
Interprocedural Static Analysis by
Abstract Interpretation

Master’s Thesis

Flurin Rindisbacher

August 15, 2017

Advisors: Dr. Caterina Urban and Jérôme Dohrau

Prof. Dr. Peter Müller
Chair of Programming Methodology

Department of Computer Science, ETH Zürich

Abstract

Whether a developer follows the functional programming approach or
they compose their programs using object oriented programming, real-
world applications usually consist of multiple procedures that interact
with each other.

Sample [2] is a generic static analyser developed at the Chair of Pro-
gramming Methodology at ETH Zurich. It is generic with respect to the
static analysis problem and supports intraprocedural analyses. That is,
it analyses one procedure at a time. A static analyser with the ability
to analyse beyond a procedure’s boundaries provides a way to derive
useful properties about the behaviour of the whole program.

In this thesis, we design and implement a generic interprocedural static
analysis based on call-strings by Sharir and Pnueli [21]. We extend
Sample with the interprocedural analysis and enable the analyser to be
used for various static analyses beyond procedure-boundaries.

i

Contents

Contents iii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals of the Thesis . 3

1.2.1 Design and Implementation of a Generic Interprocedu-
ral Analysis . 3

1.2.2 Instantiation of the Analysis 3
1.2.3 Evaluation . 3
1.2.4 Specification Inference 3

1.3 Viper and Silver . 4
1.4 Outline . 4

2 Interprocedural Static Analysis 5
2.1 Intra- vs. Interprocedural Static Analysis 5
2.2 Abstract Interpretation . 6

2.2.1 Abstract Domains . 6
2.3 Different Approaches to Interprocedural Analysis 7
2.4 Interprocedural Static Analysis using Call-Strings 8

2.4.1 Abstract Interpretation Tagged with Call-Strings . . . 10
2.4.2 Call-String Approximation 12

2.5 Generic Interprocedural Static Analysis 12
2.5.1 Overview . 13
2.5.2 Targeted Programming Language 13
2.5.3 Framework Parameters 13
2.5.4 Creating the Supergraph and Callgraph 14
2.5.5 Determining where to Start the Analysis 15
2.5.6 Method Call Treatment 16
2.5.7 Entering and Leaving a Procedure. 17
2.5.8 Computing the Analysis Result 20

iii

Contents

3 Sample 21
3.1 Overview . 21

3.1.1 Broad Overview . 21
3.1.2 Programming Language 23

3.2 Sample for Intraprocedural Analyses 23
3.2.1 Program Representation 23
3.2.2 State Representation . 24
3.2.3 Analysis Results . 25
3.2.4 Intraprocedural Analysis Runner 25
3.2.5 Computing a Fixed Point Solution 25

3.3 Sample for Interprocedural Analyses 27
3.3.1 Overview . 27
3.3.2 Source Code . 28
3.3.3 ProgramResult . 28
3.3.4 Call-String Representation 28
3.3.5 Interprocedural Analysis Runner 29
3.3.6 Top-Down / Bottom-Up Analysis 30
3.3.7 Interprocedural Interpreter 31

3.4 Implemented Analyses . 38
3.4.1 Interprocedural Integer Interval Analysis 38
3.4.2 Interprocedural Integer Octagon Analysis 39
3.4.3 Interprocedural Strongly Live Variable Analysis 40

4 Specification Inference 43
4.1 Numerical Abstract Domain (Octagons) 44
4.2 Top-Down / Bottom-Up Analysis 45

4.2.1 Bottom-Up Analysis Implementation 45
4.3 Extracting the Specification . 49

4.3.1 Analysis Results . 49
4.3.2 Extracting Preconditions 50
4.3.3 Extracting Postconditions 50
4.3.4 Extracting Loop Invariants 50

4.4 Implementation Details . 51
4.4.1 Overview . 51

4.5 Exporting the Inferred Specification to Viper IDE 52
4.5.1 Viper protocol . 53
4.5.2 Implementation in Sample 53
4.5.3 Viper Protocol Messages 54

5 Evaluation 55
5.1 Automated Tests . 55
5.2 Testing Infrastructure . 55
5.3 Numerical Forward Analyses 56

5.3.1 Fibonacci . 56

iv

Contents

5.3.2 McCarthy 91 Function 58
5.3.3 Multiple Callers . 58
5.3.4 Review . 60

5.4 Strongly Live Variable Analysis 61
5.4.1 Multiple Callers – No Recursion 62
5.4.2 Multiple Callers – Recursion 63
5.4.3 Review . 65

5.5 Specification Inference . 66
5.5.1 Program four() . 66
5.5.2 Ackermann Function . 66
5.5.3 Program getElementOrLast() 68
5.5.4 Strongly Connected Component in Callgraph 69
5.5.5 Review . 70

5.6 Evaluation Review . 71

6 Conclusions 73
6.1 Future Work . 74
6.2 Acknowledgements . 75

A Appendix 77
A.1 Bottom-Up Inferred Specification 77
A.2 Top-Down Inferred Specification 78
A.3 Running an Analysis . 79
A.4 Top-Down inferred Specification for the Ackermann Function 80
A.5 Viper Protocol Message with Inferred Specification 84
A.6 Viper Protocol Error Message 85

Bibliography 87

v

Chapter 1

Introduction

Static analysis provides mathematical guarantees about the behaviour of
programs by analysing its source or object code. A wide range of useful
properties can be derived by such an analysis. A compiler may for example
leverage this information to perform program optimisations at compile-time.
On the other hand, it may be possible to infer program specifications, such
as preconditions, postconditions and loop invariants which will help rea-
soning about the correctness of a (possibly safety-critical) application. Many
useful static analyses perform the analysis intraprocedurally, that is, one pro-
cedure is analysed at a time and procedure invocations are not supported.
Interprocedural analyses, on the other hand, support procedure invocations
and, by leveraging information about how a procedure is called, more pre-
cise analyses may be possible.

Sample (‘Static Analyzer for Multiple Programming LanguagEs’) [2] is a
generic static analyser developed at the Chair of Programming Methodol-
ogy1 at ETH Zurich. It is based on abstract interpretation [5], a generic
framework for the sound approximation of the behaviour of programs. Sam-
ple is generic in the sense that different (intraprocedural) analyses can be im-
plemented within Sample’s framework and it supports analysing multiple
programming languages by first translating them into an internal format. A
core goal of this thesis is to extend Sample with a generic and customisable
interprocedural static analysis.

1.1 Motivation

Let us consider the small program written in a C-like programming lan-
guage in Listing 1.1 and discuss possible analysis approaches. It is easy to
see that the procedure main() will always access the array at position zero

1http://www.pm.inf.ethz.ch/

1

http://www.pm.inf.ethz.ch/

1. Introduction

and therefore return the first element of the array. However, for an intrapro-
cedural static analysis it is impossible to deduce that the variable idx stays
within the bounds of the array. The problem of tracking possible numeri-
cal values of this programs variables needs to be tackled differently, that is,
using an interprocedural approach.

1 i n t main () {
2 i n t array [5] = {0 , 1 , 2 , 3 , 4} ;
3 i n t idx = 2 ;
4 idx = decrement (idx) ;
5 idx = decrement (idx) ;
6 return array [idx] ;
7 }
8
9 i n t decrement (i : I n t) {

10 return i − 1 ;
11 }

Listing 1.1: A small program that cannot be analysed using an intrapro-
cedural static analysis.

One approach, called the trivial treatment in [18], is to simply assume that
anything can happen when a procedure is called and therefore only conser-
vative information about global variables, return values and the heap can be
used. The variable idx would be set to an unknown value after the procedure
call and no information about the array access would be available.

Using inlining, which is textual replacement of the procedure call by the
called procedure’s body, main() could be translated into a procedure with-
out calls to decrement() and therefore analysed by an intraprocedural static
analysis. This would work for the program in Listing 1.1 but not for recur-
sive procedures because they would possibly need to be inlined infinitely
many times.

A context-insensitive or, as [18] calls it, naı̈ve approach treats a procedure invo-
cation as a goto from the call location to the entry-point of the callee. A pro-
cedure’s return is treated as a non-deterministic goto to the next statement af-
ter every call to this procedure. For the program in Listing 1.1, this would re-
sult in the gotos from-line-number→ to-line-number: 4→ 10, 5→ 10, 10→ 5
and 10 → 6 which introduces the loop 5 → 10 → 5 into the program. This
loop is an infeasible path that cannot occur in the actual execution of the
program. Due to this loop the numerical value of idx can still not be tracked
precisely and again, the analysis results in unknown information for vari-
able idx. This approach is called context-insensitive because it does not keep
track where a call came from. A called procedure is analysed using all
incoming information from all call-sites and the result of the procedure is
returned to every caller. This analysis is cheap in terms of computing power
but does not provide precise analysis results.

A more precise analysis is possible by using a context-sensitive approach, that
is, an approach that prevents infeasible paths like the loop 5→ 10→ 5 and

2

1.2. Goals of the Thesis

computes an answer for every call-site. We aim to design and implement
such an analysis in Sample.

1.2 Goals of the Thesis

This thesis should extend Sample with a generic and customisable interpro-
cedural analysis. The core goals consist of evaluating existing work, adapt-
ing it to our needs, implementing the analysis in Sample and instantiating
as well as evaluating the generic implementation with actual analyses for
different problems.

1.2.1 Design and Implementation of a Generic Interprocedural Anal-
ysis

The implemented generic analysis should meet the following criteria:

• The analysis can be instantiated for numerical and non-numerical anal-
yses.

• The implementation should be extensible such that it can be used as a
basis for other analyses in the future.

• The cost vs. precision ratio should be adjustable. For example a faster
but less precise analysis like the context-insensitive approach or a
more precise but slower context-sensitive approach should be usable
depending on the use case.

1.2.2 Instantiation of the Analysis

An interprocedural analysis for standard numerical analyses should be in-
stantiated. Furthermore, an analysis for non-numerical domains should be
instantiated. We will implement a variant of live variable analysis, which
works in backward direction, and instantiate an interprocedural analysis
with it.

1.2.3 Evaluation

The instantiated analyses should be experimentally evaluated in terms of
cost and precision. Strengths and weaknesses of the implementation should
be shown.

1.2.4 Specification Inference

Sample is able to infer some specifications of a program. For instance, it
supports the automatic inference of access permissions [9]. An extended

3

1. Introduction

goal of the project is to use the new interprocedural analysis to implement
a specification inference for numerical properties.

1.3 Viper and Silver

Our work within Sample will focus on the parts of the static analyser that
interact with the Viper toolchain [16] and its verification language Silver.
The Viper toolchain is a verification infrastructure for permission-based rea-
soning developed at ETH Zurich. It uses Sample to infer specifications for
programs written in Viper’s intermediate verification language Silver. “The
Viper intermediate verification language (Silver) provides simple imperative
constructs, as well as specifications and custom statements for managing
permission-based reasoning. The assertion logic supported is a variant of
implicit dynamic frames [22], which can be used to encode a variety of rea-
soning paradigms, including separation logics [20]. Silver provides support
for mathematical types, user-defined predicates and pure functions, and a
number of other unique features based on recent research.” [3]
Going forward we will use Silver for our examples.

1.4 Outline

In Chapter 2 we first provide more information about abstract interpretation,
interprocedural static analysis and existing approaches. Then, we introduce
our generic interprocedural analysis. Chapter 3 provides more details about
Sample and documents the implementation of the generic interprocedural
analysis and the instantiations for numerical analysis and strongly live vari-
able analysis [10]. Then in Chapter 4, we introduce specification inference
and provide details about how the implemented interprocedural static anal-
ysis has been put to work to infer preconditions, postconditions and loop
invariants for programs. Chapters 5 and 6 provide evaluation and conclu-
sions of the thesis.

4

Chapter 2

Interprocedural Static Analysis

In this chapter we first provide some background regarding interprocedu-
ral static analysis. Then we present existing work and introduce how our
generic interprocedural static analysis deals with method-invocations.

2.1 Intra- vs. Interprocedural Static Analysis

Whether a developer follows the functional programming approach or they
compose their programs using object oriented programming, real-world ap-
plications usually consist of multiple procedures that interact with each
other. An intraprocedural static analysis looks at each procedure in isolation.
What if the analysed code contains a method-invocation? An intraprocedu-
ral analysis cannot deal with that. Interprocedural analyses on the other
hand are able to analyse programs consisting of multiple procedures. If the
information about how a procedure was called is taken into account, more
precise analysis results can be achieved than by working on each procedure
in isolation.

For an intraprocedural analysis a control flow graph (CFG) may be sufficient
to represent the program under analysis. A CFG is a directed graph con-
taining nodes for every statement in a procedure. In the interprocedural
case additional information like the callgraph between procedures is needed.
In other work the term supergraph [14, 19] — a combination of CFGs with
edges connecting a call-statement in the caller with the CFG of its target (the
callee) — sometimes is used. Depending on how this supergraph looks, an
analysis may need to determine where to start. If the graph contains cycles
and there is no main method as the entry-point to the program, it may not
be obvious where to start an analysis. Another difficulty introduced in the
interprocedural case is how to tackle (possibly infinite) recursion.

5

2. Interprocedural Static Analysis

2.2 Abstract Interpretation

For a static analysis to be useful its result should always be correct.

Unfortunately the set of all possible executions of a program can be infinite.
Therefore, most non-trivial questions about any programs behaviour are un-
decidable. This means that it is not possible for some program (the analysis)
to answer a non-trivial question for any given program. To the cost of losing
information a problem can be approximated and become decidable.

Abstract interpretation [5] by Cousot and Cousot is a generic framework for
the sound approximation of the behaviour of a program. Concrete proper-
ties, for example the actual values of numerical variables at a certain point
in the program, are approximated with abstract predicates. These abstract
predicates generally form a lattice called the abstract domain. An analysis
based on abstract interpretation soundly over-approximates the effect of a
statement of the program in the abstract domain. Let f : Z → Z be a func-
tion in the concrete domain of integers that represents the effect of a state-
ment in the program. Let (D,≤) be a lattice. For function f there would
exist a transformer g : D → D that over-approximates the effect of f in D.
These abstract transformers are iteratively applied starting with an initial
element usually called ⊥ until a fixed point is reached. To speed up finding
a fixed point or to ensure termination for infinite lattices a widening operator
exists that computes a post-fixed point, that is, a fixed point larger than the
least fixed point. A thorough introduction to abstract interpretation can be
found at [23] in Chapter 2.

2.2.1 Abstract Domains

Depending on the analysis, one must chose an abstract domain. Throughout
the thesis we will use the interval abstract domain [4] and octagon abstract
domain [15] for examples.

For integers we will use [l, u], with l, u ∈ Z, to denote a value in the interval
domain. Other elements in the domain are > (any integer value) and ⊥ (no
information). The concrete value 0 would be written as [0, 0]. Furthermore,
we will use x 7→ [l, u] to denote that a variable x has the abstract value [l, u]
in the abstract domain. A set of constraints could for example be [x − y ≤
0, y− x ≤ 0, x ≤ 10, x + 10 ≤ 0] which translates to the variables x and y
having the same value somewhere between −10 and 10. For readability we
will write constraints like [x = y] instead of their octagonal representation
[x− y ≤ 0, y− x ≤ 0] in our examples.

6

2.3. Different Approaches to Interprocedural Analysis

2.3 Different Approaches to Interprocedural Analysis

In this section we briefly discuss some approaches to interprocedural analy-
sis.

Summary-based Analysis. A well known approach to interprocedural anal-
ysis is the summary-based analysis proposed by Sharir and Pnueli [21].
Their analysis consists of two phases. In a first phase a summary is created
that describes the effect of the procedure. In a second phase the program is
analysed and, when a procedure call is encountered, the summary-function
is applied on the current (abstract) state in the caller. This way a program
can be analysed and the effect of a called procedure is applied when nec-
essary. The name functional approach is also often use to refer to Sharir and
Pnuelis summary-based analysis. Their framework excludes recursive pro-
cedures with local variables.

Dataflow Analysis via Graph Reachability. Reps et al. [19] showed that a
large class of interprocedural problems can be precisely solved via reduction
to graph reachability. They call this class of problems the interprocedural,
finite, distributive, subset or IFDS problems. IFDS is a variant of the functional
approach by Sharir and Pnueli with three modifications:

1. The abstract domain is restricted to be a subset domain 2D for a finite
D.

2. The transformers need to be distributive. Some transformer f is dis-
tributive if f (x) t f (y) = f (x t y)

3. Edges from a call node in the supergraph to the return-site can have
an associated dataflow function.

With the third modification they allow the framework to analyse recursive
procedures with local variables.

Compositional Separate Modular Analysis. IFDS and summary-based anal-
ysis follow the principle of global analysis where the whole program is repre-
sented as a system of equations to be solved. Cousot and Cousot [6] present
methods for compositional separate modular static analysis of programs
by abstract interpretation. A global analysis is decomposed into separated
analyses that could be done in parallel. Several techniques about what sep-
arate analyses to run and how to compose them into a global analysis are
discussed in [6]. Advantages of this approach are that the program is mod-
ularly analysed and it is therefore possible to save memory and time during
analysis. Another advantage of this approach is that if a small part of the
program changes then only the affected components need to be re-analysed
whereas global analyses would need to analyse the whole program again.

7

2. Interprocedural Static Analysis

2.4 Interprocedural Static Analysis using Call-Strings

As defined in our goals we aim for a generic (in terms of the abstract do-
main) and customisable interprocedural analysis to be added to the static
analyser Sample. For a generic abstract domain we cannot assume that it
is finite which is why IFDS cannot be used for our use case. A more gen-
eral approach, that was also introduced by Sharir and Pnueli [21], is called
call-strings. After evaluating existing approaches we chose call-strings as the
basis of our analysis because it fits our requirements well and with modifi-
cations can be integrated into Sample’s existing code base. For the rest of
this section we explain the general idea of call-strings.

Call-Strings. The call-strings approach connects all the procedures into one
big graph representing the program. As discussed for the context-insensitive
approach in Section 1.1 this graph may contain infeasible paths. Call-strings
provide a way to only take feasible paths into account during the analysis.

Feasible and infeasible paths in the graph. Listing 2.1 shows a small program
written in Silver that increments the value of a local variable twice. Figure
2.1 shows two CFGs connected into one supergraph. The statements are
annotated with the line numbers (l2, l3, l4, l8) in the actual program. The
call-edges c1 and c2 represent the method calls. The return-edge r1 to the
statement at line 3 represents the transfer of the return-value to the target
variable i. Some necessary special handling when entering the callee and
returning from it is omitted for now. One feasible path between the two
CFGs would start with the call-edge c1 and end with the return-edge r1. On
the other hand a path containing call-edge c2 and the return-edge r1 exists
in the graph but is infeasible in the actual execution of the program.

Simulating a call-stack. The analysis can separate feasible from infeasible
paths by simulating the call-stack. A call-string γ is a sequence of locations
in the program. Initially γ is empty. Every time a method is called, γ
grows by adding the location of the last call to the call-string (similarly to
a push() on the call-stack). When returning from a method, the location
added last is removed from γ (similarly to a pop() on the call-stack). The
call-string therefore always represents the stack of method calls that have
not returned yet. For the program in Figure 2.1 three different call-strings
exist: γ1 := Nil, γ2 := l3 : Nil, γ3 := l4 : Nil where Nil represents the
empty list and : prepends an element to a list (similarly to the cons operator
in functional programming languages). The empty call-string γ1 is used
when no calls are on the call-stack, which is the case for the entry-method.
The other two call-strings γ2 and γ3 represent the two method calls at lines
3 and 4. Assuming that at the end of the increment()-CFG we have call-string

8

2.4. Interprocedural Static Analysis using Call-Strings

enter main

l2: i := 1

l3: i := increment(i)

l4: i := increment(i)

enter increment

l8: ret := x + 1

exit increment

exit main

c 2

r2

c 1

r1

Figure 2.1: Supergraph consisting of two connected control flow graphs.

γ2 := l3 : Nil then by looking at the head of the call-string we know the
only feasible return-edge can be r1.

Recursive procedures. As explained, the call-string grows with each method
call. For unbounded recursion this may lead to an infinitely growing call-
string. For now we just note that there is a way to tackle this, and we will
explain this in more detail in Section 2.4.2.

1 method main() {

2 var i: Int := 1

3 i := increment(i)

4 i := increment(i)

5 }

6

7 method increment(x: Int) returns (ret: Int){

8 ret := x + 1

9 }

Listing 2.1: A simple program written in Silver

9

2. Interprocedural Static Analysis

2.4.1 Abstract Interpretation Tagged with Call-Strings

In this section we formally introduce call-strings adapting definitions and
notations from [21] and [8] to our setting. Then we briefly discuss some
drawbacks of the original solution. We will base our approach on these
definitions.

