned and parsed by the Spec# compiler, an input file next goes through a
number of different visitor classes. For the new freeze keyword, we therefore have to add a new
VisitFreeze method to all these classes. Most of those implementations are straight forward, and
we mention here only the two, where actually something interesting happens.

The first is in class Checker, where the compiler verifies that the Freeze object has an expression
associated with it, and that this expression is a valid object reference:

3.2 Freeze Keyword and IsFrozen Check 23

public override Statement VisitFreeze(Freeze Freeze) {
if (Freeze == null) return null;
if (Freeze.Expression == null || (Freeze.Expression.Type != null &&

Freeze.Expression.Type.IsAbstract))
this.HandleError(Freeze, Error.ObjectRequiredForFreeze);

Freeze.Expression = this.VisitExpression(Freeze.Expression);
return Freeze;

}

With these checks, the following two illegal uses of freeze get detected, and an error is thrown in
both cases. The freeze keyword in Foo has no expression following it, and the expression following
freeze in Bar is a type name and not an object reference as is expected:

public class Test {
public void Foo() {

freeze;
}

public void Bar() {
freeze Test;

}
}

The second interesting VisitFreeze method is the one in class Normalizer, where the freeze
statement is turned into a method call, which is responsible for the actual freezing of the associated
object reference:

public override Statement VisitFreeze(Freeze Freeze) {
Method freezeMethod = this.GetTypeView(SystemTypes.FreezeHelpers).GetMethod(

Identifier.For(”Freeze”), SystemTypes.Object);
Freeze.Expression = this.VisitExpression(Freeze.Expression);
MethodCall mc = new MethodCall(new MemberBinding(null, freezeMethod),

new ExpressionList(Freeze.Expression), NodeType.Call,
SystemTypes.Void, Freeze.SourceContext);

Freeze.Expression = mc;
return Freeze;

}

First, method Freeze of class FreezeHelpers is assigned to a new Method object freezeMethod.
Then a new MethodCall object mc is created, which calls the freezeMethod with the value of the
Freeze.Expression field as a parameter and void as return value. This MethodCall object is then
assigned as new value of the Freeze.Expression field, meaning that the field now does not contain
the object reference to the object we want to freeze anymore, but instead a call to the method
responsible for the freezing with the object reference as a parameter to it.

The above mentioned new FreezeHelpers class contains only two static methods. The first is
responsible for freezing the provided object, while the second returns a boolean value, indicating
whether the given object is frozen:

public class FreezeHelpers {
/// As seen by the static program verifier: Requires that subject initially

/// has no owner, and sets the owner of subject to ($freezerRef, $Freezer).
/// Dynamically, this method is a no-op.

public static void Freeze([NotNull] [Delayed] object subject) { }

24 3 Extending Spec#

/// As seen by the static program verifier: returns true iff subject

/// is owned by ($freezerRef, $Freezer).
/// Dynamically, this method always returns true.

[Pure] [Reads(ReadsAttribute.Reads.Everything)]
public static bool IsFrozen([Delayed] object subject) { return true; }

}

However, both of those methods have no implementation (the second simply returns true).
Hence, on normal execution of a program, they do nothing at all, because ownership and, therefore,
also freezing of objects is only relevant, when trying to prove properties of a program with the
static program verifier Boogie, but not when simply executing the program. We explain in Chapter
5, how Boogie takes those method calls and replaces them by an actual implementation while
translating a program into BoogiePL.

The IsFrozen method may be used in assertions to verify whether a given object is frozen at
any point in the program:

assert FreezeHelpers.IsFrozen(obj);

It may also be used in invariants, pre- and postconditions, but the [Frozen] modifier we intro-
duce in the next section is much better suited for that purpose.

3.3 [Frozen] Modifier

To define which fields of an object should be frozen, we introduce a [Frozen] modifier with which
a field can be specified as follows:

[Frozen] TempMeasurement temp;

This [Frozen] modifier replaces the frozen keyword from the original paper [7], because [Frozen]
is very similar to the [Peer] and [Rep] modifiers, as all three say something about the owner of the
field they are attached to. In order to keep a certain consistency, we therefore decided to make
[Frozen] a modifier as well and not a keyword.

A field that is declared with this [Frozen] modifier can be either null or contain a reference to
a frozen object. But it is not allowed to contain a reference to an object that is not frozen. In
order to guarantee that this condition always holds, whenever an assignment to a field declared
[Frozen] takes place, it is checked whether the object that gets assigned to the field is already
frozen. If it is not, then the object gets frozen during the assignment. This constitutes a case of
implicitly freezing an object, compared to the explicit freezing with the freeze keyword, where the
programmer has to type in an extra statement in order to freeze an object.

This implicit freezing allows us to simplify the AddWind method of the WeatherReport class
that we have seen before:

public class WeatherReport {
[Frozen] private WindMeasurement wind;

public void AddWind([Captured] WindMeasurement! wm)
modifies this.wind;

{
// not needed: freeze wm;

wind = wm;
}

}

It is not necessary in this case to explicitly call ’freeze wm’ before assigning wm to the frozen
field wind, because the freezing of the object takes place implicitly during the assignment. If we

3.3 [Frozen] Modifier 25

explicitly freeze the object first, then it is detected during the assignment that the object is already
frozen and, thus, nothing has to be done anymore.

The [Frozen] modifier may not only be used on fields, but also to declare a parameter or return
value of a method as frozen. The method AddTemp of class WeatherReport uses the [Frozen]
modifier before parameter tm to ensure that only frozen objects are passed to the method. We
could also add a method GetTemp to the class that returns the temp field. To guarantee that this
method always returns a frozen object, we define the return value as frozen:

public class WeatherReport {
[Frozen] private TempMeasurement temp;

public void AddTemp([Frozen] TempMeasurement! tm)
modifies this.temp;

{ temp = tm; }

[return: Frozen]
public TempMeasurement GetTemp() {

return temp;
}

}

The [Frozen] modifier has been defined as a subclass of Attribute same as modifiers [Peer] and
[Rep]. The [AttributeUsage] modifier is used to define that [Frozen] is only allowed before a field,
a method parameter, or a return value:

[AttributeUsage(AttributeTargets.Field | AttributeTargets.Parameter |
AttributeTargets.ReturnValue, AllowMultiple = false, Inherited = false)]

public sealed class FrozenAttribute : Attribute { }

We added some additional checks to the Spec# compiler. It is not allowed to declare a field
with the [Peer] or [Rep] modifier in addition to [Frozen], as that would require the field to have
two different owners at the same time. A field, parameter, or return value of a value type may
also not be declared as [Frozen].

A method parameter with the [Inside] modifier, which requires this parameter to already have
been exposed by the caller of the method, may not additionally be specified as [Frozen], because
an object cannot be frozen and exposed at the same time. Neither can a parameter be declared
as [Captured] and [Frozen] at the same time, because the first would require the object to be
unowned and the second that the object is transitively owned by the Freezer.

For virtual methods with a return value declared [Frozen], we have to make sure that all
methods overriding it also have this same modifier. We expect to get a frozen object back, if we
call this virtual method. But if the object at runtime is actually of a subtype, and a method
overriding this virtual method without specifying the return value as [Frozen] is called, the object
we get back would not necessarily be frozen.

With the new frozen objects methodology, we allow fields of frozen objects to be mentioned
in invariants. Hence, we have to modify the implementation in a way that no compiler error is
thrown on access of a frozen object’s field in an invariant of any other object.

If we declare an array with the [Frozen] modifier, then it is only ensured that the references to
the array elements stay the same, i.e. we cannot add or remove any elements from such an array.
But the array elements themselves are still mutable. This is similar to non-peer, non-rep fields of a
frozen object. To which object such a field refers to cannot be modified, but the object’s state can
still be altered, because it is not owned transitively by the Freezer. Arrays also do not own their
elements and that is why the elements of an array are still mutable, even if the array is declared
as frozen.

26 3 Extending Spec#

3.4 [ElementsFrozen] Modifier

We introduce an [ElementsFrozen] modifier (similar to the already existing [ElementsPeer] and
[ElementsRep] modifiers) for declaring the elements of an array as frozen. This modifier has no
equivalent in the paper introducing the frozen objects methodology [7], as arrays have not been
part of the simplified language used there.

Array fields may be specified with this [ElementsFrozen] modifier, guaranteeing that all objects
contained in the array are either null or frozen. This is independent from the fact whether the
array itself is frozen. Therefore, we can define three different types of immutability on arrays:

[Frozen] object[] a1;
[ElementsFrozen] object[] a2;
[Frozen] [ElementsFrozen] object[] a3;

The array a1 is frozen and, hence, no elements can be added or removed from it, but the
elements themselves are still mutable. Array a2 is the exact opposite, because its elements are
declared as frozen, but we can still add elements to or remove them from the array, as long as the
added elements are frozen (or can implicitly be frozen during the assignment). Array a3 combines
both by being frozen and also having only frozen elements.

In addition, the [ElementsFrozen] modifier may also be used in combination with generic types,
where we can declare one or all type parameters as frozen. If we, for example, have a class Dictio-
nary with two generic type parameters, there are the following options for using the [Elements-
Frozen] modifier:

[ElementsFrozen(0)] Dictionary<Foo, Bar> d1;
[ElementsFrozen(1)] Dictionary<Foo, Bar> d2;
[ElementsFrozen] Dictionary<Foo, Bar> d3;

In the first example, the [ElementsFrozen(0)] modifier declares the first type parameter of d1
as frozen, meaning that wherever this parameter is used in class Dictionary, not only an object
of type Foo is expected, but more specifically a frozen object of this type. For object d2 the
second type parameter is declared as frozen, while no specific type parameter is targeted by the
[ElementsFrozen] modifier of d3, meaning that both are specified as frozen.

We may additionally add the [Frozen] modifier to each of the Dictionary objects, as seen with
the array example above, thus even further increasing the various options of declaring parts of
objects as frozen, while leaving other parts potentially mutable.

The [ElementsFrozen] modifier has been implemented as a subclass of AttributeWithContext.
Fields, parameters, and return values can be declared with this modifier, same as for [Frozen]:

[AttributeUsage(AttributeTargets.Field | AttributeTargets.Parameter |
AttributeTargets.ReturnValue, AllowMultiple = true, Inherited = false)]

public sealed class ElementsFrozenAttribute : AttributeWithContext {
public int Value;
public ElementsFrozenAttribute() { this.Value = -1; }
public ElementsFrozenAttribute(int value) { this.Value = value; }

}

In contrast to [Frozen], the [ElementsFrozen] modifier can be used multiple times before a
declaration. For example, if we have a field with three generic type parameters, and we want to
declare the first two of them as frozen, we need to add two [ElementsFrozen] modifiers before the
field declaration:

[ElementsFrozen(0)] [ElementsFrozen(1)] Foo<S, T, U> foo;

As with [Frozen], if we assign an object to a field with some or all elements declared as
[ElementsFrozen], then the freezing of those elements takes place implicitly, if they are not already

3.5 [ElementsCaptured] Modifier 27

frozen. The problem of how to allow a method to modify the owner of an object’s elements is
addressed in the next section.

We added some additional checks to detect wrong usage of the new modifier already on compile
time. [ElementsFrozen] may only be attached to fields, parameters, and return values, if the type
is an array or a subtype of IEnumerable or an IEnumerable-like type. We also have to check that
a method overriding another method with a return value specified as [ElementsFrozen] keeps this
definition for the same reason as with [Frozen].

