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1 Introduction
Concurrent programs have become ubiquitous. In practice, such programs
must deal with a large number of processes running concurrently. One needs
some way for the processes to interact safely. Using shared memory locations
requires careful synchronization between the processes which quickly leads
to issues when scaling to large programs.

One approach to avoid this issue is to restrict communication between
processes to asynchronous messages. The actor model [10, 2] is a program-
ming paradigm that follows this asynchronous messaging approach, where
processes are independent units called actors. Each actor has its own local
state and a mailbox which holds all messages that the actor has not yet re-
acted to. As a reaction to a message an actor may spawn other actors, send
messages to other actors and change how it reacts to future messages.

The actor model facilitates the development of large-scale, robust concur-
rent programs. There are various programming languages and frameworks
that can be used to write concurrent programs using this model. Examples
include Akka [22], Erlang [3], Kilim [19] and Pony[1].

While the actor model provides many benefits, it is not always easy to
reason about actors, which we illustrate by considering the simple partial
actor program written using Akka in Figure 1. The figure shows implemen-
tations for the client, manager and worker actor types, for which there may
be an arbitrary number of actor instances. The manager’s initial behaviour,
describing how it reacts to received messages, is given by the acceptQuery
method. While the manager reacts to messages according to this initial
behaviour, only Query messages are accepted without an exception being
thrown.

The Query message specifies a client interested in an answer and a value
n specifying the query. Once the manager removes a Query message from
its mailbox (at most one message is handled at a time), the manager sends
a Compute message to some worker actor (line 14) (assuming the manager
behaves according to its initial behaviour). After this, the manager changes
its behaviour to another one, in which it only accepts Result messages (line 15)
without throwing exceptions. The worker computes f(n) and sends it back
via a Result message to the manager, which sends the received result to the
client and moves back to its initial behaviour.

It is essential for the manager to define two such different behaviours and
to not react to Query and Result messages the same way at all times. When
the manager is initially waiting for a Query message and it receives a Result
message, then the manager does not know for whom this Result message is
intended, hence it cannot send it to a client as on line 21. It is also not
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1 class Client extends Actor {
2 def receive = {
3 case Solution(sol) => ...
4 case => ...
5 }
6 }
7
8 class Manager extends Actor {
9 def receive = acceptQuery

10
11 def acceptQuery : Receive = {
12 case Query(client, n) =>
13 val worker = context.actorOf(Props[Worker])
14 worker ! Compute(self, n)
15 context.become(waitForResult(client))
16 case => throw new Exception(”unexpected message”);
17 }
18
19 def waitForResult(client: ActorRef) : Receive = {
20 case Result(res) =>
21 client ! Solution(res)
22 context.become(acceptQuery)
23 case => throw new Exception(”unexpected message”);
24 }
25 }
26
27 class Worker extends Actor {
28 def receive = {
29 case Compute(manager, n) =>
30 manager ! Result(f(n))
31 case => ...
32 }
33 }

Figure 1: Partial Akka actor program written in Scala showing implementations
for three different types of actors. The manager actor changes its behaviour using
the built-in become primitive. The initial behaviour of each actor is given by the
receive method. Message sending is expressed using the syntax recipient ! message.
Actor creation is expressed using the syntax context.actorOf(Props[ActorType]). self
holds the reference to the current actor.
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acceptable for the manager to send the result to some client (for example,
to the previously handled client), because this client may have just sent a
Query message to the manager, which the manager has not yet processed.
The reason is if the manager sends the result to this client, then this client
will assume that it received the result corresponding to the Query message
that it sent, which is incorrect.

When the manager has sent a Compute message to a worker and is waiting
for the corresponding Result message, then the manager cannot react to Query
messages the same way as according to its initial behaviour, because in its
implementation it only keeps track of a single client. In this implementation
the manager just throws an exception, if such a Query message is received.
Another solution would be to store the Query message in its local state and
to process it once the manager moves back to its initial behaviour. However,
this also requires a different way of reacting to the Query message than in
the initial behaviour.

So, the manager is following a fixed protocol, where it reacts to messages
differently dependent on how far the protocol has progressed. We call such
actor programs protocol-based actor programs. The coordination required to
implement actors that follow protocols, as can already be seen in the simple
example, does not very directly reflect the actual protocol itself (especially if
the protocol is complex). This makes it hard to reason about such protocol-
based actor programs. Therefore there is a need to develop techniques which
allow reasoning about such programs.

Consider an actor that sends a Query message to the manager. In gen-
eral, it is not clear what will happen next. When the manager receives this
message, while being in a state in which it throws exceptions upon receiving
Query messages, then we do not get the desired properties. We would like
to be sure that when this message is sent to the manager with input n, then
eventually the client specified in the query message will receive f(n). With-
out such a guarantee, the actor program has no value. There are various
challenges when attempting to verify this desired response property in the
program (which may contain other actor types not shown):

1. It must be ensured that if a message is sent to the manager, then the
manager is guaranteed to be in a state, where it will accept this message
without throwing an exception, until the manager removes the message
from its mailbox. For example, the manager should not receive a Query
message while it is waiting for a Result message.

2. One must be able to relate the client value on line 21 with the client
value provided by the Query message on line 12.
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3. The Result message received by the manager should contain the correct
value f(n). One needs to make sure that nobody sends some Result
containing a wrong value to the manager.

In the presented example only the manager is following a non-trivial protocol.
As actor programs get more complex and multiple actors follow non-trivial
protocols more challenges arise. Verification techniques which require knowl-
edge about the complete program do not scale since a change to part of the
program invalidates the complete proof, also they are not applicable in cases
where the complete program is not known. Therefore a modular verification
approach is desirable, where it is possible to verify actors independently and
where adding verified actors to an already existing system does not violate
the already derived properties. Furthermore, it should be possible to derive
response properties modularly. This means one should be able to compose
response properties expressing behaviours of different parts of the program
to derive a response property summarizing a larger part of the program. Ad-
ditionally, whenever one part of a program changes, one should still be able
to reuse a derived response property for an unaffected part of the program.

Achieving such modularity in protocol-based programs is challenging for
various reasons. The response properties, as the one presented, only mention
the initial request and the final response, abstracting over what happens in
between. However, a response may advance the protocols of multiple actors
which are not mentioned in the request or in the response. When composing
such a response property with another response property, one might need to
know how those protocols advanced. Furthermore, one also needs to relate
the local states of the actors in the different protocol stages to the request
and the response parameters to be able to prove how the final response value
relates to the initial request value.

We propose a modular verification technique for proving response prop-
erties for an interesting class of protocol-based actor programs (such as the
one given in Figure 1) by extending the actor services program logic [20]. We
achieve all the modularity features described.

Outline. In Section 2 we provide the necessary background for the actor
services logic. We show the limitations of the logic with respect to protocol-
based actor programs in Section 3. In Section 4 we introduce support for
protocols in the actor services logic using a notion of a session. We extend
the introduced protocols in Section 5 to also include fork-join patterns. We
discuss related work in Section 6. Finally, we conclude and provide directions
for future work in Section 7.
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1 actor Client {
2 int val;
3 Client(int v) { this.val := v }
4 handler sol(int res) {...}
5 }
6 actor Master {
7 Client c; Worker worker;
8 handler getsol(Client client) {
9 this.c := client;

10 Worker w1 := spawn Worker();
11 this.worker := w1;
12 w1.sendsol(client, client.val);
13 }
14 }
15 actor Worker {
16 handler sendsol(Client client, int n) {
17 client.sol(f(n));
18 }
19 }

Figure 2: A simple actor program where the master actor delegates work to a
worker actor that it spawns.

2 Background: The actor services program
logic

The actor services program logic [20] is a logic to verify response properties in
actor programs modularly. In this section we first introduce the programming
language used to express the actor programs and compare it to existing actor
languages. Next, we introduce the parts of the logic that are relevant for
the subsequent sections. Finally, we present the logic’s limitations that we
address in later sections.

2.1 The actor programming language ActorPL
The actor services program logic works with a simple Java-like programming
language with which actor programs can be expressed. We call the program-
ming language ActorPL and we present it by considering the actor program
given in Figure 2. Each actor is an instance of an actor class, which is de-
clared with the actor keyword, containing the actor’s implementation. There
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may be arbitrarily many instances of a single class. An actor class defines
for each message that can be received by the actor, a message handler de-
clared with the handler keyword. The message handler signature specifies
the arguments of the message as well as their corresponding types. For ex-
ample, in Figure 2 the client actor may only receive sol messages and these
messages must have one integer argument. this is a reference to the current
actor instance.

The semantics of ActorPL reflect the actor model. Each actor has an
implicit message queue, which we refer to as the actor’s mailbox, containing
all the messages that it has received but has not yet reacted to yet. An actor
can send a message to another actor by addressing the corresponding message
handler. This operation is non-blocking and the effect is that the message
is sent to the actor’s mailbox. The message arguments must conform to the
message handler signature. In the example the worker sends a sol message
to the client using the expression client.sol(f(n)).

Each actor class A contains a single constructor A(...) with potential ar-
guments1. The client has the constructor Client(int v). It is not permitted to
send messages inside a constructor. If no constructor is specified (as in the
manager and worker), then this is the same as having an empty constructor
with no arguments. An actor can be spawned using the spawn keyword and
providing values for the arguments of the constructor. This can be seen in
the getsol message handler of the master, where a worker is spawned. The
constructor is invoked synchronously when the actor is spawned. Once an ac-
tor is spawned it enters an implicit loop. In each iteration the actor removes
a message from its mailbox and the body of the corresponding message han-
dler is executed, after which the next iteration starts. Therefore in a single
actor there is at most one message being handled at any given time. If there
is no message in the mailbox then the actor waits until a message arrives. It
is not assumed that messages arrive in order. However, it is assumed that if
a message is sent to a mailbox then it will eventually reach this mailbox and
if the actor is guaranteed to keep removing messages from its mailbox then
eventually the message will be removed from the mailbox. We refer to this
as the weakly-fair message receive assumption. Furthermore, it is assumed
that messages are never duplicated in transit.

In ActorPL there is a heap and actor classes can define fields which are
stored in the heap (see the val field in the client actor). All the fields of the
different actor instances are modelled as being part of the same heap. The
logic supports reasoning about disjoint heap locations by having a notion of
ownership for the heap locations that is associated with the actors. To do

1Constructors are not supported in [20].
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1 actor A {
2 handler start(B b, int i) {
3 b.init(i);
4 b.get(this);
5 }
6 }

Figure 3: Even though the init message is sent before the get message actor b might
receive the get message first.

this reasoning one needs to provide specification annotations for the actor
classes which is something that ActorPL supports as well. We present this
in Section 2.5.

2.2 Differences to existing actor implementations
There are many different programming languages and frameworks that sup-
port some form of the actor model. While the main idea in these imple-
mentations is the same, there are important differences. Next, we compare
ActorPL with some well-known actor languages.

2.2.1 Message ordering

As mentioned in Section 2.1 there are no assumptions made on the order in
which messages arrive in a mailbox. For example, consider the actor A in
Figure 3. Actor A first sends the init message to actor b followed by the get
message. Since no assumptions are made on message ordering b might receive
get before init. In certain existing actor implementations such as Akka and
Erlang it is guaranteed that init is received before get. Since ActorPL makes
less assumptions with respect to message ordering this means that verified
properties also hold for programs with stronger message ordering guarantees.

2.2.2 Behaviour change

In Section 1 we introduced the Akka program given in Figure 1. In this
program the manager actor changes its behaviour using the become primitive
and whenever it receives a message that it does not expect according to its
current behaviour an exception is thrown. Furthermore, the client value is
carried along from the Query message to the next behaviour. A possible
ActorPL encoding of the Akka actor program is given in Figure 4. We
introduce a global method fail() which encodes that an exception is thrown.

12



1 actor Client {
2 handler sol(int res) { ... }
3 }
4
5 actor Manager {
6 Client client;
7 State state;
8
9 Manager() { this.state := ACCEPTQUERY }

10
11 handler query(Client client, int n) {
12 if(this.state == ACCEPTQUERY) {
13 this.client := client;
14 this.state := WAITFORRESULT;
15 Worker worker := spawn Worker();
16 worker.compute(this, n);
17 } else {
18 fail();
19 }
20 }
21
22 handler result(int res) {
23 if(this.state == WAITFORRESULT) {
24 this.state := ACCEPTQUERY;
25 this.client.sol(res);
26 } else {
27 fail();
28 }
29 }
30 }
31
32 actor Worker {
33 handler compute(Manager m, int n) {
34 m.result(f(n));
35 }
36 }

Figure 4: ActorPL encoding of Akka actor program given in Figure 1.
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In our semantics one does not need to show the absence of such fail() methods.
We use them to explicitly indicate that an actor reacts differently to a certain
message compared to the expected case. For the encoding the idea is to
introduce a state field which indicates the current behaviour of the manager.
Furthermore, the actor’s heap is used to keep track of the client value. Of
course one must ensure that only the manager can change its own state and
client fields, otherwise the semantics of the encoding would not reflect the
semantics of the original program. We will see later how to ensure this using
specification annotations.

Note that one difference to the original Akka actor program in Figure 1
is that the actor provided in the query message is known to be a client ac-
tor. This difference stems from the fact that in Akka actor references corre-
sponding to different actor types are not distinguished. However, since the
manager’s behaviour does not depend on the type of the actor received over
the query message, this is just a technical difference.

2.2.3 Selective receive

Akka actors need to specify in each state all the messages that they accept. If
a message is removed from the mailbox in a state where it is not accepted, this
message is classified as an unhandled message and an exception is thrown.
This can be encoded by ActorPL, as shown in Section 2.2.2, by storing the
current state of the actor in its local heap and checking in each message
handler if the actor is in a state where the message is accepted. Erlang
supports a different approach. In Erlang it is possible to specify which type
of messages are removed from the mailbox in any given state. This means
it is guaranteed that only the specified messages will be removed from the
mailbox and all other messages remain in the mailbox. If a message is in the
mailbox that currently is not accepted, it is not regarded as a failure: the
message may be removed in a future state where it is accepted. This feature
is known as selective receive.

One can encode selective receive in ActorPL with some semantic differ-
ences. The idea is that one again uses the local heap in the actor to identify
the current behaviour and to track information passed between behaviours.
Whenever a message handler is invoked, one can use a conditional statement
to figure out if the message that was just removed from the mailbox is ac-
cepted. If the message is not accepted, then one can send the message back to
oneself which puts it back into the mailbox. This approach is similar to how
Akka simulates selective receive using stashing. The semantic difference is
that messages that are not accepted are explicitly removed (and reinserted).
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2.3 Introducing actor services
The fundamental ingredients of the actor services logic are actor services.
Actor services are assertions that express response properties. We introduce
them by considering the actor program given in Figure 2. For example, the
actor service

W.sendsol(C, n) C.sol(f(n)) (2.1)

holds in any program state where we use the notation that a variable is
universally quantified if its first occurence in the actor service is underlined
2. It states the following: for all sendsol messages received by worker W in
the future (with respect to the current state) with client C and integer n as
arguments, it is guaranteed that eventually client C will receive a sol message
with argument f(n). By “W receives” we mean W removes the message from
its mailbox. It can be easily seen by inspecting the implementation that this
property holds in any program state.

The left hand side of an actor service (in this case W.sendsol(C, n)) is
called the trigger message and the right hand side of an actor service is called
the response pattern describing the different possible response messages (in
this case only one possible response message is specified, namely C.sol(f(n))).
Generally speaking, if an actor service holds in the current state then this
means that for all future trigger messages eventually one of the response
messages will be sent. It is important to note that the response message is
guaranteed to be sent strictly after the trigger message is received.

Note that actor services do not specify who sends the response message. If
an actor service holds in the current state then it holds in every future state
as well. In summary one can say that actor services express two different
things:

1. They express a liveness property stating that some response message
will certainly occur in the future if a trigger message is received.

2. They express a functional property which relates the values in the re-
sponse state with the values in the trigger state.

2.4 Actor services dependent on the program state
The actor service (2.1) holds in all program states. In particular, it expresses
a response property in terms of arbitrary workers. It is possible to derive an
actor service from (2.1) in terms of a specific worker. For example, in the
program state corresponding to line 11 in Figure 2 the local variable w1 points

2Formally one would write ∀W, C, n. W.sendsol(C, n) C.sol(f(n))
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to a worker actor. One can instantiate the universally quantified worker
variable in (2.1) to get the actor service w1.sendsol(C, n)  C.sol(f(n)).
This actor service depends on the program state since it only talks about the
trigger messages received by worker w1. It can be derived in those program
states where w1 is a local variable pointing to a worker actor; the program
state corresponding to line 11 is one such state.

It is also possible to instantiate the actor service with heap-dependent
expressions, but to understand when this is fine and to present the meaning
of the resulting actor services one must understand the differences between
expressions in the trigger message and response messages. All the heap-
dependent expressions in the trigger message are evaluated in the current
state (i.e. in the state in which the actor service holds). All the heap-
dependent expressions in the response message are evaluated in the corre-
sponding response state (i.e. in the state in which the response message is
sent). This distinction might seem strange but it enables the derivation of
actor services where certain fields are only set appropriately right before the
response is sent. For example, consider the following actor service that can
be derived in an arbitrary program state

M.getsol(C) M.worker.sendsol(C,C.val)

This actor service states that whenever a master M receives a getsol message
in the future then eventually a sendsol message will be sent to the worker
stored in the worker field of M at the time when the message is sent. The
worker field is only set once the master receives the message, so if M .worker
were evaluated in the current state then this actor service would have a
different meaning and it would not hold in the program.

This interpretation of heap-dependent expressions requires caution when
instantiating actor services with heap-dependent expressions. One may only
instantiate a quantified variable with a heap-dependent expression if either
the variable only appears in the trigger message (since there the expression
is evaluated with respect to the current state) or if one can show that the
expression evaluates to the same value in all future states (using immutability
predicates which we introduce later). Since the worker variable in actor
service (2.1) only appears on the left hand side of the actor service we can
soundly instantiate it with this.worker to get

this.worker.sendsol(C, n) C.sol(f(n))
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2.5 Specification annotations, permissions and
immutability

Actor programs often make implicit assumptions which, if violated, lead to
undesired program behaviour. For example, in Figure 4 an implicit assump-
tion is that only the manager can modify its own client field. If this as-
sumption were violated, then the message sent on line 25 would go to a
potentially unknown client, which does not reflect the intended behaviour
of the program. Verification of such actor programs requires making these
assumptions explicit. In the actor services program logic there are three
different types of specifications for actor programs: message preconditions,
actor invariants and constructor postconditions.

Message preconditions are assertions that can be provided as a specifica-
tion for a message handler. Any actor that sends a message m must satisfy
the message precondition and in the message handler implementation one
may assume this precondition. Hence message preconditions restrict the be-
haviours of the program, since they restrict when a message can be sent.
This means when verifying an ActorPL program one must make sure that
the message preconditions allow all the intended program behaviours.

For each actor class one can specify an actor invariant assertion. The actor
invariant must be guaranteed to hold when an actor is spawned, i.e. at the
end of the corresponding constructor. Furthermore, it must be guaranteed
to be invariant with respect to all message handlers in the actor. This means
the actor invariant may be assumed at the beginning of the message handler
but must be ensured at again at the end of the message handler.

One may also specify a constructor postcondition3 for the constructor of
an actor. This must be guaranteed (along with the actor invariant) at the
end of the constructor and may be assumed by the entity spawning the actor.

In these specifications the logic supports reasoning about the heap using
permission-based reasoning in a similar fashion to implicit dynamic frames [18].
The accessibility predicate assertion acc(x.f) represents exclusive permission
to heap location x.f . If this assertion holds, then no one else has access to this
heap location and therefore it is safe to write to and read from the location.
For example, we may put acc(this.worker) into the master’s actor invariant
in Figure 2 to ensure that the master may always write to this.worker safely.

The immutability predicate assertion immut(x.f) represents the immutable
permission to heap location x.f . It states that x.f is guaranteed to have the
same value from the current program state onwards (i.e. in all future states).
Hence, it is safe to read from a heap location if such a predicate is held. The

3Since [20] do not use constructors they also do not have any constructor postconditions.
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logic permits transforming an exclusive permission acc(x.f) into immutable
permission immut(x.f). This transformation is irreversible.

In specifications one may use the separating conjunction (see [16]) A ∗B
where A and B are assertions. A ∗B holds if

• For each immutability predicate specified in A or B it is guaranteed
that the corresponding heap location is immutable.

• The sum of the exclusive permissions specified in A and B is held.

• A and B hold.

This means that acc(x.f) ∗ acc(x.f) |= false since one cannot own the ex-
clusive permission twice and also acc(x.f) ∗ immut(x.f) |= false since im-
mutability implies that no one has exclusive permission.

Actor invariants and message preconditions must be self-framing. An
expression is framed by an assertion, if permissions to all heap-dependent
subexpressions are held in the assertion. An assertion A is self-framing if it
frames all expressions occurring in A. This guarantees that one may talk
about all the mentioned heap locations safely. For example, acc(x.f) ∗ x.f
is self-framing, since it holds exclusive permission to x.f . immut(x.f) ∗ x.f
is self-framing as well. The expression x.f is framed by assertion acc(x.f).

One may transfer permission to heap locations over messages by specify-
ing the permissions in the corresponding precondition. For example, specify-
ing acc(x.f) ∗ acc(y.f) in the precondition means that the sender must give
up the permissions to x.f and y.f .

2.6 where-clauses
Until now we have only considered actor services that describe a liveness
property and a basic functional property which relates the arguments in the
trigger message with the arguments in the response message. In general, one
can also relate part of the program state in the trigger state (i.e. the state
when the trigger message is received) with part of the program state in the
response state (i.e. the state when the response message is received) using
where-clauses.

