
Integration and Analysis of Alternative

SMT Solvers for Software Veri�cation

Master's Thesis

Frederik Rothenberger

frothenb@student.ethz.ch

Supervisors:

Dr. Alexander J. Summers

Prof. Dr. Peter Müller

Chair of Programming Methodology

ETH Zurich

March 7, 2016

Abstract

SMT solvers are commonly used in software veri�cation. Software veri�cation
often requires undecidable theories, which are only unreliably solved by SMT
solvers. In this thesis, two SMT solvers are compared in order to decide whether
the reliability of software veri�ers can be increased by opportunistically switch-
ing the underlying solver. The evaluation shows that, for the particular com-
parison made, this is not the case. Therefore another approach to alleviate the
reliability problems is pursued: Improvement of tools to understand the prob-
lematic behaviour of SMT solvers. In particular, an existing tool to analyse the
proving behaviour of the SMT solver, Z3, is improved and extended. The focus
of the extension is on features designed to explain a class of problems which
cause in�nite runtimes, called matching loops.

Acknowledgements

I would like to express my gratitude to Prof. Müller for giving me the oppor-
tunity to work on this thesis. Many thanks also to Dr. Alex Summers, for his
great support and thoughtful comments throughout the project. Furthermore,
I want to thank Michaª Moskal for his time, good suggestions and expertise. Fi-
nally, I want to thank all my friends and family, who supported and motivated
me during all the years at ETH Zurich.

Contents

1 Introduction 3

1.1 Outline . 4

2 Background 5

2.1 Terms . 5
2.2 Quanti�ers . 5
2.3 Quanti�er Instantiations . 7
2.4 E-Graph . 8
2.5 E-Matching . 9
2.6 Matching Loops . 9

3 Z3 Axiom Pro�ler 11

3.1 Z3 Trace Log . 11
3.2 Original Version . 12
3.3 Issues . 13
3.4 Improvements and Extensions . 16

3.4.1 Accessibility Improvements 16
3.4.2 Rewriting Rules . 18
3.4.3 Graph View . 21
3.4.4 Context Information . 22
3.4.5 Path Explanation . 27
3.4.6 Matching Loop Detection 29
3.4.7 Matching Loop Generalization 30

4 Algorithms 34

4.1 Binding Reconstruction . 34
4.1.1 Important Terminology and Concepts 35
4.1.2 Matching Phase . 36
4.1.3 Validation Phase . 39
4.1.4 Runtime Complexity . 39

4.2 Matching Loop Detection . 41
4.2.1 Substring Problem . 41
4.2.2 Runtime Complexity . 42

4.3 Matching Loop Generalization 42
4.3.1 Term Generalization . 43
4.3.2 Runtime Complexity . 43

5 Background for SMT Solver Comparison 45

5.1 Viper Tool Chain . 45
5.2 Silver . 46
5.3 Carbon . 47
5.4 Silicon . 47

5.4.1 Quanti�ed Permissions . 47
5.5 CVC4 . 47

5.5.1 CVC4 Integration into Viper 48
5.5.2 Modi�cations in Carbon 48
5.5.3 Modi�cations in Silicon 48

1

6 CVC4 Evaluation 50

6.1 Viper Runner . 50
6.2 Correctness . 51

6.2.1 Carbon . 51
6.2.2 Silicon . 52
6.2.3 Silicon QP . 52

6.3 Performance . 52
6.3.1 Carbon . 54
6.3.2 Silicon . 54
6.3.3 Silicon QP . 54

6.4 Unsound Results . 56
6.5 Evaluation Summary . 56

7 Conclusion 57

7.1 Further Work . 57

List of Figures 58

List of Tables 58

List of Algorithms 58

List of Examples 59

References 60

2

1 Introduction

A common approach in software veri�cation is to encode a given program prop-
erty as a boolean formulas, in order to verify that this property holds in the
context of said program. These boolean formulas are then veri�ed by a sat-
is�ability modulo theory solver (SMT solver). Although some logical theories
are decidable, many program properties require undecidable theories to be ex-
pressed. SMT solvers try to approach these undecidable problems using clever
heuristics and exhaustive search (while risking in�nite runtime).

The heuristics are usually hidden away under opaque abstraction layers. It
is therefore di�cult to predict the runtime based on the input problem, es-
pecially since small changes in the formulation can make huge di�erences in
runtime. This leads to the unsatisfactory situation that tools relying on SMT
solvers might become unpredictable. Even worse, it is sometimes unclear how
to understand such problematic situations and avoid them, due to the lack of
powerful debugging tools for SMT solvers. There are multiple SMT solver im-
plementations available: Simplify [9], Z3 [7], CVC4 [3] and Yices [10] are only
a small selection.

This project aims to improve the situation by considering two possibilities:
either the SMT solvers' heuristics are su�ciently di�erent that opportunistically
switching the solver reliably resolves issues or the solvers struggle with the same
di�culties. In the latter case, the only solution to more reliable veri�ers, with
respect to runtime, is by improving the tooling for understanding the problems
on the level of SMT solvers. Then the issues can be resolved at the root by
reformulating the SMT solver input.

In order to examine the �rst of these two possibilities, one alternative SMT
solver implementation, CVC4, was integrated into the Viper tool chain [20]. The
goal was to determine whether another SMT solver could improve the reliability
and speed of the veri�ers. The evaluation (Section 6) shows that the integration
of CVC4 does not improve the Viper tool chain signi�cantly.

Therefore the lack of debugging tools was addressed: the Z3 Axiom Pro�ler
was improved and extended during this project. The Z3 Axiom Pro�ler is the
main tool to look at and understand quanti�ers instantiations of Z3. Addition-
ally it also shows information about the proof search process. In this thesis,
the improvements to accessibility and ease of use are explained as well as the
feature set to deal with a special class of problems, namely matching loops (Sec-
tion 2.6). In particular, this involves displaying more relevant information about
quanti�ers and their instantiations. This is important because the quanti�ers
are often carefully annotated with patterns, which control the context in which
quanti�ers are instantiated. Feedback on the e�ect of these patterns is crucial
in order to improve runtimes and prevent matching loops. This feedback was
previously very hard to get. Quanti�er and their instantiations are explained in
detail in Section 2.

Z3 is a popular SMT solver used in many projects, such as Boogie [2],
Dafny [15], Ironclad apps [14] and others [1, 16]. All these projects use Z3
as a back end. Improving the Z3 Axiom Pro�ler therefore has important ap-
plication beyond the scope of the Viper tool chain. We are not aware of any
other analytical tools for SMT solvers, especially Z3. In particular for �nding
and explaining matching loops, there is a distinct lack of tools available.

3

1.1 Outline

Section 2 introduces the necessary concepts and outlines the problem in more
detail. In particular, quanti�ed assertions, E-matching and matching loops are
discussed. Then, in Section 3 the original Z3 Axiom Pro�ler and the improve-
ments made during this thesis are explained. This section focuses on features
and their improvements to the tasks at hand, whereas Section 4, explores the
technical implementation in detail. The Viper tool chain is introduced in Sec-
tion 5 to give the context for the evaluation of CVC4 described in 6. Finally,
the signi�cance of our contributions is outlined in the conclusion in Section 7.

4

2 Background

In this section, selected fundamental concepts used for automated reasoning
are explained with a focus on applications for SMT solvers. This section is
heavily tailored to the SMT solvers Simplify, Z3 and CVC4, which have similar
architecture and are relevant to this thesis.

These SMT solvers support many of di�erent theories which can be switched
on and o� selectively. Supported theories include propositional logic, uninter-
preted functions, integer and real arithmetic, bit vectors, arrays and quanti�ers.
This list is not exhaustive. This modular approach allows e�cient solving of
simple problems while still having the option to enable more sophisticated theo-
ries if needed. Consequently, enabling and disabling modules has a great impact
on runtime. In order to combine multiple theories, the solvers have a common
representation � the E-graph, described in Section 2.5 � which is modi�ed by
each of these theory modules. The main focus of this thesis is on the quanti�er
module, which deals with quanti�ed assertions.

The process of proving some conjecture is called proof search. In this process
the SMT solver tries to learn new facts and combine known ones to either �nd
a model satisfying the conjecture or a con�ict rejecting it. If the solver cannot
prove a conjecture with its known facts, it might make case splits. When case
splitting, the solver explores the conjecture separately for an assumption and its
negation. By doing so, the solver gains an assumption in both branches, which
might help to successfully prove a conjecture as a whole.

2.1 Terms

Terms are the building blocks of all facts known to an SMT solver. They are rep-
resented as �nite trees of function applications. Even constants are represented
as function applications of their respective data type, returning a constant value
(e.g. 5 is represented as an application of Int() returning 5). Terms consist of
three parts: a name, a unique identi�er and a list of direct subterms. The size of
a term is the number of nodes in the complete term tree. Terms with the same
identi�er are identical. Term equalities are equalities proven by the SMT solver.
Which equalities can be proven is dependent on the enabled theories. This is
visualized in Figure 1. Terms with the same name but di�erent identi�ers and
identical sets of subterms are also equal. Terms are immutable: this means that
every occurrence of a term with a certain id is the same.

The SMT solver learns terms from di�erent sources. The set of ground
terms is directly taken from the solver input �le. From these terms, the solver
generates new ones by using its modules such as the arithmetic theory module
or the quanti�ed assertions module.

2.2 Quanti�ers

Central to this thesis is the concept of quanti�ed assertions; quanti�ers in short.
There are two fundamental types of quanti�ers in predicate logic supported by
SMT solvers: the existential quanti�er ∃ and the universal quanti�er ∀. While
SMT solvers allow the use of existentially quanti�ed assertions, internally they
are removed using skolemization [8]. This allows the solvers to deal with existen-
tial quanti�ers the same way as with universal quanti�ers, using an instantiation

5

=

id: 12

Append

id: 1234
Drop

id: 42

Singleton

id: 7213
Singleton

id: 7213
a

id: 122
Int

id: 23

Int

id: 67
Int

id: 67

Equal due to term 12
(explicit equality)

Identical
(same id)

Transitively identical
(subterms of identical terms are identical)

Subterms of
term 12

Direct subterms
of term 12

Figure 1: Tree representation of a term. The di�erences between identical and
equal terms as well as direct subterms and subterms are indicated. The size of
the term =(id 12) is 9.

based approach. For the remaining part of the thesis all quanti�ers are regarded
as universal quanti�ers.

Quanti�ers can be instantiated. Given a quanti�er ∀x : P (x) and some term
a the resulting term P (a) can be generated. The quanti�er is an assumption
and not the conjecture to prove. Quanti�er instantiations are used abundantly
by SMT solvers to learn new terms.

Quanti�ed theories are usually hard to solve [5]. Part of the reason is that
by introducing quanti�ers, the number of possible terms involved in a proof
becomes endless when using in�nite domains. In�nite domains, such as integers,
sequences or sets are very common in software veri�cation. To elaborate, assume
the quanti�er ∀x : P (x) for any integer x. The SMT solver could now learn all
the terms P (x) for any integer, which are in�nitely many. Therefore SMT solvers
need some way of deciding which quanti�ers to instantiate for which terms.

A common approach to handle this problem is using heuristics to reduce
the number of possible instantiations. More speci�cally, quanti�ers may be
annotated with one or multiple patterns. A pattern is a term describing term
shape. The shape captures the concrete function applications as well as their
hierarchy. Conceptually, the shape described by the pattern de�nes a context in
which the instantiation of the quanti�er is meaningful. The SMT solvers then
use an approach called E-matching to decide whether or not a given term is
within the context speci�ed by the pattern. This process is also called matching.
A pattern must contain all the bound variables. A concrete example of a pattern
is shown in Example 1. A detailed explanation of how pattern matching works
is given in Section 2.5. If done correctly, this is an e�ective measure to reduce
the number of instantiations. It does, however, bring its own di�culties as
described in Section 2.6.

6

Example 1 Example of a quanti�er pattern.
A quanti�er ∀x : P (x) annotated with a pattern req(x, y) will only be instanti-
ated for terms with that structure (e.g. req(foo(a), b)). In particular, an isolated
occurrence of a term that is not an argument to req() will no longer trigger an
instantiation.

2.3 Quanti�er Instantiations

SMT solvers use quanti�er instantiations to generate new terms. From the point
of view of an SMT solver, a quanti�er can be thought of as a function which,
if applied to some input, returns new terms. This function application is called
instantiation. The shape of possible inputs to this function is speci�ed by the
pattern, whereas the output is de�ned by the quanti�er. The resulting new
terms are called yield terms. Terms are new, if before the instantiation these
terms did not exist. In particular, the terms used as input to the instantiation
are not new and thus never contained in the yield terms. Terms that were bound
to the free variable of the quanti�er are referred to as bound. Terms that were
not bound but nonetheless relevant for the instantiation because they matched
the pattern are denoted as blamed. All bound terms are contained in the set of
direct subterms of all blamed terms.

An instantiation blames another instantiation if any input terms of the for-
mer are contained within the yield terms of the latter. This causal relation
between instantiations forms a directed acyclic graph, because an instantiation
can blame multiple other instantiations and the blame relation is antisymmetric
and irre�exive. This graph is called blame graph. An instantiation blames mul-
tiple other instantiations if its quanti�er pattern was matched against multiple
terms that were the result of di�erent instantiations.

The weight of an instantiation represents its importance in the sense that
instantiations with higher weight have more descendants in the blame graph. It
is the number of elements in the set of instantiations that transitively blame the
instantiation divided by the number of other instantiations that are also blamed
by this set of instantiations.

All terms foo(a, b) a, b ∀x, y : P (x, y) P (a, b)

bound terms

Input
(blamed terms)

Result
(yield terms)

Pattern
foo(free_var , free_var)

Figure 2: Schematic overview of a quanti�er instantiation.

7

2.4 E-Graph

The E-graph is an e�cient way of representing all terms known to an SMT
solver. It is used as the common representation of the solver state for all modules
to work on. Changes to the E-graph are reversible which enables interactive
mode. Interactive mode allows a user to make assumptions, verify a conjecture
using them and then discard them again. This feature is extensively used by
Silicon, one of the veri�ers of the Viper tool chain described in Section 5.4, to
explore both sides of a possible split in the execution path of a program.

The E-graph is created by embedding all terms within a single graph. The
tree structure of the terms is kept. Additional bidirectional edges are inserted
for known equalities. The equivalence class of a term is found by visiting all
terms reachable by only following the equality edges. This allows the solver
to quickly �nd equal representations of a known term. Using the E-graph,
in�nite equivalence classes (e.g. nested function applications of the identity
function) can be expressed in a �nite representation. Because inequality cannot
be explicitly expressed within the E-graph, SMT solvers usually use additional
data structures to do so. Example 2 shows an E-graph and also E-matching
explained in the next Section.