3.5 [ElementsCaptured] Modifier

The [Captured] modifier in Spec# requires a parameter specified with it to be unowned. Inside the
method, it is then allowed to assign an owner to such a parameter. We have seen earlier that if we
want to freeze an object provided as method parameter or assign this parameter to a frozen field,
we have to declare the parameter as [Captured], because freezing is just another way of assigning
an owner to an object.

However, the [Captured] modifier does not allow us to modify the owner of an object’s elements.
This leads to the problem of not being able to assign a method parameter to a field declared with
the [ElementsFrozen] modifier, unless the corresponding elements of the object are already frozen
when calling the method. But if we want to modify an object’s elements in a method before
assigning the object to the field specified as [ElementsFrozen], we need a possibility of allowing a
method to modify the owners of an object’s elements.

For this purpose, we introduce the [ElementsCaptured] modifier. This modifier requires the
targeted elements of an object to be unowned and allows the owner of those elements to be modified
inside a method. As with the [ElementsFrozen] modifier, [ElementsCaptured] may target all the
elements of an array or a generic type, or it may only declare one or more specific type parameters
as capturable.

public class Foo {
[Peer] [ElementsFrozen] Foo[] fa;
[ElementsFrozen(0)] Dictionary<object, string> dic;

public void Bar1([Captured] [ElementsCaptured] Foo[]! fa) {
this.fa = fa;

}

public void Bar2([ElementsCaptured(0)] Dictionary<object, string>! dic) {
this.dic = dic;

}
}

In the above example, we show how to use the [ElementsCaptured] modifier. Method Bar1
assigns an array object of type Foo to the field fa that is declared as [Peer] and [ElementsFrozen].
When assigning the method parameter to fa, an owner is not only assigned to the array but also
to its elements. Therefore, we need to specify the method parameter as [Captured] as well as
[ElementsCaptured].

Method Bar2 takes an object of the generic type Dictionary as a parameter and assigns it
to the field dic whose first type parameter is declared as frozen. We therefore need to attach
a corresponding [ElementsCaptured(0)] modifier to the method parameter in order to allow the
assignment to field dic. Usually, just using the [ElementsCaptured] modifier without an attached
value would also be an option, but not in this specific case where the second type parameter
is of type string. Strings are of an immutable type, implying that with the new frozen objects
methodology, all strings are frozen (see Chapter 6.4). Hence, strings can never be unowned as
would be required by using the [ElementsCaptured] modifier without an attached value and, thus,
targeting both type parameters.

28 3 Extending Spec#

The definition of this modifier is similar to the one for [ElementsFrozen], in that it can be
defined with or without an integer value. [ElementsCaptured] may not only be applied to method
parameters but also to methods and constructors, in which case the target of the modifier is the
receiver object.

As with [ElementsFrozen], the compiler checks that only arrays or subtypes of IEnumerable
or an IEnumerable-like type can be specified as [ElementsCaptured]. We additionally have to
ensure that every method overriding a virtual method declared as [ElementsCaptured] also has
this modifier attached to it.

Chapter 4

Axiomatization of Frozen Objects

In this chapter, we explain our formalization of the frozen objects methodology. We add this
axiomatization to the Prelude file that contains the background theory of Spec#. In Chapter
5, we then explain how Boogie uses this axiomatization to verify programs that include frozen
objects.

4.1 Freezer

We introduce a Freezer object that exists only in the context of the BoogiePL language without a
counterpart in the Spec# code. We represent this Freezer with two new constants as opposed to
only one in the formal encoding of frozen objects in the original paper [7]. The reason for using
two constants, is that an owner in Spec# is defined by an (object, class frame) tuple.

The first constant we introduce is of type TName, which stands for a type declaration, and
defines the type $Freezer. The second constant is of type ref and defines an object reference:

const unique $Freezer : TName;

const unique $freezerRef : ref;

That the $freezerRef object reference is of type $Freezer can be encoded with the following
simple axiom:

axiom $typeof($freezerRef) == $Freezer;

However, this axiom is not really needed in order for the axiomatization to be sound. It may
therefore also be omitted, because it just serves the purpose of explaining the connection between
the two constants.

4.2 Freezing an Object

Whenever an object - whether explicitly through the freeze keyword or implicitly during an assign-
ment - has to be frozen, the procedure $UpdateOwnersForFrozen is called to take care of assigning
the Freezer as the owner of the provided object:

procedure $UpdateOwnersForFrozen(x: ref);
modifies $Heap;
ensures (∀<alpha> p: ref, F: Field alpha • (F 6= $ownerRef ∧ F 6= $ownerFrame ∧
F 6= $FirstConsistentOwner) ∨ old($Heap[p, $ownerRef] 6= $Heap[x, $ownerRef] ∨
$Heap[p, $ownerFrame] 6= $Heap[x, $ownerFrame]) ⇒
old($Heap[p, F]) == $Heap[p, F]);

ensures x == null ⇒ $Heap == old($Heap);

29

30 4 Axiomatization of Frozen Objects

ensures x 6= null ⇒ (∀ p: ref • old($Heap[p, $ownerRef] == $Heap[x, $ownerRef]
∧ $Heap[p, $ownerFrame] == $Heap[x, $ownerFrame]) ⇒
$Heap[p, $ownerRef] == $freezerRef ∧ $Heap[p, $ownerFrame] == $Freezer);

free ensures $HeapSucc(old($Heap), $Heap);

This procedure is similar to procedures $UpdateOwnersForPeer and $UpdateOwnersForRep
which are already in Prelude and assign the correct owner to an object specified as [Peer] or [Rep].

$UpdateOwnersForFrozen takes an object reference as input and, if it is null, ensures through
the second postcondition that all objects remain unaltered. If the provided object is not null, the
third postcondition ensures that the $ownerRef of the object and all its peers is set to $freezerRef
and the $ownerFrame of all those objects is set to the type $Freezer.

The reason why we also need to freeze all peers, is that they always need to have the same
owner. But if such a peer group already has an owner, then we cannot freeze any of its objects
anymore. The only way how a group of objects may be frozen together, is when they are in a
special peer group with an owner tuple (x, $PeerGroupPlaceholder), where x is a representative
object of the peer group. If we have such a peer group of unowned objects, then we guarantee that
if one of those objects gets frozen with the $UpdateOwnersForFrozen procedure, all the others get
frozen as well.

What the first postcondition expresses, is that all other objects apart from the $ownerRef and
$ownerFrame fields of the target object and its peers remain unchanged. Without this postcon-
dition, a prover could not be sure whether any other object has been modified by the procedure
and, therefore, could not assert certain facts anymore after a call to $UpdateOwnersForFrozen.

The last postcondition is a free one, meaning that a prover can just assume it to hold and does
not have to assert it. It just states that the heap at the end of the procedure is a successor of
the heap at the beginning of it. Each procedure has such a free postcondition and we explain in
Chapter 4.6 for what it is used.

4.3 Frozen Objects

To determine whether an object is frozen, we add a function IsFrozen that takes an object reference
and a heap as inputs and returns a boolean value, indicating if the given object is frozen in this
heap:

function IsFrozen(o: ref, h: HeapType) returns (bool);

We also add a new boolean ghost field called $frozen to the axiomatization and state in a
simple axiom that whenever the IsFrozen function holds for an object, the $frozen field of this
object is set to true and vice versa:

const unique $frozen : Field bool;

axiom (∀ h: HeapType, o: ref • IsHeap(h) ∧ IsFrozen(o, h) ⇔ h[o, $frozen]);

This additional field often makes it easier for a prover to determine whether an object is frozen,
because it is difficult for the prover to assert that the return value of the IsFrozen function has not
changed after some assignment statements in a method. With this new $frozen field, however, it
is clear to a prover that as long as this field is not modified, an object that has been frozen before
an assignment statement is still frozen after this statement. As access to a field of an object is
faster than evaluating a function, we use the $frozen field instead of the IsFrozen function in the
antecedents of the following axioms.

Writing an axiom directly stating that every object transitively owned by the Freezer is frozen
results in bad performance for program verification, because automatic theorem provers perform
poorly on transitive closure [7]. The following two axioms encode this transitive closure in a
slightly different way, resembling the concept of mathematical induction:

4.4 Frozen Fields 31

axiom (∀ h: HeapType • IsHeap(h) ⇒ IsFrozen($freezerRef, h));

axiom (∀ h: HeapType, o: ref • IsHeap(h) ∧ o 6= null ∧
h[h[o, $ownerRef], $frozen] ⇒ IsFrozen(o, h));

The first axiom says that for all heaps, the $freezerRef object reference is frozen. The second
axiom states that if the owner of an object is frozen, then the object is frozen itself. Hence, by
taking both those axioms into account, one can infer for every object transitively owned by the
Freezer that it is frozen.

In particular, these two axioms allow a prover to assert the fact that an object referred to by
a [Rep] field of a frozen object is also frozen. It is also clear that the same should hold for a [Peer]
field, as the two peers share the same owner and are therefore either both frozen or mutable. But
this cannot be inferred solely by the two axioms above, because it has to be assumed that there
might be other ways, how an object could be declared as frozen. We could rewrite the second
axiom to go both ways, i.e. also expressing the fact that if an object is frozen, so is its owner. But
we realized that such a change results in poor performance for the verification of many programs.
Instead, we add the following axiom:

axiom (∀ h: HeapType, o: ref, p: ref • IsHeap(h) ∧ h[o, $frozen] ∧
p 6= null ∧ h[p, $ownerRef] == h[o, $ownerRef] ∧
h[p, $ownerFrame] == h[o, $ownerFrame] ⇒ IsFrozen(p, h));

This axiom simply states that if an object is frozen, so are all other objects with the same
(object, class frame) tuple as owner, making it easy for a prover to infer that a [Peer] field of a
frozen object is also frozen.

4.4 Frozen Fields

To encode that certain fields of an object are declared as [Frozen] or [ElementsFrozen], we introduce
the following two functions:

function AsFrozenField(f: Field ref) returns (theField: Field ref);

function AsElementsFrozenField(f: Field ref, position: int) returns
(theField: Field ref);

The first function takes a field reference as argument and returns the same field again, if it
has been specified with the [Frozen] modifier, or null otherwise. The second function takes a field
reference and an integer as arguments and returns the same field again, if it has been declared with
the [ElementsFrozen] modifier for the given position, or null otherwise. The position attribute is
-1 for arrays, which has the effect that all elements in the array are frozen. For generic types, the
corresponding position of the type parameter (starting with 0) is used to declare all occurrences
of this parameter as frozen.

Both of the above functions are analogous to the functions AsPeerField, AsRepField, AsEle-
mentsPeerField, and AsElementsRepField in order to maintain a certain consistency in the encod-
ing, and because they serve an almost identical purpose.

The functions AsFrozenField and AsElementsFrozenField return null, whenever no axiom is
saying otherwise. Hence, for each field declared as [Frozen] or [ElementsFrozen] corresponding
axioms have to be added. For example, for those four objects:

[Frozen] object[] a1;
[ElementsFrozen] object[] a2;
[Frozen] [ElementsFrozen] object[] a3;
[ElementsFrozen] Dictionary<Foo, Bar> d;

32 4 Axiomatization of Frozen Objects

the following axioms are added automatically to the BoogiePL code, when Boogie translates a
Spec# source file with the above field declarations in it:

axiom AsFrozenField(a1) == a1;
axiom AsFrozenField(a3) == a3;
axiom AsElementsFrozenField(a2, -1) == a2;
axiom AsElementsFrozenField(a3, -1) == a3;
axiom AsElementsFrozenField(d, 0) == d;
axiom AsElementsFrozenField(d, 1) == d;

The first two axioms state that arrays a1 and a3 are frozen. The next two axioms encode that
the elements of arrays a2 and a3 are frozen, and the last two axioms declare the two generic type
parameters of d as frozen.