A supergraph Gsuper
def
= (V, E ∪ Einterproc) is a directed graph containing all

CFGs of all methods in the program. The set V consists of all nodes in
the methods CFGs. Each node represents either a statement in the program
or it may be a node that denotes that a method is entered or exited. E
represents the edges in the control flow graphs and Einterproc

def
= Ecall ∪ Ereturn

are additional method call- and return-edges.

Tagging a given Abstract Interpretation. The main idea behind call-strings
is to translate a given abstract interpretation into a new one that tags its ab-
stract values with call-strings. Let A def

= ((D,≤), fmn, d0) be a given abstract
interpretation with the lattice (D,≤) the transformers fmn and an initial
value d0 with which an analysis is started.

Set of call-strings. Let Γ be the set of all call-strings representing interproce-
durally valid paths in the supergraph. For a program without recursion this
set is finite.

Growing and shrinking call-strings. The operator ◦ describes how a call-string
γ ∈ Γ is affected by an edge in the supergraph. We use : as the cons operator
that prepends an element to a list whereas .tail returns the remainder of a
list without its first element. Additionally we will use .head to denote the
element that was added last to the call-string. This element represents the
most recent method call in the call-stack.

γ ◦ (m, n) def
=

γ if (m, n) ∈ E
m : γ if (m, n) ∈ Ecall

γ.tail if (m, n) ∈ Ereturn and γ.head = n
(2.1)

The intuition behind the formula is that for (intraprocedural) edges in the
CFG the call-string does not change. But for every call-edge the call-string
grows whereas a return-edge (m, n) ∈ Ereturn shrinks the call-string if the
most recent method call matches the target of the return-edge. In other
cases1 the function is not defined which ensures that call-strings only repre-
sent feasible paths in the program.

1For example a return-edge that does not correspond to γ.head.

10

2.4. Interprocedural Static Analysis using Call-Strings

Constructing a new abstract interpretation. A new lattice (D∗,≤∗) whose el-
ements are the point-wise lifting D∗ def

= Γ → D is introduces. The order
relation ≤∗ is the point-wise extension of ≤ in D.

Let d∗ ∈ D∗. For a given call-string γ ∈ Γ, d∗(γ) denotes the abstract value
that was propagated by the analysis through the method calls in γ. A new
initial value with respect to the initial value in the given analysis is defined
as:

d∗0(γ)
def
=

{
d0 if γ = Nil
⊥ otherwise

(2.2)

Transformers for the lattice D∗ are defined as:

f ∗mn(d
∗)(γ)

def
=

{
fmn(d∗(γl)) if there exists a γl s.t. γl ◦ (m, n) = γ

⊥ otherwise
(2.3)

The intuition behind this is that for valid call-strings the original transform-
ers are applied. Otherwise the path is infeasible and ⊥ is used.

Finally A∗ def
= ((D∗,≤∗), f ∗mn, d∗0) is a new abstract interpretation that tags

each abstract value with a call-string.

The analysis A∗ yields an abstract interpretation adapted to only take feasi-
ble paths into account. If the transformers in the given A are distributive
then the new transformers are as well [8]. The authors show that this analy-
sis terminates for programs with finite Γ (without recursion). With a minor
modification to the ◦ operator the analysis can be adapted to a backward
analysis. In this case the ◦ operator would grow the call-string for return-
edges and shrink it when the matching call-edge is encountered.

Drawbacks

The previously presented analysis A∗ in its current form has two drawbacks
that need to be solved to be useful for our use case.

1. It does not terminate for infinite Γ.

2. It does not support procedures with arguments and recursion with
local variables.

Convergence mainly depends on Γ being finite but for recursive procedures
the set of valid call-strings is infinite. For this problem the original paper [21]
provides a solution to approximate call-strings. The authors only consider
procedures without arguments and recursion without local variables. This
needs to be adapted for our use case to make a static analysis of the pro-
grams like the one in Listing 2.1 possible.

11

2. Interprocedural Static Analysis

2.4.2 Call-String Approximation

This section briefly describes how Sharir and Pnueli approach programs
with recursion. We will use their call-string suffix2 approximation [21] with
modifications for procedures with parameters and local variables in recur-
sive methods.

The program in Listing 2.2 recursively increments a counter x until its value
is greater than or equal to ten. The set of valid call-strings would consist
of Γrec := {Nil, l3 : Nil, l3 : l3 : Nil, ...} which is infinite. To ensure
termination of an analysis based on call-strings a finite set is needed. An
upper bound on the length of the call-strings k is introduced. As long as
the call-string smaller than k the call-string is modified according to the
definition of the ◦ operator. Otherwise for method calls the location is still
added to the list but then only the k locations added last are kept as the
call-string. Older call-locations are discarded. Return-edges are treated as
follows: Let γ := li : lj : lk be a call-string containing the locations li, lj, lk
and er ∈ Ereturn a return-edge going back to the location li. Following the
edge er will drop li from the call-string and then add all calls to the call-string
that lead to the oldest call which is lk. Returning from a method therefore
can produce multiple call-strings and the abstract value is reused at multiple
call-locations. Setting k = 0 results in propagating the abstract value to every
caller which results in a context-insensitive [18] analysis.

1 method rec(x: Int) returns(r: Int){

2 if(x<10) {

3 r := rec(x + 1)

4 } else {

5 r := x

6 }

7 }

Listing 2.2: A recursive method yielding an infinite amount of call-strings

2.5 Generic Interprocedural Static Analysis

In this section we present our generic interprocedural static analysis. The
analysis extends call-strings and adds support for procedures with parame-
ters or recursion with local variables. The framework is generic in the sense
that we assume an (intraprocedural) analysis in the form of an abstract inter-
pretation to be given. We also discuss how to treat programs with multiple
entry-points or disconnected supergraphs.

2Sharir and Pnueli append new elements to the right side of the call-string whereas we
prepend new elements to the left. A suffix of length k contains up to k locations that were
added last to the call-string.

12

2.5. Generic Interprocedural Static Analysis

2.5.1 Overview

Our approach uses a given intraprocedural analysis as a black box to com-
pose an interprocedural whole-program analysis. It can also be adapted to
a modular analysis for which we provide more details in Section 4.2. Both
forward and backward direction of analysis are supported. The interproce-
dural analysis consists of the following steps:

1. Translate the program into a supergraph

2. Determine at what location in the program to start the analysis

3. Computing the analysis using the previously discussed call-string ap-
proach with special treatment for entering and leaving a procedure.

2.5.2 Targeted Programming Language

We target programming languages similar to Silver. A procedure supports
multiple parameters and return values. The grammar rule for the syntax of
a Silver call-statement with returns is shown in Listing 2.3.

1 call -statement ::= // call [with return target]

2 [ident^,* :=] ident "(" exp^,* ")"

Listing 2.3: Grammar rule of a call-statement in Silver.

A call-statement consists of assignments to the targets of the return values
and the actual method call. If a procedure is declared to return values then
every call to it must provide all target variables in its call-statement. The
analysis is restricted to programs in which the target of a method-invocation
can statically be determined. We therefore do not support dynamic dispatch
in object oriented programming languages or higher-order functions from
the functional programming world.

2.5.3 Framework Parameters

An instance of our framework requires the following parameters:

• A program consisting of a set of procedures in CFG form. We assume
every CFG to contain an entry and exit node.

• An abstract interpretation A def
= ((Ds, ≤), fmn) consisting of a lattice

(Ds, ≤) of abstract states (defined below) and the abstract transform-
ers fmn. We use A as a black box providing an intraprocedural analysis
and extend it to treat method call-statements.

• A direction ∈ { f orward, backward} of the analysis.

• An initialiser function init : V → Ds that provides an initial abstract
state for a methods entry (forward) or exit (backward) node.

13

2. Interprocedural Static Analysis

• An unification function uni f y : (Ds, Ds)→ Ds to combine two abstract
states.

• An optional argument k ∈N that bounds the call-string length.

Abstract State

Elements in Ds represent a state and the analysis should collect a state pro-
viding information about the programs variables for every location in the
program. Let Ident be the set of variable identifiers existing in the program.
For every state ds ∈ Ds there exists a set i ∈ P(Ident) that represents the
set of variable identifiers over which the state is defined. In non-relational
domains the state ds maps each identifier in i to an abstract value. Relational
domains on the other hand consist of a set of constraints for the variables in
i.

2.5.4 Creating the Supergraph and Callgraph

We use the same notation for the supergraph as in the previous section. The
list of CFGs is translated into a supergraph Gsuper

def
= (V, E ∪ Einterproc) with

E def
= Ecall ∪ Ereturn in a straightforward way in linear time in terms of the

number of nodes: First a new graph Gsuper is created and every CFG with all
its nodes and edges are added to V and E correspondingly. This forms a dis-
connected graph with as many components as CFGs. Then all statements of
every CFG are traversed once and when a call-statement is encountered two
new directed edges are created. One edge that connects the call-statement
to the entry-node of the callee is added to Ecall . The other edge connecting
the exit-node of the callee with the call-statement is added to Ereturn. Note
that this results in a directed graph that may be disconnected. Listing 2.4
shows a program that results in a disconnected supergraph consisting of
two connected components. The information in the supergraph is also used
to build a callgraph Gc

def
= (Vc, Ec). The set Vc consists of all entry-nodes

in all CFGs and the set of edges can be defined as Ec
def
= {(m′, n′) | (m, n) ∈

Ecall ∧ m′ (n′) is the entry-node in the same CFGs as m (n)}. Figure
2.2 shows a callgraph for the program in Figure 2.1.

1 method connected () {

2 callee ()

3 }

4 method callee () {}

5 method disconnected () {}

Listing 2.4: A program with a disconnected supergraph

14

2.5. Generic Interprocedural Static Analysis

main (entry) increment (entry)

Figure 2.2: Callgraph created using the supergraph in Figure 2.1.

2.5.5 Determining where to Start the Analysis

The analysis is started at a specific location in the program with an initial
abstract state supplied by the user of the framework. Where to start exactly
depends on the direction of the analysis and on whether a top-down or
bottom-up analysis should be run. Here we describe a top-down analysis
where we always start with an entry-method of the program and then pro-
ceed into the callees. In Section 4.2 we present a bottom-up analysis as well.
After the entry-method(s) have been determined the forward or backward
analysis can be started, respectively, at the entry-node or exit-node of the
method.

We consider any method without an in-edge in the callgraph as an entry-
method and use it as a starting-point with the initial abstract state provided
by the initialiser function init(). If every node in the callgraph contains at
least one in-edge then a callgraph could look like the one marked with Greek
letters in Figure 2.3. The nodes α and β form a strongly connected compo-
nent and it is not clear whether a client of this program would call α or β
and we therefore assume both nodes as possible entry-methods.

a

b c

d

1 2

3

α β

γ

δ

Figure 2.3: Three different callgraphs with their entry-points (highlighted).

For a callgraph that looks like the one on the right in Figure 2.3 the entry-
nodes α and β can be derived the following way:

• Compute the strongly connected components (SCC) in the callgraph.

• Build a new graph, which we call condensed callgraph, and add a vertex
for each SCC.

• Add a directed edge connecting two components if they are not con-
nected yet and if there exists an edge (m, n) in the callgraph where m
and n are in different SCCs.

15

2. Interprocedural Static Analysis

• Every vertex without in-edges in the new graph now represents a set
of procedures that should be treated as entry-methods.

This pre-processing must be run no matter what shape the given supergraph
has. Only searching for nodes without in-edges is not enough because a
supergraph might for example contain all methods marked with numbers
and Greek letters in Figure 2.3. The described pre-processing would find
1, 2, α and β as entry-methods whereas only looking for nodes without
in-edges would omit the methods α and β and never analyse them.

2.5.6 Method Call Treatment

The analysis A passed to the framework is an intraprocedural analysis and
therefore cannot handle method call-statements. To be able to use A as is we
rewrite method calls into a sequence of statements that the intraprocedural
analysis can handle. Let c ∈ V be a node in the supergraph representing
a method call. Let np ∈ N0 be the number of parameters and nr ∈ N0
the number of return values the called method declares. Let dpre ∈ Ds be
the abstract state before the method call-statement in a forward analysis
and dpost ∈ Ds the abstract state directly after the method call in a backward
analysis. Let ipre, ipost ∈ P(Ident) be the set of variable identifiers over which
dpre, respectively dpost are defined. Depending on the direction of analysis
(forward/backward) calling a method is treated differently.

Forward. We create and add np new identifiers to ipre. These identifiers are
in-transfer-variables and we use them to pass arguments into the callee. In
our implementation in Section 3.3 we used arg # prefixes for those identifiers
simply because they are not valid identifiers in the programming language
we target.

Backward. In a backward analysis nr new identifiers are added to ipost.
These identifiers are out-transfer-variables and they are used to return values
from the callee into the caller. Similarly to the forward case we implemented
this using a prefix ret # that is not valid in the targeted programming lan-
guage.

The actual method-invocation is then reduced to evaluating the arguments,
branching into the callees CFG and after returning assigning the return val-
ues to the target variables defined in the call-statement. A simple way to
let the black box (the intraprocedural analysis) A treat call-statements is by
rewriting the node c in the CFG into a sequence of statements that assign
the parameter-expressions to the in-transfer-variables and the out-transfer-
variables to the target variables of the method call-statement. The unsup-
ported call-statement is now replaced and the given intraprocedural analysis
can interpret the rewritten nodes. Given a method call r1, r2, r3 := foo(exp1,

16

2.5. Generic Interprocedural Static Analysis

exp2) the node in the CFG would be rewritten to a sequence of statements as
shown in Figure 2.4. It should be noted that our implementation does not
actually rewrite the supergraph but performs these assignments on-the-fly
when a call-statement is encountered. Before proceeding to the next state-
ment after the method call the (temporary) in-/out-transfer-variables are
removed from the current state.

//add-remove transfer identifiers

arg #1 := exp1

arg #2 := exp2

r1 := ret #1

r2 := ret #2

r3 := ret #3

foo (entry)

foo (exit)

//add-remove transfer identifiers

ec ∈ Ecall

er ∈ Ereturn

Figure 2.4: The call-statement r1, r2, r3 := foo(exp1, exp2) after rewriting.

2.5.7 Entering and Leaving a Procedure.

The problem. Recall that the original call-string based analysis simply tags
an abstract value and propagates it along an edge e ∈ Einterproc into a callee
or back to a caller. Let us assume we want to track the numerical values of
the variables in the program in Listing 2.5. Starting at the main method and
assuming the framework has been instantiated with integer interval analysis
as A and forward direction, at the call at line 3 we would propagate the
abstract state {x 7→ [0, 0], r 7→ >, arg #1 7→ [0, 0]} tagged with the call-
string Nil over the call-edge. For this simple program several problems
arise.

17

2. Interprocedural Static Analysis

• Simply propagating the abstract state into the callee does not set the
value of the parameter l.

• The declaration of variable x at line 6 conflicts with the propagated
value of x from the caller.

• At the exit-block of the callee the local variable with identifier x has the
abstract value [1, 1]. Propagating this state back over the return-edge
into the caller would overwrite the main-methods own local variable
x.

1 method main() returns(r: Int){

2 var x: Int := 0

3 r: = callee(x)

4 }

5 method callee(l: Int) returns (r: Int) {

6 var x: Int := 1

7 r := x + l

8 }

Listing 2.5: Main and callee use overlapping variable names.

Using a Transfer-Value. Reps et al. [19] allow an edge e ∈ Einterproc in
the supergraph to have a transformer instead of just propagating the ab-
stract state. Our approach creates and propagates a transfer-value through
the edges in Einterproc. A transfer-value dt ∈ Ds is an abstract state that is
propagated into or out of a called method. This abstract state should carry
all necessary information for the analysis of the callee. For the program in
Listing 2.5 and the framework instantiated with forward direction and integer
interval analysis, dt would carry the abstract value of the argument into the
callee and the abstract value of the return variable out of the method. We
require the transfer-value to not use any identifiers that exist in the caller or
callee. Instead of propagating the whole state from the caller into the callee
only information that is necessary3 to analyse the callee is transferred. In-
stead of transferring l or r a temporary identifier arg #1 for the first argument
to the callee and ret #1 for the first return variable could be used. That is, the
set of identifiers over which the propagated state is defined only contains
identifiers for the temporary in-/out-transfer-variables. The call in Listing
2.5 would propagate {arg #1 7→ [0, 0]} into the callee and {ret #1 7→ [1, 1]}
back to the caller. Propagating a transfer-value solves the problems regard-
ing procedure parameters and shared local variable names outlined before.
It remains to be explained how a transfer-value can be merged with an ex-
isting abstract state.

3It depends on the actual analysis what information is necessary. For a numerical analy-
sis it is enough to transfer the abstract values of arguments and global variables.

18

2.5. Generic Interprocedural Static Analysis

Abstract State unification. The framework needs a way to combine two
abstract states into one. Since this heavily depends on the given analysis the
generic framework requires a unification function uni f y : (Ds, Ds) → Ds
that is able to combine two abstract states. Let d1, d2 ∈ Ds be two abstract
states with i1, i2 ∈ P(Ident) being their set of variable identifiers over which
they are defined. Unifying the two states du := uni f y(d1, d2) should result
in a state du whose set of identifiers i = i1 ∪ i2 contains all identifiers of both
states. Non-relational domains should unify the states in such a way that the
abstract value for each of the variables is preserved. Our framework uses
uni f y to merge an abstract state with a transfer-value. Because a transfer-
value by definition uses new identifiers in general two states passed to uni f y
do not share common identifiers. If they do share common identifiers then
it is up to the actual analysis to define how two states should be unified.
In Section 3.4.2 we provide information about such a case for the octagon
abstract domain for integers.

Passing call/return edges. Now that transfer-values and the uni f y func-
tion are introduced it remains to be explained what the framework does
when passing an edge e ∈ Einterproc. The following two paragraphs describe
the forward analysis case. For a backward analysis minor modifications are
necessary and we provide an implementation in Section 3.3.7.

Passing a call-edge. When the analysis passes an edge (m, n) ∈ Ecall the
node n is a method-entry node and dt ∈ Ds is the corresponding transfer-
value. To be able to analyse the called procedure an initial abstract state
needs to be created. This initial state is d0,n := uni f y(init(n), dt). This
state also contains the abstract values for the in-transfer-variables. Similarly
to the preparation of the method call a sequence of assignment statements
need to be introduced to assign the in-transfer-variables to the actual method
parameters. After these assignments the temporary transfer-variables are
removed from the state.

Example 2.1 Let us assume the framework is instantiated with an integer interval
analysis, forward direction and an initialiser function that sets every variable to top.
For the method call in Listing 2.5 a transfer-value dt = {arg #1 7→ [0, 0]} would
be used to create an initial state d0,n = {l 7→ >, r 7→ >, arg #1 7→ [0, 0]}.

Passing a return-edge. When the analysis encounters a return-edge (e, c) ∈
Ereturn the node e is the exit-node of the called method. Let dret ∈ Ds be
the previously described transfer-value containing the abstract values of the
return variables. Let dcall ∈ Ds be a state at node c after evaluating any
arguments. This state contains the abstract values of all caller-local variables
but also the transfer-variables created to call the callee. To merge the effect
of the callee into the caller state at node c these two states are unified into

19

2. Interprocedural Static Analysis

d := uni f y(dcall , dret). After unifying the states the assignment statements
(see Figure 2.4) will assign the transfer-variables to the actual target variables
of the method call.

Example 2.2 For the call in Listing 2.5 and assuming the framework is instantiated
with an integer interval analysis the transfer-value would be dret = {ret #1 7→
[1, 1]} and the state after evaluating the arguments would be {x 7→ [0, 0], r 7→ >,
arg #1 7→ [0, 0]}. The unified state d = {ret #1 7→ [1, 1], x 7→ [0, 0], r 7→
>, arg #1 7→ [0, 0]} would contain all information necessary to assign ret #1 to
r and therefore merging the effect of callee() back into the method main(). After
the assignment and removing all temporary variables the state in main() after the
method call would be {x 7→ [0, 0], r 7→ [1, 1]}.

2.5.8 Computing the Analysis Result

Finally the call-strings approach discussed in Section 2.4.1 combined with
our special treatment for method-arguments and returns yields a call-string
tagged abstract interpretation with support for local variables in recursion
and procedure parameters. This analysis can be solved with standard fixed
point solving techniques like a worklist algorithm in [17]. For non-recursive
programs this is guaranteed to terminate [21]. In case of recursion we over-
approximate the solution using Sharir and Pnuelis call-string suffix approx-
imation as described in Section 2.4.2. Our special handling for call- and
return-edges can directly be applied to the approximate case too.