Example 2 Example of an E-graph and E-matching.

f

a

g

b

hi

h

hfree_var

free_var

free_var

f

h

g ha

a g

a

f

Pattern E-GraphTerm matching the pattern,
modulo equalities

On the right, an E-graph built from the terms f(a) = g(b), h(a, g(b)) = g(b),
g(b) = b and i(a) 6= f(a) is shown. The solid arrows represent the term
structure, whereas the dashed lines signify equality. By following the dashed
lines, transitive equalities can be found (e.g. h(a, b) = f(a)). The inequality
i(a) 6= f(a) is only implicitly expressed by the absence of an equality edge. This
format is particularly useful to express nested equalities:

b = g(b) = g(g(b)) = ... = gn(b)

The pattern h(free_var , h(free_var , f(free_var))) shown as a tree on the left
can be successfully matched using the terms present in the E-graph, by using
the appropriate equalities. A schematic overview of that process is shown in the
middle. The concrete term h(a, h(a, f(a))) is never explicitly generated. The
bindings are as follows: to both h pattern terms, the corresponding h(a, g(b))
term is bound and the f pattern binds f(a). These are reported as blamed
terms. The term bound to free_var is a in all three occurrences.

8

2.5 E-Matching

E-matching is the process of matching a term to a pattern using the E-graph.
The resulting matching is modulo equalities, in order to allow more matches
and to prevent multiple instantiations of terms within the same equivalence
class (which would also yield an equally equivalent result).

The E-matching proceeds in the following way: �nd a term in the E-graph
that matches the root of the pattern. Then visit each subpattern and subterms.
If they do not match, �nd a term that does within the same equivalence class.
If there exists such a term, continue the matching process with the equal term
instead of the subterm. The match fails only if there is no such equal term. A
term matches a pattern if the name and the number of children are the same
or the pattern is a free variable. A term that is matched against a free variable
is bound and used to instantiate the yield terms. Terms matched against other
patterns are reported as blamed terms.

Matching against speci�c patterns gives rise to the notion of relative positions
of an instantiation. The notion of relative positions enables to refer to the set of
terms having the same role in di�erent instantiations. Valid relative positions
occur in three categories: blamed, bound and yield terms. Relative positions
are then further di�erentiated, depending on the category:

� Bound terms: for bound terms the relative position is de�ned by the free
variable the term is bound to.

� Blamed terms: for blamed terms the relative position is de�ned by the
pattern the term was matched to.

� Yield terms: for yield terms the relative position is de�ned by the term in
the quanti�er body it corresponds to.

2.6 Matching Loops

Choosing appropriate patterns is di�cult: if the patterns are too restrictive, im-
portant instantiations might not get triggered thus leading to proof failure. If
the patterns are too general there might be a loop: quanti�er instantiations trig-
gered by previous instantiations. This happens if an instantiation yields terms
that match patterns of other quanti�ers. These quanti�ers are then instantiated
using the yield terms. If a chain of such instantiations involves the same quan-
ti�ers in a repeating fashion, this behaviour is considered a loop. Such loops
are called matching loops. This dilemma is outlined in Example 3. Matching
loops can involve an arbitrary number of di�erent quanti�ers. The size of a
matching loop is the number of instantiations within one loop iteration. The
same quanti�er might be instantiated multiple times in di�erent roles within a
single loop iterations.

Finding and understanding matching loops is tricky because they often occur
due to the combination of di�erent quanti�ers that come from di�erent sources.
For example, quanti�ers generated by a veri�cation tool might cause a loop
in combination with quanti�ers written in the user-provided precondition for a
method in the input program.

SMT solvers have deployed various heuristics to detect and avoid match-
ing loops during proof search. These heuristics range from explicitly detecting

9

loops, assigning instantiation limits by number or depth to quanti�ers, to imple-
mentations of balancing mechanics, such that instantiations with less nesting
are processed �rst [11, 24]. Despite these e�orts, matching loops cannot be
completely avoided using these heuristics. For some proofs, the classic signs of
matching loops, deep nesting and repeating instantiations, are actually required.
Example 13 which appears in Section 3.4.7 shows this in detail.

Example 3 Illustration of the matching loop problem.
Given is a quanti�ed assertion relating the lengths of two sequences with the
length of their concatenation:

∀x, y : Length(Append(x, y)) = Length(x) + Length(y),

where x and y represent arbitrary sequences. This quanti�er causes a match-
ing loop when it is used without a pattern. No pattern means, that there
are no restrictions imposed on x and y. The reason for the matching loop is
that the quanti�er generates a new term that triggers an instantiation, namely
Append(x, y). Given an instantiation where the bound variables are the se-
quences a and b generates the new sequence Append(a, b) since it is required
to express the term Length(Append(a, b)). This new sequence can be used to
instantiate the quanti�er again to produce the following result:

Length(Append(Append(a, b), b)) = Length(Append(a, b)) + Length(b)

Note that the sequence Append(a, b) also causes a loop in conjunction with a
since both a and Append(a, b) are sequences which can be bound to either x or
y. To �x this, the quanti�er should be annotated with the pattern Append(x, y).
This pattern requires the concatenation of the sequences to already exist. There-
fore the only new terms generated by an instantiation of the quanti�er are the
Length(...) terms, which do not cause another instantiation. The pattern is
also not too restrictive since it still allows to relate the length of any existing
sequence concatenation to the lengths of its two subsequences.
An example of a too restrictive pattern would be Append(x, Singleton(y)),
where Singleton(y) represents a sequence with only one element, y. Using
this pattern would restrict the instantiations to just the cases where an arbi-
trary sequence is concatenated with another one of length one. The SMT solver
could therefore no longer prove that the concatenation of two empty sequences
is indeed zero.

10

3 Z3 Axiom Pro�ler

The Z3 Axiom Pro�ler is a tool to troubleshoot problems with Z3. More specif-
ically, it is concerned with quanti�ers and their instantiations. The Z3 Axiom
Pro�ler aims to help when troubleshooting problems with quanti�er instantia-
tions. This information is made available by parsing the trace logs of the Z3
SMT solver. The information in these logs is presented in a very condensed way
by the original Z3 Axiom Pro�ler. The tool was developed by Microsoft Re-
search as part of VCC [6]. VCC allows the user to annotate C code to verify its
correctness. Like Carbon, one of the veri�ers in the Viper tool chain described
in Section 5.1, VCC uses Boogie [2] as a back end. Therefore, when using VCC
some of the same problems concerning quanti�er instantiation arise (e.g. match-
ing loops in user provided annotations). The purpose of the Z3 Axiom Pro�ler
is to facilitate understanding and resolving these issues. In particular, the tool
emphasizes expensive parts of the proof search, such as the quanti�ers that were
most often instantiated. This is done by both listing the most expensive quan-
ti�ers �rst as well showing how the proof search progressed with a particular
focus on the number of case splits.

The overall goal of this project was to improve the reliability of software
veri�ers with respect to the reliability issues propagated by the underlying SMT
solvers. The comparison of Z3 to CVC4 (Section 6) shows that switching solvers
does not help with that issue. Since the evaluation of the two SMT solvers
was in favour of Z3, for the remaining time of the project the focus was on
improving the tools available to understand and avoid issues with SMT solvers.
This included improvements to the Z3 Axiom Pro�ler. The improvements were
both focused on making the information already presented by the tool more
accessible as well as implementing functionality that enhances and enriches the
shown information, such as the use of colour to guide the user. Further, the
functionality of the Z3 Axiom Pro�ler was extended to help understand and
solver occurrences of the matching loop problem in particular. Multiple such
features were implemented. Consequently, �nding and understanding matching
loops is easier and faster with the improved tool. Features of the original tool
that were not improved were left in place.

3.1 Z3 Trace Log

The Z3 trace log is a verbose log �le printed by Z3 during proof search. It is
the input for the Z3 Axiom Pro�ler. The log �le contains information about all
terms, quanti�ers and instantiations. Additionally, information about scopes,
case splits and con�icts is recorded as well. An excerpt of a such a log �le is
given in Example 4.

Since recording every action of Z3 would be overwhelming, the log is only
concerned with proof search and quanti�er instantiation. Thus, any information
about other solver modules such as the arithmetic module is completely miss-
ing. Equality information is only available if there are explicit terms in the Z3
input �le or equality terms generated by quanti�ers. Information about numeric
constants is abstracted to function applications of their data types. Even for
quanti�er instantiations, the information is incomplete: the matching pattern
and exact binding information is unknown.

The only information available for a quanti�er instantiation is the terms

11

bound to the free variables as well as the blamed terms that matched the pat-
tern. However, the information which blamed terms matched which part of the
pattern and which bound term were bound to which free variables is missing.
Because E-matching is modulo equalities, inferring this information from the
blamed and bound terms is not trivial (see Section 4.1). Since modi�cations
of Z3 to write more complete log �les were outside of the scope of this thesis,
binding information reconstruction was added to the Z3 Axiom Pro�ler instead.

Example 4 Example excerpt from a Z3 trace log.

...

[new-match] 000000F6A814A958 #1125 #836 ; #2553

[mk-app] #4197 = #2651 #8

[mk-app] #4198 or #1394 #2646 #4197

[mk-app] #4199 or #1637 #1394 #2646 #4197

[instance] 000000F6A814A910 ; 3

[attach-enode] #4197 3

[assign] #4197 justification

[end-of-instance]

[mk-app] #4200 or #1423 #2660 #2661

...

The [new-match] lines indicates a possibility to instantiate a quanti�er. The
actual instantiation happens later at the line starting with [instance]. Lines
starting with [mk-app] de�ne new terms.

3.2 Original Version

The original version of the Z3 Axiom Pro�ler was a side product of VCC. It is
used to troubleshoot adverse SMT solver behaviour, such as long runtimes and
non-termination. Figure 3 shows the main window of the original Z3 Axiom
Pro�ler. The tool already had many views:

� Main panel: a tree view containing detailed information about quanti�ers,
instantiations, terms, scopes and con�icts. Nodes can be expanded further
to show their relations to other nodes, such as all instantiations for a
speci�c quanti�er or all instantiations that were caused by another one.

� Info panel: text �eld with more information about the node selected in the
main panel. Terms are written in pre�x notation as shown in Example 5.

� Visualization of the proof strategy: visualization of the search tree, where
every node represents a case split. Leaves represent cases that Z3 was able
to prove unsatis�able and backtracked.

� Instantiation bitmap: an automatically generated image, where each pixel
represents an instantiation. The colour indicates which quanti�er was
instantiated. The pixels are ordered row wise chronologically.

� Graph showing the causal relations between quanti�ers: visualization of
a graph, where the nodes represent quanti�ers, scaled by the number of
instantiations. The edges represent how often an instantiation of one

12

quanti�er cause an instantiation of the other one, scaled by the number
of occurrences. An example of such a visualization is shown in Figure 4.
This visualization was added later by Clément Pit�Claudel [22].

In this original version the visualizations are helpful to get an overview of
the problem and �nding the relevant quanti�ers. But to fully understand a
matching loop problem in detail, the main panel and the info panel proved to
be more useful. The reason is, that in order to understand matching loops,
the concrete details of a loop must be visible. Otherwise the relation between
looping instantiations is unclear. The main panel and the info panel are the
two only places in the original tool where concrete albeit limited information is
accessible.

3.3 Issues

Despite the many di�erent views on the data, understanding a sizeable matching
loop problem remains di�cult and tedious. The main reasons are that the
relevant looping instantiations are hard to �nd and large terms are hard to
read. Terms are printed in a format that requires manual e�ort to understand.
Combined with the fact that any log �le contains millions of terms, this issue

Figure 3: The main window of the original Z3 Axiom Pro�ler, showing the tree
view and info panel in the original horizontal layout.

13

Figure 4: Visualization of the blame relations between quanti�ers. This is a
dynamic JavaScript visualization opened within a browser.

has a major negative impact on usability.
Relevant instantiations are hard to �nd because the tool shows all instanti-

ations categorized by quanti�er. This is useful to identify problems with single
quanti�ers but does not help when exploring issues that involve multiple quan-
ti�ers, as matching loops commonly do. Large terms are commonplace when
dealing with matching loops, as the initial starting terms get nested deeper and
deeper with each loop iteration.

It is di�cult to �nd long paths in the blame graph formed by the blame re-
lations of instantiations. This is relevant because matching loops tend to form
long paths, due to the their repeating nature. The main panel shows all quanti-
�ers and, as children of these top level nodes, the associated instantiations. This
makes it cumbersome to follow a path because matching loops usually involve
multiple di�erent quanti�ers, as visible in Figure 3. Additionally, some match-
ing loops require setup instantiations that are not part of the loop but produce
the necessary terms for the matching loop to start. These instantiations make
it more di�cult to �nd matching loops as then the repeating pattern starts

Example 5 Term printed in the original printing style.

Seq#Append(Seq#Take(Seq#Append(Seq#Take(a_2@0(), Int()), Seq#Append(Seq#

Singleton(int_2_U(Int())), Seq#Drop(a_2@0(), Int()))), Int()), Seq#Append

(Seq#Singleton(int_2_U(Int())), Seq#Drop(Seq#Append(Seq#Take(a_2@0(), Int

()), Seq#Append(Seq#Singleton(int_2_U(Int())), Seq#Drop(a_2@0(), Int())))

, Int())))

This is a real example taken unaltered from the original Z3 Axiom Pro�ler.

14

deeper. The same is true for trailing instantiations when exploring, starting
from the most deeply nested instantiations: paths containing looping behaviour
might cause other instantiations that are not involved in the matching loop,
but are matched to terms generated as part of the loop. This e�ect happens
often, since SMT solvers try to instantiate quanti�ers in a balanced way. Bal-
ancing quanti�er instantiations is one heuristic to avoid the impact of matching
loops; quanti�ers get instantiated in the order of some measure of relevancy. In
particular, relevancy usually decreases with deeper nesting.

To illustrate this point with realistic numbers: for a matching loop involving
three quanti�ers and starting after �ve setup instantiations, to even see three
repetitions (to realize it is a loop), the tree view has to be expanded to a depth
of 14 levels. This shows that the views were not designed with this use-case in
mind.

As mentioned before, large terms printed to the info panel are hard to read
due to the �at pre�x notation. More speci�cally, the hierarchy of the term is
hard to recognize, since the only structure comes from the separating characters
(parenthesis and commas), which are used abundantly. The hierarchy is one
of the key elements in pattern matching and thus necessary to understand a
matching loop. Repeated subterms are also very hard to recognize. This is
shown in Example 5 referred to previously, which contains multiple repeated
subterms, such as Seq#Take(a_2@0(), Int()).