We now need two more axioms encoding that all objects for which the above functions do not
return null are frozen. Hence, the first axiom states that a field declared as [Frozen] is indeed
frozen, and the second that all the elements of an array or all occurrences of a type parameter
specified as [ElementsFrozen] are frozen:

axiom (∀ h: HeapType, o: ref, f: Field ref • (IsHeap(h) ∧
h[o, AsFrozenField(f)] 6= null) ⇒ IsFrozen(h[o, AsFrozenField(f)], h));

axiom (∀ h: HeapType, o: ref, f: Field ref, i: int •
IsHeap(h) ∧ h[o, AsElementsFrozenField(f, i)] 6= null ⇒
IsFrozen($ElementProxy(h[o, AsElementsFrozenField(f, i)], i), h));

In the second axiom, we use an object called $ElementProxy that represents all the elements
of an array or all the occurrences of a type parameter in a generic class respectively. Thus, if for a
field f at position i the AsElementsFrozenField function does not return null, the axiom just has
to ensure that the $ElementProxy object of field f is frozen at position i.

4.5 Peer Validity

A frozen object is always peer valid, because it can never be exposed, and its peers are also frozen
and, hence, unexposable. We express this in the following axiom:

axiom (∀ h: HeapType, o: ref • IsHeap(h) ∧ h[o, $frozen] ⇒
(∀ p: ref • p 6= null ∧ h[p, $allocated] ∧
h[p, $ownerRef] == h[o, $ownerRef] ∧ h[p, $ownerFrame] == h[o, $ownerFrame]
⇒ h[p, $inv] == $typeof(p) ∧ h[p, $localinv] == $typeof(p)));

Without this axiom, it would not be possible to call a pure method on a frozen object or to
pass a frozen object as parameter to a pure method. However, this should both be allowed, as
pure methods ensure that they do not modify their receiver and parameters and, therefore, cannot
violate the immutability of frozen objects.

4.6 Forever Frozen

Leino, Müller, and Wallenburg have suggested the following axiom in their paper [7], stating that
if an object is frozen in a certain heap, then this object is still frozen in each successor heap, in
order to encode that an object that has once been frozen stays frozen forever:

axiom (∀ oldHeap: HeapType, newHeap: HeapType, o: ref •
$HeapSucc(oldHeap, newHeap) ∧ oldHeap[o, $frozen] ⇒ IsFrozen(o, newHeap));

4.7 Immutability of Fields 33

The above axiom only works properly, if it is clearly defined that each heap occurring in a
Boogie program is a successor of all the heaps before it. Thus, every procedure has to ensure
that the heap at the end of the procedure is a successor of the heap at the beginning of it.
This explains why we had to add the free postcondition ’$HeapSucc(old($Heap), $Heap)’ to the
procedure $UpdateOwnersForFrozen.

This axiom is, however, not necessarily needed in Spec#, because in contrast to the simplified
language from the original paper, Spec# does not allow ownership transfer. Hence, an object
transitively owned by the Freezer is forever transitively owned by it. And even if ownership transfer
were allowed, being frozen still ensures that no fields of an object can be modified, including the
owner field of the object.

Despite this already given double security that a frozen object always stays frozen, we decided
to still add the above axiom, because a prover only acts in very simple steps. If some assertion
cannot be verified by the prover, then it just assumes that this assertion does not hold. With this
axiom, we provide a simple way of keeping track of frozen objects by saying that if an object has
been proven as frozen once, this assumption holds in all following heaps of the program execution.

Another reason is the performance, because even though a prover could in most cases come to
the same conclusions without the help of the above axiom, it would often just take much longer
to do so.

4.7 Immutability of Fields

Fields of frozen objects are not allowed to be modified. Hence, if a field of an object contains a
reference to x at the time this object gets frozen, a prover should be able to assert anywhere later
in the program execution that this field still holds the same reference to x. For that purpose, we
follow the suggestion of Leino, Müller, and Wallenburg [7] and add a function called UltimateValue:

function UltimateValue<alpha>(o: ref, f: Field alpha) returns (alpha);

This function takes an object and a field of any reference or value type as inputs. The following
axiom then states that for every frozen object, the value of all its fields can be determined solely
through the return value of UltimateValue, i.e. only by looking at the object and the field, but
not the heap:

axiom (∀<alpha> h: HeapType, o: ref, f: Field alpha • IsHeap(h) ∧ h[o, $frozen]
∧ f 6= $frozen ∧ f 6= $ownerRef ∧ f 6= $ownerFrame ∧ ... ⇒
h[o, f] == UltimateValue(o, f));

This means that no matter what the current heap is and, hence, no matter where in the
program we are, the fields of a frozen object are always determined by the exact same function
call. Therefore, the values of those fields stay the same forever, as a function can never return
different values for the same input arguments. Or put differently: fields of a frozen object are
determined independently from the heap.

We have to exclude some fields from this axiom that are internal to this axiomatization of
the Spec# language. For clarity, we have only mentioned $frozen, $ownerRef, and $ownerFrame
here. Not excluding these fields results in contradictions with the rest of the axiomatization, and
a prover could then verify, for example, an expression like ’assert false’.

4.8 Triggers

To decrease the time a prover takes to verify programs, we may add triggers to the axioms, which
give hints to the prover, with which values the axiom should be instantiated. For clarity, we
have omitted these triggers in the axioms presented so far. Many of them are only important to
improve the performance of static verification, but some are also crucial for the correctness of the

34 4 Axiomatization of Frozen Objects

verification results, as a prover would sometimes not instantiate the axioms with the necessary
values without these triggers and, therefore, not come to the correct conclusions.

Most triggers are straight forward and just repeat one or more expressions that occur in the
axiom. As an example, we repeat here the axiom from the previous section, but this time including
the triggers:

axiom (∀<alpha> h: HeapType, o: ref, f: Field alpha • { h[o, f] } { IsHeap(h),
UltimateValue(o, f) } IsHeap(h) ∧ h[o, $frozen] ∧ f 6= $frozen ∧
f 6= $ownerRef ∧ f 6= $ownerFrame ∧ ... ⇒ h[o, f] == UltimateValue(o, f));

These two triggers simply tell a prover to only instantiate the axiom with those heaps, objects,
and fields that are connected through the expression ’h[o, f]’ or ’UltimateValue(o, f)’. We have
to include the ’IsHeap(h)’ expression in the second trigger, because each bound variable has to
be mentioned in every trigger. Adding these triggers can reduce the work a prover has to do
significantly.

Finding the best triggers for all axioms has not been easy, and there is also not one best solution.
Sometimes adding a trigger can reduce the time Boogie takes to verify some test cases, while other
test cases suddenly take much longer, or they cannot even be correctly verified anymore.

The triggers we have chosen are therefore a compromise, primarily ensuring the correctness
of the verification results and secondarily trying to improve the average verification time for test
cases as best as possible.

4.9 Prelude Class

The class Prelude provides the connection between the Prelude file and the Boogie source code.
String constants are declared in this class for those functions and constants defined in the Prelude
file that have to be accessed or called from the Boogie source code.

In order to use our new frozen objects axiomatization in Boogie, we therefore add four new
string constants to the class. The string values have to match the names of the procedure and
functions as defined in the Prelude file:

public const string! IsFrozen = ”IsFrozen”;
public const string! UpdateOwnersForFrozenProcName = ”$UpdateOwnersForFrozen”;
public const string! AsFrozenField = ”AsFrozenField”;
public const string! AsElementsFrozenField = ”AsElementsFrozenField”;

In the next chapter, we show how those string constants enable us to call this procedure and
these functions from the source code of Boogie, helping us to translate Spec# programs using
frozen objects into BoogiePL.

Chapter 5

Translation into BoogiePL

Boogie can be invoked either directly with a BoogiePL program or we can invoke the SscBoogie
program with a compiled Spec# file. SscBoogie first translates the process (.exe) or library (.dll)
assemblies into BoogiePL, before verification conditions can be generated.

In this chapter, we look at how the Spec# extensions for frozen objects are translated into
BoogiePL. These translations may use the procedure and functions introduced in the previous
chapter, as the content of Prelude is added to each BoogiePL program that has been generated
from a Spec# source.

5.1 Freeze Keyword

As we have seen in Chapter 3.2, the Spec# compiler translates each occurrence of the freeze
keyword into a method call to the static method FreezeHelpers.Freeze. On runtime, this method
does nothing, but it should freeze the provided object during verification.

In method HandleSpecialCaseMethods of class InstructionTranslator, we therefore replace each
call to method FreezeHelpers.Freeze with an implementation that takes care of freezing the pro-
vided object:

case ”Microsoft.Contracts.FreezeHelpers.Freeze(
optional(Microsoft.Contracts.NonNullType) System.Object)”:

{
sink.Comment(statement, ”FreezeHelpers.Freeze”);
assert arguments.Count == 1;

// get the object reference provided as argument to the method

Bpl.Expr! subject = TranslateLocal((Cci.Variable!)arguments[0],
statement, Role.Use);

// assert subject.$ownerFrame == $PeerGroupPlaceholder;
Bpl.Expr cond = om.HasNoOwner(subject, sink.HeapExpr());
currentBlock.Cmds.Add(Sink.Assert(cond, statement,

”freezing the subject requires it to be unowned”));

// assert IsPeerConsistent(subject);

cond = om.IsPeerConsistent(subject, false);
currentBlock.Cmds.Add(Sink.Assert(cond, statement,

”the subject must be peer consistent in order to be frozen”));

// call $UpdateOwnersForFrozen(subject);
Bpl.Cmd c = new Bpl.CallCmd(NoToken, Prelude.UpdateOwnersForFrozenProcName,

35

36 5 Translation into BoogiePL

new ExprSeq(subject), new IdentifierExprSeq());
this.currentBlock.Cmds.Add(c);

return true;
}

We start by translating the provided object reference into an expression we call subject. Then
we ensure that subject is not owned already by looking at its owner frame. We check that it
still contains the value $PeerGroupPlaceholder, meaning that no owner has been assigned to sub-
ject yet. We also need to ensure that subject is peer consistent, i.e. neither subject nor any
of its peers may be exposed at the time the freezing takes place. Finally, we call the $Up-
dateOwnersForFrozen procedure from the Prelude file on subject by using the string constant
Prelude.UpdateOwnersForFrozenProcName that we defined in Chapter 4.9. This procedure call
then takes care of assigning ($freezerRef, $Freezer) to ($ownerRef, $ownerFrame) of subject as
explained in Chapter 4.2.

In BoogiePL code, the translation of a statement ’freeze obj’ therefore consists of two assertions,
ensuring that the object is allowed to be frozen, and a procedure call that takes care of the freezing:

assert $Heap[obj, $ownerFrame] == $PeerGroupPlaceholder;
assert (∀ $pc: ref • $pc 6= null ∧ $Heap[$pc, $allocated] ∧

$Heap[$pc, $ownerRef] == $Heap[obj, $ownerRef] ∧
$Heap[$pc, $ownerFrame] == $Heap[obj, $ownerFrame] ⇒
$Heap[$pc, $inv] == $typeof($pc) ∧ $Heap[$pc, $localinv] == $typeof($pc));

call $UpdateOwnersForFrozen(obj);

5.2 IsFrozen Check

Every call to method FreezeHelpers.IsFrozen, which at runtime always returns true, gets replaced
during the translation into BoogiePL by the following implementation given in method Translate-
Call of class ExpressionTranslator :

case ”Microsoft.Contracts.FreezeHelpers.IsFrozen$System.Object”:
{

assert operands.Count == 1;

// get the object reference provided as argument to the method

Bpl.Expr! subject = TranslateExpression((!) operands[0], heapName);

// assert $IsFrozen(arg0, $Heap);
return sink.IsFrozen(subject);

}

We first translate the provided object reference into an expression called subject. Then we
call the helper method IsFrozen with subject as parameter, which takes care of calling the corre-
sponding IsFrozen function in the Prelude file. During verification, FreezeHelpers.IsFrozen thus
not always returns true anymore, only when the provided object is frozen. The translation into
BoogiePL of the following Spec# code:

assert FreezeHelpers.IsFrozen(obj);

looks therefore simply like that:

assert IsFrozen(obj, $Heap);

where IsFrozen in the BoogiePL code does not refer to the method in class FreezeHelpers, but to
the function of the same name defined in the Prelude file.