20

Chapter 3

Sample

Sample (‘Static Analyzer for Multiple Programming LanguagEs’) [2] is a
generic static analyser based on abstract interpretation [5] developed at the
Chair of Programming Methodology at ETH Zurich. It is generic with re-
spect to the underlying abstract domain, the heap analysis that approxi-
mates all runtime heap structures and the analysed language because Sam-
ple translates the language under analysis into an intermediate representa-
tion ([2]). Generic intraprocedural analyses are supported but an implemen-
tation for interprocedural analysis is missing. In this chapter we first give
an overview of Sample’s technical code base before this project and then
present how Sample has been extended with the generic interprocedural
analysis described in the previous chapter. Sample’s source code includ-
ing the work of this project is available online at: https://bitbucket.org/
viperproject/sample.

3.1 Overview

The Sample code base consists of many different modules and is used in
multiple research projects. Some of them being TouchGuru [1] or Viper [16]
introduced below. Our work focused on the parts of Sample that interact
with Viper and therefore its verification language Silver. Sample includes
translations from Silver to Sample’s internal representation and back. We
did a small change to the existing implementation to also translate method
call-statements.

3.1.1 Broad Overview

Figure 3.1 from the Sample project page [2] gives an overview of Sam-
ple’s overall architecture. The top-left component is the source code to be
analysed. Researchers can extend components, for example the compiler,

21

https://bitbucket.org/viperproject/sample
https://bitbucket.org/viperproject/sample

3. Sample

to integrate their own analyses or add more supported programming lan-
guages to Sample. The core of Sample consists of the internal represen-
tation of the analysed program (see Section 3.2.1), the fixpoint engine to
over-approximate the analysis result and data structures to represent the
result of the analysis for a given CFG. The components at the bottom of Fig-
ure 3.1 show the output to a developer like for example assertion warnings
or inferred specifications (See [2]). Since Sample’s focus so far has been in-
traprocedural analysis the core components work on one CFG at a time and
return an analysis result for this CFG. The biggest part of our work focused
on these core components to add the interprocedural analysis.

Figure 3.1: Sample overview taken from the project page [2].

22

3.2. Sample for Intraprocedural Analyses

3.1.2 Programming Language

Sample is written in the programming language Scala1. It provides object
orientation but also the benefits of functional programming while being com-
patible to Java code. We will use some Scala code examples and assume the
reader has a basic understanding of the language and its constructs. Read-
ers experienced with other programming languages can get up to speed
quickly with the Scala School2. All implementation work in this project has
been done using Scala.

3.2 Sample for Intraprocedural Analyses

In this section we explain Sample’s existing intraprocedural analysis infras-
tructure and highlight parts of the code base that are especially relevant for
our implementation.

3.2.1 Program Representation

Control Flow Graph. A program is represented as a control flow graph
(CFG). Unlike the CFG used in Chapter 2, where every node represented
a statement in the program, the class SampleCfg represents a graph whose
nodes are of type Block. Implementations of the Scala trait Block are State-
mentBlock, PreconditionBlock, PostconditionBlock, LoopHeadBlock and Constrain-
ingBlock. A Block can contain zero or many statements, depending on its
type. Edges in the CFG can either be conditional or unconditional edges.
A conditional edge is annotated with its condition and represents the case
when the body of an if or while statement is entered. The method in List-
ing 3.1 is represented by the CFG in Figure 3.2. Every SampleCfg has an
entry-block and may or may not have an exit-block. The first line of each
block in Figure 3.2 defines its type and the number in parentheses uniquely
identifies that block. Statements inside a method (CFG) can be identified by
a BlockPosition. A BlockPosition is a data structure that contains a reference
to a block and a zero-based index for the element it points to. The position
BlockPosition(18, 1)3 would for example point to the statement t2 = MC(t1) in
the block identified by the number 18.

Statements. In Sample there is no distinction between expressions and
statements. Everything is represented as a statement. Every subtype of
Statement has an attribute programpoint of type ProgramPoint that maps the
statement to the actual location in the source code. Figure 3.2 shows that
arithmetic expressions like n + 11 are represented as a method call n.+(11).

1http://scala-lang.org/
2https://twitter.github.io/scala_school/
3The actual implementation keeps a reference to the block and not the block-number.

23

http://scala-lang.org/
https://twitter.github.io/scala_school/

3. Sample

PreconditionBlock(15)

StatementBlock(16)

declare Int t1 = None

declare Int t2 = None

PostconditionBlock(20)

StatementBlock(18)

t1 = n.+(11)

t2 = MC(t1)

r = MC(t2)
StatementBlock(19)

n.>(100).!()

StatementBlock(17)

r = n.-(10)

n.>(100)

Figure 3.2: Control flow graph of the McCarthy 91 function.

1 // McCarthy91:

2 // if (n>=101) then r:= n-10 else r: = 91

3 //

4 method MC(n: Int) returns (r: Int) {

5 var t1 : Int

6 var t2 : Int

7 if (n >100){

8 r := n - 10

9 } else {

10 t1 := n + 11;

11 t2 := MC(t1);

12 r := MC(t2);

13 }

14 }

Listing 3.1: Implementation of the McCarthy 91 function in Silver.

3.2.2 State Representation

The state of an analysis is represented as a subtype of the trait State. The
state forms a lattice, that is, it is a partially ordered set and for any two
elements a least upper bound and greatest lower bound exists. As briefly
explained in Section 2.2 abstract interpretation iteratively applies abstract
transformers until a fixed point is reached in the lattice.

1 trait State[S <: State[S]] extends Lattice[S]

The type SilverState extends State and already provides some transformers
related to the Silver programming language. Developers implementing a
new static analysis need to extend this type and provide the transformers
for their abstract domain by implementing the abstract methods defined by
State. There exist various implementations such as IntegerIntervalAnalysis-
State for the integer interval abstract domain or IntegerOctagonAnalysisState
for the integer octagon abstract domain.

24

3.2. Sample for Intraprocedural Analyses

3.2.3 Analysis Results

The intraprocedural analyses in Sample store the result of an analysis in a
data structure of type CfgResult. A CfgResult stores for any location in the
source code identified by a ProgramPoint the state of the analysis directly
before and after that location. In an intraprocedural analysis there is one
CfgResult per analysed method.

3.2.4 Intraprocedural Analysis Runner

A SilverAnalysisRunner is responsible for running the static analysis of a Sil-
ver program using Sample. The analysis runner compiles a Silver program
into Sample’s representation and then analyses each method and outputs
the result. A SilverEntryStateBuilder is used to create the initial state with
which the analysis of a method is started. Figure 3.3 shows a sequence di-
agram of an intraprocedural analysis implemented in Sample. The entry
state builder can be understood as the implementation of the init() function
described in Chapter 2.

Figure 3.3: Sequence diagram of an intraprocedural analysis.

Except the SilverCompiler all types shown in the diagram require a generic
argument S representing the abstract state (see Section 3.2.2). Sample’s im-
plementation makes heavy use of Scala generics and therefore allows a devel-
oper to compose different analyses by combining the necessary components.
A developer implementing a new kind of analysis would need to provide
an entry-state builder and implement a subtype of SilverAnalysis in which
depending on the direction of analysis a SilverInterpreter is invoked.

3.2.5 Computing a Fixed Point Solution

Sample provides two implementations of a SilverInterpreter that interpret a
program in either forward or backward direction (Figure 3.4). These inter-

25

3. Sample

preters start at the first (forward) or last (backward) position in a CFG and
iteratively apply the transformers on an initial state until a fixed point is
reached. The fixed point is computed using a worklist algorithm [17]. That
is, blocks of the CFG are added to a worklist as long as the states propa-
gated along the edges of the CFG change. In Listing 3.2 a simplified Scala
implementation of the worklist algorithm for the forward analysis is shown.
The method execute() takes a SampleCfg and an initial state of generic type S
as argument and computes the analysis.

1 def execute (c fg : SampleCfg , i n i t i a l : S) : CfgResult = {
2 val c f g R e s u l t = i n i t i a l i z e R e s u l t (cfg , i n i t i a l . bottom ())
3 val w o r k l i s t = mutable . Queue [SampleBlock] (c fg . entry)
4 val i t e r a t i o n s = mutable .Map[SampleBlock , I n t] ()
5
6 while (w o r k l i s t . nonEmpty) {
7 val current = w o r k l i s t . dequeue ()
8 val i t e r a t i o n = i t e r a t i o n s . getOrElse (current , 0)
9 val oldEntrySta te = c f g R e s u l t . g e t S t a t e s (current) . head

10
11 / / j o i n incoming s t a t e s
12 var e n t r y S t a t e = bottom
13 val edges = c fg . inEdges (current)
14 for (e <− edges) {
15 val p r e d e c e s s o r S t a t e = c f g R e s u l t . g e t S t a t e s (edge . source) . l a s t
16 / / . . . h a n d l i n g o f c o n d i t i o n a l e d g e s o m i t t e d
17 e n t r y S t a t e = e n t r y S t a t e lub p r e d e c e s s o r S t a t e
18 }
19
20 / / widening
21 i f (edges . s i z e > 1 && i t e r a t i o n > SystemParameters . wideningLimit) {
22 s t a t e = oldEntrySta te widening e n t r y S t a t e
23 }
24
25 / / i n t e r p r e t t h e s t a t e m e n t s in t h e b l o c k
26 i f (! (e n t r y S t a t e lessEqual o ldEntrySta te)){
27 val s t a t e s = L i s t B u f f e r (e n t r y S t a t e)
28 current . s ta tements . f o l d L e f t (e n t r y S t a t e) {
29 (preState , s tatement) =>
30 val successor = executeStatement (statement , p r e S t a t e)
31 s t a t e s . append (successor)
32 successor
33 }
34
35 / / s a v e s t a t e s , i t e r a t i o n count and enqueue s u c c e s s o r s
36 c f g R e s u l t . s e t S t a t e s (current , s t a t e s . t o L i s t)
37 w o r k l i s t . enqueue (c fg . s u c c e s s o r s (current) : ∗)
38 i t e r a t i o n s . put (current , i t e r a t i o n + 1)
39 }
40 }
41 }

Listing 3.2: Simplified worklist algorithm for a forward analysis.

Let (D,v,t,u) be the lattice representing states in the analysis. The worklist
is a queue of blocks in the CFG and it is initialised with the entry-block of
the currently processed method (line 3). For every element in the worklist an
entryState :=

⊔{s | s ∈ D, s is a state propagated along an in-edge}
defined as the join of all incoming states is computed (line numbers 12 to
18). As long as the entry-state is strictly greater than the entry-state of a
previous iteration all statements of the block are executed by applying the
transformers representing those statements (lines 26 to 33). The intuition
is, that as long as the entry-state for a block is strictly greater than in a

26

3.3. Sample for Interprocedural Analyses

Figure 3.4: Intraprocedural Silver interpreters. The squares denote private
methods.

previous iteration new information is available and a fixed point has not
been reached yet. If one blocks entry-state did not change between two
iterations there is no need to re-analyse its statements. After processing a
block the successor blocks in the CFG are added to the worklist (line 37).
The backward interpreter works very similarly with the differences that the
algorithm starts at the exit-block of the method, statements of a block are
executed in reverse order and instead of computing an entry-state an exit-
state is computed by joining states propagated along all outgoing edges of
the current block. Additionally the backward interpreter adds predecessors
of the current block to the worklist. Depending on the system parameter
wideningLimit widening is applied on the entry-state (forward) or exit-state
(backward) to ensure termination of the worklist algorithm in the presence
of loops (lines 21 to 23).

3.3 Sample for Interprocedural Analyses

A core goal of the project is to extend Sample with a generic and customis-
able interprocedural analysis. The existing code is extended in a way to
make it reusable for an interprocedural analysis without breaking existing
intraprocedural analyses. In this section we present implementation details
and design decisions regarding the implemented interprocedural analysis.
Basic understanding of Sharir and Pnueli’s call-string approach [21] is re-
quired (see Chapter 2).

3.3.1 Overview

The previously existing implementation in Sample invoked the SilverInter-
preter once for each method. But in the interprocedural case the interpreter
needs all called methods to be available. Now, the interpreter not only is
able to analyse a single control flow graph but also supports that blocks of
different control flow graphs are added to the worklist in the same execution

27

3. Sample

of the worklist algorithm. Since multiple control flow graphs are analysed
in the same execution, it is no longer possible to return the analysis result
as one CfgResult. First, we introduce the new data structure ProgramResult
which is the counterpart of CfgResult for programs. Then, we explain how
a call-string is modelled in the system and we provide details on how the
previously existing interpreters have been extended to the interprocedural
case. The implemented analysis can be parametrised with a CallStringLength
and, as before, it is possible to control the widening limit using a system pa-
rameter.

3.3.2 Source Code

The described implementation can be found in Sample’s source code at bit-
bucket.org4. Most of the implementation was done in the module ‘sample-
silver’.

3.3.3 ProgramResult

To store the result of an analysis a new type ProgramResult has been intro-
duced. A program result can be used to store multiple instances of CfgResult.
The ProgramResult separates different CfgResults by a SilverIdentifier and an
optional CfgResultTag. A SilverIdentifier is Sample’s representation of an iden-
tifier in a Silver program. A method-name is for example a SilverIdentifier.
The ProgramResult allows storing multiple CfgResult instances per identifier.
To make them distinguishable, results can be tagged with any type that
extends CfgResultTag. If no tag is given, results are marked with CfgResult-
Tag.Untagged.

Figure 3.5: Class diagram of ProgramResult.

3.3.4 Call-String Representation

A call-string is represented as an immutable type CallString. It implements
CfgResultTag and can therefore be used to tag CFGs in a ProgramResult. The
implementation emulates the stack of method calls using a list of Program-
Point. The interface to the CallString is similar to the interface of a stack.

4https://bitbucket.org/viperproject/sample

28

https://bitbucket.org/viperproject/sample

3.3. Sample for Interprocedural Analyses

The method push() grows the call-string and pop() shrinks it by removing
the last method call. In our implementation a call-string always grows and
shrinks by two elements. One element represents the location of the method
call-statement and the other element stores the location of the entry-point of
the called method.

Figure 3.6: Class diagram of CallString.

Call-String Approximation

The method suffix(k: Option[Int]) is used to compute a call-string’s suffix for
the approximation described in Section 2.4.2. If a suffix-length k is given
then up to k of the last method calls are returned as a call-string. Calling
suffix() with k=None returns the original unmodified call-string.

3.3.5 Interprocedural Analysis Runner

Interprocedural versions of SilverAnalysisRunner, SilverAnalysis and SilverIn-
terpreter have been implemented. Figure 3.7 shows a high-level view of the
steps involved in the analysis of a text-file containing Silver source code.
Note that compared to the intraprocedural case here the interpreter is in-
voked once for the whole program and the result is of type ProgramResult.
Again, the generic arguments have been left out of the diagram for better
readability.

A developer can create an interprocedural analysis by providing an imple-
mentation of SilverState, an EntryStateBuilder and then creating a subtype of
InterproceduralSilverAnalysis that invokes either the forward or backward in-
terpreter. We implemented interprocedural analyses for integer intervals
(forward), integer octagons (forward) and strongly live variable analysis
(backward).

29

3. Sample

Figure 3.7: Sequence diagram of an interprocedural analysis.

3.3.6 Top-Down / Bottom-Up Analysis

We provide analysis runners and interpreters for both top-down and bottom-
up analysis. Here we briefly introduce both analyses and in the rest of the
chapter the top-down implementation is explained. Chapter 4 will provide
implementation details for the bottom-up analysis.

Top-Down analysis. A top-down analysis is a whole-program or global
analysis. That is, the analysis starts at one or many entry-methods of a pro-
gram with an initial abstract state and proceeds into the called methods. An
entry-method resides at the top of the callgraph and is analysed without
any assumptions about its parameters. Called methods on the other hand
are analysed context-sensitively and therefore some information about their
parameters is given from the abstract state at the method-call. The data
structure ProgramResult separates analysis results for different method calls
by the call-string. A top-down analysis can therefore make precise state-
ments about the effect of a method call for a specific caller but for callees
the analysis only provides analysis results that depend on a given calling-
context. We previously explained in Section 2.5.5 how the entry-methods of
the program are determined.

Bottom-Up analysis. In bottom-up analysis we analyse methods modu-
larly starting at the bottom of the callgraph and without any assumptions
about their parameters. As soon as a callee has been analysed, all its callers
can be analysed as well. When a method calls a callee, the previously
computed analysis result is used instead of analysing the callee context-
sensitively. For a relational abstract domain this analysis result will provide
information about the relationship between parameters and return variables
of the called method. Since no information about the actual parameters was
used to analyse the callee, reusing this analysis result will over-approximate
the effect of the method call in the caller.

30

3.3. Sample for Interprocedural Analyses

3.3.7 Interprocedural Interpreter

For interprocedural top-down analysis two new interpreter traits are pro-
vided:

• InterproceduralSilverForwardInterpreter

• InterproceduralSilverBackwardInterpreter

These interpreters are a specialisation of their intraprocedural counterpart
and reuse most of the worklist code previously shown in Listing 3.2. They
require a program of type SilverProgramDeclaration and a CallStringLength of
type Option[Int] as constructor arguments. Since the interpreters analyse the
whole program they use ProgramResult to store the analysis results. We now
discuss the implementation of the forward interpreter in detail and at the
end highlight what is different for the interprocedural backward interpreter.
The class diagram in Figure 3.8 visualises how the new forward interpreter
specialises the existing intraprocedural interpreter (SilverForwardInterpreter).
In the diagram we only list methods and attributes that are needed for under-
standing the explanations and most method parameters have been omitted
for better readability. The trait InterprocHelpers provides functionality that is
shared between the forward and backward interprocedural interpreters.

Figure 3.8: Class diagram for the interprocedural forward interpreter. Dia-
monds and squares denote, respectively, protected and private visibility.

31

3. Sample

Outlook

In the rest of this section we provide implementation details for the interpro-
cedural interpreters. After discussing how the starting-points of the analysis
are determined we show how the existing intraprocedural interpreters have
been extended to make the worklist algorithm reusable for the interprocedu-
ral case. This includes refactoring of the existing code and a new worklist
type. After that, we explain how a method call-statement is treated for call-
ing a method and returning from the callee back to the caller. Then, we
explain how the interpreter implicitly creates a supergraph, that is, how the
CFGs are connected into one graph by creating method call-edges or simulat-
ing return-edges. Finally we discuss how these changes need to be adapted
for the interprocedural backward interpreter.

Starting-Points of the Analysis

In the intraprocedural case the analysis is invoked for every method under
analysis. In the interprocedural analysis the Silver program is passed to the
interpreter as a whole and the interpreter determines the starting-point on
its own. The interpreters analyse the callgraph of the program according to
the description in Section 2.5.5 and then enqueue the entry-block (forward)
or exit-block of every control flow graph belonging to a possible starting-
point. Analysis of the callgraph does not depend on the direction of anal-
ysis and is implemented in InterprocHelpers.buildCallGraphInformation(). The
interpreters keep two attributes callsInProgram and methodsInTopologicalOrder
that are the result of this callgraph preprocessing.

Refactoring the Existing Interpreters

The worklist algorithm in SilverForwardInterpreter (Listing 3.2) has been refac-
tored into multiple smaller methods that can be overriden by a subclass.
These methods are marked with a diamond in the class diagram of Figure
3.8. Additionally the forward interpreter calls onExitBlockExecuted() every
time the exit-block of a CFG has been interpreted. This call signals that a
method has been interpreted and therefore possible callers may need to be
added to the worklist. In the intraprocedural case these helper methods
have the following functionality:

• inEdges(): Returns all incoming edges in a CFG for a given block.
(Replaces line 13 in Listing 3.2)

• getPredecessorState(): For a given edge, return the state that is propa-
gated along that edge. That is, for an edge (m, n) ∈ E in forward
analysis the last state of block m is returned.
(Replaces lines 15 in Listing 3.2)

32

3.3. Sample for Interprocedural Analyses

• executeStatement(): Execute/Interpret a program statement by applying
the corresponding transformer on the current state.
(This existed in the worklist algorithm but the method was private and
now needs to be protected.).

• onExitBlockExecuted(): This method is only necessary for interprocedu-
ral interpreters. In the intraprocedural case the method is executed but
implemented as a no-op.

