
Chair of Programming Methodology
Department of Computer Science

ETH Zurich

Verification Condition Generation for
Magic Wands

Bachelor’s Thesis

Author:
Gaurav Parthasarathy

gauravp@student.ethz.ch

Supervised By:
Dr. Alexander J. Summers
Prof. Dr. Peter Müller

August 17, 2015

Contents
1 Introduction 4

2 Background 5
2.1 Separation Logic . 5

2.1.1 Separating Conjunction 5
2.1.2 Magic Wands . 6

2.2 Viper Project . 6
2.3 Silver . 7

2.3.1 Permissions . 7
2.3.2 Self-Framedness . 7
2.3.3 Inhale and Exhale . 8
2.3.4 Abstract Predicates . 8
2.3.5 Separation Logic in Silver 9

2.4 Magic Wands in Silver . 10
2.4.1 Package . 11
2.4.2 Apply . 12
2.4.3 Ghost Operations . 13

2.5 Boogie . 15
2.5.1 Assume Statement . 16
2.5.2 Assert Statement . 16
2.5.3 Havoc Statement . 16
2.5.4 Maps . 16
2.5.5 Triggers . 17

2.6 Carbon . 17
2.6.1 State Representation 17
2.6.2 Field Types . 18
2.6.3 Definedness Check . 18

3 Representing and Applying Wands in Boogie 20
3.1 Wand Representation . 20

3.1.1 Shapes and Holes . 20
3.1.2 Tracking Wands in Boogie 21

3.2 Inhaling a Wand . 22
3.3 Exhaling a Wand . 22
3.4 Translation of the apply statement 22

4 Encoding the package operation in Boogie 24
4.1 High level view of the footprint computation algorithm 25
4.2 Inconsistent states and trivial wands 25

2

4.3 Representation of states . 32
4.4 Encoding of state operations 33
4.5 A note on bCur . 38
4.6 Encoding the transfer function for fractionals 38

4.6.1 Approach 1: The Naive Approach 39
4.6.2 Approach 2: Using all assumptions 44
4.6.3 Approach 3: The Final Approach 49
4.6.4 Incompleteness in the final approach 52
4.6.5 Potential unsoundness in the final approach 53
4.6.6 Trading completeness for soundness 56

4.7 Boogie encoding of exhale ext 57
4.8 Boogie encoding of exec . 57
4.9 Completeness issues in current package encoding 59

5 Evaluation 61
5.1 Performance: Silicon vs. Carbon 62
5.2 Completeness: Silicon vs. Carbon 63

6 Extension: Basic Quantified Permission Support in Carbon 65
6.1 Quantified Permissions in Silver 65
6.2 Inhaling Quantified Permissions 66

6.2.1 Alternative Triggers 67
6.3 Exhaling Quantified Permissions 68
6.4 Framing Axiom . 68
6.5 Conclusion . 71

7 Conclusion 72
7.1 Status of Implementation . 72
7.2 Future Work . 72
7.3 Final Conclusion . 73
7.4 Acknowledgements . 73

3

1 Introduction
Separation logic is a permission-based logic that introduces two new connec-
tives. One of the connectives is the magic wand, which has been shown to
be useful when verifying concurrent programs or when iterating over data
structures in loops. Under basic assumptions it has been shown to be unde-
cidable to reason about programs which require the magic wand to be verified
without the user giving additional specifications [4]. In [16], Malte Schwer-
hoff and Alexander J. Summers show how to add support for magic wands
in automatic verifiers and provide an implementation of their approach in
Silicon [17], a verifier based on symbolic execution.

Silicon [17] is one of the two back-end verifiers developed in the Pro-
gramming Methodology Group at ETH Zurich as part of the Viper project,
which is described in [9]. Carbon [8], the second back-end verifier, verifies
programs using verification condition generation. The goal of this bachelor’s
thesis is to provide a solution to support magic wands in Carbon, based on
the approach outlined in [16].

We first give background information on magic wands, the Silver pro-
gramming language, an overview of the most important aspects from [16]
and the Carbon verifier. We then move on to discuss our implementation of
the approach described in [16] in Carbon.

4

2 Background

2.1 Separation Logic
Separation logic [13] is a permission-based logic which has gained a lot trac-
tion in recent years, due to its ability to deal elegantly with framing or data
races in programs involving shared and mutable data structures. One of the
main ideas of separation logic is to provide a simple way to prove program
properties using only those heap locations which could potentially have an
effect on the program property itself. It achieves this with the notion of
splitting a program state into partial, disjoint heaps.

Separation logic introduces two new connectives: the separating conjunc-
tion, denoted by A ∗ B and the magic wand (also known as the separating
implication), denoted by A−∗ B. A and B are assertions.

Before presenting these two new connectives, we introduce some nota-
tion. For simplicity we will assume that a state consists of a partial heap
and a total evaluation function for local variables. A partial heap is char-
acterized by a partial function which maps pairs of references and fields to
their corresponding values in the heap. We call two states σ1, σ2 compatible
in separation logic if the domains of their heaps are disjoint (i.e. the domains
of their corresponding partial functions are disjoint) and they agree on the
values of all local variables; we denote this by σ1⊥σ2. If σ1⊥σ2 holds then
we can write σ = σ1] σ2 to denote that σ has the same local variables as σ1
(and σ2) and its heap consists of the (disjoint) union of the two heaps.

Let h be the partial heap of state σ. σ satisfies the points-to assertion
x.f 7→ v if the x.f is in the domain of the partial function fh characterizing
h and fh maps x.f to v.

2.1.1 Separating Conjunction

The formal semantics of the separating conjunction is given by:

σ |= A ∗B ⇔ ∃σ1⊥σ2.(σ = σ1] σ2) ∧ (σ1 |= A) ∧ (σ2 |= B)

This means if σ |= A ∗ B, then it must be possible to split σ into two
compatible states σ1, σ2 such that σ1 |= A and σ2 |= B. Therefore if (x.f 7→
v) ∗ (y.f 7→ w) holds in a σ, i.e. there exists σ1 and σ2 such that σ = σ1] σ2
and σ1 satisfies x.f 7→ v, σ2 satisfies y.f 7→ w, then we can conclude that
x 6= y. This holds since the domains of the partial functions characterizing
the partial heaps of σ1 and σ2 are disjoint.

5

2.1.2 Magic Wands

The magic wand A−∗B also known as the separating implication is the second
interesting connective. Its semantics (taken from [16]) is given by:

σ |= A−∗ B⇔ ∀σ′⊥σ.(σ′ |= A⇒ (σ] σ′ |= B)

A magic wand describes what the state σ in which it holds could derive
if any state, satisfying a specific property and compatible to σ, was added to
it. In particular if a wand holds in some state and the left hand side of the
wand holds in a compatible state, then one can essentially get the right hand
side by combining the two states. This can be summarized by the following
inference rule, which is similar to Modus Ponens in traditional logic:

σ |= A ∗ (A−∗ B)
σ |= B

The power of the wand lies in the fact that it draws conclusions for
potentially a multitude of states, instead of just one, which may be added
in the future to the current state. It has been used to verify, for example,
programs iterating over data structures where at certain points there’s only
a partial view of the data structure. An example is given in [12] and various
other examples are cited in [16].
Automatic verification of programs using magic wands is undecidable for
programs with very basic features and without any help from the user [4].

2.2 Viper Project
The Viper project [9] is a verification infrastructure developed at the Pro-
gramming Methodology Group at ETH Zurich as an effort to ease the devel-
opment of verifiers using permission-based logics. It provides an intermediate
language, called Silver, which natively supports the notion of permissions as
well as two back-end verifiers Carbon and Silicon introduced already in Sec-
tion 1. One of the goals is for developers who want to verify programs in
certain programming languages to encode a translation into Silver which can
then be verified by the already existing back-end verifiers. There are transla-
tions for languages (or subsets of a languages) available such as Chalice [10]
or Scala [5]. Finally Sample is a static analyzer being developed for Silver
programs. It’s goal is to infer specifications using abstract interpretation.

6

2.3 Silver
Silver is an intermediate language supporting basic constructs such as meth-
ods, side-effect free functions (which are expressions), predicates, as well as
specifications in form of pre-/postconditions or loop invariants. One can
specify assumptions as well as assertions. It has a built-in heap but doesn’t
directly support classes. We’ll mainly present the parts which are relevant
for this thesis, for a more detailed discussion on Silver we refer to [9].

2.3.1 Permissions

For each heap location a permission value, represented by a fractional value
in [0, 1], is associated to it at each program point in a method. In Silver the
accessibility predicate acc(x.f,p), where 0 ≤ p ≤ 1 denotes that permission
amount p is held at x.f, where x is a reference to an object and f is a field.
acc(x.f) is interpreted as acc(x.f,1) in Silver. To read a heap location
x.f a method must have some non-zero permission to it, to write to a heap
location full permission (represented by 1) must be held at that location. In
Silver if a method has full permission to a location then is guaranteed that
no other method has access to the same location.

This concept of permissions mainly solves two important problems: fram-
ing and reasoning about concurrency. The heap locations which are men-
tioned in access predicates in the precondition of a method and where the
permission value is 1 is an overapproximation of the heap locations which the
method can potentially modify (and whose changes are visible to a caller).
So when a method is called then an overapproximation of the “frame”, i.e.
the set of locations which are potentially changed, is given by the precondi-
tion of the callee. This concept of approximating the frame is called Implicit
Dynamic Frames [18].

Since the permission value can be fractional, one may distribute the full
permission among different threads running concurrently and be sure that
there won’t be any data races. The concept of fractional permissions is
described in [2].

2.3.2 Self-Framedness

In our discussion we will call an assertion A self-framing if A contains enough
accessibility predicates such that non-zero permission to each heap location
on which A depends is held. For example x.f==0 is not self-framing but
acc(x.f)&&x.f==0 is self-framing. Note that by our definition the following
assertion would be self-framing: acc(x.f)&&x.f==0&&x.f==0?0:z.f since it

7

doesn’t depend on z.f (where cond?A1:A2 equals assertion A1 if cond holds
and equals assertion A2 otherwise).

2.3.3 Inhale and Exhale

In Silver a pure expression is an expression which doesn’t contain any acces-
sibility predicates nor magic wands (we’ll introduce magic wands in Silver
later). Assume e is an expression only consisting of accessibility predicates
and pure boolean expressions. Then inhale e assumes all the pure expres-
sions in e and adds all the permissions mentioned in accessibility predicates
in e. The counterpart to inhale is given by exhale. exhale e asserts all
pure expressions in e and for all accessibility predicates in e checks if the per-
mission specified is held and then removes the permission. If after an exhale
all of the permission to a specific heap location is lost, then all the informa-
tion about that heap location is lost. Note that for a pure boolean expression
e, inhale is the same as assume and exhale is the same as assert.

Method calls can be encoded by exhaling the precondition and inhaling
the postcondition.

2.3.4 Abstract Predicates

Sometimes it’s not possible to enumerate all the heap locations to which
a function needs permission. An example is when the function traverses a
recursive data structure such as a binary tree. To still be able to specify the
statically unknown heap locations, abstract predicates (introduced in [15])
are used in Silver. The body of an abstract predicate can be recursive to
solve the mentioned problem and it can also contain permission to specific
heap locations.

Similar to heap locations, acc(P(x),p) denotes that permission p is
held for predicate P(x). The main difference to heap locations is that in
this case p may be larger than 1. Suppose the body of P is given by
acc(x.f,1/2). Then it makes sense to say that a method holds the predicate
twice (i.e.acc(P(x),2) holds).

The predicate instance and its body are treated separately. Assume a
predicate instance is just held once at the beginning of a method. Then
none of the facts in the predicate body are known. One of the reasons is to
keep the verifier from unfolding a recursive predicate an unbounded amount.
To exchange a predicate instance for its body Silver provides the unfold
statement and the reverse operation is given by the fold statement. These
two operations are called ghost operations because they don’t change the
program state but are just used to guide the verifier. Verifiers may rely on

8

users to explicitly mention the ghost operations where needed or they can
have some kind of heuristics approach that tries to infer where to fold/unfold
a predicate.

Silver also supports unfolding expressions which are of the form
unfolding P(arg) in e where P is a predicate and e is a pure expression.
This is used when the body of P is needed to show that permission is held to
each heap location in e. So the verifier unfolds P temporarily then evaluates
the expression e and afterwords folds the predicate back. Since e is pure the
expression has no side effects.

2.3.5 Separation Logic in Silver

As mentioned in section 2.3.1 Silver is based on the implicit dynamic frames
model. It has been shown that separation logic can be encoded in the im-
plicit dynamic frames model in [14] and that the encoded assertions are
self-framing. The formal semantics for the connectives in separation logic
presented in section 2.1, needs to be modified for it to make perfect sense in
the implicit dynamic frames model; the details are in [14]. For us it suffices
to understand what the connectives mean. There are just a few changes that
we want to highlight to make the discussion later on more precise. A state
in Silver consists of an evaluation function for local variables, a heap and a
mask storing the permissions to all heap locations and predicates, as well as
the currently held wand instances (magic wands in Silver are presented in
detail in the next subsection). There are also few changes to the notation
and definitions that we need to highlight.

Definition 1 Two states σ1, σ2 are compatible (denoted by σ1⊥σ2) in Silver
if the sum of the permissions to each heap location doesn’t exceed 1 and if they
agree on the values of all heap locations to which both states have non-zero
permission and on the values of all local variables.

Definition 1 shows that we’re not necessarily talking about strictly disjoint
heaps anymore as in separation logic.

Definition 2 If σ1⊥σ2 holds in Silver then we say that σ = σ1]σ2 holds iff:

• σ agrees on the values of all local variables with σ1 (and σ2)

• σ agrees on the values of all heap locations with σ1 to which σ1 has
non-zero permission

9

• σ agrees on the values of all heap locations with σ2 to which σ2 has
non-zero permission

• the permission amount held at each heap location in σ is equal to the
sum of the permission amounts held to those heap locations in σ1 and
σ2

• the values of all heap locations where σ1 and σ2 both have no permission
can be arbitrary, i.e. no assumptions can be made about these values

We call σ1] σ2 the compatible union of states σ1 and σ2.

The separating conjunction presented in section 2.1.1 is implicitly al-
ready supported in Silver. We show this by example (see [14] for a formal
treatment). x.f 7→ v ∗ y.f 7→ w in separation logic can be encoded as
acc(x.f) && x.f==w && acc(y.f) && y.f==w in Silver. With this encod-
ing x 6= y is also implied because the conjunction in Silver is multiplicative
for permissions.
By multiplicative we mean that acc(z.f,1/4) && acc(z.f,1/4) is the same
as just specifying acc(z.f,1/2). Since permission to a location is not al-
lowed to be greater than 1 we can conclude x 6= y in the earlier example.

2.4 Magic Wands in Silver
Even though we presented the main features of Silver in the last section,

we dedicate an own section just for the magic wand support in Silver due
to its significance for this bachelor’s thesis. The meaning of magic wands
was given in section 2.1.2. In this section we present the support for magic
wands in Silver introduced in [16]. In Silver a wand A −∗B can be written
as A --* B where A and B are assertions. A and B both must be self-
framing (see section 2.3.2). In the paper the authors restrict the permission
amounts specified in access predicates in A and B to be 0 or 1. We remove
that restriction and let the permission value be any fractional amount in
[0, 1]. Abstract read permissions (see [7]) in wands are not supported at the
moment.

A wand instance held in some program state in Silver is treated as opaque,
in the sense that the verifier in general doesn’t attempt to conclude facts from
the wand instance’s meaning without the user providing direction. This treat-
ment is similar to the treatment of abstract predicates (see 2.3.4), where the
predicate body is in general not regarded by the verifier if just the predi-
cate instance is held and there is never an unfold statement (or unfolding
expression).

10

2.4.1 Package

The package statement can be used to construct and add a wand instance
A --* B in a state where A −∗ B holds. The package is not guaranteed to
work for every wand that holds, but it guarantees that if a wand doesn’t hold
in a state then the package will fail. When package A --* B is successful
then part of the the current state σ is removed, called the footprint σfoot of
the wand, such that σfoot |= A −∗ B is satisfied. This ensures that changes
made to the remaining state after the package won’t affect σfoot and hence
the wand instance can be used soundly at any point after the package.

Formally the package tries to choose the footprint σfoot to be as small
as possible such that for any hypothetical state σA, for which σA⊥σfoot and
σA |= A are true, it holds that σfoot] σA |= B. The resulting state after
the package is σ′ where σ = σ′] σfoot. If the verifier can’t find such a σfoot
then there will be a verification failure. An empty footprint can be a valid
footprint.

We want to stress that package A −∗ B and inhale A −∗ B are very
different statements. Inhaling the wand just adds the wand instance to the
current state without effectively computing a footprint in which the wand
holds. It just adds the assumption that the wand holds in some (unknown)
state disjoint to the state right before the inhale, even if no such state exists.

Note the analogy to abstract predicates already hinted at right before.
The idea of the package of a wand is similar to the fold of a predicate. When
we successfully fold a predicate then we create a predicate instance using the
current state and if the verifier can’t find the necessary permissions or some
heap location doesn’t have the value needed then there will be a verification
failure. If we inhale a predicate then we don’t use anything already available
in the current state, we just assume that the predicate holds.

The difference is that in the case of a fold we know exactly what permis-
sions/properties we need to construct a predicate instance. In the case of a
package it’s not clear what the footprint should be statically, the footprint
isn’t unique in general either.