Lastly, the node labels in the main panel contain a lot of information in
very little space. To do this, almost every bit of information is abbreviated,
omitting helpful information, especially for instantiation nodes. This is shown
in Example 6.

Example 6 Example of an abbreviated instantiation node description.
The following information is contained in the node name of instantiations as
indicated by the help text:

<name of quantifier> <depth> (<weighted depth>) / |<size of bindings>|

@<line in log file> <cost> <head of binding 0> |<size of binding 0>| ...

For a concrete instantiation:

sequence.165.18[#885] 3 (3) / |26.:6| @2501 10.0 Seq#Append |11:5| Seq#

Singleton |3:3| Seq#Length...

Extracting the relevant information from this node name requires more mental
e�ort compared to the new instantiation details shown later in Figures 9 and
10 and yields less information.

15

Figure 5: The main window of the redesigned Z3 Axiom Pro�ler. The newly
introduce three column layout shows side by side the info panel, tree view and
graph view (left to right). This allows to simultaneously see detailed information
and the bigger context of any quanti�er, instantiation or term.

3.4 Improvements and Extensions

This section presents the improvements to the Z3 Axiom Pro�ler made during
the project. These includes a complete redesign of the interface as well as the
addition of many new features.

3.4.1 Accessibility Improvements

Several fundamental changes to the user interface were made in order to make
the available information more accessible. In general, relevant information is
now displayed right from the start and more easily readable. In particular, the
addition of explanations with related information, such as blamed, bound and
yield terms, convey the presented information clearer to users than before. This
additional information is called context. The previous way of obtaining the same
information was more tedious: the info panel only showed information concern-
ing exactly the selected node in the tree view. More information concerning the
reason for its existence and the e�ects on the proof search had to be collected by
selecting other relevant nodes and combining the information manually. More
information on context information is available in Section 3.4.4.

GUI Improvements The layout of the main window was reworked to display
more information and to make the commonly used operations easily accessible.
The main window now shows three vertical panels: the info panel, the tree view
and the graph view. The info panel displays information about the selected
element. It was inherited from the original Z3 Axiom Pro�ler and enhanced
with more functionality such as pretty printing and context information. The
tree view, also already present in the original tool, shows all elements of the
trace log in an easily accessible way. It can be used to �nd expensive quanti�ers,

16

speci�c instantiations or explore the relations between terms and instantiations.
A history of previously selected instantiations is provided as well. Finally, the
graph view was introduced as a powerful new view on the data and is described
in detail in Section 3.4.3. The main window was split vertically because all three
panels bene�t more from additional height rather than width. A screenshot of
the redesigned main window is shown in Figure 5.

Pretty Printing Terms are the foundation of almost all the elements dis-
played in the Z3 Axiom Pro�ler. The quanti�er bodies are expressed as terms
named FORALL with subterms describing the patterns and the assertion. Instan-
tiations are collections of terms containing all blamed, bound and yield terms.
Therefore almost every interaction with the tool breaks down to reading terms.
Because of that, it is extremely important that terms are easy to read, compare
and recognize. The original printing style made this very di�cult as outlined in
Section 3.3.

All terms displayed in the info panel are now pretty printed. By default,
the pre�x notation is kept but enhanced with indentation according to the
term hierarchy. Hierarchy is a good way to convey the term structure which is
important for E-matching. Emphasizing the term structure therefore helps to
understand pattern matchings.

For better readability, line length and maximum printing depth can be cus-
tomized. Toggles to disable printing of term unique ids and generic type in-
formation can be used to shorten the notation. The e�ect of these options is
demonstrated in Example 7. The di�erence in clarity of the default pre�x nota-
tion is apparent when comparing the term shown in Example 8 with the same
term printed in the original notations, as shown in Example 5.

The printing behaviour can be further customized using rewriting rules de-
scribed in Section 3.4.2. Printing rules can be used selectively and mix well with
the default pre�x notation. This allows to increase readability incrementally by
adding rules one by one during the exploration of a trace log. By combining all
these elements, even large terms can be reduced to a concise, familiar and easily
readable form.

Example 7 E�ects printing customization using the toggle options.
The default pre�x notation can be customized with two toggle options: `Show
Term Identi�ers' and `Show Types'. The e�ects are demonstrated below.
Full term with identi�ers in square brackets and type information in angle brack-
ets:

append<ISeq~ISeq~ISeq>[115](

¦ es@1[109](),

¦ sgltn<Int~ISeq>[114](e@2[111]())

)

Term with only identi�ers displayed:

append[115](es@1[109](), sgltn[114](e@2[111]()))

Term when both term identi�ers and type information is disabled:

append(es@1(), sgltn(e@2()))

17

Example 8 Term printing using the default pre�x notation with hierarchical
structure.

Seq#Append(

¦ Seq#Take(

¦ ¦ Seq#Append(

¦ ¦ ¦ Seq#Take(a_2@0(), Int()),

¦ ¦ ¦ Seq#Append(

¦ ¦ ¦ ¦ Seq#Singleton(int_2_U(Int())),

¦ ¦ ¦ ¦ Seq#Drop(a_2@0(), Int())

¦ ¦ ¦)

¦ ¦),

¦ ¦ Int()

¦),

¦ Seq#Append(

¦ ¦ Seq#Singleton(int_2_U(Int())),

¦ ¦ Seq#Drop(

¦ ¦ ¦ Seq#Append(

¦ ¦ ¦ ¦ Seq#Take(a_2@0(), Int()),

¦ ¦ ¦ ¦ Seq#Append(

¦ ¦ ¦ ¦ ¦ Seq#Singleton(int_2_U(Int())),

¦ ¦ ¦ ¦ ¦ Seq#Drop(a_2@0(), Int())

¦ ¦ ¦ ¦)

¦ ¦ ¦),

¦ ¦ ¦ Int()

¦ ¦)

¦)

)

Repeated subterms such as Seq#Take(a_2@0(), Int()) are clearly recogniz-
able.

3.4.2 Rewriting Rules

Often terms get large due to deep nesting, syntax technicalities and long func-
tion names. Although pretty printing is a major step forward in readability,
often notation could still be more concise if tailored to the speci�c situation.
Additionally, users searching for matching loops are usually very familiar with
the domain the terms are from (e.g. sequences). There is no reason why the
notation of terms should re�ect the internal names used by Z3, especially if
using another notation would convey the presented information more clearly to
the user.

To alleviate that problem rewriting rules were introduced. Rewriting rules
allows a user to replace the pre�x notation with arbitrary syntax, usually result-
ing in a more concise and natural notation. The printing style in Example 10
demonstrates this clearly. This example shows the same term as shown in Ex-
amples 5 and 8.

Rewriting rules can be either imported from an existing rule set1 or created
by using the rewriting rule editing dialogue shown in Figure 6. A rewriting rule
consists of several elements:

� Match string: this string determines whether a printing rule gets used to
1Rewriting rules can be imported from / exported to CSV.

18

Figure 6: Rewriting rule editing dialogue. The rule shown here replaces appli-
cations of Seq#Index(a, b) with a[b].

print a particular term. The match string is checked against the following
properties, in descending order of binding strength: �rst the term id, then
the term name together with the generic type, and �nally just the term
name. If no rule matches any of these properties, the term is printed in
default pre�x notation.

Having multiple levels of binding strength makes the feature much more
�exible. This allows users to single out terms with speci�c identi�ers while
still having all other terms with the same name printed according to other
custom rules; For example to name a `+' term with known value while still
using the in�x notation for all other `+' terms. This is also used internally
for highlighting by de�ning temporary rules with di�erent colours for these
speci�c terms. The uses of term highlighting are discussed in Section 3.4.4.

� Pre�x, in�x and su�x: these strings get inserted before, between or after
subterms, respectively. The colour option applies to all three strings. They
can also be left blank. A blank printing rule can be used to `hide' terms.
This is useful for conversion terms needed to formally connect di�erent
domains but that do not carry information for the problem at hand, as
shown in Example 9.

Another sensible use case is the ability to reintroduce known constants.
In the trace log there is no information about concrete numbers. Instead,
function applications showing just the data type (e.g. Int()) are given.
By using pretty printing, these function applications can be rewritten
as actual number literals. Di�erent applications of Int() can be distin-
guished by their identi�er.

19

� Print children: toggles whether or not subterms should be printed. If this
option is o�, the term is printed as a constant string replacement and all
subterms are ignored. This can be used to abbreviate known terms.

� Line break settings: print rules also control the behaviour regarding line
breaks and indentation. Line breaks can be enforced, suppressed or added
by line length. Indentation on line breaks can be switched on and o�.

� Parentheses settings: by using these settings, the number of parentheses
can be reduced to increase readability. These options allow to set operator
precedence and associativity to �atten repeated applications of the same
operator and exploit intuitive binding rules.

Example 9 Example of a blank matching rule.
Given a rule matching int_2_U with blank pre�x, in�x and su�x, sup-
pressed parentheses and line breaks, and enabled subterm printing, then
Singleton(int_2_U(Int())) will be printed as Singleton(Int()).

Example 10 Term printing using rewrite rules.
Example of a term printed using rewriting rules. This term is from the sequence
domain. Naturally, the notation was changed to a more familiar one. The
following four rules were used:

� Seq#Append(a,b) was replaced with a ++ b.

� Seq#Take(a,n) was replaced with a[n..].

� Seq#Drop(a,n) was replaced with a[..n].

� Seq#Singleton(a) was replaced with {a}.

The term is then printed as follows:

(a2[..1] ++ {-1} ++ a2[2..])[..1] ++ {22} ++

(a2[..1] ++ {-1} ++ a2[2..])[2..]

Associativity of operators and operator precedence was exploited to reduce the
number of parentheses needed. The default pre�x notation of this term is shown
in Example 8.

20

3.4.3 Graph View

The right panel of the main window shows a reduced version of the blame graph
given by the blame relations between instantiations. It is the only view which
allows a user to easily see the relation between multiple instantiations of di�erent
quanti�ers. It was implemented using the `Microsoft Automatic Graph Layout'
library [18].

The graph view provides extensive �lter options, which are, in contrast to the
tree view, not limited to instantiations of a single quanti�er as shown in Figure 7.
This view is useful to discover expensive instantiations and long paths, both of
which are indicators for matching loops. Therefore it is an important tool to
�nd matching loops.

By default, only the 40 most expensive instantiations are displayed. The
instantiations are colour coded by quanti�er. By using the `Redraw Graph'
button, the complete graph, up to the selected depth, can be redrawn. When
clicked, an instantiation is marked as selected and its parents highlighted. The
info panel then shows information about the selected instantiation. When an
instantiation is selected, multiple operations are available:

� Hide: any instantiation can be hidden. All visible instantiations that are
descendants of only the selected instantiation are hidden as well. This
allows the user to reduce the amount of information shown and focus on
more relevant instantiations.

� Show Parents: display all instantiations that the selected instantiation
blames for its existence.

� Show Source Tree: transitively display all ancestors of the selected instan-
tiation.

� Show Children: show all instantiations that blame the selected instantia-
tion for their existence.

� Show a Longest Path: reveal a single, longest path through the complete
graph, such that the path includes the selected instantiation. This feature
is useful to reveal matching loops, as matching loops form long paths
naturally.

� Explain Path: apply the path explanation feature to the most expensive,
visible path through the selected instantiation. The path explanation
feature is described in Section 3.4.5.

In order to avoid situations where a user accidentally displays an excessive
number of nodes, a prompt is displayed whenever an operation would add more
than 40 new nodes to the graph. This could easily happen, since it is not
immediately apparent how many children a speci�c node has or how many
nodes are within a speci�c depth of the graph. The prompt suggests to reduce
the number of new nodes by �ltering. When the user decides to �lter, the
�lter dialogue shown in Figure 7 is displayed. Filtering options include depth,
selecting speci�c quanti�ers, cost and chronological order.

21

Figure 7: Filter dialogue for the graph view. This dialogue is shown whenever
an action would cause more than 40 new nodes to be added to the graph.

3.4.4 Context Information

The redesigned info panel displays contextual information. Context is necessary
to understand why instantiations happen and helps users to better judge their
signi�cance. This feature takes information from various sources and compiles
it in a sensible way, conveying more information to the user with less cognitive
overhead.

In the original Z3 Axiom Pro�ler this information was split across di�erent
nodes within the tree view. This caused two problems: �rst, the information
had to be manually collected from all these nodes in order to understand which
speci�c terms caused a quanti�er to be instantiated and how these relate to other
instantiations. This is a time-consuming and error prone task. Second, the lack
of context also leads to information duplication by listing every blamed and
bound term separately, despite them all being nested terms. This is illustrated
in Example 11.

Context information is displayed for the most important elements in the Z3
Axiom Pro�ler, namely terms, quanti�ers and instantiations. For quanti�ers
and terms, meta information such as the number of instantiations, the total
weight or the number of direct subterms is displayed. A unique identi�er for the
selected element is also shown: the identi�er for terms, the `qid' for quanti�ers
and the trace log line number for instantiations. If the selected element is an
instantiation, more relevant context displayed: in addition to just displaying
the quanti�er body, the blamed, bound and resulting terms are also displayed.

22

Binding reconstruction Binding reconstruction is a very important feature
because it enables a much more sophisticated presentation of instantiations and
creates the prerequisites for the other advanced features, namely path explana-
tion (Section 3.4.5), matching loop detection (Section 3.4.6) and matching loop
generalization (Section 3.4.7). It alleviates the issue of information missing from
the trace log as described in Section 3.1. By matching the quanti�er patterns to
the reported blame terms, the missing information concerning quanti�er instan-
tiation is recovered. The implementation details of the binding reconstruction
algorithm are described in Section 4.1.

This feature allows the Z3 Axiom Pro�ler to highlight the pattern that was
matched for any quanti�er instantiation. This not only indicates which pattern
was used but also reinforces the meaning of the colour coding since the same
colours are used for patterns and free variables as for bound and blamed terms.
Pattern highlighting is helpful if there are multiple patterns, since the matched
pattern is not always obvious, particularly when equalities were used in the
match. Additionally, it also gives information about which term was matched
to which subterm of the pattern as well as the context it was matched in. The
context speci�es which occurrence of a given term was actually matched.

In many cases, due to the hierarchical nature of patterns, blamed and bound
terms are nested. Hence, by just displaying the largest term, all others are
displayed as well. Knowing the exact bindings and the context allows the tool
to exploit this and collapse nested blamed and bound terms instead of listing
all terms individually, as shown in Figure 8.