Another change introduced by the interprocedural analysis is that the inter-
preter no longer keeps a reference to one CfgResult but looks it up depend-
ing on the current element under analysis. A different CfgResult needs to be
used, depending on the current call-string and to which control flow graph
the currently processed element belongs.

New Worklist Type

The existing implementation used a queue of CFG blocks as the worklist.
The new implementation introduces a new type called WorklistElement. A
WorklistElement consists of a BlockPosition and a boolean flag forceReinterpret-
Statement. Using a BlockPosition allows the interpreter to enqueue a spe-
cific position, and therefore a specific statement inside the block of a CFG,
for (re-)analysis. Since the worklist algorithm only interprets the statement
of a block if its entry-state changed (line 26 in Listing 3.2) it may happen
that a specific position in the block was enqueued for re-analysis but the
block itself will not be analysed because the entry-state is the same. The
boolean flag forceReinterpretStatement can be used to override the check at
line 26 of the worklist algorithm and then continue to interpret the elements
starting at the element identified by the BlockPosition. This allows us to
enqueue method call-statements to be re-analysed when a callee has been
analysed. We therefore simulate a return-edge in the CFG by adding the
method call-statement to the worklist after the callee was interpreted. Figure
3.9 shows the WorklistElement and its implementations SimpleWorklistelement
and TaggedWorklistElement. A SimpleWorklistelement is used for the existing
intraprocedural analyses. Using a TaggedWorklistElement it is possible to tag
an element with a call-string. This is useful to enqueue blocks of the same
method multiple times depending on the calling context. New worklist ele-
ments are always created by calling createSuccessorForEnqeueue() on the cur-
rent worklist element. This allows a TaggedWorklistElement to preserve the
same call-string for all worklist elements created for the same CFG.

Now that the intraprocedural interpreter and the worklist have been ex-
tended, let us discuss how method call-statements are treated for entering a
callee and returning to the caller.

33

3. Sample

Figure 3.9: New types that replace SampleBlock as elements in the worklist.

Calling a Method

In Sample, method calls are represented as an instance of the case class
MethodCall:

1 case class MethodCall(

2 pp: ProgramPoint ,

3 method: Statement ,

4 parametricTypes: List[Type],

5 parameters: List[Statement],

6 returnedType: Type ,

7 targets: List[Statement] = Nil

8) extends Statement(pp){

9 //...

10 }

The interprocedural interpreters implement method call support by overrid-
ing executeStatement() and handling statements of type MethodCall. Every
other statement (for example an assign statement) is handled by the super
class as before. In the control flow graph in Figure 3.2 we saw that arith-
metic expressions like n+11 are also represented as a MethodCall. What we
describe here is only applied to ‘real’ method calls and we let the parent
class handle such expressions. Let k be the optional upper limit on the call-
string length (the constructor argument CallStringLength). If a MethodCall is
encountered then the callee is added to the worklist for analysis according
to the following steps (as described Section 2.5.6):

• Evaluate the method calls arguments resulting in a new abstract state
dpreCall

• Grow the current call-string into a call-string γcall

• Create a transfer-value dt that only contains abstract values for the tem-
porary argument variables (e.g. arg #1) by removing all other variable
identifiers from dpreCall

34

3.3. Sample for Interprocedural Analyses

• Save dt tagged with γcall in a global map called methodTransferStates

• Add the called methods entry-block tagged with the k-length suffix of
γcall for analysis to the worklist.

We tag the worklist entry with the k-length suffix to ensure that for un-
bounded recursion only up to k calls are analysed. In methodTransferStates
the transfer-values are tagged with the full-length call-strings to separate dif-
ferent calls. When analysing the callee, these different transfer-values will
then be joined into one state depending on their suffix.

As seen in the worklist algorithm in Listing 3.2 all statements of a block
are executed in a loop. If a called method has just been enqueued to the
worklist, then the statements following the method call should not be anal-
ysed immediately after. Therefore, executeStatement() returns a boolean flag
telling the super class (the intraprocedural interpreter) whether the remain-
ing statements of a block should be executed or not. This flag is set to true
for every statement except a method call whose effect is not available yet
(see next section). As a an example, let us consider the program in Listing
3.3. The main-method calls one() and then the assert checks whether the
return value is 1. After analysing the callee this assert would succeed. But
if the interpreter executes the assert statement at line 3 before one() has been
analysed then Sample would trigger a warning that the assertion might not
hold.

1 method main() returns(r: Int) {

2 r := one()

3 assert r == 1

4 }

5

6 method one() returns (r: Int){

7 r := 1

8 }

Listing 3.3: The assert at line 3 must not be interpreted before the analysis
result of the method call is available.

Returning From a Method Call

There are two reasons for the interpreter to execute a MethodCall statement.
On the one hand, the method should be enqueued for analysis as described
in the previous section. On the other hand, the called method has been
analysed and the result should be merged back into the caller. Using a global
attribute analysisResultReady the interpreter keeps track of which method
and call-string combinations have been analysed yet. If the analysis result
of the called method and call-string is ready then the effect of the callee is

35

3. Sample

merged back into the caller state. This is done according to the description
in Section 2.5.7 with the following steps:

• First the steps for preparing a method call (as discussed in the previous
section) are taken. This results in a state dpreCall and the call-string of
the called method γcall

• Using the k-length suffix of γcall the CfgResult of the called method is
retrieved from the ProgramResult. The last state in the CfgResult which
we call dexit represents the exit state of the called method.

• All local variables declared in the callee are removed from dexit. Return-
variables are renamed into temporary out-transfer-variable names (pre-
fixed with ret #) and parameters that exist in dexit are renamed to tem-
porary in-transfer-variable names (prefixed with arg #)5.

• The effect of the callee is merged into the caller state by calling
uni f y(dpreCall , dexit) (Section 2.5.7) and then assigning the temporary
return variables (denoted by ret # prefixes) to the targets of the Method-
Call.

• At the end, all temporary in-/out-transfer-variables are removed from
the abstract state.

The function uni f y() must be provided by the abstract state and is im-
plemented by handling a UnifyCommand. We provide implementations of
uni f y() for integer interval domain, integer octagon domain and an abstract
domain for live variable analysis. The described variable renaming results
in only propagating a transfer-value along a return-edge in the implicit su-
pergraph. After the effect of the callee has been merged back into the caller
then executeStatement() returns the boolean flag true to the super class to
signal that the remaining statements in the block should be executed too.
Please refer to Example 2.2 in Section 2.5.7 for an example.

Creating In-Edges For Called Methods

Our implementation does not keep a supergraph in memory but only CFGs
and call-edges are created on demand during interpretation. The modified
worklist algorithm in Listing 3.2 calls inEdges() for every currently processed
worklist element. In the intraprocedural case this returns the in-edges of the
control flow graph. In the interprocedural case the current worklist element
is tagged with a call-string. Let γcurr be the call-string that tags the currently
analysed element. The global map methodTransferStates contains all transfer-
values tagged with call-strings. Let k be the optional maximum call-string

5As explained in Chapter 2, it depends on the specific analysis what a transfer-value con-
tains. For return-edges we also transfer the renamed parameters to preserve the relationship
between parameters and return variables in the case of relational abstract domains.

36

3.3. Sample for Interprocedural Analyses

length and let calls def
= {v | (γ, v) ∈ methodTransferStates, γ.su f f ix(k) =

γcurr.su f f ix(k)} be all calls to this method tagged with the same k length
suffix. If the current element on the worklist represents an entry-block of a
CFG then for every transfer-value in calls the method inEdges() dynamically
creates an edge that represents a method call with the given transfer-value.
The worklist algorithm will then compute the join of all incoming states and
analyse the method with that joined state. If the length of the call-string
is not restricted, that is, the optional k has the value None, then calls will
always contain only one transfer-value. If there is a call-string length limit
k then methodTransferStates can contain multiple call-strings with the same
k-length suffix and multiple in-edges are created.

Creating Initial States for In-Edges

Using the method getPredecessorState() the worklist algorithm fetches a state
that is propagated along an in-edge. For edges that represent a method
call the interprocedural interpreter creates a new initial state with informa-
tion from the method call. Let dt be the transfer-value propagated along that
edge. Let (m, n) ∈ Ecall be the current edge. Using dinit

def
= uni f y(initial(n), dt)

an initial state containing the transfer-value is created. Then the abstract val-
ues of the temporary in-transfer-variables are assigned to the parameters
of the method and finally the temporary variables are removed from the
state. The init() function as described in Section 2.5.3 can be provided to the
interprocedural analysis by implementing the abstract method SilverEntryS-
tateBuilder.buildForMethodCallEntry() in a subtype of SilverEntryStateBuilder.

Enqueueing Callers For Analysis

Now that we discussed how edges for a method call are created, we will
explain how the transfer-values are propagated back into the caller. The
intraprocedural interpreter has been extended to call onExitBlockExecuted()
every time the exit-block of a method has been interpreted. At that time the
analysis result of a callee is available and this is remembered by adding the
(call-string, CFG) tuple to analysisResultReady. Additionally the interprocedu-
ral interpreters enqueue all callers for re-analysing the MethodCall statement,
and therefore merging the effect of the callee into the caller. Let γcallee be the
current call-string with methods and attributes according to the call-string
class diagram in Figure 3.6. Let k be the optional call-string length limit.
In case there is no upper bound on the length (k is None) the only possible
caller is γcallee.lastCaller and the BlockPosition of that method call together
with the call-string γcallee.pop() can be added to the worklist. If the call-
string is approximated then all existing call-strings are checked and when
their suffix matches the suffix of γcallee all these locations are enqueued for
analysis. If for example k = 0 then every call-statement that called the

37

3. Sample

current method would be added to the worklist. This corresponds to the
context-insensitive approach. When adding call-statements to the worklist,
the boolean flag Worklistelement.forceReinterpretStatement is set to true. As
previously explained this forces the worklist algorithm to re-analyse a block
starting with the enqueued statement even though the entry-state of the
block did not change.

Differences Between Forward and Backward Interpreters

To wrap up the interpreter details we now briefly explain what differs to
the implementation of the interprocedural backward interpreter. The same
refactorings previously described have also been applied to the backward
interpreter. Since the analysis runs backward the analysis result of a callee
is marked as available when the entry-block has been interpreted. Therefore,
backward interpreters provide a method onEntryBlockExecuted() to signal an
available result. Furthermore, executeStatement() enqueues the last block of
a callee’s CFG for analysis and instead of passing information about the
arguments into the callee, the transfer-value passes information about the
callee’s return variables into the called method. Growing and shrinking the
call-string, as well as, enqueueing callers for analysis when the result of a
callee is available work the same and are implemented in a shared Scala
trait.

3.4 Implemented Analyses

In this section we briefly introduce the top-down analyses that have been
implemented to evaluate the implementation. We implemented two numer-
ical forward analyses and a variant of live variable analysis as a backward
analysis.

3.4.1 Interprocedural Integer Interval Analysis

The Scala object InterproceduralIntegerIntervalAnalysis provides a numerical
forward analysis based on interval abstract domain [4] for integers. The
call-string length is bounded to SystemParameters.callStringLength which is 5
by default. A second Scala object ContextInsensitiveInterproceduralIntegerIn-
tervalAnalysis provides an integer interval analysis with a call-string length
limited to zero length and therefore resulting in a context-insensitive analy-
sis. Integer interval is a non-relational abstract domain and the abstract state
tracks the abstract value of each variable on its own. An implementation of
integer interval domain was given before the project.

Implementation of init(). The init() function is implemented using Inte-
gerIntervalAnalysisEntryState.build(). When entering a callee all parameters

38

3.4. Implemented Analyses

are initialised with the abstract value >.

Implementation of unify(). Unifying two integer interval states is imple-
mented as join of two abstract states in IntegerIntervalAnalysisState.command():

1 case UnifyCommand(other) => other match {

2 case o: IntegerIntervalAnalysisState => this lub o

3 case _ => super.command(cmd)

4 }

Assuming two states do not share any identifiers then the join (operator lub
in the Scala code) will preserve the abstract values of all identifiers in their
state. In the case of entering a callee the two states passed to uni f y() never
share identifiers. But when the result of a method call is merged back into
the caller the state dpreCall would contain identifiers for in-transfer-variables
and the local variables in the caller (Section 3.3.7, ‘Calling a Method’). After
renaming, dexit would contain identifiers for in-transfer-variables and out-
transfer-variables (Section 3.3.7, ‘Returning From a Method Call’). The two
states dpreCall and dexit therefore have the in-transfer-variable identifiers in
common. But since we will not use those temporary variables in the caller
any more (they will be removed after unify) join works for that case too.

3.4.2 Interprocedural Integer Octagon Analysis

A relational forward analysis was implemented using the octagon abstract
domain [15] for integers. Like integer intervals the implementation of the ab-
stract domain itself existed in Sample before this project. The Scala object In-
terproceduralIntegerOctagonAnalysis provides the instantiation and it requires
the path to a Silver source file as the first command line argument. By de-
fault the call-string length is bounded by SystemParameters.callStringLength
but the limit can also be passed as an argument to the analysis.

Implementation of init(). Similarly to integer intervals init() uses the entry
state builder provided by the existing intraprocedural analysis. The initial
state contains variables for all arguments but no constraints.

Implementation of unify(). Two states are unified by creating a state con-
taining all identifiers from both given abstract states. Then the meet of the
constraints sharing identifiers is computed. This is similar to the unify6 func-
tion in Apron [12] a library of numerical abstract domains for static analysis.

6http://apron.cri.ensmp.fr/library/0.9.10/apron/apron_103.html

39

http://apron.cri.ensmp.fr/library/0.9.10/apron/apron_103.html

3. Sample

Example 3.1 Let us assume a method is called and the caller passes the variable
b = 15 as an argument to the callee. A state in the caller with constraints [b =
15, arg #1 = b] and a state [arg #1 = ret #1 + 1] returned from the caller should
be unified into a state in which for example [b == ret #1 + 1] would exist too.

The fact that, when returning from a callee the two unified states share the
identifiers of the in-transfer-variables (prefixed with arg #) ensures that the
octagon domain can infer a relationship between arguments passed to a
callee and return variables.

3.4.3 Interprocedural Strongly Live Variable Analysis

Live variable analysis is a backward analysis that starts at the end of a pro-
cedure. A variable is considered to be live at position p if its value is used
in the program before the variable is redefined. Strongly live variable analy-
sis [10] is a variant of live variable analysis where variables are only consid-
ered to be strongly live if they are used in a definition of another strongly
live variable. For our implementation we consider the return values of a pro-
grams entry-method (usually a main-method) to be strongly live. Therefore,
all variables used to define the value of the returned variables are consid-
ered to be strongly live too. Listing 3.4 shows the set of live variables for
each step when going backward in that procedure.

1 method main(x: Int) returns (r: Int) {

2 // parameter x is strongly live at method entry

3 var y: Int := 1

4 // strongly live: {x} (y has been redefined)

5 y := x

6 // strongly live: {y} (r has been redefined)

7 r := y

8 // strongly live: {r} (by definition)

9 }

Listing 3.4: Example of intraprocedural strongly live variable analysis.

In the interprocedural case we consider return variables only to be strongly
live if they are either the return variables of an entry-method (main-method)
or if their return value is used to define another strongly live variable in the
caller. The parameter a in Listing 3.5 is considered to be strongly live because
it is used to define the return value r via a method call to callee(). Variables
used in conditions of an if or while statement are always considered to be
strongly live.

The Scala object LiveVariableAnalysis provides an implementation of an in-
terprocedural strongly live variable analysis. By default this also uses the

40

3.4. Implemented Analyses

system wide SystemParameters.callStringLength but this can also be controlled
by passing a custom length to the constructor.

1 method main(a: Int , b: Int) returns (r: Int) {

2 // strongly live: {a}

3 var x: Int := 0

4 // strongly live: {a} (defines i in callee ())

5 r, x := callee(a, b)

6 // strongly live: {r} (by definition)

7 }

8

9 method callee(i: Int , j: Int) returns (c: Int , d: Int) {

10 // strongly live: {i}

11 c := i

12 // strongly live: {c}

13 d := j

14 // strongly live: {c} (defines r in main ())

15 }

Listing 3.5: Example of interprocedural strongly live variable analysis.

Abstract Domain

The abstract domain for strongly live variable analysis was implemented in
the trait LiveVariableAnalysisState. A variable in the abstract domain can ei-
ther be live or dead. The Hasse diagram in Figure 3.10 shows the complete
lattice for a program with three variables. The top element {x,y,z} denotes
all variables to be live whereas the bottom element {} stands for all vari-
ables being dead. Note that unlike octagons or integer intervals this abstract
domain is finite.

{x} {y} {z}

{x, y} {x, z} {y, z}

{}

{x, y, z}

Figure 3.10: Complete lattice for strongly live variable analysis with three
variables in the program.

41

3. Sample

Implementation of init(). Strongly live variable analysis needs two differ-
ent init() functions depending on the context. If an initial state for an entry-
/main-method should be created then LiveVariableAnalysisEntryState.build()
is used. This initialisation function marks all return variables as being
strongly live by definition. For a callee on the other hand LiveVariableAnaly-
sisEntryState.buildForMethodCallEntry() is implemented to create an abstract
state where no variable initially is live. Only those return variables are then
set to live that would define a strongly live out-transfer-variable (prefixed
with ret #) in the transfer-value that is propagated over the method return-
edge.

Implementation of unify(). Unify is implemented as the join in the lattice.
If a variable was live in any of the two unified states then it will be live in
the unified state.

42

Chapter 4

Specification Inference

Software verification is a powerful technique to check if a program follows
its specification. A developer can provide such a specification by annotat-
ing methods with preconditions, loop invariants and postconditions. If a
specification exists a verifier software can automatically check if the writ-
ten program follows it. Preconditions must be satisfied before a method
is entered whereas postconditions must be true after the method has been
executed. Loop invariants are properties that hold before and after each
iteration of a loop.

Example. Let us assume a developer wrote the program in Listing 4.1 with
the intention that getElementOrLast() returns the element at position pos in
the sequence xs or the last element if pos is greater than the maximum posi-
tion. For empty sequences or if a negative position is given then -1 should
be returned. For a verifier to be able to prove that the access to xs[bounded]
at line 6 is within bounds the developer needs to provide a postcondition
highlighted at line number 14.

1 method getElementOrLast(pos: Int , xs: Seq[Int])

2 returns (r: Int)

3 {

4 var bounded: Int

5 bounded := upperBound(pos , |xs| - 1)

6 if (bounded >= 0) {

7 r := xs[bounded]

8 } else {

9 // error , xs is empty or pos is negative

10 r := -1

11 }

12 }

13

43

4. Specification Inference

14 method upperBound(n: Int , upper: Int)

15 returns (r: Int)

16 ensures r <= upper

17 {

18 if (n > upper) {

19 r := upper

20 } else {

21 r := n

22 }

23 }

Listing 4.1: The postcondition for upperBound() is necessary to prove that
access to xs is within bounds.

Inferring a specification. A developer may not be used to writing a speci-
fication and it can be quite hard to do it correctly. Furthermore, sometimes
a specification like the postcondition in Listing 4.1 may be obvious for the
programmer but it needs to be written for the verifier anyway. A static anal-
ysis can assist developers by inferring some preconditions, loop invariants
or postconditions.

Chapter structure. As an extension of this project we implemented an in-
terprocedural specification inference for numerical properties using the oc-
tagon abstract domain [15]. A specification is inferred by first running a
static numerical forward analysis. Then the specification is extracted from
the analysis result and it can either be returned to the user as a list of pre-
conditions, postconditions, and invariants, or a program annotated with the
inferred specification can be generated. In this chapter we first provide in-
formation about how and what static analysis is run. Then we discuss how
the specification is extracted from the analysis results. Finally, implementa-
tion details about how the inference can be integrated into Viper IDE 1, the
visual environment for developing and verifying programs written in Silver,
are given.

4.1 Numerical Abstract Domain (Octagons)

Let us consider the procedure in Listing 4.2 which increments an integer
variable. In general, it is useful to have weak preconditions and strong post-
conditions. Since the implementation of increment() has no requirements on
the parameter x we can use the weakest possible precondition requires true
(which could also be omitted). A valid but not very useful postcondition

1https://bitbucket.org/viperproject/viper-ide/

44

https://bitbucket.org/viperproject/viper-ide/

4.2. Top-Down / Bottom-Up Analysis

could be ensures true. A more useful and valid postcondition would be en-
sures ret > x whereas the most useful precondition for the method increment()
would be ensures ret == x + 1.

1 method increment(x: Int) returns (ret: Int){

2 ret := x + 1

3 }

Listing 4.2: Increment method written in Silver.