Footprint computation algorithm. We’ve only mentioned that the veri-
fier picks a footprint but not how. Let σ be the state in which the package is
executed. First the footprint computation algorithm constructs a hypotheti-
cal state σA which satisfies the left hand side of the wand. It then constructs
a state σB by taking parts of states σ and σA such that if those parts are
combined then the right hand side can be proved. The part removed from σ
is exactly σfoot described earlier. In particular σ is split into σ′] σfoot, σA is

11

split into σ′
A]σ′′

A such that σB = σfoot]σ′′
A and σB |= B. σ′ is the remaining

current state after the package is finished.
σB is initialized as a state without any assumptions on heap locations, no

permission and the same assumptions on the local variables as σ (and σA).
Whenever there’s an impure expression (see Section 2.3.3 for pure and impure
expressions in Silver), let’s say an accessibility predicate, the algorithm tries
to transfer the needed permission from σA and if necessary also from σ along
with all the heap information on that location to σB. For pure expressions
the algorithm checks if the state σB it has constructed so far satisfies the
expression.

As an example consider the statement
package acc(x.f,1/2) --* acc(x.f,3/4)

in a state where acc(x.f) holds. Then the footprint satisfies acc(x.f,1/4)
since one half of the permission to x.f can be taken from σA.

2.4.2 Apply

Once a wand is held in the program state (due to a precondition, a package
or an inhale) then a wand can be applied using the apply statement. The
apply statement basically employs the inference rule already presented in
section 2.1.2:

A ∗ (A−∗ B)
B

apply A−∗B exhales A−∗B and A followed by an inhale of B. So the apply is
successful if the wand instance is held in the current state and if the left hand
side can be exhaled in the current state. We note that usually after an exhale
all information is lost to all heap locations to which no permission is held. But
in this case a verifier may choose to check if there’s no permission and then
remove the heap information only after the inhale of B to retain information.
We’ll come back to this point later when discussing the translation of apply
in Carbon.

It is important to note that after applying a wand we can’t in general
deduce that the resulting state satisfies A. One reason is that A may be
stronger than B. Another reason is that A may express information about
some state in a different way from B, for instance by using different predicates
(see Section 2.3.4), which is not (automatically) equivalent in the verifier.

12

2.4.3 Ghost Operations

When packaging a wand we may want to rearrange permissions by folding or
unfolding predicate instances or package/apply wands. With the operations
we have presented up to this point, this is not possible.

Consider the following operation:
(acc(x.f) && x.f==2) --* acc(P(x,y))

where the body of P is given by acc(x.f) && x.f==2 && acc(y.f) and
acc(y.f) holds in the current state. Then in an ideal case the verifier will
take the full permission to y.f as footprint which together with the left hand
side of the wand can be folded into P(x,y). But as mentioned in Section 2.3.4
the verifier in general doesn’t fold a predicate’s body into a predicate in-
stance without any direction. Therefore we need some kind of ghost operation
indicating to the verifier that P(x,y) should be folded.

In Silver there are four such different ghost operations which can only be
used on the right hand side of a package: packaging, folding, unfolding,
applying. The syntax for package A --* G in Silver is given by (taken
directly from [16]):

G ::= A | folding P(e) in G | unfolding P(e) in G
packaging A --* G in G | applying A --* A in G

If package A --* G is successful then the wand instance A --* nested(G)
is added to the current state where nested(G) is the ghost-operation-free
assertion nested inside G. For example the nested assertion of

packaging A --* B in (unfolding P(x) in acc(x.f)&&x.f==2))

is given by acc(x.f)&&x.f==2.
Our previously mentioned example can now be written as follows:

package acc(x.f)&&x.f==2 --* (folding P(x,y) in P(x,y))

These ghost operations in a sense indicate to the verifier how to prove
the right hand side given the left hand side (and the current state).

Unfolding Ambiguity. It’s important to point out that there’s a differ-
ence between a unfolding magic wand ghost operation and an unfolding
expression (which was briefly introduced in 2.3.4). In our discussion and also
in the final implementation we always regard unfolding as a magic wand
ghost operation in case there is an ambiguity.

13

For example in the following wand, the unfolding is clearly a magic
wand ghost operation since its body is a ghost operation (where A1,A2, B are
assertions and G is either an assertion or a ghost operation).

package A1 --* (unfolding P(x) in (applying (A2 --* B) in G)
)

In contrast, in the following wand, the unfolding is clearly an expression
since the syntax doesn’t permit a ghost operation at that position (where e
is a pure expression):

package A1 --* (acc(P(x)) && (unfolding P(x) in e))

But in the following wand there’s a potential ambiguity (where e is a pure
expression):

package A1 --* (unfolding P(x) in e)

The unfolding could be either a magic wand ghost operation or an
unfolding expression (more specifically an unfolding assertion). We al-
ways interpret it as an unfolding magic wand ghost operation. One of the
reasons for this decision is that unfolding P(x) in e can’t be self-framing
(see Section 2.3.2), since no permission to P(x) is mentioned. Therefore
interpreting it as an unfolding expression would directly violate Silver’s re-
striction that the right hand side of a wand must be self-framing, even though
situations may arise where one is interested in just having the body e on the
right hand side of the wand. In an earlier version of the tool, Silver inter-
preted unfolding P(x) in e where e is a pure expression as an unfolding
assertion.

Footprint computation algorithm (with ghost operations). The foot-
print computation algorithm briefly described earlier (without ghost opera-
tions) becomes a bit more involved in the presence of ghost operations. With-
out ghost operations the algorithm always had exactly two states to transfer
information from to construct the state which satisfies the right hand side.
With ghost operations there can be multiple states to transfer from because:

1. Due to the packaging ghost operation there can be multiple left hand
sides where each is associated to a state.

2. The footprint computation algorithm carries along a state σops (initially
empty) holding information gained from the execution of the ghost op-
erations encountered. Whenever a ghost operation is executed, first

14

a state σused is constructed by transferring the necessary permissions,
where the corresponding locations may have to satisfy certain prop-
erties, to be able to execute the ghost operation. In a second step
the ghost operation is executed in σused. The resulting state σ′

used is
then combined with σops to update the state holding information from
the encountered ghost operations (i.e. the updated state is given by
σops] σ′

used). This state can also be used by the footprint computation
algorithm to transfer information from, otherwise there would be no
point in having ghost operations at all, since the resulting information
gained wouldn’t be utilized.
It is important to note that for each packaging operation as well as
for the actual package there is exactly one such state σops and the
information in σ′

used is always added to the state σops corresponding
to the most recently encountered package/packaging operation. The
reason for this is that additional information gained inside a packaging
operation is not allowed to be visible once that operation is finished.
Hence the different states σops provide a way of scoping the information.

We outline how the applying A --* B in G ghost operations works:
we’ll assume that σops is the state holding information gained from the exe-
cution of ghost operations encountered after the most recently encountered
package/packaging operation. Let’s assume at the point when the algo-
rithm needs to execute the applying ghost operation the input states (i.e.
the left hand sides + states holding information gained from the execution
of ghost operations + the current state) are stored on a stack σ, where the
more recent states are closer to the top of the stack (hence the current state
is always on the bottom).

First a state σused is created just with the local variable assumptions and
the algorithm attempts to transfer information from states on σ to σused
(giving preference to states higher on the stack) to satisfy A && (A --* B).
Then A --* B is applied in state σused, the resulting state being σ′

used. This
is guaranteed to work if the transfer succeeded in obtaining the necessary
permissions. Finally the algorithm continues with G where the state holding
the information from the executed ghost operations is updated to σops]σ′

used.

2.5 Boogie
Boogie is an intermediate verification language with the goal of making ver-
ification generation simple. It is described in [1] and the documentation is
given in [11]. Generally programs and their specifications in various lan-

15

guages are encoded into Boogie programs from which verification conditions
are generated for a solver (such as Z3 [6]) to verify.

To reason in Boogie one generally thinks of the sets of execution traces
specified by the imperative constructs in the language. We present some of
the relevant constructs in Boogie needed for the discussion later on.

2.5.1 Assume Statement

Assumptions in Boogie can be added to the set of execution traces using
assume e where e is a boolean expression in Boogie. The set of traces after
assume e are exactly those traces which existed before the statement and
for which e holds. If a trace existed before the statement but e didn’t hold,
then this trace doesn’t exist anymore after the assume e.

2.5.2 Assert Statement

Verification checks can be added using assert e where e is a boolean expres-
sion in Boogie. The set of traces after this statement are the same as those
after assume e, but the difference is that the traces up to assert e where
e doesn’t hold are explicitly characterized as “wrong” traces. Whenever the
prover is not sure that there is no “wrong” trace with respect to an assert
statement then a verification error is output.

2.5.3 Havoc Statement

havoc v for any local variable v assigns an arbitrary value (of the same type
as v) to v. To restrict the choices for the value assigned by havoc often an
assume statement is used. For example havoc a; assume a >= 0 where a
is an integer ensures a positive integer is assigned to a.

2.5.4 Maps

Boogie supports (optionally polymorphic) map types. A map is updateable.
Multiple domain types can be given but just a single range type.

The following example is inspired by [8] to show a version of how a heap
is encoded in Boogie by Carbon.

Listing 1: Simplified encoding of heap in boogie
type Ref;
type Field a;
type HeapType = <a>[Ref,Field a]a;
var Heap: HeapType;

16

The type Ref represents Silver references and the type Field a represents a
Silver field of type a, where a is a type parameter which makes the HeapType
polymorphic. HeapType maps pairs of references and fields to values of the
same type as the field.

2.5.5 Triggers

Certain SMT solvers such as Z3 use triggers, to limit the amount of ways
a quantified formula can be instantiated. Boogie provides a way to specify
triggers in quantified formulas which are then used by the SMT solver, instead
of the triggers generated by the solver itself.

Consider the following syntax for a quantified formula in Boogie (example
taken from [11]):
∀x:T :: {f(x)} g(f(x)) < 100

The trigger in the quantified formula is f(x) and directs the verifier to
just instantiate the formula with values x for which the term f(x) showed
up in the proof context.

2.6 Carbon
Carbon is one of the two back-end verifiers for Silver in the Viper project. It
encodes a Silver program into Boogie from which verification conditions are
generated for Z3 and it’s implemented in Scala. We present the relevant parts
of Carbon’s Silver to Boogie translation, a more detailed documentation is
available in [8].

2.6.1 State Representation

Carbon models a program state with two global maps in Boogie. One map
represents the heap and maps pairs of references and fields to the correspond-
ing heap value. The map representing the heap also stores information about
abstract predicates (the details of the abstract predicate encoding which Car-
bon uses are given in [7]).

The second map is the mask. The mask’s role is to record the permission
for each heap location held, so it basically is a map from heap location/pred-
icate to a permission value (which is represented by a real in Boogie).

Note that after each modification to the heap (or mask) the new heap is
different than the old heap. Carbon generates various axioms which need to
quantify over states. Since in Boogie this essentially is a quantification over
heaps and masks, Carbon often needs to make sure that the verifier finally

17

only instantiates heaps and masks which together represent a program state.
This is done by assuming a predicate state(Heap,Mask) to pair the correct
heaps and masks.

The current heap and mask maps in Boogie are given by the global vari-
ables Heap of type HeapType and Mask of type MaskType. HeapType and
MaskType are types defined appropriately. Carbon can also work with tem-
porary states by using local variables for the corresponding heap and mask
maps.

2.6.2 Field Types

Fields in Silver are encoded as constants in Boogie of some field type. Ab-
stract predicates are also encoded as fields so that they can be tracked in
the heap or mask. Since predicate fields are of a totally different nature as
Silver fields Carbon additionally defines different types for the kind a field
can have.

The type declaration for a field type is given by type Field A B (instead
of just type Field A as in Listing 1). The parameter A denotes the kind of
field it is and the parameter B denotes the type of the value stored in the
field. A Silver integer field would be encoded as a constant of type Field
NormalField int, where NormalField is the type used to denote that it is
a Silver field.

2.6.3 Definedness Check

Before a Silver expression is translated and used in the Boogie encoding, Car-
bon in general first generates a definedness check in Boogie. One can roughly
say that an expression e is well-defined if for each of the heap locations on
which e depends, the following holds:

• for each of the heap locations on which e depends the receiver is guar-
anteed to be non-null and there is non-zero permission to those heap
locations

• the preconditions of all function expressions in e are satisfied

The definedness check generated for the Silver statement
assert (b ? x.f == 2 : y.f==3)

is given by

18

if (b) {
assert x != null;
assert Mask[x,f] > 0;

} else {
assert y != null;
assert Mask[y,f] > 0;

}

Self Framing Check. In some cases Carbon must check if an assertion A
is self-framing. To check this all the permissions specified in A are inhaled
using a new mask, which has no permission to any location and also a heap
which has no information to any location. Then a definedness check with
respect to this mask and heap is performed.

19

3 Representing and Applying Wands in Boo-
gie

To be able to encode the magic wand operations described in 2.4 using the
Carbon verifier, we need to be able to add and track wand instances in the
final Boogie encoding. In this section we show how we achieve this in our
encoding. We additionally show how we encode the apply operation. We
denote [[stmt]] as the translation of a source statement in Silver into Boogie
by Carbon, where expressions are evaluated in the main state.

3.1 Wand Representation
Our approach for tracking magic wand instances is similar to the way Carbon
deals with tracking predicate instances.

3.1.1 Shapes and Holes

Before we present the way we track wands in Boogie, we define what the
shape of a wand is.

Definition 3 The shape of a wand A−∗ B is the structure of the wand that
remains after removing all subexpressions of the wand which are old expres-
sions or heap independent. We call the entities of the shape of a wand which
remain after removing the mentioned subexpressions of the wand the holes of
the shape of the wand.

For example the shape of the wand
acc(x.f,1/2)&&x.f==2 --* true

is given by
acc(_:Ref.f,_:Perm)&&_:Ref.f==_:Int --* _:Bool

and the holes of the shape of the wand are given by _:Ref.f, _:Perm,
_:Ref.f, _:Bool, where : τ denotes that the “hole” has type τ . We note
that this notion of wand shapes was not developed as part of this thesis but
was already used by the Silicon verifier (there’s no official documentation of
it known to us, so we introduced it formally here).

The point is now that if two wand instances in Silver have the same
shapes and the expressions of the two wands which fill the holes of the shape
evaluate to the same values, then we can be sure that the two wand instances
are semantically identical.

20

3.1.2 Tracking Wands in Boogie

For each wand shape (as defined in Definition 3) we create a unique function
wandID in Boogie and a unique type Wand_ShapeID, where the arguments
of wandID are exactly the holes of the corresponding wand shape (see Def-
inition 3). The returned value of the function applied to some parameters
represents the wand of the given shape with the holes filled by the parameters
and is of field type Field Wand_ShapeID int (see section 2.6.2 to understand
how Carbon encodes field types).

For example for a wand with shape acc(_:Ref.f,_:Perm) --* _:Bool
we add the following declarations in Boogie:

Listing 2: Predicate representing wand shape in Boogie
type Wand_Shape1;
function wand1(arg1:Ref, arg2:Perm, arg3:bool): Field

Wand_Shape1 int;

Now assuming x is a local variable of type Ref in Boogie then the returned
value of wand1(x,1/2,true) represents the wand acc(x,1/2) --* true.
We use the mask (see Section 2.6.1) in Boogie to track the amount of wand
instances of any wand A −∗B that the current state holds. For the specific
wand given, the amount of wand instances held are given by

Mask[null,wand1(x,1/2,true)]

After inhaling the wand A −∗ B twice in succession, two wand instances
of A −∗ B will be held in the Boogie program state. We don’t support a
“fractional number” of wand instances in contrast to the way predicates are
handled in Silver. It’s not clear how associating fractional values to the
amount of wand instances held would help in practice.

Consider the following Silver program:
package acc(x.f) --* true
y := x
b := true
exhale acc(y.f) --* b

After the package we add the wand instance acc(x.f) --* true to the
state, which in our representation is given by wand1(x,1,true). The exhale
should work because acc(y.f) --* b is the same wand instance as the one
we packaged, since the wand shapes of the two wands are the same and the
expressions filling the holes evaluate to the same values. In our encoding
the wand instance acc(y.f) --* b is represented by wand1(y,1,b). Since
y == x and b == true can be verified, the verifier concludes that

21

wand1(x,1,true) == wand1(y,,1,b)

Hence the verifier will notice that the two wand instances are identical.
Our current implementation stores the already-seen wand shapes into a

data structure. Once a new wand instance in the Silver AST is traversed, we
check if its shape has already been recorded: if not we store a new shape.

3.2 Inhaling a Wand
For the translation of inhale A --* B first a self-framedness check as de-
scribed in section 2.6.3 is generated for A and B. Then we increment the
value for the Mask’s value at the location of the wand field corresponding to
the wand:

Listing 3: Translation of inhale A--*B
self-framedness check for A
self-framedness check for B

//Assume that w is the wand field representing A --* B
Mask[null,w] += 1;

Note that in the actual Boogie output w will be written as a function
application as described in section 3.1.2.