5.3 [Frozen] Modifier 37

5.3 [Frozen] Modifier

For every field declared as [Frozen], we have to emit an axiom encoding, in terms of the axioma-
tization introduced in Chapter 4, that the object referred to by this field is frozen:

if (field.IsFrozen) {
// for frozen fields, emit: axiom AsFrozenField(f) = f

Bpl.Expr! ax = Bpl.Expr.Eq(Function(Sink.BuiltinFunction.AsFrozenField,
Sink.IdentWithClean(fieldConst)), Sink.IdentWithClean(fieldConst));

this.earlyDeclarations.Add(new Bpl.Axiom(NoToken, ax));
}

When we assign an object to a frozen field, then it is checked whether this object is either
already frozen or valid to be frozen, before the assignment takes place. In method VisitStoreField
of class InstructionTranslator we take care of this:

if (field.IsFrozen) {
// assert source == null ∨ IsFrozen(source) ∨
// source.$ownerFrame == $PeerGroupPlaceholder;
Bpl.Expr previousOwner = Bpl.Expr.Or(sink.IsFrozen(source),

om.HasNoOwner(source, sink.HeapExpr()));
if (!Sink.IsNonNullType(field.Type))
previousOwner = Bpl.Expr.Or(Bpl.Expr.Eq(source, sink.Null), previousOwner);

this.currentBlock.Cmds.Add(Sink.Assert(previousOwner, statement,
”illegal assignment to frozen field, RHS may already be owned”));

// assert source 6= null ∨ source.$ownerFrame == $PeerGroupPlaceholder ⇒
// IsPeerValid(source);

Bpl.Expr ownerChanges = om.HasNoOwner(source, sink.HeapExpr());
if (!Sink.IsNonNullType(field.Type))
ownerChanges = Bpl.Expr.And(Bpl.Expr.Neq(source, sink.Null), ownerChanges);

Bpl.Expr cond = Bpl.Expr.Imp(ownerChanges, om.IsPeerValid(source));
this.currentBlock.Cmds.Add(

Sink.Assert(cond, statement, ”RHS and its peers must all be valid”));

// call $UpdateOwnersForFrozen(source);
Bpl.Cmd c = new Bpl.CallCmd(NoToken, Prelude.UpdateOwnersForFrozenProcName,

new ExprSeq(source), new IdentifierExprSeq());
this.currentBlock.Cmds.Add(c);

}

The variable source holds the object we want to assign to the frozen field. First, we assert that
source is either null, already frozen, or unowned. Then we assert that if the object is unowned, it
has to be peer valid, because we are not allowed to freeze a currently exposed object. Finally, we
call the $UpdateOwnersForFrozen procedure no matter whether we have null, a frozen object, or
an unowned object as source. In the first two cases, the procedure ensures that nothing is changed,
while in case of source being unowned, the procedure takes care of freezing the object.

A [Frozen] modifier attached to a method parameter or return value gets translated into a pre-
or postcondition, stating that if the corresponding object is not null, it has to be frozen on entry
or exit of the method respectively.

The following variation of the WeatherReport class exemplifies the three different uses of the
[Frozen] modifier, namely attached to a field, a parameter, and a return value:

public class WeatherReport {
[Frozen] private TempMeasurement temp;

38 5 Translation into BoogiePL

[return: Frozen]
public TempMeasurement AddAndReturnTemp([Frozen] TempMeasurement! tm)

modifies this.temp;
{
temp = tm;
return temp;

}
}

Translated into BoogiePL and reduced to the essential parts, mainly showing the code being
emitted for the three [Frozen] modifiers, the above example looks as follows:

const unique WeatherReport.temp: Field ref;

axiom AsFrozenField(WeatherReport.temp) == WeatherReport.temp;

procedure WeatherReport.AddAndReturnTemp$TempMeasurement(this: ref, tm: ref)
returns ($result: ref);

...
// tm is frozen
requires IsFrozen(tm, $Heap);
...
// return value is frozen
ensures $result == null ∨ IsFrozen($result, $Heap);
...

implementation WeatherReport.AddAndReturnTemp$TempMeasurement(this: ref, tm: ref)
returns ($result: ref)

{
...
assert tm == null ∨ IsFrozen(tm, $Heap) ∨

$Heap[tm, $ownerFrame] == $PeerGroupPlaceholder;
assert tm 6= null ∧ $Heap[tm, $ownerFrame] == $PeerGroupPlaceholder ⇒

(∀ $pc: ref • $pc 6= null ∧ $Heap[$pc, $allocated] ∧
$Heap[$pc, $ownerRef] == $Heap[tm, $ownerRef] ∧
$Heap[$pc, $ownerFrame] == $Heap[tm, $ownerFrame] ⇒
$Heap[$pc, $inv] == $typeof($pc) ∧ $Heap[$pc, $localinv] == $typeof($pc));

call $UpdateOwnersForFrozen(tm);
...
$Heap[this, WeatherReport.temp] := tm;
...
$result := $Heap[this, WeatherReport.temp];
return;

}

The field WeatherReport.temp is defined as a constant of type Field ref and declared as frozen
with the help of function AsFrozenField. Procedure AddAndReturnTemp has a precondition,
requiring that parameter tm has to be frozen. An additional check ’tm == null’ is not necessary,
because tm is declared as a non-null type. The procedure also has a postcondition, ensuring that
the result is either null or frozen.

In the implementation, we see that the two axioms and the call to $UpdateOwnersForFrozen
are placed before the actual assignment of tm to field WeatherReport.temp. This same field is
then assigned to variable $result, guaranteeing the return value to be frozen as expected by the
corresponding postcondition.

5.4 [ElementsFrozen] Modifier 39

5.4 [ElementsFrozen] Modifier

For fields declared with the [ElementsFrozen] modifier, we cannot just emit one axiom as with
[Frozen]. Because [ElementsFrozen] may apply only to some elements, we first have to retrieve all
element positions that should be frozen.

We can call the new static method FieldElementsFrozenPositions for that purpose, which takes
a field as input and returns a list of all element positions of this field that should be frozen:

public static List<int> FieldElementsFrozenPositions(Field f) {
List<int> res = new List<int>();

if (f == null) return res;

TypeNode type = TypeNode.DeepStripModifiers(f.Type);

// elements of an array of an immutable type are frozen

if (type is ArrayType) {
TypeNode t = ((ArrayType)type).ElementType;
if (!t.IsValueType && TypeNode.IsImmutable(t))
res.Add(-1);

}

// in a generic class type arguments of an immutable type are frozen

if (type.TemplateArguments != null) {
for (int i = 0; i < type.TemplateArguments.Count; i++) {
TypeNode t = TypeNode.StripModifiers(type.TemplateArguments[i]);
if (!t.IsValueType && TypeNode.IsImmutable(t))
res.Add(i);

}
}

// elements of fields marked with the [ElementsFrozen] modifier are frozen

AttributeList al = f.GetAllAttributes(SystemTypes.ElementsFrozenAttribute);
if (al == null) return res;
foreach (AttributeNode attr in al) {
ExpressionList exprs = attr.Expressions;
if (exprs == null || exprs.Count == 0) {

if (type is ArrayType) {
res.Add(-1);

} else if (type.IsGeneric || type.Template != null) {
TypeNodeList! tnl = (!)type.TemplateArguments;
for (int i = 0; i < tnl.Count; i++) {

if (tnl[i].IsReferenceType) res.Add(i);
}

}
} else {
Expression arg = exprs[0];
Literal lit = arg as Literal;
if (lit != null && lit.Value is int) res.Add((int)lit.Value);

}
}

return res;
}

40 5 Translation into BoogiePL

When the provided Field object f is not null, we first check whether the field is an array of
an immutable type. The elements of such an array are always frozen, and we therefore add -1 to
the list. Next, if the field is of a generic type, we look for type parameters of an immutable type
and add the respective positions to the list. Finally, we check for the [ElementsFrozen] modifier
and distinguish between a modifier with or without an associated value. If the modifier has no
value, then we add -1 to the list if we have an array or, in case of a generic type, add to the list
all positions of the type parameters, i.e. we would add {0,1,2} for a generic type with three type
parameters. If the modifier has a value associated with it, then we just add this value to the list
of frozen elements.

For each position returned by this method, we then emit an axiom using this position as
argument to the AsElementsFrozenField function:

foreach (int pos in (!)Util.FieldElementsFrozenPositions(field)) {
// for ElementsFrozen fields, emit: axiom AsElementsFrozenField(f, pos) = f

Bpl.Expr! ax = Bpl.Expr.Eq(Function(Sink.BuiltinFunction.AsElementsFrozenField,
Sink.IdentWithClean(fieldConst), Bpl.Expr.Literal(pos)),
Sink.IdentWithClean(fieldConst));

this.earlyDeclarations.Add(new Bpl.Axiom(NoToken, ax));
}

When we assign an object to a field specified as [ElementsFrozen], we once again retrieve all
element positions that should be frozen. For each position, we then assert that if the source object
is not null, the $ElementProxy object at the given position has to be either frozen or unowned.
After the assertion, we call $UpdateOwnersForFrozen with the element proxy at this position as
parameter.

Attached to a parameter or a return value, [ElementsFrozen] gets translated into one or more
pre- or postconditions, which require or ensure the specified elements to be either null or frozen.

The following example shows how to use the [ElementsFrozen] modifier in three different sce-
narios. As a modifier to the field dictionary, [ElementsFrozen] declares both type parameters of
type Foo as frozen. The method Bar requires both type parameters of dic to be frozen and ensures
that the first type parameter of the return value is frozen:

public class Foo {
[ElementsFrozen] Dictionary<Foo, Foo> dictionary;

[return: ElementsFrozen(0)]
public Dictionary<Foo, Foo> Bar([ElementsFrozen] Dictionary<Foo, Foo>! dic) {
dictionary = dic;
return dictionary;

}
}

The translation into BoogiePL, of those parts of this example that are directly related to any
of the three [ElementsFrozen] modifiers, is given below:

const unique Foo.dictionary: Field ref;

axiom AsElementsFrozenField(Foo.dictionary, 0) == Foo.dictionary;
axiom AsElementsFrozenField(Foo.dictionary, 1) == Foo.dictionary;

procedure Foo.Bar$System.Collections.Generic.Dictionary‘2...Foo‘~‘Foo(
this: ref, dic: ref) returns ($result: ref);

...
// elements of dic are frozen
requires IsFrozen($ElementProxy(dic, 0), $Heap);
requires IsFrozen($ElementProxy(dic, 1), $Heap);

5.5 [ElementsCaptured] Modifier 41

...
// elements of result are frozen
ensures $result == null ∨ IsFrozen($ElementProxy($result, 0), $Heap);
...

implementation Foo.Bar$System.Collections.Generic.Dictionary‘2...Foo‘~‘Foo(
this: ref, dic: ref) returns ($result: ref)

{
...
assert $Heap[$ElementProxy(dic, 0), $ownerFrame] == $PeerGroupPlaceholder ∨

dic == null ∨ IsFrozen($ElementProxy(dic, 0), $Heap);
call $UpdateOwnersForFrozen($ElementProxy(dic, 0));
assert $Heap[$ElementProxy(dic, 1), $ownerFrame] == $PeerGroupPlaceholder ∨

dic == null ∨ IsFrozen($ElementProxy(dic, 1), $Heap);
call $UpdateOwnersForFrozen($ElementProxy(dic, 1));
...
$Heap[this, Foo.dictionary] := dic;
...
$result := $Heap[this, Foo.dictionary];
return;

}

The field Foo.dictionary is defined as a constant of type Field ref, and its two type parameters
are declared as frozen by using function AsElementsFrozenField. Procedure Bar requires the
element proxy of parameter dic to be frozen at positions 0 and 1 and ensures that if the return
value is not null, the element proxy of this return value is frozen at least for position 0. Obviously,
the element proxy is also frozen at position 1 in this particular example, but we just wanted
to demonstrate the difference between using the [ElementsFrozen] modifier with or without an
associated value.