An actor service is of the form ∀⇀Xj.(e.m(⇀ei) R) where R is a response
pattern. A response pattern consists of a set of response messages (denoted
r1 | r2 | ... | rn). The meaning is that whenever the trigger message is received
in a future state, one of the response messages will be sent. Until now we
have only considered response messages of the form e′.m(⇀e′i), but the logic
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permits response messages of the form

e′.m(⇀e′i) where A

where A is the where-clause of the response message. A is a two-state asser-
tions which can contain old expressions of the form old(e) where e is eval-
uated in the trigger state. All expressions that are not old expressions are
evaluated in the response state. Furthermore, A cannot contain accessibility
predicates.

The meaning of an actor service with such a response message r is that
if r is sent, then A will be guaranteed to hold at that point. For example,
consider the following actor service

M.getsol(C) ∃n. M.worker.sendsol(C, n)
where (old(C.val) = C.val) ∗ n = C.val

where M denotes a manager actor from Figure 2. This actor services states
that whenever M receives a getsol message, then eventually a sendsol message
will be sent to the manager’s worker. Additionally, we have that the val field
of the client C when the getsol message is received is the same as when
the response is sent and the value equals the input that is provided sendsol
message.

Where-clauses may only mention heap-dependent expressions that are
framed. This means that these expressions are either framed by immutability
predicates in the where-clause itself or by the corresponding preconditions.
In the given actor service since there are no immutability predicates in the
where-clause, old(C.val) must be framed by the precondition of M.getsol(C)
and C.val must be framed by the precondition of M.sendsol.

An intuition why immutability predicates are permitted and accessibility
predicates are not permitted in such where-clauses is that immutability pred-
icates essentially express knowledge about a heap-location that remain true
in every future state and hence such an immutability predicate may be freely
duplicated. Accessibility predicates, however, contain unique ownership that
cannot be duplicated, making their meaning in a where-clause unclear.

If the framing conditions hold, then we say that the where-clause is
framed. The motivation for these conditions will become clear in Section 2.7.

2.7 Proving actor services
In the previous sections we only talked about what the meaning of actor
services are but not how they can be proved. The actor services logic differ-
entiates between local actor services and non-local actor services. Local actor
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services are actor services that can be proved by just considering the imple-
mentation of the trigger message handler. For example, actor service (2.1)
is a local actor service. In the worker’s sendsol message handler in Figure 2
the client’s sol response message is sent. Local actor services hold in any
program state.

The logic defines a Hoare logic to prove such local actor services. The
main idea is that one may assume at the beginning of the message handler
the actor invariant and the message precondition. One must then under
these assumptions show that the message handler is valid. This means that
all the field reads and writes are valid (the permissions to these fields are
held), all the preconditions are respected for the messages sent and the actor
invariant is established at the end. Apart from showing validity, one must
show that at least one of the response messages is sent in each possible trace
and the where-clause holds. In this case old expressions in the where-clause
are evaluated in state at the beginning of the message handler, while all other
expressions are evaluated when the response is sent.

A set of rules is defined by the logic with which one can derive (generally
non-local) actor services from a set of derived local actor services in a par-
ticular program state. One such rule involves the instantiation of universally
quantified variables as presented in Section 2.4. One of the most important
rules involves the composition of two actor services. We illustrate the rule
by example.

Consider the example given in Figure 2. We specify the permission
acc(client.val) in the precondition of the manager’s getsol message handler
making the read of the client.val field valid. We specify the same permission
in the worker’s sendsol message handler. The remaining permissions to the
fields are held in the corresponding actor invariants guaranteeing the validity
of the message handlers. We can derive the following local actor service for
the manager:

M.getsol(C) ∃W,n. W.sendsol(C, n)
where (old(C.val) = C.val) ∗ n = C.val

(2.2)

There are two aspects we have not seen before in this local actor service.
First, we use existential quantifiers in the response message for the worker
which allows us to abstract over implementation details. Second, we have
a non-trivial where-clause. Note that the where-clause is framed (see Sec-
tion 2.6) since permission to C.val is held in the trigger state (to frame
old(C.val)) as well as in the response state (to frame C.val). The local actor
service clearly holds since C.val is not changed between trigger and response.

This actor service states that whenever the trigger message is received,
eventually the response message W.sendsol(C, n) will be sent for some W and
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some n. If we can show that in every future state (with respect to the current
state) for client C and for all workers W ′ and integers n′ that whenever the
sendsol(C,n) message is received eventually a response message, then we can
compose these two properties.

We can derive the following local actor service (which strengthens local
actor service (2.1)) for the worker:

W ′.sendsol(C, n′) C.sol(f(n′)) where old(C.val) = C.val (2.3)

We specify acc(C.val) in the precondition of the client’s sol message (essen-
tially sending the permission back to the client) which ensures the where-
clause is framed. Since this is a local actor service it holds in every program
state: we can show that it holds in every future state for every worker W ′

and every integer n′. Therefore we may compose (2.2) with (2.3) to get

M.getsol(C) ∃n. C.sol(f(n)) where (old(C.val) = C.val) ∗ n = C.val

Informally, one may derive the where-clause in the composed actor service
as follows. Since where-clauses are framed it is guaranteed that all the heap
locations mentioned stay the same between the sendsol response message
being sent in (2.2) and the sendsol trigger message being received in (2.3).
Hence C.val in the where-clause of (2.2) evaluates to the same value as
old(C.val) in (2.3). From this observation the remaining reasoning steps are
straightforward.

The composition rule uses that if a message is sent to an actor, then it will
be eventually received and processed. This holds because of the assumptions
introduced in Section 2.1.

Note that the existential quantifier for the worker has disappeared since
the worker does not appear any more. This composition rule shows one of
the main modularity aspects of the logic, as allows describing end-to-end
behaviours, abstracting away what happens in between. Furthermore, these
behaviours may themselves be composed again.

The formal composition rule can be found on page 13 of [20].

2.8 Limitations
We present the main limitations of the actor services logic that we address in
this thesis. One limitation is that the logic cannot deal well with cases, where
one must track the actor’s local state over a sequence of multiple messages.
There are two options (to the best of our knowledge) to tackle such scenarios
in the current logic. One option is to pass information about the actor’s
state over messages to other actors, even though this information is not used
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by any of the other actors. This option is unsatisfactory, since it exposes
unnecessary information.

Another option is to enforce that the relevant state does not change using
immutability predicates. This option is also not optimal, because it restricts
the program’s behaviour. Furthermore, if one chooses a heap location to
be immutable, then it must have the same value from that point onwards
forever. Hence there is no way to ever deallocate this heap location, since
this would violate the immutability property.

Since this scenario of tracking an actor’s state over multiple messages
appears often in protocol-based programs, this limitation is relevant for such
programs. In Section 3 we illustrate the limitation of the logic by considering
a protocol-based program (we show both options that the logic currently
provides to tackle the limitation). In Section 4, we show how to lift this
limitation for a class of protocol-based actor programs.

Another limitation is that actor services can only have single trigger mes-
sages and single response messages (alternative response messages are possi-
ble but not the guarantee that more than one response message is sent). We
address this limitation in Section 5.
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3 Protocol reasoning using the original actor
services logic

Consider the protocol-based Akka actor program in Figure 1 which was in-
troduced in Section 1. The corresponding encoding in ActorPL introduced in
Section 2.2.2 is shown in Figure 4. The desired response property in the orig-
inal Akka program is that whenever the manager gets a Query message then
eventually the client specified in the Query message will get a Sol message
with value f(n) where n is the value specified in the Query message. This
response property holds only if one can guarantee the following properties:

1. When a Query message is received by the manager, then the manager
will accept this message and will not throw an exception. If the branch
were taken where an exception is thrown, then the solution to this
query would never be sent.

2. After sending the Compute message, the manager only receives the
Result message containing f(n) and not some other Result message. If
this were not the case, then potentially the wrong solution would be
sent.

The first property states that the manager must only receive expected Query
messages. The response property can be expressed by the following actor
service in the ActorPL encoding:

M.query(C, n) C.sol(f(n)) (M1)

In this section we attempt to verify this response property using the original
actor services logic. As a result, we will gain an insight into the challenges
of verifying such properties modularly in protocol-based actor programs and
gain an understanding of the limitations present in the original actor services
logic with respect to these programs. In the following approaches we ignore
the issue of exposing implementation details in specifications. Instead, we
focus on higher-level modularity aspects. In Section 4 we also address the
implementation detail issue.

3.1 Ownership transfer
As already discussed in Section 2.2.2, to ensure that the semantics of the
encoded ActorPL program reflect the semantics of the original Akka program
we need to make sure that only the manager can modify its own state and
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client fields. We can ensure this by keeping at least partial permission to
these fields in the manager’s actor invariant at all times.

As a first approach let us put the exclusive permission to both fields in
the manager’s actor invariant. This way we can be sure that all the field
writes in the manager implementation are valid. We can then derive the
following local actor service for the manager (assuming the precondition of
the compute message sent in the manager implementation is respected):

M.query(C, n) ∃W. W.compute(M,n) | fail()

In the response pattern we cannot just provide the compute response message
because the query message may be received when the manager is waiting for
a result which leads to a failure. This local actor service will not be enough
to derive the desired response property because we will never be able to get
rid of the fail() branch.

One way we can make sure that the query message will be received at a
time when the manager is ready to accept query messages (i.e. its state field
evaluates to ACCEPTQUERY) is to provide a precondition that ensures the
query message can only be received in such states. This would ensure that
there are no unexpected query messages in all program contexts that respect
the precondition.

We enable this by using fractional permissions [5] which is an extension
of the exclusive permissions introduced in Section 2.5. It generalizes accessi-
bility predicates to have the form acc(x.f, q) where q is between 0 and 1. If q
is 1 then this represents the exclusive permission and otherwise it represents
partial permission. Exclusive permission is required to write to a location
and partial permission is sufficient to read from a location. It is guaranteed
that the sum of all fractions for a particular heap location always add up
to 1 (we have acc(x.f, q1) ∗ acc(x.f, q2) ⇔ acc(x.f, q1 + q2) if q1 + q2 ≤ 1,
otherwise the state is inconsistent).

To ensure that no one else can modify the field we keep half of the exclu-
sive permission to this.state in the manager’s actor invariant at all times. The
other half permission can be sent around. Hence we define the precondition
of the query(c,n) message handler as follows:

acc(this.state,12) ∗ this.state = ACCEPTQUERY

Analogously, we define the precondition of the result(res) message handler as
follows:

acc(this.state,12) ∗ this.state = WAITFORRESULT
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To make sure that the worker can send the result message we define the
precondition of the worker’s compute(m,n) message handler as:

acc(m.state,12) ∗m.state = WAITFORRESULT

Note that with these preconditions all the manager’s message handlers are
valid (see Section 2.7 for the validity of message handlers), assuming the
precondition of the sol message sent to the client is respected. The state
field writes are well-defined since the half permission from the precondition
together with the half permission from the invariant give the exclusive per-
mission. The precondition of the compute message sent to the worker is
respected since half permission to the state field can be given up and it has
the correct value. Furthermore, the preconditions guarantee that the man-
ager only receives messages that it expects independent of the context in
which the manager is used (as long as one makes sure that all actors in that
context respect the preconditions).

So the main idea here is that the manager gives up partial ownership to
its own local heap and transfers it to the worker. This partial ownership
along with the information about the heap value plays the role of a witness
that ensures that the manager is ready to accept a specific message. Without
transferring this ownership the worker would have no way of ensuring that
the manager will accept a result message. Let us now see what we can derive.

With these preconditions we can prove that the fail() branch is never
taken in the query message handler. Hence we can derive the following local
actor service for the manager:

M.query(C, n) ∃W. W.compute(M,n)

For the worker we can derive the following local actor service:

W.compute(M,n) M.result(f(n))

Since the existentially quantified variable in the manager’s local actor service
is a worker and the worker’s local actor service is applicable for every worker
in future state (see Section 2.7 for the composition of actor services), we can
compose the two actor services in any program state to get

M.query(C, n) M.result(f(n))

Furthermore, we can derive the following local actor service for the manager
since the fail() branch is never taken in the result message handler:

M.result(r) M.client.sol(r)
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We may instantiate r with f(n) and then compose these two actor services
in any program state to get

M.query(C, n) M.client.sol(f(n))

While this derived actor service certainly holds, it is not exactly the same as
the desired actor service (M1). In our derivation we have lost the connection
between M.client and the initial argument C. Without this connection the
response property is not strong. It just states that if the manager receives
a query message then eventually some client (we only know that at the time
of the response this client is stored in M.client4) will get a sol message with
value f(n). In the next approach we show one way to recover the connection
between M.client and C.

As a side remark, we did not specify what happens with the half permis-
sion to the state field gained by the manager from the reception of the result
message. One option would be to transfer it to the client over the sol message
(adjusting the precondition of the sol message handler accordingly), which
would allow the client to send another query message or to delegate this per-
mission to someone else. Another option would be for the manager to keep
this permission. To do the bookkeeping in the manager’s actor invariant for
this second option one would need more information in the manager which
could be gained by adding ghost fields5.

3.2 A complete but non-modular approach
3.2.1 High-level strategy

In the previous approach we derived

M.query(C, n) M.result(f(n))

This actor service is not precise enough for our purposes, because we cannot
relate the program state when the result response message is received to the
program state when the query message was received. To derive the desired
actor service (M1) we need to know that M.client evaluated in the response
state evaluates to C. The strategy in this approach is as follows. First,
we establish the fact that M.client evaluates to C when the manager sends
the compute message to the worker upon receiving the query message. We
then make explicit in each of the actor services that M.client does not change.

4See Section 2.4 for heap-dependent expressions in actor services.
5Ghost fields are fields that are only used for the purpose of verification and which have

no effect on the behaviour of the program.
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The way this is achieved is by sending partial permission to M.client over the
messages, such that each actor that takes part in the response can establish
this fact independently.

3.2.2 Derivation

We first define the specifications for the manager and the worker. The man-
ager’s specification is given by

Precondition for query(c,n):

acc(this.state,12) ∗ this.state = ACCEPTQUERY

Precondition for result(res):

acc(this.state,12) ∗ this.state = WAITFORRESULT ∗ acc(this.client,12)

Manager’s actor invariant:

acc(this.state,12) ∗

(this.state = ACCEPTQUERY⇒ acc(this.client)) ∗

(this.state = WAITFORRESULT⇒ acc(this.client,12))

The worker’s specification is given by

Precondition for compute(m,n):

acc(m.state,12)∗m.state=WAITFORRESULT∗acc(m.client,12)

As discussed in Section 3.2.1 the idea is to send partial permission to
the manager’s client field over the messages, so that we can prove in each
step that the field has not changed. Without this permission, we would
not be able to prove it in every step, because someone else may hold the
full permission to the field and may hence modify it. This is the reason we
specify permission to the client in the precondition of compute, so that the
permission can be transferred to the worker. Since the manager needs to give
up this permission, it can only retain the remaining (half) permission in the
actor invariant, while it is waiting for the result message. This is why the
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manager does not hold exclusive permission when its state field evaluates to
WAITFORRESULT.

The permisson to the client field received by the worker over the compute
message has to be transferred back to the manager over the result message,
because again we want to ensure that the client field will not change between
the worker sending result and the manager receiving result. Hence the per-
mission is specified in the precondition of the result message handler. The
precondition for query is the same as in the previous approach.

We can now show the derivation. We can derive the following local actor
service for the manager

M.query(C, n) ∃W. W.compute(M,n) where M.client = C

Here we establish the fact that M.client evaluates to the client C given in the
query message. Note that the where-clause is framed due to the precondition
of compute. Next, we derive the following local actor service for the worker

W.compute(M,n) M.result(f(n))
where old(M.client) = M.client

Recall that old expressions are evaluated in the state when the trigger mes-
sage is received and other expressions are evaluated in the state when the
response message is sent (see Section 2.4). Here we establish that the client
field does not change between compute being received and the result response
message being sent. This is only possible because we send the permission to
this field to the worker, otherwise the worker would not be able to establish
this fact. We can compose the two derived local actor services to get

M.query(C, n) M.result(f(n)) where M.client = C (3.1)

Since we established in each step that the client field did not change, we could
now establish that when the manager receives the result response message the
client field evaluates to the client C when the query was sent. We have now
recovered this connection. We want to now compose this actor service with
the local actor service that describes the manager’s reaction to the result
message. Recall that in the previous approach we express this reaction using
the local actor service

M.result(r) M.client.sol(r)

If we composed this actor service with actor service (3.1), we would not be
able to deduce that the client field when the sol message is sent evaluates to
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C because we do not know if the field has changed. One option would be to
make it explicit that the client field has not changed, but for this we need
to transfer permission to the client field over the sol message (otherwise the
where-clause is not framed). Instead, we take a cleaner approach. We derive

M.result(r) ∃C. C.sol(r) where C = old(M.client)

Here we express the client to whom the sol message is sent using an existen-
tially quantified variable and state that it evaluates to the same value as the
manager’s client field when the result message is received. This way it is pos-
sible for the manager to retain the permission to the client field and establish
the actor invariant. Composing this actor service with actor service (3.1)
leads to

M.query(C, n) C.sol(f(n))

This is exactly the actor service we wanted to derive in the first place.

3.2.3 Discussion of approach

While we have achieved our goal of verifying the main response property for
the actor program, there is an issue with the outlined approach related to
modularity. In the precondition of the worker’s compute message handler
partial permission to the manager’s state and client fields are needed. One
can motivate the presence of the partial permission to the manager’s state
field from the worker’s viewpoint because the worker wants to at some point
send a result message to the manager and hence the worker needs a guarantee
that this message will not lead to a failure (i.e. the message is accepted).
So this permission has a clear meaning for the worker6. However, from the
worker’s viewpoint it is not clear why it requires permission to the manager’s
client field. The only motivation for the worker to get this is because the
precondition of the result message handler requires that permission.

To understand why this is even more of an issue, consider the following
scenario. Suppose the worker W does not immediately send the result mes-
sage to the manager upon receiving the compute message. Instead, W sends
a message to some subworker S which then sends the computed result back
to W at which point W sends the result to the manager. A message sequence
diagram showing this scenario is given in Figure 6 on page 51.

To derive the same response property using the outlined approach the
worker would have to send the manager’s client field permission to S which
sends it back to W . This is an issue because S should not have to know

6We ignore the fact that the implementation details are being exposed for now and
come back to it in Section 4.
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anything about the manager, since S never interacts with the manager in
any form. If S needed to know about the manager then this would not be
modular, because a change in the manager would could affect S even though
they are independent. It should be possible to use S in scenarios which do
not involve the manager at all. Note that since W knows the value of the
state field, the corresponding permission would not have to be sent around to
derive the desired actor service. As protocols involve more actors one would
have to send permissions to multiple fields that do not change across the
whole topology which makes this an even bigger issue.

3.3 A modular but incomplete approach
3.3.1 High-level strategy

Consider actor service

M.query(C, n) M.result(f(n))

which was derived in Section 3.1. As already stated before in Section 3.2.1
the main issue is that we cannot relate M.client in the response with C. In the
approach outlined in Section 3.2 we showed how to recover this connection
between M.client and C by transferring permission to M.client. However, as
we discussed in the same section, the approach breaks modularity.

We follow a different strategy in this approach. First, we establish that
M.client evaluates to C when the manager sends the compute message. Next,
we make sure that at the point when M.client is set to C (before the compute
message is sent) that it is not going to possible to ever change M.client. This
means we ensure that M.client becomes immutable. Hence in every future
state after the compute message is sent, we can be sure that M.client evaluates
to C. We discuss the consequences of this decision at the end of the section
(in particular, we are restricting the program).

3.3.2 Derivation

We use the same preconditions as in the approach presented in Section 3.1,
where partial permission to the manager’s client field is not given away. The
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main difference lies in the manager’s actor invariant. We define it as follows:(
acc(this.client) ∗ this.client = null ∗ acc(this.state,1

2) ∗
this.state = ACCEPTQUERY

)
∨(

immut(this.client) ∗ acc(this.state,1
2) ∗

this.client 6= null ∗ this.state = WAITFORRESULT

)
∨(

immut(this.client) ∗ acc(this.state) ∗
this.state = ACCEPTQUERY

)

The actor invariant consists of a disjunction of three mutually exclusive sub-
assertions (only one of the three subassertions can hold at any given point).
The first subassertion describes the manager when it is spawned. In this state
client field may still be mutated since no query has been received. The second
subassertion describes the manager when the first query message has been
received and the manager is waiting for the result message. In this state the
client field is immutable (following the strategy described in Section 3.3.1).
The third subassertion describes the manager when the result message has
been sent. In this state the exclusive permission to the state field is, ensuring
that no one can send any query messages anymore, since we cannot mutate
the client field at this point anymore.

Next, we discuss the validity of the message handlers, which is not com-
pletely trivial due to the complexity of the actor invariant. Suppose the
manager receives a query message. The precondition of query provides half
permission to the state field where it evaluates to ACCEPTQUERY. Hence
right at the beginning of the query message handler one can deduce that
only the first subassertion of the actor invariant can hold (the other two are
inconsistent together with the precondition). Hence at the beginning of the
query message handler we have

acc(this.client) ∗ this.client = null ∗ acc(this.state) ∗
this.state=ACCEPTQUERY

The write to the client field in this message handler is valid. The precondition
of the sent compute message is respected, since just half permission to the
state field must be given up which is obtained in the precondition and the
state field must evaluate to WAITFORRESULT, which it does. At the end of
the message handler one can transform the exclusive permission to the client
field into an immutability permission and re-establish the actor invariant.

Next, suppose the manager receives a result message. Using similar rea-
soning as in the query case one can show that at the beginning of the query
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message handler the following assertion holds
immut(this.client) ∗ acc(this.state) ∗
this.client 6= null ∗ this.state = WAITFORRESULT

After changing the state field the actor invariant can be established. As
mentioned before, from this point onwards it is not possible for anyone to
send a query message since the exclusive permission to the state field is always
held in the actor invariant.