3.3 Exhaling a Wand
We give the pseudocode for the exhale of a wand.

Listing 4: Translation of exhale A --* B
self-framedness check for A
self-framedness check for B

//Assume that w is the wand field representing A --* B
assert Mask[null,w] >= 1;
Mask[null,w] -= 1;

3.4 Translation of the apply statement
We introduced the apply statement in section 2.4.2.
One possibility to translate apply A --* B into Boogie is as follows:

22

Listing 5: Potential incompleteness in apply operation
1 package acc(x.f) --* acc(x.f)
2 inhale acc(x.f) && x.f==2
3 apply acc(x.f) --* acc(x.f)
4 assert x.f==2

Listing 6: Translation of apply statement
var newHeap;
havoc newHeap;
[[exhale′ A --* B]]
[[exhale′ A]]
[[inhale B]]
newHeap ←− [Mask Heap
Heap := newHeap;

[[apply A --* B]] = [[exhale A --* B]];[[exhale A]];[[inhale B]];

This would certainly be sound and is also one solution suggested in [16].
There is an incompleteness associated with this approach. Consider the
Silver program given in Listing 5.

The wand in the package of Listing 5 in general doesn’t have any prac-
tical use, but it allows us to show a more or less minimal example of the
problem. It’s clear that the operations on lines 1-3 should be successful.
Now if we translate the apply as just outlined before, the assertion on line 4
will fail. The reason is that the translation of exhale acc(x.f) havocs the
heap information to x.f. So the information x.f==2 is lost even though we
regain permission right after the exhale. To overcome this we don’t havoc
the information when translating exhale, but we perform all other steps, i.e.
checking if all pure assertions hold, if for every accessibility predicate there’s
enough permission held and removing the permissions specified in the ac-
cessibility predicates. Let’s call this “modified” version of exhale exhale′

(defined as in [7]). Only after the inhale of the right hand side we havoc
the heap locations to which we don’t have any permission anymore.

Our translation of apply is then given in Listing 6. We use similar no-
tation as in [7] and we interpret exhale′ as a Silver statement, even though
it can’t appear in actual Silver programs. Finally newHeap ←− [Mask Heap
makes sure newHeap agrees with all values in Heap where Mask has non-zero
permission (or known-folded permission, see [7] for details).

23

4 Encoding the package operation in Boogie
The package A --* B operation, described in Section 2.4.1, tries to remove
a part of the current state, called the footprint σfoot of the wand, such that
σfoot |= A−∗B. The footprint computation algorithm is described in a generic
fashion in [16]. In this section we first take a deeper look at the package
operation in general, which leads to an observation that is important for pos-
sible encodings for operations needed in the footprint computation algorithm.
We then move on to discuss various encodings in Boogie for the operations
in the algorithm and take a closer look at their limitations.

In the paper a set of basic operations (in figure 4 of the paper) along
with their functionality are defined for states, with which the authors then
define the algorithm in detail. We’ll refer to these basic operations as basic
state operations. So in theory it would suffice for us to just present how we
encode these operations into Boogie and then the encoding of the footprint
computation algorithm would be directly given by the paper’s specification
which only relies on those operations. We won’t completely follow that route
because:

• The paper restricts itself to magic wands where the permission value for
each accessibility predicate that occurs must be 1 (i.e. full permission).
In our discussion we’ll also support fractional permissions. This means
the set of basic state operations that we use is slightly different than
the one in the paper and the algorithm is modified at certain points.

• We need to change the algorithm a bit to deal with states that may be
inconsistent (i.e. a state which under its assumptions can’t exist).

We denote TeU as the Boogie code emitted to translate the Silver ex-
pression e evaluated in the main state represented by the global variables
Heap,Mask as described in 2.6.1. We denote TeUσ as the Boogie code emit-
ted to translate the Silver expression e evaluated in state σ represented by
local variables storing the heap and mask. We denote [[stmt]] as the transla-
tion of a source statement in Silver into Boogie by Carbon, where expressions
are evaluated in the main state and we denote [[stmt]]σ as the translation of
a source statement in Silver into Boogie by Carbon, where expressions are
evaluated in σ. We use σID, where ID may be an arbitrary identifier, to
denote a state and σi to denote a stack of states.

24

4.1 High level view of the footprint computation algo-
rithm

We already gave an informal view on the footprint computation algorithm
in section 2.4.1. Now we want to give a brief description of the functions
described in [16] which are used to describe the algorithm. The function
bodies depend only on the basic state operations.

transfer. transfer(σi,σused,e), where e is either an accessibility predicate or a
magic wand, transfers permissions/a magic wand along with the information
held from the states in σi to σused such that e is held in σused. It always
tries to use states as close as possible to the top of the stack. This is the
main function that we’ll need to adjust. The modified states (σi′,σ′

used) are
returned.

exhale ext. exhale ext(σi,σused,A) recursively goes through assertion A and
for every pure subassertion of A checks if it holds in σused and for every im-
pure assertion returns transfer(σi,σused,A). In general exhale ext(σi,σused,A)
returns (σi′,σ′

used) which are basically the modified versions of the argument
states (the states change due to the different calls to transfer).

exec. exec(σi,σops,G) for a ghost operation G executes it and recursively
goes over the body of the ghost operation and for an assertion G returns the
output of exhale ext applied with appropriate arguments. σops is the state
which has accumulated the information gained from the execution of all the
ghost operations encountered so far.

All these functions are recursive over the stack of states and/or the structure
of the assertions involved. None of them appear explicitly in our Boogie
encoding as functions: the recursions are unrolled and the appropriate Boogie
code is emitted for the operations. The return values are implicit in the sense
that the emitted code modifies the states through updates.

4.2 Inconsistent states and trivial wands
The paper [16] doesn’t explicitly discuss how the footprint computation algo-
rithm behaves in the presence of inconsistent states. We take a deeper look
at cases in which they do occur and discuss the desired behaviour in terms of
the footprint. Along the way we’ll also gain a better understanding of how
the footprint computation algorithm works.

Definition 4 We call a state σ inconsistent if σ |= false

25

Recall that σ |= A −∗ B (see 2.1.2) holds, if for any hypothetical state
σ′ that is compatible (see Definition 1) to σ and satisfies A then σ] σ′ (see
Definition 2) must satisfy B. That means A−∗B holds trivially if there is no
such state σ′. In such a case we call A−∗ B trivial with respect to σ.

Definition 5 If ∀σ′.(σ′⊥σ ⇒ σ′ 6|= A) holds, then we call A−∗B trivial with
respect to σ.

From here on we’ll denote the current state as σcur (i.e. the state right before
the package in all scenarios) and an arbitrary state satisfying the left hand
side A of a wand A−∗ B we denote as σA.

Scenario 1: Inconsistent left hand side and pure right hand side

Listing 7: Inconsistency Scenario 1
package false --* false

The wand in Listing 7 is trivial with respect to every state because there
is no consistent state that can satisfy false. Actually it’s even equivalent to
the implication false⇒ false. So when packaging such a wand we definitely
want to pick an empty footprint. Let’s see how the footprint computation
algorithm behaves for this example.

An inconsistent state will show up in the algorithm right at the begin-
ning when the left hand side is inhaled into some new empty state (no heap
information, no permissions, no assumptions). This constructed state corre-
sponds to σA. In a next step an empty state will be created in which the right
hand side false is asserted. Since the empty state certainly doesn’t satisfy
false, the package fails. This is not the behaviour that we want. We would
like the algorithm to use the information that σA is inconsistent and then
conclude that the package works with the empty footprint.

Scenario 2: Inconsistent left hand side and impure right hand side

Listing 8: Inconsistency Scenario 2
package false --* acc(x.f)

The wand in Listing 8 is trivial with respect to every state for the same
reasons as the wand before. This means when packaging such a wand we’d
ideally want to pick an empty footprint. The algorithm behaves the same as
the wand in Listing 7 until it reaches the right hand side. There the algorithm
tries to transfer permission for x.f from σA and if needed from σcur to satisfy
the accessibility predicate. Now σA doesn’t contain any permissions but it

26

is inconsistent. So should it be possible to remove the required permission
from σA? From a purely logical point of view any assertion in an inconsistent
state holds. If that were the case in the algorithm then we’d exactly obtain
the wanted end result, namely a succesful package with an empty footprint.

Another way to achieve this result, would be to say that if σA or σcur
is inconsistent right before the transfer, then the transfer should just work
without having to explicitly remove and add permission.

On the other hand if the query to σA returns that there is no permission,
then the algorithm would try to remove permission from σcur. This would
mean that if there is the required permission to x.f in σcur, then the package
would succeed with a non-empty footprint and otherwise the package would
fail. Both of these results are not wanted (they are sound but incomplete).

Scenario 3: Inconsistent combination of consistent states

Listing 9: Inconsistency Scenario 3
//σcur satisfies acc(x.f) && x.f==2
package (acc(x.f,1/2) && x.f==3) --* acc(x.f)

The wand in Listing 9 is not trivial with respect to every state. For
example if acc(x.f,1/2) && x.f==3 holds in a state σ, then the wand is
not necessarily trivial with respect to σ. So it’s not clear what the ideal
footprint should be. The footprint computation algorithm will transfer per-
mission from both σA and σcur to the state σused that it’s constructing.
The transfer and hence the package will succeed. The footprint satisfies
acc(x.f,1/2) && x.f==2 (see the constraint on σcur in Listing 9). We note
that every state which satisfies the left hand side can’t be compatible to the
footprint, since they must agree on the heap values to which both have non-
zero permission. We conclude that the wand is trivial with respect to the
footprint, i.e. the wand can never be applied in any consistent state after the
package.

Additionally there’s something interesting that happens in the transfer.
In a transfer of x.f from σ to σ′ all the knowledge of x.f known in σ is also
transferred to σ′. This means that once the transfer from states σA and
σcur to σused is finished, acc(x.f) && x.f==2 && x.f==3 will hold in σused.
Hence σused is inconsistent1. So as in scenarios 2 and 3 an inconsistent state
shows up in the footprint computation algorithm for a trivial wand with
respect to the footprint chosen.

1We note that in theory after each modification of a state we get a new state (i.e. states
are immutable), but in our discussion we sometimes just refer to a state before and after
an update with the same name for simplicity. The context should make it clear which
version of the state we are referring to.

27

What we also learn from this example is that to make the package work,
we must remove permission from the current state even though we encounter
an inconsistent state, since otherwise the wand may not be trivial with re-
spect to the footprint chosen and hence may be applied unsoundly. For
instance in Listing 9 we notice an inconsistent state after transferring half
permission to x.f from σcur to σused. Now suppose after noticing this incon-
sistency we would revert this transfer and continue as if the transfer was
successful and hence the package would be successful, then the packaged
wand wouldn’t hold in the chosen footprint (which is empty). This is cer-
tainly unsound with regards to the specification of the package. To make
it even clearer: this would mean that the state after the package still has
full permission to x.f, which means the value 3 can be assigned to x.f right
after the package. This in turn would lead to a state in which the applica-
tion of the packaged wand would succeed, even though the packaged wand
doesn’t hold in the corresponding footprint. So it shows that the presence of
an inconsistent state doesn’t warrant reverting an earlier action. Hence it is
important for our encoding to preserve the modifications made by the algo-
rithm that lead to an inconsistency and once the inconsistency is reached to
basically be able to assert any expression in the inconsistent state. To make
this point clear consider the augmented wand in Listing 10:

Listing 10: Inconsistency Scenario 3 Augmented
//σcur satisfies acc(x.f)&&x.f==2&&acc(y.f)
package acc(x.f,1/2)&&x.f==3 --* acc(x.f)&&acc(y.f)

Then until acc(y.f) is reached the algorithm performs the exact same steps
as in the scenario given in Listing 9, but now that σused is inconsistent we
want the transfer of acc(y.f) to go through without having to remove further
permissions from σcur. This is certainly sound since the algorithm has already
chosen a footprint which makes the wand trivial.

Before finishing off this scenario we just want add a second basic type of
package that leads to an inconsistency of a state in the algorithm through
construction of a state using just consistent states.

Listing 11: Inconsistency Scenario 3 too much permission
//σcur satisfies acc(x.f)
package acc(x.f) --* acc(x.f)&&acc(x.f)

In Listing 11 the footprint is given by a state satisfying acc(x.f). It’s
clear that the wand is trivial with respect to the chosen footprint. Again
σused will be inconsistent at the end of the footprint computation algorithm,

28

but this time it’s because σused holds more than full permission to x.f, which
can’t be the case for a consistent state.

Scenario 4: Inconsistency after execution of ghost operation

Scenarios 1-3 don’t involve ghost operations. In this final scenario we want
show how right after the execution of a ghost operation an inconsistent state
is created.

Listing 12: Inconsistency when executing ghost operation
predicate P(x:Ref) {

acc(x.f)
}

//σcur satisfies acc(x.f)
package acc(P(x),2) --*

(unfolding P(x) in (unfolding P(x) in false))

In Listing 12 we don’t write the package statement inside a method to
avoid the unnecessary clutter (as in all other scenarios, but here we have a
predicate). The first thing we notice is that the left hand side of the wand
in Listing 12 is inconsistent in theory, since holding the predicate P twice
means holding more than full permission to x.f. Since the verifiers in general
don’t treat predicate instances and their corresponding bodies interchange-
ably, the verifier won’t notice that the left hand side is inconsistent without
any direction (see Section 2.3.4).

The footprint computation algorithm carries along a state σops which ac-
cumulates all the information which was gained through the execution of
each ghost operation encountered (this is done in the exec function pre-
sented in Section 4.1). Whenever a ghost operation is executed, a state σG
is created which holds the information gained solely from the execution of
that ghost operation. Finally the state carried along is updated from σops
to σops] σG (see Section 2.4.3 for a more detailed view). In Listing 12 after
the execution of the first ghost operation acc(x.f) will hold in this state,
which isn’t inconsistent. After the execution of the second ghost operation
acc(x.f) && acc(x.f) will hold in this state, which is inconsistent.

So one can say that the ghost operations make the algorithm notice that
the left hand side is inconsistent and so we expect the package in Listing 12
to succeed with an empty footprint. If the same wand is packaged without
any ghost operations, then the package fails.

Final Conclusions

29

Scenarios 1-4 show the various ways inconsistencies can occur in states and
each time the algorithm records an inconsistent state it seems as though the
wand is trivial with respect to the footprint picked up to that point.

We now generalize this observation to a lemma.

Lemma 1 Let σi be the stack of states carried along in the footprint com-
putation algorithm and let σops be the state which is carried along to store
information gained from the execution of ghost operations encountered after
the most recent package or packaging operation. Then the following state-
ments hold:

i) If any state σ on the stack is inconsistent then it is sound for any operation
to succeed without affecting any state, while σ is on the stack.
ii)If σops is inconsistent then it is sound for any operation to succeed without
affecting any state, while σops is the state which is carried along to store
information from the execution of ghost operations.
iii) If a state σ is inconsistent then it is sound for any operation applied in
σ to succeed without affecting any state.

To clarify: Lemma 1 states that if, for example, σ is inconsistent and is
part of the stack carried along then any transfer from the stack of states to
any other state succeeds without actually removing/adding any permissions.
If σ is later removed from the stack, then Lemma 1 doesn’t necessarily apply
any more. What Lemma 1 means by stating that an operation succeeds is
not that the resulting effect of the operation is the same as in the usual case,
but rather that it is sound to in a sense skip the operation and continue with
the remaining part of footprint computation algorithm.

We don’t provide a formal proof for Lemma 1 but we give a strong intu-
ition as to why it holds. Let σcur be the state in the program right before
the package operation. If one inspects the footprint computation algorithm
closely, then one notices that all the states on the stack correspond to one of
the following points:

• σcur

• one of the left hand sides of the wands (there may be multiple due to
nested packaging ghost operations)

• a state that was constructed in the course of the footprint computation
algorithm using only (potentially older) versions of the states on the
current stack

30

That means theoretically the information of every state on the stack origi-
nates from the initial left hand sides and σcur, because the starting stack only
consists of σcur and σA, where σA is a state satisfying the left hand side of
the wand in the actual package. Using this knowledge we informally show
Lemma 1 i).

Assume state σ′ on the stack σi is inconsistent, then we can conclude that
a combination of information from the initial left hand sides and σcur is
inconsistent. Note that the information transferred from σcur to σ′ is part of
the footprint σfoot.

Case 1: None of the states on the stack corresponds to a left hand side of a
wand in a packaging ghost operation

Hence a combination of information from σfoot and σA is inconsistent. But this
directly implies that the wand is trivial with respect to the footprint chosen
up to this point. Therefore we can just “abort” further computations made
by the algorithm and let the package succeed. We conclude the Lemma 1 i)
holds.

Case 2: A state on the stack corresponds to a left hand side of a wand in a
packaging ghost operation

The situation gets a bit trickier if there are packaging ghost operations.
The execution of packaging A1--*G1 in G2 for an assertion A1 and ghost
operations/assertions G1, G2 first basically executes package A1--*G1. The
main difference to the actual package operation performed in the begin-
ning is that the stack is already filled with multiple states. Assume that
the footprint computation algorithm is executing the package A1--*G1 op-
eration and this corresponds to the most recent packaging operation that
is being executed. Further assume we just let all remaining operations in
package A1--*G1 succeed without removing any permission from any state
(since we just encountered an inconsistent state). The point now is that to
get nested(G1) in the state after the original package is over, one needs a
state that satisfies all left hand sides on the stack. But the algorithm has
already chosen a footprint which makes this impossible (due to the inconsis-
tency that arises).