In the implementation of method Bar, the procedure calls to $UpdateOwnersForFrozen to-
gether with their prefixed assertion appear consecutively for both type parameters, followed by
the assignment of parameter dic to field Foo.dictionary. Finally, this field gets assigned to the
$result variable and, thereby, ensures that the first type parameter is frozen as expected by the
corresponding postcondition.

5.5 [ElementsCaptured] Modifier

Translating a Spec# program that uses the [ElementsCaptured] modifier into BoogiePL can be
split into two separate tasks. On the one hand, we need to ensure that the element proxy of
every parameter declared as [ElementsCaptured] - or the receiver object if the modifier is applied
to the method - is unowned at either all or just the given positions on entry of a method. On
the other hand, we also have to extend the frame condition of the method. We need to allow
those $ownerRef and $ownerFrame references to be modified by the method, which belong to an
element targeted by the [ElementsCaptured] modifier or to a peer of at least one of those elements.

Adding the correct preconditions to a method with a parameter specified as [ElementsCaptured]
is not trivial, because we have to distinguish three different cases. The following code from method
MethodSignature takes care of adding those preconditions, requiring the element proxy of the
parameter to be unowned at the given positions:

foreach (Cci.AttributeNode! attr in (!)parameter.GetAllAttributes(
Cci.SystemTypes.ElementsCapturedAttribute)) {

Cci.ExpressionList exprs = attr.Expressions;
if (exprs != null && exprs.Count != 0) {
Cci.Expression arg = exprs[0];

42 5 Translation into BoogiePL

Cci.Literal lit = arg as Cci.Literal;
if (lit != null && lit.Value is int)
AddPreconditionForElementsCaptured(param, (int)lit.Value, name, isNonNull);

} else {
if (parameter.Type.IsGeneric || parameter.Type.Template != null) {

if (parameter.Type.TemplateArguments != null) {
for (int j = 0; j < parameter.Type.TemplateArguments.Count; j++) {

if (parameter.Type.TemplateArguments[j].IsReferenceType)
AddPreconditionForElementsCaptured(param, j, name, isNonNull);

}
}

} else
AddPreconditionForElementsCaptured(param, -1, name, isNonNull);

}
}

For each parameter with an [ElementsCaptured] modifier, we first distinguish whether the
modifier has an associated value. If it has one, we call the method AddPreconditionForEle-
mentsCaptured with the value as parameter. This method adds a precondition, requiring the
element proxy of the parameter to be unowned at the provided position. Otherwise, we have to
distinguish between an array and a generic type. For generic types, we require the element proxy
to be unowned at all positions of type parameters that are of a reference type. For arrays, we
require the $ElementProxy object to be unowned at position -1.

Method GenerateObjectsFrameCondition is responsible for adding the frame condition. We
have to extend this method to also take parameters declared as [ElementsCaptured] into account
when generating the frame condition. Otherwise, we would always get a frame condition violation,
whenever an owner is assigned to the element proxy of such a parameter inside the method, because
by default it is not allowed to modify the $ownerRef and $ownerFrame references of objects not
created in the method itself.

For each parameter specified as [ElementsCaptured], we therefore have to add an expression
to the frame condition, allowing the $ownerRef and $ownerFrame reference of the element proxy
at the captured position to be modified inside the method. As assigning an owner to an object
additionally affects all the peers of that object, we also have to exclude the owners of all peers of
the captured element from having to remain unchanged.

The following example has a method Bar that assigns its parameter to the field dic. When
the first type parameter of dic is not already frozen before the call to Bar, the method parameter
needs to be declared as [ElementsCaptured(0)] for the assignment to be valid:

public class Test {
[ElementsFrozen(0)] Dictionary<object, string> dic;

public void Bar([ElementsCaptured(0)] Dictionary<object, string>! dic) {
this.dic = dic;

}
}

The following BoogiePL code is an excerpt of this example’s translation, focusing on the
[ElementsCaptured] modifier:

procedure Test.Bar$System.Collections.Generic.Dictionary‘2...System.Object‘~‘
System.String(this: ref, dic: ref);

...
requires (dic == null ∨ $Heap[$ElementProxy(dic, 0), $ownerFrame] ==

$PeerGroupPlaceholder);
...

5.5 [ElementsCaptured] Modifier 43

// frame condition
ensures (∀<alpha> $o: ref, $f: Field alpha • IncludeInMainFrameCondition($f) ∧

$o 6= null ∧ ... ∧ ¬(($f == $ownerRef ∨ $f == $ownerFrame) ∧
old($Heap[$o, $ownerRef] == $Heap[$ElementProxy(dic, 0), $ownerRef] ∧
$Heap[$o, $ownerFrame] == $Heap[$ElementProxy(dic, 0), $ownerFrame])) ∧
... ⇒ old($Heap)[$o, $f] == $Heap[$o, $f]);

...

The procedure Bar requires parameter dic to be either null or else its element proxy has
to be unowned at position 0. The frame condition is an implication, ensuring that fields of all
objects remain unmodified, except for those explicitly excluded in the antecedent. We truncated
this antecedent for clarity, as normally it would be much longer. The part added because of the
[ElementsCaptured] modifier states that if field f is either equal to $ownerRef or $ownerFrame,
and object o has the same owner as the element proxy of dic at position 0, then f is allowed to
be modified inside method Bar.

44 5 Translation into BoogiePL

Chapter 6

Immutable Classes and Strings

The concept of immutable classes can be viewed as a subset of the frozen objects methodology,
in which either no object of a class gets ever frozen, or all objects of a class get frozen right
after construction. This implies that we may exchange the current implementation of immutable
classes and, instead, use frozen objects in the background also to implement immutable classes. We
therefore can have both, immutable classes and frozen objects, without the need for two different
implementations to declare objects as immutable.

6.1 Removing Immutable Classes Axiomatization

We first remove the whole previous axiomatization for immutable classes, that has been discussed
shortly in Chapter 2.3.3, from the Prelude file. This includes removing all the functions and axioms
that have been written specifically to support the concept of immutable classes.

In addition, the following axiom has so far used the $IsImmutable function. It expresses that
the elements of an array are either null, of an immutable type, or have the same owner as the
element proxy of the array at position -1:

axiom (∀ a: ref, i: int, heap: HeapType • IsHeap(heap) ∧
$typeof(a) <: System.Array ⇒ ArrayGet(heap[a, $elementsRef], i) == null ∨
$IsImmutable($typeof(ArrayGet(heap[a, $elementsRef], i))) ∨
(heap[ArrayGet(heap[a, $elementsRef], i), $ownerRef] ==
heap[$ElementProxy(a, -1), $ownerRef] ∧
heap[ArrayGet(heap[a, $elementsRef], i), $ownerFrame] ==
heap[$ElementProxy(a, -1), $ownerFrame]));

But as the $IsImmutable function has now been removed from the Prelude file, the following
part of the axiom, stating that the array elements are immutable, has to be removed as well:

$IsImmutable($typeof(ArrayGet(heap[a, $elementsRef], i)))

As we discuss in the next section, objects of an immutable type are also owned by the Freezer
in the new implementation. The third part of the axiom, requiring the elements to have the same
owner as the $ElementProxy object, therefore, already covers those objects, and we do not need
to add anything to the axiom as a substitution for the removed expression. The reduced axiom
now simply states that the elements of an array are either null or have the same owner as the
element proxy of the array.

We also have to remove the following constants from the Prelude class, as they are no longer
available, because they belonged to the old axiomatization of immutable classes:

public const string! IsImmutableFunction = ”$IsImmutable”;
public const string! AsImmutableFunction = ”$AsImmutable”;

45

46 6 Immutable Classes and Strings

public const string! AsMutableFunction = ”$AsMutable”;

This further requires us to remove all source code parts of Boogie that have used any of the
above constants. Essentially, this leads to the complete removal of the old implementation of
immutable classes from the Boogie verifier.

6.2 New Implementation for Immutable Classes

After removing the previous axiomatization of immutable classes, we now have to implement the
handling of immutable types in a way that they depend on the axiomatization for frozen objects
instead.

We start by treating fields of an immutable type as though they were specified with the [Frozen]
modifier, i.e. for all such fields we have to emit an axiom declaring this field as frozen:

if (IsImmutable(field.Type, out isImmutable) && isImmutable) {
// for fields of an immutable type, emit: axiom AsFrozenField(f) = f

Bpl.Expr! ax = Bpl.Expr.Eq(Function(Sink.BuiltinFunction.AsFrozenField,
Sink.IdentWithClean(fieldConst)), Sink.IdentWithClean(fieldConst));

this.earlyDeclarations.Add(new Bpl.Axiom(NoToken, ax));
}

The method IsImmutable, which is not to be confused with function $IsImmutable that we
removed from the Prelude file in the previous section, returns true, whenever it can be decided
whether the provided field type is immutable. The out parameter isImmutable then holds the
boolean value stating if the type is immutable or not. The IsImmutable method returns false,
when the provided type is either object, as this is the only type allowed to have mutable as well
as immutable subclasses, or if it is an interface type.

To ensure that an object of an immutable type is not modifiable anymore after its constructor
has terminated, we freeze each object of such a type at the end of its initialization. For that
purpose, we add the following code to method VisitCall of class InstructionTranslator :

// freeze object if it is of an immutable type

if (receiver != null && receiver.NodeType != Cci.NodeType.This &&
callee.NodeType == Cci.NodeType.InstanceInitializer &&
!(methodSignature.method.NodeType == Cci.NodeType.InstanceInitializer &&
methodSignature.method.DeclaringType == callee.DeclaringType) &&
type != null && Sink.IsImmutable(type, out isImmutable) && isImmutable) {

Bpl.IdentifierExpr recExpr = this.TranslateLocal(receiver, sink.Convert(type));

// assert recExpr.$ownerFrame == $PeerGroupPlaceholder;
Bpl.Expr cond = om.HasNoOwner(recExpr, sink.HeapExpr());
currentBlock.Cmds.Add(Sink.Assert(cond, statement,

”freezing the subject requires it to be unowned”));

// assert IsPeerConsistent(recExpr);

cond = om.IsPeerConsistent(recExpr, false);
currentBlock.Cmds.Add(Sink.Assert(cond, statement,

”the subject must be peer consistent in order to be frozen”));

// call $UpdateOwnersForFrozen(recExpr);
Bpl.Cmd c = new Bpl.CallCmd(NoToken, Prelude.UpdateOwnersForFrozenProcName,

new ExprSeq(recExpr), new IdentifierExprSeq());
currentBlock.Cmds.Add(c);

}

6.2 New Implementation for Immutable Classes 47

Basically, whenever we have a method call that is a constructor (called InstanceInitializer in
the source code), and the declaring type of this constructor is immutable, we first assert that
the receiver object is unowned and peer consistent, and then call the $UpdateOwnersForFrozen
procedure on this receiver.