By only presenting the largest terms with colour coded subterms, the in-
formation conveyed is improved twofold: �rst, there is less text, leading to a
clearer presentation and less distraction caused by duplicated information. Sec-
ond, having multiple terms collapsed into one adds information, as the subterm
relations between the collapsed terms is now explicit: The di�erent blamed and
bound terms are still clearly indicated using highlighting. The reconstructed
binding information also contains the equalities that were used in order to per-

Example 11 Information duplication as a consequence of missing context.
Given the following pattern:

pattern(

¦ Seq#Index(

¦ ¦ Seq#Append(free_var_105(), free_var_106()),

¦ ¦ free_var_45()

¦)

)

This pattern consists of six terms, two are matched to blamed terms and three
are free variables which determine the bound terms. If this pattern is matched
without using equality, then the bound terms are all nested within both blamed
terms. Additionally, the term matched to Seq#Append is also contained in the
other blamed term. The original Z3 Axiom Pro�ler reports both blamed terms
and all three bound terms separately regardless. This means that the bound
term free_var_105 is reported three times. The only term reported only once
is the Seq#Index term because it is the largest and therefore not contained in
another blamed or bound term.

23

Figure 8: Bindings as reported by the original Z3 Axiom Pro�ler. The same
instantiation is shown as in Figure 9 and 10. The bound terms are duplicated as
they are also contained within the blamed terms. It is non-trivial to reconstruct
the exact matchings: the bound terms have to be placed back into the context
of the blamed terms and the pattern has to match the blamed terms. Since it
does not, there must be an equality involved.

form the matching. As described in Section 2, E-matching matches against
equivalence classes of terms in order to allow more matchings. Explicitly listing
the equalities and highlighting the involved terms, makes it easier to understand
such matchings that require equalities to work.

Figures 9 and 10 showcase all of the previously mentioned improvements in a
concrete example. The �gures show the detailed instantiation information that
is printed to the info panel. Two rewrite rules, described in Section 3.4.2, were
used: one to hide the int_2_U terms and another to shorten the application
of Seq#Singleton(x) to {x}. The following improvements are apparent in the
example when compared to the binding information shown in Figure 8:

� The default pre�x notation printing style conveys hierarchy clearly and
mixes well with rewriting rules.

� The depth cuto� for terms is useful to prune information that is too de-
tailed. In the example the cuto� is set to depth 5.

� It is now immediately apparent how the bound terms relate to the blamed
terms. Even more complicated relations such as equalities are clearly
recognizable.

� The explicit binding information makes it easier to understand how the
result of an instantiation relates to the inputs. This is also supported by
printing the triplet (input, quanti�er body, output) in a concise way.

� Terms that were matched only due to a term equality are marked in gold.
To avoid confusion in matchings that involve multiple equalities, the ex-
plicit equalities are given as well.

24

� It is apparent how more vertical space is bene�cial to the info panel.

Instantiation @3973:

sequence.191:18[#1152]

Depth: 3

Cost: 5.00

Highlighted terms are matched or matched

using equality or blamed or bound.

Blamed Terms:

Seq#Drop[810](a_2@0[732](), Int[26]())

Seq#Index[1295](

¦ Seq#Append[989](

¦ ¦ Seq#Append[1058](

¦ ¦ ¦ Seq#Append[1111](..., ...),

¦ ¦ ¦ {...}

¦ ¦),

¦ ¦ {...}

¦),

¦ Seq#Length[1289](

¦ ¦ Seq#Append[1058](

¦ ¦ ¦ Seq#Append[1111](..., ...),

¦ ¦ ¦ {...}

¦ ¦)

¦)

)

Binding information:

free_var_105 was bound to a_2@0[732]

free_var_585 was bound to Int[26]

free_var_45 was bound to Seq#Length[1289]

Relevant equalities:

a_2@0[732] = Seq#Append[989]

...

Title with unique id

Summary information

Colour coding

Blamed and bound
term information

without duplication

Explicit binding
information

Explicit equality
information

Figure 9: Detailed description of a speci�c instantiation as shown in the info
panel, part 1 of 2. Part two is shown in Figure 10. Additional line breaks have
been added for better readability.

25

...

The quantifier body:

FORALL[1152](

¦ pattern[634](

¦ ¦ Seq#Drop[618](

¦ ¦ ¦ free_var_105(),

¦ ¦ ¦ free_var_585()

¦ ¦),

¦ ¦ Seq#Index[542](

¦ ¦ ¦ free_var_105(),

¦ ¦ ¦ free_var_45()

¦ ¦)

¦),

¦ or[1153](

¦ ¦ not[965](=[532](..., ...)),

¦ ¦ not[1145](>=[995](..., ...)),

¦ ¦ not[968](>=[969](..., ...)),

¦ ¦ >=[915](+[917](..., ...), Int[8]()),

¦ ¦ =[1004](Seq#Index[1002](..., ...),

¦ ¦ Seq#Index[542](..., ...))

¦)

)

The resulting term:

=[1824](

¦ Seq#Index[1823](

¦ ¦ Seq#Drop[1808](

¦ ¦ ¦ Seq#Append[989](..., ...),

¦ ¦ ¦ Int[26]()

¦ ¦ ¦),

¦ ¦ Int[42]()

¦),

¦ Seq#Index[1819](

¦ ¦ Seq#Append[989](

¦ ¦ ¦ Seq#Append[1058](..., ...),

¦ ¦ ¦ {...}

¦ ¦),

¦ ¦ Int[132]()

¦)

)

Information about the
instantiated quanti�er

with pattern highlighting

Result of the
instantiation

(nested yield terms)

Figure 10: Detailed description of a speci�c instantiation as shown in the info
panel, part 2 of 2. Part one is shown in Figure 9. Additional line breaks have
been added for better readability.

26

AReq AQ AY BReq BQ BY
...

Blamed terms
of A

Quanti�er body
of A

Yield term
of A

Blamed terms
of B not in AY

Quanti�er body
of B

Yield terms
of B

Figure 11: Schematic overview of the terms included in a path explanation.
Only the beginning of a generic path with the instantiations A→ B → C → ...
is shown.

3.4.5 Path Explanation

The path explanation feature was added as a new feature during this project.
It is a key component in understanding matching loops and other deeply nested
chains of instantiations. This feature was speci�cally designed to display the
relation between two instantiations and to emphasize how long paths are formed.

Given a path through the blame relation graph, the path explanation feature
prints a detailed explanation to the info panel. The blame relation is formed
by one instantiation blaming a term that was created by another instantia-
tion. Consequently this happens whenever a term created by an instantiation
is matched by a quanti�er pattern.

The path explanation feature shows the blamed term explicitly within the
resulting term of the blamed instantiation. An overview of the terms shown
by the path explanation feature is shown in Figure 11. It is a useful tool to
better understand the blame relations of instantiations. More speci�cally, the
path explanation shows the blame relations between instantiations explicitly by
highlighting the terms that cause the next instantiation within the result of the
previous one.

The resulting path explanation is a chain of instantiation descriptions similar
to those of a single instantiation. An excerpt of such an explanation, showing
just two instantiations linked by the yield terms of the �rst one, is shown in
Figure 12. The key di�erence is that the blamed and bound terms of a child
instantiation are highlighted within the resulting yield terms of the parent in-
stantiation. This adds the context to connect the two instantiations. Blamed
terms that are not contained within the result of the preceding instantiation
are listed separately. This is done to provide su�cient information so that ev-
ery instantiation in the path can be explained. To keep the path explanation
focused on the speci�c path some information is omitted: instantiation meta
information, concrete bindings as well as explicit equality information is not
shown. If this information is needed, it can be easily obtained by selecting the
speci�c instantiation.

27

...

Application of sequence.168:18[#1067]

FORALL(

¦ pattern(

¦ ¦ Seq#Index(free_var_16(),free_var_45()),

¦ ¦ Seq#Append(free_var_15(),free_var_16())

¦),

¦ or(=(Seq#Index(...), Seq#Index(...)))

)

This instantiation yields:

=(

¦ Seq#Index(

¦ ¦ Seq#Append(

¦ ¦ ¦ Seq#Append(..., ...),

¦ ¦ ¦ Seq#Singleton(...)

¦ ¦),

¦ ¦ +(...)

¦),

¦ Seq#Index(

¦ ¦ Seq#Singleton(int_2_U(...)),

¦ ¦ +(...)

¦)

)

Together with the following term(s):

Seq#Drop(a_2@0(),Int())

Application of sequence.187:18[#1148]

FORALL(

¦ pattern(

¦ ¦ Seq#Index(

¦ ¦ ¦ Seq#Drop(free_var_15(),free_var_55()),

¦ ¦ ¦ free_var_45()

¦ ¦)

¦),

¦ or(

¦ ¦ >=(+(..., ..., ...), Int()),

¦ ¦ =(Seq#Index(...), Seq#Index(...))

¦)

)

This instantiation yields:

...

Quanti�er body of the
previous instantiation

including pattern
highlighting

(the matched terms are
not shown)

Result of the previous
instantiation including
highlighted blamed and
bound terms of the next

instantiation

Additional terms
required for the next

instantiation including
highlighted blamed and

bound terms

Quanti�er body of the
next instantiation
including pattern

highlighting

Figure 12: Example of two instantiations where the �rst one caused the second
one. They are shown in the style used within the path explanation feature. This
example is heavily shortened to �t the page.

28

Example 12 Path with possible matching loops.
Given a concrete path containing multiple instantiations of the quanti�ers A,B
and C:

A→ B → C → B → C → B → C → B → C → A→ B → A→ A→ A→ B

This path contains multiple repeated patterns, but only one is a possible match-
ing loop: the instantiations B → C are immediately repeated four times. It is
therefore reported as a possible matching loop. Other repeating patterns do not
repeat immediately (A → B) or less often than the most repeating candidate
(A).

3.4.6 Matching Loop Detection

Finding loops in concrete paths is not a trivial task. It requires examining all
instantiations of the path within the context provided by the others. For a
given instantiation, the relevant context is comprised of the yield terms of the
preceding instantiation and the blamed terms of the subsequent instantiation.
Furthermore, instantiations of the same quanti�er do not necessarily indicate a
loop: if there are multiple patterns available, using di�erent patterns is regarded
as di�erent behaviour and therefore not looping. To help users quickly identify
possible matching loops, automated matching loop detection was implemented.

Whenever a path explanation is generated, the path is also examined for
possible matching loops. If a potential matching loop is found, the path expla-
nation is prepended with a short summary of the loop as well as a generalized
version of the looping quanti�er instantiations. The loop summary contains the
loop length, the number of repetitions and the quanti�er pattern. The loop
generalization is described in more detail in Section 3.4.7. If multiple potential
matching loops are found, the loop with the most repetitions is presented.

For this feature, immediately repeating patterns of quanti�er instantiations
are considered loops. Immediately repeating means, that there must be no other
instantiations between two repetitions of the repeating pattern. This is illus-
trated in Example 12. Since every instantiation in a concrete path is di�erent
from every other one, the instantiations have to be categorized. Instantiations
in the same category are regarded as a repetition. The repeating patterns are
found by only considering the category of instantiations within the path. In-
stantiations that agree on the quanti�er, the matched pattern and the number
of equalities belong to the same category. In order to be �agged as a loop,
a minimum of three repetitions is required. This threshold was set to reduce
the number of false positives. The implementation details of the matching loop
detection are explained in Section 4.2.

In some cases matching loops might be reported erroneously or inaccurately.
One cause of false positives is that the loop detection cannot distinguish between
repetitions that can continue forever and ones that cannot. An example of a
repetition that cannot continue forever is the unpacking of a large term: quan-
ti�ers with patterns that require nested terms might match repeatedly on terms
with deeper nesting than required by the patterns. These repetitions cannot
continue in�nitely, because they are limited by the nesting levels of the initial
term. This is shown in Example 13. On the other hand, the reported match-

29

ing loop might be inaccurate, because the instantiation categories are not tight
enough to always distinguish instantiations of the same quanti�er with di�erent
roles. In such cases, the reported loop is shorter than the actual matching loop
because one actual repetition gets erroneously reported as two. Therefore it
is important to manually check and comprehend the reported matching loops.
Example 14 illustrates this point.

3.4.7 Matching Loop Generalization

Understanding matching loops is di�cult. Even if the concrete path explanation
is available, it is still challenging to recognize the features that allow the loop to
continue in�nitely. More concretely, to understand a matching loop, one must
know which terms exactly are generated by an iteration of the loop and how
these terms lead to another iteration. While the matching loop generalization
does not present all that information directly, it is still a good support feature
to better convey speci�cs of a matching loop.

The matching loop generalization feature generates summaries of the po-
tential matching loops found by the path explanation feature. The summary
produced contains all information that is common across all loop iterations.
Therefore the matching loop generalization allows a user to quickly distinguish
between the changing behaviour and the static behaviour in a suspected match-
ing loop. Here, static behaviour refers to terms and term structures that do
not change across loop iterations. This static behaviour is detected by com-
paring all loop iterations with each other. The comparison is made separately
for each loop position. The loop position is de�ned as the number of instan-
tiations that preceded the current one within this iteration. This means that
the sets of instantiations of a quanti�er at certain loop positions are compared
separately from those at di�erent positions. The result of this process is a loop
iteration of instantiations, which contains only static behaviour. All the chang-
ing term structures are abstracted in the comparison. This process is called
generalization. The implementation details of the loop generalization algorithm
are explained in Section 4.3.

The generated description of the loop is therefore valid for all its iterations.
This description is presented similarly to the content produced by the path
explanation feature. The quanti�er bodies and terms are printed in the same
alternating fashion, as shown in Figure 13. The highlighting of blamed and
bound terms is analogous as well. There are, however, important di�erences:

Example 13 Non-looping repeating instantiation.
Given a quanti�er ∀x : f(x) annotated with the pattern f(g(free_var)). If there
is a ground term given in the solver input of this shape:

f(g(g(g(g(g(g(g(g(g(g(g(g(a)))))))))))))

then the quanti�er above can be instantiated 12 times unpacking the nesting
levels one by one. The repeating pattern is therefore repeated often enough to
be reported as looping behaviour. The last instantiation matches f(g(a)) and
yields f(a) which no longer matches the pattern and thus stops the repeating
behaviour.

30

Example 14 False positives due to di�erent usages of instantiations of the same
quanti�er.
Given a repeating instantiations of the quanti�ers A,B and C:

A→ B → C1 → A→ B → C2

This might be reported as two repetitions of the loop A → B → C since the
algorithm cannot always distinguish di�erent use cases of the same quanti�er
(C in this example). An example of this would be a quanti�er that relates the
length of two sequences with their concatenation: At one position it might be
used to calculate the length of the concatenated sequence whereas at another
it might generate the terms necessary to calculate the length of just one of the
concatenated sequences.