This argument is not quite general enough, since one may use the applying
ghost operation somewhere in G2. To show the claim in this case, one would
have to generalize what “footprint” means for a wand in a packaging op-
eration. The “extended footprint” of such a wand potentially consists of
information from σcur or any of the earlier left hand sides. Now since the

31

inconsistency basically shows that this “extended footprint” is not compat-
ible with any state satisfying A1 this means we won’t be able to use the
applying ghost operation successfully on this wand in general. We leave
out the details, but our explanation should suffice for an intuition as to why
Lemma 1 i) holds.

Showing Lemma 1 ii),iii) can be reduced to a similar argument as the one that
we just made. The footprint computation algorithm just performs operations
on states where the information was transferred from σcur and the left hand
sides, i.e. we can use the same argument for Lemma 1 iii). σops is just a
collection of information gained through the execution of ghost operations.
Since the information gained from a ghost operation is information gained
from σcur and the left hand sides we can again use a similar argument for
Lemma 1 ii).

4.3 Representation of states
Since the footprint computation algorithm deals with many different states
and operations on those, we must show how we encode those states in Boogie.
In Section 2.6.1 we already showed how Carbon represents states in Boogie.
There’s an issue with using that representation for our problem. Consider
how one might encode adding an assumption e to a state σ1. Using the
usual state representation we would associate a heap map Heap1 and a mask
map Mask1 to σ1 and then we would encode adding the assumption using
the statement assume e where e is evaluated in Heap1. But the problem is
that these assumptions are now part of the global verification state, so if e
is, for example, false then we assume false and the verification of anything
that follows goes through which is certainly unsound. So we need some kind
of way to collect these assumptions for each state separately. We do this by
introducing a Boolean variable in Boogie for each state, which collects all
assumptions about the corresponding state. This means if b1 is the Boolean
variable associated with σ1 then we add the assumption e to σ1 by associating
a new boolean variable bnew1 with σ1 where bnew1 == (b1 && e).

The reason why Carbon’s state representation is sufficient without magic
wand support is because such inconsistent assumptions which shouldn’t affect
the global state never occur, but in our case that doesn’t hold, as we saw in
Section 4.2.

So for the footprint computation algorithm we represent a state σID in
Boogie by a heap map HeapID, a mask map MaskID and a boolean variable
bID.

32

4.4 Encoding of state operations
We now give an encoding for the state operations that are used in our en-
coding or are interesting for the discussion of the encoding. Many of the
state operations are given by or are slight modifications of the basic state
operations in [16]. In theory the states are immutable and the majority of
the state operations return updated states. In our case we only create a new
state explicitly at the beginning and every operation applied to that state is
expressed using a statement (if a state has to be returned in theory) or an
expression, instead of explicitly returning a new state. So we’ll just give the
Boogie statement/expression emitted for each state operation.

Let σ be a state which is encoded using a heap map Heap, a mask map
Mask and Boolean variable b (Heap and Mask are not necessarily the global
variables used for the actual state described in 2.6.1, σ represents an arbitrary
state). σID is a state encoded as described in Section 4.3. Let σi be a stack
of states. We denote the conjunction of all boolean variables of the states in
σi as bi. Let ZeroMask denote the mask in Boogie which has zero permission
to every location. Furthermore we denote an arbitrary expression as e and
an arbitrary predicate which takes a single argument as P. A, B denote
(possibly impure, but self-framing) assertions. Let v be a reference type
value evaluated in some state, let f be a field and p a fractional permission
value also evaluated in some state.

identicalOnKnownLocs(Heap1,HeapUnion,Mask1) is a predicate defined
by Carbon in Boogie. If it returns true then HeapUnion agrees on all values
with Heap1 where Mask1 has non-zero permission. It also makes sure that
the heaps agree on known-folded locations (see [7]).

sumMask(MaskUnion, Mask1,Mask2) is a predicate defined by Carbon in
Boogie. If it returns true then it states that the permission to each location
in MaskUnion is given by the sum of the permissions at those locations in
Mask1 and Mask2.

state is a predicate introduced in Section 2.6.1.

Encoding of state operations from paper

We first give the encoding of the basic state operations specified in [16].
We modified addAcc,removeAcc, addPred, removePred to support fractional
permissions instead of just the full permission and included getAcc, getPred,
hasNoAcc, hasNoPred, hasNoWand as well as equate for predicates:

σ.getAcc(v,f) returns the permission to v.f held in σ.

σ.hasNoAcc(v,f) returns true iff σ has no permission to v.f.

33

σ.addAcc(v,f,p) adds permission p to location v.f in σ.

σ.removeAcc(v,f,p) removes permission p from location v.f in σ.

σ.getPred(P,v) returns the permission to P(v) held in σ.

σ.hasNoPred(P,v) returns true iff σ has no permission to P(v).

σ.addPred(P,v,p) adds permission p for predicate instance P(v) by p in σ.

σ.removePred(P,v,p) removes permission p from predicate instance P(v) in
σ.

σ.hasNoWand(A−∗ B) returns true iff σ doesn’t contain A −∗B

σ1.equate(P(v),f,σ2) updates σ1 such that it contains all assumptions about
P(v) from σ2 (i.e. also known-folded permissions).

The encoding of the updated set of basic state operations is then given by:

σ.eval(e) TeUσ

σ.assume(e) b := b&&TeUσ
σ.assert(e) assert b ==> TeUσ

σ.getAcc(v,f) Mask[v,f]
σ.hasAcc(v,f) b ==> Mask[v,f] > 0
σ.hasNoAcc(v,f) b ==> Mask[v,f] <= 0
σ.addAcc(v,f,p) Mask[v,f] += p
σ.removeAcc(v,f,p)

var TransferHeap: HeapType;
havoc TransferHeap;
Mask[v,f] -= p;
b := b&&identicalOnKnownLocs(Heap,TransferHeap,Mask);
Heap := TransferHeap;

σ.getPred(P,v) Mask[null,P(v)]
σ.hasPred(P,v) b ==> Mask[null,P(v)] > 0
σ.hasNoPred(P,v) b ==> Mask[null,P(v)] <= 0
σ.addPred(P,v,p) Mask[null,P(v)] += p
σ.removePred(P,v,p)

34

var TransferHeap: HeapType;
havoc TransferHeap;
Mask[null,P(v)] -= p;
b := b&&identicalOnKnownLocs(Heap,TransferHeap,Mask);
Heap := TransferHeap;

Assume wandAB is the wand field representing the wand instance A --* B.
See Section 3.1.2 for the details.

σ.hasWand(A −∗B) b ==> Mask[null,wandAB] >= 1
σ.hasNoWand(A −∗B) b ==> Mask[null,wandAB] <= 0
σ.addWand(A −∗B) Mask[null,wandAB] += 1
σ.removeWand(A −∗B) Mask[null,wandAB] -= 1

σ.onlyvars()

var HeapNew: HeapType;
var MaskNew: MaskType;
var bNew: bool;
havoc HeapNew;
MaskNew := ZeroMask;
havoc bNew;

σ1.equate(σ2,v,f) b1 := b1&&b2&&Heap1[v,f]==Heap2[v,f]
σ1.equate(σ2,P(v),f)

var EquateMask:MaskType;
EquateMask := ZeroMask;
EquateMask[null,P(v)] := FullPerm;
b1 := b1&&b2&&identicalOnKnownLocs(Heap2, Heap1, EquateMask);

if (...) ... else ...

if (...) {
...

} else {
...

}

We note that the encoding of addAcc/addPred is basically the same as
an inhale, just that there are no definedness checks and the expressions are
already evaluated. removeAcc/removePred are similar to an exhale just that
there are no definedness checks, no check if there is enough permission and

35

the expressions are already evaluated. The encodings involving the predicates
could easily be generalized to multiple arguments, which we have also done
in our implementation. To keep the presentation simpler we just look at
predicates with a single argument.

In the translation of σ1.equate(v,f,σ2) you can see that we not only add
the assumption that the value v.f is the same in σ1 and σ2, but we also add
all assumptions in σ2. To model the equate precisely we would have to add
only those assumptions in σ2 which contribute to the knowledge of v.f in σ2.
Finding these assumptions isn’t easy due to transitive reasoning, so we just
add all assumptions as an overapproximation.

A state operation, which is not specified as a basic state operation, but
needs to be encoded, is the compatible union (], see Definition 1) of two
states. We encode it as follows:

σUnion = σ1] σ2

var HeapUnion: HeapType;
var MaskUnion: MaskType;
var bUnion: bool;

bUnion := bUnion && identicalOnKownLocs(Heap1,HeapUnion,Mask1);
bUnion := bUnion && identicalOnKownLocs(Heap2,HeapUnion,Mask2);
bUnion := bUnion && sumMask(MaskUnion,Mask1,Mask2);
bUnion := bUnion && state(HeapUnion,MaskUnion);

Note that if σ1 and σ2 are not compatible then bUnion will be false in
the end.

In the paper more complex operations such as σ.inhale(e) are explicitly
encoded in terms of the basic state operations. We define these ourselves
since Carbon already has an encoding for some of these operations and also
supports fractional permissions.

σ.inhale(e)

if(b) {
[[inhale(e)]]σ

}

σ.exhale(σ̃,e)
if(b) {

[[exhale(e)]]σ
}

36

Analogous encodings are done for fold and unfold. The important part
is that we guard the operations with the boolean variable associated with
the state. The motivation for this is similar to what was already explained
in Section 4.3.

Inconsistency “aware” state operations
The state operations and encodings that we have presented up to this point
are independent of the footprint computation algorithm themselves. That
means they are fundamental operations that make sense in most settings
where states are used. We now give a set of state operations along with their
encoding that we defined specifically for our encoding in Boogie (but could
theoretically be used in other settings too) and we motivate their meaning.

As mentioned the footprint computation algorithm carries along a stack of
states. Lemma 1 states that whenever any state on the stack is inconsistent,
then it’s sound to let any operation succeed without making changes to any
state. Now suppose we assert expression e in a state σ1. Using our encoding
we would emit assert b1 ==> TeUσ1 . If σ1 is consistent (i.e. b1 is not
known to be false) and e doesn’t hold in σ1 then the assertion will fail,
which we don’t want if any state on the stack is inconsistent. So it makes
sense to instead emit assert (b1&& bi)==> TeUσ1 (as a reminder: bi is the
conjunction of all boolean variables associated with a state on the stack σi).
It won’t happen that assumptions from other states affect the truth value of
TeUσ1 except those which relate (directly or indirectly) the two states. This
means if all states on the stack and σ1 are consistent and e doesn’t hold in
σ1 then the assert will fail (under the assumption just stated). This along
with Lemma 1 motivates this “new” encoding.

But if we now anyway always use all assumptions to all states to prove
assertions in states, then there’s no point in adding all assumptions of σ2
to σ1 in σ1.equate(v,f,σ2) (see the discussion above on equate). All we need
to do during the equate is add the assumption to σ1 which relates the two
values, i.e. b1 := b1&&Heap1[v,f]==Heap2[v,f]. This encoding doesn’t
completely conform to equate’s specification given in [16], but we get the
wanted behaviour when asserting expressions and that’s the main thing that
we care about.

We now give the set of state operations, which are similar to the basic
state operations but include this notion of inconsistency. Their names should
make the meaning clear (i.e. hasAccInc has the same meaning as hasAcc
except that if at least one state is inconsistent then hasAccInc returns true
always).

σ.assertInc(σi, e) (b&&bi) ==> TeUσ

37

σ.hasAccInc(σi,v,f) (b&&bi)==> Mask[v,f] > 0
σ.hasNoAccInc(σi,v,f) (b&&bi)==> Mask[v,f] <= 0

σ.hasPredInc(σi,P,v) (b&&bi)==> Mask[null,P(v)] > 0
σ.hasNoPredInc(σi,P,v) (b&&bi)==> Mask[null,P(v)] <= 0

σ.hasWandInc(σi,A −∗B) (b&&bi)==> Mask[null,wandAB] >= 1
σ.hasNoWandInc(σi,A −∗B) (b&&bi)==> Mask[null,wandAB] < 1

σ1.equateInc(σ2,v,f) b1 := b1&&Heap1[v,f]==Heap2[v,f]
σ1.equateInc(σ2,P(v),f)

var EquateMask:MaskType;
EquateMask := ZeroMask;
EquateMask[null,P(v)] := FullPerm;
b1 := b1&&identicalOnKnownLocs(Heap2, Heap1, EquateMask);

4.5 A note on bCur
For the state σcur which represents the state right before the package, it’s
important that the effects on σcur in the package become visible. For instance
we need to know how much permission was removed from each heap location
(i.e. implicitly what the footprint was) and to which heap locations we
have any information. So after the package is done we assume that the
corresponding boolean variable bCur is true using the assume statement in
Boogie, otherwise we may lose useful information.

In the actual implementation we actually don’t use bCur at all, whenever
an assumption is added to bCur we just explicitly add the assumption using
the assume statement in Boogie.

4.6 Encoding the transfer function for fractionals
In this section we look at three encodings for transfer(σi,σused,e) (briefly
presented in Section 4.1) where e is a field accessibility predicate. The case
where e is a predicate accessibility predicates or a magic wand is completely
analogous. The transfer given in [16] for field accessibility predicates is only
specified if the permission value denotes the full permission. In our discussion
we will regard the case where the permission value may also be a fractional
value. This means the high-level view of the transfer we regard is slightly
different compared to the version in [16].

38

In each of the three encodings we give the specification of the transfer just
in terms of the state operations defined in Section 4.4 (i.e. independent of
Boogie) and look at a direct translation of the specification into Boogie using
the translation of the state operations into Boogie defined in Section 4.4.
After discussing the limitations of an approach, we try to find a solution to the
issues in the following approach (i.e. the second approach is supposed to be a
direct improvement of the first approach). The reason we don’t just present
the third and final approach which is currently used in our implementation
in Carbon is that it is easier to understand the motivation for the third
approach, if one has understood the issues in the first two approaches.

In the end we look at the limitations of the final approach and sketch a
solution that can solve one of the limitations, but has other limitations itself.

4.6.1 Approach 1: The Naive Approach

We give the definition of transfer in this first approach in Listing 13 using just
the state operations defined in Section 4.4, the min function which returns
the smaller of two arguments and transferRec.

transferRec(σi,σUsed,e,f,neededPerm) is an auxiliary function defined in
the same listing, where e is a reference type expression, f is a field, and
neededPerm is a permission value evaluated in some state.

Detailed overview

We give a detailed explanation of what the specified transfer in Listing 13 is
doing, since [16] doesn’t mention fractional permissions. In the following two
approaches we won’t do this, since they are iterations of this approach. In
Listing 13 transfer evaluates the permission p in σUsed, checks if the evaluated
permission is positive and finally calls transferRec which does the main work.

transferRec iterates over the stack σi from the top state to the bottom
and for each state σ that it encounters it transfers the maximum amount of
permission possible for x.f from σ to σused. The permission amount trans-
ferred from σ is at most the amount that is still required (this is guaranteed
by transferring the minimum of how much is still needed and how much is
held in σ on line 9). If a positive amount is transferred then the two values
in the respective states are equated. After all states have been visited, it is
asserted if p was transferred to σUsed (line 23, ε denotes the empty stack).

So one can say that the idea in the transfer given in Listing 13 is analogous
to the idea in the transfer defined in [16], which is to remove as much as
possible from states closer to the top of the stack. The main difference is
that permission might have to be transferred from multiple states instead of

39

Listing 13: The naive high-level approach for the transfer encoding
1 transfer(σi,σUsed,acc(e.f,p))
2 needed := σUsed.eval(p)
3 σUsed.assert(needed > 0)
4 return transferRec(σi,σUsed,e,f,needed)
5
6 transferRec(σi · σ,σUsed,e,f,neededPerm)
7 v := σUsed.eval(e)
8 if(neededPerm > 0 && σ.hasAcc(v,f)) {
9 take := min(neededPerm,σ.getAcc(v,f));

10 σ′
Used := σUsed.addAcc(v,f,take)

11 σ′′
Used := σ′

Used.equate(σ,v,f)
12 σ′ := σ.removeAcc(v,f,take)
13 (σ′

i,σ′′′
Used) := transferRec(σi,σ′′

Used,e,f,neededPerm-take)
14 return (σ′

i · σ′,σ′′′
Used)

15 } else {
16 (σ′

i,σ′
Used) := transferRec(σi,σUsed,e,f,neededPerm)

17 return (σ′
i · σ,σ′

Used)
18 }
19
20 transferRec(σi,ε,σUsed,e,f, neededPerm)
21 σUsed.assert(neededPerm == 0)

just one. If p is 1 and all states on the stack either have full or no permission
to e.f then the effect of transfer is the same as in the version given in [16].

The reason why transfer evaluates p beforehand and then the evaluated
value is passed to transferRec instead of transferRec evaluating p every time
is because we want a fixed starting value for the permission that we need to
transfer and then over the course of the algorithm we reduce this amount.
It wouldn’t make sense if in transferRec assumptions added to the initial
state σUsed would have an effect on the value of the permission that must
still be transferred later on. This doesn’t mean that when we evaluate p
in transfer that we exactly know what its value is, but we make sure that
for every possible trace its starting value for the permission is given before
transferRec is called and won’t be directly affected by modifications of σUsed
in transferRec but only by the algorithm itself.

But following this argument, the question has to be asked why e isn’t
evaluated beforehand. By evaluating e in σUsed (see line 7) in every recursive
call to transferRec we want to make clear that σUsed changes (states are

40

immutable in theory) and hence since assumptions are added through the
equate it’s possible that we learn more about the value of e in later iterations
of the algorithm than before, which makes the algorithm more complete. This
is also done in the version given in [16].