There are, however, some special cases that we have to exclude. When the constructor of a
class calls its superclass constructor, then we do not want the newly created object to be frozen at
the end of this ’base()’ call, because we would get an error at the end of the subclass constructor,
when the attempt to freeze the object for a second time fails, as no object may be frozen twice. The
expression ’receiver.NodeType != Cci.NodeType.This’ in the if-clause of the above code, therefore,
prevents an object to be frozen at the end of a constructor of an immutable class, if the receiver
object is the this instance as is the case with a ’base()’ call.

Another problem arises, when an immutable class has two different constructors and one of
them is calling the other. In such a case, we also do not want the object to get frozen after the
call of one constructor to the other returns. The expression:

!(methodSignature.method.NodeType == Cci.NodeType.InstanceInitializer &&
methodSignature.method.DeclaringType == callee.DeclaringType)

in the if-clause of the above code ensures that if the method calling the constructor is also a
constructor, and this calling method has the same declaring type (i.e. both methods are in the
same class), then we do not freeze the object at the end of such a constructor call.

The class Test in the following example contains a field of the immutable type Foo and a
method Bar that assigns a new Foo object to this field:

[Immutable]
public class Foo { }

public class Test {
public Foo foo;

public void Bar() {
foo = new Foo();

}
}

The translation of this example into BoogiePL, limited to the parts that show the new imple-
mentation behind the concept of immutable classes, looks as follows:

const unique Test.foo: Field ref;

axiom AsFrozenField(Test.foo) == Test.foo;

implementation Test.Bar(this: ref)
{
...
call Foo..ctor(stack50000o);
assert $Heap[stack50000o, $ownerFrame] == $PeerGroupPlaceholder;
assert (∀ $pc: ref • $pc 6= null ∧ $Heap[$pc, $allocated] ∧

$Heap[$pc, $ownerRef] == $Heap[stack50000o, $ownerRef] ∧
$Heap[$pc, $ownerFrame] == $Heap[stack50000o, $ownerFrame] ⇒
$Heap[$pc, $inv] == $typeof($pc) ∧ $Heap[$pc, $localinv] == $typeof($pc));

call $UpdateOwnersForFrozen(stack50000o);
...
$Heap[this, Test.foo] := stack50000o;
...

}

48 6 Immutable Classes and Strings

The function AsFrozenField declares the field Test.foo as frozen. Hence, this field is indis-
tinguishable in the BoogiePL code from a field of a mutable type specified as [Frozen]. In the
implementation of Bar, the constructor of immutable class Foo is called on the newly allocated
variable stack50000o. Then it is checked with two assertions whether this variable is unowned and
peer consistent. Finally, stack50000o gets frozen through the function call to $UpdateOwnersFor-
Frozen, and only then is it assigned to field Test.foo.

Array fields of an immutable element type and generic fields with one or more immutable type
parameters are handled similar than fields specified as [ElementsFrozen]. We have to emit the
corresponding AsElementsFrozenField axioms and freeze the $ElementProxy object of such fields
at the correct position after the end of the constructor.

Method parameters and return values of an immutable type get treated as though specified
as [Frozen] by adding the corresponding pre- or postcondition to the method, requiring such
parameters to be either null or frozen and ensuring that a return value of an immutable type is
null or frozen.

We also need to declare local variables of an immutable type as frozen. For that purpose, we
extend the where-clause of those local variables with an implication, stating that if the variable
does not contain null, it has to be frozen. Without this additional clause, the assertion in the
following example could not be verified:

[Immutable]
public class Foo { }

public class Test {
public void Bar() {
Foo foo = new Foo();

for(int i = 0; i < 4; i++) {
if (foo != null)

assert FreezeHelpers.IsFrozen(foo);
foo = new Foo();

}
}

}

The assertion in this loop should always hold, because the object referenced by foo is frozen
at the entry of the loop, and the loop body preserves this fact despite assigning yet another Foo
object to variable foo in each loop iteration. A prover can, however, get confused by these new
assignments and might not be able to verify this assertion anymore, which is why the help of the
additional where-clause is required.

In the BoogiePL translation, the declaration of local variable foo with the extended where-
clause looks as follows:

var foo: ref where $Is(foo, Foo) ∧ $Heap[foo, $allocated] ∧ (foo 6= null ⇒
IsFrozen(foo, $Heap));

With all those modifications, the implementation of immutable classes now completely relies on
the frozen objects methodology. Before, objects of an immutable type had to be treated separately
in many parts of the Boogie source code, whereas now, those objects get simply frozen and can
then be treated the same as every other owned object. The unexposable Freezer as owner of those
objects prevents any modification of them without the need of special checks.

Thus, with this new implementation for immutable classes, we not only reduce the size of the
Boogie source code but also the size of BoogiePL files by not needing all the special checks for
immutability anymore, as there is no need to distinguish between immutable and mutable objects.
Violations of the immutability properties now get detected by the same assertions that are already
there to check for the correct use of ownership and, therefore, add no additional overhead.

6.3 Precondition for Generic Parameters 49

6.3 Precondition for Generic Parameters

In a generic class, if a method’s parameter has a generic type parameter of this class as its type,
it is required that the object provided to this method has the same owner as the element proxy of
the generic type at the position representing the corresponding type parameter.

In class Foo of the following example, we have a field fooList that is a generic list of Foo
elements. In method Bar, we then want to add the parameter foo to this list:

public class Foo {
[Peer] [ElementsPeer] public List<Foo>! fooList = new List<Foo>();

public void Bar(Foo! foo)
modifies fooList.*;

{
fooList.Add(foo);

}
}

Translated into BoogiePL, method Add previously had the following precondition, requiring
item foo to be either null, be of an immutable type, or have the same owner as the element proxy
of fooList at position 0:

// item is a peer of the expected elements of the generic object
requires item == null ∨ $IsImmutable($typeof(item) ∨

($Heap[item, $ownerRef] == $Heap[$ElementProxy(this, 0), $ownerRef] ∧
$Heap[item, $ownerFrame] == $Heap[$ElementProxy(this, 0), $ownerFrame]);

With the removal of the immutability axiomatization, we may no longer use the second part
of this precondition, as the function $IsImmutable no longer exists. Hence, we have to reduce the
precondition as follows:

// item is a peer of the expected elements of the generic object
requires item == null ∨

($Heap[item, $ownerRef] == $Heap[$ElementProxy(this, 0), $ownerRef] ∧
$Heap[item, $ownerFrame] == $Heap[$ElementProxy(this, 0), $ownerFrame]);

Because fooList is specified as [ElementsPeer], the verification of this example fails, as the
parameter foo is neither null nor a peer of Foo. By adding the precondition:

requires Owner.Same(fooList, foo);

to method Bar, we can solve this problem, because parameter foo is then guaranteed to be a peer
of Foo same as the element proxy of fooList at position 0. The verification now succeeds. However,
if we instead make Foo an immutable class and use it as the generic type parameter of the list, we
run into another problem:

public class Test {
[Peer] public List<Foo>! fooList = new List<Foo>();

public void Bar(Foo! foo)
modifies fooList.*;

{
fooList.Add(foo);

}
}

[Immutable]
public class Foo { }

50 6 Immutable Classes and Strings

In the new implementation, both the type parameter of fooList and the object foo are frozen.
But as one could be directly owned by the Freezer and the other just indirectly, they do not
necessarily have the same owner. We therefore thought of replacing the $IsImmutable function in
this precondition with the new IsFrozen function:

// item is a peer of the expected elements of the generic object
requires item == null ∨ IsFrozen(item, $Heap)

($Heap[item, $ownerRef] == $Heap[$ElementProxy(this, 0), $ownerRef] ∧
$Heap[item, $ownerFrame] == $Heap[$ElementProxy(this, 0), $ownerFrame]);

This, however, turned out not to be a good idea. In the body of a method with this precondition,
a prover cannot know whether item is frozen or has the same owner as the corresponding type
parameter of the class, because only one has to hold, which restricts how this parameter may be
used inside the method. Before, with the $IsImmutable function, we did not have this problem, as
a prover could statically verify at each point in a program, if the type of a variable is immutable.
Hence, a prover could always decide whether a parameter is of an immutable type or, in the other
case, has the same owner as the corresponding type parameter.

The solution we then found, is not to add the IsFrozen function to the precondition, but instead
to only emit this precondition, when the type of the parameter is not immutable. If it is of an
immutable type, then we already emit a separate axiom, requiring the parameter to be frozen as
discussed in the previous section.

The precondition still imposes one limitation for which we have not found a satisfying solution.
If we, instead of an immutable type, use a mutable type as type parameter of our fooList, but
specify it as [ElementsFrozen], then we cannot satisfy the precondition of the Add method:

public class Foo {
[Peer] [ElementsFrozen] public List<Foo>! fooList = new List<Foo>();

public void Bar([Frozen] Foo! foo)
modifies fooList.*;

{
fooList.Add(foo);

}
}

Not even specifying parameter foo of method Bar as [Frozen] helps us out here, because as
argued above, two frozen objects do not necessarily have the same owner. And as we may provide
mutable and frozen objects as parameter to Add, it is also no option to not emit the precondition
at all as is possible for immutable types. Hence, using the [ElementsFrozen] modifier on fooList
in this example severely restricts, what we may do with this list.

6.4 Strings

The translation of strings into BoogiePL is handled differently than that of all other objects. A
string is not created by calling a constructor but declared as a constant. The properties of such a
string constant are then described by an axiom:

const unique $stringLiteral2: ref;

axiom $IsNotNull($stringLiteral2, System.String) ∧
$StringLength($stringLiteral2) == 4 ∧
(∀ heap: HeapType • IsHeap(heap) ⇒ heap[$stringLiteral2, $allocated]) ∧ ...;

The constant $stringLiteral2 is defined as being non-null, having a length of 4, and being
allocated in every heap.

6.4 Strings 51

Because the type String is specified as [Immutable], we have to guarantee that every string
instance is frozen. The assertion in the following example should therefore always hold:

public class Foo {
public void Bar() {

assert FreezeHelpers.IsFrozen(”test”);
}

}

However, the above assertion, with which we want to ensure that a new string is frozen, cannot
be verified without any further modifications. As no constructor is called to create a string, the
source code where we freeze any object of an immutable type, as described in the previous section,
is also not reached. We therefore have to explicitly state as a property of each string that it is
frozen. We do so by extending the above axiom with an additional clause:

const unique $stringLiteral2: ref;

axiom ... ∧ (∀ heap: HeapType • IsHeap(heap) ⇒ IsFrozen($stringLiteral2, heap));

Now, Boogie is able to verify at each point in a program that a string is frozen, even if this
string has not been assigned to any field or local variable as in the example above.

52 6 Immutable Classes and Strings

Chapter 7

Conclusion

Immutability of objects has been supported by Spec# through the concept of immutable classes.
This concept does, however, not support the more fine-grained solution of declaring individual
objects as immutable. The frozen objects methodology proposes a better solution, where any
object is allowed to be frozen. In this thesis, we took this theoretical concept and implemented it
into Spec#.

We had to adapt the concept to work with the specific properties of Spec#. Allowing no
ownership transfer, we cannot freeze every mutable object in Spec# but only those that are
unowned yet, and because not every field of an object has to be declared as [Peer], [Rep], or
[Frozen] in Spec#, not every object reachable from a frozen object is guaranteed to be immutable.