For this example the most useful specification relates the parameter to the
return variable. A simple non-relational numerical domain like integer inter-
vals would not be able to infer the fact that the value of ret depends on the
value of x. In a relational domain like the integer octagon abstract domain
this is possible. We will use the interprocedural integer octagon analysis as
a basis for the specification inference.

4.2 Top-Down / Bottom-Up Analysis

We infer a specification from the analysis result of a numerical forward anal-
ysis in either top-down or bottom-up manner. In this section we provide
implementation details regarding the bottom-up analysis. Details about the
top-down analysis have already been provided in Section 2.5.

4.2.1 Bottom-Up Analysis Implementation

Like the rest of Sample the bottom-up analysis is implemented in a generic
and reusable way. Our implementation provides an abstract type BottomUp-
ForwardInterpreter[S] with S being the generic argument for the abstract state
(IntegerOctagonAnalysisState for specification inference). The actual imple-
mentation FinalResultInterproceduralBottomUpForwardInterpreter[S<:State[S]]
of this abstract type requires the constructor arguments program, builder and
CallStringLength to run an analysis of the given program using initial states
provided by the entry-state builder builder and the optional call-string bound
CallStringLength. This bottom-up interpreter specialises the Interprocedural-
SilverForwardInterpreter[S] discussed in Section 3.3.7 and makes use of its
call-string analysis functionality. The top-down analysis is adapted to the
bottom-up case with the following modifications:

• The analysis starts with callees instead of entry-methods.

• MethodCall statements are treated context-insensitively.

• Methods are enqueued to the worklist in different order.

45

4. Specification Inference

Start of the Analysis.

Recall that the top-down interpreters build a condensed callgraph and a topo-
logical ordering of it to determine the starting point of the analysis (see Sec-
tion 2.5.5). We use the same example callgraphs in Figure 4.1 as for the top-
down analysis to explain how the starting point of the bottom-up analysis is
determined. For a bottom-up analysis the idea is to analyse each procedure
on its own, that is, we analyse callees without any assumptions about their
parameters and then use this over-approximated analysis result in callers.
Therefore, a callee should be analysed before any callers. To achieve this,
methods are analysed in reversed order of the topologically ordered call-
graph of the program. We analyse the program using the same code as for
the other interpreters (InterprocHelpers.buildCallGraphInformation()) and topo-
logical ordering information is made available as the attributes callsInPro-
gram and methodsInTopologicalOrder to the interpreter. The last node in the
topological ordering is considered to be the starting point of the bottom-up
analysis. Since nodes in the topological ordering consist of sets of methods
(if they build a strongly connected component) it may be possible that more
than one method is considered to be the starting point of the analysis.

a

b c

d

1 2

3

α β

γ

δ

Figure 4.1: Example callgraphs with highlighted nodes marking candidates
for the bottom-up analysis starting point.

It should be noted that the topological ordering of a graph is not unique.
For the callgraph in the middle and the graph on the right in Figure 4.1 the
highlighted nodes will always be at the end of the topological ordering. The
starting point is therefore the same for every analysis run. For the callgraph
on the left valid topological orderings may either put the nodes b or d at the
end of the ordering. The analysis will therefore use any of the two nodes as
a starting-point for the bottom-up analysis. These starting-points are added
to the worklist and the entry-block of their CFG is analysed using the initial
state provided by the init() function (SilverEntryStateBuilder).

46

4.2. Top-Down / Bottom-Up Analysis

Method Call Treatment

As in the top-down interpreter the intraprocedural interpreter handles the
analysis of the control flow graph of a method. Only the MethodCall state-
ment is treated specially by overriding the executeStatement() method in the
bottom-up interpreter. There are three different cases that need to be consid-
ered when a method-call is encountered:

1. The callee is in a different component (node) of the topological order-
ing.

2. The callee is in the same component of the topological ordering.

3. The callee is the same method as the caller (recursion).

Different component in topological ordering. In the first case, caller and
callee do not belong to the same node of the topological ordering. The callee
has therefore already been analysed and a MethodCall consists of evaluat-
ing the arguments of the call, fetching the CfgResult tagged with the empty
call-string from the ProgramResult, and merging the exit-state into the caller.
Note that the callee is not added to the worklist.

Same component in topological ordering. In the second case, both caller
and callee belong to the same node in the topological ordering. They there-
fore form a strongly connected component in the callgraph and have both
not been analysed yet. Analysing this strongly connected component is del-
egated to the super class (the top-down interpreter) and both caller and
callee are analysed using the call-string approach with an initial starting
state. Once both methods have been analysed the MethodCall statement is
treated by merging the exit-state of the CfgResult tagged with the empty
call-string into the caller. The result tagged with the empty call-string cor-
responds to the analysis started with the initial state and therefore without
any assumptions about the parameters.

Recursive calls. Recursive MethodCall statements are delegated to the top-
down interpreter (the super class) and analysed using the call-string ap-
proach. Standard call-string approximation and widening are applied like
for the top-down case.

In all three cases merging the exit-state into the caller stands for creating
a transfer-value, unifying it with the state in the caller and assigning the
temporary out-transfer-variables to the method calls target variables, as pre-
viously described in Section 3.3.7.

47

4. Specification Inference

Enqueueing Methods to the Worklist

We already discussed that the analysis starts by adding to the worklist the
method(s) at the bottom of the topologically ordered callgraph. Recall that
the to top-down analysis uses onExitBlockExecuted() to signal when a callee
has been analysed and then adds the BlockPosition of the method call to the
worklist. For bottom-up analysis onExitBlockExecuted() is also used to sig-
nal an available analysis result. Bottom-up analysis uses a second worklist
called secondaryWorklist to handle callgraphs in the form of Figure 4.2.

B C

A

D

Figure 4.2: Callgraph with B and C forming a strongly connected compo-
nent. If the analysis result of the highlighted method C is available then A
will be added to the secondaryWorklist.

The methods B and C form a strongly connected component (SCC) in the
callgraph. As discussed in the previous section, this SCC is analysed using
the call-string approach. Let us assume the analysis result of method C is
available but method B is still under analysis. If C were now to add its
caller A to the worklist then, A would be analysed with the assumption that
analysis results of all callees are available. This is not the case for method B.
The bottom-up analysis therefore enqueues A to the secondaryWorklist and
this worklist will not be worked on unless the primary worklist is empty and
therefore also the analysis result of B is available. As soon as the primary
worklist is empty, all elements from the secondary worklist are moved to it.
If onExitBlockExecuted() is signalled then there needs to be a case-distinction
for the following two cases:

1. The current call-string is empty.

2. The current call-string is not empty.

Empty call-string. If an empty call-string has been used, the analysis result
of the current CFG without any assumptions about the parameters is avail-
able for all callers to be used. Let curr be the node that represents the current
method in the topological ordering. Let pred be its predecessor. Instead of
adding all callers to the worklist we only add methods in pred to the sec-
ondaryWorklist. We add the BlockPosition of their entry-block to the worklist
and not the position of a method call as it was the case in top-down analysis.
Since B and C form a SCC in Figure 4.2, analysing the exit-block of method

48

4.3. Extracting the Specification

D would result in enqueueing both B and C even though C is not a caller
of D. Analysing methods in backward order of their topologically ordered
callgraph ensures that no method is analysed before all analysis results of
their callees are available.

Call-string is not empty. In case there exists a non-empty call-string at the
end of a methods exit-block then either a recursive method or a call-chain
between methods of a strongly connected component is analysed (see case
‘Same component in topological ordering.’ in the previous section). Similarly
to treating recursive method calls, the bottom-up interpreter delegates this
case to the super class. Therefore, callers are enqueued to the worklist the
usual way until an analysis result for the empty call-string is available as
well.

4.3 Extracting the Specification

In this section we explain how a specification is extracted from the static anal-
ysis results provided as a ProgramResult. First, we discuss which CfgResults
are used to extract the specification. Then, we explain how the information
is extracted from the octagon domain.

4.3.1 Analysis Results

Let result be the ProgramResult for an integer octagon forward analysis ran
in either top-down or bottom-up manner. For every method at least one Cf-
gResult is available in result. Results tagged with CfgResultTag.Untagged cor-
respond to method analyses without assumptions about the parameters. On
the other hand a CfgResult tagged with a non-empty call-string represents
an analysis result with assumptions about the methods parameters. Our im-
plementation treats an empty call-string and the tag CfgResultTag.Untagged
as the same. Depending on the inference (bottom-up vs. top-down) one or
many CfgResults are used to infer the specification. Our implementation in
the trait InterproceduralSilverInferenceRunner keeps an attribute resultsToWork-
With which represents a list of CfgResult relevant for the currently processed
Silver method.

Bottom-up inference. For bottom-up inference only the untagged / empty
call-string result is needed. This can be obtained by calling result.getResult()
on the ProgramResult.

Top-down inference. For top-down inference every available CfgResult is
added to resultsToWorkWith. Therefore, information about every analysed
call-string will be used.

49

4. Specification Inference

4.3.2 Extracting Preconditions

As we know, an abstract state in the octagon domain consists of constraints
relating program variables to each other. To extract a precondition given
the CfgResult of a method we extract the constraints from the state before
the ProgramPoint that represents the entry-block of the method. If this state
does not contain any constraints, which is the case for bottom-up analysis,
then a precondition true is assumed. Otherwise the precondition is the con-
junction of the constraints in that state. When resultsToWorkWith contains
multiple results, then we use a disjunction of all existing conjunctions as the
precondition.

4.3.3 Extracting Postconditions

Let pre be the conjunction of the constraints that represent the precondition
for one CfgResult. By definition, a postcondition must be true at the end of
a method execution. Therefore, we use the constraints from the post-state
directly after the last ProgramPoint in the method as the postcondition. Some
of these constraints may contain information about local variables and we
therefore filter them and only use constraints related to method parameters
or return variables. Let post be a conjunction of the filtered constraints. For
one CfgResult we infer pre =⇒ post as the postcondition. For multiple
CfgResults an implication for each result would be used as postcondition. In
a bottom-up inference pre is true and the postcondition would therefore be
post.

4.3.4 Extracting Loop Invariants

By definition, a loop invariant needs to be true before and after each loop
iteration. Therefore, the constraints representing the invariant need to be
extracted from a location in the program that is reached before and after the
loop body. In a control flow graph like the one in Figure 4.3, a loop can
be represented using three nodes. The first node represents the head of the
loop (LoopHead(37)). A second node that can be reached from the head node
as long as the loop conditions holds represents the body of the loop (State-
mentBlock(41)). And a third node that is reached when the loop condition
no longer holds represents the exit of the loop (StatementBlock(42). Since the
head and body nodes form a cycle the entry-state of the head represents the
state before and after each loop iteration. Therefore, we use the constraints
of the pre-state of the loop head. Let inv be the conjunction of the constraints
at that position for one CfgResult. Similarly to the postcondition we infer the
loop invariant as an implication pre =⇒ inv for each available CfgResult.

The CFG in Figure 4.3 corresponds to a method double(i: Int) that iteratively
increases the return value r until its value has doubled the parameter i. List-

50

4.4. Implementation Details

StatementBlock(36)

var l: Int

l := i

r := 0

LoopHeadBlock(37)

(in)

StatementBlock(41)

r := r + 2

l := l - 1

l > 0

StatementBlock(42)

!(l > 0) (out)

Figure 4.3: Control flow graph of a method containing a loop.

ings A.1 and A.2 in the Appendix show an implementation of the double()
method together with a main() method. In the first listing the specification
has been inferred using bottom-up analysis. The second listing shows the
top-down inferred specification where loop invariants and postconditions
are implications. Comparing the two results we notice that the top-down
inference provides a stronger postcondition for the main() method than the
one inferred bottom-up. But the postcondition of the called double() method
does not provide very useful information. Bottom-up analysis on the other
hand may provide weaker postconditions for entry-methods but it infers
useful information for all available methods in the program.

4.4 Implementation Details

In this section we provide a very broad overview of Sample’s specification
inference implementation. The idea is to provide pointers to the code and
mention what is implemented where. For more details we refer to the source
code available online2.

4.4.1 Overview

The top-down integer octagon inference is provided by the Scala object In-
terproceduralIntegerOctagonInference. The bottom-up inference is provided by
the Scala object InterproceduralIntegerOctagonBottomUpInference. Similarly to
the analysis runners discussed in Chapter 3, these objects provide a main
method that expects the path to a text-file containing Silver source code as
a command line argument. When run, a specification is inferred and a Sil-
ver program annotated with the inferred specification is printed to standard
output. Figure 4.4 gives a broad overview of the generic implementation.
Dashed lines represent that a trait is mixed-in to extend the functionality.
The bottom-up analysis for example extends the numerical inference run-
ner and mixes-in the InterproceduralSilverBottomUpInferenceRunner to run the
static analysis bottom-up. The specification extraction described in the pre-
vious section takes place in InterproceduralNumericalInferenceRunner by over-

2https://bitbucket.org/viperproject/sample

51

https://bitbucket.org/viperproject/sample

4. Specification Inference

riding the abstract methods declared in SilverInferenceRunner. The type In-
terproceduralSilverInferenceRunner is responsible for populating resultsToWork-
With with CfgResults for top-down analysis whereas InterproceduralSilverBot-
tomUpInferenceRunner does this for the bottom-up case (see Section 4.3.1).
The two traits SilverExtender and SilverExporter provide functionality to ex-
tend a Silver program into a program annotated with the inferred specifica-
tion and to export the inferred specification in a different format. A Silver
program is extended by traversing Sample’s internal representation of the
program and adding the inferred specification to loop and method declara-
tions. Before this project an intraprocedural numerical inference existed. We
contributed bottom-up analysis runners, the interprocedural inference and
exporting functionality that will be discussed in the next section to Sample’s
specification inference implementation.

Figure 4.4: Hierarchy of the Silver inference implementation. Dashed lines
represent a trait mix-in.

4.5 Exporting the Inferred Specification to Viper IDE

The Viper tools include a visual environment for developing and verifying
Silver programs called Viper IDE. As discussed in the introduction of this
chapter a static analysis can assist a developer by annotating the program

52

4.5. Exporting the Inferred Specification to Viper IDE

with a specification. Therefore, it is natural to aim for integration of the
specification inference into Viper IDE. In this section we provide implemen-
tation details about Sample’s interface to Viper. We briefly explain the proto-
col. Then, we give a short overview of the implemented changes in Sample.
Finally, we show two example messages transferred from Sample to Viper
IDE.

4.5.1 Viper protocol

The Viper IDE defines a JSON3 based protocol that allows it to communi-
cate with other components of Viper. For instance, Viper IDE can verify
a Silver program by talking to a verification backend. The verification re-
sult is then displayed to the user. Viper protocol, the communication pro-
tocol used between IDE and backends, is defined on Page 51 under Sec-
tion 5.2.3 of [13]. Every JSON message contains an attribute type and the
remaining attributes change depending on the message type. Error mes-
sages use the type Error and then for each error a position in the source
code, a tag identifying the error and a message-text is provided (Page 52
in [13]). For Sample we introduced SpecificationInference as a message type
and sample.error.inferenceOmitted as a tag for error messages. Communica-
tion between Viper IDE and Sample is as follows: Viper IDE runs Sample’s
specification inference and provides the path to the Silver source code file as
the first command line argument. Sample then prints either a JSON message
of type SpecificationInference or of type Error to standard output.

4.5.2 Implementation in Sample

Sample provides two traits SilverExporter and its subtype SilverJsonExporter
that can be mixed into a SilverInference object. These two traits are mixed
into the Scala object InterproceduralIntegerOctagonBottomUpInferenceWithJson-
Export to export a programs bottom-up inferred specification in JSON for-
mat. Listing 4.3 shows the steps involved in creating a message according
to the Viper protocol.

1 val i n t e r p r o c e d u r a l R e s u l t s = i n t e r p r o c e d u r a l . run (program)
2 i n t e r p r o c e d u r a l . exportProgram (program , i n t e r p r o c e d u r a l R e s u l t s)
3 p r i n t l n (i n t e r p r o c e d u r a l . s p e c i f i c a t i o n s A s J s o n (f i l e))

Listing 4.3: Steps from a Silver program to its specification in JSON for-
mat.

First, the program is analysed using the interprocedural octagon bottom-
up analysis. This will provide interproceduralResults of type ProgramResult.
Next, exportProgram() of the mixed-in trait SilverExporter is run to extract the

3JavaScript Object Notation

53

4. Specification Inference

specification from the analysis results (see Section 4.3). Finally, specification-
sAsJson() from the mixed-in trait SilverJsonExporter is called to convert the
extracted specification into JSON format and then it is printed to standard
output. The trait SilverJsonExporter implements the message format accord-
ing to the Viper protocol. Sample will tell the IDE at what location in the
source code the inferred preconditions, loop invariants and postconditions
should be added. Since Viper IDE only adds a specification to the Silver pro-
gram and never removes or replaces it, we do not support programs with an
existing specification. If SilverJsonExporter notices that preconditions, loop in-
variants or postconditions existed before, then a message of type Error with
tag sample.error.inferenceOmitted will be returned to the IDE to notify the user.
Note that this check is done after the bottom-up analysis. To speed up feed-
back to the user either Viper IDE or Sample should introduce a check before
invoking the static analysis in a future version of the inference.

4.5.3 Viper Protocol Messages

Listings A.5 and A.6 in the Appendix show two example messages that may
be sent back to Viper IDE. Listing A.5 contains loop invariants and postcon-
ditions together with their location in the source code. Listing A.6 is an
error message because the analysed program already contained a specifica-
tion. The analysed program can be seen in Listing A.1.

54

Chapter 5

Evaluation

In this chapter we experimentally evaluate the implemented interprocedu-
ral analyses using hand-crafted Silver programs, programs used in the an-
nual Competition on Software Verification (SV-COMP)1 or programs used
by other static analysers like the Interproc analyzer [11]. First we evaluate the
implemented forward and backward top-down analyses. Later, the specifi-
cation inference is evaluated. In each section we review the results and point
out possible drawbacks or future work. Finally, at the end of the chapter we
provide a review of the whole evaluation.

5.1 Automated Tests

Together with the implementation this project provides a set of automated
tests based on ScalaTest. These tests are implemented in the Scala classes
TrivialInterproceduralAnalysisTest, ContextInsensitiveInterproceduralAnalysisTest
and ContextSensitiveInterproceduralAnalysisTest and allow Sample developers
to quickly check that they did not break something fundamental to the in-
terprocedural analysis when changing code in Sample.

5.2 Testing Infrastructure

All analyses were run using Ubuntu Linux 16.04 on a computer with a 2.6
GHz 4-Core CPU (Intel i7-2600U) with 12GB of RAM. Logging in Sample
was set to the minimal level info and all analyses were run from within
sbt shell to minimise the start-up time of sbt. Listing A.3 in the Appendix
provides an example on how to use sbt shell to start an analysis.

1https://sv-comp.sosy-lab.org/2017/index.php

55

https://sv-comp.sosy-lab.org/2017/index.php

5. Evaluation

5.3 Numerical Forward Analyses

In this section we evaluate the implemented interprocedural numerical anal-
yses using the integer interval and octagon abstract domain. Each program
will be analysed by both analyses using different call-string lengths. To re-
peat an experiment the stated Silver programs can be put into a text-file and
then either InterproceduralIntegerOctagonAnalysis or InterproceduralIntegerIn-
tervalAnalysis can be started by providing the path to the source code file as
the first command line argument. The upper bound on the call-string length
can be controlled by modifying callStringLength in SystemParameters.scala.

5.3.1 Fibonacci

The program in Listing 5.1 computes the nth Fibonacci number. We anal-
ysed two variants of the program. One that invokes fibonacci() with n = 7
and another one with n = >, that is, any possible integer value. The 7th Fi-
bonacci number is 13 and therefore the most precise result would be r = 13.
The source of this program is the SV-COMP Fibonacci04 2 C program which
was translated to Silver. Table 5.1 shows the analysis duration and results
for different call-string bounds k. For call-strings smaller than 5, the octagon
analysis does not provide any information about the variable r. Integer in-
tervals on the other hand provide a lower bound zero. This is surprising
because the octagon abstract domain is more powerful than interval abstract
domain and we analyse and discuss this in Section 5.3.4. With increasing k
the results get more precise for both analyses. If k is set to None, and there-
fore no limit on the call-string length is provided, the value of r is computed
precisely. As an additional test we ran an octagon analysis with full-length
call-strings for the same program to compute the 15th Fibonacci number.
The analysis terminated with the precise result r = 610 after several min-
utes.

