Modular Verification of Message
Passing Programs

Master’s Thesis Project Description

Gaurav Parthasarathy
Supervisor: Alexander J. Summers

November 20, 2017

1 Introduction

Concurrent programs have become ubiquitous in practice. One way to deal
with the communication between processes running concurrently in a pro-
gram is to use shared memory and synchronization constructs such as locks.
If one is not careful this can lead to deadlocks and scalability issues. A dif-
ferent approach that attempts to circumvent these problems is a message
passing approach, where processes running concurrently communicate via
asynchronous messaging. The actor model [2] is a model that follows this
asynchronous messaging approach, where processes are independent units
called actors.

Many concurrent programs (as well as distributed systems) have been
implemented with the actor model as the main inspiration, using, for ex-
ample, the programming language Erlang [1] or the Akka toolkit [4] which
provides actor abstractions for different programming languages. We call
such programs actor programs.

Formal reasoning about actor programs is important to ensure the pro-
grams have the desired properties. Actor services [3] is a program logic for
actor programs. It enables modular verification of functional and response
properties. Modularity in this context means that properties about parts of
an actor program can be verified without knowledge of the complete pro-
gram, and these properties can then be composed to derive specifications
of larger parts of the program. Such modular reasoning is essential for the



reuse of verified specifications of subprograms that appear in different con-
texts. It also makes reasoning easier and scalable by not having to consider
the behaviours of the whole program at once.

The actor services logic has not been used extensively for the verification
of real-world programs. Due to the logic’s limitations there are various prop-
erties of message passing programs which cannot be verified. The main goal
of this project is to extend the actor services logic such that it can be applied
to a wider class of existing programs.

2 Known Limitations of Actor Services

We give a brief overview of some known limitations of the actor services logic.

Can only use a single message as trigger. Actor services can be used
to verify response properties where a single message triggers a response. It is
not possible to verify properties where multiple messages trigger a response.

Cannot deallocate actors. Actors must always be ready to receive
valid messages. As a result there is no way to model the deallocation of
actors.

No support for protocols. There is no way of specifying that at certain
points some messages cannot be received by actors. This means that in some
cases the logic is overly conservative with respect to behaviour that cannot
occur since actor programs may follow protocols.

Actor code assumptions. The actor services logic assumes that the
code in each actor only communicates with other actors via messages. Yet
in practice asynchronous message passing is sometimes combined with com-
munication via constructs that block, such as channels.

3 Core Tasks

The core tasks in this project are the following:

e Identify appropriate programming domains and design patterns for
which an extended actor services logic may be suitable.

e Analyze the strengths and limitations of the actor services logic by
applying it to actor programs which are taken from the identified pro-
gramming domains or contain the identified design patterns.



4

e Lift the most essential limitations by extending the logic. In an optimal
case the extensions should preserve most of the modularity properties
of the original logic.

e Verify actor programs using the extended logic.

Extension Tasks

Possible extensions after completing the core tasks are the following:

e Apply the extended logic to a larger corpus of examples.
e Prove soundness of the introduced program logic extensions.

e Design an approach for the automation of the actor services logic and
the proposed logic extensions.

References

1]

2]

[4]

J. Armstrong. Programming Erlang: Software for a Concurrent World.
Pragmatic Bookshelf, 2007.

C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor for-
malism for artificial intelligence. In Proceedings of the 3rd International
Joint Conference on Artificial Intelligence, IJCAT'73, pages 235-245, San
Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.

A. J. Summers and P. Miiller. Actor services: Modular verification of
message passing programs. In P. Thiemann, editor, Furopean Sympo-
sium on Programming (ESOP), LNCS, pages 699-726. Springer Berlin
Heidelberg, 2016.

D. Wyatt. Akka Concurrency. Artima Incorporation, USA, 2013.