Now that we have shown that the manager’s message handlers are valid
with respect to the chosen actor invariant and preconditions, we derive the
desired response property. We have the following local actor service for the
manager

M.query(C, n) ∃W. W.compute(M,n)
where immut(M.client) ∗M.client = C

Here we establish that the client field evaluates to C given in the query trigger
message. Furthermore, we establish that at the point the compute message
is sent the client field is guaranteed to be immutable. The where-clause is
framed since it contains the immutability predicate for the client field. We
have the following local actor service for the worker

W.compute(M,n) M.result(f(n))

We can compose the these two local actor services to get
M.query(C, n) M.result(f(n))

where immut(M.client) ∗M.client = C

This is possible because we know from the where-clause of the first local
actor service that when the compute message is sent M.client is immutable
and evaluates to C, hence this also holds in every future state. The response
message is sent in a future state, hence we can carry along the fact. So
the immutability feature allows us to retain the fact without sending any
permission for the client field to the worker. We have the following local
actor service for the manager

M.result(r) M.client.sol(r)

We can compose the previous actor service with an instantiation of this local
actor service to get

M.query(C, n) C.sol(f(n))

which is the desired response property. In this step we again use the im-
mutability of M.client.
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3.3.3 Discussion of approach

The outlined approach is modular in the following sense. Consider the sce-
nario discussed in Section 3.2.3 for which the message sequence diagram is
given in Figure 6 on page 51. In this scenario the worker sends a message to
the subworker and uses the result received from the subworker for the result
sent to the manager. In the outlined approach the subworker would never
get to know about the manager. Permission to the manager’s fields does not
have to be sent to the subworker. Hence the subworker can be used in con-
texts where the manager may not even exist. We conclude that immutability
can be used to achieve modularity.

However, this approach has severe drawbacks. The manager can only
process a single query message since it cannot mutate its client field after the
first query. Hence the manager cannot be reused. This means we have proved
a property about a restricted program that does not reflect the semantics of
the original program which was for the manager to deal with multiple query
messages. Another disadvantage is that there is no way for the manager to
deallocate the client field, once the first query message has been received as
explained in Section 2.8.

3.4 Conclusion
The presented approaches show the trade-off that needs to be made in the
original actor services logic between modularity and a more general result
(reuse of actors, support for deallocation) in actor-based protocol programs
(as hinted at in Section 2.8). There does not seem to be an easy way to
get the best of both worlds without extensions to the logic. In the next
sections we present an approach that gets the advantages of both presented
approaches for an interesting class of protocol-based actor programs.
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4 Modular session-based reasoning in actor
programs

In this section we present our main technique for the verification of response
properties in protocol-based actor programs. First, we introduce the notion
of a session, which describes a specific interaction in the actor governed by a
protocol, and motivate its use in our setting. We then develop initial machin-
ery to support sessions in an extended version of the actor services program
logic. Next, we present fundamental challenges and corresponding solutions
in this setting related to tracking information during a session and providing
modular specifications. We then outline how the developed technique can
be potentially generalized to an even larger class of programs. Finally, we
identify a class of programs for which our technique is effective.

4.1 Motivating sessions
In Section 3 we tried to use the original actor services logic to verify the actor
service (M1) for the actor program given in Figure 4. The response property
states that whenever the manager gets a query message, then eventually the
client specified in this message will get a correct result message. The response
property holds if one can guarantee the absence of unexpected messages
received by the manager and that only the correct result message is received.
We managed to capture these properties by adjusting the preconditions of
the message handlers, restricting when a message can be sent. However, we
could only derive the actor service if we either sacrificed modularity or we
further restricted the program using immutability.

The heart of the problem in all the presented approaches lies in the com-
position of the following two actor services

M.query(C, n) ∃W. W.compute(M,n)

W.compute(M,n) M.result(f(n))
which can be composed to

M.query(C, n) M.result(f(n)) (4.1)

Actor service (4.1) states that after the manager receives a query message, it
will eventually receive the correct result message. This is an important part
of the behaviour but does not precisely describe the situation. The problem
is that actor services do not tell us when the response will be sent/received.
In this particular case by just looking at the actor service we do not know
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which result message is meant: maybe it is a result message corresponding to
a different query that was received later by the manager. As a result, we do
not know what M.client (which is set to the client C once the trigger message
is received) evaluates to when the result message is received. We would like
to have an actor service that expresses the following:

If the manager receives a query trigger message, then eventually
the manager will receive the result message with value f(n). Fur-
thermore, we have that the result message corresponds to the re-
sult that the manager is expecting with respect to the query trigger
message (hence no further query or result messages are accepted
by the manager before it receives this result message).

If we had such an actor service, then we would know which result message
is meant. However, the actor service would not be sufficient to ensure that
M.client has not changed, because there could be message handlers other
than result and query in the manager which could change M.client. We could
get this guarantee, if we additionally ensured by just considering the man-
ager’s implementation, that until the expected result message is received, the
manager’s state required for the query is not modified. Such reasoning would
be fundamentally different to the approach in Section 3.2 where we explicitly
talk about M.client in each step which breaks modularity. Here we need not
mention M.client outside of the manager. To enable expressing such an actor
service, we need a way to express that a result message corresponds to a query
message. One way to do this is to use the notion of a session.

A session in our setting represents a concrete interaction governed by an
abstract protocol from the point of view of a single actor. It starts at some
point and potentially finishes at another point. The protocol states how the
session progresses. For a specific protocol there can be multiple sessions for a
single actor. In our setting we only permit a single session to be active at any
given point for a particular protocol in an actor. Once a session governed by
a protocol ends, another session for the same protocol can be started in the
actor. However, multiple sessions corresponding to different protocols may
be active simultaneously in an actor.

In our example, the interaction starting from the moment the manager
can receive a query message until it sends the corresponding sol message to
the client is one session that is governed by a specific protocol which we call
SM. Once the manager has sent the sol message, the current session is finished
after which another session governed by SM can be started (however, one
can choose to start the session at any point later as well in general). In the
session first a query message is expected and once this message is received
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a result message is expected next. We represent these stages using protocol
states. Let us call the protocol states Q (where queries are received) and
R (where results are received). The SM protocol dictates that the session
progresses from Q to R. We call the current protocol state of a session the
session state. To distinguish different sessions we use an abstract session
identifier. Using this idea of a session we can rephrase what our actor service
should express:

If the manager receives a query trigger message, then eventually
the result message with value f(n) will be received. Furthermore,
the following holds:

• When the trigger message is received, the manager’s session
governed by SM is in the Q state.
• When the response message is sent, the manager’s session

governed by SM is in the R state.
• The session identifiers of the sessions governed by SM in the

trigger and response states are identical (i.e. they refer to
the same session).

This description is clearer and more precise than the previous one. Suppose
we can extend the actor services logic such that one can derive such an actor
service. How can we deduce that M.client has not changed between the
trigger and response states? This should become possible if we enrich the
description of a protocol using a protocol invariant that describes for each
session state what properties hold and that may relate different session states.
In this particular case the protocol invariant could state that the M.client
field does not change during a session once it has reached the R state (but
once the session finishes it may be modified again). If one knows this, then
answering the question becomes simple.

Note that in this example the session state directly corresponds to the
value of the state field. If the state field evaluates to ACCEPTQUERY,
then the session state is Q and otherwise if the state field evaluates to
WAITFORRESULT, then the session state is R. So the session state and
therefore the session cannot be modified by the manager without the exclu-
sive permission to the state field. This means the partial permission to the
state field that is sent around in the approaches presented in Section 3 cor-
responds to partial session ownership. Without this ownership, the manager
cannot progress or finish its session. To make this more direct, instead of
passing around permission to the state field7 which exposes implementation

7Recall that we needed to pass this permission around to be sure that messages sent
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details, we can pass partial session ownership that is represented by a session
predicate abstracting over implementation details.

4.2 Introducing sessions in the actor services logic
In Section 4.1 we motivated the concept of a session and introduced basic
concepts informally. Next, we make these concepts explicit and show how
they can be incorporated into the actor services program logic. This in-
corporation, for now, is done by mainly altering how message handlers are
verified.

4.2.1 Protocol descriptions

Sessions are specific to a single actor and they are parameterized by protocol
descriptions for that actor type. Protocol descriptions describe part of the
behaviour of an actor during a session that it governs. A protocol description
ρ is defined by

• the actor type τρ for which the protocol description is defined

• a set of protocol states PStateρ

• a transition relation @ρ that is a strict partial order on the protocol
states that specifies to which states an actor may move during a session

• a protocol invariant Invρ(s) that is a function from protocol states to
self-framing assertions8, where Invρ(s) holds in the actor if the session
is in state s

In the example of Figure 3 the sessions described for the manager are gov-
erned by protocol description SM (hence τρ = Manager). We have

PStateSM = {Q,R}

where Q is the state where the manager accepts query messages and R is the
state where the manager accepts result messages. The transition relation is
given by

Q @SM R

to the manager are going to be accepted.
8See Section 2.5 for a definition of self-framing assertions.
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indicating that the manager can only move from Q to R. A potential protocol
invariant is (this refers to the actor controlling the session)

InvSM(s) :=acc(this.state) ∗ acc(this.client) ∗
(s = Q⇒ this.state = ACCEPTQUERY)∗
(s = R⇒ this.state = WAITFORRESULT)

As we will see, this invariant is not strong enough to verify the desired actor
service. Later we will present a protocol invariant that allows verifying the
desired actor service.

Note that there is no need to represent initial and final states. As we will
see, one may start in any state (as long as one can guarantee the protocol
invariant) and finish in any state. Furthermore, one may progress to any
state that is later in the transition relation. This gives greater flexibility.

4.2.2 Session ownership and session predicates

In the example given in Figure 4 when, for example, the worker sends a result
message to the manager, then we need to make sure that this message will be
accepted by the manager so that it does not lead to a failure. Another way
of phrasing this is that the worker needs to be sure when sending the result
message that the session state of the session in the manager governed by SM
is given by R and the session will not progress until the result message is
received.

We enable such reasoning by introducing the notion of session ownership.
To allow other actors to send messages that are part of the session (such as
the worker sending the result message) we introduce session predicates that
represent partial ownership of the session (the actor controlling the session
always must own part of the session, hence full session ownership is never
given up). For a session governed by protocol ρ there is a unique session
predicate given by ρ(a) where a is the actor that controls the session (its
actor type must be the same as τρ).

The session predicate is generated right when a session is started (see
Section 4.2.5 for details on session initialization). An actor may give up
the session predicate to another actor. This represents the transfer of partial
session ownership to that actor. We ensure that without the session predicate
the corresponding session cannot progress or finish (see Section 4.2.4 for
details on session progress and Section 4.2.5 for details on finishing a session).

Another part of the session permission is held with the actor controlling
the session (i.e. the manager in the example). It is contained in the unique
session token ρtok(a) and it is also required to progress and finish a session.
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This token cannot be sent around and cannot be part of any specification.
The reason we model this token explicitly is technical; for more details see
Section 4.2.3. One can think of the session token as being part of the pro-
tocol invariant, even though we do not explicitly mention it in the protocol
invariant. The session token and the session predicate are both handled like
exclusive permissions with respect to the separating conjunction, which were
introduced in Section 2.5.

As an example, the manager can send its session predicate for the session
governed by the SM protocol to the worker over the compute message. This
can be done by adding SM(m) to the precondition of the compute message
handler. Hence if the worker holds the session predicate SM(m), then the
manager m cannot progress or finish this session.

Finally, the remaining part of the permission is held in the session fi-
nalization permission. This permission is required to finish a session, but
not to progress the session. We will use this permission in Section 4.8 to
give other actors a guarantee that a session will not finish until a specific
interaction sequence has completed. We use counting permissions [4] to be
able to distribute this finalization permission. This means there is a unique
source permission ρF(a, k−) that is always held in the actor a controlling the
session, where k is the number of access permissions that have been given
away. The permission holding k′ access permissions is given by ρF(a, k′+).
We have

ρF(a, k+
1 ) ∗ ρF(a, k+

2 )⇔ ρF(a, (k1 + k2)+)
ρF(a, k−1 ) ∗ ρF(a, k−2 )⇔ false

ρF(a, k−1 ) ∗ ρF(a, k+
2 )⇔

{
ρF(a, (k1 − k2)−) if k1 ≥ k2
false otherwise

When the session is started ρF(a, 0−) is held, indicating that no access per-
missions have been given away, hence this denotes the full finalization per-
mission. The source permission must always be contained in the protocol
invariant. In examples, if we do not give away access permissions, then we
will not explicitly mention these finalization permission in the protocol invari-
ant. In such cases, if we give the protocol invariant definition Invρ(s) := A,
then we actually mean Invρ(s) := A ∗ ρF(this, 0−).

4.2.3 Session attributes and attribute functions

Sessions have two attributes that describe it: a session identifier and a ses-
sion state. The session identifier is a unique identifier (with respect to all
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session identifiers of sessions governed by the same protocol in the same ac-
tor) that distinguishes the session from other sessions governed by the same
protocol in the same actor. This session attribute stays the same throughout
the session. The session state specifies the protocol state that the session
is in currently, and it changes as the session progresses. To be able to talk
about these attributes in assertions we introduce session attribute functions
parameterized by the protocol description ρ governing the session and actor
a controlling session. ιρ(a) is a session attribute function which evaluates to
the session identifier of the current session governed by protocol description
ρ in actor a. stateρ(a) is a session attribute function which evaluates to the
session state of the current session governed by protocol description ρ in ac-
tor a. Since for each protocol description and actor only one session can be
active, it is clear which session is meant in these definitions (assuming one
such session is active).

While we have now defined functions that return the attribute values,
we must still discuss when one can use these functions in assertions. For
example, if we have an assertion stateSM(m) = Q in a particular state then
we must be sure that the session is active and its session state for m really is
Q and it is not possible that m progresses the session, while we are in a state
where the assertion holds. If we cannot guarantee this, then the assertion is
meaningless.

The idea is to use the notion of session ownership introduced in Sec-
tion 4.2.2. If one owns the corresponding session predicate or session token,
then one can be sure that the session is active and cannot progress or finish.
Hence, in such cases the session identifier and the session state of the current
session cannot change, therefore it is fine to use the attribute functions in
assertions.

If one owns a corresponding session finalization access permission, then
one can be sure that the session is active and cannot finish. Hence in such
cases the session identifier of the current session cannot change, therefore it
is fine to use the identifier attribute function in assertions.

Formally, we say that ιρ(a) is framed by the corresponding session pred-
icate ρ(a) as well as by the corresponding session token ρtok(a) and by a
non-zero session finalization access permission amount ρF(a, k+) (k > 0)
(any of the three permissions are enough to frame it). stateρ(a) is framed by
the corresponding session predicate ρ(a) as well as the corresponding session
token ρtok(a) (one of the two is enough to frame it).

Using this framing definition for these functions, we can easily generalize
the framing definition for expressions given in Section 2.5 to expressions
containing such functions. Also note that since we can think of the session
token as being part of the protocol invariant, we may consider expressions
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ιρ(this) and stateρ(this) as framed in the corresponding protocol invariant.
Here we can see the motivation for explicitly representing the session

token. If an actor controlling the session sends a session predicate away,
it still might want to express properties using these functions. Hence one
requires something that frames the functions, which in our case is the session
token.

4.2.4 Associating messages to protocols and session progress

Message handlers in an actor can now be explicitly associated with protocols.
The protocol definition itself does not say which messages are part of the pro-
tocol, it just specifies constraints in terms of abstract protocol states. In our
setting we permit a message handler to be part of at most one protocol9. If
a message handler is part of protocol ρ, then we require that its precondi-
tion holds the session predicate ρ(this). For example, we can provide the
following valid precondition for the manager’s result message handler

SM(this) ∗ stateρ(this) = R

The reasoning behind this is that if a message handler is associated with pro-
tocol ρ, then it must be ensured in our setting that this message is sent while
the corresponding session is active and the session must not be progressed
until the message is received. The only way an actor sending the message
can guarantee this is by sending partial ownership of the session using the
session predicate. Note that the presented precondition is self-framing since
SM(this) frames stateρ(this) as explained in Section 4.2.3. In general a mes-
sage can be sent in multiple session states during the same session (however,
one must adjust the precondition to allow these different session states).

An actor controlling a session can only progress a session governed by
protocol ρ in message handlers that are associated with ρ. Furthermore,
if a message handler is associated with ρ then the actor must progress or
finish the session inside that message handler. Suppose message handler m
is associated with protocol ρ. At the beginning of the message handler one
may assume

• the precondition

• the actor invariant
9If one allowed a message handler to be part of multiple protocols, then one would have

to be able to identify in the body which protocol the received message is part of (assuming
that each concrete message can only be part of a single protocol). We believe that it is
possible to support this using more machinery, but since it is orthogonal to the core of our
work, we do not support it.
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• the session token

• the protocol invariant Invρ(stateρ(this)) (note that stateρ(this) is framed
by the session token)

Then at some point in the implementation the session must be progressed or
finished. To progress a session one must provide

• the session predicate and the session token

• a protocol state s∗ for which stateρ(this) @ρ s∗ holds

After the session has progressed the session state is given by state s∗ and the
session identifier is the same as before. At the end of the message handler
one must guarantee the actor invariant in any case and if one has chosen to
progress the session (instead of finishing it), one must guarantee

• the session token to make sure that session ownership is retained by
the actor controlling the session

• Invρ(s∗) to make sure the protocol invariant is re-established

Using these conditions we can extend the definition of validity (introduced in
Section 2.7) of message handlers associated with protocols. Note that only
message handlers associated with protocol ρ ever get hold of the protocol
invariant for ρ.

One important point is that the session predicate associated with the
session that is received over the precondition cannot be sent to other actors
before the session is progressed or finished inside the message handler. This
avoids other entities getting access to session predicates in session states that
have already been used to send a message associated with the same protocol
in the same actor. We can support this by putting the session predicate under
a modality. Under this modality the session behaves the same as usual, but
one cannot transfer it over messages. If the session has been progressed, one
gets hold of the session predicate.

4.2.5 Starting and finishing sessions

For each protocol description ρ defined in an actor a, we introduce a unique
spawn token ρSPAWN (a). At the beginning of the corresponding constructor
all these spawn tokens are made available. To spawn a session for ρ in actor
a one must give up ρSPAWN (a) and choose an initial protocol state to move
to (this can be done inside any message handler or in the constructor and
one may choose an arbitrary protocol state). In return one gets hold of
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the corresponding session predicate, the session token and the full session
finalization permission, as well as the knowledge that the session state is in
the state that one picked. At the end of the message handler (or constructor)
one must then ensure the protocol invariant for the state that was chosen.

One may finish session in any message handler. For this one must give
up the corresponding session predicate, the session token and the full session
finalization permission. In return one again gets hold of the corresponding
spawn token. Note that this ensures that there can be at most one session
running for a protocol description ρ in an actor a at any given time.

4.3 Basic reasoning in actor services using sessions
In Section 4.2 we introduced sessions into the actor services program logic.
Next, we illustrate how we can derive actor services involving sessions using
the example given in Figure 4. First, we need to provide the specifications
of the actors (i.e. the preconditions, actor invariants, protocol definitions).
For the manager we assume the protocol definition SM as already introduced
in Section 4.2.1. As we will see, the defined protocol invariant is not strong
enough to verify the desired actor service but it is enough to showcase some
of the main points when deriving actor services involving sessions. We define
the precondition of the manager’s query message handler as

SM(this) ∗ stateSM(this) = Q

This requirement essentially states that one needs to show that the manager’s
session governed by SM is in state Q. Analogously, we define the precondition
of the manager’s result message handler as

SM(this) ∗ stateSM(this) = R

Since the manager wants to send partial ownership of the session governed
by SM to the worker, we define the precondition of the worker’s compute
message handler as

SM(m) ∗ stateSM(m) = R
The manager’s message handlers are all valid since they may assume the pro-
tocol invariant in the corresponding session states and the protocol invariant
contains the required permissions in all states.

Note that we do not expose any implementation details in these precon-
ditions as opposed to the approaches in Section 3. Additionally, we need not
deal with explicit fractional permissions here. We can derive the following
local actor service for the manager

M.query(C, n) ∃W. W.compute(M,n) where old(ιSM(M)) = ιSM(M)
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Note that the where-clause is framed, since the session predicate SM(M) is
held in the precondition of the query trigger message and in the compute
response message. Also we can show that the fail() branch is never taken due
to the protocol invariant making the connection between the state field and
the session state.

This actor service states that when a query message is received by the
manager then eventually a compute message is sent and we have that the
session in the manager governed by SM is the same in the trigger as well
as in the response state. So we are now reasoning about sessions in actor
services without changing the meaning of an an actor service. We just added
building blocks which can be now used to talk about sessions in the where-
clauses of actor services. Furthermore, we can derive the following local actor
service for the worker

W.compute(M,n) M.result(f(n)) where old(ιSM(M)) = ιSM(M)

This actor service also states the session is still the same (the where-clause
does not say anything about the session state, but we know the session state
from the preconditions).

We may now compose these two local actor services to derive

M.query(C, n) M.result(f(n)) where old(ιSM(M)) = ιSM(M)

This actor service now makes explicit that the session at the time the query
trigger message is received by the manager is the same as when the result
response message is sent to the manager. Hence the result response mes-
sage corresponds to the query trigger message. Actually, this actor service
describes the actor service that we wanted to express in Section 4.1.

There is one remaining issue: How do we learn that M.client in the re-
sponse state evaluates to the client C in the trigger message? Without
answering this question we will not be able to derive the desired response
property. The current protocol invariant does not help us do this. We adjust
the protocol invariant to state the following: if the session state is R then
we have that M.client evaluates to the client specified in the query message
received in session state Q (of the same session). In the next section, we
introduce expressions which allow us to state such properties.