Integer Intervals Integer Octagons
k Time (s) main() exit-state Time (s) main() exit-state
0 < 1 [r → [0, ∞], n→ [7, 7]] < 2 [n = 7]
3 < 1 [r → [0, ∞], n→ [7, 7]] < 2 [n = 7]
5 < 2 [r → [12, ∞], n→ [7, 7]] < 3 [12 ≤ r, n = 7]
6 < 2 [r → [13, 13], n→ [7, 7]] < 3 [r = 13, n = 7]

None < 2 [r → [13, 13], n→ [7, 7]] < 3 [r = 13, n = 7]

Table 5.1: Analysis time and exit-states of the program that computes the
7th Fibonacci number.

2https://github.com/sosy-lab/sv-benchmarks/blob/master/c/recursive/

Fibonacci04_false-unreach-call_true-no-overflow_true-termination.c

56

https://github.com/sosy-lab/sv-benchmarks/blob/master/c/recursive/Fibonacci04_false-unreach-call_true-no-overflow_true-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/master/c/recursive/Fibonacci04_false-unreach-call_true-no-overflow_true-termination.c

5.3. Numerical Forward Analyses

1 method fibonacci(n: Int) returns(r: Int) {

2 var x: Int := 0

3 if (n < 1) {

4 r := 0;

5 } elseif (n == 1) {

6 r := 1;

7 } else {

8 r := fibonacci(n-1)

9 x := fibonacci(n-2);

10 r := r + x

11 }

12 }

13

14 method main() {

15 var n: Int := 7

16 var r: Int := 0

17 r := fibonacci(n);

18 }

Listing 5.1: Silver program that computes the 7th Fibonacci number.

Table 5.2 shows the analysis results if main() invokes fibonacci() with the ar-
gument n = >. Again, the octagon analysis does not provide information
about r when analysed with k=0. But in the context-sensitive case both anal-
yses provide the same analysis result. The results do not get more precise
after k=1 while the running time starts growing fast with call-strings greater
than 4.

Integer Intervals Integer Octagons
k Time (s) main() exit-state Time (s) main() exit-state
0 < 2 [r → [0, ∞], n→ >] < 2 []
1 < 2 [r → [0, ∞], n→ >] < 2 [0 ≤ r]
2 < 2 [r → [0, ∞], n→ >] < 2 [0 ≤ r]
3 < 2 [r → [0, ∞], n→ >] < 2 [0 ≤ r]
4 < 2 [r → [0, ∞], n→ >] < 2 [0 ≤ r]
5 11 [r → [0, ∞], n→ >] < 10 [0 ≤ r]
10 > 900 – – –

Table 5.2: Analysis time and exit-states of the program that computes the
nth Fibonacci number. The analysis for k=10 was aborted after 15 minutes.

We also implemented a version of the Fibonacci program in the program-
ming language analysed by the Interproc analyzer [11] and ran an octagon

57

5. Evaluation

analysis with default settings. Interproc infers the same constraint [0 ≤ r] as
Sample does for the Fibonacci function invoked with n = >. Furthermore
we tested what Interproc does when the fibonacci() procedure is invoked with
a specific value. In that case Interproc ignores the argument and analyses
the procedure without assumptions about its arguments.

5.3.2 McCarthy 91 Function

Listing 5.2 shows an implementation of the McCarthy 91 function invented
by John McCarthy. The result of this recursive function is 91 for all argu-
ments n ≤ 100 and n− 10 otherwise. Our Silver implementation follows the
McCarthy 91 example program used by the Interproc analyzer [11].

1 // exact semantics:

2 // if (n>=101) then n-10 else 91

3 method MC(n: Int) returns (r: Int) {

4 var t1 : Int

5 var t2 : Int

6 if (n >100){

7 r := n - 10

8 } else {

9 t1 := n + 11;

10 t2 := MC(t1);

11 r := MC(t2);

12 }

13 }

14

15 method main(a: Int) returns (r: Int) {

16 r := MC(a)

17 }

Listing 5.2: Silver implementation of the McCarthy 91 function.

As Table 5.3 shows, a correct lower bound of the return value is computed
for the restricted call-string lengths 0 and 5. If the call-string is not bounded
then the analysis will not terminate. Because of the recursive calls the call-
string just grows infinitely and widening will never be applied. The Octagon
analysis also recognizes the constraint that tracks the relationship between
the argument and the return value when the argument n is greater than
100. Our octagon analysis collects the same constraints as the Interproc
analyzer [11] when run with the default settings and octagon domain.

5.3.3 Multiple Callers

The program in Listing 5.3 was designed to test the effect of having multi-
ple callers to the same callee. The method callee() expects an argument of

58

5.3. Numerical Forward Analyses

Integer Intervals Integer Octagons
k Time (s) main() exit-state Time (s) main() exit-state
0 < 1 [r → [91, ∞], a→ >] < 2 [91 ≤ r, a− r ≤ 10]
5 < 2 [r → [91, ∞], a→ >] < 2 [91 ≤ r, a− r ≤ 10]

None – – – –

Table 5.3: Analysis results for the McCarthy 91 function. Without a call-
string bound the analysis does not terminate.

type integer and recursively increases or decreases the argument i until it is
within the range of −5 ≤ i ≤ 5. The method caller1() passes a specific value
to callee() whereas caller2() passes the argument i which can have any integer
value.

1 method caller1 () returns (r: Int)

2 {

3 r := callee (4)

4 }

5

6 method callee(i: Int) returns (k: Int)

7 {

8 if(i < -5) {

9 k := callee(i + 1)

10 } elseif(i > 5){

11 k := callee(i - 1)

12 } else {

13 k := i

14 }

15 }

16

17 method caller2(i: Int) returns (r: Int)

18 {

19 r := callee(i)

20 }

Listing 5.3: Silver Program with two entry-methods caller1() and caller2()

Tables 5.4 and 5.5 show the analysis results for integer intervals and oc-
tagons. Both caller methods are considered to be entry-points to the pro-
gram and analysed with an initial abstract state. Since both methods are
analysed in the same run, the time shown in the table is the total time Sam-
ple ran for the whole program. In the case where the call-string was limited
to k = 0 the analysis result of the callee is reused in both callers (context-
insensitive analysis). For the call-string length limit 5 the analysis results are

59

5. Evaluation

Integer Intervals
k Time (s) caller1() exit-state caller2() exit-state
0 < 2 [r → [−5, 5]] [r → [−5, 5], i→ >]
5 < 2 [r → [4, 4]] [r → [−5, 5], i→ >]

None – – –

Table 5.4: Integer Intervals analysis results for the multiple caller experiment.

Integer Octagons
k Time (s) caller1() exit-state caller2() exit-state
0 < 2 [−5 ≤ r ≤ 5] [−5 ≤ r ≤ 5]
5 < 3 [r = 4] [−5 ≤ r ≤ 5]

None – – –

Table 5.5: Integer Octagons analysis results for the multiple caller experi-
ment.

separated and for both caller methods the most precise value of r is found.

Note that, as it was the case for the McCarthy 91 function, the analysis of
the program in Listing 5.3 does not terminate if no upper bound for the
call-string length is provided.

5.3.4 Review

For both the McCarthy 91 function and the Fibonacci function invoked with
n = > Sample infers the same constraints in the octagon abstract domain
as the Interproc analyzer does. Furthermore, the analysis of the Fibonacci
program invoked with the arguments n = 7 or n = 15 shows that precise
analysis results are achieved for intervals and octagons when the call-string
is not bounded. This confirms that our approach of using transfer-values
works to add support for method parameters and local variables in recursive
programs to the call-strings approach. Because the octagon abstract domain
is more powerful than intervals, we expected octagons to always infer at
least the same or more properties about the program than intervals. This is
the case for the Multiple Callers experiment and the McCarthy 91 function.
For the latter also the relationship between parameter and return variable
is inferred. For Fibonacci this is not the case as we will discuss in the next
section.

Fibonacci Analysis Results – Octagons vs. Intervals

For the Fibonacci program when invoked with a specific n and with a call-
string length smaller than 5, integer interval analysis yields a lower bound

60

5.4. Strongly Live Variable Analysis

for variable r whereas octagon analysis does not (see Table 5.1).

Analysis. Starting at k = 5 octagons provide a lower bound for r and for
k = 6 the analysis provides the precise result for r because the limit k is
high enough to contain the whole call-stack that is created to compute the
7th Fibonacci number. The reason why no information is inferred for k
smaller than 5 is because, due to the infeasible paths introduced by the call-
string approximation, octagons correctly provides an over-approximation
for r, meaning no constraints for r are known. This happens because oc-
tagons preserve the relationship between in-transfer-variables, passed to the
callee, and the local variables. When a transfer-value is passed back to multi-
ple callers then the relationship between local variables, in-transfer-variables
and out-transfer-variables may not be preserved and, as it is the case with
k = 0 for the Fibonacci program, the constraints for the return variable are
over-approximated. For integer intervals the abstract values of the return-
variables are simply copied into the caller(s) identified by the call-string
suffix. For k = 0 in the Fibonacci program the implementation therefore
copies the result [0, ∞] to all callers whereas octagons try to preserve the
relationship between the variables in the calling-context and the returned
transfer-value.

Conclusions. As we see in the analysis results for the McCarthy 91 function
octagons provide useful constraints for k = 0 (see Table 5.3). When Fibonacci
is invoked with a specific value and the call-string is bounded, then octagons
may infer the correct but imprecise result of no constraints. Better results are
achieved if the fibonacci() method is analysed without any assumption about
its parameters. This is what we do in bottom-up analysis and it is also what
the Interproc analyzer does in every case (a specific argument to fibonacci()
will be ignored). We therefore draw the conclusion that our interprocedural
integer octagon analysis is most useful when run top-down without a call-
string bound or bottom-up where we get the same context-sensitive analysis
results as the Interproc analyser.

5.4 Strongly Live Variable Analysis

In this section we evaluate the top-down backward analysis using the imple-
mentation of interprocedural strongly live variable analysis. The analysis is
implemented in the Scala object LiveVariableAnalysis and it requires the path
to a Silver source code file as the first command line argument when run.

61

5. Evaluation

5.4.1 Multiple Callers – No Recursion

First let us consider the program in Listing 5.4. The method compute() does
a numerical computation and its three return values are computed using
different parameters. A strongly live variable analysis would declare x, y
and z to be live at the method entry-point because they are used to define
the return values. The methods noUse(), allUse() and partialUse() are at the
top of the callgraph and therefore entry-points to the program. As their
name suggests they call compute() and either use no, all or parts of the return
values. The helper() method is used to call compute() and sum (and therefore
use) all return variables of compute().

1 method compute(x: Int , y: Int , z: Int)

2 returns (r1: Int , r2: Int , r3: Int) {

3 r1 := x * x

4 r2 := y + z

5 r3 := y

6 }

7

8 method helper(a: Int , b: Int , c: Int)

9 returns (r: Int) {

10 var x: Int

11 var y: Int

12 var z: Int

13 x, y, z := compute(a, b, c)

14 r := x + y + z

15 }

16

17 // possible program entry -point

18 method noUse(a: Int , b: Int , c: Int)

19 returns (r: Int) {

20 r := helper(a, b, c)

21 r := 0

22 }

23

24 // possible program entry -point

25 method allUse(a: Int , b: Int , c: Int)

26 returns (r: Int) {

27 r := helper(a, b, c)

28 }

29

30 // possible program entry -point

31 method partialUse(a: Int , b: Int , c: Int)

32 returns (r: Int) {

33 var x: Int

62

5.4. Strongly Live Variable Analysis

34 var y: Int

35 var z: Int

36 x, y, z := compute(a, b, c)

37 r := y

38 }

Listing 5.4: The compute() program.

Table 5.6 shows the analysis result for this program. The table shows the
method parameters that are considered to be strongly live at method-entry
point because they are used to define the return values. The analysis was run
with three different call-string bounds k. Since the program does not contain
recursion and the stack of method calls never grows beyond 5 calls both k=5
and k=None produce the precise result. Again, for the context-insensitive
case the analysis result is reused in all three callers.

Strongly Live Variables at entry-state
k Time (s) noUse() allUse() partialUse()
0 < 2 {a, b, c} {a, b, c} {a, b, c}
5 < 2 ∅ {a, b, c} {b, c}

None < 2 ∅ {a, b, c} {b, c}

Table 5.6: Strongly live variable analysis results for the multiple caller – no
recursion experiment.

For the method noUse() the empty set is the correct precise result because
even though helper() is called and its result is assigned to the return variable r
the returned value will never be used because r gets 0 in the last statement of
the method. On the other hand partialUse() uses y to define its return value
and since y is computed using the parameters b and c passed to compute()
the set of strongly live variables at method-entry is {b, c}.

5.4.2 Multiple Callers – Recursion

Next we consider the program in Listing 5.5. The method exp by squaring(x,
n) recursively computes xn by squaring partial results. We translated the
pseudo code from Wikipedia3 to Silver. If the return variable of exp by squaring()
is assumed to be strongly live then x and n will also be strongly live at the
method-entry. Note that n will always be live at method-entry no matter if
r is live or not at method-exit because n is used in the condition of if state-
ments. The program has two entry-methods where entry1() uses the result
computed by exp by squaring() and entry2() does not.

3https://en.wikipedia.org/wiki/Exponentiation_by_squaring

63

https://en.wikipedia.org/wiki/Exponentiation_by_squaring

5. Evaluation

1 method entry1(x: Int , y: Int) returns (r: Int) {

2 r := exp_by_squaring(x, y)

3 }

4

5 method entry2(i: Int , j: Int) returns (r: Int) {

6 var x: Int := 0

7 x := exp_by_squaring(i, j)

8 r := 0

9 }

10

11 method exp_by_squaring(x: Int , n: Int)

12 returns(r: Int) {

13 var modCheck: Int := 0

14 if(n<0) {

15 r := exp_by_squaring (1/x, -n)

16 } elseif(n == 0) {

17 r := 1

18 } elseif(n == 1) {

19 r := x

20 } else {

21 modCheck := n / 2 * 2

22 if(modCheck == n) { // is even

23 r := exp_by_squaring(x * x, n / 2)

24 } else { // is odd

25 r := exp_by_squaring(x * x, (n-1) / 2)

26 r := r * x

27 }

28 }

29 }

Listing 5.5: Multiple entry-methods that compute xy respectively ij.

Table 5.7 shows the analysis results for the recursive program. For the
context-insensitive case k=0 it is expected that both callers get the same
result back from the callee, that is, all parameters of exp by squaring() are
considered to be strongly live at method-entry and therefore the callers pa-
rameters passed to the callee are considered to be strongly live too. In the
context-sensitive case we expected that in the entry-state of entry2() only the
parameter j is strongly live because the callee parameter n is always strongly
live. Unfortunately the analysis result does not get more precise for increas-
ing k because the information of the two callers will always be joined and
the analysis time grows exponentially. We did not run the analysis for call-
string bounds higher than 5. When the method entry1() is removed Sample

64

5.4. Strongly Live Variable Analysis

provides the precise analysis result with only j being strongly live at the
entry-state of entry2().

Strongly Live Variables at entry-state
k Time (s) entry1() entry2()
0 < 2 {x, y} {i, j}
2 < 2 {x, y} {i, j}
4 21 {x, y} {i, j}
5 477 {x, y} {i, j}

None – – –

Table 5.7: Strongly live variable analysis results for the multiple caller –
recursion experiment.

5.4.3 Review

The test results in this section show that the framework can be instantiated
for non-numerical domains and that the backward implementation of call-
strings works as expected. The non-recursive test case showed the expected
results for the context-sensitive and context-insensitive analyses for all entry-
methods (Section 5.4.1). In the recursive test case in Section 5.4.2 we do not
get the precise result in which only variable j is strongly live at the entry
of method entry2(). This is because we need to limit the call-string length
due to the recursion. If the call-string length limit is reached, the two calling
methods will share the result of a call with common call-string suffix and
therefore the second parameter of entry2() is considered to be strongly live
too.

Drawbacks / Future Work

The recursive test case points out two drawbacks which could be addressed
in future work.

Only analyse one entry-method at a time. It could make sense for future
work to implement a top-down analysis that only starts at one entry-method
at a time instead of all at the same time like our implementation does. If
only entry2() in Listing 5.5 is considered without entry1() then the analysis
yields the precise result. This may be useful for other analyses too.

Limit call-string construction. The measured time in Table 5.7 shows that
it grows exponentially when increasing the call-string. This is, because every
possible valid call-string combination is built until the call-string length limit
is reached. For live variable analysis this is frustrating because the size of the

65

5. Evaluation

lattice is finite. In method exp by squaring() of Listing 5.5 the liveness of only
three variables needs to be tracked and the lattice therefore has the same
shape as the lattice in Figure 3.10. There are eight possible transfer-values
(elements of the power set P({x, r, n})) that can be propagated but the
interpreter grows the call-string until the limit is reached no matter if the
same transfer-value has previously been propagated to the same method
or not. Khedker and Karkare [14] propose an extension of call-strings that
recognizes when the same information is propagated again and again and it
therefore would not be necessary to continue with recursive calls up to the
call-string bound. Possible future work could be to add such an extension
to our call-string implementation.

5.5 Specification Inference

In this section we evaluate the bottom-up and top-down specification in-
ference. The top-down inference can be started by running the Scala pro-
gram IntegerOctagonInference. The bottom-up inference is implemented in
the Scala object InterproceduralIntegerOctagonBottomUpInference. All analyses
have been run with SystemParameters.callStringLength=5 because our tests so
far have shown that the analysis result usually does not get more precise
while the time necessary to run the analysis increases exponentially.

5.5.1 Program four()

Listing 5.8 shows the inferred specification by top-down and bottom-up anal-
yses of a program that computes the number 4 by incrementing a variable
three times. The bottom-up inferred specification is useful and precisely de-
scribes the effect of the two methods. The top-down inferred specification
on the other hand is less useful because only implications are inferred for
the increment() method. But it may be useful for documentation purposes
because the implications show actual calls seen during analysis. The impli-
cation ensures i == 2 ==> r == 3 would for example tell us that somewhere
during the analysis a call to increment with argument i = 2 was encountered.

5.5.2 Ackermann Function

We used the Ackermann function4 implemented as ack() in Listing 5.9 to com-
pare the specification inferred by Sample to what the Interproc analyzer [11]
infers for the same program. The implementation below is a translation
of Interproc’s ack() example program to Silver. The highlighted postcondi-
tions show the specification inferred by the bottom-up inference. Interproc
uses an assume command to ensure that ack() is only called with parameters

4https://en.wikipedia.org/wiki/Ackermann_function

66

https://en.wikipedia.org/wiki/Ackermann_function

5.5. Specification Inference

method four () returns (r : Int)
ensures r == 4

{
var l : Int
l : = 1
l : = increment (l)
l : = increment (l)
l : = increment (l)
r : = l

}

method increment (i : Int) returns (r : Int)
ensures i - r == -1

{
r : = i + 1

}

Listing 5.6: Bottom-up

method four () returns (r : Int)
ensures r == 4

{
var l : Int
l : = 1
l : = increment (l)
l : = increment (l)
l : = increment (l)
r : = l

}

method increment (i : Int) returns (r : Int)
ensures i == 1 ==> i == 1
ensures i == 1 ==> r == 2
ensures i == 2 ==> i == 2
ensures i == 2 ==> r == 3
ensures i == 3 ==> i == 3
ensures i == 3 ==> r == 4

{
r : = i + 1

}

Listing 5.7: Top-down

Listing 5.8: Inferred specification for the four() program.

0 ≤ x, 0 ≤ y. To simulate the same we added a precondition at line 21 to
the program and then let Sample infer the postconditions. Without the pre-
condition Sample infers the weaker postcondition ensures b - r <= -1 for the
main() method.

1 method ack(x: Int , y: Int) returns (res: Int)

2 ensures 1 <= res - y

3 {

4 var t: Int

5 var t1: Int

6 if (x <= 0) {

7 res := y + 1

8 } elseif (y <= 0) {

9 t1 := x - 1

10 t := 1

11 res := ack(t1 , t)

12 } else {

13 t1 := y - 1

14 t := ack(x, t1)

15 t1 := x - 1

16 res := ack(t1 , t)

17 }

18 }

19

20 method main(a: Int , b: Int) returns (r: Int)

21 requires a >= 0 && b >= 0

67

5. Evaluation

22 ensures 0 <= b

23 ensures b - r <= -1

24 ensures 1 <= b + r

25 ensures 0 <= a + b

26 ensures 0 <= a

27 ensures 1 <= r

28 ensures 1 <= a + r

29 {

30 r := ack(a, b)

31 }

Listing 5.9: Bottom-up inferred specification for the Ackermann function.
Highlighted postconditions have been inferred by Sample.