To specify the fractional permission version of transfer where e is a predicate
accessibility predicate, the operations defined in Listing 13 for field access
predicates must be modified to the corresponding version for predicates and
the arguments must be adjusted. For instance σ.hasAcc(v,f) would become
σ.hasPred(P,v). Since Silver doesn’t support the notion of fractional per-
mission for magic wands, the transfer remains the same as in [16] in that
case.

Boogie translation of naive approach

Listing 14 shows the partial Boogie translation of transfer(σcur · σ1, σUsed,
acc(e.f,1)) right before the first recursive call to transferRec is made using
the specification given in Listing 13 (we leave out the check if the permission
greater 0, since it’s clear for the full permission). The rest of the code would
appear right after the code given, i.e. we don’t have to unroll both calls to
transferRec which are in the two branches in Listing 13 since we can basically
rewrite the if (...)... else ... to (if (...)...)... as we can use lo-
cal variables compared to the “theoretical”, pure view in Listing 13. Note
lines 4 to 8 are a possible encoding for min(neededPerm,σ1.getAcc(x,f)).
Recall that the states returned in Listing 13 are implicit in the Boogie trans-
lation. We present three issues for the Boogie encoding given in Listing 14.
Whenever we mention a line number without explicitly stating the Listing,
then we implicitly are referring to Listing 14.

Issue 1: Not enough information used

One of the main issues with the translation given in Listing 14 is the condition
b1 ==> Mask1[v,f] > 0 given on line 3. It is possible that the assumptions
accumulated in b1 do not suffice to conclude that Mask1[v,f] > 0 even if
σ1.hasAcc(v,f) is true at that point. The reason is that to learn all the
information on the value v after the assignment v :=TeUσUsed

on line 2 one
needs to use the assumptions in σUsed, which are accumulated in bUsed.
Consider the following concrete example:

package (acc(x.f) && acc(x.f.f))--*(acc(x.f) && acc(x.f.f))

41

Listing 14: Partial Boogie translation of transfer, where σ1 is on top of the
stack, given by Listing 13 (Approach 1)

1 neededPerm := 1
2 v := TeUσUsed

3 if (neededPerm > 0 && (b1 ==> Mask1[v,f] > 0)) {
4 if (b1 ==> neededPerm <= Mask1[v,f]) {
5 take := neededPerm;
6 } else {
7 take := Mask1[v,f];
8 }
9 neededPerm := neededPerm - take;

10 MaskUsed[v, f] := MaskUsed[v,f] + take;
11 bUsed := bUsed && state(HeapUsed, MaskUsed);
12 bUsed := bUsed && b1 && HeapUsed[v,f] == Heap1[v,f];
13 havoc TransferHeap;
14 Mask1[v,f] := Mask1[v,f] - take;
15 b1 := b1 && IdenticalOnKnownLocs(Heap1,TransferHeap,Mask1);
16 Heap1 := TransferHeap;
17 b1 := b1 && state(Heap1, Mask1);
18 }

This wand should clearly be packaged with an empty footprint. Let σ1 be
the state created by the footprint computation algorithm which satisfies the
left hand side. Hence right before the transfer we know that the following
holds:

b1 ==> Mask1[x,f] == 1 and b1 ==> Mask1[Heap1[x,f],f] == 1

The first transfer is called for acc(x.f), where σ1 is on top of the stack.
Since σ1 has non-zero permission to x.f, the condition on line 3 is true. After
the equate on line 12 we’ll know that

bUsed ==> HeapUsed[x,f] == Heap1[x,f]

and after line 16 information regarding Heap1[x,f] will be havoced. Let’s
refer to the heaps and masks corresponding to σ1 and σUsed right before this
transfer as Heap1*,Mask1* and HeapUsed*,MaskUsed*. So after line 12 we
learn that

bUsed ==> HeapUsed*[x,f] == Heap1*[x,f]

42

Next transfer is called for acc(x.f.f), where again σ1 is on the top of the
stack. We expect that the algorithm transfers full permission for x.f.f from
σ1 to σUsed. It turns out that this encoding doesn’t lead to the expected
result. On line 2

v := HeapUsed[x,f]

will be emitted. Since HeapUsed[x,f] itself doesn’t change during the
transfers we conclude that

HeapUsed[x,f] == HeapUsed*[x,f]

holds in the Boogie encoding. The Boogie translation of σ1.hasAcc(v,f)
which is given on line 3 is then emitted as

b1 ==> Mask1[HeapUsed[x,f],f] > 0

which according to the observation above is semantically equivalent to
b1 ==> Mask1[HeapUsed*[x,f],f] > 0

Now note that since we actually never change the permission to v.f in σ1
(where v is given by x.f evaluated in σUsed) before the transfer of x.f.f and
due to the insight regarding HeapUsed*[x,f] from before we can conclude
that before the transfer of x.f.f the following holds:

b1 ==> Mask1[HeapUsed*[x,f],f] == Mask1*[HeapUsed*[x,f],f]

Therefore the Boogie translation of σ1.hasAcc(v,f) on line 3 is also se-
mantically equivalent to

b1 ==> Mask1*[HeapUsed*[x,f],f] > 0

Now we see that this condition won’t be verified since b1 doesn’t contain the
assumption that

HeapUsed*[x,f] == Heap1*[x,f]

which would suffice to verify the condition. This assumption was added
to bUsed in the transfer of x.f. The condition would be verified if the as-
sumptions were part of b1 otherwise because we know that

b1 ==> Mask1*[Heap1*[x,f],f] > 0

due to the way σ1 is constructed. So we conclude our Boogie encoding
doesn’t precisely encode the eval state operation. One could think that this
means that the equate must add the assumptions to both states instead of just
σUsed. But this would be unsound, since once σUsed is not any more carried

43

along in the algorithm then facts in σUsed shouldn’t affect the algorithm.
This means we would like to translate σ1.hasAcc(v,f) on line 3 as

(b1&&bUsed) ==> Mask1[HeapUsed[x,f],f] > 0

which would evaluate to true.
This example also shows that the receiver e in a transfer of e.f is one

of the main reasons why we need assumptions of potentially more than one
state to express σ1.hasAcc(v,f) in our Boogie encoding.

Issue 2: Undesirable footprint chosen in presence of inconsistent
states

There’s another issue regarding inconsistent states with respect to the en-
coding in Listing 14. Let us regard the package in Listing 10. Recall that
the example is given by

//σcur satisfies acc(x.f)&&x.f==2&&acc(y.f)
package acc(x.f,1/2)&&x.f==3 --* acc(x.f)&&acc(y.f)

As described in Section 4.2 in this case the states on the stack when the
transfer for y.f executes are all consistent but σUsed is inconsistent. We argue
in that section that no permission to y.f has to be removed from the current
state. In our encoding this isn’t guaranteed because the inconsistency of
σUsed doesn’t affect the control flow at all.

Issue 3: Lemma 1 not taken into account

A final issue is that if the necessary permission wasn’t transferred (i.e.
neededPerm > 0 at the end of the transfer), then in general the translation
of the assertion on line 22 of Listing 13 into Boogie won’t be satisfied, even
if a state on the stack σi is inconsistent. This is not the desired behaviour
as can be seen in Lemma 1, which states that if a state on the stack σi is
inconsistent, then for instance the translation of the assertion on line 22 in of
Listing 13 should be verified. Note that issue 2 is also related to Lemma 1.

4.6.2 Approach 2: Using all assumptions

Using the insights gained from the first approach, we now present the modi-
fied transfer defined in terms of the state operations in Listing 15. The main
difference in Listing 15 compared to the first approach is that we now use the
inconsistency “aware” state operations introduced in Section 4.4. Note that
we carry along the original stack of states at the beginning of the transfer
such that we can use all assumptions of those states, even if the algorithm has

44

Listing 15: Transfer definition of approach 2
1 transfer(σi,σUsed,acc(e.f,p))
2 needed := σUsed.eval(p)
3 σUsed.assertInc(σi,needed > 0)
4 return transferRec(σi,σi,σUsed,v,f,needed)
5
6 transferRec(σa,σi · σ,σUsed,e,f,neededPerm)
7 v := σUsed.eval(e)
8 if(neededPerm > 0 && σ.hasAccInc(σa · σUsed,v,f) {
9 take := min(neededPerm,σ.getAcc(v,f));

10 σ′
Used := σUsed.addAcc(v,f,take)

11 σ′′
Used := σ′

Used.equateInc(σ,v,f)
12 σ′ := σ.removeAcc(v,f,take)
13 (σ′

i,σ′′′
Used) :=

14 transferRec(σa,σi,σ′′
Used,e,f,neededPerm-take)

15 return (σ′
i · σ′,σ′′′

Used)
16 } else {
17 (σ′

i,σ′
Used) := transferRec(σa,σi,σ′′

Used,e,f,neededPerm)
18 return (σ′

i · σ,σ′
Used)

19 }
20
21 transferRec(σa,ε,σUsed,v,f), neededPerm)
22 σUsed.assertInc(σa,neededPerm == 0)

already visited a few states. We denote the stack of states at the beginning of
the transfer by σa and the corresponding conjunction of boolean variables in
Boogie as ba. Finally since we use all assumptions anyway whenever we need
to formulate an assertion on any given state, we can replace the translation
to σ′

Used.equate(σ,v,f) by the translation to σ′
Used.equateInc(σ,v,f) which

just adds the relation that v.f is the same in σ′
Used and σ without adding

any other assumptions. . This has the effect that the Boogie variable bUsed
associated to σUsed itself won’t contain all assumptions needed to make as-
sertions on σUsed, but since we always use all assumptions of the states on
the stack + the assumptions carried along in bUsed to check assertions, it
doesn’t matter.

The corresponding partial Boogie translation is shown in Listing 16 for
transfer(σcur · σ1, σUsed, acc(e.f,1)).

Let’s see how the encoding in Listing 16 deals with the three issues pre-
sented for the first approach described in Section 4.6.1. From now on when-

45

Listing 16: Partial Boogie translation of transfer, where σ1 is on top of the
stack, using the transfer specification in Listing 16 (Approach 2)

1 neededPerm := TpUσUsed

2 v := TeUσUsed

3 if (neededPerm > 0 && ((b1&&bi&&bUsed) ==> Mask1[v,f]>0)) {
4 if ((b1&&bi&&bUsed) ==> neededPerm <= Mask1[v,f]) {
5 take := neededPerm;
6 } else {
7 take := Mask1[v,f];
8 }
9 neededPerm := neededPerm - take;

10 MaskUsed[v,f] := MaskUsed[v,f] + take;
11 bUsed := bUsed && state(HeapUsed, MaskUsed);
12 bUsed := bUsed && HeapUsed[v,f] == Heap1[v,f];
13 havoc TransferHeap;
14 Mask1[v,f] := Mask1[v,f] - take;
15 b1 := b1 && IdenticalOnKnownLocs(Heap1,TransferHeap,Mask1);
16 Heap1 := TransferHeap;
17 b1 := b1 && state(Heap1, Mask1);
18 }

ever we don’t explicitly mention a Listing, we are referring to the Boogie
translation of the approach in Listing 16.

Analysing issue 1

Assume σ1 is at the top of the stack when the transfer is initially called.
We notice that issue 1 isn’t a problem in this encoding. The reason is that
we use all Boolean variables on the stack σa along with σUsed to check if
σ1 has permission to a specific location on line 3, which as explained in the
previous approach solves the specific issue. Actually we even argued that
it suffices to just use the Boolean variable corresponding to σ1 and σUsed.
The reason we use all Boolean variables in this encoding is that it is possible
that there is transitive reasoning. This means for Boolean variables b1,b2,b3
accumulating assumptions for σ1, σ2, σ3 it is possible that b1 contains an
assumption relating x.f in σ1 and σ2 and b2 contains assumptions relating
x.f in σ2 and σ3. Then the only way to get the relation of x.f in σ1 and σ3
is by using all boolean variables (instead of just using b1 and b3).

Analysing issue 3

46

Issue 3 also isn’t a problem any more, since we replace the translation to
σUsed.assert(neededPerm == 0)

with
σUsed.assertInc(σa,neededPerm == 0)

in Listing 15. This means whenever any state on the stack or σUsed is in-
consistent the transfer will definitely succeed in the corresponding Boogie
encoding. So in this case it actually partly utilizes Lemma 1.

Analysing issue 2

The specific example (which is given by Listing 10) used in Issue 2 isn’t a
problem in the new encoding either. Recall that the mentioned example is
given by:

//σcur satisfies acc(x.f)&&x.f==2&&acc(y.f)
package acc(x.f,1/2)&&x.f==3 --* acc(x.f)&&acc(y.f)

and the goal is that just full permission to x.f is removed from the current
state σcur and no permission to y.f is removed from σcur. When the transfer
for x.f is finished then also in this modified encoding we’ll notice an incon-
sistency. Note that in the previous approach we noticed the inconsistency in
σUsed directly by noticing that bUsed could be shown to be false. In our new
encoding this won’t be the case because we don’t add all assumptions from
the state from which permission is removed to σUsed but just the assumption
relating the heap values in the respective states. But the verifier will be able
to show ba && bUsed is false after the transfer of x.f, since this conjunction
holds assumptions that if true imply that x.f is 2 and 3 in some state. Now
let’s see what happens in the transfer of y.f, where we assume σ1 is at the
top of the stack:

The condition on line 3 will hold since we just showed that the implication
holds trivially due to left hand side being false and neededPerm == 1, hence
the branch is taken. Then for the same reason the branch on line 4 is taken
too, i.e. take is set to neededPerm, i.e. to 1. Finally neededPerm is set
to 0, full permission is removed from σ1 and added to σUsed. Therefore the
transfer succeeds without removing any permission to y.f from σcur. So in
the end the result of the package is exactly what we want. Notice that
the encoding removed permission from σ1 even though σ1 doesn’t even have
any permission to y.f. In this specific example this doesn’t turn out to be a
problem. Actually the encoding forces the needed permission to be removed
if the combination of states on the stack and σUsed is inconsistent, as could
also be seen in this example. In a next step we show that this behaviour
makes the encoding unsound.

47

Unsoundness in the second approach

To show a minimal example of the unsoundness in the second approach,
we need to have three states on the stack to show the problem. Consider
the following operation, where we assume that the current state σcur has no
permission to x.f :

package acc(x.f,1/4)&&x.f==2 --*
(packaging acc(x.f,1/4)&&x.f==3 --* acc(x.f) in true)

The footprint computation algorithm will call transfer(σcur ·σ1 ·σ2, σUsed,
acc(x.f,1)) (actually in theory there is another empty state on the stack,
but since it doesn’t affect the outcome we omit it). σ1 is the state cor-
responding to the left hand side of the “outer” package, i.e. it satisfies
acc(x.f,1/4)&&x.f==2 and σ2 is the state corresponding to the left hand
side of the “inner” package, i.e. it satisfies acc(x.f,1/4)&&x.f==3. In
terms of the Boogie encoding this means we know that the following holds

b1 ==> Heap1[x,f] == 2 and b2 ==> Heap2[x,f]==3

At the beginning of the transfer the conjunction of ba and bUsed (note
ba equals bCur&&b1&&b2) can’t be shown to be false, since no inconsistencies
can arise from all the assumptions stored in the Boolean variables.

First the algorithm transfers 1/4 permission to x.f from σ2 to σUsed and
then 1/4 permission to x.f from σ1 to σUsed. After these two iterations of the
transfer algorithm it holds that

bUsed ==> Heap1[x,f] == Heap2[x,f]

Hence it must hold that
(b1 && b2 && bUsed) ==> 2 == 3

which implies that b1 && b2 && bUsed is false. We also know that still
1/2 permission is needed (i.e. neededPerm == 1/2). At this point the
algorithm reaches the code block in the Boogie encoding shown in Listing 17
(note that Mask and Heap are the global variables associated with the heap
and mask of σcur).

The condition on line 1 will be satisfied since neededPerm == 1/2 and
the left hand side of the implication is false. The condition on line 2 will also
be satisfied for the same reason. Hence take == 1/2 at line 7. Therefore
we remove half permission to x.f on line 8, which means Mask[x,f] stores a
negative amount of permission afterwards. Then finally on line 11
state(Heap,Mask) is added to bCur. This leads to bCur being false because
if the state predicate would be true, then it would imply that all permissions

48

Listing 17: Unsoundness in the Boogie encoding for the second transfer ap-
proach

1 if (neededPerm>0 && (b1&&b2&&bCur&&bUsed ==> Mask[x,f]>0)) {
2 if (b1&&b2&&bCur&&bUsed ==> neededPerm <= Mask[x,f]) {
3 take := neededPerm;
4 } else {
5 take := Mask[x,f];
6 }
7 [changes made to σUsed omitted]
8 Mask[x,f] := Mask[x,f] - take;
9 bCur := bCur && IdenticalOnKnownLocs(Heap,TransferHeap,Mask

);
10 Heap := TransferHeap;
11 bCur := bCur && state(Heap, Mask);
12 }

in Mask are positive which is not true in this case. This is problematic since
after the package is over, we assume that bCur is true (see Section 4.5).
Hence we’ll basically lose the trace which corresponds to the actual footprint
computation algorithm and this leads to unsound behaviour.