4.4 Session events and environment expressions
Consider a session governed by protocol description ρ in an actor a. As we
discussed in Section 4.2.3, such a session has a session identifier i, which
no other session has that is governed by the same protocol in the same
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actor. Furthermore, if the session progresses to a new session state s then
it is guaranteed due to the strict ordering on the session states that the
session was never in this state before. Additionally, the session can only be
progressed upon reception of a message m associated with ρ in a.

A session event E is a tuple (ρ, a, i, s,m) and it defines the event right
when message m is received during the session identified by i in the session
state s, where the session is governed by protocol ρ in a. We require that
m is associated with ρ. From the above observations we can conclude that
every session event occurs at most once during a session.

Session events correspond to messages that are sent to the actor control-
ling the session at a particular point. Such a message essentially corresponds
to the environment of the session passing data to the session (over the mes-
sage arguments). In the example given in Figure 4 the manager has a session
event that corresponds to the query message being sent in the Q state of
the session governed by SM. In this message a client reference is sent along
and in this case the manager stores this client in its local heap. To be able
to state properties about data received in these session events we introduce
environment expressions.

An environment expression is of the form ϕρ(a, i, s,m(y;⇀xi), e). It de-
notes the expression e evaluated in the state corresponding to session event
(ρ, a, i, s,m). ⇀xi and y are bound variables, where ⇀xi represent the formal
arguments of the message m and y represents the receiving actor of m (any
names can be chosen for these bound variables). e must be dependent only
on ⇀xi and y (hence ⇀xi and y may occur as free variables in e). For example,
consider the environment expression

ϕSM(mgr, ιSM(mgr),Q, query(y;client,n), client)

This environment expression evaluates to the client that the manager mgr
received over message query in session state Q of the current session governed
by protocol description SM. Note how one may refer to the argument received
in that session event by using the bound variables (in this case the bound
variables are the receiving actor y and the arguments query,n).

We often omit the bound variable representing the receiving actor when
we do not require it in our environment expression. Hence we could also
write the previous environment expression as

ϕSM(mgr, ιSM(mgr),Q, query(client,n), client)

One cannot denote arbitrary expressions in environment expressions; it
must be ensured that the environment expression is framed. The environment
expression ϕρ(a, i, s,m(y;⇀xi), e) is framed if a, i, s are framed and if the
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precondition ofm instantiated with arguments ⇀xi and receiving actor y frames
e. The intuition why we require this framing definition here is that we can
only talk about the part of the data handed over by the environment for
which the permissions exist in the precondition.

To enable reasoning about environment expressions when proving local
actor services we permit the following. At the beginning of a message handler
implementation m associated with protocol ρ with formal arguments ⇀zi one
may assume that

ϕρ(this, ιρ(this), stateρ(this),m(y;⇀xi), e) = e[⇀zi/⇀xi][this/y]

if the environment expression and e[⇀zi/⇀xi][this/y] are framed by the per-
missions held at the beginning of the message handler. a[b/c] denotes the
substitution of all occurrences of c in a by b.

The idea here is that when message handler m (which is associated with
ρ) is invoked, we know that the beginning of the message handler body
represents the session event given by (ρ, this, ιρ(this), stateρ(this),m). Hence
we know that the expression denoted by

ϕρ(this, ιρ(this), stateρ(this),m(y;⇀xi), e)

is evaluated in the state at the beginning of the message handler body. If the
formal arguments of the message handler m are given by ⇀zi, then we know
that these are the concrete arguments that are received over this session event
and this is the receiving actor. Therefore we can instantiate these values in
e to get an expression that evaluates to the same value.

4.5 Proving the client-manager-worker example
We now use the environment expressions introduced in Section 4.4 to prove
the desired response property in the example given in Figure 4. We use
protocol description SM for the manager as defined in Section 4.2.1 but we
define the protocol invariant as

InvSM(s) := acc(this.state) ∗ acc(this.client) ∗
(s = Q⇒ this.state = ACCEPTQUERY) ∗(
s = R⇒ this.state = WAITFORRESULT ∗
this.client = ϕSM(this, ιSM(this),Q, query(c,n), c)

)

This states that if the session is in state R (i.e. after the manager has received
the query message and sent the compute message) then this.client evaluates to
the client provided by the query message in the Q state of the same session.
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Note that ιSM(this) is framed in the protocol invariant since the controlling
actor always has ownership of the session (it always holds the session token,
which we do not explicitly mention in the protocol invariant). Hence the
provided protocol invariant is self-framing. One can easily establish the pro-
tocol invariant for state R when progressing the session in the query message
handler using the reasoning provided in Section 4.4. As already shown in
Section 4.3 we can derive the following actor service

M.query(C, n) M.result(f(n)) where old(ιSM(M)) = ιSM(M) (4.2)

We know that the query trigger message corresponds to a session event (as
introduced in Section 4.4). Furthermore, we know by just inspecting the
actor service that the client that is passed over this session event evaluates
to C. Hence we can rewrite the actor service to

M.query(C, n) M.result(f(n))

where old(ιSM(M)) = ιSM(M) ∗
ϕSM(M, old(ιSM(M)), old(stateSM(M)), query(c, n), c) = C

(4.3)

This environment expression is framed since the required session predicate
to frame old(ιSM(M)) and old(stateSM(M)) is held in the precondition of the
query message handler.

In general, we add a further rewrite rule to the actor services logic. The
idea is that whenever one has an actor service of the form

e.m(⇀ei) e′.m′(⇀e′i) where A (4.4)

where m is associated with protocol ρ then one may rewrite the actor service
to

e.m(⇀ei) e′.m′(⇀e′i)

where A ∗
(
ϕρ(old(e), old(ιρ(e)), old(stateρ(e)),m(y;⇀xi), e∗) =
old(e∗[⇀ei/⇀xi][e/y])

)

if the environment expression and old(e∗[⇀ei/⇀xi][e/y]) are framed. e∗ is an
expression in terms of the formal arguments ⇀xi, and since in the actor service
we know which parameters are provided for the session event we can provide
an expression in terms of these parameters that evaluates to the same value as
the corresponding environment expression (assuming the framing conditions
hold). Note that in our example old(M) and old(C) evaluate to M and C.

The idea of this rule is that since one knows the arguments that are
passed over the session event (ρ, old(e), old(ιρ(e)), old(stateρ(e)),m), as well
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as the receiving actor, one can instantiate the values to get an expression
that evaluates to the same value as the environment expression (the state in
which the environment expression is evaluated is the same as the state when
the trigger message is received).

We also can talk about the session event in the response message if the
response message is associated with a protocol ρ′. For this we also permit
rewriting actor service (4.4) to

e.m(⇀ei) e′.m′(⇀e′i)
where A ∗ ϕρ′(e′, ιρ′(e′), stateρ′(e′),m′(y;⇀xi), e∗) = e∗[⇀e′i/⇀xi][e′/y]

if the framing conditions hold.
Next, we rewrite actor service (4.3) to

M.query(C, n) M.result(f(n))

where old(ιSM(M)) = ιSM(M) ∗
C = ϕSM(M, old(ιSM(M)),Q, query(c, n), c)

(4.5)

where we used that old(stateSM(M)) = Q from the precondition of the query
trigger message. This rewrite step is supported by the original actor services
logic. To continue we need to specify an actor service that describes the
reaction of the manager when receiving the result message. This can be done
by deriving the following local actor service

M.result(r) ∃C ′. C ′.sol(r)
where C ′ = ϕSM(M, old(ιSM(M)),Q, query(c, n), c)

(4.6)

The derivation requires using the protocol invariant which gives the value
of the M.client field in the R state in terms of the appropriate environment
expression. The where-clause is framed since the correct session predicate
is held in the precondition of the result trigger message handler. Note that
this actor service does not mention M.client. So, the environment expression
allows us to hide implementation details in this case. This is one advantage
over the approaches in Section 3. If the manager, for example, changes the
client field name, then the actor service will still hold.

We can now compose actor service (4.5) with an instantiation of actor
service (4.6) to get

M.query(C, n) C.sol(f(n))
which is exactly the desired actor service. We used that the session identifier
in the trigger and response states are the same in actor service (4.5). Us-
ing this one can then derive that the environment expression specifying the
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client in the query trigger message in actor service (4.5) is the same as the
environment expression specifying the existentially quantified client in the
sol result message in actor service (4.6).

We have derived the desired actor service (4.2) without ever mentioning
anything about the client stored in the manager’s local state and without the
worker actor having to know anything about this client. In actor service (4.6)
this client showed up for the first time in terms of an environment expression
(but without mentioning the manager’s local state). We could then, using
the newly introduced rewrite rule, recover the connection between C in the
query trigger message and the existentially quantified client in the sol response
message. This is fundamentally different to all the approaches in Section 3.
In those approaches we had to specify that M.client = C in the first local
actor service describing the manager’s reaction to the query message. The
reason is that in those approaches the only way to talk about the client
specified in the query message is inside the query message handler. Using
environment expressions we can now talk about that particular client at any
point in the session after the query was received. As we saw in this section,
this reconstruction facilitates modular reasoning.

4.6 An example involving subsessions
Until now we have mainly considered the example given in Figure 4. Only one
of the actors (the manager) in the example changes its behaviour according
to a protocol. Let us now consider a modification of this actor program where
the client and manager have the same implementations and the worker actor
is instead given by Figure 5. The message sequence chart for the complete
program is given in Figure 6.

In this implementation the worker delegates the work to a subworker
which sends the correct result back. Here the worker is running a protocol
that is similar to the protocol run by the manager. Note that even though
we changed the worker implementation the overall response property stays
the same, since eventually the worker sends the same result to the manager.

Recall that we briefly considered such a modification in Section 3.2, and
noticed that in the original logic it did not seem possible to prove the desired
response property modularly. In particular, it seemed that the subworker
needed to know about the manager, which is clearly not modular. Next, we
show that we can verify the desired response property modularly using the
newly introduced techniques.

For the worker we include the exclusive permission to the subw field in
the actor invariant and we define a protocol description SW, for which the
protocol states are given by CW (where compute messages are received) and
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1 actor Worker {
2 Manager manager;
3 Subworker subw;
4 WState wstate;
5
6 Worker() {
7 this.wstate := ACCEPTCOMPUTE;
8 }
9

10 handler compute(Manager m, int n) {
11 if(this.wstate == ACCEPTCOMPUTE) {
12 this.manager := m;
13 this.wstate := WAITFORWRESULT;
14 this.subw.scompute(this, n);
15 } else {
16 fail();
17 }
18 }
19
20 handler wresult(int n) {
21 if(this.wstate == WAITFORWRESULT) {
22 this.wstate := ACCEPTCOMPUTE;
23 this.manager.result(n);
24 } else {
25 fail()
26 }
27 }
28 }
29
30 actor Subworker {
31 handler scompute(Worker w, int n) {
32 w.wresult(f(n))
33 }
34 }

Figure 5: ActorPL program describing a worker actor that delegates work to a
subworker, which gives back the result. The worker communicates with the manager
given in Figure 4 (and replaces the worker in that figure).
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Manager Worker Subworker

query(c, n) Q

compute(m,n) CW

scompute(w, n)

wresult(f(n))RW

result(f(n))R

sol(f(n))

Figure 6: Message sequence chart showing an interaction involving subsessions.
For each message received by the manager and the worker, the expected session
state is annotated.

RW (where wresult messages are received). The transition relation is given
by CW @SW RW. To ensure the messages can only be sent to the worker in
the correct states and the worker can send the result message to the manager,
we define the precondition of the worker’s compute message handler as

SW(this) ∗ stateSW(this) = CW ∗ SM(m) ∗ stateSM(m) = R

and we define the precondition of the worker’s wresult message handler as

SW(this) ∗ stateSW(this) = RW

We define the precondition of the subworker’s scompute message handler as

SW(w) ∗ stateSW(w) = RW

so that the subworker gets permission to send the wresult message. Fur-
thermore, we spawn a session for SW in session state CW in the worker’s
constructor. We provide the following constructor postcondition

SW(this) ∗ stateSW(this) = CW

For the manager we assume the same preconditions and protocol invariant
as introduced in Section 4.5. The manager gets hold of the session predicates
required for sending the compute message when spawning the worker (over
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the constructor postcondition). We define the protocol invariant for SW as

InvSW(s) := acc(this.wstate) ∗ acc(this.manager) ∗
(s = CW⇒ this.state = ACCEPTCOMPUTE) ∗

s = RW⇒ this.state = WAITFORWRESULT ∗
this.manager = ϕSW(this, ιSW(this),CW, compute(m,n),m) ∗
SM(this.manager) ∗ stateSM(this.manager) = R ∗
ιSM(this.manager) = ϕSW(this, ιSW(this),CW, compute(m,n), ιSM(m))


Some parts of this protocol invariant are similar to the manager’s SM pro-
tocol invariant. For example, in the RW state the manager field evaluates
to the manager specified in the compute message sent over the session event
in the CW state of the same session. We specify this analogously to the
manager’s protocol invariant using an environment expression.

The worker receives the manager’s session predicate with respect to SM
over the compute message. In the previous example it directly sent the result
message in the compute message handler, hence it gave the session predicate
back right away. In this example, the worker first needs to send a message
to the subworker and wait for its result. The worker needs to keep the
manager’s session predicate for this time frame. We express this by keeping
the manager’s session predicate in the protocol invariant along with the fact
that the session state is R using the following assertion in the RW state

SM(this.manager) ∗ stateSM(this.manager) = R

Finally, we also express that, while the manager is holding this partial session
ownership, the session identifier of the corresponding session is the same as
when the query message was received. We express this using an environment
expression with the following assertion

ιSM(this.manager) = ϕSM(this, ιSW(this),CW, compute(m,n), ιSM(m))

This assertion is framed by the protocol invariant. The protocol invariant
contains permission to this.manager. Furthermore, ιSM(m) is framed by the
precondition of compute(m,n), since it contains the corresponding session
predicate. ιSM(this.manager) is framed by SM(this.manager). ιSW(this) is
framed by default in the SW protocol invariant.

Using these specifications it should be clear that all the message handlers
are valid. We can derive the following local actor service for the worker
(where the existentially quantified variable S is a subworker)

W.compute(M,n) ∃S. S.scompute(W,n) where old(ιSW(W )) = ιSW(W )
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Furthermore, we can derive the following local actor service for the subworker

S.scompute(W,n) W.wresult(f(n)) where old(ιSW(W )) = ιSW(W )

We can compose the two local actor services to get

W.compute(M,n) W.wresult(f(n)) where old(ιSW(W )) = ιSW(W )

Analogously to Section 4.3 we can rewrite this actor service to

W.compute(M,n) W.wresult(f(n))

where
old(ιSW(W )) = ιSW(W ) ∗
M = ϕSW(W, old(ιSW(W )),CW, compute(m,n),m)
old(ιSM(M)) = ϕSW(W, old(ιSW(W )),CW, compute(m,n), ιSM(m))

In this step, we are relating the manager given in the compute message, as
well as the manager’s session identifier at the time when the compute message
is received with the environment of the worker’s session. This way we will
be able to connect the knowledge of the worker (which is in terms of its own
environment) with these values.

Next, we can derive the following local actor service for the worker

W.wresult(n) ∃M ′. M ′.result(n)

where M ′ = ϕSW(W, old(ιSW(W )),CW, compute(m,n),m)
ιSM(M ′) = ϕSW(W, old(ιSW(W )),CW, compute(m,n), ιSM(m))

To verify the where-clause one needs to use the worker’s protocol invariant
which, for example, states what value its manager field has in terms of its
own session environment. Next, we compose the previous actor service with
an instantation of this local actor service to get

W.compute(M,n) M.result(f(n)) where old(ιSM(M)) = ιSM(M)

The reasoning is analogous to the final composition in Section 4.3. The only
difference is that we also reason about the environment expression involving
the manager’s session identifier with respect to SM in the different actor
services. Here one can see why it was important to include the information
about the manager’s session identifier with respect to SM in the worker’s
protocol invariant. If we had not included this information then we would
not know which session the result message is associated with.

The derived actor service is identical to the local actor service derived for
the worker in the simpler program given in Figure 4. So from the actor service
view even though we have modified the implementation, the behaviour of the
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worker is described exactly the same way. Hence the remaining derivation
to get to the desired actor service (M1) is identical as in Section 4.3. This
shows one modularity feature of our approach. In the modified program,
for the manager only the local actor service where the manager sends the
compute message needs to be re-verified (because the worker’s specification
has changed), but the rest remains unaffected. Another important point
about the specification is that the subworker does not need to know anything
about the manager, which would not be the case using the approach given
in Section 3.2.

Suppose we change the subworker implementation to delegate to another
subworker: then, the manager would notice nothing about this change. The
worker would have to make sure it respects the modified interface of the
subworker (essentially taking on the role of the manager in the previous
example). In general, the approach introduced up to this point works well in
such cases where an actor a delegates work to another actor a∗ and eventually
gets the expected result back, at which point the session of a∗ finishes. In
some sense one can regard a∗’s session as a subsession of a’s session because
it is only active between getting an initial message from a and sending the
next message to a. In the next section we consider more general scenarios.

4.7 Beyond subsessions
Consider the actor program that consists of the customer actor given in Fig-
ure 7, the mediator actor given in Figure 8 and the operator actor given in
Figure 9. We refer to this program (which may consist of other actors as well)
as the CMO actor program. In this program the customer communicates
with the mediator and the mediator communicates with the operator. The
customer and the operator never communicate with each other directly. To
get a better overview of the communication consider the message sequence
chart given in Figure 10. Each of these actors changes their behaviour accord-
ing to a protocol. We can express a single run of the protocol as a session. We
call the corresponding protocol descriptions SC for the customer, SME for
the mediator and SO for the operator. We define their transition relations
as follows.

IC @SC AC @SC RC

QM @SME DM @SME GM @SME RM

CO @SO GO
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1 actor Customer {
2 Mediator md;
3 Cstate cstate;
4
5 Customer() { this.cstate := INIT; }
6
7 handler init(Mediator mediator, int n)
8 {
9 if(this.cstate == INIT) {

10 this.md := mediator;
11 this.cstate := WAITFORADVANCE;
12 mediator.query(this, n);
13 } else {
14 fail();
15 }
16 }
17
18 handler advance(int r)
19 {
20 if(this.cstate == WAITFORADVANCE) {
21 this.cstate := WAITFORCRESULT;
22 this.md.getresult(g(r));
23 } else {
24 fail();
25 }
26 }
27
28 handler cresult(int res) { ... }
29 }

Figure 7: ActorPL customer actor. The mediator implementation is given in
Figure 8.
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1 actor Mediator {
2 Customer c;
3 Operator op;
4 Mstate mstate;
5
6 Mediator() { this.mstate := ACCEPTQUERY; }
7 handler query(Customer customer, int n)
8 {
9 if(this.mstate == ACCEPTQUERY) {

10 this.c := customer;
11 Operator operator := spawn Operator();
12 this.mstate := WAITFORDONE;
13 this.op := operator;
14 operator.calc(this, n);
15 } else { fail(); }
16 }
17 handler done(int n)
18 {
19 if(this.mstate == WAITFORDONE) {
20 this.mstate := ACCEPTGETRESULT;
21 this.c.advance(n);
22 } else { fail(); }
23 }
24 handler getresult(int n)
25 {
26 if(this.mstate == ACCEPTGETRESULT) {
27 this.mstate := WAITFORMRESULT;
28 this.op.get(n);
29 } else { fail(); }
30 }
31 handler mresult(int res)
32 {
33 if(this.mstate == WAITFORMRESULT) {
34 this.mstate := ACCEPTQUERY;
35 this.c.cresult(res);
36 } else { fail(); }
37 }
38 }

Figure 8: ActorPL mediator actor. The customer implementation is given in
Figure 7 and the operator implementation is given in Figure 9.
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1 actor Operator {
2 int val;
3 Mediator md;
4 State state;
5
6 Operator() { this.state := ACCEPTCALC; }
7 handler calc(Mediator mediator, int n)
8 {
9 if(this.state == ACCEPTCALC) {

10 this.md := mediator;
11 this.val := n;
12 this.state := ACCEPTGET;
13 mediator.done(f(n));
14 } else {
15 fail();
16 }
17 }
18
19 handler get(int n)
20 {
21 if(this.state == ACCEPTGET) {
22 this.state := ACCEPTCALC;
23 this.md.mresult(h(this.val+n));
24 } else {
25 fail();
26 }
27 }
28 }

Figure 9: ActorPL operator actor. The mediator implementation is given in Fig-
ure 8.
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Init Customer Mediator Operator

init(n) IC

query(c, n) QM

calc(m,n) CO

done(f(n))DM

advance(f(n))AC

getresult(g(f(n))) GM

get(g(f(n))) GO

mresult(h(g(f(n)) + n))RM

cresult(h(g(f(n)) + n))RC

Figure 10: Message sequence chart depicting communication between the customer
given in Figure 7, the mediator given in Figure 8 and the operator given in Figure 9.
For each message the session state in which it is accepted by the receiving actor is
annotated.
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We assume the straightforward association of protocol states to messages that
are expected. In the case of the customer, in IC the init message is expected,
in AC the advance message is expected and in RC the cresult message is
expected. The association for the mediator and service is analogous.

One important aspect is that, for example, the mediator sends a message
to the operator and once it gets a message back, the operator’s session does
not end. In fact, the mediator sends another message to the operator where
the operator is still in the same session as before. This is a difference to
the examples we have considered up to now (see Section 4.6). Note that
the mediator stores the operator in its op field without modifying the field
until the session finishes. This ensures the mediator is always talking to the
same service during its session. Analogous observations can be made for the
customer and the mediator.

