
Integration and Analysis of Alternative

SMT Solvers for Software Veri�cation
Master's Thesis Project Description

Frederik Rothenberger

October 9, 2015

1 Introduction

A common approach in software veri�cation is to encode a given program prop-
erty as boolean formulas in order to verify that this property holds in the context
of said program. These boolean formulas are then veri�ed by a satis�ability
modulo theory solver (SMT solver). Although some logical theories are de-
cidable, most program properties require undecidable theories to be expressed.
SMT solvers try to approach these undecidable problems using clever heuristics
and exhaustive search (while risking in�nite runtime).

The heuristics are usually hidden away under opaque abstraction layers. It
is therefore di�cult to predict the runtime based on the input problem, es-
pecially since small changes in the formulation can make huge di�erences in
runtime. This leads to the unsatisfactory situation that tools relying on SMT
solvers might become unpredictable. Even worse, it is sometimes unclear how
to understand such problematic situations and avoid them, due to the lack of
powerful debugging tools for SMT solvers.

There are multiple SMT solver implementations available. In this project an
analysis of these solvers will be made in order to gain a deeper understanding
of the power of these various implementations as well as the trade-o�s chosen
with respect to the solver heuristics. This understanding should then translate
to improvements to the Viper software veri�cation tool chain [5].

2 Challenges and Core Goals

In this section the main goals and challenges are outlined.

Addition of an alternative SMT solver to the Viper tool chain. An-
other SMT solver, namely CVC4 [2], will be added to the existing Viper tool
chain. This includes adding CVC4 support to both Silicon and Boogie [1],
which is the back end to Carbon. Challenges might arise from the fact that the
current implementation relies on specialities of Z3 [4], the current SMT solver
implementation of the Viper tool chain.

1



SMT solver analysis. CVC4 will be compared to Z3. The main goal of this
analysis is to get a good understanding of the performance of these solvers given
various kinds of problems. This might allow to formulate the SMT solver input
in a way that avoids formulas which are hard to solve.

Another area of special interest are di�erences with regard to the solver
heuristics used. Such di�erences, if any, could be exploited by having both
solvers available to the Viper tool chain and handing each problem to the solver
better suited for this particular problem.

Further direction. The further direction of this thesis will be decided based
on the results of the SMT solver analysis. One option is the `Analytical Tools
and Pro�ling' direction which deals with improving analysis tools and inspecting
the inner workings of SMT solvers. Alternatively, there is also the `Exploiting
Di�erences' direction with the goal to translate the �ndings of the core analysis
into improvements to the Viper tool chain. These two di�erent directions are
outlined in section 3 and 4 respectively.

3 Analytical Tools and Pro�ling

The following goals are within the scope of this direction:

• Core: Extending the Z3 Axiom Pro�ler bundled with VCC [3]. This
debugging tool allows to analyse the inner state of Z3, but only in a hier-
archical text based form. Visualizing this information would help convey
the information provided and facilitate debugging.

• Core: The analysis of Z3 and CVC4 should be extended to include addi-
tional analysis tools such as performance pro�lers. Rich statistics should
allow for in depth comparisons of various performance metrics.

• Extension: Adapt tools so that the Z3 Axiom Pro�ler can be used to
analyse CVC4.

• Extension: During this thesis a need for more powerful debugging tools
and logging facilities might arise. These tools should then be designed and
implemented.

• Extension: The Axiom Pro�ler should be extended to detect and visu-
alize matching loops. Matching loops are a common issue with adverse
problem formulations. More speci�cally, it means that some facts contain-
ing quanti�ers get instantiated over and over again unnecessarily.

4 Exploiting Di�erences

This direction deals with the following goals:

• Core: Design additional tests to really pinpoint the di�erences between
the solvers and classify adverse problem formulations. The Viper tool
chain should then be improved to avoid such formulations.

2



• Core: Implementation of solver selection for the Viper tool chain. The
goal is to automatically select the best SMT solver with appropriate con-
�guration depending on the input problem.

• Extension: Investigate �ne grained problem splitting. In addition to the
coarse solver selection based on the whole input problem, �ner grained
problem splitting could increase performance of the Viper tool chain. A
given problem would have to be encoded in several independent subprob-
lems. These subproblems could then be solved separately by the most
suitable solver based on the new, smaller formulation.

• Extension: Explore alternative problem formulations. Some problems
can be formulated in di�erent ways. Formulations that fall in to the
high di�culty category should be avoided and replaced by alternative
encodings.

References

[1] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K Rustan M Leino. Boogie: A modular reusable veri�er for object-oriented
programs. In Formal methods for Components and Objects, pages 364�387.
Springer, 2006.

[2] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, De-
jan Jovanovi¢, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In
Computer aided veri�cation, pages 171�177. Springer, 2011.

[3] Markus Dahlweid, Michal Moskal, Thomas Santen, Stephan Tobies, and
Wolfram Schulte. VCC: Contract-based modular veri�cation of concurrent
C. In Software Engineering-Companion Volume, 2009. ICSE-Companion

2009. 31st International Conference on, pages 429�430. IEEE, 2009.

[4] Leonardo De Moura and Nikolaj Bjørner. Z3: An e�cient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, pages
337�340. Springer, 2008.

[5] U. Juhasz, I. T. Kassios, P. Müller, M. Novacek, M. Schwerho�, and A. J.
Summers. Viper: A veri�cation infrastructure for permission-based reason-
ing. Technical report, ETH Zurich, 2014.

3