The inferred postconditions in Listing 5.9 match the analysis result of the
Interproc analyzer when run with default settings and octagon abstract do-
main. Specification inference was also run top-down with the result in List-
ing A.4 in the Appendix. Both top-down and bottom-up inference com-
pleted within less than 20 seconds. The inferred specification is correct and
can be verified. The programs were verified using the online tools of the
Viper5.

5.5.3 Program getElementOrLast()

Chapter 4 introduced the getElementOrLast() program that bounded the in-
dex pos before accessing the sequence xs. Listing 5.10 shows an adapted
version of this program where upperBound() is implemented using a loop
and a helper method. The highlighted invariant and postconditions show
the inferred specification. Inference completed within seconds and both
top-down and bottom-up approaches infer the same invariant and postcon-
ditions. Using the inferred specification the Viper online verifier was able to
verify that access to xs is within bounds.

1 method getElementOrLast(pos: Int , xs: Seq[Int])

2 returns (r: Int)

3 {

4 var bounded: Int

5 bounded := upperBound(pos , |xs| - 1)

6 if (bounded >= 0) {

7 r := xs[bounded]

8 } else {

9 r := -1

10 }

5http://viper.ethz.ch/examples/blank-example.html

68

http://viper.ethz.ch/examples/blank-example.html

5.5. Specification Inference

11 }

12

13 method upperBound(n: Int , upper: Int)

14 returns (r: Int)

15 ensures r - upper <= 0

16 ensures 0 <= n - r

17 {

18 r := n

19 while (r > upper)

20 invariant 0 <= n - r

21 {

22 r := decrement(r)

23 }

24 }

25

26 method decrement(i: Int) returns (r: Int)

27 ensures i - r == 1

28 {

29 r := i - 1

30 }

Listing 5.10: Inferred specification (highlighted) for the getElementOr-
Last() program. Top-down and bottom-up inference result in the same
specification.

5.5.4 Strongly Connected Component in Callgraph

So far bottom-up inference has proven to be more useful because it pro-
vides generally valid statements about all procedures whereas top-down
only provides implications for invariants and postconditions for called meth-
ods. Listing 5.13 provides a hand-crafted program where the entry-methods
form a strongly connected component in the callgraph. The program itself
does nothing useful but it is guaranteed to terminate when one of the entry-
methods foo() or bar() is called with any argument. All postconditions in
Listing 5.13 have been inferred and pass verification.

For this program top-down inference is able to infer a stronger postcondition
for the method bar(). It infers an upper and lower bound for i whereas
bottom-up only infers a lower bound. In this case top-down provides a
stronger postcondition for bar() because it is, together with foo(), at the top
of the callgraph. If another method were to exist in the program that calls
bar() and is neither called by foo() or bar() then top-down inference would
only provide implications as postconditions of bar().

69

5. Evaluation

method foo (b : Int) returns (i : Int)
ensures i <= 22
ensures −1 <= b − i

{
i f (b > 20) {

i : = bar (2 1)
} e lse {

i : = baz (b)
}

}

method bar (z : Int) returns (i : Int)
ensures i <= 22

{
i f (z == 21) {

i : = baz (z)
} e lse {

i : = foo (1 0)
}

}

method baz (x : Int) returns (r : Int)
ensures r − x == 1

{
r : = x + 1

}

Listing 5.11: Bottom-up

method foo (b : Int) returns (i : Int)
ensures i <= 22
ensures −1 <= b − i
ensures b == 10 ==> b == 10
ensures b == 10 ==> i == 11

{
i f (b > 20) {

i : = bar (2 1)
} e lse {

i : = baz (b)
}

}

method bar (z : Int) returns (i : Int)
ensures 11 <= i
ensures i <= 22
ensures z == 21 ==> z == 21
ensures z == 21 ==> i == 22

{
i f (z == 21) {

i : = baz (z)
} e lse {

i : = foo (1 0)
}

}

method baz (x : Int) returns (r : Int)
ensures x <= 20 ==> x <= 20
ensures x <= 20 ==> r <= 21
ensures x <= 20 ==> r + x <= 41
ensures x <= 20 ==> r − x == 1
ensures x == 21 ==> x == 21
ensures x == 21 ==> r == 22
ensures x == 10 ==> x == 10
ensures x == 10 ==> r == 11

{
r : = x + 1

}

Listing 5.12: Top-down

Listing 5.13: All postconditions have been inferred. The highlighted post-
conditions show where top-down is able to infer a stronger postcondition.

5.5.5 Review

The test results show that the top-down inference may be useful if one is in-
terested in strong postconditions of (only) the entry-methods of a program.
For the bar() method in Section 5.5.4 and the double() method introduced
in the previous chapter in Section 4.3.4 the top-down inferred postcondi-
tion of the entry-method was stronger than for bottom-up inference. But
the drawback of top-down analysis is, that for all called methods only par-
tial specifications are inferred. Bottom-up inference on the other hand may
infer a weaker postcondition for entry-methods but it provides useful infor-
mation for all methods of the program. Another advantage of the bottom-up
approach is, that it is a modular analysis. Big programs can be analysed as
components (of the condensed callgraph) and the result, meaning the post-

70

5.6. Evaluation Review

conditions of a callee, can be reused as the result of a method call in all
callers. The top-down inference on the other hand will have to analyse each
caller for each method call again.

5.6 Evaluation Review

The results in this chapter show that the generic framework can be instanti-
ated for different analyses in forward or backward direction. For numerical
analyses using the integer octagon abstract domain the bottom-up inference
achieves the same results as the Interproc analyzer [11]. This is also the
case for context-sensitive top-down analyses of procedures whose callers
passed in any value (e.g. n = > for Fibonacci). But top-down analysis using
octagons is less useful when the call-string length is limited, which is nec-
essary for recursive procedures, and the analysed program calls the caller
with specific arguments (e.g. n = 7 for Fibonacci). An analysis and conclu-
sions of this can be found in Section 5.3.4. Due to this, we believe octagons
are most useful in our implementation when either used for bottom-up anal-
yses or top-down without restricting the call-string length. Another result
seen in all three evaluations is that even for programs consisting of only a
couple of methods the analysis gets impractical in terms of running time for
call-string bounds greater than 3 or 4. In Section 5.3 we also saw that for
procedures analysed without an assumption about their parameter values
the analysis results usually do not improve when increasing the call-string
bound above 1 or 2. Please refer to Sections 5.3.4, 5.4.3 and 5.6 for a more
detailed review of the three evaluations.

71

Chapter 6

Conclusions

In this thesis, we have presented a generic interprocedural static analysis
framework which adds support for interprocedural analyses of Silver pro-
grams to Sample [2], a static analyser developed at the Chair of Program-
ming Methodology at ETH Zurich.

Our analysis is based on Sharir and Pnueli’s call-string approach [21] and
the framework is customisable by setting the widening limit and configur-
ing an upper bound for the call-string length for call-string suffix approxima-
tion proposed by Sharir and Pnueli. Our approach adds support for pro-
cedures called with arguments and recursion with local variables to call-
strings (Chapter 2).

The framework is generic with respect to the static analysis problem and
we provide instantiations for forward and backward analyses. In forward
direction we provide implementations for analyses using the integer inter-
val and integer octagon abstract domains. An instantiation of a backward
analysis is provided as a variant of live variable analysis (Chapter 3). For
the implementation we made a simplifying assumption that all information
that is necessary to analyse a called method is only related to its parameters
or return variables. This can easily be adapted if necessary, like for example,
when global variables should be be taken into account too.

Functionality to create whole-program top-down analyses or modular bottom-
up analyses is provided. Developers can instantiate their own analysis by
providing the necessary framework parameters (Section 2.5.3). To imple-
ment an analysis we refer to our instantiations that provide an example of
what has to be implemented (Section 3.4).

The new interprocedural analysis framework was used to implement spec-
ification inference for numerical programs (Chapter 4). We provide a top-
down and bottom-up specification inference using integer octagons. Fur-

73

6. Conclusions

thermore, we have implemented an interface for Viper IDE1 to infer specifi-
cations of programs that are being edited in the IDE.

Finally, the results of the evaluation show that the generic framework can
successfully be instantiated for different interprocedural analyses in forward
or backward direction. In our tests of the numerical analyses we achieved
the same analysis results as the Interproc analyzer [11] using standard set-
tings and octagon domain (Chapter 5).

6.1 Future Work

In this section we discuss possible future work.

Generalise the assumption on transfer-values. The current implementa-
tion makes the simplifying assumption that everything necessary to analyse
a called procedure can be passed into it using its parameters and return
variables. We call this information a transfer-value. A more generic imple-
mentation could delegate the creation of the transfer-value to users of the
framework instead of creating transfer-values using this assumption. This
may be useful if a specific analysis wants to provide more information than
only call-string and parameters to a callee.

Only analyse one entry-method at a time. Our implementation of the top-
down analysis runner analyses all entry-methods during the same analysis.
In case of a limited call-string length results may be reused for multiple
callers resulting in a less precise analysis result (Section 5.4.3). It could be
useful to provide an analysis runner that runs multiple top-down analyses
starting at each possible entry-point of the program once.

More powerful numerical domain for specification inference. It could be
useful to instantiate the specification inference with a more powerful numer-
ical abstract domain like the polyhedra abstract domain [7]. As soon as the
abstract domain is available for an intraprocedural analysis in Sample, the
instantiation for interprocedural specification inference is straightforward.

Limit call-string construction. For recursive procedures the analysis ex-
plores all possible call-strings until the length limit is reached. Especially
for finite domains it is possible that the recursive procedure is analysed re-
peatedly with the same in-state (see Section 5.4.3) but changing call-strings.
Khedker and Karkare [14] propose an extension of call-strings that recog-
nizes when the same information is propagated again and again and it
therefore would not be necessary to continue with recursive calls up to the

1https://bitbucket.org/viperproject/viper-ide

74

https://bitbucket.org/viperproject/viper-ide

6.2. Acknowledgements

full call-string length limit. Possible future work could be to add such an
extension to our call-string implementation.

6.2 Acknowledgements

I would like to thank my supervisors Dr. Caterina Urban and Jérôme Dohrau
for their great support throughout my thesis. Their advice in our weekly
meetings was an immense help. I am also very grateful for all the time
they invested to provide valuable feedback on the written report, do code-
reviews or help coordinate with other projects when something out of my
hands interfered with Sample. My thanks go to Prof. Dr. Peter Müller for
giving me the opportunity to work on this thesis. Finally, I would like to
express my gratitude to my girlfriend and family for their constant support
and patience.

75

Appendix A

Appendix

A.1 Bottom-Up Inferred Specification

1 method main() returns (r: Int)

2 ensures 0 <= r

3 {

4 var i: Int

5 i := 5

6 r := double(i)

7 }

8

9 method double(i: Int) returns (r: Int)

10 ensures 0 <= r

11 {

12 var l: Int

13 l := i

14 r := 0

15 while (l > 0)

16 invariant 0 <= r

17 invariant 0 <= i - l

18 {

19 r := r + 2

20 l := l - 1

21 }

22 }

Listing A.1: Bottom-up inferred specification.

77

A. Appendix

A.2 Top-Down Inferred Specification

1 method main() returns (r: Int)

2 ensures 5 <= r

3 {

4 var i: Int

5 i := 5

6 r := double(i)

7 }

8

9 method double(i: Int) returns (r: Int)

10 ensures i == 5 ==> 5 <= r

11 ensures i == 5 ==> i == 5

12 {

13 var l: Int

14 l := i

15 r := 0

16 while (l > 0)

17 invariant i == 5 ==> l <= 5

18 invariant i == 5 ==> 5 <= l + r

19 invariant i == 5 ==> 0 <= r

20 invariant i == 5 ==> l - r <= 5

21 invariant i == 5 ==> i == 5

22 {

23 r := r + 2

24 l := l - 1

25 }

26 }

Listing A.2: Top-down inferred specification.

78

A.3. Running an Analysis

A.3 Running an Analysis

1 sample@9eda8cb11fcc :~/ workspace/sample$ sbt shell

2 [info] Loading project definition from /home/sample

/workspace/sample/project

3 ...

4 > project sample -silver

5 ...

6 > run -main ch.ethz.inf.pm.sample.abstractdomain.

InterproceduralIntegerIntervalAnalysis src/test/

resources/silver/example.sil

7 ...

8 [info]

9 [info] ******************

10 [info] * AnalysisResult *

11 [info] ******************

12 [info]

13 ...

14 [success] Total time: 11 s, completed Aug 9, 2017

1:49:04 PM

Listing A.3: Commands to run an interprocedural integer intervals
analysis using sbt shell

79

A. Appendix

A.4 Top-Down inferred Specification for the Ackermann
Function

1 method ack (x : Int , y : Int) returns (r es : Int)
2 ensures 1 <= x && y == 0 ==> 1 <= x
3 ensures 1 <= x && y == 0 ==> 3 <= r es + x
4 ensures 1 <= x && y == 0 ==> 1 <= r es − x
5 ensures 1 <= x && y == 0 ==> 2 <= r es
6 ensures 1 <= x && y == 0 ==> y == 0
7 ensures 0 <= x && y == 1 ==> y == 1
8 ensures 0 <= x && y == 1 ==> 0 <= x
9 ensures 0 <= x && y == 1 ==> 2 <= r es

10 ensures 0 <= x && y == 1 ==> 2 <= r es − x
11 ensures 0 <= x && y == 1 ==> 2 <= r es + x
12 ensures 1 <= x && 0 <= y && 1 <= x + y ==> 1 <= x
13 ensures 1 <= x && 0 <= y && 1 <= x + y ==> 0 <= y
14 ensures 1 <= x && 0 <= y && 1 <= x + y ==> 1 <= x + y
15 ensures 1 <= x && 0 <= y && 1 <= x + y ==> 2 <= re s − y
16 ensures 1 <= x && 0 <= y && 1 <= x + y ==> 2 <= re s + y
17 ensures 1 <= x && 0 <= y && 1 <= x + y ==> 1 <= re s − x
18 ensures 1 <= x && 0 <= y && 1 <= x + y ==> 2 <= re s
19 ensures 1 <= x && 0 <= y && 1 <= x + y ==> 3 <= re s + x
20 ensures 0 <= x && 2 <= y && 2 <= x + y && x − y <= −2 ==> 3 <= r es − x
21 ensures 0 <= x && 2 <= y && 2 <= x + y && x − y <= −2 ==> 3 <= r es + x
22 ensures 0 <= x && 2 <= y && 2 <= x + y && x − y <= −2 ==> 2 <= x + y
23 ensures 0 <= x && 2 <= y && 2 <= x + y && x − y <= −2 ==> 5 <= r es + y
24 ensures 0 <= x && 2 <= y && 2 <= x + y && x − y <= −2 ==> 0 <= x
25 ensures 0 <= x && 2 <= y && 2 <= x + y && x − y <= −2 ==> 1 <= r es − y
26 ensures 0 <= x && 2 <= y && 2 <= x + y && x − y <= −2 ==> 2 <= y
27 ensures 0 <= x && 2 <= y && 2 <= x + y && x − y <= −2 ==> x − y <= −2
28 ensures 0 <= x && 2 <= y && 2 <= x + y && x − y <= −2 ==> 3 <= r es
29 ensures 1 <= x && 2 <= y && 3 <= x + y && x − y <= −1 ==> x − y <= −1
30 ensures 1 <= x && 2 <= y && 3 <= x + y && x − y <= −1 ==> 2 <= y
31 ensures 1 <= x && 2 <= y && 3 <= x + y && x − y <= −1 ==> 6 <= r es + y
32 ensures 1 <= x && 2 <= y && 3 <= x + y && x − y <= −1 ==> 3 <= x + y
33 ensures 1 <= x && 2 <= y && 3 <= x + y && x − y <= −1 ==> 4 <= r es
34 ensures 1 <= x && 2 <= y && 3 <= x + y && x − y <= −1 ==> 2 <= r es − y
35 ensures 1 <= x && 2 <= y && 3 <= x + y && x − y <= −1 ==> 3 <= r es − x
36 ensures 1 <= x && 2 <= y && 3 <= x + y && x − y <= −1 ==> 5 <= r es + x
37 ensures 1 <= x && 2 <= y && 3 <= x + y && x − y <= −1 ==> 1 <= x
38 ensures 1 <= x && 1 <= y && 2 <= x + y && x − y <= 0 ==> 4 <= re s + y
39 ensures 1 <= x && 1 <= y && 2 <= x + y && x − y <= 0 ==> 3 <= re s
40 ensures 1 <= x && 1 <= y && 2 <= x + y && x − y <= 0 ==> 2 <= x + y
41 ensures 1 <= x && 1 <= y && 2 <= x + y && x − y <= 0 ==> 2 <= r es − y
42 ensures 1 <= x && 1 <= y && 2 <= x + y && x − y <= 0 ==> 1 <= y
43 ensures 1 <= x && 1 <= y && 2 <= x + y && x − y <= 0 ==> 2 <= r es − x
44 ensures 1 <= x && 1 <= y && 2 <= x + y && x − y <= 0 ==> x − y <= 0
45 ensures 1 <= x && 1 <= y && 2 <= x + y && x − y <= 0 ==> 1 <= x
46 ensures 1 <= x && 1 <= y && 2 <= x + y && x − y <= 0 ==> 4 <= r es + x
47 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 1 ==> 2 <= r es − y
48 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 1 ==> 2 <= r es + y
49 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 1 ==> 3 <= r es + x
50 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 1 ==> 1 <= x + y
51 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 1 ==> 2 <= r es
52 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 1 ==> 1 <= x
53 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 1 ==> 0 <= y
54 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 1 ==> 1 <= r es − x
55 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 1 ==> x − y <= 1
56 ensures x == 0 && y == 1 ==> x == 0
57 ensures x == 0 && y == 1 ==> y == 1
58 ensures x == 0 && y == 1 ==> re s == 2
59 ensures 0 <= x && 3 <= y && 3 <= x + y && x − y <= −3 ==> 7 <= r es + y
60 ensures 0 <= x && 3 <= y && 3 <= x + y && x − y <= −3 ==> x − y <= −3
61 ensures 0 <= x && 3 <= y && 3 <= x + y && x − y <= −3 ==> 3 <= x + y
62 ensures 0 <= x && 3 <= y && 3 <= x + y && x − y <= −3 ==> 1 <= r es − y
63 ensures 0 <= x && 3 <= y && 3 <= x + y && x − y <= −3 ==> 4 <= r es − x
64 ensures 0 <= x && 3 <= y && 3 <= x + y && x − y <= −3 ==> 4 <= r es + x
65 ensures 0 <= x && 3 <= y && 3 <= x + y && x − y <= −3 ==> 4 <= r es
66 ensures 0 <= x && 3 <= y && 3 <= x + y && x − y <= −3 ==> 3 <= y
67 ensures 0 <= x && 3 <= y && 3 <= x + y && x − y <= −3 ==> 0 <= x
68 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 2 ==> 1 <= x
69 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 2 ==> 1 <= x + y