� The terms between quanti�er bodies are generalized across iterations.
These generalized terms are the result of generalizing the set of terms
at the same relative position. A set of terms is generalized by reducing
it to a single term with common term structure. Di�erences are reduced
to subterms named generalization_#n, where #n is an identi�er to dis-
tinguish the di�erent generalizations. If the same set of terms is reduced
multiple times within the same iteration, it is given the same identi�er.
The implementation details of the generalization algorithm are outlined
in Section 4.3.

� The �rst and the last term in the description are the same, but from dif-
ferent loop iterations. These terms de�ne the common shape of all terms
in that relative position. In particular, since these terms are from di�erent
loop iterations, they are never the same in any concrete loop. The �rst
term is repeated in order to give context to the �rst quanti�er instantia-
tion. To indicate that the �rst term belongs to the previous loop iteration,
the generalizations are printed with a dash: generalization_#n′

� The generalized subterms are marked in purple. This emphasizes the
changing parts within the loop.

� The colour coding of the matched terms changes meaning: instead of indi-
cating which exact term was blamed or bound, it is now a representation
of the term structure. The exact binding can be retrieved by consulting
the detailed instantiation explanation of the instantiation in question.

Due to term generalization, there are no details in the description concerning
speci�c iterations. But this is also a strength of this presentation: all terms

B′Y AReq AQ AY BReq BQ BY

Generalized result
of previous loop iteration Generalized loop iteration

Figure 13: Schematic overview of the terms included in a generalized matching
loop explanation. A generic loop with the instantiation pattern A→ B is shown.

31

that were not reduced to generalization_#n are guaranteed to appear in each
iteration. This means that in order to understand the matching loop, special
attention should be given to the generalized parts.

For most generalized instantiations, at least one bound variable is either
directly bound to a generalization_#n term or a term that contains such a
generalized term. This is a consequence of looping behaviour. Each iteration
must produce new terms which trigger the next loop iteration. Therefore the
terms bound to the free variables must also change. In rare cases, the matching
loop generalization does not produce generalized terms. This happens when the
term structure is indeed static across all iterations. In such cases, the change
that triggers the looping behaviour is hidden behind the abstraction of concrete
number literals (e.g. Int()). Blamed terms are never entirely replaced by gener-
alized replacements since the blamed terms are part of the repeating behaviour
and are used to match the same pattern across all iterations. Consequently, all
these terms agree in structure with the parts that matched the pattern.

An example of a generalized loop description is shown in Figure 14. The loop
consists of only one quanti�er instantiation, therefore the input and the yield
term have the same structure. Note that the generalized terms of the input and
the yield term are not the same. This is indicated by the dashed notation. The
reason is, that the input term is from one iteration earlier than the yield term.
The generalizations within the input or the yield term, however, do represent
the same set of terms.

32

Generalized Loop Iteration:

Starting anywhere with the following term:

=(

¦ if(

¦ ¦ =(len(generalization_1'()), Int()),

¦ ¦ empty(),

¦ ¦ seq(

¦ ¦ ¦ put(idx(generalization_1'(), Int())),

¦ ¦ ¦ put_a(drop(generalization_1'(),Int()))

¦ ¦)

¦),

¦ put_a(generalization_1'())

)

Application of prog.put_all_def_suspect

[#59]

FORALL(

¦ pattern(put_a(free_var_44())),

¦ =(

¦ ¦ if(

¦ ¦ ¦ =(len(free_var_44()), Int()),

¦ ¦ ¦ empty(),

¦ ¦ ¦ seq(

¦ ¦ ¦ ¦ put(idx(..., ...)),

¦ ¦ ¦ ¦ put_a(drop(..., ...))

¦ ¦ ¦)

¦ ¦),

¦ ¦ put_a(free_var_44())

¦)

)

This yields:

=(

¦ if(

¦ ¦ =(len(generalization_1()), Int()),

¦ ¦ empty(),

¦ ¦ seq(

¦ ¦ ¦ put(idx(generalization_1(), Int())),

¦ ¦ ¦ put_a(drop(generalization_1(), Int()))

¦ ¦)

¦),

¦ put_a(generalization_1())

)

Generalized input term
with binding information

Quanti�er body with
pattern match

information

Generalized yield term
with binding information
of the next instantiation

Figure 14: Generalized loop description of a loop of size 1. Note that the
generalized input and yield terms do have the same term structure, but the
di�er in the concrete loop since the generalizations are from di�erent iterations.
This is a necessary requirement for a loop of size one, otherwise the instantiations
would either not be looping or the loop would be longer.

33

4 Algorithms

This section outlines all algorithms and implementation details for the more
complicated, new features of the Z3 Axiom Pro�ler.

4.1 Binding Reconstruction

As explained in Section 3.1, the binding information in the trace log is incom-
plete. More concretely: the log speci�es which terms were blamed and which
terms were bound. However, which pattern was matched, how the blame and
bound terms relate to each other and which bound term was bound to which free
variable within the pattern are unknown. Therefore, the algorithm described in
Section 4.1.2 tries to reconstruct this binding information by over-approximating
the E-matching. If this over-approximation yields multiple results, the algorithm
tries to disambiguate by validating the matchings. Validating a matching means
checking all equalities that are required for this matching. If the matching al-
gorithm only returns one possible matching, the validation can be skipped, as
there is nothing to disambiguate.

As explained in Section 2.5, pattern matching is not always straightforward.
Thus the pattern matching reconstruction algorithm must be able to handle
ambiguous cases as well as occurrences of implicit equalities. The algorithm
relies on the following invariants learned by inspection of Z3 trace logs:

1. Each reported blamed term is matched exactly once against a pattern.

2. For each term in a pattern, except for free variables, there is at least one
blamed term whose operator matches the pattern exactly.

3. Every free variable must be bound.

4. All terms bound to the same pattern or free variable are equal.

The algorithm then proceeds in two phases: the matching phase and the
validation phase. In the matching phase, all possible pattern matchings that
satisfy the invariants above are collected. The validation phase then tries to
reduce the number of matchings by validating their assumptions if the match-
ing phase reported multiple possible matchings. As explained in Section 4.1.4,
calculating the binding information is very expensive. Therefore bindings are
calculated lazily and at most once. The result is cached to be immediately
accessible on later use.

The high level idea behind binding reconstruction is to traverse the patterns
and try all possible matchings of blamed and bound terms to the pattern. Dur-
ing the traversal, information about the matchings, called match state, is carried
along. The most important such information is, which blamed and bound terms
are matched against which parts of a pattern. This information is stored in the
binding dictionary. The exact data a match state is comprised of is described in
Section 4.1.2. Whenever a pattern is visited, all possibilities to match this pat-
tern with regard to the all the match states that are carried along are generated.
This list of possible matchings replaces the previous list of match information.
The list becoming empty signi�es that it was not possible to match the current
pattern given the previous match states. Since this list contains all possibilities
at all times, this is an error state which should never occur, since Z3 managed
to complete the match given the patterns and input terms.

34

4.1.1 Important Terminology and Concepts

This section outlines important concepts and terminology used in the description
of the algorithm.

Binding Eviction The process of overwriting a binding in the binding dictio-
nary is called eviction. Whenever a term is evicted, an equality is recorded. The
eviction indicates that there exists another term that is di�erent from the sub-
term of the parent blame term, with both being matched to the same pattern.
Therefore, these terms must be equal for this match to be valid. This fact is
checked in the validation phase (Section 2) if necessary. The newly bound term
evicts the previously bound term. Note that binding the same term multiple
times to the same pattern is not regarded as eviction. Therefore, eviction is an
indication for either an equality or an invalid matching.

Pending Matchings The concept of pending matchings is important for ef-
�ciency: it allows matching the complete pattern within a single traversal, by
postponing the matching of all the subterms to the subterms of the pattern.
These matchings are checked when the appropriate subterm of the pattern is vis-
ited. Checking all matchings eagerly would result in repeated pattern traversals
since checking transitively all the subterms results in a complete term traversal.

Pending matchings are subterms of terms that were already matched. Since
the children of both patterns and terms are known, the patterns of the pending
matchings are already known. The implications of applying the match, how-
ever, are not. Pending matchings might introduce new equalities by evicting
existing bindings. When handling a pending matching, the subpatterns and
subterms, if any, are added to the pending matching candidates. If a term is
still bound after handling all pending matchings for the current pattern, then
all pending matching candidates corresponding to this term are added to the
pending matchings dictionary to be de�nitely handled later.

Example 15 Example of a match context.
Given the term Seq#Drop[838] which is matched within the following root term:

Seq#Index[2734](

¦ Seq#Append[836](Seq#Singleton[887](...), Seq#Drop[838](..., ...)),

¦ +[2679](j@@1!39!0[2357](..., ...), *[2561](..., ...))

)

Then the context of this match is the following path:
(Seq#Index[2734]→ Seq#Append[836])

Match Context Keeping track of the match context is important to distin-
guish between multiple occurrences of the same term within a larger term. To
do this, paths as shown in Example 15 are used. A match context is added
together with a pending match candidate. Only during handling of the parent
term and the path to the pending match term is known. The context of a sub-
term is formed by taking all paths of the parent term context and appending
the parent term to each of these paths. If there are multiple locations the parent

35

term could be matched in, there must also be the same multiple location for all
of it subterms as well.

4.1.2 Matching Phase

The matching phase is concerned with collecting all possible matchings and
is applied to each pattern in turn. If there are multiple patterns, the results
of each pattern are aggregated in a collection of possible matchings, since the
matching phase is an over-approximation of the E-matching. The validation
phase (Section 2) following the matching phase is concerned with making the
over-approximation precise. The most important procedures of the algorithm
are given as pseudo code in Algorithm 1.

Pattern Traversal The traverse-pattern procedure of the matching al-
gorithm traverses the input pattern, visiting each subpattern. While traversing
the pattern, the matching algorithm has to keep track of the list of all possi-
ble matchings, subsequently denoted matching-list . This list contains matching
state objects described above, representing the matchings. It is initialized with
one possible matching: the empty matching. This matching represents the ini-
tial state before any blamed term has been matched to a pattern. When visiting
a subpattern, the procedure match-pattern is executed. The matching-list is
updated to re�ect the result.

The procedure match-pattern is responsible for generating the list of all
possible matchings given a list of candidate matchings and a pattern. In order
to traverse the pattern only once, subpatterns and the corresponding subterms
are matched later. The information about the pending matchings is stored
in the match state. If the pattern represents a free variable, every candidate
matches since every term matches a free variable. Therefore the resulting list
of matchings has the same number of elements as the candidate list. Matching
a free variable might add equalities, if there are di�erent terms in the pending
matchings of that free variable. This happens if there are multiple structurally
di�erent, nested blamed terms matched to the parent terms of the free variable.
These di�erences will then cause binding evictions once the pending matchings
are processed.

For any other pattern, the normal matching procedure is followed. For each
remaining unused blamed term matching the pattern, the state is cloned. The
required conditions for a match are equality of the term and pattern name
and the number of children. More details about E-matching are explained in
Section 2.5. The cloning is required to still have the original match state in case
there are multiple matchings possible with the remaining blamed terms. Using
the cloned match state, the blamed term is added to the pending matchings in
the last position. This ensures that this term gets bound to the current pattern
and is not evicted.

36

Algorithm 1 Main procedures of the binding reconstruction algorithm.

traverse-pattern(pattern)

1 result = empty-list()
2 add(result, empty-matching())
3 // The order of traversal does not matter,
4 // as long as parents are visited before their children.
5 foreach subpattern in pattern:
6 result = match-pattern(subpattern, result)
7 return result

match-pattern(pattern, candidates : list of matchings)

1 result = empty-list()
2 foreach matching in candidates:
3 if is-free-variable(pattern):
4 Handle-pending-matchings(matching)
5 Add(result, matching)
6 else

7 foreach term in matching.unmatched -blamed -terms:
8 if matchings(pattern, term):
9 // Make a copy to keep the current state intact for the
10 // following iterations.
11 copy = clone(matching)
12 Add-to-pending-matchings(copy, term)
13 Handle-pending-matchings(copy)
14 collect-match-candidates(copy)
15 Add(result, copy)
16 return result

handle-pending-matchings(matching)

1 foreach pattern, term in matching.pending-matchings:
2 if matches(pattern, term):
3 // add-to-binding also deals with binding evictions.
4 Add-to-binding(matching, pattern, term)
5 foreach subpattern, subterm in (pattern, term):
6 Add-matching-candidate(matching , subpattern,

subterm)
7 Add-matching-context(matching, term, subterm)
8 else

9 add-equality-requirement(matching, pattern, term)

37

Match State To keep track of the di�erent match possibilities, stateful ob-
jects are used which track the following information:

� The binding dictionary, which maps patterns to blamed and bound terms.
This dictionary is the central element of the matching object. A matching
is only valid and complete if every blamed and bound term is mapped
exactly once.

� The list of unmatched blamed terms to keep track of invariant 1. This list
contains all blamed terms for the empty matching and none for a valid
and complete matching.

� A dictionary of patterns mapping to a list of pending terms. This dic-
tionary keeps track of the information that has to be checked later and
enables to do the complete pattern matching with a single traversal of the
pattern. Whenever a term is matched to a pattern, all the subterms, if
any, will have to be matched to the corresponding subpatterns. Until these
subpatterns are visited, the subterms are listed as pending matchings.

� A dictionary of terms mapping to a list of pending match candidates,
where a match candidate is a pair of a pattern and a term. This dictionary
is required in order to avoid unnecessarily matching (and possibly binding)
subterms of terms that were evicted. More concretely, it is a temporary
holding space for pending matchings while a match-pattern call is in
progress. Before and after calling match-pattern this dictionary must
be empty. This is required since only after having completely matched a
pattern is it clear which pending matchings still need checking. Whenever
a term is evicted from the binding dictionary, its pending match candidates
are removed as well. Possible reasons for binding eviction are explained
below.

� A dictionary of patterns mapping to a list of terms. This dictionary main-
tains a list of terms that are equal to the term that is mapped to the
same pattern in the binding dictionary. This means, whenever a term is
evicted, it is added to the list of terms corresponding to the pattern it
was bound to previously, before the eviction. The reason is that the term
that was evicted must be equal to the term that is bound to the corre-
sponding pattern. Since evictions might happen multiple times for the
same pattern, this storage format avoids storing the same equality mul-
tiple times. During validation these equalities are checked for validity in
order to make the over-approximation of the matching phase more precise.
Equality checking is explained in more detail in Section 2.

� Information about the context of a match. The context of a match is
de�ned as a path of terms, from the root term where the term was matched
in, to the matched term, as shown in Example 15. Since there might
be multiple matchings in di�erent contexts, the context information is
recorded as a list of such paths. This information is required to be able to
decide which occurrence of a given term within a bigger term was actually
matched. It is mainly used for term highlighting in the detailed description
of instantiations displayed in the info panel.