Let us investigate how we would write the preconditions of the different
message handlers. Consider the operator’s calc message handler. We need
to put the session predicate corresponding to SO into it, since the message
handler is associated with SO. Furthermore, because the operator needs to
send a done message to the mediator upon receiving the calc message, the
session predicate corresponding to SME is also required. Hence we could
provide the following precondition

SO(this) ∗ stateSO(this) = CO ∗ SME(m) ∗ stateSME(m) = DM

Next, consider the mediator’s done message handler. In the precondition we
need to specify the session predicate corresponding to SME. Furthermore,
because the mediator needs to send a get message to the operator stored in
its op field at some point later, we should also provide the operator’s session
predicate corresponding to SO. The only way it seems possible to specify this
is as follows

SME(this) ∗ stateSME(m) = DM ∗ SO(this.op) ∗ stateSO(this.op) = GO

There are two problems here. First, this precondition is not self-framing be-
cause this.op is not framed. Second, the mediator’s implementation details
are exposed. If we ignore the second problem, we could make this approach
work by sending permission to the op field over the calc message along with
the knowledge that it evaluates to the operator receiving the message. How-
ever, the mediator does not know if the session predicate that it receives
over the done message is associated with the same session as when it sent
the calc message (i.e. if they have the same session identifier). This fact
will become important, once we derive response properties. The intuition
is that one learns facts about the other sessions at different points and one
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needs to be able to associate the facts corresponding to the same actor and
protocol with the same session. Similar problems, where actors communi-
cate with each other over multiple messages and need to obtain the session
predicates as well as the knowledge that these session predicates belong to
the same session, also show up for the interaction between the customer and
the mediator.

The underlying issue in our current approach is that if an actor requires
a session predicate to another session at some point, then one can generally
only ensure this by explicitly transferring this session predicate over some
message. Hence one can only specify this session predicate at a point where
the required session predicate will be in the correct session state. However,
this is not sufficient for this scenario, because most of the messages do not
contain information about the identities of the actors, making it hard to avoid
exposing implementation details. Furthermore, one needs to associate a set
of session predicates received from the same actor with the same session.

An idea for a solution is as follows. Consider the mediator and the oper-
ator. The mediator and the operator know the sequence of messages that is
going to be exchanged before the interaction has even started. Hence there
should be a way for them to agree beforehand over which message which
session predicate will be sent to the other actor. They could also agree that
all the session predicates belonging to one actor would have to belong to the
same session.

They could make such an agreement when the mediator sends a query
message to the operator. It would state that the operator gets hold of the
session predicate for the done message and for the operator to send the done
message it would have to send along its session predicate for the get message.

Such an approach would avoid having to explicitly mention all the session
predicates explicitly in preconditions of the messages over which they are
transferred and it would also make sure that one can associate the different
session predicates with the same session.

Another way of looking at this approach is that the mediator and the
operator agree on an interaction which consists of a sequence of messages that
are exchanged and it is then implicitly clear which session predicates must
be sent over which messages for the interaction to be executed as specified.

In the next section we develop a way for parties to make such an agree-
ment. This will enable us to provide a modular specification for the example.

4.8 Interaction permissions and request clauses
In this section we develop a way for two parties to agree on an interaction
when they meet. For this we need a way to talk about which message can
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be sent once a particular message is received. Therefore we introduce send
event permissions and receive event assertions. A send event permission is
of the form send(E) where E is a session event. It represents the session
predicate permission required to send the message associated with E. If
E = (ρ, a, i, s,m) then we write sendρ(a, i, s,m) to denote send(E). The
permission contained by (ρ, a, i, s,m) is given by

Psend := ρ(a) ∗ stateρ(a) = s ∗ ιρ(a) = i

The difference between the send event permission and Psend is that the send
event permission cannot be used to send messages associated with ρ other
than the m message. We permit exchanging Psend for the corresponding send
event permission (but not vice versa, since as discussed there is a difference).
However, it must be ensured that the session predicate is not under the
modality introduced in Section 4.2.2. This means the send event permission
has not already been used to send a message associated with the protocol in
the current session state.

The reason for this distinction is that it provides a way to enforce that
a particular message is sent, which in turn makes sure that an interaction
proceeds as one has specified. This is particularly important if one wants to
support non-deterministic interactions with branching behaviour (our pro-
tocols are deterministic, but if one wants to generalize, then this becomes
important).

Since the session predicate is contained in this send event permission, the
send event permission is not duplicable. Furthermore, the send event per-
mission frames everything that the corresponding session predicate frames.
Send permissions can be sent around (with the exception explained above).

A receive event assertion is of the form rcv(E) where E is a session
event. If it is held, then this means that the session event E has occurred.
If E = (ρ, a, i, s,m) then we write rcvρ(a, i, s,m) to denote rcv(E). For a
message handler m associated with protocol definition ρ one may assume the
receive event assertion rcvρ(this, ιρ(this), stateρ(this),m) at the beginning
of the message handler body.

In contrast to the send event permission, the receive event assertion is
duplicable. The fact that a particular session event has occurred remains
true.

Before we continue, we make an important observation. It is not possible
for someone to own send(E) and rcv(E) to hold. The reason is as follows.
rcv(E) holds once session event E occurs. Assume this session event occurs
when message m which is associated with the protocol is received. At this
point the session is in the state specified by E, however the session predicate
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is under a modality (see Section 4.2.2). Hence it cannot be used to get
send(E). One can only get rid of the modality once the session is progressed
at which point it is ensured that the session will never again be in the state
specified by E (due to strict ordering on the session states). Hence it cannot
be possible to generate send(E) from the point where rcv(E) holds.

Using send event permissions and receive event assertions we can now
define interaction permissions, which describe an interaction from the point
of view of one of the two interaction endpoints. The syntax of interaction
permission I can be described by the following production rules

I → R | S
S → send(E) . R |EndS
R→ rcv(E) . S |EndR

where E ranges over session events. We introduce request clauses as part
of the specification of a message handler (along with the already existing
precondition) which can hold such interaction permissions. This allows actors
to request an interaction in the request clause of a message handler. We call
the actor requesting the interaction the requestor. The first event in the
requested interaction must be a send event. Furthermore, the receive events
may only be with respect to the session corresponding to the requestor. In
our example, we provide the following interaction permission in the request
clause of the operator’s calc message handler

sendSME(mediator, ιSME(mediator),DM, done) .
rcvSO(this, ιSO(this),GO, get) .
sendSME(mediator, ιSME(mediator),RM,mresult) .EndR

(4.7)

This request describes the following interaction. The operator wants to send
the done message to the mediator now, and after doing this it guarantees
to be in a session state where it receives the get message. In particular, it
guarantees that the other interaction point (i.e. the mediator) can get hold
of the permission to send the get message once done has been received. We
will see how this implicit permission transfer is achieved. Finally, once the
operator has received the get message, it wants the permission to send the
mresult message to the mediator, at which point the complete interaction
ends. Note that the session identifier for both send event permissions are the
same, so in the interaction these send events are with respect to the same
session.

When an actor sends a message that contains a request clause then it
must satisfy the precondition and accept the request. We call the actor
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accepting the request the acceptor. The acceptor must give up the send
permission associated with the first event in the request clause to ensure
that the requestor gets hold of this permission. Furthermore, we demand
from the acceptor and requestor the following:

• The acceptor must give up one session finalization access permission for
each session appearing in send events of the interaction. The reason
is that one can then ensure that each of these sessions is active at
this point and that they are not going to finish until the interaction is
finished.

• At the beginning of the message handler for which the request is spec-
ified, the requestor must give up one session finalization access per-
mission for the session associated with the message handler (i.e. the
session specified in all receive events of the interaction).

The motivation for this will become clearer soon. Finally, we require that
the request clause is framed by the precondition to ensure we only talk about
well-defined expressions. Since we may think of the session finalization access
permissions provided by the acceptor as part of the precondition, all expres-
sions of the form ιρ(a) are framed, where ιρ(a) is an identifier corresponding
to one of the send events in the request clause (see Section 4.2.3). Therefore,
the shown request clause is framed by the precondition (ιSO(this) is framed
by the session predicate SO(this) that must be provided in the precondition).

Once the message is sent (i.e. the request has been accepted), the accep-
tor gets hold of the dual of the requested interaction permission and once
the requestor receives the message it obtains the requested interaction per-
mission. We call these two interaction permissions originating from the same
request as companion permissions (i.e. we say the companion permission of
I to refer to the other permission). The main idea, as we will see, is that
one can implicitly transfer send event permissions between these companion
permissions. The dual D(I) of interaction permission I is defined as follows:

D(send(E) . R) = rcv(E) .D(R)
D(rcv(E) . S) = send(E) .D(S)

D(EndS) = EndR
D(EndR) = EndS

Hence send event permissions are exchanged with receive events and vice
versa. The dual is self inverse. In our example, the mediator gets hold of
the dual of (4.7) which is given by (we replaced the mediator and service
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references with expressions from the mediator’s point of view)

rcvSME(this, ιSME(this),DM, done) .
sendSO(this.op, ιSO(this.op),GO, get) .
rcvSME(this, ιSME(this),RM,mresult) .EndS

(4.8)

Right after the request message has been accepted, the session finalization
access permissions given up by the acceptor for all the sessions occurring in
send events are owned jointly by both companion permissions (the permission
for the requestor is only explicitly obtained once the message is received, but
we can still think of this permission as being generated once the message
is sent). The session finalization access permission for the receive events is
only given up once the message is received by the requestor, at which point
it is also jointly owned by the companion permissions. However, because we
provide the session predicate associated with the receive events when sending
the message, we can be sure that this session is not going to be finished before
the message is received (this is one reason for the restriction on the receive
events in the request). As we will see later in this section (and show in detail
in Section 4.9), we guarantee that one cannot retrieve the session finalization
permission from the interaction permission as long as the session is specified
in a session event in either of the two interaction permissions (i.e. as long
as the session is active in either of the two permissions). This means as long
as a session is active in an interaction permission it cannot finish. Therefore
an interaction permission frames all expressions of the form ιρ(a) where this
is a session identifier corresponding to an active session. We can therefore
conclude that the interaction permissions (4.7) and (4.8) are framed in any
program state as long as permission to the heap-dependent expressions is
held.

Next, we describe how such an interaction permission can be used to
progress the interaction. If the first event of the interaction permission is
a send event, then the corresponding send event permission is held by that
interaction permission (that’s why the acceptor must give up a send event
permission). However, to be able to use this send event permission (and
hence advance the interaction) one must give up the send event permission
for the next receive event in the interaction. We can express this using the
following entailment

send(E ′) ∗ (send(E) . rcv(E ′) . S) |= send(E) ∗ (rcv(E ′) . S)

As one can see, one ends up with the send event permission and the contin-
uation of the interaction permission. The send permission that is given up is
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implicitly transferred to the companion interaction permission, from where
one will be able to retrieve it using a receive event.

Once the operator has received the calc message, it gets hold of interaction
permission (4.7), hence by giving up

sendSO(this, ιSO(this),GO, get)

it gets hold of the send permission for the done message and the continuation.
A special case is if the next receive event is the end of the interaction, in that
case nothing needs to be given up to get the send permission. We can express
this using the following entailment

send(E) .EndR |= send(E)

If the first event of the interaction permission is a receive event then
one may use the corresponding receive event assertion to get hold of the
continuation. We have

rcv(E) ∗ (rcv(E) . S) |= S

Once the mediator has sent the query message and accepted the request, it
gets hold of interaction permission (4.8). Hence once it receives the done
message, it may use the corresponding receive event assertion to get hold
of the continuation which contains the send permission for the get message
(however, as before it cannot use this without giving up send event permission
for the next receive event).

The intuition why the send permission to get can be claimed is the fol-
lowing. When the operator gives up the send event permission for the get
message to advance its interaction, then this permission is implicitly trans-
ferred to the companion permission held by the mediator. In Section 4.9 we
will give an argument which shows the following. If the send event permis-
sion is given up to advance the interaction permission, then only the entity
owning the companion permission can get hold of this send event permission
(using the corresponding receive event assertion).

Additionally to getting hold of the continuation of the interaction per-
mission using the receive event, one also gets hold of the session finalization
access permission associated with the session specified by the receive event,
if one can guarantee that the corresponding session is not active in the con-
tinuation. Hence we can make the entailment describing the progression of a
interaction permission where the first event is a receive event more precise.
A session is uniquely identified by a protocol description ρ, an actor a and
a session identifier i. Let inactive(I, (ρ, a, i)) evaluate to true if the session
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is not contained in any session event in I (i.e. it is inactive in I). In our
example this check is syntactic because each protocol only appears as part
of a single session in the interaction permission (later this will change and
we’ll mention how to do the check then). We have

rcvρ(a, i, s,m) ∗ (rcvρ(a, i, s,m) . S) |=
S ∗ (inactive(I, (ρ, a, i))⇒ ρF(a, 1+))

The intuition why we can claim the session finalization permission is the
following. As we said earlier, the two companion permissions jointly own a
session finalization access permission for each session that is active in either
of the two interaction permissions. Hence ρF(a, 1+) is owned jointly by the
two companion permissions as well, since the specified session is active in one
of the two interaction permissions. We can identify the last event involving
the session in the interaction. In one of the companion permissions this will
be a send event, in the other it will be a receive event. One can show that if
one of the permissions ever progresses to a point where the next event in the
interaction is the last receive event, then it must hold that if this receive event
occurs, the other interaction permission has gone past the corresponding
send event (because the send event in a sense enables the receive event).
Therefore, after the receive event is applied to get the continuation, neither
of the two companion permissions mention the session, hence it is fine for
the finalization permission to be extracted.

In our example, the mediator can get hold of its finalization permission
if it has progressed its interaction permission to

rcvSME(this, ιSME(this),RM,mresult) .EndS

and has received the mresult message.

4.9 Soundness argument for interaction permissions
Even though we have not defined the formal semantics of interaction per-
missions, we give an argument for why it is sound to use them in the way
we have described. In Section 4.8 we showed the different ways one can ma-
nipulate interaction permissions (by progressing them) using entailments. A
more precise way of thinking about this is that each of the shown entail-
ments corresponds to repartitioning the permissions held in the interaction
permission. As we saw there are three repartitioning steps:

1. Accept step. If a message is sent which contains a request clause
with interaction permission I := (send(E) . R) and the acceptor satis-
fies all the conditions (i.e. gives up send(E) and a session finalization
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access permission for each session specified in a send event in I), then
interaction permission (send(E) . R) and (rcv(E) . S) are created.

2. Send step. Given (send(E) . R) and the send event permission corre-
sponding to the first receive event in R (which is empty if R = EndR),
then repartition these permissions to (send(E) ∗R).

3. Receive step. Given (rcv(E) . S) and rcv(E), then repartition the
permission to S and if the session corresponding to E is inactive in S,
also extract the corresponding session finalization access permission.

We need to guarantee that it is sound to obtain the send event permission
that is obtained in the send step and the session finalization access permis-
sion that is obtained in the receive step. In particular, this means that the
session specified by the send event is active and no one else has the send
event permission, otherwise interaction permissions would enable unsound
reasoning. For example, suppose one could get hold of send(E) even though
someone else already owns a send(E) simultaneously. Then this means that
we have permission to send a message m associated with the protocol in a
session state, even though the session is not in that session state or may not
even be active. This would be unsound because one may assume the protocol
invariant for that session state at the beginning of message handler m even
though the session is not in that state.

If one could get hold of a session finalization access permission that did
not originate from the session finalization source permission associated with
the corresponding session, then one can also show that this would lead to
unsound reasoning (one possible argument involves deriving an actor service
that does not hold).

The main idea is that we track the interaction permissions as they progress.
For this we assume that each interaction permission I that is generated in
the accept step obtains a unique label l. When an interaction permission I
with label l is progressed using the send or the receive step, then after the
step the continuation permission gets the same label l (hence the label l re-
mains the same before and after the step, but the interaction permission itself
changes). This labelling allows us to identify for each interaction permission
the companion interaction permission using its label. Two companion per-
missions have different labels, but there is a function mapping a label to its
companion’s label.

To ensure that one may obtain the permissions using the repartitioning
steps, we use a notion of ownership that is associated with interaction per-
missions. For example, as we will see, we will make sure that if an interaction
permission I is of the form (send(E) . R), then the permission send(E) is
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owned by I, i.e. no one else has this permission at the moment. That means
at some point send(E) must have been generated soundly (for example, af-
ter a session was progressed) and then given up in a way such that only I
has access to it.

The idea of the soundness argument is to track properties for each in-
teraction permission (some of which state what the interaction permissions
own at different points), which will help us show that whenever one extracts
the permissions in the receive and send steps, then these permissions are
owned by the corresponding interaction permissons. Next, we present these
properties and briefly give an intuition for why they should hold (later we
will show that they are established and preserved).

Property 1. There is a companion map C which maps labels to the cor-
resonding companions, such that an interaction permission with label l has
the unique companion interaction permission with label C(l) and the compan-
ion of interaction permission with label C(l) is l (hence C is self-inverse).
Once a companion is set for a label, then it never changes.

Recall that a pair of interaction permissions are generated when an in-
teraction request is accepted. The requestor gets the interaction permission
specified in the request with label l and the acceptor gets the dual with label
lc. The interaction permissions with labels l and lc are always companions.

Property 2. If an interaction permission I of the form (send(E) . R) is
held, then the permission associated with send(E) is owned by I.

If this were not the case, then progressing this interaction would be un-
sound.

Property 3. If an interaction permission I is of the form (send(E) . R),
then its companion permission is of the form D(I).

Property 4. If an interaction permission I is of the form (rcv(E) . S) and
its companion is I ′, then one of the following holds

• I ′ is of the form D(I).

• I ′ is of the form (rcv(E ′′) .D(I)).

• I ′ is of the form D(S) and if S is of the form (send(E ′) . R); in this
case the permission associated with send(E ′) is owned by I.
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The general intuition for properties 3 and 4 is the following. Companion
permissions describe the two interaction endpoints of a single interaction.
Hence companion permissions progress in lockstep. It is not possible for one
interaction permission to progress two steps while the companion does not
progress at all. They always progress alternatively.

If one of the interaction permissions specifies a send event next, then we
can be sure that the companion must be ready to receive this send event. If
one of the interaction permission I specifies a receive event next, then there
are multiple possibilities for the companion I ′.

• The first possibility is that I and I ′ are at the same point in the inter-
action, this means I ′ is just the dual of I.

• The second possibility is that I is one step ahead of I ′. This means
the permission to send(E ′′) was extracted and I ′ is still waiting to be
progressed. This means I ′ is still waiting for the message associated
with E ′′ to be received10.

• The third possibility is that I ′ is one step ahead of I, hence send(E)
was extracted and I is still waiting to be progressed. If S = send(E ′).R
(I = rcv(E) . S), then to extract send(E) the permission send(E ′)
must have been given up. We associate this permission at this point
with I.

Property 5. For each interaction permission I and its companion permis-
sion I ′, we have that the following holds. Suppose I and I ′ were obtained
directly from the accept step and let S be the session associated with the re-
quest clause in the corresponding accept step. We have that for every session
except S that is active in I or I ′ a session finalization access permission is
owned jointly by I and I ′. For S we have that the session is currently active
and will remain active until I and I ′ are first progressed, at which point a
corresponding session finalization access permission for S is owned jointly by
I and I ′.

Suppose I or I ′ were not obtained from the accept step (i.e. one of them
was obtained after a receive or send step), then it is guaranteed that for
every session that is active in I or I ′ a session finalization access permission
is owned jointly by I and I ′.

10This explanation gives an intuition but is not a completely correct explanation. It is
possible for the message associated with E′′ to be received, but the interaction permission
to not be progressed. We do not force the progression of interaction permission upon
reception of messages.
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The reason we require these finalization permission to be owned “jointly”
is that we need them to frame expressions in both companion permissions.
One can think of this as one half of the finalization permission being owned
by one of the interaction permissions and the other half being owned by the
companion interaction permission.

We need this to show that a session cannot finish as long as it is active
in an interaction permission. Note that once Property 5 is established for
newly generated interaction permissions, one may assume that interaction
permissions I and I ′ jointly own a session finalization access permission for
each session that is active in I or I ′ whenever a send step or receive step is
applied to I or I ′.

Next, we show that these properties are established when interaction
permissions are generated in the accept step. We then show that under the
assumption of these properties, that whenever one applies a send step or a
receive step then the permission that one extracts is owned by the interaction
permission and after the repartitioning step the properties are preserved.

Accept step: In this case an acceptor sends a message m to a requestor,
wherem specifies a request clause with interaction permission (send(E).
R). To perform this step the acceptor gives up send permission send(E).
After the step interaction permissions I ′ := (rcv(E) .D(R)) with label
l′ (which the acceptor gets hold of) and I := (send(E) .R) with label l
(which the requestor gets hold of, once it receives m) are created. We
define the companion of l to be l′ and vice versa. Hence Property 1 is
established. Properties 3 and 4 are a direct consequence of the compan-
ion permissions being duals of each other. We associate the permission
send(E), that was given up, with I. Hence Property 2 is established.
The acceptor gives up one session finalization access permission for
each session that is active in I and I ′, except the session S that is
associated with the request. S is guaranteed to be active until m is
received since the corresponding session predicate is transferred over
m. It is guaranteed that I ′ cannot progress until I progresses, since
otherwise rcv(E) holds and I owns send(E) simultaneously which as
explained at the beginning of Section 4.8 cannot hold. Furthermore, S
cannot progress at all until message m is received by the requestor at
which point the requestor must directly give up one session finalization
access permission for S at the beginning of the message handler. We
conclude that Property 5 is established.