4.6.3 Approach 3: The Final Approach

In the second approach we noticed that when inconsistencies arise and one
starts removing permission from states even though these states may not
have any permission it becomes hard to reason about the transfer. We also
showed that the second approach is unsound. In this final approach which we
are currently using in our implementation we construct an encoding which
directly uses Lemma 1. Therefore the motivation of the encoding is to es-
sentially let the transfer succeed without changing any state as soon as any
state on the stack or σUsed is inconsistent.

A way to achieve this requirement is to modify the second conjunct on
line 3 of the second approach, which is given in Listing 16 (note this is the
Boogie translation for σ1.hasAccInc(σa ·σUsed,v,f)). We modify the conjunct
to

(bi&&bUsed)&&Mask1[v,f] > 0

From a technical standpoint we changed the implication to a conjunction.
This guarantees that if any of the regarded states is inconsistent then the

49

Listing 18: Transfer definition of final approach
1 transfer(σi,σUsed,acc(e.f,p))
2 needed := σUsed.eval(p)
3 σUsed.assertInc(σi,needed > 0)
4 return transferRec(σi,σi,σUsed,v,f,needed)
5
6 transferRec(σa,σi · σ,σUsed,e,f,neededPerm)
7 v := σUsed.eval(e)
8 if(neededPerm > 0 && !σ.hasNoAccInc(σa · σUsed,v,f) {
9 take := min(neededPerm,σ.getAcc(v,f));

10 σ′
Used := σUsed.addAcc(v,f,take)

11 σ′′
Used := σ′

Used.equateInc(σ,v,f)
12 σ′ := σ.removeAcc(v,f,take)
13 (σ′

i,σ′′′
Used) :=

14 transferRec(σa,σi,σ′′
Used,e,f,neededPerm-take)

15 return (σ′
i · σ′,σ′′′

Used)
16 } else {
17 (σ′

i,σ′
Used) := transferRec(σa,σi,σ′′

Used,e,f,neededPerm)
18 return (σ′

i · σ,σ′
Used)

19 }
20
21 transferRec(σa,ε,σUsed,v,f), neededPerm)
22 σUsed.assertInc(σa,neededPerm == 0)

condition won’t hold, where as in the earlier approach it made the condition
trivially true. Note that this condition we just presented is equivalent to

!((bi&&bUsed) ==> Mask1[v,f] <= 0)

which is exactly the Boogie encoding for !σ1.hasNoAccInc(σa · σUsed,v,f).
So we can interpret this as asking if it doesn’t hold that in σ1 there is no
permission to v.f using the assumptions of all states on the stack and σUsed.
Note that in the Boogie encoding this is not the same as asking if in σ1 there
is permission to v.f since that assertion would be true if σ1 is inconsistent.

The final encoding expressed with state operations defined in Section 4.4
is given in Listing 18. The corresponding partial Boogie translation for trans-
fer(σi · σ1, σUsed, acc(e.f,p)) is given in Listing 19.

Recall the example which exhibited the unsoundness in the second ap-
proach:

50

Listing 19: Partial Boogie translation of transfer, where σ1 is on top of the
stack, using the transfer specification in Listing 18 (Final approach)

1 neededPerm := TpUσUsed

2 v := TeUσUsed

3 if (neededPerm > 0 && (b1&&bi&&bUsed&&Mask1[v,f]>0)) {
4 if (neededPerm <= Mask1[v,f]) {
5 take := neededPerm;
6 } else {
7 take := Mask1[v,f];
8 }
9 neededPerm := neededPerm - take;

10 MaskUsed[v,f] := MaskUsed[v, f] + take;
11 bUsed := bUsed && state(HeapUsed, MaskUsed);
12 bUsed := bUsed && HeapUsed[v,f] == Heap1[v,f];
13 havoc TransferHeap;
14 Mask1[v,f] := Mask1[v,f] - take;
15 b1 := b1 && IdenticalOnKnownLocs(Heap1,TransferHeap,Mask1);
16 Heap1 := TransferHeap;
17 b1 := b1 && state(Heap1, Mask1);
18 }

package acc(x.f,1/4)&&x.f==2 --*
(packaging acc(x.f,1/4)&&x.f==3 --* acc(x.f) in true)

Note that the encoding of the minimum function doesn’t explicitly use any
assumptions of any state, this is because if the condition on line 3 in Listing 18
is true, then we automatically get the assumptions of all states inside the
branch where the minimum of two values is computed.

As in the second approach transfer(σcur ·σ1 ·σ2, σUsed, acc(x.f,1)) is called
and after 1/4 is transferred from both σ2 and σ1 to σUsed the verifier learns
that b1&&b2&&bCur&&bUsed is false. But in this final approach no permission
will be removed from σcur since the condition on line 3 in Listing 19 won’t hold
(where in contrast to the Listing of course not σ1 but σcur is the top of the
stack). The transfer also succeeds since to check if the transfer succeeds we
use the translation of σUsed.assertInc(σa,neededPerm == 0) as in approach
2. Finally the package succeeds with an empty footprint which is the desired
behaviour.

The issues presented for the first approach also are solved for this encod-
ing. Issue 1 and 3 are solved for the same reason that approach 2 solves it,

51

namely by using all assumptions on the stack and σUsed. Let’s take a quick
look at issue 2 which discussed the following example:

//σcur satisfies acc(x.f)&&x.f==2&&acc(y.f)
package acc(x.f,1/2)&&x.f==3 --* acc(x.f)&&acc(y.f)

In this case after the transfer of x.f is finished, the verifier learns that
the conjunction of the Boolean variables corresponding to the states on the
stack and bUsed is false and hence no permission will be removed from y.f.
This is again exactly the behaviour that we desire.

4.6.4 Incompleteness in the final approach

We now look at a general problem for the final approach for which the partial
Boogie encoding is given in Listing 19. Whenever we refer to an encoding or
some line number without explicitly mentioning a Listing we implicitly refer
to Listing 19.

The Boolean variables, which accumulate all assumptions about a certain
state, lead to the main problem here. We motivated in Section 4.3 that we
use such Boolean variables instead of explicit assumptions in Boogie because
we don’t want assumptions from various states affecting the global verifica-
tion state after the package is over. The reason why the Boolean variable
approach solves this problem is because the verifier in general never learns
that the Boolean variables are true. If the state is inconsistent then then cor-
responding Boolean will be known to be false by the verifier (in general), but
this isn’t a problem as it doesn’t add assumptions we don’t want to the global
verification state. But the fact that we generally don’t know if Booleans are
true or not makes the transfer encoding incomplete, since intuitively it affects
the control flow.

Consider the following simple package operation:
//σcur satisfies acc(x.f)
package true --* acc(x.f)

It’s clear this operation should succeed with a footprint that satisfies
acc(x.f). Hence we expect that in the state after the package is finished
verifier concludes that the there’s no permission to x.f. Unfortunately this is
not guaranteed by our final encoding.

Let’s look at what our encoding does in detail. transfer(σcur · σ1,σUsed,
acc(x.f)) is called where σ1 is the state satisfying the left hand side of the
wand, in this case σ1 is essentially an empty state and σcur is the state right
before the package. It’s clear that the condition on line 3 when σ1 is on
top of the stack will be false since there’s no permission to x.f in σ1. Now

52

the algorithm moves on to potentially remove permission from σcur. The
condition on line 3 then can be written as (note Mask is the global variable
representing the mask of σcur):

neededPerm > 0 && bCur && b1 && bUsed && Mask[x,f] > 0

The verifier can verify that neededPerm > 0 and that Mask[x,f] > 0,
but the verifier can’t say anything about the value of b1 and bUsed. It also
doesn’t know the value of bCur but since we assume bCur to be true at the end
of the package, the verifier will learn the true value of bCur at the end (see
Section 4.5). This means that the verifier can’t be sure if the above condition
is true and hence doesn’t know if the branch on line 3 is taken. Let’s now
assume that bCur is true (which as just outlined is justified). So the verifier
essentially considers the traces where b1 and bUsed are true and the traces
where at least one of them is false. In the traces where b1 and bUsed are
true the full permission is removed from σcur and the transfer then succeeds
the way we expected. In the traces where b1 or bUsed is false nothing is
removed from σcur and the transfer also succeeds,since the assertion in the
end is given by

assert bCur && b1 && bUsed ==> neededPerm ==0

This means once the package is finished the verifier can’t prove that
Mask[x,f]==0, because it knows that there is a potential trace which didn’t
remove anything permission from σcur. This means the verifier can just prove

Mask[x,f] == 0 || Mask[x,f] == 1

What is important to note is that after the package in this case there is
at least one trace which leads to the correct footprint, i.e. which removed
full permission to x.f from σcur.

This means after the package all operations will have to take this trace
into account, which may suggest that the encoding is sound. The question
that must be answered is: Is any trace which led to the correct footprint, the
trace we actually want? We just informally argued here that there is a trace
that leads to the correct footprint, but this doesn’t suffice for a soundness
argument.

4.6.5 Potential unsoundness in the final approach

In the last section on the completeness of our final transfer encoding we
noticed that there are multiple traces which our transfer encoding permits
instead of just the one that leads to the correct footprint. There’s an issue
with the trace that leads to the correct footprint. Assume that the verifier

53

Listing 20: Example showing potential unsoundness
1 inhale acc(x.f)
2 inhale acc(y.f)
3
4 package acc(x.f,1/2)&&x.f==2 --*
5 acc(x.f,3/4)&&acc(y.f,1/2)
6 inhale acc(y.f,1/2)
7 assert x.f == 2

learns this “correct” trace, i.e. all other traces are discarded by the verifier.
This means that in each transfer in a package the verifier knows exactly
which branches were taken and hence at the end we’ll know exactly what
the correct permission values should be for the state right after the package.
The problem is that if we know a branch is taken, then we know that the
condition of the branch must have been true and in the case of transfer this
means we learn assumptions that are made during the package but should
not affect the state after the package is done. A concrete example where the
verifier learns part of the “correct” trace is given in Listing 20.

Let’s analyse the example. The footprint of the package has 1/4 permis-
sion to x.f and 1/2 permission to y.f. Now due to our incompleteness issue
our encoding doesn’t know how much permission is exactly left for x.f and y.f
in the state right after the package. Also no assumptions made inside the
package are known (since the value of the boolean variables are unknown).

Something interesting happens after inhale acc(y.f,1/2). Now the
verifier learns that the footprint computation algorithm must have removed
half permission from y.f, because if it hadn’t removed it then after
inhale acc(y.f,1/2) then there would be more than full permission to y.f
hence the state would be inconsistent. That means it knows the condition
!σcur.hasNoAccInc(σ1 ·σUsed,y,f) holds, where σ1 is the state representing the
left hand side of the wand in the package. This corresponds to the second
conjunct of line 3 in Listing 19 (of course in the Listing the state from which
permission is potentially removed from is σ1 and in our case it’s σcur). So
the verifier learns that bCur&&b1&&bUsed is true.

Since before the transfer of y.f there is a transfer of x.f where permission
is transferred from σ1 and σcur the verifier knows right after the transfer of
x.f that bUsed has accumulated the fact that x.f is the same in σ1 and σcur.
So this means at the point where the verifier learns that bCur&&b1&&bUsed
is true it learns that x.f has the value 2 in σcur. Therefore the assertion at
the end is verified, even though we expect it not to be verified.

54

Listing 21: Another example showing potential unsoundness
1 inhale acc(x.f)
2 inhale acc(y.f)
3
4 package acc(x.f,1/2)&&x.f==2 --*
5 acc(x.f,3/4)&&acc(y.f,1/2)
6 exhale acc(x.f,1/2)&&x.f==2 --*
7 acc(x.f,3/4)&&acc(y.f,1/2)
8 inhale acc(y.f,1/2)
9 assert x.f == 2

But what is interesting about Listing 20 is that the only way the current
state could have full permission to y.f after the package is if the wand
which is packaged on line 4 is applied. But since we never applied the wand
explicitly nor exhaled the wand we know that the wand instance is still part
of the program state. This is a contradiction, since half permission to y.f is
associated to the footprint of the wand instance, which is still part of the
program state and therefore we can only have at most half permission to y.f
and certainly not full permission to y.f. With this reasoning we conclude
that we are in an inconsistent state and anything can be asserted.

The issue is that the verifier won’t be able to deduce false, which now
makes our verifier ”inconsistent” in the sense that if it can verify x.f==2
then it should also be able to verify false, but it obviously can’t. So in some
sense in this case we are not unsound, but we are certainly unpredictable.

Let’s look at a slightly example given in Listing 21. The only difference to
the example before is that we exhale the wand right after packaging it. Now
from a technical standpoint nothing changes, in our encoding the assertion
that x.f is 2 will still be verified. We can’t use the same reasoning as before
to justify this behaviour any more. The reason is that since we don’t have
the wand instance at the point where we get half permission, we are not
necessarily in an inconsistent state, so it isn’t sound to verify any assertion.
It turns out there still is a way to reason why letting the assertion go through
is possibly sound.

In Silver the sum of all permissions held by different methods to a specific
location is at most 1. So the method m executing the program in Listing 21
holds all the permission to y.f in the beginning. After the package m holds
half of the permission to y.f and the other half is stored in the footprint of
the wand. We then give the wand instance away, which can be interpreted

55

as giving the footprint away. Now after inhaling half permission to y.f the
question to be asked is: Who gave us this permission?

The only way this permission could have been extracted by another
method/entity is by extracting it from the footprint of the wand which we
gave away. The only way to do that is by applying the wand, hence some
entity must have applied the wand which means x.f had the value 2 for that
entity. Since m always held permission to x.f, no entity could have changed
the value of x.f. So we conclude that x.f has the value 2 in m which would
mean that letting the assertion go through isn’t unsound.

The issue with this reasoning is that we’re reasoning about other ”enti-
ties”, which isn’t really defined in Silver. Also our reasoning seems to assume
that there is some kind of ”execution” tied to a Silver program, something
that isn’t defined either. So from a Silver perspective it’s not clear if the
behaviour we just explained is desired, so it’s not clear if it’s sound.

Finally the example we showed is quite simple, there’s no guarantee that
for every example where such behaviour occurs that we can reason the way
we did. This is the main reason why we classify this behaviour as a potential
unsoundness issue in our encoding.

4.6.6 Trading completeness for soundness

We now show a simple way of modifying our transfer encoding described in
Section 4.6.3 to solve the unsoundness issue presented in Section 4.6.5, but
the modified encoding is much less complete. It’s not part of our current
implementation.

The main issue as we noticed was that the assumptions on the states af-
fected the control flow of the transfer. If we look closely the only assumptions
on states that we don’t want to learn outside of the package are assumptions
that relate different states.

For example if we know outside the package that x.f in σ1 has value
4, then this won’t matter, since we’ll never use that state anyway after the
package. If we additionally learn that x.f has the same value in the state
after the package then we potentially have problem. These assumptions
which relate different states are only added by the equateInc state operation.

A solution to now solve the unsoundness issue is to have two boolean
variables for each σUsed in a transfer. One boolean variable bUsedEquate is
used to accumulate all assumptions learned from the equate and the other
boolean variable bUsed is used to accumulate all other assumptions. Now
we only let the boolean variables which don’t accumulate equate assump-
tions affect the control flow. Like this we guarantee that whenever we do
learn a branch is taken, then all assumptions that we learn won’t lead us to

56

Listing 22: Definition used for executing unfolding ghost operation
1 exec(σi, σops, unfolding P(e) in G)
2 σemp := σops.onlyvars()
3 v := σops.eval(e)
4 (σ′

i · σ′
ops,σ′

used) := exhale ext(σi · σops,σemp,P(v))
5 σ′′

used := σ′
used.unfold(P,v)

verify something we shouldn’t after the package. But whenever we assert
some expression then we use all assumptions (i.e. also those known from the
equate), since this shouldn’t affect the knowledge of the boolean variables.

Using this modified encoding we would for instance get the expected
behaviour in Listing 20. With this modified encoding we lose a lot of useful
information during the transfer. For instance the modified transfer won’t
notice inconsistencies generated by the equate constraints and hence this will
result in more permissions in the footprint than needed. Also if we have a
transfer where only through an earlier equate we know that the receivers of
a heap location in σUsed and σ1 are the same then we also won’t notice this
during the transfer (i.e. it doesn’t solve issue 1 presented in Section 4.6.1).

4.7 Boogie encoding of exhale ext
exhale ext was briefly presented in Section 4.1. We use the same definition
for exhale ext as [16] but in the case where exhale ext uses transfer we use the
Boogie encoding corresponding to the definition given in Listing 18 and we
also in general just use our defined encodings for the state operations given
in Section 4.4. Also we modify exhale ext for a pure expression e:

exhale ext(σi,σused,e) σused.assertInc(σi,e)

We basically replaced assert by assertInc which is justified by Lemma 1 and
also the discussion on assertInc in Section 4.4.

4.8 Boogie encoding of exec
exec was briefly presented in Section 4.1. We keep the definitions of exec
the same as in [16] except for some changes. In the exec for the unfolding
ghost operation we call exhale ext with P(v) as expression argument instead
of P(e).

Listing 22 shows our definition of executing the unfolding operating in
terms of state operations. Intuitively it makes sense to input P(v) where v

57

Listing 23: Showcasing that argument of predicate should be evaluated in
particular state during unfolding ghost operation

field f:Ref

predicate P(x:Ref) {
acc(x.f,1/4)

}

method t01(x:Ref) {
package acc(x.f,1/4)&&acc(P(x.f)) --* (folding P(x) in (

unfolding P(x) in (unfolding P(x.f) in true)))
}

is evaluated in σops to exhale ext since we later on actually also unfold that
predicate instance on line 5. Assume we were to input P(e) to exhale ext.
Then exhale ext would call transfer which evaluates e in its own empty state
which won’t give any information, i.e. e may even be undefined in that state
which would lead to a failure.