38

4.1.3 Validation Phase

Matching validation is used to disambiguate multiple possible matchings by
discarding invalid ones. As mentioned previously, the matching phase is an
over-approximation of the E-matching. Therefore, if there is only one matching
found by the matching phase, the over-approximation is already precise and the
validations phase is skipped. All equalities of that single matching candidate
are considered valid, backed by the assumption that Z3 is sound and the fact
that the quanti�er was instantiated successfully. In case of multiple candidates
being available, they are checked in turn in ascending order of the number of
equalities that must be validated. Candidates with zero equalities are trivially
valid. The �rst candidate that can be successfully validated is used and the
rest discarded. This is sound since only one matching can be valid at a time.
Additionally, validating matchings is expensive due to the procedure direct-
equality, therefore it is important that unnecessary validations are skipped.
This procedure takes two terms and searches the space of all terms that have
exactly those two terms as subterms. The search is successful if an equality
(=) term is found. This search space can be very large, therefore matching
validation is only used cautiously.

Because of missing information, in particular the E-graph, the tool is not
able to prove inequality, only equal. If none of the matchings can be validated
successfully, the binding reconstruction is considered ambiguous. This might
happen due to equalities missing in the trace log. In such cases, the most likely
matching is used and a warning is displayed. The most likely matching is the
one with the fewest equality requirements.

4.1.4 Runtime Complexity

The runtime complexities for the matching and the validation phase are ex-
plained below.

Matching Phase The binding reconstruction has to consider all patterns of
a quanti�er, each of which with an arbitrary number of subpatterns. Relevant
for the runtime are two measures: the total number of all subpatterns, denoted
as n and the number of blamed terms denoted as k. For each of these n pattern
the procedure match-pattern has to be executed. In the worst case, every
blamed term matches every pattern. This is, however, very unlikely. In that
case, there are n!

(n−k)! ways to match the k blamed terms to the n patterns.
A single execution of the procedure handle-pending-matchings takes

O(ns) time, where s the maximum number of subterms for any given term.
For real world applications s is usually small (e.g. less than 5). The outer
loop of handle-pending-matchings is executed at most n times. This is be-
cause the number of pending matchings for a speci�c pattern is limited by the
maximum height of a pattern, which is smaller or equal to n. By de�nition,
the number of inner loops is limited by s. All other operations of handle-
pending-matchings take constant time.

The procedure collect-match-candidates collects every pending match
candidate and adds it to the pending match dictionary. Its time complexity is
O(ns), as there are at most s new pending match candidates for each of the

39

Algorithm 2 Matching validation procedures.

validate(matching)

1 foreach pattern, eq-terms in matching.equalities:
2 eq-base-term = matching.bindings[pattern]
3 foreach term in eq-terms:
4 if not recursive-eq-lookup(eq-base-term, term):
5 return false

6 return true

recursive-eq-lookup(term1 , term2)

1 if term1. id == term2. id :
2 return true

3 if direct-equality(term1 , term2):
4 return true

5 if term1.name 6= term2.name ||
term1. type 6= term2. type ||
term1.subterms.count 6= term2.subterms.count :

6 return false

7 foreach subterm1 , subterm2 in (term1 , term2):
8 if not recursive-eq-lookup(subterm1 , subterm2):
9 return false

10 return true

at most n pending matchings that had to be handled just before the call to
collect-match-candidates.

The inner loop of the procedure match-pattern is executed once for every
blamed term for every possible way of matching the blamed terms to the pat-
terns, n!

(n−(k−1))! times in total. One loop iterations takes O(ns) time due to the
calls to handle-pending-matchings and collect-match-candidates. The
other procedure calls within the loop are constant time operations. Therefore,
the time complexity of the matching phase is O(ns n!

(n−(k−1))!). In practice the
factorial time complexity is not a problem. The reason is that all involved vari-
ables are usually small. The variables are small, because the k is bound by the
size of the pattern. Patterns are small as they try to be as general as possible
(without causing loops). Additionally, assuming that every blame term matches
every patterns is a very coarse over-approximation.

Validation Phase Validating the equalities is very expensive as it involves
reverse lookups of terms to their parents. This is expensive because terms are
reused abundantly, thus the number of parents to search is very large. Addition-
ally, the bound and blamed terms can have arbitrary sizes. This is especially
an issue for matching loops as the deeply nested instantiations produce large
terms.

In the worst case, every blamed term is matched via equality, thus leading
to the same number of blamed terms and equalities, denoted as k. For each of
the k equalities, two terms have to be compared using the procedure reverse-

40

6 0

5 4 2

1 3

a
$ Banana$

na

na $ $ na

na $

Figure 15: Su�x tree for the word `Banana$'. The `$' character represents the
end character, which ensures that no su�x is a pre�x of another su�x. Edges
are labelled with the pre�x they represent. Leafs are numbered according to
the start index of the su�x they correspond to.

eq-lookup. This procedures traverses both terms in parallel trying to �nd
equal terms or enough di�erences that descending further is not necessary. In
the worst case, every subterm of the smaller term has to be looked at and
consequently causes a reverse lookup. The worst case cost of a reverse lookup
is equal to the maximum number of di�erent terms that have the same direct
subterm, denoted t. This number is usually large. Let the size of the number
of subterms of the smaller term be s and the biggest of all smaller terms in
any equality validation be smax. Then the algorithmic time complexity of the
full validation phase is O(ktsmax). In most cases, however, the equality lookup
stops after few term comparisons on either equality or unknown. Also, in most
cases, the validation phase is completely skipped because only one matching
candidate is found during the matching phase.

If the validation process is considered too slow at some point, it could be
easily improved. The equalities could be hashed during trace log parsing making
the equality lookup a constant time operation. This would reduce the proce-
dure reverse-eq-lookup to a simple term traversal of the smaller term with
constant time operations on each subterm. The new runtime for reverse-
eq-lookup would therefore be O(s), which is optimal given the problem con-
straints. The total runtime of the validation phase would reduce to O(ksmax).

4.2 Matching Loop Detection

Matching loop detection was implemented by reducing the problem to a repeated
substring problem. The instantiation categories described in Section 3.4.6 are
mapped to characters of a string. In order to produce viable matching loop can-
didates, the substrings have to be non-overlapping and immediate repetitions.
The threshold k for the minimum number of repetitions to count as a matching
loop was set to 3. This threshold is high enough to suppress most false positives.

4.2.1 Substring Problem

Substrings can be found e�ciently by using su�x trees. An example of a su�x
tree is shown in Figure 15. A su�x tree is a compressed trie containing all
su�xes of a given string. Consequently, all inner nodes of a su�x tree represent
su�xes with common pre�xes, which are repeated substrings. The number of

41

A1 B1 C1
...

A2 B2 C2
...

...

Am Bm Cm
...

AG BG CG
...Generalized loop:

Binding information

n quanti�er instantiations per loop iteration

m loop iterations Generalization

Figure 16: Schematic illustration of matching loop generalization. The boxes
represent the di�erent sets of instantiations at the same loop position. Binding
information of the next instantiations is used to relate subsequent generalized
instantiations.

repetitions is equal to the number of leaf descendants of that inner node. The
repeated substring is represented by the path from the root to the inner node.
The algorithm proceeds by traversing the inner nodes breadth �rst, collecting
candidates that represent at least k immediate, non-overlapping repetitions.
In order to facilitate this check, each inner node has references to all its leaf
descendants. Additionally, the repeating substring is also stored directly at the
inner nodes.

Immediately repeating, non-overlapping substrings are also called tandem
repeats and are often encountered in bioinformatics. There exist more sophisti-
cated algorithms for �nding these [13]. However, the current implementation is
considered su�cient for the use cases described above.

4.2.2 Runtime Complexity

Su�x trees can be built in O(n) using Ukkonen's algorithm [27]. To �nd only
immediate, non-overlapping substrings, at most O(n) internal nodes of the su�x
tree must be checked for these properties. In the worst case, this requires O(n2)
checks, since many leaves might be checked multiple times for di�erent substring
lengths. This raises the total time complexity to O(n2). For matching loops
that are contained in reasonably sized trace logs (≤200 MB), the algorithm
complexity is not a problem.

4.3 Matching Loop Generalization

The matching loop generalization is an algorithm to reduce all iterations of a
matching loop to a single common representation. This is achieved by extracting
the similarities of all instantiations at the same loop position. The algorithm is
illustrated in Figure 16.

More formally, the generalization algorithm is concerned with the following
problem: given a matching loop, extract the similarities between iterations and
prune di�erences. The matching loop is described by a sequence of instantiations
together with the length of one loop iteration. The algorithm has three steps:

42

1. Distribute all instantiations into sets such that each set represents all
instantiations at the same loop position. Each set will be of the same size
and have as many instantiations as there are loop iterations.

2. For each of the sets of instantiations, extract the sets of terms that need
to be generalized. This is done by building a set of terms for each rel-
ative position that needs generalizing. For a given relative position, the
new set of terms is formed by taking the term at that relative position for
each instantiation in the instantiation set. The following relative positions
need generalizing: the yield terms and any blamed term consistently not
contained within the yield terms of the previous instantiation since the
generalization of these terms are shown in the generalized loop explana-
tion.

3. Generalize each set of terms generated by point two using the algorithm
described in Section 4.3.1.

To generalize the sets of yield terms, additional bookkeeping is required to
incorporate the binding information of subsequent instantiations.

4.3.1 Term Generalization

Terms are generalized by extracting the common hierarchical structure. A high
level overview of how the term generalization algorithm operates is shown in
Figure 17.

The term generalization algorithm is given a set of terms. This set of terms
are traversed breadth �rst in parallel, visiting all sets of subterms. Each set
of terms visited is generalized separately. The subterms of a set of terms are
only visited if the terms agree in structure at the current level. A set of terms
agrees in structure if and only if all terms have the same name and the same
number of subterms. The structure of the subterms is not considered at this
point. The generalization of an agreeing set of terms is a term reduced to the
agreeing factors: the name and number of subterms. If the terms do not agree,
the generalization is a term named generalization_#n with no subterms. The
su�x #n is an identi�er to keep di�erent generalized terms apart. Additional
bookkeeping allows the algorithm to identify repeating generalizations of the
same terms such that the generalized terms are named consistently.

4.3.2 Runtime Complexity

The generalization of n terms with a minimum size of m takes O(mn) time.
Checking whether a term agrees with another takes constant time, therefore
checking a set of n terms takes O(n) time. The number of sets that need to be
checked is determined by the smallest term, since all larger terms get pruned to
the smaller size, thus m sets of terms have to be checked.

To generalize a matching loop of size n with m repetitions, at least n sets of
yield terms have to be generalized. In many cases, there are additional blamed
terms that have to be generalized, the number of such terms denoted as k. This
results in a total of n + k sets of terms of size m. The minimum term size is
denoted as s. Taking all this into account, the matching loop generalization
algorithm takes O((n+ k)ms) time.

43

Term 1
A1

B1 C1

D1 E1

Term 2
A2

B2 C2

D2 E2

...

Term 3
A3

B3 C3

D3 F3

Generalized Term
AG

BG CG

gen1 gen2

Figure 17: Schematic illustration of term generalization. The nodes represent ar-
bitrary operations, where equal letters signify equal operations. The subscripts
distinguish multiple di�erent instances of the same operation. The marked dif-
ferences are replaced by generalized substitutes. This approach can be used to
generalize an arbitrary number of terms.

44

5 Background for SMT Solver Comparison

In this section the Viper Tool Chain is introduced. It was used to evaluate
whether the reliability of software veri�cation tools could be increased by making
alternative solvers available. The default solver for the Viper tool chain is Z3.
The alternative solver used for this purpose was CVC4.

5.1 Viper Tool Chain

The Viper tool chain is a software veri�cation tool suite. It was developed by
the Chair of Programming Methodology at ETH Zurich. Programs are veri�ed
by translating them into Silver, the Viper intermediate language, described
in Section 5.2. Using an intermediate language has advantages for both the
developers of the Viper tool chain and its users. The Viper developers bene�t
from their own, �exible and clearly de�ned interface to their veri�ers. They do
not have to de�ne operational semantics and are free to extend Silver by adding
new features at any time. Users only need to be concerned about �nding a
mapping to Silver, which expresses the properties of their program that need
veri�cation. This mapping or translation is usually automated. Translators are
available for Java[12], Scala[21], Chalice[17] and OpenCL[26]. A translator for
Rust[19] is currently in development.

A similar approach is used for the interface to a back end SMT solver. The
SMT-LIB standard [4] de�nes a common language that many SMT solvers ac-
cept as input. This decreases the dependency of a tool chain on one speci�c
solver. Originally, the Viper tool chain was developed using Z3, whereas CVC4
was integrated during this project. More details about the �exibility of this
interface are provided in Section 5.5.1. The Viper tool chain contains two dif-
ferent, independent veri�ers: Carbon (Section 5.3) in conjunction with Boogie
and Silicon (Section 5.4). A complete overview of the Viper tool chain is shown
in Figure 18.

The reason for why matching loops might occur when using the Viper tool
chain is that many quanti�ed assertions are required to encode a program in
SMT-LIB. More speci�cally, the quanti�ers come from four di�erent sources:

1. The user can use quanti�ers to formulate pre- and postconditions. This
is a tradeo� chosen in favour of ease of use and expressiveness, as well as
conciseness of notation. As a cost, the underlying SMT solver has to do
more work for a successful proof.

2. Background theories are encoded with quanti�ers. Background theories
include axiomatizations of sequences, sets and multisets.

3. Native features, such as quanti�ed permissions, require quanti�ers for their
encoding. Quanti�ed permissions allow users to express access permissions
using quanti�ers.

4. Carbon requires quanti�ers to encode reasoning about the heap. Since
Carbon uses Boogie as a back end, which does not provide a heap ab-
straction, this has to be encoded in quanti�ed assertions as well.

As a consequence, when confronted with a matching loop, it is not obvious
which source introduced it. Therefore, strong tools to deal with matching loops,

45

Rust2Viper Java Scala Chalice OpenCL

Silver

Carbon

Silicon
Boogie

SMT-LIB

Z3 CVC4

Figure 18: Overview of the Viper tool chain. Rectangles with rounded corners
are intermediate languages, whereas sharp corners represent tools. Arrows indi-
cate the dependencies between the di�erent tools and languages. CVC4 support
was added as part of this project. Rust2Viper is currently in development.

as well as problems related to quanti�er instantiations in general are essential.
It is important to note that long runtimes and excessive numbers of quanti�er
instantiations do not automatically imply a matching loop. The cause might
also be an exponentially growing number of terms due to a non-looping, but
nonetheless unfavourable encoding of quanti�ed assertions.