We also exchanged the previous implementation for immutable classes with a new one that
makes use of the newly implemented frozen objects methodology. This allowed us to reduce
the amount of checks necessary to verify a program. The previous implementation added its own
checks during verification, even if a program contained no immutable class, while the frozen objects
methodology uses the checks that are added by the ownership model anyway and, hence, creates
no additional overhead.

7.1 Testing and Open Source Integration

We have thoroughly tested this new implementation with a large test suite. We have found and
fixed many bugs thanks to this test suite. The errors have mostly been found in those parts of
the code that we modified, but some of those bugs have already been present in the previous
implementation and might just not have had an impact without the use of frozen objects. In
appendix C, we give a short explanation of those bugs and discuss, how we have fixed them.

We also created a subversion patch with our modifications of Spec# and Boogie for the open
source version of the language [9]. Before doing so, we run our new implementation against all the
test cases provided with the open source code. Most of those test cases could be verified the same
as before, but some could not be verified anymore or have returned different error messages. Some
problems have been caused by bugs in our implementation that we have subsequently fixed. The
other problems, however, are due to the differences in the implementation, especially that objects
of an immutable type are now owned by the Freezer, whereas they have been unowned before.

We have found three kinds of differences: we may get different error messages for the same
errors, we may get new error messages, or we may not get some error messages anymore. In
appendix B, we explain those differences and the reasons behind them in more detail.

7.2 Limitations

The frozen objects technique has only been implemented for the Boogie methodology and does
not support the visible-state methodology.

53

54 7 Conclusion

As Boogie does not support static fields in combination with Spec#’s ownership model yet, and
the frozen objects methodology relies on this ownership model’s checks, we also have no support
for static fields in the implementation of frozen objects.

For performance reasons, there are no runtime checks for the ownership model of Spec#, and
as the error detection for frozen objects relies on these checks, we thus have no runtime checks for
frozen objects either.

7.3 Experience

Working on this thesis has been a really interesting experience. Working with a large, not always
very well documented code base has been challenging at first. The easier part has been to extend
the Spec# compiler with the new freeze keyword and all the new modifiers that we have introduced.
Besides declaring them, we only had to add some static compiler checks, for example, to detect
invalid modifier combinations.

The most challenging part has definitely been the axiomatization of the frozen objects method-
ology. Even though most axioms have already been presented in the paper introducing the concept
[7], writing them in a way to work correctly with all the features of the full Spec# language has
been very difficult. Sometimes an axiom has been too restrictive, leading to test cases that could
not be verified correctly, and sometimes an axiom has not been restrictive enough, leading to
contradictions in the axiomatization.

A bug in the source code can be found by debugging the respective code. However, a contra-
diction in the axiomatization can only be detected by first removing one axiom after the other
until the problem causing axiom has been found, and then trying to figure out what the problem
with this axiom is, i.e. with which other axiom the contradiction can be obtained, and how we
can fix this problem.

Leino, Müller, and Wallenburg [7] have used an example with travelers that share the same
frozen map in their paper to illustrate the concept of frozen objects. We have written our own
traveler example using the full Spec# language (see Appendix A.2) to demonstrate the capabilities
of our implementation.

In the end, despite the above mentioned limitations of the frozen objects methodology im-
plementation into Spec#, we are very happy with the achieved result, and we hope that this
implementation finds its way into the open source version of the language.

Acknowledgements
I would like to thank my supervisors Joseph N. Ruskiewicz and Prof. Peter Müller for the help
and support they have given me during the writing of this thesis.

Appendix A

Examples

A.1 Weather Report

This section contains the source code of the running WeatherReport example, which has been
used several times in this paper to illustrate the benefits of the frozen objects technique. We first
give the version using only immutable classes and then also provide the version making use of the
frozen objects methodology.

A.1.1 Version with Immutable Classes

public class MainClass {
public void Main() {
Date date = new Date();
Location loc = new Location();
Temp airT = new Temp();
Temp waterT = new Temp();
Velocity windVel = new Velocity();

// create a weather report

WeatherReport wr = new WeatherReport(loc);

// create a temperature and a wind measurement and

// add them to the weather report

wr.AddTemp(new TempMeasurement(date, loc, airT, waterT));
wr.AddWind(new WindMeasurement(date, loc, windVel));

}
}

public class WeatherReport {
private TempMeasurement temp;
private WindMeasurement wind;
public Location loc;

invariant temp == null || loc == temp.loc;
invariant wind == null || loc == wind.loc;

public WeatherReport(Location loc)
ensures this.loc == loc;

{ this.loc = loc; }

55

56 A Examples

public void AddTemp(TempMeasurement! tm)
requires loc == tm.loc;
ensures loc == temp.loc;
modifies this.temp;

{ temp = tm; }

public void AddWind(WindMeasurement! wm)
requires loc == wm.loc;
ensures loc == wind.loc;
modifies this.wind;

{ wind = wm; }

public TempMeasurement GetTemp() {
return temp;

}

public WindMeasurement GetWind() {
return wind;

}
}

[Immutable]
public class Measurement {

public Date date;
public Location loc;

public Measurement(Date d, Location l)
ensures date == d && loc == l;

{
date = d;
loc = l;

}
}

[Immutable]
public class TempMeasurement : Measurement {

public Temp airTemp;
public Temp waterTemp;

public TempMeasurement(Date d, Location l, Temp airT, Temp waterT)
ensures date == d && loc == l && airTemp == airT && waterTemp == waterT;

{
airTemp = airT;
waterTemp = waterT;
base(d, l);

}
}

[Immutable]
public class WindMeasurement : Measurement {

public Velocity windVelocity;

public WindMeasurement(Date d, Location l, Velocity windVel)
ensures date == d && loc == l && windVelocity == windVel;

A.1 Weather Report 57

{
windVelocity = windVel;
base(d, l);

}
}

A.1.2 Version with Frozen Objects

public class MainClass {
public void Main() {
Date date = new Date();
Location loc = new Location();
Temp airT = new Temp();
Temp waterT = new Temp();
Velocity windVel = new Velocity();

// create a CurrentWeather object and

// update the temperatures and the wind velocity

CurrentWeather cr = new CurrentWeather(date, loc);
cr.UpdateTemp(date, airT, waterT);
cr.UpdateWind(date, windVel);

// create a weather report

WeatherReport wr = new WeatherReport(loc);

// create a temperature measurement and add it to the weather report

// correcting the measurement and freezing have to be done before the

// call to AddTemp because this method already expects a frozen object

TempMeasurement tm = new TempMeasurement(date, loc, airT, waterT);
tm.CorrectMeasurement();
freeze tm;
wr.AddTemp(tm);

// create a wind measurement and add it to the weather report

// correcting the measurement and freezing takes place during

// the AddWind method call

WindMeasurement wm = new WindMeasurement(date, loc, windVel);
wr.AddWind(wm);

}
}

public class WeatherReport {
[Frozen] private TempMeasurement temp;
[Frozen] private WindMeasurement wind;
public Location loc;

invariant temp == null || loc == temp.loc;
invariant wind == null || loc == wind.loc;

public WeatherReport(Location loc)
ensures this.loc == loc;

{ this.loc = loc; }

58 A Examples

public void AddTemp([Frozen] TempMeasurement! tm)
requires loc == tm.loc;
ensures loc == temp.loc;
modifies this.temp;

{ temp = tm; }

public void AddWind([Captured] WindMeasurement! wm)
requires loc == wm.loc;
ensures loc == wind.loc;
modifies this.wind, wm.*;

{
wm.CorrectMeasurement();
wind = wm;

}

[return: Frozen]
public TempMeasurement GetTemp() {

return temp;
}

[return: Frozen]
public WindMeasurement GetWind() {

return wind;
}

}

public class CurrentWeather {
[Rep] private TempMeasurement! temp;
[Rep] private WindMeasurement! wind;

public CurrentWeather(Date d, Location l) {
temp = new TempMeasurement(d, l, null, null);
wind = new WindMeasurement(d, l, null);

}

public void UpdateTemp(Date d, Temp airT, Temp waterT) {
expose (this) {
temp.date = d;
temp.airTemp = airT;
temp.waterTemp = waterT;

}
}

public void UpdateWind(Date d, Velocity windVel) {
expose (this) {
wind.date = d;
wind.windVelocity = windVel;

}
}

}

public class Measurement {
public Date date;
public Location loc;

A.2 Traveler 59

public Measurement(Date d, Location l)
ensures date == d && loc == l;

{
date = d;
loc = l;

}

public virtual void CorrectMeasurement()
ensures loc == old(loc);

{
// check validity of measurement and fill in missing information

}
}

public class TempMeasurement : Measurement {
public Temp airTemp;
public Temp waterTemp;

public TempMeasurement(Date d, Location l, Temp airT, Temp waterT)
ensures date == d && loc == l && airTemp == airT && waterTemp == waterT;

{
airTemp = airT;
waterTemp = waterT;
base(d, l);

}

public override void CorrectMeasurement() {
// check validity of measurement and fill in missing information

}
}

public class WindMeasurement : Measurement {
public Velocity windVelocity;

public WindMeasurement(Date d, Location l, Velocity windVel)
ensures date == d && loc == l && windVelocity == windVel;

{
windVelocity = windVel;
base(d, l);

}

public override void CorrectMeasurement() {
// check validity of measurement and fill in missing information

}
}

A.2 Traveler

This section contains the Traveler example that has been used in a simplified version in the paper
originally introducing frozen objects [7] and has been adapted here to conform to the full Spec#
language.

60 A Examples

[Immutable]
public class City {

public string! name;

public City(string! name) {
this.name = name;

}
}

[Immutable]
public class Route {

public City! from;
public City! to;

public Route(City! from, City! to) {
this.from = from;
this.to = to;

}
}

public class Map {
[Rep] private List<City>! cities = new List<City>();
[Rep] private List<Route>! routes = new List<Route>();

public void AddCity(City! city)
modifies cities.*;

{
expose (this) {

if (!cities.Contains(city))
cities.Add(city);

}
}

public void AddRoute(Route! route)
modifies routes.*;

{
expose (this) {

if (!routes.Contains(route))
routes.Add(route);

}
}

[Pure]
public City GetCity(string! name) {
City city = null;
foreach (City c in cities) {

if (c != null && c.name.Equals(name))
city = c;

}
return city;

}

A.2 Traveler 61

[Pure]
public bool HasRoute(City! from, City! to)

ensures from == to ==> result == true;
{

foreach (Route r in routes) {
if (r != null && r.from == from && r.to == to) return true;

}

if (from == to) return true;
return false;

}
}

public class PublicTransport {
public void AddTrainLines(Map! map)

modifies map.*;
{
City c0 = map.GetCity(”Zürich”);
City c1 = map.GetCity(”Milano”);
City c2 = map.GetCity(”Roma”);

if (c0 != null && c1 != null) map.AddRoute(new Route(c0, c1));
if (c1 != null && c2 != null) map.AddRoute(new Route(c1, c2));

}

public void AddBusLines(Map! map)
modifies map.*;

{
City c0 = map.GetCity(”Zürich”);
City c1 = map.GetCity(”Kloten”);

if (c0 != null && c1 != null) map.AddRoute(new Route(c0, c1));
}

}

public class Traveler {
[Frozen] private Map! map;
private City! current, next;

invariant map.HasRoute(current, next);

public Traveler([Frozen] Map! map, City! current) {
this.map = map;
this.current = current;
this.next = current;

}

public void NextTarget(City! target) {
if (map.HasRoute(current, target)) {

expose(this) {
next = target;

}
}

}

62 A Examples

public void MakeStep() {
expose(this) {
current = next;

}
}

}

public class Main {
public void Setup(PublicTransport! pt)

modifies pt.*;
{
City c0 = new City(”Zürich”);
City c1 = new City(”Kloten”);
City c2 = new City(”Milano”);
City c3 = new City(”Roma”);

Map map = new Map();
map.AddCity(c0);
map.AddCity(c1);
map.AddCity(c2);
map.AddCity(c3);

pt.AddTrainLines(map);
pt.AddBusLines(map);

freeze map;

Traveler t0 = new Traveler(map, c0);
Traveler t1 = new Traveler(map, c1);

t0.NextTarget(c3);
t1.NextTarget(c0);
t0.MakeStep();
t1.MakeStep();

}
}

Classes City and Route are both declared as [Immutable]. Class Map contains a list of cities
and a list of routes between those cities. We can add a city or a route to a map, retrieve a city from
it, or ask whether a specific route belongs to a map. With the methods in class PublicTransport,
we can add train or bus lines to a given map.