A concrete example which shows this is given in Listing 23. The package
in Listing 23 should succeed with an empty footprint. The effect of folding
and then unfolding the same predicate instance P(x) is that non-zero per-
mission to x.f will be held in σops. Hence when unfolding P(x.f) ... is
executed then x.f will be well-defined in σops. But if we pass P(x.f) instead of
P(v) where v is given σops.eval(e) then the transfer for P(x.f) will evaluate
x.f in an empty state. This will lead to a verification failure since x.f is not
defined in a state which has no permission to x.f. The only issue with our
modification in Listing 23 is that transfer ’s signature is not defined for al-
ready evaluated values, so in theory we would have to specifically use another
transfer which gets already evaluated values (in this case for the arguments
of a predicate instance).

Another change is that to make sure that the ghost operations succeed
if some state on the stack is inconsistent, we for example use σ.fold(σi,P,v)
instead of σ.fold(P,v). Where

σUsed.fold(σi,P,v)
if(bUsed&&bi) {

[[unfold]]σ
}

58

Listing 24: Information learned later should influence a decision made earlier.
This example is taken from the original silver test suite.

field next : Ref;

predicate P(x:Ref) { acc(x.next) }

method m(l:Ref)
requires acc(l.next) && acc(l.next.next)
{

var x:Ref := l.next
package acc(l.next,1/2) && acc(l.next.next,1/2) --*

folding acc(P(x)) in acc(P(x)) && acc(l.next)
assert acc(l.next,1/2) && acc(l.next.next,1/2)

}

Using all assumptions in this case is justified since v is already evaluated in
some state. Analogously we define σUsed.unfold(σi,P,v) and σUsed.apply(A−∗
B). But we don’t change anything in the exec of the packaging ghost oper-
ation.

As a side remark, if the encoding described in Section 4.6.6 were used
for the transfer then we could only use the assumptions which don’t relate
states in the if-conditions for the state operations just mentioned.

4.9 Completeness issues in current package encoding
In Section 4.6.4 we looked at a completeness issue with respect to the current
transfer encoding. In this Section we take a closer look at other completeness
which don’t just involve the transfer encoding. In the following discussion
we’ll assume that the transfer definition given in Listing 18 and the encoding
of state operations given in Section 4.4 is used. A partial Boogie translation
for transfer(σi · σ1, σUsed, acc(e.f,p)) is given in Listing 19. Our current
Boogie encoding of the footprint computation algorithm has a few issues
with respect to completeness. We list the most important points.

Knowledge learned later does not affect an earlier decision
For the completeness issue here, consider the example (this is an example
from the Silver test suite) in Listing 24.

The example in Listing 24 should succeed. Let’s look at the package in
detail. Assume σ1 represents the state satisfying the left hand side and σcur

59

is the current state right before the package. So first the folding ghost
operation will be executed for P(x), where x = σcur.eval(l.next). So full
permission for l.next.next must be transferred where the receiver l.next
is evaluated in σcur. This means with the current information known the
footprint computation algorithm removes all the permission to l.next.next
from the current state. It won’t remove anything from σ1 since it’s not known
if σcur.eval(l.next) = σ1.eval(l.next). Now after the ghost operation is
executed, there’s a transfer for P(x), followed by a transfer for the full per-
mission to l.next. In the transfer of l.next half permission is removed from
σ1 and half is removed from σcur to l.next. But after this transfer, we learn
that σUsed.eval(l.next) equals σ1.eval(l.next) and σUsed.eval(l.next)
equals σcur.eval(l.next) holds in σUsed. σUsed is the state into which the
permissions are transferred. Hence we conclude that σ1.eval(l.next) equals
σcur.eval(l.next) holds in σUsed. The question is now, should this informa-
tion be made available to the ghost operation executed earlier? According
to the footprint computation algorithm that we presented, the answer is not
clear. Logically it might make sense, since as long as we’re in a single package
all ghost operations (except packaging) just use information from σ1 and
σcur, hence the fact that we later on learn that l.next is the same in both
states means that we can use that fact in the entire package. This would
then mean that during the folding ghost operation it would only be needed
to remove half permission from to l.next.next from σcur which then makes
the final assertion hold.

Now the reason why in our current encoding we won’t learn this is because
we explicitly add the equate assumption to σUsed and since σUsed doesn’t exist
at the moment when folding is executed, the assumptions in σUsed won’t
play a role in folding.

Heap values in the footprint should be stored
Consider the example in Listing 25. The package succeeds and the footprint
is the smallest state satisfying acc(x.g,1/2)&&x.g==1. The apply also suc-
ceeds and due to our encoding of the apply given in Section 3.4 x.f==1 can
be verified. The problem is that x.g==1 won’t be verified in our encoding. In
theory it’s sound if it is verified because the footprint for the packaged wand
satisfied x.g==1. The reason our encoding in Boogie doesn’t verify this, is
because we don’t associate the footprint’s heap with every wand instance.
It’s also not that clear how to do that due to the incompleteness problem
presented in Section 4.6.4(where the there are many traces which actually
shouldn’t be there).

60

Listing 25: Verifies if values in footprint are stored
inhale acc(x.g)&&acc(x.f)
x.f := 1
x.g := 1
package acc(x.f,1/2)&&x.f==1 --* acc(x.f,1/2)&&acc(x.g)
apply acc(x.f,1/2)&&x.f==1 --* acc(x.f,1/2)&&acc(x.g)
assert x.f==1
assert x.g==1

5 Evaluation
In this section we evaluate the encoding we described in Section 4 which
uses the transfer encoding presented in Section 4.6.3. First we compare the
performance between our implementation in Carbon and the current magic
wand implementation in Silicon, which as described in Section 1 is a back-end
verifier for Silver programs based on symbolic execution. The implementation
also uses the high-level approach for the magic wand support introduced
in [16].

We ran Carbon and Silicon on the majority of the test cases available in
the Silicon magic wand test suite. We made a few changes to some of the test
cases such that our implementation of Carbon can run them. For instance
Silver provides a wand variable to store a wand at a certain program point,
but which isn’t added to the program state. This wand can be then used in
the package operation. The following example shows what is meant:

method t01(x:Ref,y:Ref)
requires acc(x.f)
requires acc(y.f)
{

var z:Ref
z := x
wand w := true --* acc(z.f)
z := y

package w
}

For testing purposes we would then rewrite this program to the equivalent
Silver program:

61

method t01(x:Ref,y:Ref)
requires acc(x.f)
requires acc(y.f)
{

var z:Ref
var zTemp: Ref

z := x
wand w := true --* acc(z.f)
zTemp := z

z := y

package true --* acc(zTemp.f)
}

We didn’t implement this transformation automatically in Carbon, since
there were very few test cases using the wand variable and it’s not clear if
the support for the wand variable will change in the future.

We left out the test cases in the test suite which use the lhs operator. This
is an operator that can be used in wands to get a value evaluated in the state
satisfying the left hand side of the wand. The reason for not implementing
this operator is that the operator is probably going to be replaced in the
future and also due to time constraints.

5.1 Performance: Silicon vs. Carbon
The subset of test cases and the time it took to execute them for Carbon and
Silicon can be seen in Figure 1. The figure shows that Silicon outperforms
Carbon on every test case. This was also seen in [8]. The reasons for this
aren’t completely clear but we suspect the reasons being the same as already
presented in the evaluation section of [8], even though Silicon and Carbon
have changed quite a bit since the time when [8] was written. One of the
reasons is in test cases that don’t verify the program properties specified
Silicon may stop after finding the first verification error, while Carbon always
is forced to look at the complete program. We notice that the differences in
execution times in Figure 1 is less than two seconds in every example, except
in one example where the difference is more than 10 seconds. A reason for
this outlier could be that sequences are used in the example which in Carbon
are handled a lot differently than in Silicon.

62

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

/e
xa

m
p

le
s_

p
ap

er
/c

o
n

d
it

io
n

al
s.

si
l

/e
xa

m
p

le
s_

p
ap

er
/u

n
cu

rr
yi

n
g.

si
l

/e
xa
m
p
le
s_
p
ap

er
/l
is
t_
in
se
rt
_
n
o
se
q
…

/e
xa

m
p

le
s_

p
ap

er
/l

is
t_

su
m

.s
il

/e
xa
m
p
le
s_
p
ap

er
/t
re
e_

d
e
le
te
_m

in
.…

/r
eg

re
ss

io
n

/a
p

p
ly

.s
il

/r
eg

re
ss

io
n

/a
p

p
ly

in
g.

si
l

/r
eg

re
ss

io
n

/c
lo

su
re

d
_

en
co

d
ed

.s
il

/r
eg

re
ss

io
n

/c
o

n
d

it
io

n
al

s1
.s

il
/r

eg
re

ss
io

n
/c

o
n

d
it

io
n

al
s2

.s
il

/r
eg

re
ss

io
n

/c
o

n
d

it
io

n
al

s3
.s

il
/r

eg
re

ss
io

n
/c

o
n

su
m

p
ti

o
n

.s
il

/r
eg

re
ss

io
n

/e
va

l_
st

at
e

s.
si

l
/r

eg
re

ss
io

n
/f

o
ld

in
g.

si
l

/r
eg

re
ss

io
n

/f
o

o
tp

ri
n

ts
.s

il
/r

eg
re

ss
io

n
/i

ss
u

e
0

0
5

.s
il

/r
eg

re
ss

io
n

/i
ss

u
e

0
0

6
.s

il
/r

eg
re

ss
io

n
/i

ss
u

e
0

0
7

.s
il

/r
eg

re
ss

io
n

/i
ss

u
e

0
0

9
.s

il
/r

eg
re

ss
io

n
/i

ss
u

e
0

1
0

.s
il

/r
eg

re
ss

io
n

/i
ss

u
e

0
1

1
.s

il
/r

eg
re

ss
io

n
/i

ss
u

e
0

1
2

.s
il

/r
eg

re
ss

io
n

/i
ss

u
e

0
1

3
.s

il
/r

eg
re

ss
io

n
/i

ss
u

e
0

1
5

.s
il

/r
eg

re
ss

io
n

/i
ss

u
e

0
1

7
.s

il
/r

eg
re

ss
io

n
/i

ss
u

e
0

2
3

.s
il

/r
eg

re
ss

io
n

/i
ss

u
e

0
2

4
.s

il
/r

eg
re

ss
io

n
/n

e
st

in
g.

si
l

/r
eg

re
ss

io
n

/o
ld

.s
il

/r
eg

re
ss

io
n

/p
ac

ka
ge

.s
il

/r
eg

re
ss

io
n

/p
ac

ka
gi

n
g.

si
l

/r
eg

re
ss

io
n

/s
n

ap
sh

o
ts

.s
il

/r
eg

re
ss

io
n

/u
n

fo
ld

in
g.

si
l

Ti
m

e
in

 s
ec

o
n

d
s

Testcases

Carbon Silicon

Figure 1: Execution time of a subset of test cases in the Silicon magic wand
test suite when using Carbon and Silicon. For each test case the left column
corresponds to Carbon and the right column to Silicon. If a column is black
then it means that the corresponding verifier finished running the example
in the shown time but it didn’t return the expected verification results.

We also note that the potential soundness issue in Carbon described in
Section 4.6.5 doesn’t appear in any of the test cases which we compared
Carbon and Silicon with. There are no known soundness issues in Silicon’s
encoding of magic wands.

5.2 Completeness: Silicon vs. Carbon
In Figure 1 the black columns indicate that the corresponding verifier (Car-
bon, if it’s the left column for a test case or Silicon, if it’s the right column
for a test case) didn’t return the expected verification results. We see that
there are two test cases where Carbon doesn’t verify certain properties but
Silicon does and two test cases where Silicon doesn’t verify certain properties

63

but Carbon does. Finally there’s one test case which both don’t verify.
The two test cases which Carbon doesn’t directly verify are directly re-

lated to the completeness issue described in Section 4.6.4. A minimal example
is given by:

inhale acc(x.f)
package true --* acc(x.f)
assert perm(x.f)==0

The perm operator can be used in Silver to get the permission to a specific
heap location. As explained in Section 4.6.4 Carbon won’t know for sure that
there’s no permission left. But note that Carbon would return a verification
error for the following program due to the exhale (as will Silicon), which is
the desired behaviour:

inhale acc(x.f)
package true --* acc(x.f)
exhale acc(x.f)

We point out that usually the perm operator is used for debugging pur-
poses and not to verify practically relevant examples.

Let’s now look at the two test cases Silicon doesn’t verify. The first test
case corresponds to a variation of Listing 5. Hence Silicon doesn’t seem to
solve the incompleteness that can arise in apply encodings that we discussed
in Section 3.4. The completeness issue in the second test case is due to
Silicon not noticing certain inconsistencies as discussed in Section 4.2. We
just present two examples:

package acc(x.f)&&acc(x.f) --* false

The state satisfying the left hand side is inconsistent, so the package
should succeed, but Silicon doesn’t notice the inconsistency.

A second example is given by
inhale acc(x.f,1/2)
package acc(x.f,1/4)&&x.f==2 --*

(packaging (acc(x.f,1/4)&&x.f==3 --* acc(x.f)) in true)
exhale acc(x.f,1/2)

We notice that the footprint computation algorithm transfers 1/4 per-
mission to x.f from the left hand side satisfying

acc(x.f,1/4)&&x.f==3

and then 1/4 permission to x.f from the left hand side satisfying

64

acc(x.f,1/4)&&x.f==2

Then the footprint computation notices an inconsistency (since in the
state to which these permissions are transferred x.f has value 2 and 3 which
isn’t possible). According to Lemma 1 the package can then succeed without
any further action, i.e. no permission needs to be removed from x.f in the
state before the package. Hence the exhale in the end should work. In
Silicon this isn’t the case, since it removes permission to x.f from the state
before the package (which can be checked by assert perm(x.f)==0, which
is verified by Silicon).

The test case which both verifier fail to verify is given in Listing 25.
Another test case which we didn’t include in Figure 1 and which both verifiers
fail to verify is given by Listing 24. See the discussion on both these examples
in Section 4.9.

As one can see it’s hard to say which verifier is more complete, they both
have their strengths and weaknesses in terms of completeness. The main
advantage with Silicon is that currently no potential soundness issues are
known.

6 Extension: Basic Quantified Permission Sup-
port in Carbon

In this section we present work done on quantified permissions. This is quite
unrelated to magic wands, which was the main topic of the thesis. Quan-
tified permissions denote permissions for multiple locations instead of just
one. Silicon (see [9] for an overview) already has support for quantified per-
missions (an earlier approach is described in [3]) and we provided a first step
towards quantified permission support in Carbon as part of this bachelor’s
thesis. Some of our work was largely inspired by ideas taken from the current
quantified permission implementation in Silicon.

6.1 Quantified Permissions in Silver
In Silver a quantified permission is of the following form:

∀ x:T :: c(x) ⇒ acc(e(x).f, p(x))

where T is any valid Silver type, c(x) returns a Boolean expression,
e(x) is a pure expression of type Ref and is injective with respect to x and

65

Listing 26: Boogie encoding of inhale ∀x:T :: c(x) ⇒ acc(e(x).f, p(x))
1 var QPMask:MaskType;
2 havoc QPMask;
3
4 assume ∀x: T :: {e(x)} c(x) ==> inv(e(x)) = x
5 assume ∀r: Ref :: {inv(r)} c(inv(r)) ==> e(inv(r)) = r
6
7 assume ∀x1:T, x2:T :: (x1 != x2 &&
8 c(x1)&&c(x2)) ==> e(x1) != e(x2)
9

10 assume ∀x:T :: (c(x) && p(x) > 0) ==> e(x) != null
11
12 assume ∀r:Ref :: {Mask[r,f]}{QPMask[r,f]}{inv(r)}
13 (c(inv(r)) ==> QPMask[r,f] == Mask[r,f]+p(inv(r))) &&
14 (!c(inv(r)) ==> QPMask[r,f] == Mask[r,f])
15
16 assume ∀r:Ref,h: (Field A B) :: {Mask[r,h]}{QPMask[r,h]}
17 h != f ==> QPMask[r,h] == Mask[r,h]
18
19 Mask := QPMask

p(x) returns a permission expression. The restriction that e(x) is injective
makes it easier to support in verifiers. Suppose e(x) were not injective.
Then it would be possible that there exist distinct x,y of type T such that
c(x),c(y) and e(x)==e(y) holds. This means when inhaling the above
quantified permission we would need to add at least permission p(x) and
permission p(y) to the location e(x).f. In general we would need to find all
x’ of type T, for which e(x’)==r for an arbitrary reference r. Now adding
the restriction that e(x) is injective means we know there is at most one
such x’.

6.2 Inhaling Quantified Permissions
An encoding of inhale ∀x:T :: c(x) ⇒ acc(e(x).f, p(x)) is given in
Listing 26. Note that the terms in the curly brackets are triggers (see Sec-
tion 2.5.5).

The identifier inv in Listing 26 is a fresh identifier for the corresponding
quantified permission. This means for another quantified permission that we
inhale, we use another identifier (i.e. technically we use another function).