Send step: In this case an interaction permission I with label l of the form
(send(E) . R) is progressed to R. We know from Property 3 that the
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companion permission I ′ is of the form (rcv(E) .D(R)).
Suppose R = (rcv(E ′) . S). Hence to progress I send(E ′) is given up
and send(E) is extracted from I. Due to Property 2 we know that
send(E) is owned by I before the progression, hence send(E) can be
safely extracted.
Furthermore, we associate the permission send(E ′), that was given
up, with I ′ (so it is now owned by I ′). This corresponds to an implicit
transfer of the send event permission to the companion. After the
progression the interaction permission with label l (it is given by R) is
one step ahead of its companion I ′ and hence we conclude (since we
associated send(E ′) with I ′) that Property 4 is preserved. Properties 2
and 3 are preserved trivially because after the progression the first event
in I is a receive event.
Next, suppose R = EndR, then the permission of send(E) is obtained
without giving anything up anything, but this is fine since extracting
the send permission can be done as it was owned by I and I ′ is of the
form (rcv(E) .EndS).
Property 5 is preserved since no finalization permission is extracted.

Receive step: In this case it is known that rcv(E) holds and interaction
permission I with label l of the form (rcv(E) . S) is progressed to S.
Also after the step is finished, the session finalization access permission
associated with E is extracted if the corresponding session S1 is not
active in S. We know from Property 4 that there are three possibilities
for companion permission I ′ of I before the progression.
The first possibility is that I ′ is of the form (send(E) . D(S)). From
Property 2 we know that I ′ owns send(E). However, as explained
at the beginning of Section 4.8, it is not possible for rcv(E) to hold
and someone to own send(E). We conclude that I ′ cannot be of the
suggested form.
The second possibility is that I ′ is of the form (rcv(E ′′) .D(I)). From
Property 4 and the fact that the companion of I ′ is I (due to Property 1)
we conclude that I ′ must own send(E). However, as in the previous
case this is impossible. We conclude that I ′ cannot be of the suggested
form.
The third possibility is that I ′ is of the formD(S). After the progression
the interaction permission with label l and its companion I ′ are duals
of each other, hence Properties 3 and 4 hold. Suppose S = (send(E ′) .
R). From Property 4 we conclude that I owns send(E ′). Hence after
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the progression we transfer send(E ′) to S (which is the interaction
permission with label l). Therefore Property 2 is preserved. Next,
suppose S1 is not active in S. Hence it is not active in D(S) and
therefore also not in I ′ (since I ′ = D(S)). Due to Property 5 we know
that session finalization access permission for S1 is owned jointly by I
and I ′ before the progression, hence we can extract it safely. Property 5
can be preserved because S1 is not active in S or I ′.

We have shown using introduced properties that the permissions that are
extracted by the receive and send steps are always owned by the interaction
permission, which means that the repartitioning steps do not forge any of
the permissions that are extracted.

4.10 Proving the CMO example
Consider the CMO actor program which we introduced in Section 4.7. The

main response property in this program can be expressed by the following
actor service

C.init(ni) C.cresult(h(g(f(ni)) + ni)) where old(ιSC(C)) = ιSC(C) (4.9)

This can be observed by looking at the message chart for the CMO program
in Figure 10 on page 58. In this section, we show to how specify the actor
program and verify this actor service in a modular fashion using the intro-
duced interaction permissions and request clauses in Section 4.8. We assume
the partial protocol definitions (protocol states and transition relations) pro-
vided in Section 4.7 for the customer protocol SC, the mediator protocol
SME and the operator protocol SO.

4.10.1 Operator specification

We provide the following constructor postcondition for the operator

SO(this) ∗ stateSO(this) = CO

which can be established by spawning the session in the constructor. The
precondition of the calc and the get message handlers just contain the op-
erator’s session predicate SO(this) in the session states CO (for calc) and
GO (for get). We define the request clause of the calc message handler using
the interaction permission (4.7). As discussed in Section 4.8, this interaction
permission is framed by the precondition. We define the following protocol
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invariant for protocol description SO.

InvSO(s) := acc(this.state) ∗ acc(this.md) ∗ acc(this.val) ∗
s = CO⇒ this.state = ACCEPTCALC ∗ SOF(this, 0−) ∗
s = GO⇒

this.state = ACCEPTGET ∗ SOF(this, 1−) ∗
this.md = ϕSO(this,CO, ιSO(this), calc(m,n),m) ∗(
ιSME(this.md)
= ϕSO(this,CO, ιSO(this), calc(m,n), ιSME(m))

)
∗

this.val = ϕSO(this,CO, ιSO(this), calc(m,n), n) ∗ rcvSO(this, ιSO(this),GO, get) .
sendSME(this.md, ιSME(this.md),RM,mresult) .
EndR




The idea of the protocol invariant is that at first when the operator is in
session state CO, it does not track any information yet that is required for
the interaction with the mediator since the interaction has not started. Once
the operator moves to state GO the interaction has started and the protocol
invariant relates its local state to its session environment. For example, it
tracks that the mediator which it received over the calc message is stored in its
this.val field. Furthermore, the interaction permission that will be required
to obtain the permission to send the mresult message to the mediator once the
get message is received is held. Finally, since the operator made a request,
one of its session finalization access permissions had to be given up. This is
reflected by the assertion SOF(this, 1−).

This protocol invariant is self-framing, partly because the interaction per-
mission held in state GO frames ιSME(this.md), as the corresponding session
is active in the interaction. Together with the preconditions it guarantees
that only the non-failing branches are taken in the message handlers.

Consider the calc message handler body. At the beginning the operator
must give up one session finalization access permission due to the request
clause. It can progress its session to session state GO and then it can turn
its session predicate into the corresponding send event permission, i.e.

SO(this) ∗ stateSO(this) = GO |= sendSO(this,GO, ιSO(this), get)

the operator gets hold of the interaction permission (4.7) which is specified in
the request clause at the beginning. Using the above send event permission
it can advance the interaction permission, after which the operator obtains
the following send event permission

sendSME(this.md, ιSME(this.md),DM, done)
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which the operator can use to send the done message to the mediator (the
precondition only requires the session predicate in state DM which the send
permission provides). Advancing the interaction permission also results in
the continuation permission which is given by

rcvSO(this, ιSO(this),GO, get) .
sendSME(this.md, ιSME(this.md),RM,mresult) .EndR

Using this interaction permission it can satisfy part of the protocol invariant
in state GO. We know at the beginning of the message handler that no
finalization permission was given away (due to the protocol invariant), hence
after giving one of the access permissions away we are left with SOF(this, 1−).
Finally, the assertions in the protocol invariant which involve environment
expressions can be verified using the rule introduced in Section 4.4. Hence
the protocol invariant can be established at the end of the message handler.
We conclude that calc is valid.

Next consider the get message handler body. The corresponding receive
event assertion can be used to advance the interaction permission stored in
the protocol invariant. Since the operator’s session is not active in the con-
tinuation it gets hold of SOF(this, 1+), which means the operator again has
the full finalization permission and therefore can finish the session. Further-
more, it gets hold of the send event permission required to send the mresult
message. Hence get is valid.

4.10.2 Mediator specification

The preconditions of the query, done, getresult, mresult message handlers just
contain the mediator’s session predicate SME(this) in the session states QM
(for query), DM (for done), GM (for getresult) and RM (for mresult). For
the query message handler we provide a request clause with the following
interaction permission

sendSC(customer, ιSC(customer),AC, advance) .
rcvSME(this, ιSME(this),GM, getresult) .
sendSC(customer, ιSC(customer),RC, cresult) .EndR

(4.10)

It is framed by the precondition. It describes the interaction the mediator
expects with the customer. The protocol invariant for protocol description
SME is given in Figure 11. The mediator is at the same time a requestor
(since it requests an interaction at the query message) and an acceptor (since
it accepts the operator’s request when sending the calc message). We just
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InvSME(s) := acc(this.mstate) ∗ acc(this.c) ∗ acc(this.op) ∗
s = QM⇒ this.mstate = ACCEPTQUERY ∗ SMEF(this, 0−) ∗
s ∈ {DM,GM,RM} ⇒ this.c = ϕSME(this,QM, ιSME(this), query(c,n), c) ∗(

ιSC(this.c) =
ϕSME(this,QM, ιSME(this), query(c,n), ιSC(c))

) 
s ∈ {DM,GM} ⇒

this = ϕSO(this.op,CO, ιSO(this.op), calc(m,n),m) ∗(
ιSME(this) =
ϕSO(this.op,CO, ιSO(this.op), calc(m,n), ιSME(m))

)
∗(

ϕSC(this.c,CO, ιSC(this.c), query(c,n), n) =
ϕSO(this.op,CO, ιSO(this.op), calc(m,n), n)

)


s = DM⇒

this.mstate = WAITFORDONE ∗ SMEF(this, 2−) ∗ sendSC(this.c, ιSC(this.c),AC, advance) .
rcvSME(this, ιSME(this),GM, getresult) .
sendSC(this.c, ιSC(this.c),RC, cresult) .EndR

 ∗
 rcvSME(this, ιSME(this),DM, done) .

sendSO(this.op, ιSO(this.op),GO, get) .
rcvSME(this, ιSME(this),RM,mresult) .EndS




s = GM⇒

this.mstate = ACCEPTGETRESULT ∗ SMEF(this, 2−) ∗(
rcvSME(this, ιSME(this),GM, getresult) .
sendSC(this.c, ιSC(this.c),RC, cresult) .EndR

)
∗(

sendSO(this.op, ιSO(this.op),GO, get) .
rcvSME(this, ιSME(this),RM,mresult) .EndS

)


s = RM⇒ this.mstate = WAITFORMRESULT ∗ SMEF(this, 1−) ∗
sendSC(this.c, ιSC(this.c),GO, cresult) ∗
rcvSME(this, ιSME(this),RM,mresult) .EndS



Figure 11: Protocol invariant for SME, used for the mediator given in Figure 8.
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briefly describe the mediator’s protocol invariant without arguing about va-
lidity. The validity of the message handlers can be ensured similarly as shown
for the operator (the requestor side) and as we are going to show for the cus-
tomer (the acceptor side). The only difference in terms of proving validity is
that the session predicate required to send the calc message to the operator
is obtained right after the service has been spawned over the constructor
postcondition.

The protocol invariant together with the preconditions ensures that no
failing branches are taken. In the GM state the protocol invariant holds
two interaction permissions. One is obtained via the request at the query
message (we call this the customer interaction) and the other is obtained via
the accept at the calc message (we call this the service interaction). None of
the interactions have been advanced yet in this state.

After receiving the done message the mediator can advance the customer
interaction as well as the operator interaction. This is reflected in the protocol
invariant for session state DM. Next, after receiving the getresult message,
the mediator can again advance both interactions. At this point it gets back
the finalization permisson from the customer interaction (hence only one
access permission is still missing). This is reflected in the protocol invariant
for session state RM. Finally, once the mresult message is received the
operator interaction is ended and the remaining finalization permission is
retrieved. At this point the mediator can finish the session.

Some important facts are expressed using environment expressions. One
important fact is that the value that was sent to the operator over the calc
message in the operator’s current session is the same value as the mediator
received over the init message of its current session. The reason this is impor-
tant is that using this fact the mediator can relate the value that it receives
from the operator (which is expressed using the operator’s environment) in
terms of its own environment. The client which knows how its own envi-
ronment relates to mediator’s environment can then use this fact to express
the value it gets in terms of its own environment. Without the mediator as
a bridge, this chaining of the operator’s and the client’s environment would
not be possible.

This mediator’s protocol invariant is self-framing, partly because when-
ever one is in a state where a session identifier attribute function is used for
a session other than the mediator’s, then in that state the protocol invari-
ant contains an interaction permission in which the corresponding session is
active.
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4.10.3 Customer specification

The precondition of the init message handler is given by

SC(this) ∗ stateSC(this) = IC ∗
SME(mediator) ∗ stateSC(mediator) = QM

The preconditions of the advance and cresult message handlers only contain
the customer’s session predicate SC(this) in the session states IC (for init),
AC (for advance) and RC (for cresult). We define the following protocol
invariant for protocol description SC.

InvSC(s) := acc(this.cstate) ∗ acc(this.md) ∗
s = IC⇒ this.cstate = INIT ∗ SOF(this, 0−) ∗
s = AC⇒

this.cstate = WAITFORADVANCE ∗ SOF(this, 1−) ∗
this = ϕSME(this.md,CO, ιSME(this.md), query(c,n), c) ∗(
ιSC(this) =
ϕSME(this.md,CO, ιSME(this.md), query(c,n), ιSC(c))

)
∗(

ϕSC(this, IC, ιSC(this), init(n), n) =
ϕSME(this.md,QM, ιSME(this.md), query(c,n), n)

)
 rcvSC(this, ιSC(this),AC, advance) .

sendSME(this.md, ιSME(this.md),GM, getresult) .
rcvSC(this, ιSC(this),RC, cresult) .EndS




s = RC⇒(

this.cstate = WAITFORCRESULT ∗ SOF(this, 1−) ∗
rcvSC(this, ιSC(this),RC, cresult) .EndS

)

The idea of the customer’s protocol invariant is as follows. When the cus-
tomer moves to session state AC (after sending the query message to the
mediator) the interaction with the mediator has started. The facts in the
protocol invariant for that state relate the customer’s local state with the me-
diator’s session environment (at the end of this section, we show how these
facts can be established). One important fact is that the value it received
over the init message is the same as the value sent to the mediator of the query
message. This will be important to derive the response property modularly,
because it permits a derivation of the mediator’s reaction to the customer’s
messages just in terms of the mediator’s environment.

Also note that in this session state the interaction permission obtained
after sending the query message has not progressed, because the customer is
still waiting to receive the advance message.
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Consider message handler init. When sending the query message to the
mediator, the customer needs to accept the requested interaction specified
by the interaction permission (4.10). For this it needs to give up its own
session finalization access permission, after which its left with SOF(this, 1−).
Furthermore, the customer must give up the send permission corresponding
to the first send event in the requested interaction. This the customer can
achieve by progressing its own session to state AC and transforming the
corresponding session predicate to the send permission.

Additionally, the customer must satisfy the precondition of query which
it can do by giving up the mediator’s session predicate that it received over
the precondition of init.

Once the customer has sent the query message, the customer gets hold
of the dual interaction permission of (4.10). Using this and SOF(this, 1−) it
can partially establish the protocol invariant in state AC.

To justify the parts involving the environment expressions, we present a
rule that we have not shown before. We explain this rule by example. The
customer sends sends the query message to the mediator, while the mediator’s
session is in state QM. This means the customer is actively generating the
session event specified by (SME, this.md, ιSME(this.md),QM, query). There-
fore, the customer knows the values that were sent to the mediator over this
event, which means that the customer has knowledge about the session en-
vironment with respect to the query message (in a sense the customer is the
mediator’s environment in this case). Using the rule the customer can learn
the following facts (which are tracked in the customer’s protocol invariant):

this = ϕSME(this.md,CO, ιSME(this.md), query(c,n), c) ∗(
ιSC(this) =
ϕSME(this.md,CO, ιSME(this.md), query(c,n), ιSC(c))

)

These facts make explicit that the customer sent its own identity via the query
message to the mediator and that the customer’s session identifier is the same
as when it sent the query message. Using these facts the customer can relate
itself to the mediator’s session environment, which will be important once
we derive actor services.

Formally, this rule can be explained as follows. Suppose an actor a sends
a message m associated with a protocol ρ to another actor a′ using the
statement a′.m(⇀ei). By sending this message a gains knowledge about the
session environment in a′. We make this explicit using the following rule. a
must provide expressions eid, es for the session identifier and session state for
the session corresponding to ρ in a′. It must be guaranteed that eid, es are
framed after the message is sent (i.e. after all the permissions specified in
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the precondition have been given up). At the program point after sending
the message the following assertion holds

ϕρ(a′, eid, es,m(y;⇀xi), e) = e[⇀ei/⇀xi][a′/this]
if the assertion is framed at that program point (i.e. the environment ex-
pression must be framed and e[⇀ei/⇀xi][a′/y] must be framed). e can be picked
in the rule (as long the framing conditions hold), and arbitrary many such
assertions can be learnt when sending a single message.

The presented rule is also required to verify the validity of the query
message handler in the mediator (the mediator gains knowledge about the
operator’s session environment when sending the calc message).

The customer’s protocol invariant is self-framing, partly because in state
AC an interaction permission is held which frames ιSME(this.md). The pre-
conditions together with protocol invariant ensure that no failing branches
are taken in the message handlers.

4.10.4 Proving the response property

Using the specifications from the previous sections, we now show how to
derive the actor service (4.9). We have the following local actor service for
the mediator
M.query(C, nq) ∃O′p. O′p.calc(M,nq) where old(ιSME(M)) = ιSME(M)

(4.11)
ιSME(M) is framed, because the request clause requires the mediator’s send
event permission from the acceptor, hence one can think of this permission
as part of the precondition of compute. We have the following local actor
service for the operator
Op.calc(M,nc) M.done(f(nc)) where old(ιSME(M)) = ιSME(M) (4.12)

We compose the mediator’s local actor service with an instantiation of the
operator’s local actor service to get
M.query(C, nq) M.done(f(nq)) where old(ιSME(M)) = ιSME(M) (4.13)

Note how both of these actor services make explicit that the mediator’s
session does not change between trigger and response. We rewrite (4.13)
to (using the rules introduced in Section 4.5)
M.query(C, nq) M.done(f(nq))

where
old(ιSME(M)) = ιSME(M)
ϕSME(M, old(ιSME(M)),QM, query(c,n), c) = C
ϕSME(M, old(ιSME(M)),QM, query(c,n), ιSC(c)) = old(ιSC(C))

(4.14)
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The main idea of this rewrite step is to relate the mediator’s session environ-
ment to the inputs that it received over the query message (which corresponds
to a session event for the mediator’s session). This is important, because in
this actor service we know the values that were provided for the query mes-
sage. The next actor service that we derive, will express its response only in
terms of the mediator’s session environment. Hence we need to make sure
that we can make the connection between the actual values and the specified
environment in that response.

Note that old(ιSC(C)) is framed for a similar reason to why ιSME(M) is
framed in (4.11). Furthermore, we can derive the following local actor service
for the mediator
M.done(nd) ∃C ′. C ′.advance(nd)

where ϕSME(M, old(ιSME(M)),QM, query(c,n), c) = C ′ ∗
ϕSME(M, old(ιSME(M)),QM, query(c,n), ιSC(c)) = ιSC(C ′)

(4.15)

We compose (4.14) with an instantiation of (4.15) to get

M.query(C, nq) C.advance(f(nq)) where old(ιSC(C)) = ιSC(C) (4.16)

We can derive the following local actor service for the customer

C.init(ni) ∃M ′. M ′.query(C, ni) where old(ιSC(C)) = ιSC(C) (4.17)

We compose (4.17) with (4.16) to get

C.init(ni) C.advance(f(ni)) where old(ιSC(C)) = ιSC(C) (4.18)

This actor service shows that if the customer receives an init message, then
eventually it will receive an advance message in the same session, i.e. its
protocol is guaranteed to continue. The interesting part is that the actor
service contains no information about the mediator and the operator. The
operator’s val field evaluates to the ni argument given in the init message
handler while the session is running. We will now see in the rest of the
derivation how this fact is recovered without keeping track of it in (4.18),
which makes the derivation modular. We have the following local service for
the mediator

M.getresult(ngr) ∃O′p. O′p.get(ngr)

where

M = ϕSO(M, ιSO(O′p),QM, calc(m,n),m) ∗
old(ιSME(M)) = ϕSO(M, ιSO(O′p),QM, calc(m,n), ιSME(m)) ∗(
ϕSME(M, old(ιSME(M)),QM, query(c,n), n) =
ϕSO(M, ιSO(O′p),QM, calc(m,n), n)

)
(4.19)

80



This local actor service makes explicit that the nq value which the mediator
received over its query message in its session was sent to the operator over the
calc message. Next, we have the following local actor service for the operator

Op.get(nget) ∃M ′, z. M ′.mresult(h(nget + z))

where
ϕSO(Op, old(ιSO(Op)),QM, calc(m,n),m) = M ′ ∗
ϕSO(Op, old(ιSO(Op)),QM, calc(m,n), ιSME(m)) = ιSME(M ′) ∗
ϕSO(Op, old(ιSO(Op)),QM, calc(m,n), n) = z

(4.20)

The existentially quantified z is the value of the operator’s val field which in
this actor service is expressed using the operator’s environment. We com-
pose (4.19) with (4.20) to get

M.getresult(ngr) ∃z. M.mresult(h(ngr + z))

where ϕSME(M, old(ιSME(M)),QM, query(c,n), n) = z
old(ιSME(M)) = ιSME(M)

(4.21)

In this actor service, the existentially quantified variable z still has the same
value as before, but we express it using the mediator’s environment because
we cannot express it anymore in terms of the operator’s environment since
the operator is not present in the trigger and also not in the response. We
have now essentially made the connection between the operator’s val field and
the mediator’s environment (without ever mentioning the val field). Next,
we have the following local actor service for the mediator

M.mresult(nmr) ∃C ′. C ′.cresult(nmr)

where ϕSME(M, old(ιSME(M)),QM, query(c,n), c) = C ′

ϕSME(M, old(ιSME(M)),QM, query(c,n), ιSC(c)) = ιSC(C ′)
(4.22)

We compose (4.21) with an instantiation of (4.22) to get

M.getresult(ngr) ∃C ′, z. C ′.cresult(h(ngr + z))

where
ϕSME(M, old(ιSME(M)),QM, query(c,n), n) = z
ϕSME(M, old(ιSME(M)),QM, query(c,n), c) = C ′

ϕSME(M, old(ιSME(M)),QM, query(c,n), ιSC(c)) = ιSC(C ′)

(4.23)

We have the following local actor service for the customer

C.advance(na) ∃M ′. M ′.getresult(g(na))

where

(
ϕSC(C, old(ιSC(C)), IC, init(n), n) =
ϕSME(M ′, ιSME(M ′),QM, query(c,n), n)

)
∗

C = ϕSME(M ′, ιSME(M ′),QM, query(c,n), c) ∗
old(ιSC(C)) = ϕSME(M ′, ιSME(M ′),QM, query(c,n), ιSC(c))

(4.24)
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We compose (4.24) with an instantiation of (4.23) to get

C.advance(na) ∃z. C.cresult(h(g(na) + z))

where old(ιSC(C)) = ιSC(C)
ϕSC(C, old(ιSC(C)), IC, init(n), n) = z

(4.25)

In this actor service we have now expressed the existentially quantified vari-
able z in terms of the client’s environment. In particular, we have now
recovered the fact that the value stored in the operator’s val, which was used
during the operator’s session to keep track of the initial value received over
the calc message, evaluated to the argument that the client received over
the init message. This actor service describes the second part of the client’s
protocol, ensuring that if the client reaches the beginning of this part, then
the protocol is guaranteed to continue. We can now rewrite (4.18) (using the
rule introduced in Section 4.5), which describes the first part of the protocol,
to

C.init(ni) C.advance(f(ni))

where old(ιSC(C)) = ιSC(C)
ϕSC(C, old(ιSC(C)), IC, init(n), n) = ni

(4.26)

We compose (4.26) with an instantiation of actor service (4.25) describing
the second part of the protocol to get

C.init(ni) C.cresult(h(g(f(ni)) + ni)) where old(ιSC(C)) = ιSC(C)

which is the actor service we wanted to derive.