5.2 Silver

Silver is the intermediate language and the core of the Viper tool chain. It
de�nes the input format for both veri�ers Carbon and Silicon. In order to be able
to express and verify the semantics of a programming language with operational
semantics, Silver supports a variety of techniques to abstract the details of the
source language. These include uninterpreted functions, quanti�ed assertions,
custom domains, access permissions for heap locations and �elds, as well as
pre- and postconditions of methods and functions. Methods and functions are
distinguished by purity: functions are pure and allow no state changes. Hence
neither changes to the heap nor writes to �elds are allowed within functions.

Access permissions are a central feature of Silver. There are three levels of
access: no access, read access and write access. Silver supports encodings that
do not allow shared write access. Thus any successfully veri�ed Silver program
using such encodings is guaranteed to be free of errors due to shared write
permissions. Clever encoding enables to verify that after write permission was
shared and returned, the write permission is indeed no longer shared and writes
are safe again.

Silver also features axiomatizations of sets, multisets and sequences. Spec-
i�cations of such language constructs usually need many quanti�ed assertions,
which require E-matching to verify. This is why the quanti�ed predicates have
to be designed carefully and annotated with hints about their instantiation to

46

help the SMT solver. If these annotations are made incorrectly they might lead
to in�nite runtimes as explained in Section 2.6.

5.3 Carbon

Carbon is one of the veri�ers of the Viper tool chain. It veri�es programs by
translating them to the BoogiePL intermediate language, the input for the static
veri�er Boogie. Boogie does not provide a built in abstraction of the heap, as
Silver does. Therefore, the heap has to be encoded manually when translating to
BoogiePL, which requires additional quanti�ed assertions compared to Silicon.

Boogie uses veri�cation condition generation (VCG) to produce a formula
in �rst order logic. It produces one single query for each method, containing
all veri�cation conditions for every single possible path through the method.
Naturally, this leads to larger queries than produced by veri�ers using symbolic
execution, such as Silicon. This has performance implications (as shown in
Section 6.3). The formula is then veri�ed using an SMT solver such as Z3 or
CVC4. If a query is proven unsatis�able, the method or function is safe. This
means that the postconditions hold for all inputs that satisfy the preconditions.

5.4 Silicon

Silicon is the second veri�er of the Viper tool chain. Unlike Carbon, Silicon
interacts directly and interactively with the underlying SMT solver.

This veri�er is based on symbolic execution, which means it uses the SMT
solver to check entailment between statements. The queries are in the context
of one particular path as the symbolic execution engine handles case splits,
e.g. for di�erent branches of an if statement. This approach leads to much
smaller queries compared to Boogie and has a positive e�ect on performance
(Section 6.3.2).

5.4.1 Quanti�ed Permissions

At the time of the evaluation of CVC4 (Section 6), the quanti�ed permission
feature was still in development and not yet integrated into Silicon. The for-
mer development version of Silicon with support for quanti�ed permissions is
therefore referenced to as Silicon QP. The feature has since been fully integrated.

Quanti�ed permission allows a user to express not only pre- and postcon-
ditions with quanti�ers, but also access permissions. Allowing quanti�ed per-
missions often shortens the formulation of appropriate access permission as ex-
plained in [20].

5.5 CVC4

CVC4 is an open source SMT solver. It is a joint project between the New
York University and the University of Iowa. Contributors from many other
institutions (e.g. Google) are also taking part in the development.

The feature set includes many theories such as arrays, inductive data types,
tuples, etc. as well as �rst-order quanti�cations of these theories. Strings and
non-linear arithmetic are only partially supported and still in development.

47

5.5.1 CVC4 Integration into Viper

The integration of CVC4 into the Viper tool chain required some rewriting of
the existing tools. Fortunately, the SMT-LIB standard facilitated the integra-
tion. Standard interactions with Z3, such as function de�nitions and assertions,
were already implemented according to the SMT-LIB speci�cations. Notable
exceptions were solver con�guration and function overloading outlined below.

The SMT-LIB standard, as previously mentioned, is an international e�ort
to facilitate SMT research and solver development. It speci�es a common input
language which all solvers should adhere to. CVC4 currently only supports
SMT-LIBv2, the most recent version being v2.5.

5.5.2 Modi�cations in Carbon

Integration into Carbon was mainly problem-free as Boogie already featured
experimental support for CVC4. The integration was limited to updating the
experimental support for the current version of CVC4 and enabling all the re-
quired logic theories.

Some tests remained incompatible: Boogie, and consequently also Carbon,
requires models for all proofs. A proof model contains information about which
facts were responsible for the proof. Since the support for non-linear arithmetic
is not yet complete in CVC4, models are unavailable if these logics are enabled.
The models are used by Boogie to name the speci�c traces that could not be
veri�ed. This behaviour cannot be switched o�.

Since models will work in combination with non-linear arithmetic once the
implementation is complete, implementing support for solvers that do not pro-
vide models by modifying Boogie was discarded. In particular, since this is not
the biggest problem of CVC4 in conjunction with Boogie (Section 6.3). More
informative error reporting was implemented instead.

5.5.3 Modi�cations in Silicon

In order to integrate CVC4 as a back end into Silicon, the solver interactions
had to be made more abstract. This included adding a general interface and
treating the actual solver as an implementation detail. Consequently all solver
interactions had to be changed to strictly adhere to the SMT-LIBv2 standard.

The following modi�cations to the solver interactions were necessary:

� Replacement with SMT-LIB compliant syntax: `implies' to `=>', `i�' to
`not xor', stricter bracketing, etc.

� Remove function overloading: while Z3 supports function overloading on
generic types, CVC4 does not. Therefore, all occurrences of functions
with generic arguments were renamed by appending the generic type to
the function name. This is illustrated in Example 16.

� Implement support for di�erent preambles depending on the solver used.

� Rewriting the static preambles into valid SMT-LIBv2 �les.

This list shows that Z3 does implement a more general syntax than that
required by SMT-LIB. As with Carbon, one major incompatibility remained:
Silicon uses global variable declarations, which means that variable declarations

48

must remain valid even after the scope in which the variable has been de�ned
was �popped" interactively. Since the symbolic execution engine of Silicon does
case-splitting by itself, this feature is used quite extensively. Removing the need
for global variable declarations would require rewriting the symbolic execution
engine. This was not considered a good investment of e�ort thus remained
unsolved. The integration into Silicon QP was analogous as the quanti�ed
permission feature is not connected to solver interactions. In practice, the global
variable declaration issue rendered about 16 % for Silicon and 37 % for Silicon
QP incompatible as indicated by Table 2.

Example 16 Replacement of function overloading on generic types.
Given two functions foo(Seq<int> a) and foo(Seq<Ref> a) which only di�er
on the generic type of the argument a. In order to distinguish these functions in
absence of overloading on generic types, the functions are renamed to foo_int()
and foo_Ref(), respectively.

49

6 CVC4 Evaluation

In this evaluation, CVC4 was compared to Z3 when used as a back end in the
Viper tool chain. The evaluation was conducted to decide whether or not to
include CVC4 in the Viper tool chain permanently. If signi�cant di�erences had
been revealed, including both solvers in the Viper tool chain and implementing
a solver selection heuristic would have been a good way to reduce the time
needed for the complete veri�cation process. As the results show, there is not a
signi�cant number of test cases where CVC4 is faster than Z3.

Three tools, namely Carbon, Silicon and Silicon QP, were evaluated with
the two SMT solvers Z3 and CVC4. Tests were always run completely with the
original Silver �le as opposed to using an intermediate step such as Boogie �les
or SMT �les. The evaluation was conducted on the existing Silver test suite
containing 288 tests. For Silicon QP an additional 148 tests were available.
The program versions used for the evaluation are listed in Table 1. The evalu-
ation was done in two parts: the correctness (Section 6.2) and the performance
(Section 6.3) were evaluated.

6.1 Viper Runner

In order to compare the two solvers, data had to be collected. To facilitate the
data collection, a highly con�gurable Python [25] benchmark framework, the
Viper Runner, was developed.

A normal test framework was insu�cient for this task, as these are not
designed to handle programs that start other programs. Therefore, they do
not terminate process hierarchies correctly when a test runs into a timeout.
As shown previously in the Viper overview in Figure 18, the Viper tool chain
is built upon the concept of process hierarchies. Terminating just the parent
process leaves the resource-consuming SMT solver running while terminating
the veri�cation tool, which in turn then compromises the data collected for
subsequent tests.

The Viper Runner is suited to run complete test suites as well as benchmarks.
It allows a user to capture the output of all the tools, including the intermediate
steps such as Boogie and SMT �les, separates the standard output from the
standard input and records return values. Discarding all output to reduce the
IO overhead is also possible. Additionally, the Viper Runner is able to run tests
repeatedly to provide a measure for the runtime variance for each individual

Tool Version

Boogie 2.3.0.61016 (fork of 713e870, 28. Aug)
Carbon 1.0 Snapshot (fork of 309dcfec1da7, 25. Nov)
CVC4 1.5-prerelease (12. Dec)
Silicon 0.1 Snapshot (fork of 9ad15e481f6a, 27. Nov)
Silicon QP 0.1 Snapshot (fork of de59b1d78cfa, 27. Nov)
Silver Snapshot (0d33695bd459, 27.Nov)
Z3 4.4.2 Snapshot (216c1b2, 2. Dec)

Table 1: Tool versions used for the evaluation of CVC4.

50

Carbon Silicon Silicon QP

Pass 174 216 236
Ignore 10 11 18
Incompatible 22 47 160
Fail 82 14 22
Total 288 288 436

Table 2: Correctness evaluation results for all Viper veri�ers, Carbon, Silicon
and Silicon QP, using CVC4.

Carbon Silicon Silicon QP

Timeout 63 4 4
Imprecise 10 7 13
More precise 2 1 3
Mixed2 0 1 1
Unsound 7 1 1
Total 82 14 22

Table 3: Detailed listing of test failure reasons for the Viper veri�ers using
CVC4.

test.
The Viper Runner was also extended with a plotter module. This module

generates scatter plots comparing the runtimes for di�erent run con�gurations
and calculates di�erence metrics to facilitate the comparison. The Viper Runner
was used for the correctness as well as the performance evaluation.

6.2 Correctness

In order to evaluate the correctness of the results obtained using CVC4, all
tests were run using both solvers and validated by comparing the output. The
results given by Z3 were used as a baseline. Test cases for which the output
given by CVC4 was di�erent than the Z3 output were evaluated individually
and manually. Since Z3 was the baseline, ignored tests (for various reasons,
mostly incompleteness of the veri�cation tools) were also ignored for CVC4. An
overview of the correctness evaluation for all tools is shown in Table 2. A more
precise listing of the causes of test failures is presented in Table 3.

6.2.1 Carbon

The correctness test results for Carbon with CVC4 are shown in Table 2. Out
of 193 tests that did not time out only 17 (9 %) were invalid; with 2 veri�cation
results being more precise than Z3 (Table 3). Notable is the large number of
timeouts: 63 tests failed because the runtime exceeded the allowed runtime of
10 minutes.

2Tests may contain multiple properties to verify. In these tests CVC4 veri�ed some asser-
tions more precise and some less precise than Z3.

51

The large queries typical for Boogie encodings of Silver programs tend to be
di�cult to solve for CVC4. The timeout limit of 10 minutes was determined
arbitrarily to keep benchmark times reasonable (one complete run with 5 rep-
etitions takes about 24 hours). To put this into perspective: the complete test
suite with all 288 tests completes in about 13 minutes using Z3.

The remaining 32 tests are also accounted for: 10 were set to ignore by the
unit test framework using Z3, and were consequently also ignored for CVC4, in
particular those involving many di�erent quanti�ers. The remaining 22 tests are
incompatible with Carbon with CVC4 due to the lack of models when non-linear
arithmetic is enabled. There were also 6 unsound test results. More information
about unsound test results is available in Section 6.4. In summary: CVC4 is not
yet well suited as a back end to Carbon and Boogie. The large queries generated
due to VCG are solved unreliably by CVC4.

6.2.2 Silicon

In general, CVC4 works well with Silicon: 94 % of the tests passed with only 4
timeouts as listed in Tables 2 and 3. The timeouts were comparatively short (5
minutes) to the ones used for Carbon. This is justi�ed by the shorter runtime
of Silicon in general. A complete test suite using Z3 takes about 2 minutes and
30 seconds.

For Silicon 11 tests were ignored by default and 49 tests were incompatible
with CVC4 as Silicon relies on global variable declarations. There was also one
unsound test result.

6.2.3 Silicon QP

The evaluation of Silicon QP is consistent with the �ndings for the standard
version of Silicon. The percentage of passed tests dropped slightly to 86 %.

The number of timeouts remained low. Most of the additional test cases
making use of quanti�ed permissions were incompatible due to the known issue
with global variable declarations. Two new unsound test results are revealed as
well. These �ndings are not surprising as most additional tests (113 out of 148)
were incompatible with CVC4. Therefore, the test set for Silicon QP was very
similar to the test set of Silicon.

6.3 Performance

Performance was evaluated in a similar way as correctness using the Viper Run-
ner. All available tests were run in all combinations of tools (Carbon, Silicon,
Silicon QP) and available SMT solvers (CVC4, Z3). Every test was repeated
5 times to get a measure of consistency. Output of any kind was discarded
to reduce the IO overhead. Only timing information and the return code was
collected.

To evaluate the performance, failing tests, for reasons other than timeout,
were disregarded as they do not yield a fair comparison regarding performance
between the two solvers. Tests whose results indicates an error in veri�cation
are considered failing. Timeouts were included in the evaluation since these
are the most extreme runtimes possible and therefore vitally important for a
performance evaluation.

52

0 2 4 6 8 10 12
CVC4, runtime in [s]

0

2

4

6

8

10

12
Z3

,r
un

ti
m

e
in

[s
]

(a)

0 10 20 30 40 50 60
CVC4, runtime in [s]

0

10

20

30

40

50

60

Z3
,r

un
ti

m
e

in
[s

]

(b)

Figure 19: Runtime comparison of Carbon using CVC4 and Z3 with cuto�s of
10 seconds (19a) and 50 seconds (19b). The graphs show 237 tests that passed,
or failed with a timeout. Due to the large di�erences in runtime, cuto�s of 10
and 50 seconds were used. Error bars indicate the standard deviation. Data
points exceeding the cuto�s were adjusted to the cuto� value and are shown
as red squares. 77 and 66 data points were adjusted, 7 in both axis and only
measurements of CVC4, respectively.

53

For tests, where the �rst run took signi�cantly longer than the subsequent
ones, only 4 measurements were used while disregarding this �rst run. This
was done to reduce the in�uence of the long start-up time of the Java Virtual
Machine (JVM), which is the runtime environment for the Viper veri�ers, and
Scala in general. If the previous test used all the available RAM, some parts of
the JVM get paged out, leading to an increase in runtime of 1 � 2 seconds for
the next test.