80

A.4. Top-Down inferred Specification for the Ackermann Function

70 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 2 ==> 1 <= re s − x
71 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 2 ==> 3 <= re s + x
72 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 2 ==> 2 <= re s − y
73 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 2 ==> 2 <= re s + y
74 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 2 ==> 2 <= re s
75 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 2 ==> 0 <= y
76 ensures 1 <= x && 0 <= y && 1 <= x + y && x − y <= 2 ==> x − y <= 2
77 ensures 0 <= x && 4 <= y && 4 <= x + y && x − y <= −4 ==> 5 <= re s + x
78 ensures 0 <= x && 4 <= y && 4 <= x + y && x − y <= −4 ==> 5 <= re s − x
79 ensures 0 <= x && 4 <= y && 4 <= x + y && x − y <= −4 ==> 9 <= re s + y
80 ensures 0 <= x && 4 <= y && 4 <= x + y && x − y <= −4 ==> 5 <= re s
81 ensures 0 <= x && 4 <= y && 4 <= x + y && x − y <= −4 ==> x − y <= −4
82 ensures 0 <= x && 4 <= y && 4 <= x + y && x − y <= −4 ==> 4 <= x + y
83 ensures 0 <= x && 4 <= y && 4 <= x + y && x − y <= −4 ==> 1 <= re s − y
84 ensures 0 <= x && 4 <= y && 4 <= x + y && x − y <= −4 ==> 0 <= x
85 ensures 0 <= x && 4 <= y && 4 <= x + y && x − y <= −4 ==> 4 <= y
86 ensures 1 <= x && 3 <= y && 4 <= x + y && x − y <= −2 ==> 8 <= re s + y
87 ensures 1 <= x && 3 <= y && 4 <= x + y && x − y <= −2 ==> 4 <= x + y
88 ensures 1 <= x && 3 <= y && 4 <= x + y && x − y <= −2 ==> 2 <= re s − y
89 ensures 1 <= x && 3 <= y && 4 <= x + y && x − y <= −2 ==> x − y <= −2
90 ensures 1 <= x && 3 <= y && 4 <= x + y && x − y <= −2 ==> 1 <= x
91 ensures 1 <= x && 3 <= y && 4 <= x + y && x − y <= −2 ==> 6 <= re s + x
92 ensures 1 <= x && 3 <= y && 4 <= x + y && x − y <= −2 ==> 5 <= re s
93 ensures 1 <= x && 3 <= y && 4 <= x + y && x − y <= −2 ==> 4 <= re s − x
94 ensures 1 <= x && 3 <= y && 4 <= x + y && x − y <= −2 ==> 3 <= y
95 ensures 0 <= x && 5 <= y && 5 <= x + y && x − y <= −5 ==> x − y <= −5
96 ensures 0 <= x && 5 <= y && 5 <= x + y && x − y <= −5 ==> 6 <= re s
97 ensures 0 <= x && 5 <= y && 5 <= x + y && x − y <= −5 ==> 6 <= re s − x
98 ensures 0 <= x && 5 <= y && 5 <= x + y && x − y <= −5 ==> 6 <= re s + x
99 ensures 0 <= x && 5 <= y && 5 <= x + y && x − y <= −5 ==> 5 <= y

100 ensures 0 <= x && 5 <= y && 5 <= x + y && x − y <= −5 ==> 1 <= re s − y
101 ensures 0 <= x && 5 <= y && 5 <= x + y && x − y <= −5 ==> 5 <= x + y
102 ensures 0 <= x && 5 <= y && 5 <= x + y && x − y <= −5 ==> 0 <= x
103 ensures 0 <= x && 5 <= y && 5 <= x + y && x − y <= −5 ==> 11 <= r es + y
104 ensures 1 <= x && 4 <= y && 5 <= x + y && x − y <= −3 ==> 6 <= re s
105 ensures 1 <= x && 4 <= y && 5 <= x + y && x − y <= −3 ==> 10 <= r es + y
106 ensures 1 <= x && 4 <= y && 5 <= x + y && x − y <= −3 ==> 2 <= re s − y
107 ensures 1 <= x && 4 <= y && 5 <= x + y && x − y <= −3 ==> 7 <= re s + x
108 ensures 1 <= x && 4 <= y && 5 <= x + y && x − y <= −3 ==> x − y <= −3
109 ensures 1 <= x && 4 <= y && 5 <= x + y && x − y <= −3 ==> 5 <= x + y
110 ensures 1 <= x && 4 <= y && 5 <= x + y && x − y <= −3 ==> 1 <= x
111 ensures 1 <= x && 4 <= y && 5 <= x + y && x − y <= −3 ==> 4 <= y
112 ensures 1 <= x && 4 <= y && 5 <= x + y && x − y <= −3 ==> 5 <= re s − x
113 ensures 0 <= x && 6 <= y && 6 <= x + y && x − y <= −6 ==> 0 <= x
114 ensures 0 <= x && 6 <= y && 6 <= x + y && x − y <= −6 ==> 7 <= re s − x
115 ensures 0 <= x && 6 <= y && 6 <= x + y && x − y <= −6 ==> 7 <= re s + x
116 ensures 0 <= x && 6 <= y && 6 <= x + y && x − y <= −6 ==> 6 <= x + y
117 ensures 0 <= x && 6 <= y && 6 <= x + y && x − y <= −6 ==> 7 <= re s
118 ensures 0 <= x && 6 <= y && 6 <= x + y && x − y <= −6 ==> x − y <= −6
119 ensures 0 <= x && 6 <= y && 6 <= x + y && x − y <= −6 ==> 13 <= r es + y
120 ensures 0 <= x && 6 <= y && 6 <= x + y && x − y <= −6 ==> 1 <= re s − y
121 ensures 0 <= x && 6 <= y && 6 <= x + y && x − y <= −6 ==> 6 <= y
122 ensures 1 <= x && 5 <= y && 6 <= x + y && x − y <= −4 ==> 12 <= r es + y
123 ensures 1 <= x && 5 <= y && 6 <= x + y && x − y <= −4 ==> 2 <= re s − y
124 ensures 1 <= x && 5 <= y && 6 <= x + y && x − y <= −4 ==> 6 <= x + y
125 ensures 1 <= x && 5 <= y && 6 <= x + y && x − y <= −4 ==> 8 <= re s + x
126 ensures 1 <= x && 5 <= y && 6 <= x + y && x − y <= −4 ==> 5 <= y
127 ensures 1 <= x && 5 <= y && 6 <= x + y && x − y <= −4 ==> x − y <= −4
128 ensures 1 <= x && 5 <= y && 6 <= x + y && x − y <= −4 ==> 6 <= re s − x
129 ensures 1 <= x && 5 <= y && 6 <= x + y && x − y <= −4 ==> 7 <= re s
130 ensures 1 <= x && 5 <= y && 6 <= x + y && x − y <= −4 ==> 1 <= x
131 ensures 0 <= x && 7 <= y && 7 <= x + y && x − y <= −7 ==> 8 <= re s
132 ensures 0 <= x && 7 <= y && 7 <= x + y && x − y <= −7 ==> 7 <= x + y
133 ensures 0 <= x && 7 <= y && 7 <= x + y && x − y <= −7 ==> 8 <= re s − x
134 ensures 0 <= x && 7 <= y && 7 <= x + y && x − y <= −7 ==> 8 <= re s + x
135 ensures 0 <= x && 7 <= y && 7 <= x + y && x − y <= −7 ==> x − y <= −7
136 ensures 0 <= x && 7 <= y && 7 <= x + y && x − y <= −7 ==> 1 <= re s − y
137 ensures 0 <= x && 7 <= y && 7 <= x + y && x − y <= −7 ==> 15 <= r es + y
138 ensures 0 <= x && 7 <= y && 7 <= x + y && x − y <= −7 ==> 0 <= x
139 ensures 0 <= x && 7 <= y && 7 <= x + y && x − y <= −7 ==> 7 <= y
140 ensures 1 <= x && 6 <= y && 7 <= x + y && x − y <= −5 ==> 8 <= re s
141 ensures 1 <= x && 6 <= y && 7 <= x + y && x − y <= −5 ==> 2 <= re s − y
142 ensures 1 <= x && 6 <= y && 7 <= x + y && x − y <= −5 ==> 6 <= y
143 ensures 1 <= x && 6 <= y && 7 <= x + y && x − y <= −5 ==> x − y <= −5

81

A. Appendix

144 ensures 1 <= x && 6 <= y && 7 <= x + y && x − y <= −5 ==> 14 <= r es + y
145 ensures 1 <= x && 6 <= y && 7 <= x + y && x − y <= −5 ==> 7 <= x + y
146 ensures 1 <= x && 6 <= y && 7 <= x + y && x − y <= −5 ==> 7 <= r es − x
147 ensures 1 <= x && 6 <= y && 7 <= x + y && x − y <= −5 ==> 9 <= r es + x
148 ensures 1 <= x && 6 <= y && 7 <= x + y && x − y <= −5 ==> 1 <= x
149 ensures 0 <= x && 8 <= y && 8 <= x + y && x − y <= −8 ==> 8 <= x + y
150 ensures 0 <= x && 8 <= y && 8 <= x + y && x − y <= −8 ==> 9 <= r es − x
151 ensures 0 <= x && 8 <= y && 8 <= x + y && x − y <= −8 ==> 9 <= r es + x
152 ensures 0 <= x && 8 <= y && 8 <= x + y && x − y <= −8 ==> 8 <= y
153 ensures 0 <= x && 8 <= y && 8 <= x + y && x − y <= −8 ==> 1 <= r es − y
154 ensures 0 <= x && 8 <= y && 8 <= x + y && x − y <= −8 ==> 9 <= r es
155 ensures 0 <= x && 8 <= y && 8 <= x + y && x − y <= −8 ==> x − y <= −8
156 ensures 0 <= x && 8 <= y && 8 <= x + y && x − y <= −8 ==> 0 <= x
157 ensures 0 <= x && 8 <= y && 8 <= x + y && x − y <= −8 ==> 17 <= r es + y
158 ensures 1 <= x && 8 <= y && 9 <= x + y && x − y <= −7 ==> 2 <= r es − y
159 ensures 1 <= x && 8 <= y && 9 <= x + y && x − y <= −7 ==> 8 <= y
160 ensures 1 <= x && 8 <= y && 9 <= x + y && x − y <= −7 ==> 1 <= x
161 ensures 1 <= x && 8 <= y && 9 <= x + y && x − y <= −7 ==> 10 <= r es
162 ensures 1 <= x && 8 <= y && 9 <= x + y && x − y <= −7 ==> 9 <= r es − x
163 ensures 1 <= x && 8 <= y && 9 <= x + y && x − y <= −7 ==> 11 <= r es + x
164 ensures 1 <= x && 8 <= y && 9 <= x + y && x − y <= −7 ==> x − y <= −7
165 ensures 1 <= x && 8 <= y && 9 <= x + y && x − y <= −7 ==> 18 <= r es + y
166 ensures 1 <= x && 8 <= y && 9 <= x + y && x − y <= −7 ==> 9 <= x + y
167 ensures 0 <= x && 10 <= y && 10 <= x + y && x − y <= −10 ==> 10 <= x + y
168 ensures 0 <= x && 10 <= y && 10 <= x + y && x − y <= −10 ==> 11 <= re s
169 ensures 0 <= x && 10 <= y && 10 <= x + y && x − y <= −10 ==> 10 <= y
170 ensures 0 <= x && 10 <= y && 10 <= x + y && x − y <= −10 ==> x − y <= −10
171 ensures 0 <= x && 10 <= y && 10 <= x + y && x − y <= −10 ==> 21 <= re s + y
172 ensures 0 <= x && 10 <= y && 10 <= x + y && x − y <= −10 ==> 1 <= r es − y
173 ensures 0 <= x && 10 <= y && 10 <= x + y && x − y <= −10 ==> 11 <= re s + x
174 ensures 0 <= x && 10 <= y && 10 <= x + y && x − y <= −10 ==> 11 <= re s − x
175 ensures 0 <= x && 10 <= y && 10 <= x + y && x − y <= −10 ==> 0 <= x
176 ensures 0 <= x && 0 <= y && 0 <= x + y ==> 0 <= x
177 ensures 0 <= x && 0 <= y && 0 <= x + y ==> 0 <= y
178 ensures 0 <= x && 0 <= y && 0 <= x + y ==> 1 <= re s + y
179 ensures 0 <= x && 0 <= y && 0 <= x + y ==> 1 <= re s − y
180 ensures 0 <= x && 0 <= y && 0 <= x + y ==> 1 <= re s
181 ensures 0 <= x && 0 <= y && 0 <= x + y ==> 0 <= x + y
182 ensures 0 <= x && 0 <= y && 0 <= x + y ==> 1 <= re s − x
183 ensures 0 <= x && 0 <= y && 0 <= x + y ==> 1 <= re s + x
184 {
185 var t : Int
186 var t 1 : Int
187 i f (x <= 0) {
188 r es : = y + 1
189 } e l s e i f (y <= 0) {
190 t1 : = x − 1
191 t : = 1
192 r es : = ack (t1 , t)
193 } e lse {
194 t1 : = y − 1
195 t : = ack (x , t1)
196 t1 : = x − 1
197 r es : = ack (t1 , t)
198 }
199 }
200
201 method main (a : Int , b : Int) returns (r : Int)
202 requires a >= 0 && b >= 0
203 ensures 0 <= b
204 ensures b − r <= −1
205 ensures 1 <= b + r
206 ensures 0 <= a + b
207 ensures 0 <= a
208 ensures 1 <= r
209 ensures a − r <= −1
210 ensures 1 <= a + r
211 {
212 r : = ack (a , b)
213 }

82

A.4. Top-Down inferred Specification for the Ackermann Function

Listing A.4: Top-down inferred specification for the Ackermann function.
The highlighted precondition at line 202 was added to the program. All
postconditions have been inferred by Sample.

83

A. Appendix

A.5 Viper Protocol Message with Inferred Specification

1 {

2 "type":"SpecificationInference",

3 "file":"/silver/double.vpr",

4 "preconditions":[

5 {

6 "position":"2:1",

7 "specifications":[]

8 },

9 {

10 "position":"9:1",

11 "specifications":[]

12 }

13],

14 "postconditions":[

15 {

16 "position":"2:1",

17 "specifications":[

18 "ensures 0 <= r"

19]

20 },

21 {

22 "position":"9:1",

23 "specifications":[

24 "ensures 0 <= r"

25]

26 }

27],

28 "invariants":[

29 {

30 "position":"14:2",

31 "specifications":[

32 "invariant 0 <= r",

33 "invariant 0 <= i - l"

34]

35 }

36]

37 }

Listing A.5: A Viper protocol messages sent to the IDE with inferred
postconditions and invariants.

84

A.6. Viper Protocol Error Message

A.6 Viper Protocol Error Message

1 {

2 "type":"Error",

3 "file":"/silver/double.vpr",

4 "errors":[

5 {

6 "start":"2:9",

7 "end":"2:13",

8 "tag":"sample.error.inferenceOmitted",

9 "message":"Inference omitted since some \

10 specifications already exist."

11 }

12]

13 }

Listing A.6: Error message sent to Viper IDE. Start and end denote where
in the source code a specification already exists.

85

Bibliography

[1] Lucas Brutschy, Pietro Ferrara, and Peter Müller. Static analysis for
independent app developers. ACM SIGPLAN Notices, 49(10):847–860,
2014.

[2] Chair of Programming Methodology, ETH Zurich. Sample project
page. http://www.pm.inf.ethz.ch/research/sample.html. [Online;
accessed 31-July-2017].

[3] Chair of Programming Methodology, ETH Zurich. Silver project page.
http://www.pm.inf.ethz.ch/research/viper.html.

[4] Patrick Cousot and Radhia Cousot. Static determination of dynamic
properties of programs. In Proceedings of the 2nd International Symposium
on Programming, Paris, France. Dunod, 1976.

[5] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 238–252. ACM,
1977.

[6] Patrick Cousot and Radhia Cousot. Compositional separate modular
static analysis of programs by abstract interpretation. In Proc. SSGRR,
pages 6–10, 2001.

[7] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of lin-
ear restraints among variables of a program. In Proceedings of the
5th ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, pages 84–96. ACM, 1978.

[8] Deepak D’Souza. Interprocedural analysis: Sharir-pnueli’s
call-strings approach lecture at Department of Computer Sci-

87

http://www.pm.inf.ethz.ch/research/sample.html
http://www.pm.inf.ethz.ch/research/viper.html

Bibliography

ence and Automation, Indian Institute of Science, Banga-
lore. http://www.cse.psu.edu/~trj1/cse598-f11/slides/

interprocedural-call-strings-2010.pdf. [Online; accessed 24-
July-2017].

[9] Pietro Ferrara and Peter Müller. Automatic inference of access permis-
sions. In International Workshop on Verification, Model Checking, and Ab-
stract Interpretation, pages 202–218. Springer, 2012.

[10] Robert Giegerich and Ulrich Möncke. Invariance of approximative se-
mantics with respect to program transformations. In GI—11. Jahresta-
gung, pages 1–10. Springer, 1981.

[11] Bertrand Jeannet, G Lalire, and M Argoud. The interproc analyzer.
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi. [On-
line; accessed 09-August-2017].

[12] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical ab-
stract domains for static analysis. In Computer Aided Verification, pages
661–667. Springer, 2009.

[13] Ruben Kälin. Advanced features for an integrated verification environ-
ment. Master’s thesis, ETH Zürich, 2016.

[14] Uday Khedker and Bageshri Karkare. Efficiency, precision, simplicity,
and generality in interprocedural data flow analysis: Resurrecting the
classical call strings method. In Compiler Construction, pages 213–228.
Springer, 2008.

[15] Antoine Miné. The octagon abstract domain. Higher-order and symbolic
computation, 19(1):31–100, 2006.

[16] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag,
2016.

[17] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of
program analysis. Springer, 2015.

[18] Liat Ramati and Dor Nir. Interprocedral analysis class notes program
analysis course given by prof. Mooly Sagiv, fourth lecture given by
Noam Rinetzky. http://www.cs.tau.ac.il/~msagiv/courses/pa07/

Interprocedural%20Analysis4.pdf, 2007. [Online; accessed 24-July-
2017].

88

http://www.cse.psu.edu/~trj1/cse598-f11/slides/interprocedural-call-strings-2010.pdf
http://www.cse.psu.edu/~trj1/cse598-f11/slides/interprocedural-call-strings-2010.pdf
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://www.cs.tau.ac.il/~msagiv/courses/pa07/Interprocedural%20Analysis4.pdf
http://www.cs.tau.ac.il/~msagiv/courses/pa07/Interprocedural%20Analysis4.pdf

Bibliography

[19] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interproce-
dural dataflow analysis via graph reachability. In Proceedings of the
22nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 49–61. ACM, 1995.

[20] John C Reynolds. Separation logic: A logic for shared mutable data
structures. In Logic in Computer Science, 2002. Proceedings. 17th Annual
IEEE Symposium on, pages 55–74. IEEE, 2002.

[21] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data
flow analysis. 1978.

[22] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames:
Combining dynamic frames and separation logic. In ECOOP, volume 9,
pages 148–172. Springer, 2009.

[23] Caterina Urban. Static analysis by abstract interpretation of functional tem-
poral properties of programs. PhD thesis, École Normale Supérieure, 2015.

89

	Contents
	Introduction
	Motivation
	Goals of the Thesis
	Design and Implementation of a Generic Interprocedural Analysis
	Instantiation of the Analysis
	Evaluation
	Specification Inference

	Viper and Silver
	Outline

	Interprocedural Static Analysis
	Intra- vs. Interprocedural Static Analysis
	Abstract Interpretation
	Abstract Domains

	Different Approaches to Interprocedural Analysis
	Interprocedural Static Analysis using Call-Strings
	Abstract Interpretation Tagged with Call-Strings
	Call-String Approximation

	Generic Interprocedural Static Analysis
	Overview
	Targeted Programming Language
	Framework Parameters
	Creating the Supergraph and Callgraph
	Determining where to Start the Analysis
	Method Call Treatment
	Entering and Leaving a Procedure.
	Computing the Analysis Result

	Sample
	Overview
	Broad Overview
	Programming Language

	Sample for Intraprocedural Analyses
	Program Representation
	State Representation
	Analysis Results
	Intraprocedural Analysis Runner
	Computing a Fixed Point Solution

	Sample for Interprocedural Analyses
	Overview
	Source Code
	ProgramResult
	Call-String Representation
	Interprocedural Analysis Runner
	Top-Down / Bottom-Up Analysis
	Interprocedural Interpreter

	Implemented Analyses
	Interprocedural Integer Interval Analysis
	Interprocedural Integer Octagon Analysis
	Interprocedural Strongly Live Variable Analysis

	Specification Inference
	Numerical Abstract Domain (Octagons)
	Top-Down / Bottom-Up Analysis
	Bottom-Up Analysis Implementation

	Extracting the Specification
	Analysis Results
	Extracting Preconditions
	Extracting Postconditions
	Extracting Loop Invariants

	Implementation Details
	Overview

	Exporting the Inferred Specification to Viper IDE
	Viper protocol
	Implementation in Sample
	Viper Protocol Messages

	Evaluation
	Automated Tests
	Testing Infrastructure
	Numerical Forward Analyses
	Fibonacci
	McCarthy 91 Function
	Multiple Callers
	Review

	Strongly Live Variable Analysis
	Multiple Callers – No Recursion
	Multiple Callers – Recursion
	Review

	Specification Inference
	Program four()
	Ackermann Function
	Program getElementOrLast()
	Strongly Connected Component in Callgraph
	Review

	Evaluation Review

	Conclusions
	Future Work
	Acknowledgements

	Appendix
	Bottom-Up Inferred Specification
	Top-Down Inferred Specification
	Running an Analysis
	Top-Down inferred Specification for the Ackermann Function
	Viper Protocol Message with Inferred Specification
	Viper Protocol Error Message

	Bibliography