4.11 Towards more general actor topologies
In this section we analyze an actor program that has a fundamentally different
topology compared to the actor programs we have considered up to this point.
As we will see, our approach cannot deal with this program. We point out
how one can potentially generalize the current technique to deal with the
program.

Consider the actor program represented by the message sequence chart in
Figure 12. Each of the actors changes its behaviour according to a protocol.
We assume that each actor only accepts the next message that it expects
in the protocol, otherwise there is a failure. At the beginning the manager
knows the identities of the server and the client. The manager sends the
identities over messages to the client and the server, which reply that they
are ready (this is done sequentially). Once the manager knows that the client
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Manager Client Server

initC(manager, server) INC

readyC()RCM

initS(manager, client) INS

readyS()RSM

start() STC

query(n) QS

answer(f(n))ARC

Figure 12: Message sequence chart showing an interaction between a client and a
server that is setup by a manager. For each message the session state in which it
is accepted by the receiving actor is annotated.

and the server are ready, the manager sends a message to the client indicating
that the interaction with the server can be started.

There is a fundamental difference to the programs we have been consid-
ering so far. The client cannot setup the interaction with the server directly,
because there is no initial message between the client and the server, where
identities are exchanged. This setup is done via the manager.

Next, we focus on the problem of making sure that each of the actors gets
the required send event permissions at the right points in their protocol. In
Section 4.11.3 we discuss an issue related to deriving actor services in this
setting.

Let us analyze how we would attempt to write specifications for the actors
using our current technique. We define the protocol descriptions SMA for the
manager, SCL for the client and SRV for the server. The transition relations
are given by

RCM @SMA RSM

INC @SCL STC @SCL ARC

INS @SRV QS

The association of session states to message handlers is straightforward. For
example, the server accepts message initS in state INS and message query in
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state QS. We assume the preconditions of the message handlers are defined
accordingly. For example, the precondition of the initS message handler is
given by

SRV(this) ∗ stateSRV(this) = INITS

We need to make sure that each of the actors has the necessary permission
to send the respective messages. We assume the manager at the beginning
has the session predicates required to send the initC and initS messages. Once
the client receives the start message, it requires the session predicate to send
the query message to the server. It is not easily possible, without hiding the
implementation details of the client, to specify such a session predicate in the
precondition of the start message handler. The main reason is that there is
no information on the server’s identity in this message (this is analogous to
the discussion in Section 4.7). Our solution was to introduce request clauses,
with which one can request interactions at the points where one gets to know
the identities of the other communicating parties. For the client, this point
is when it receives the initC message. We could provide the following request
clause for the initC message specifying the client’s interaction:

sendSMA(manager, ιSMA(manager),RCM, readyC) .
rcvSCL(this, ιSCL(this),STC, start) .
sendSRV(server, ιSRV(server),QS, query) .
rcvSCL(this, ιSCL(this),ARC, answer) .
EndS

This request clause is different from the request clauses that we used for
the CMO program (see Section 4.10), because here the specified interaction
involves more than two actors. To accept the request when sending the initC
message, the manager must give up session finalization access permission for
the server’s session. We assume that the manager has this permission and
we point out in Section 4.11.2 how one could avoid this requirement. Hence
the manager can accept this request, since the manager also can give up send
permission for the readyC message (we assume the manager is in session state
RCM when sending the message) and a session finalization access permission
of its own session.

Analogously, we could provide the following request clause for initS, speci-
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fying the server’s interaction message (which again involves all three parties):

sendSMA(manager, ιSMA(manager),RSM, readyS) .
rcvSRV(this, ιSRV(this),QS, query) .
sendSCL(client, ιSCL(client),ARC, answer) .
EndS

Upon receiving the initC message, the manager progresses its session to state
RSM. Hence the master can accept this request when sending the initS
message by giving up the send permission for the readyS message and the
necessary session finalization permissions (we assume it has such a permission
for the client’s session).

When the manager accepts the requests, it gets hold of the interaction
permissions that are dual to the interaction permissions specified in the re-
quest clauses. We assume it keeps track of these interaction permissions
and their progressions in the protocol invariant (as in Section 4.10 for the
CMO program). Once it receives the readyC and the readyS messages, it can
progress the interaction permissions. Hence before sending the start message
to the client, the manager holds the following interaction permissions

sendSCL(client, ιSCL(client),STC, start) .
rcvSRV(server, ιSRV(server),QS, query) .
sendSCL(client, ιSCL(client),ARC, answer) .
EndR

(4.27)

sendSRV(server, ιSRV(server),QS, query) .
rcvSCL(client, ιSCL(client),ARC, answer) .
EndS

(4.28)

To send the start message to the client, the manager requires the corre-
sponding send permission. If the manager could progress interaction permis-
sion (4.27), then it would get hold of the send permission for start. However,
to progress interaction permission (4.27), the manager requires the send per-
mission for the server’s query message. If the manager could progress inter-
action permission (4.28), then it would get hold of this permission required
for the query message. However, to progress interaction permission (4.28) the
manager requires the send permission for the client’s answer message, which
it has no chance of obtaining at this point, because the client is in a session
state where it does not accept the answer message. We conclude that our
current rules for progressing interaction permissions are not sufficient such
that the manager gets the necessary permission to send the start message.
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Let us analyze the issue in more detail. One may progress interaction
permission (4.28) and as a result get hold of the permission for the server’s
query message, if one guarantees that when the server receives this query mes-
sage, then the server will be able to get hold of the permission for the client’s
answer message using the companion permission of (4.28). The current rule
for progressing interaction permission (4.28) guarantees this by requiring that
one gives up the permission for the client’s answer message before one can get
hold of the send permission for query. The permission that is given up can be
thought of as being implicitly transferred to the companion permission held
by the server. However, there are other ways of guaranteeing this, which are
not captured by the rule.

Suppose we could get hold of the permission for the server’s query message
and would give it up to progress interaction permission (4.27) to its contin-
uation. The permission for query would be then implicitly transferred to the
companion interaction permission IC of interaction permission (4.27) held by
the client (in this case IC is just the dual of interaction permission (4.27) as
specified by Property 3). Once the client were to receive the start message,
it could progress IC to I ′C . I ′C is given by

sendSRV(server, ιSRV(server),QS, query) .
rcvSCL(client, ιSCL(client),ARC, answer) .
EndR

(I ′C)

To get hold of the permission for the server’s query message by progressing
this interaction, the client must give up the send permission for its answer
message, which is then implicitly transferred to the continuation of interac-
tion permission (4.27).

This means the interaction permission IC gives us a guarantee, that if
we were to give it the send permission for query, then this permission would
not be used until the client would give up its send permission for answer.
If we can now make sure that this send permission for answer, when given
up, is implicitly transferred to the interaction permission held by the server
instead of the continuation of (4.27) (which is held by the manager), then
it would be fine to use interaction permission (4.28) to progress interaction
permission (4.27).

This seems to suggest that it should be possible to repartition interaction
permission (4.27) and interaction permission (4.28) to the following single
interaction permission

sendSCL(client, ιSCL(client),STC, start) .
EndR

(4.29)
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The send event for the answer message in interaction permission (4.27) has
been removed. The idea is that by removing it from interaction permis-
sion (4.27), we make sure that when the client gives up its permission for the
answer message to progress its interaction permission, then there is no way of
obtaining the send permission for answer by progressing interaction permis-
sion (4.29). Instead, we in a sense are rewiring this permission to the server’s
interaction permission which is the companion permission of interaction per-
mission (4.28). Finally, the manager can use the interaction permission (4.29)
to get hold of the send permission to send the start message.

We only gave an here intuition as to why the presented repartitioning
step should work. The justification given in Section 4.9 for the original
repartitioning steps cannot be easily generalized for this scenario. The reason
is that in this scenario, one cannot identify for each interaction permission a
unique companion interaction permission to which it transfers permissions.
For example, when the client makes the request, its companion permission is
given by interaction permission (4.27) and after the final repartitioning step
applied by the manager, its companion permission in a sense switches to the
interaction permission held by the server. In Section 4.11.1 we consider a
modified version of the program and we show that a similar repartitioning
step such as the one presented here can be potentially used to obtain the
required permissions.

4.11.1 A slightly modified version

In this section we consider a slightly modified version of the program repre-
sented by the message sequence diagram in Figure 12. Consider the program
represented by the message sequence diagram in Figure 13. The only dif-
ference to Figure 12 is that at the end of the client’s interaction with the
server, the client sends a complete message to the manager. We assume the
manager’s protocol SMA has an additional state CM in which it accepts the
complete message. The presented request clause for the client can be updated
to (it only has a single event more)

sendSMA(manager, ιSMA(manager),RCM, readyC) .
rcvSCL(this, ιSCL(this),STC, start) .
sendSRV(server, ιSRV(server),QS, query) .
rcvSCL(this, ιSCL(this),ARC, answer) .
sendSMA(manager, ιSMA(manager),CM, complete) .
EndR
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Manager Client Server

initC(manager, server) INC

readyC()RCM

initS(manager, client) INS

readyS()RSM

start() STC

query(n) QS

answer(f(n))ARC

complete()CM

Figure 13: Modified version of Figure 12. In this version the client sends a message
to the manager once its interaction with the server is finished. For each message
the session state in which it is accepted by the receiving actor is annotated.

The manager can progress the received interaction permissions in the same
way as before when receiving the readyC and readyS messages. At the point
right before the manager sends the start message to the client, the manager
holds interaction permission (4.30) and interaction permission (4.28).

sendSCL(client, ιSCL(client),STC, start) .
rcvSRV(server, ιSRV(server),QS, query) .
sendSCL(client, ιSCL(client),ARC, answer) .
rcvSMA(manager, ιSMA(manager),CM, complete) .
EndS

(4.30)

It needs to somehow extract the send permission for the start message from
interaction permission (4.30). The main difference to the original version is
that now there is an additional event at the end of this interaction unrelated
to the server. Concretely, the difference is that we need to make sure that
when the client eventually receives the answer message, then it can get hold
of the send permission for the manager’s complete message.

The idea is to repartition interaction permission (4.30) and interaction
permission (4.28) to the single interaction permission

sendSCL(client, ιSCL(client),STC, start) .
rcvSMA(manager, ιSMA(manager),CM, complete) .
EndS

(4.31)
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The reasons why this repartition step should be permitted are the following.
The first reason is analogous to how we argued in the original case. We may
use the interaction permission (4.28) as send permission for query, because
the interaction permission (4.30) guarantees that the obtained send permis-
sion will only be used once the send permission for answer has been given up
(and we can rewire this permission to the server’s interaction permission).
The second reason is that since we keep the receive event for the manager’s
complete message in interaction permission (4.31), we cannot obtain the per-
mission for the client’s start message until this permission has been given
up.

Before the manager sends the start message, the manager can progress
its session to state CM and it can progress interaction permission (4.31)
by giving up the send permission for the complete message, after which the
manager gets hold of the permission to send the complete message.

What is interesting about this example, is that the client only requires
the permission for complete once it receives the answer message from the
server. However, with this repartitioning step, the manager can give up
the corresponding permission at an earlier point. This permits information
hiding, because it enables the client to write down its request clause from its
point of view without having to know when the permission becomes ready.
In our previous examples, the permission was always transferred at the point
where it was expected and never before, because it was not possible (and
also not required) to transfer it earlier.

This point becomes clear if one thinks about how one would handle the
presented example without interaction permissions but by explicitly speci-
fying the session predicates which need to be transferred in preconditions
(ignoring the fact that one would probably have to expose implementation
details). There are two logical options. The first option is that one spec-
ifies the session predicate for the complete message in the precondition of
the client’s start message handler, because that is where this permission is
first ready. The manager could then send it over this message. This would
however mean that the client knows when the manager reaches a state when
this permission becomes ready.

The second option is that the client specifies the session predicate for the
complete message in the precondition of the client’s answer message handler,
because at that point the client requires this session predicate. The disad-
vantage here is that the server would have to somehow get hold of this session
predicate so that the answer message could be sent, which means the server
needs to know about the complete message. Hence information is exposed to
the server that it does not need to know about.

89



4.11.2 Introducing sessions at later points in an interaction

As we mentioned, for the manager to accept the client’s interaction request
it must give up a session finalization access permission for the server’s session
(because the server’s session appears as a send event in the request clause).
This is disadvantageous for two reasons. First, the manager needs to get
hold of this permission from somewhere. Second, there is no easy way for
the server to get back this session finalization access permission (because it
never gets hold of the corresponding interaction permission).

The main issue is that we require that all the sessions in the request clause
are active at the time of the request. This made sense in the CMO program
where all the specified interactions were between two parties. However, once
one has more than two parties and one of the parties only gets involved in
the interaction at a later point (such as the server in the client’s requested
interaction), then this becomes a restriction, because it could very well be
possible that one of the specified session is not yet active. One idea to get
around this is to generalize interaction permissions with constructs that allow
specifying from which point onwards the session should become active. For
example, we could specify the request clause of the client as follows

sendSMA(manager, ιSMA(manager),RCM, readyC) .
rcvSCL(this, ιSCL(this),STC, start) .
introSRV(server, ids) .
sendSRV(server, ids,QS, query) .
rcvSCL(this, ιSCL(this),ARC, answer) .
EndS

The construct introSRV(server, ids) specifies that at this point in the inter-
action a session governed by SRV in server becomes active. ids is a bound
variable that can be used to refer to the session identifier that the session
will have once the interaction reaches that point. Once the interaction per-
mission is progressed to the point where the session becomes active one can
instantiate ids with ιSRV(server).

With such a construct one can change the requirements for an actor ac-
cepting an interaction request to only have to give up session finalization per-
missions for the sessions specified in send events that are active in the request
clause. However, justifying such an extension is not completely straightfor-
ward. One must guarantee that whenever a session is active in an interaction
permission (where identifying active sessions in an interaction permission is
different with the introduced constructs compared to the original approach),
then the session is guaranteed to be running and will not finish as long as it is
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active in the interaction permission. We leave this extension and justification
for future work.

4.11.3 Knowledge about the environment

For the program represented by the message sequence diagram given in Fig-
ure 12, we have only considered how one could make sure that the different
participants get hold of the required permissions at the different points in
their protocol. Next, we consider the main issue that the program poses with
respect to actor services that one should be able to derive, assuming that one
has a solution for the permissions. One would expect that one can derive the
following actor service

C.start() ∃y. C.answer(y) where old(ιSCL(C)) = ιSCL(C) (4.32)

Let us try to derive it. We can derive the following local actor service for the
client

C.start() ∃S, x. S.query(x)
where S = ϕSCL(C, old(ιSCL(C)), INC, initC(m,srv), srv)

(4.33)

and we can derive the following local actor service for the server

S.query(x) ∃C ′. C ′.answer(f(x))
where C ′ = ϕSO(S, old(ιSRV(S)), INS, initS(m,c), c)

(4.34)

Composing the two gives us

C.start() ∃C ′, y. C ′.answer(y) (4.35)

Actor service (4.35) is different to the desired actor service (4.32), since we
do not know which client gets the answer and we do not know if the client’s
session is still the same. The reason we cannot derive these properties is
because the client does not know anything about the server it is talking to
(which it initially received over the initC message). In particular, it does not
know the following fact

C = ϕSO(S, ιSRV(S), INS, initS(m,c), c)

where S is the server the client C is talking to. This fact expresses that the
client which the server received over the initS message evaluates to C. The
reason the client does not know this is because currently the only way this
fact could have been learned by the client is if the client sent the initS message
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to the server. However, the manager was the one sending this message. In
the CMO program which was introduced in Section 4.7, for example, the
mediator knows which mediator the operator is talking to, since the mediator
is the one that provided its own identity to the operator.

One direction that one could follow to deal with this issue is to make
certain facts explicit in the interaction permissions. For example, one could
state that once the client C receives the start() message, we have that the
server is also talking to C. This means we would be making facts about the
environments of the different participants explicit in the interaction permis-
sion.

4.12 A suitable class of actor programs
As we observed in Section 4.11 the developed technique does not quite work
yet for all kinds of actor programs. In this section we identify a class of
protocol-based actor programs for which the technique is effective.

In Section 4.10 we showed that the technique works well for the CMO
actor program. The topology of the CMO actor program is very structured.
The customer communicates with the mediator, the mediator communicates
with the operator and there never is any communication between the cus-
tomer and the operator. This setup permits the modular derivation of the
response properties. To make this clearer, recall that in Section 4.10, we were
able to derive the following actor service (RP1) describing the first response
property only involving the customer

C.init(ni) C.advance(f(ni)) where old(ιSC(C)) = ιSC(C) (RP1)

Furthermore, we were able to independently derive the following actor service
describing the second response property (RP2) only involving the customer

C.advance(na) ∃z. C.cresult(h(g(na) + z))

where old(ιSC(C)) = ιSC(C)
ϕSC(C, old(ιSC(C)), IC, init(n), n) = z

(RP2)

We could then compose these two actor services to get the main response
property in terms of the argument ni given in the init message.

As we noted in Section 4.10, between the init message in actor ser-
vice (RP1) being received and the advance message in the same actor service
being sent, there are multiple stateful changes in the mediator and the cus-
tomer that are dependent on ni. However, we do not need to track them at
all in actor service (RP1) (which enables us to write down a modular actor
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service) and yet we are able to use the derived actor service for the final
result.

The main reason this works is that the customer knows how its own ses-
sion environment relates to the mediator and the mediator knows how its
own session environment relates to the operator. By session environment
we mean the input values that actors receive over messages during sessions.
Furthermore, the customer C knows that the mediator is talking to the cus-
tomer C because the customer provided this information for the mediator’s
session environment. A similar observation can be made for the mediator
and the operator. For the overall response property we are interested in how
the stateful changes in the mediator and the operator relate to the final value
in terms of the initial value ni in the customer’s session environment.

When we derive the mediator’s reaction to the advance message which
eventually leads to another message to the customer, we can describe the
reaction that involves the operator at some point in terms of the mediator’s
environment since the mediator knows its relation to the operator’s envi-
ronment. Finally, since the customer knows its relation to the mediator’s
environment one can then describe the complete reaction just in terms of
the customer’s environment. This can be seen in actor service (RP2) where
the final value given by the existentially quantified variable z is expressed in
terms of the customer’s environment. So the stateful changes that occur in
the mediator and service during actor service (RP1) are captured in terms
of the different environments, which permits the modular derivation.

More generally, a subset of such hierarchical topologies, where one has
the same features as described, are dynamic tree topologies, where an actor
is a node in the tree. Each actor interacts directly with its parent (except if
it is the root) and with its children. In the CMO program the customer is the
root with the mediator as its only child and the mediator has the operator as
a child node. New actors (i.e. nodes in the tree) may be spawned at any time.
An actor knows how its session environment relates to its childrens’ session
environment. In the CMO program, we could add arbitrarily many other
types of actors that the mediator talks to (these actors being children of the
mediator) and one could still reason about the overall property modularly.

Another feature of such tree topologies is that one can describe each in-
teraction between a node and one of its children separately. The two nodes
can setup this interaction over some initial messages where identities are ex-
changed, in our technique we capture this using request clauses. This means
the request clauses that we introduce for such examples only involve interac-
tions describing two parties. However, our technique permits dependencies
between the different interactions in a single actor. These dependencies are
implicit in the interaction permissions expressing the interactions. For ex-
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ample, after the mediator sends the calc message to the operator, it cannot
directly continue the interaction with the customer, because it cannot give
the customer a guarantee that it will accept getResult messages. Our current
rules for progressing interaction permissions are well-suited for such interac-
tions between two parties.

Our technique exploits the described features in a way that permits re-
stricting the reasoning about a single actor’s implementation to properties
relating the actor to its parent node and to its children nodes. One never
needs to reason about any other node in the tree other than the parent or the
children when considering a single actor. This enables the modular deriva-
tion of response properties in such tree topologies. In particular, if messages
are sent from node n0 to its children and then at some point it gets a message
back, then we can relate these two points involving n0 independent of how far
the information travelled down the tree, without any of the actors in the sub-
trees of the children knowing anything about n0. In fact, we could change all
the nodes that are not the parent or a child of n0 and all the proved properties
about n0’s implementation would still hold. Furthermore, we could change
node n0 and any response property that does not involve n0 in its derivation
would still hold in general11. We conclude that for such tree topologies our
technique is effective, as long as the interactions do not involve features that
we currently do not support (such as branching or recursive behaviour).