All benchmarks were conducted on a Windows 7 Enterprise machine with
16 GB main memory and an Intel Core i5-4570 CPU clocked at 3.2 GHz.

6.3.1 Carbon

The performance results for Carbon using CVC4 are shown in Figure 19a. Most
tests (160, 92 % of the passing tests) completed within 10 seconds. The runtimes
for these tests were very close to the results obtained using Z3. The mean
di�erence favours Z3 by 0.20 seconds with a standard deviation of 0.70 seconds.

When factoring in the slower running tests CVC4 is less competitive. As
shown in Figure 19b there were a lot of test cases for which Z3 �nished within
10 seconds whereas CVC4 took more than that, often exceeding even the 50
second cuto�.

An additional test with a much higher timeout, 6 hours, was conducted with
only the 63 tests that previously ran into a timeout (Table 3). Out of these 63,
19 (30 %) �nished successfully given more time. 8 of these �nished in less than
10 minutes, the previous timeout. This reveals some unreliability in runtime of
CVC4 for inputs with many quanti�ers. 2 test did �nish but yielded a wrong
result, one being imprecise and the other unsound. 42 tests ran into the timeout
of 6 hours pointing to in�nite or at least impractical runtimes.

6.3.2 Silicon

The Silicon benchmark results in Figure 20a are more competitive compared to
the results of the Carbon benchmark. There were almost no timeouts and for
the vast majority of the tests Z3 and CVC4 performed on par. Only 6 tests
took longer than 4 seconds. The comparison of the tests that completed within
4 seconds is slightly in favour of Z3, which ran tests on average 0.01 seconds
faster. The standard deviation is 0.08 seconds.

The timeout analysis of the 4 test cases that ran into the timeout of 5 minutes
revealed a consistent result: 3 of the 4 tests also do not �nish given 6 hours of
runtime, whereas the 4th crashes after running for more than 3 hours.

6.3.3 Silicon QP

As expected, the Silicon QP benchmark (Figure 20b) shows very similar results
to the Silicon benchmark. The number of timeouts (4) stayed the same while
performance of the passing tests deteriorated slightly: the average runtime ad-
vantage of Z3 increased to 0.2 seconds with a standard deviation of 0.10 seconds.
The subsequent tests with a timeout of 6 hours showed exactly the same results
as for Silicon: 3 timeouts and one crash for the exact same test cases.

54

1.5 2.0 2.5 3.0 3.5 4.0 4.5
CVC4, runtime in [s]

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Z3

,r
un

ti
m

e
in

[s
]

(a)

1.5 2.0 2.5 3.0 3.5 4.0 4.5
CVC4, runtime in [s]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Z3
,r

un
ti

m
e

in
[s

]

(b)

Figure 20: Runtime comparison of CVC4 and Z3 with the veri�ers Silicon (20a)
and Silicon QP (20b). A cuto� of 4 seconds was used. Data points with runtimes
exceeding 4 seconds were adjusted to the 4 second mark and are shown as red
squares. Error bars indicate the standard deviation. Figure 20a and 20b contain
220 (6 adjusted, 3 in both axis) and 242 (7 adjusted, 3 in both axis) data points
respectively.

55

6.4 Unsound Results

As indicated in Table 3, some test results were considered unsound. This hap-
pened when CVC4 unexpectedly managed to prove a method safe, which should
not be. This might indicate a bug in either the Viper tool chain or CVC4. It is
important to note that CVC4 was used with default settings except for the the-
ories. All theories were enabled, even the not yet complete non-linear arithmetic
support. The CVC4 developers have been informed about this issue and o�ered
to make this behaviour optional [23]. At the time of writing, investigations in
that matter were not yet complete.

In any case, a signi�cant point is the fact that CVC4 is not strict with
quanti�er patterns and instantiates quanti�ers even if patterns do not match.
This might have an e�ect on runtime as it might be the primary reason for the
large number of timeouts observed with Carbon. Encodings by Boogie tend to
contain more quanti�ers because of the lack of a native abstraction of the heap.

6.5 Evaluation Summary

Considering both evaluation categories (correctness and performance) CVC4 is
not yet on the level of Z3 for usage in the Viper tool chain. It is important to
recognize that the test set was biased in favour of Z3 since all the tests in the
Silver test suite are known to work with Z3.

Nonetheless, CVC4 has a tendency to not terminate on big queries involving
a lot of quanti�ers. For small queries CVC4 and Z3 are equally fast, with Z3 be-
ing a bit more consistent. The imprecisions, leading to unnecessary veri�cation
failures, are detrimental to the assessment of CVC4 as well. Over all, CVC4
is considered a solid solver but does not have any competitive advantage over
Z3 for the usage in the Viper tool chain. Therefore the remaining time of this
project was invested in improving the analytic tools for Z3 (Section 3).

56

7 Conclusion

During this project Z3 and CVC4 were compared as back ends to the Viper tool
chain. The comparison showed that a permanent integration of CVC4 would
not add much value, as both solvers struggle with similar problems; CVC4 more
often than Z3.

As a consequence, the main tool to deal with these issues when working
with Z3, the Z3 Axiom Pro�ler, was improved. It was completely redesigned
and extended with more functionality. Hence the Z3 Axiom Pro�ler is now
more accessible and easier to understand and use. In multiple examples, the
process of �nding a matching loop was reduced to loading the trace �le and
clicking two buttons: one to reveal a longest path and another to automatically
detect the loop and generate a generalized explanation of the loop and a speci�c
explanation of the path. Compared to the previous experience with manually
expanding deeply nested nodes in search of repeating instantiations, this is a
vast improvement as it is faster and more accessible.

In order to help the user understand the matching loop, the addition of
binding reconstructions is a special highlight. This feature shifts the burden
of tracing terms and determining their role within instantiations from the user
to the tool. The term highlighting and the concise notation that comes with
rewriting rules greatly enhances the clarity of the information printed to the
info panel.

Taken together, the improvements to revealing and presenting matching
loops make the Z3 Axiom Pro�ler a better tool, decreasing the time and ef-
fort required to solve problems with quanti�er instantiations. This could be
veri�ed with multiple real world examples that were previously only very hard
or even impossible to understand. Considering the improvements and features
of the new Z3 Axiom Pro�ler, we are con�dent that the tool is of use for many
developers working with Z3, even beyond the scope of the Viper tool chain.

7.1 Further Work

Despite the implemented improvements, the Z3 Axiom Pro�ler could still bene�t
from additional features. More speci�cally, the tool is currently able to show a
generalized view of a matching loop, highlighting the important changing terms.
It would be very useful, if these highlights were also available in the concrete
path explanation in order to guide the user to the most relevant information.

As an additional step, presenting a concrete loop iteration starting from the
generalized state could be implemented. This would make the e�ects of an
additional loop iteration on the general state very clear and approachable. The
implementation of such a feature would most likely use symbolic execution to
simulate E-matching. Consequently, the implementation of this feature would
require a major development e�ort.

Finding matching loops e�ciently still requires manual e�ort, experience
and, to some extent, luck. This could be improved by employing further heuris-
tics to guide the user to instantiations that look suspicious or might reveal inter-
esting information. If this feature turned out to be e�ective, automated search,
guided by these heuristics, could implemented. Having automated matching
loop search would decrease the knowledge required to solve a matching loop
problem signi�cantly.

57

List of Figures

1 Tree representation of a term. 6
2 Schematic overview of a quanti�er instantiation. 7
3 The main window of the original Z3 Axiom Pro�ler. 13
4 Visualization of the blame relations between quanti�ers. 14
5 The main window of the redesigned Z3 Axiom Pro�ler. 16
6 Rewriting rule editing dialogue. 19
7 Filter dialogue for the graph view. 22
8 Bindings as reported by the original Z3 Axiom Pro�ler. 24
9 Detailed description of a speci�c instantiation as shown in the

info panel, part 1 of 2. 25
10 Detailed description of a speci�c instantiation as shown in the

info panel, part 2 of 2. 26
11 Schematic overview of the terms included in a path explanation. 27
12 Example of two instantiations. 28
13 Schematic overview of the terms included in a generalized match-

ing loop explanation. 31
14 Generalized loop description of a loop of size 1. 33
15 Su�x tree for the word `Banana$'. 41
16 Schematic illustration of matching loop generalization. 42
17 Schematic illustration of term generalization. 44
18 Overview of the Viper tool chain. 46
19 Runtime comparison of Carbon using CVC4 and Z3 with cuto�s

of 10 seconds (19a) and 50 seconds (19b). 53
20 Runtime comparison of CVC4 and Z3 with the veri�ers Silicon

(20a) and Silicon QP (20b). 55

List of Tables

1 Tool versions used for the evaluation of CVC4. 50
2 Correctness evaluation results for all Viper veri�ers, Carbon, Sil-

icon and Silicon QP, using CVC4. 51
3 Detailed listing of test failure reasons for the Viper veri�ers using

CVC4. 51

List of Algorithms

1 Main procedures of the binding reconstruction algorithm. 37
2 Matching validation procedures. 40

58

List of Examples

1 Example of a quanti�er pattern. 7
2 Example of an E-graph and E-matching. 8
3 Illustration of the matching loop problem. 10
4 Example excerpt from a Z3 trace log. 12
5 Term printed in the original printing style. 14
6 Example of an abbreviated instantiation node description. 15
7 E�ects printing customization using the toggle options. 17
8 Term printing using the default pre�x notation. 18
9 Example of a blank matching rule. 20
10 Term printing using rewrite rules. 20
11 Information duplication as a consequence of missing context. . . 23
12 Path with possible matching loops. 29
13 Non-looping repeating instantiation. 30
14 False positives due to di�erent usages of instantiations of the

same quanti�er. 31
15 Example of a match context. 35
16 Replacement of function overloading on generic types. 49

59

References

[1] Aws Albarghouthi, Arie Gur�nkel, Yi Li, Sagar Chaki, and Marsha
Chechik. UFO: Veri�cation with interpolants and abstract interpretation.
In Tools and Algorithms for the Construction and Analysis of Systems,
pages 637�640. Springer, 2013.

[2] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K Rustan M Leino. Boogie: A modular reusable veri�er for object-oriented
programs. In Formal methods for Components and Objects, pages 364�387.
Springer, 2005.

[3] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovi¢, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In Computer aided veri�cation, pages 171�177. Springer, 2011.

[4] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. Technical report, Department of Computer Science, The Uni-
versity of Iowa, 2010. Available at www.SMT-LIB.org.

[5] Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli.
Satis�ability Modulo Theories. Handbook of satis�ability, 185:825�885,
2009.

[6] Markus Dahlweid, Michal Moskal, Thomas Santen, Stephan Tobies, and
Wolfram Schulte. VCC: Contract-based modular veri�cation of concurrent
C. In Software Engineering-Companion Volume, 2009. ICSE-Companion
2009. 31st International Conference on, pages 429�430. IEEE, 2009.

[7] Leonardo De Moura and Nikolaj Bjørner. Z3: An e�cient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, pages
337�340. Springer, 2008.

[8] David Deharbe, Pascal Fontaine, and Bruno Woltzenlogel Paleo. Quanti�er
inference rules for SMT proofs. In First International Workshop on Proof
eXchange for Theorem Proving-PxTP 2011, 2011.

[9] David Detlefs, Greg Nelson, and James B Saxe. Simplify: a theorem prover
for program checking. Journal of the ACM (JACM), 52(3):365�473, 2005.

[10] Bruno Dutertre and Leonardo De Moura. The Yices SMT solver. Tool
paper at http://yices.csl.sri.com/tool-paper.pdf, 2(2), 2006.

[11] Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quanti�ed veri�cation
conditions using satis�ability modulo theories. In Automated Deduction�
CADE-21, pages 167�182. Springer, 2007.

[12] James Gosling. The Java language speci�cation. Addison-Wesley Profes-
sional, 2000.

[13] Dan Gus�eld and Jens Stoye. Linear time algorithms for �nding and repre-
senting all the tandem repeats in a string. Journal of Computer and System
Sciences, 69(4):525�546, 2004.

60

[14] Chris Hawblitzel, Jon Howell, Jacob R Lorch, Arjun Narayan, Bryan Parno,
Danfeng Zhang, and Brian Zill. Ironclad apps: End-to-end security via au-
tomated full-system veri�cation. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages 165�181, 2014.

[15] K Rustan M Leino. Dafny: An automatic program veri�er for functional
correctness. In Logic for Programming, Arti�cial Intelligence, and Reason-
ing, pages 348�370. Springer, 2010.

[16] K Rustan M Leino and Rosemary Monahan. Automatic veri�cation of
textbook programs. Manuscript KRML, 175:13, 2007.

[17] K Rustan M Leino, Peter Müller, and Jan Smans. Veri�cation of concurrent
programs with Chalice. In Foundations of Security Analysis and Design V,
pages 195�222. Springer, 2009.

[18] Tim Dwyer Lev Nachmanson, Sergey Pupyrev and Ted Hart. Microsoft
Automatic Graph Layout. http://research.microsoft.com/en-us/

projects/msagl/default.aspx. Accessed: 2016-03-03.

[19] Nicholas D Matsakis and Felix S Klock II. The Rust language. ACM
SIGAda Ada Letters, 34(3):103�104, 2014.

[20] Peter Müller, Malte Schwerho�, and Alexander J Summers. Viper: A
veri�cation infrastructure for permission-based reasoning. In Veri�cation,
Model Checking, and Abstract Interpretation, pages 41�62. Springer, 2016.

[21] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebas-
tian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik
Stenman, and Matthias Zenger. An overview of the Scala programming lan-
guage. Technical report, École polytechnique fédérale de Lausanne, 2004.

[22] Clément Pit-Claudel. Quanti�er blame realation visualization for the Z3
Axiom Pro�ler. Private communication, 2015.

[23] Andrew Reynolds. CVC4 bug report. http://church.cims.nyu.edu/

bugzilla3/show_bug.cgi?id=713. Accessed: 2016-03-07.

[24] Andrew Reynolds, Cesare Tinelli, and Leonardo De Moura. Finding con-
�icting instances of quanti�ed formulas in SMT. In Proceedings of the 14th
Conference on Formal Methods in Computer-Aided Design, pages 195�202.
FMCAD Inc, 2014.

[25] Michel F Sanner et al. Python: a programming language for software
integration and development. J Mol Graph Model, 17(1):57�61, 1999.

[26] John E Stone, David Gohara, and Guochun Shi. OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems. Computing in
science & engineering, 12(1-3):66�73, 2010.

[27] Esko Ukkonen. On-line construction of su�x trees. Algorithmica,
14(3):249�260, 1995.

61