Class Traveler takes a frozen map and a city as parameters to its constructor and initializes
the fields map, current, and next with them. In this class, we make use of being allowed to write
an invariant over a frozen field. This invariant guarantees that there is always a route in the map
between the cities stored in fields current and next. The constructor of Traveler satisfies this
invariant by initializing both current and next to the same city. Method NextTarget, which sets
field next to a new city, also retains the invariant by only modifying the field, when there is a
route between current and the new target city. Method MakeStep sets the current field to the city
stored in next, thereby also maintaining the class invariant.

In method Setup of class Main, we create four new cities and add them to a map. Next, we
add train and bus lines to the map by calling the corresponding methods on the PublicTransport
object that we get as parameter. Then we freeze the map and give it to two new travelers, which
have a different starting city, may both independently set their next targets, and make steps while
still maintaining their invariant over the map.

Appendix B

Changes in Preexisting Test Cases

While integrating the frozen objects methodology into Spec# and Boogie, we have taken great care
that the implementation not only satisfies all our new test cases, but also that all the preexisting
test cases still work correctly. However, in some cases this has not been possible, mainly due to
the fact that objects of an immutable type have been unowned before and are now owned by the
Freezer.

We have observed three types of changes in the outcome of the test cases with the old and
the new implementation. In Section B.1, we discuss errors that get detected in the old as well
as in the new implementation but with different error messages. In Section B.2, we look at error
messages that only exist in the new implementation, and in Section B.3, we discuss errors in the
old implementation that are no longer errors in the new implementation.

B.1 Different Error Messages for Same Error

Immutability of objects has been a concept completely separate from the ownership model in the
previous implementation, and there has been a set of error messages specifically for verification
errors of immutable objects. With the new implementation, we do not need these additional
error checks anymore, because violations of frozen object properties are detected with the already
existing checks of the ownership model.

The following example shows two methods that assign an object of an immutable type to a
peer and a rep field of type object respectively:

public class Foo {
[Rep] object or;
[Peer] object op;

public void Bar1(ImmutableClass ic) {
or = ic;

}

public void Bar2(ImmutableClass ic) {
op = ic;

}
}

[Immutable]
public class ImmutableClass { }

Both assignments are illegal, as we are not allowed to assign an object of an immutable type
to a field specified as [Peer] or [Rep]. In the old implementation, there have been special checks

63

64 B Changes in Preexisting Test Cases

to uncover these errors, and the error messages have been as follows:

Error: RHS might be immutable, and not allowed in rep fields
Error: RHS might be immutable, and not allowed in peer fields

In the new implementation, we do not need these special checks anymore, and the errors get
detected by the checks of the ownership model:

Error: assigning the owner of this object may violate the modifies clause
Error: illegal assignment to rep field, RHS may already have a different owner
Error: assigning the owner of this object may violate the modifies clause
Error: illegal assignment to peer field, target object and RHS may have

different owners or an owner might not be exposed

We get two error messages for each error, the first stating the assignment may violate the
modifies clause, because we are not allowed to modify the owner of ic without declaring the
parameter as [Captured], and the second error states that the object on the right-hand side (RHS)
may already have a different owner, which in this case is the Freezer object.

B.2 New Errors

Objects of an immutable type have been defined as peer consistent in the old implementation.
However, now that such objects are owned by the Freezer, they cannot be peer consistent anymore,
because their owner can never be exposed. Test cases in which the peer consistency of objects of
an immutable type has been verified before, therefore, return an error message now with the new
implementation.

For example, a method that expects a parameter of type object requires this parameter to be
peer consistent by default. In the old implementation, we could give a string as parameter to
such a method, but a string is never peer consistent in the new implementation, as string is an
immutable type and, therefore, all its instances are frozen. Test cases where a string (or any other
object of an immutable type) is provided to a method expecting a parameter of type object, hence,
return an additional error message now.

B.3 Previous Errors

There are also some cases, where we got an error message in the old implementation, but do not
get an error message anymore now. The following example shows two of those cases:

public class Foo {
[Peer] object op;

public void Bar1([Captured] object obj) {
op = obj;

}

public void Bar2([Captured] object! x, object! y) {
Owner.AssignSame(x, y);

}
}

[Immutable]
public class ImmutableClass { }

When we verify method Bar1 of this example with the old implementation of Boogie, we get
the following error message:

B.3 Previous Errors 65

Error: RHS might be immutable, and not allowed in peer fields

As type object is the only type that can have mutable and immutable subtypes, there has been
no way of statically knowing whether the provided parameter is immutable. Hence, an error has
been thrown, because an object of an immutable type is not allowed to be assigned to a peer field.

With the new frozen objects methodology, method Bar1 can be verified without an error. The
[Captured] modifier requires parameter obj to be unowned, so we can be sure that obj is never
frozen and, therefore, is never of an immutable type.

Method Bar2, verified with the old implementation of Boogie, results in the following two error
messages:

Error: the given peer object might be immutable, and its owner is not allowed to
be assigned

Error: the subject might be immutable, and its owner is not allowed to be
assigned

Both x and y could potentially be of an immutable type, and an object of such a type is
neither allowed to be assigned an owner, nor may the owner of such an object be assigned to
another object.

With the new implementation, we again get no error messages, because x is specified as [Cap-
tured] and, therefore, guaranteed to be unowned, and the owner of y is allowed to be assigned as
the owner of x even if it is the Freezer.

These examples show that in some cases the new frozen objects methodology is stronger than
the old implementation. Before, we got error messages just in case the object is of an immutable
type. Now, we only get an error, if the method is actually called with such an object as parameter,
i.e. as long as we avoid calling those methods with an object of an immutable type, the verification
succeeds.

66 B Changes in Preexisting Test Cases

Appendix C

Uncovered Bugs

While implementing the frozen objects methodology into Spec#, we uncovered and fixed some
bugs in the code of Spec#, Boogie, and the Prelude file. In the following sections, we describe the
issues and our solution.

C.1 Spec#

So far, declaring a field as [Peer] and [Rep] at the same time has been legal. When verifying a
program with such a field, Boogie just ignored the second modifier. We changed the implementa-
tion, so that we now get a compiler error, when a field is declared as [Peer] and [Rep], same as we
also get an error by declaring a field as [Frozen] together with another ownership modifier.

C.2 Prelude

When freezing an object, we always have to check for peer consistency first. We found that after a
call to a pure function, the prover could suddenly assert peer consistency for a frozen object, whose
owner clearly cannot be exposed as would be required for being peer consistent. This problem
has been caused by an error in the Prelude file. The function ##FieldDependsOnFCO has been
implemented as follows:

function ##FieldDependsOnFCO<alpha>(o: ref, f: Field alpha, ev:
exposeVersionType) returns (exposeVersionType);

The return type of this function has been set incorrectly and we therefore had to change it to:

function ##FieldDependsOnFCO<alpha>(o: ref, f: Field alpha, ev:
exposeVersionType) returns (alpha);

C.3 Boogie

The method IsImmutable of class Sink has failed to recognize immutability in the presence of
non-null types, arrays, and generic types. We first tried to circumvent this problem by adding
special cases to the method, but then we realized that only one statement has been missing:

internal static bool IsImmutable (Cci.TypeNode! type, out bool isImmutable) {
Cci.TypeNode tn = Cci.TypeNode.StripModifiers(type);

...
}

67

68 C Uncovered Bugs

Non-null types, arrays, and generic types are nested. For example, a non-null type is a type
with a non-null modifier and a reference to the actual type. Hence, modifiers that are applied
to the actual type, like [Immutable], cannot be directly retrieved for non-null types by calling
GetAttribute. However, if we call the method StripModifiers first, then all those types get unnested,
and we can retrieve its modifiers as with any other type.

Bibliography

[1] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. In LNCS, volume 3362. Springer, 2004.

[2] K. Rustan M. Leino, and Peter Müller. Object Invariants in Dynamic Contexts. In LNCS,
volume 3086. Springer, 2004.

[3] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In LNCS, volume 4111.
Springer, 2006.

[4] K. Rustan M. Leino. This is Boogie 2. Manuscript KRML 178. 2008.

[5] K. Rustan M. Leino, and Angela Wallenburg. Class-Local Object Invariants. In ISEC, pages
57-66. ACM, 2008.

[6] Leonardo de Moura, and Nikolaj Bjrner. Z3: An Efficient SMT Solver. In LNCS, volume
4963. Springer, 2008.

[7] K. Rustan M. Leino, Peter Müller, and Angela Wallenburg. Flexible Immutability with Frozen
Objects. In VSTTE, volume 5295. Springer, 2008.

[8] K. Rustan M. Leino. Spec# Object Primer.
http://channel9.msdn.com/wiki/specsharp/specsharpobjectprimer.

[9] Microsoft Research. Open Source Spec#.
http://specsharp.codeplex.com.

69

	1 Introduction
	2 Background
	2.1 Spec#
	2.2 Boogie
	2.2.1 BoogiePL
	2.2.2 Prelude

	2.3 Immutable Classes
	2.3.1 General Concept
	2.3.2 Limitations
	2.3.3 Implementation

	2.4 Frozen Objects
	2.4.1 General Concept
	2.4.2 Benefits over Immutable Classes

	3 Extending Spec#
	3.1 Characteristics of Spec#
	3.2 Freeze Keyword and IsFrozen Check
	3.3 [Frozen] Modifier
	3.4 [ElementsFrozen] Modifier
	3.5 [ElementsCaptured] Modifier

	4 Axiomatization of Frozen Objects
	4.1 Freezer
	4.2 Freezing an Object
	4.3 Frozen Objects
	4.4 Frozen Fields
	4.5 Peer Validity
	4.6 Forever Frozen
	4.7 Immutability of Fields
	4.8 Triggers
	4.9 Prelude Class

	5 Translation into BoogiePL
	5.1 Freeze Keyword
	5.2 IsFrozen Check
	5.3 [Frozen] Modifier
	5.4 [ElementsFrozen] Modifier
	5.5 [ElementsCaptured] Modifier

	6 Immutable Classes and Strings
	6.1 Removing Immutable Classes Axiomatization
	6.2 New Implementation for Immutable Classes
	6.3 Precondition for Generic Parameters
	6.4 Strings

	7 Conclusion
	7.1 Testing and Open Source Integration
	7.2 Limitations
	7.3 Experience

	A Examples
	A.1 Weather Report
	A.1.1 Version with Immutable Classes
	A.1.2 Version with Frozen Objects

	A.2 Traveler

	B Changes in Preexisting Test Cases
	B.1 Different Error Messages for Same Error
	B.2 New Errors
	B.3 Previous Errors

	C Uncovered Bugs
	C.1 Spec#
	C.2 Prelude
	C.3 Boogie