66

The assumptions on line 4 and 5 define inv(·) to be the inverse function of
e(·), which should exist due to Silver’s restriction that e(·) must be injective.
On line 12 the permission value of the updated mask is set for all heap
locations z.f. Using the inverse allows one to quantify over references instead
of elements of type T. If we quantified over T then we would not be able to
specify the permission for those heap locations z.f for which there is no x:T
such that e(x) = z. This idea of using inverses was developed already while
implementing quantified permissions in Silicon. On line 16 we specify the
permission for all heap locations where the corresponding field is different
from f.

6.2.1 Alternative Triggers

Consider the following Silver program:
1 inhale acc(y.g);
2 inhale acc(y.f);
3 exhale acc(y.g);
4 inhale (∀x:Ref :: x!= null ==> acc(x.f));
5 assert false;

Note that after the inhale on line 4 we have more than full permission to
y.f and hence we reach an inconsistent state (the assertion of false should
succeed). The issue is that the mask changes after the exhale of y.g. This
means the verifier won’t instantiate line 12 in Listing 26 with y, since y.f only
occurs with respect to an older version of the mask. Therefore the verifier
won’t learn that the state is inconsistent. A possible solution would be to
add the following function and corresponding axiom to the Boogie encoding:

function qptrigger<A, B>(o: Ref, f: (Field A B)): bool;
axiom (∀ <A, B> Mask: MaskType, r: Ref, f(Field A B) ::

{ Mask[o, f] }
qptrigger(o, f)

);

Then we would replace the trigger quantified formula line 12 in Listing 26
by

{qptrigger[r,f]}{QPMask[r,f]}{inv(r)}

The verifier can then instantiate the formula for heap locations x.f which
have been mentioned at least once in some version of the mask. But this
potentially leads to many unnecessary instantiations of the axiom introduced.
We don’t use this alternative triggering in our implementation.

67

Listing 27: Boogie encoding of exhale ∀x:T :: c(x) ⇒ acc(e(x).f, p(x))
1 var ExhaleHeap: HeapType;
2 havoc ExhaleHeap;
3 var QPMask:MaskType;
4 havoc QPMask;
5
6 assert ∀x: T :: (c(x) && p(x) > 0) ==> e(x) != null)
7 assert ∀x: T :: c(x) ==> Mask[e(x),f] >= p(x)
8
9 assume ∀x1:T, x2:T :: x1 != x2 &&

10 c(x1)&&c(x2) ==> e(x1) != e(x2)
11
12 assume ∀x: T :: {e(x)} c(x) ==> inv(e(x)) = x
13 assume ∀r: Ref :: {inv(r)} c(inv(r)) ==> e(inv(r)) = r
14
15 assume ∀r:Ref :: {Mask[r,f]}{QPMask[r,f]}{inv(r)}
16 (c(inv(r)) ==> QPMask[r,f] == Mask[r,f]-p(inv(r))) &&
17 (!c(inv(r)) ==> QPMask[r,f] == Mask[r,f])
18
19
20 assume ∀r:Ref,h: (Field A B) :: {Mask[r,h]}{QPMask[r,h]}
21 h != f ==> QPMask[r,h] == Mask[r,h]
22
23 Mask := QPMask;
24 assume identicalOnKnownLocs(Heap,ExhaleHeap,Mask);
25 Heap := ExhaleHeap;

6.3 Exhaling Quantified Permissions
An encoding of exhale ∀x:T :: c(x) ⇒ acc(e(x).f, p(x)) is given in
Listing 27. The encoding is analogous to the inhale case, just that the
necessary properties are asserted before the mask is updated appropriately.

6.4 Framing Axiom
We introduced the concept of function framing in Section 2.3.1. The frame
of a function is the set of heap locations on which a function depends. In
Silver an overapproximation of the frame is given by the set of permission
required by the precondition of a function. If the following can be shown

68

Listing 28: Example showcasing importance of frame of a function
field next: Ref
field val: Int

predicate List(ys: Ref) {
acc(ys.val) && acc(ys.next) &&

(ys.next != null ==> acc(List(ys.next)))
}

function sum(ys: Ref): Int
requires acc(List(ys))

{ unfolding List(ys) in ys.val +
(ys.next == null ? 0 : sum(ys.next)) }

with respect to two different function calls f(a), f(b):

1. a = b

2. the set of heap locations belonging to the (overapproximation of the)
frame of f evaluated at the program point where f(a) was called evaluate
to the same values as the same heap locations evaluated at the program
point where f(b) was called

then it can be concluded that f(a) and f(b) evaluate to the same value.
This can easily be generalized to functions with multiple arguments. We
now briefly look at how Carbon uses this observation. Consider the Silver
program in Listing 28. The frame of sum is given by List(ys). Carbon now
creates two functions for sum in Boogie:

function sum(Heap: HeapType, ys: Ref): int;
function sumFrame(frame: FrameType, ys: Ref): int;

The two functions are related as follows (for arbitrary Heap:HeapType
and ys:Ref):

sum(Heap, ys) == sumFrame(Frame(Heap[null, List(ys)]), ys)

This way two functions calls to sum in Boogie can be seen as two function
calls to sumFrame which evaluate to the same value exactly if the two condi-
tions we looked at before hold. If this relation to sumFrame weren’t present,

69

then if just some heap location not part of the frame of sum changes, the
verifier would not be able to verify the equality of a function call before the
heap modification and a function call after the heap modification.

Now we extend Carbon to define a correct frame if quantified permissions
are part of the precondition. Consider the following function (the function
body isn’t important for the frame):

function test(y:T2):T3
requires ∀x:T :: c(x) ⇒ acc(e(x).f, p(x))
{ ... }

where the precondition is a valid quantified permission as defined in Sec-
tion 6.1 and T2,T3 are valid Silver types. So the frame of test is given by
the set of heap locations e(x).f where c(x) > 0 and p(x) > 0.

In Boogie we then create the following functions for test:

function test(Heap:HeapType,y:T2):T3

function testFrame(frame: FrameType,y:T2):T3

function testQP1(Heap: HeapType, y:T2)

We then relate two function calls of testQP1 as follows (for arbitrary
Heap1:HeapType,Heap2:HeapType,y:T2):

(∀x:T :: c(x) ==> Heap1[e(x),f] == Heap2[e(x),f]) ==>
testQP1(Heap1,y) == testQP2(Heap2,y)

This relation essentially states that if the set of heap locations where per-
mission is potentially obtained in an inhale of ∀x:T :: c(x)⇒ acc(e(x).f, p(x))
evaluate to the same values in Heap1 and Heap2 then testQP1(Heap1,y)
equals testQP(Heap2,y). The reason why we input y is that in general the
quantified permission can depend on y (it doesn’t here, so it wouldn’t be
needed in this case).

Finally we can state the framing axiom by relating test with testFrame
(for arbitrary Heap:HeapType and y:T2):

test(Heap, y) == testFrame(Frame(testQP1(Heap,y)), y)

70

Hence the verifier can learn that test(Heap1, y) equals test(Heap2,y) if
testQP1(Heap1,y) equals testQP2(Heap2,y).

We note that in practice we generate more functions than just presented
since we need to ensure that recursive functions don’t get instantiated an
arbitrary number of times by the verifier. The details of the trigger encoding
are given in [7].

6.5 Conclusion
In this section we make our final conclusions on the work regarding the
encoding of quantified permissions in Carbon. We have implemented the
encoding that we presented in a separate branch of Carbon. A variety of
test cases verify but at this moment there are still certain test cases where
in our encoding the verifier runs out of memory. We suspect this is due to us
not having a clear triggering strategy. We observed that in most cases the
quantified permission version of Silicon outperforms our encoding as already
noticed with magic wand related tests in Section 5.

The work we did for the quantified permission support should be seen
as a starting block for a more mature version. Future work could therefore
certainly focus on, for example, finding a good strategy for triggers to improve
performance.

71

7 Conclusion
In this section we make our final conclusions on the work regarding the
encoding of magic wands in Carbon.

7.1 Status of Implementation
We have extended the Carbon verifier with support for magic wands in Sil-
ver. Our implementation passes a large majority of the magic wand related
tests from the Silicon test suite as discussed in Section 5. All the tests which
don’t pass can be reduced to one of the examples presented in Sections 4.6.4
and 4.9. We have also written new magic wand related tests which comple-
ment the already available tests in Silicon.

As discussed in Section 4.6.5 our encoding is not entirely sound. It’s
not completely clear if the example we show really exhibits unsoundness,
as we explain there are certain views which make the example presented
not unsound. Yet the behaviour noticed is not consistent for a person who
doesn’t know the background of our encoding and is therefore not desired.
It’s not clear if the behaviour shown appears often in practical settings, for
instance none of the existing test cases in the Silicon test suite led to this
behaviour.

We haven’t added support to the lhs operator and the wand variable as
discussed in Section 5.

7.2 Future Work
Our current encoding of the package operation is incomplete in various set-
tings and it’s also not clear if it is sound. The main issue in the encoding
of package is that we need to use assumptions on various states, as well
as use assumptions that relate these states to direct the control flow of the
algorithm. At the same time we don’t want the verifier to learn some of these
assumptions because otherwise we learn information on the state after the
package which we shouldn’t learn. These two goals are in direct conflict.

As future work one could try to extract the main abstract problem that
we had when trying to encode the package operation and then analyse if
this problem can be at all solved completely with Boogie. It might also make
sense to first just find a Boogie encoding of the package which isn’t practical
at all, as long as one can show that the package can be encoded precisely
the way it is specified. If it turns out that there is no Boogie encoding to
precisely model the package then this would be an extremely interesting
result.

72

Another direction to take would be to analyse the potential soundness
issue in our own encoding in greater detail.

7.3 Final Conclusion
We have introduced a potential encoding for the magic wand support de-
scribed in [16] for Carbon and we have implemented this encoding in separate
fork of Carbon. We have also taken deeper look into the package operation
in the presence of inconsistent states. Our work suggests that it doesn’t
seem trivial to find a precise encoding for the package operation using Boo-
gie. Even though our encoding is not complete and is potentially unsound,
it still achieves to verify a lot of examples in cases where we are pretty sure
that there are no soundness issues.

7.4 Acknowledgements
First I would like to thank Alexander J. Summers, without whom many of
the ideas in this thesis would not have come to fruition. Alex, I thank you for
the great supervision, encouragement and for showing me how to elegantly
reason about complicated problems. I would like to thank Prof. Peter Müller
for giving me the opportunity to work on an extremely interesting problem in
the field of software verification. I would like to thank Malte Schwerhoff for
his comments on the apply encoding and his help with questions regarding
Silicon and quantified permissions. Finally I would like to thank all people
who contributed to the Viper tools, which made my own work much easier.

73

Listings
1 Simplified encoding of heap in boogie 16
2 Predicate representing wand shape in Boogie 21
3 Translation of inhale A--*B 22
4 Translation of exhale A --* B 22
5 Potential incompleteness in apply operation 23
6 Translation of apply statement 23
7 Inconsistency Scenario 1 . 26
8 Inconsistency Scenario 2 . 26
9 Inconsistency Scenario 3 . 27
10 Inconsistency Scenario 3 Augmented 28
11 Inconsistency Scenario 3 too much permission 28
12 Inconsistency when executing ghost operation 29
13 The naive high-level approach for the transfer encoding 40
14 Partial Boogie translation of transfer, where σ1 is on top of

the stack, given by Listing 13 (Approach 1) 42
15 Transfer definition of approach 2 45
16 Partial Boogie translation of transfer, where σ1 is on top of the

stack, using the transfer specification in Listing 16 (Approach
2) . 46

17 Unsoundness in the Boogie encoding for the second transfer
approach . 49

18 Transfer definition of final approach 50
19 Partial Boogie translation of transfer, where σ1 is on top of

the stack, using the transfer specification in Listing 18 (Final
approach) . 51

20 Example showing potential unsoundness 54
21 Another example showing potential unsoundness 55
22 Definition used for executing unfolding ghost operation 57
23 Showcasing that argument of predicate should be evaluated in

particular state during unfolding ghost operation 58
24 Information learned later should influence a decision made ear-

lier. This example is taken from the original silver test suite. . 59
25 Verifies if values in footprint are stored 61
26 Boogie encoding of inhale ∀x:T :: c(x) ⇒ acc(e(x).f, p(x)) . . 66
27 Boogie encoding of exhale ∀x:T :: c(x) ⇒ acc(e(x).f, p(x)) . . 68
28 Example showcasing importance of frame of a function 69

74

References
[1] Mike Barnett, Bor-YuhEvan Chang, Robert DeLine, Bart Jacobs, and

K.RustanM. Leino. Boogie: A modular reusable verifier for object-
oriented programs. In FrankS. de Boer, MarcelloM. Bonsangue, Susanne
Graf, and Willem-Paul de Roever, editors, Formal Methods for Compo-
nents and Objects, volume 4111 of Lecture Notes in Computer Science,
pages 364–387. Springer Berlin Heidelberg, 2006.

[2] John Boyland. Checking interference with fractional permissions. In
Proceedings of the 10th International Conference on Static Analysis,
SAS’03, pages 55–72, Berlin, Heidelberg, 2003. Springer-Verlag.

[3] Korbinian Breu. Quantified permissions for random access data struc-
tures. Master’s thesis, ETH Zurich, TU Munich, 2014.

[4] Rémi Brochenin, Stéphane Demri, and Etienne Lozes. On the almighty
wand. Inf. Comput., 211:106–137, February 2012.

[5] Bernhard Brodowsky. Translating Scala to SIL. Master’s thesis, ETH
Zurich, 2013.

[6] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[7] S. Heule, I. T. Kassios, P. Müller, and A. J. Summers. Verification
condition generation for permission logics with abstract predicates and
abstraction functions. In Giuseppe Castagna, editor, European Confer-
ence on Object-Oriented Programming (ECOOP), volume 7920 of Lec-
ture Notes in Computer Science, pages 451–476. Springer, 2013.

[8] Stefan Heule. Verification condition generation for the intermediate ver-
ification language SIL. Master’s thesis, ETH Zurich, 2013.

[9] U. Juhasz, I. T. Kassios, P. Müller, M. Novacek, M. Schwerhoff, and
A. J. Summers. Viper: A verification infrastructure for permission-based
reasoning. Technical report, ETH Zurich, 2014.

[10] C. Klauser. Translating Chalice into SIL. Bachelor’s thesis, ETH Zurich,
2012.

75

[11] K. Rustan M. Leino. This is boogie 2, 2008.

[12] Toshiyuki Maeda, Haruki Sato, and Akinori Yonezawa. Extended alias
type system using separating implication. In Proceedings of TLDI 2011:
2011 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation, Austin, TX, USA, January 25, 2011, pages
29–42, 2011.

[13] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local rea-
soning about programs that alter data structures. In Proceedings of
the 15th International Workshop on Computer Science Logic, CSL ’01,
pages 1–19, London, UK, UK, 2001. Springer-Verlag.

[14] M. J. Parkinson and A. J. Summers. The relationship between separa-
tion logic and implicit dynamic frames. Logical Methods in Computer
Science, 8(3:01):1–54, 2012.

[15] Matthew Parkinson and Gavin Bierman. Separation logic and abstrac-
tion. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’05, pages 247–258,
New York, NY, USA, 2005. ACM.

[16] M. Schwerhoff and A. J. Summers. Lightweight support for magic wands
in an automatic verifier. In J. Boyland, editor, European Conference on
Object-Oriented Programming (ECOOP), Lecture Notes in Computer
Science. Springer, 2015.

[17] Malte Schwerhoff. Symbolic execution for chalice. Master’s thesis, ETH
Zurich, 2015.

[18] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames:
Combining dynamic frames and separation logic. In Proceedings of the
23rd European Conference on ECOOP 2009 — Object-Oriented Pro-
gramming, Genoa, pages 148–172, Berlin, Heidelberg, 2009. Springer-
Verlag.

76

	Introduction
	Background
	Separation Logic
	Separating Conjunction
	Magic Wands

	Viper Project
	Silver
	Permissions
	Self-Framedness
	Inhale and Exhale
	Abstract Predicates
	Separation Logic in Silver

	Magic Wands in Silver
	Package
	Apply
	Ghost Operations

	Boogie
	Assume Statement
	Assert Statement
	Havoc Statement
	Maps
	Triggers

	Carbon
	State Representation
	Field Types
	Definedness Check

	Representing and Applying Wands in Boogie
	Wand Representation
	Shapes and Holes
	Tracking Wands in Boogie

	Inhaling a Wand
	Exhaling a Wand
	Translation of the apply statement

	Encoding the package operation in Boogie
	High level view of the footprint computation algorithm
	Inconsistent states and trivial wands
	Representation of states
	Encoding of state operations
	A note on bCur
	Encoding the transfer function for fractionals
	Approach 1: The Naive Approach
	Approach 2: Using all assumptions
	Approach 3: The Final Approach
	Incompleteness in the final approach
	Potential unsoundness in the final approach
	Trading completeness for soundness

	Boogie encoding of exhale_ext
	Boogie encoding of exec
	Completeness issues in current package encoding

	Evaluation
	Performance: Silicon vs. Carbon
	Completeness: Silicon vs. Carbon

	Extension: Basic Quantified Permission Support in Carbon
	Quantified Permissions in Silver
	Inhaling Quantified Permissions
	Alternative Triggers

	Exhaling Quantified Permissions
	Framing Axiom
	Conclusion

	Conclusion
	Status of Implementation
	Future Work
	Final Conclusion
	Acknowledgements