In the original actor services logic these modularity features cannot be
achieved (to the best of our knowledge) without enforcing immutability on
the part of the states that one wants to relate between the different points.
As we saw in Section 3.2 in the original logic, one needs to pass information
over messages about the parts of the actor’s state that one wants to track,
even if none of this information is required by any of the other actors. In
our example this means if n0 sends a message to one of its children c0, then
n0 would have to send along information about its internal state (assuming
n0 expects a response at some point). Suppose upon receiving this message
c0 sends a message to one of its children c′0, which computes some value and
then sends the value back to c0, which finally sends it to n0. The information
about n0’s internal state would have to be sent to c′0. Hence c′0 needs to know
about n0 in some way, therefore removing n0 impacts the specification of c′0
and therefore also response properties that involve c′0 in their derivation but
not n0.

11An exception is if the response property depends on information that n0 sent, then
the response property may not hold anymore if n0 is changed. However, in such a case
the response property is inherently dependent on n0 independent of our technique. We
are saying that if the response property in a subtree does not depend on any specific
information that n0 sent, then we achieve the described modularity features.
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In the example considered in Section 4.11 the topology is not a tree topol-
ogy, since each of the actors interacts with each of the other actors. As a
result, an actor may not know certain parts of another actor’s environment
that relate to it. For example, as discussed in Section 4.11.3, the client C
that communicates with server S does not know that the client specified in
the server’s environment is given by C. Furthermore, the request clauses
specify interactions with more than two parties, since in the example it is
not the case that each pair of actors sets up their interaction independently.
As we observed, dealing with such interactions requires more flexible ways
to progress an interaction permission.
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5 Towards modular fork-join reasoning in ac-
tor programs

When performing a computation, it is sometimes possible to divide the work
into smaller subtasks and to combine the partial results of the subtasks to
get the result of the complete computation. If an actor has to perform such a
computation, it can delegate the subtasks to other actors which can in parallel
compute the work. Eventually, an actor gets the partial results over messages
and combines them to get the final result. This pattern is often referred to
as the fork-join pattern (the forking corresponds to the delegation of the
subtasks, while the joining corresponds to the combination of the partial
results). One popular programming model used in practice that follows a
similar style of computation is MapReduce [7].

Consider the actors given in Figure 14. The expected program flow is
as follows. Once the master receives a queryA message specifying a client C
and value n, its goal is to send f(n) + g(n) to C. The master divides the
work into two subtasks, namely computing f(n) and g(n). It delegates these
subtasks to two different workers in the queryA message handler (this is the
fork). The workers send the corresponding partial results back to the master
over the subres message, which sums them up (this is the join). The partial
results sent by the workers may be received in any of the two possible orders.

The master uses the state field to keep track of its current behaviour. If
it is not performing a join, it accepts queryA messages (the field evaluates
to ACCEPTQUERYA) and once it has received a queryA message, it only
accepts subres messages (the field evaluates to WAITFORSUBRES). So the
master is changing its behaviour according to a protocol. This is similar to
the manager given in Figure 4 on page 13. One reason for this protocol-based
behaviour is if the master were in a state where it is performing the join and
it accepted queryA messages, then the information that it uses to keep track
of the join would be reset, leading to wrong behaviour.

To perform the join the master tracks various information in its local
state:

• The c field stores the client received in the query, such that once the
computation is done, the master knows whom to send the result to.
This is similar to previous examples.

• The result field sums up the results received from the workers.

• The counter field stores the number of subres messages that have been
received by the master. If this value reaches two, then the master

96



1 actor Master {
2 Client c; int counter; int result; State state;
3
4 Master() { this.state := ACCEPTQUERYA; }
5 handler queryA(Client client, int n) {
6 if(this.state == ACCEPTQUERYA) {
7 this.c := client;
8 this.counter := 0;
9 this.result := 0;

10 Worker w1 := spawn WorkerA();
11 Worker w2 := spawn WorkerB();
12 w1.computeA(this,n);
13 w2.computeB(this,n);
14 this.state := WAITFORSUBRES;
15 } else { fail(); }
16 }
17 handler subres(int r) {
18 if(this.state == WAITFORSUBRES) {
19 this.counter := this.counter+1;
20 this.result := this.result+r;
21 if(this.counter == 2) {
22 this.c.sol(this.result);
23 this.state := ACCEPTQUERYA;
24 }
25 } else { fail(); }
26 }
27 }
28 actor WorkerA {
29 handler computeA(Manager m, int n) {
30 m.subres(f(n));
31 }
32 }
33 actor WorkerB {
34 handler computeB(Manager m, int n) {
35 m.subres(g(n));
36 }
37 }

Figure 14: Master forks work to two different workers and joins the results by
summing them up. We assume the client actor has a sol message handler.
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concludes that all expected messages have been received and the result
field contains the final result. Hence in this case the master sends the
solution to the client (see line 22), at which point it goes back to a
state in which it accepts queries.

The response property summarizing the expected program flow can be
expressed using the following actor service

M.queryA(C, n) C.sol(f(n) + g(n)) (5.1)

However, to ensure that this response property holds (or stated differently,
that the program flow is always as expected) one needs to ensure:

• The subres messages sent by the workers are accepted by the master,
otherwise the master will not get the expected partial results.

• No other subres messages are accepted by the master, otherwise the
master will potentially get wrong partial results.

• The state required to track the join cannot be modified by message
handlers other than the subres message handler (including any other
message handlers in the master), otherwise the master will potentially
compute a wrong result or may not even send the response.

These properties are similar to the properties we had to ensure for the man-
ager in Figure 4. To deal with the manager, we introduced the notion of
a session in Section 4, which is a concrete interaction specified by an ab-
stract protocol. Sessions also are useful for the master in this example. We
could define the interaction starting from the master being able to receive
queryA messages until the sol message is sent to the client as one session.
The properties that we need to ensure just boil down to the following:

• The workers must have partial ownership of the master’s session once
they receive compute and until they send the subres messages, ensuring
that the master cannot progress its session during this time frame.

• No other actor should have partial ownership of the master’s session.

• The permissions associated with the fields tracking the join should be
contained in the corresponding protocol invariant, ensuring that no
other message handler can modify the fields.

However, there are some features that we require here that the sessions in-
troduced in Section 4 do not support. We require a way to give multiple
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(instead of just one) actors simultaneously partial session ownership that en-
sures the session cannot progress, which would allow for the master to receive
the subres messages in any order. Furthermore, we need to know when the
join is finished, because once a message associated with the join is received,
one cannot progress the session except if it is known that all the expected
join messages have been received. This requires capturing the state in the
actor that tracks the join.

Assume that we can extend the sessions appropriately to capture the re-
quired properties. Let us analyze how to derive actor service (5.1) given such
a session. As we have seen in previous sections, actor services can be derived
modularly by composing other actor services that describe smaller parts of
the behaviour. We can split the behaviour described by actor service (5.1)
into the following four basic parts:

1. Whenever the master receives an expected queryA message, then even-
tually there will be two response messages (computeA, computeB) to
the workers containing the same value n as in queryA.

2. Whenever WorkerA receives computeA(M,n), then eventually master
M will get a subres message with value f(n).

3. Whenever WorkerB receives computeB(M,n), then eventually master
M will get a subres message with value g(n).

4. Whenever the master receives the two expected subres messages with
values r1 and r2 in the same session, then eventually the client that was
received in the session event corresponding to the query message of the
same session will get a sol message containing r1 + r2.

The second and third behaviours can be expressed using the following actor
services (both of which can be derived in the original actor services logic)

WA.computeA(M,n) M.subres(f(n)) (5.2)

WB.computeB(M,n) M.subres(g(n)) (5.3)
However, actor services cannot express the first behaviour (the fork), because
it specifies multiple response messages and they also cannot express the fourth
behaviour (the join), because it specifies multiple trigger messages. The goal
of this section is to make all the necessary extensions to the sessions and the
actor services to prove response properties such as those expressed by actor
service (5.1).

In Section 5.1 we extend the definition of actor services to contain multiple
triggers and multiple responses. Next, in Section 5.2 we extend the sessions
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introduced in Section 4 to support the joining of messages during sessions.
Using this extension, we then present rules to derive local actor services with
multiple triggers and multiple responses in Section 5.3. In Section 5.5 we
introduce rules to compose actor services with multiple triggers and multiple
responses.

5.1 Actor services with multiple triggers and multiple
responses

We generalize an actor service to be of the form:

∀⇀Xj. T  
S R

where T is a trigger pattern, R is a response pattern and S is a session
association. Trigger patterns are finite sets of trigger messages. In examples
we denote a trigger pattern by

T1 × T2 × ...× Tk

A trigger message Ti is a term e.m(⇀ei), where m is a message and e, ⇀ei are
one-state expressions (they do not mention old). Response patterns are finite
sets of complete responses. In examples we denote a response pattern by

c1 | c2 | ... | cn

A complete response c is a finite set of response messages. In examples we
denote a complete response by

r1 × r2 × ...× rn′

A response message12 has the form

E.m(⇀E) where A

where m ranges over messages, E ranges over one-state expressions and A
ranges over two-state assertions.

A session association S is a tuple (ρ, a) where ρ is a protocol description
and a is an actor. It associates the actor service with sessions governed by ρ
in a. If there is only one trigger message, then there is no session association
and otherwise there is a session association (its significance will become clear
later).

12In [20] response messages can also be empty responses. We omit empty responses,
since we do not require them here.
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Before we define the meaning of such an actor service in general, let us
consider the following concrete actor service with two trigger messages and
a single response message (ignoring the session association for now), which
we assume to hold in the current program state

a.m(x1)× a.m(x2) b.m′(x1 + x2)

Assume the messages a.m(0), a.m(1), a.m(1) are sent at different points in
the future. Depending on how we define the meaning of the actor service, we
may get different guarantees. One interpretation could be that for every pair
of different messages of the form a.m(x1) and a.m(x2) that are received, a
response message b.m′(x1 + x2) is sent. This means in our case that b.m′(1),
b.m′(1), b.m′(2) are all sent eventually in some future state. However, in
practice such guarantees are generally not given, because there would have
to be some actor that keeps track of every message that was received until
the the program finishes. In particular, one would not be able to capture
the behaviour present in many programs such as the master’s behaviour in
Figure 14.

Instead, we require that an actor service with multiple triggers is associ-
ated with sessions governed by some protocol in an actor. For example, the
given actor service may be associated with the sessions governed by protocol
description ρ in actor a. We then write the actor service as

a.m(x1)× a.m(x2) (ρ,a) b.m′(x1 + x2)

We require that the precondition of m specifies the session predicate ρ(a).
Hence we know that whenever a message a.m(x) is sent, the corresponding
session is running and will not be progressed until the message is received.
The meaning of this actor service is the following. Whenever two different
messages a.m(x1), a.m(x2) are received and it is guaranteed that they are
received while the same session associated with (ρ, a) is running, then the
response b.m′(x1 + x2) will eventually be sent. By same session we mean
that the session identifier of those two sessions are the same (there can be
different sessions associated with (ρ, a)).

Consider the master in Figure 14. The master guarantees a sol mes-
sage is sent whenever it receives two subres messages from the same session.
Therefore the following actor service holds in the master

M.subres(r1)×M.subres(r2) (SMR,M) ∃C. C.sol(r1 + r2) (5.4)

We now give the general meaning of an actor service and the conditions that
must be satisfied. Consider

T1 × ...× Tk  S R
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for trigger messages T1, ..., Tk, response pattern R and session association S.
Assume k > 1 (more than one trigger message). The meaning of this actor
service is that whenever trigger messages Ti are received, while the same
session associated with S is running, then eventually after the reception of
all trigger messages, one of the possible complete responses specified in R will
be sent. This means all the response messages in the complete response will
be sent (all the sent messages are guaranteed to be different). All the response
messages are sent in different response states (all of which are strictly after
each of the trigger states) and may be sent in any order. If there is only
a single trigger message (k = 1), then there is no session association and
the meaning of the actor service is analogous to the actor services in the
original logic (except that multiple responses can be specified in the response
pattern).

All one-state expressions in the response messages are evaluated in the
corresponding response state. Hence each one-state expression in the where-
clauses must be framed by the corresponding precondition or by an im-
mutability predicate in the where-clause. For example, consider the following
actor service

x.m() x.f.n()× x.f.n()

This actor specifies that whenever actor x receives message m, then eventu-
ally message n will be sent to x.f in some future state and another message
message n will be sent to x.f in another future state. Even though the same
expression x.f is used for both response messages, x.f may evaluate to a
different value in each of those states.

If we have multiple trigger messages, it is not clear in general which state
old expressions contained in the where-clause are evaluated in. To make
this clear, we only permit the old expression old(ιρ(a)) in these clauses (if
there are multiple trigger messages) where the actor service is associated with
sessions governed by ρ in a. This expression evaluates to the same value in
each trigger state by definition of the actor service, since responses are only
guaranteed, if the trigger messages are sent in the same session.

Furthermore, all the expressions in the trigger messages as well as the
actor specified in the session association are evaluated in the current state
(in the state where the actor service holds). We require that each of the
trigger preconditions holds a session predicate associated with S. If we did
not require this, then there would be no easy way of showing that two or
more trigger messages are received during the same session.
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5.2 Sessions with join
In this section we extend the protocol descriptions and sessions introduced
in Section 4 to be able to support join operations during sessions.

5.2.1 Protocol description

We add the notion of special join protocol states that a protocol description
can define in addition to the usual protocol states. For each join state s in
protocol description ρ one must specify

• The number of messages that are to be joined. This must be some
statically known constant. We call this value the multiplicity Mρ,s of
the join.

• A join invariant InvJ
ρ,s(n) is a function from integers n to self-framing

assertions. InvJ
ρ,s(n) holds, if the session is in join state s and n many

join messages still must be joined. Hence we require that Invρ(s) =
InvJ

ρ,s(Mρ,s) (recall that Invρ(s) is the assertion mapped to by the pro-
tocol invariant in protocol state s).

One may move to such a join state the same way as any other state. How-
ever, progressing the session or finishing the session from this state is done
differently (see Section 5.2.3). In particular, the session state remains the
same during the join and one may assume the join invariant at the beginning
of a message handler for some n, if the session is in such a join state (instead
of assuming the protocol invariant).

We define a protocol description SMR for the master actor in Figure 14.
It has the following transition relation

QA @SMR RS

where the queryA message is expected in session state QA and the subres mes-
sages are expected in session state RS. RS is a join state withMSMR,RS = 2
(since only 2 subres messages are expected). The protocol invariant is given
by

InvSMR(s) := acc(this.state) ∗ acc(this.counter) ∗ acc(this.result) ∗
s = QA⇒ this.state = ACCEPTQUERYA ∗
s = RS⇒(
this.state = WAITFORSUBRES ∗
this.counter = 0 ∗ this.result = 0

)
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The join invariant for RS is given by

InvJ
SMR,RS(n) := acc(this.state) ∗ acc(this.counter) ∗ acc(this.result) ∗

this.state = WAITFORSUBRES ∗
this.counter = 2− n ∗ (n = 2⇒ this.result = 0)

We have InvSMR(RS) = InvJ
SMR,RS(MSMR,RS).

5.2.2 Session ownership

In the original approach presented in Section 4 we can only give up partial
session ownership (that is required to progress a session to one actor), since
there exists only a single session predicate (see Section 4.2.2). However, at
the fork we need to give up this ownership to multiple actors simultaneously,
so that they can perform their computation and send the partial results over
the subres messages in parallel. Therefore, whenever one moves to (or starts
in) a join state, one gets hold of as many session predicates as is specified
by the multiplicity. If actor a is controlling the session and moves to join
state s, then one gets hold of ρ(a) ∗ · · · ∗ ρ(a)︸ ︷︷ ︸

Mρ,s many times

∗(stateρ(a) = s). Each of these

session predicates is required to progress or finish a session, hence they frame
the same expressions as in the original approach.

A consequence of having session states where there are multiple session
predicates means that we cannot always treat session predicates as exclusive
permission as we did in the original approach (see Section 4.2.2). Instead,
we only treat session predicates as exclusive permission, if one can show that
the session state is not a join state. If the session state is a join state, then
we treat session predicates as partial permission (only the actor doing the
join knows how many session predicates there are).

5.2.3 Session progress

If a message handler is associated with a protocol description ρ, then in the
original approach whenever it was invoked, one could assume the protocol
invariant at the session state and then had to progress or finish the session
(see Section 4.2.4). With join states this is slightly different. If the session
state is a join state s, then one may assume the corresponding join invariant
InvJ

ρ,s(n) for some initially unknown value n where 1 ≤ n ≤ Mρ,s. If n
is greater than 1, then the current message is not the last message to be
joined, hence one needs to give up the received session predicate and ensure
InvJ

ρ,s(n − 1 ). If n is 1, then the current message is the last message to be
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joined and one gets hold of all the given up session predicates (Mρ,s − 1
many) and one must either progress the session to a session state later in the
transition relation or finish the session.

In the example given in Figure 14 the subres message is only received
in the join session state RS. Hence at the beginning one may assume the
corresponding join invariant given in Section 5.2.1 for some n. Only the
non-failing branch is taken in the message handler due to the precondition
and join invariant. The counter field is incremented by one and it is checked
whether the incremented value equals 2. If this is the case, then one knows
that n = 1, because the join invariant states that counter at the beginning of
the message handler evaluates to n. Hence all the messages have been joined
and one gets hold of the given up session predicate with which one can finish
and start the session again.

If the incremented value of counter does not equal 2, then one knows that
n 6= 1. At this point one can re-establish the join invariant for n−1, because
one has incremented counter by 1 and one knows that n ≤ Mρ,RS = 2
which means n− 1 is less than 2. Additionally, one must give up the session
predicate at this point. We extend the validity of message handlers to include
this extended definition of session progress in the case of join session states.

Note that it is sound to assume the join invariant at the beginning of the
message handler. The reason is that the join invariant can only be assumed
in message handlers that are associated with the protocol description and
where it can be shown inside the body that it is currently in the join session
state. Furthermore, in such a case the join invariant must be re-established
at the end if the session is not progressed or finished. In no other case can
one violate the join invariant, since the join invariant is self-framing, i.e. it
holds all the permissions for the assertion that it maps to and if one cannot
get hold of the join invariant, then one cannot get hold of these permissions.

5.2.4 Session events and receive event assertions

Recall that a session event (see Section 4.4) (ρ, a, i, s,m) for the session gov-
erned by ρ in actor a with session identifier i, describes the point in the
session when message m is received in session state s. If s is not a join state,
then this session event is a well-defined point in a session that can occur at
most once. This why we were able to use it for environment expressions.
However, if s is a join state, then this is not a well-defined point anymore
since message m is received multiple times in the same session state for the
same session. This is the reason why we only permit environment expressions
that are associated with session events specifying non-join states.

Another implication of this fact is that receive event assertions (see Sec-
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tion 4.8) for such session events must be treated differently as well. A receive
event assertion specifies a session event and if it holds, then this means that
the session event has occurred. In the original approach we generated the
receive event at the beginning of the message handler. For join protocol
states we define receive event assertions as follows. A receive event assertion
for a join session event holds if all the messages related to the join session
event have been received. Hence we generate the corresponding receive event
assertion when the last message is joined. Send event permissions however,
can be treated the same as before (each session predicate for the join state
can be transformed into the corresponding send permission).

This change enables us to use receive event assertions and send event
permissions for join session events in interaction permissions. For example,
an actor a that forks multiple messages to worker actors can accept interac-
tions requested by the workers which specify these join events. An example
interaction permission specifying an interaction from the point of view of a
with one of the workers (worker1) could be

rcv(E) . sendρW (worker1, ιρW (worker1), s, compute) .EndS

where E is some join session event in the actor a. worker1 would be obliged to
send the send permission for the continuation of this interaction permission
to get hold of send(E) which it would require to send the join message. a,
who is performing the join, would only get hold of the send permission in
the continuation if it got hold of the receive event assertion for E. It would
only get hold of the receive event assertion, if it joined all messages, at which
point it is guaranteed that worker1 has sent its send permission.

The advantage of being able to use interaction permissions for join states
in this example is that one need not specify each of the required send permis-
sions in the preconditions of each of the messages that are exchanged between
a and the workers, which would require exposing implementation details as
discussed in Section 4.7. Instead, the requested interaction permission takes
care of the expected transfer of send permissions.

5.3 Proving local actor services
As presented in Section 2.7, in the original actor services logic a local actor
service is an actor service that can be proved by just examining the trigger
message handler implementation, i.e. the corresponding response is sent in
the trigger message handler. For the generalized actor services we extend
local actor services to be actor services that can be proved by just examining
all the trigger message handler implementations (which must be part of the

106



same actor), i.e. the corresponding response is sent in one of the trigger
message handlers.

For the sake of presentation, if a local actor service has more than one
trigger message, then we require that all the handlers of the trigger messages
are the same. For example, we support local actor services such as

a.m1(x1)× a.m1(x2) R

but we do not support local actor services such as

a.m1(x1)× a.m2(x2, x3) R

We show how to lift this restriction in Section 5.3.2, but it requires more
technical details that distract from the main idea. As we will see in Sec-
tion 5.5.4 when showing how to compose such general actor services, one can
still derive non-local actor services that have different trigger messages with
this restriction.

5.3.1 Proving local actor services with multiple triggers

To prove a local actor service a.m(x1)× ...× a.m(xk) R we require that

• Message handler m is associated with a protocol ρ and its precondition
makes sure that it can only be sent in one particular join session state
s.

• The number of trigger messages must be equal to Mρ,s.

The restriction that it must be possible to send message m in a join state
should be clear from our previous discussion. During the join the actor keeps
track of various information in its local state and we need to capture this.
The way we do this is to associate the join to a session using the extended
protocols and sessions from Section 5.2.

The motivation for the restriction that the number of trigger messages
equals the multiplicity of a particular join state also is clear, because we know
that the response will only occur once all the messages are joined. However,
the restriction that m can only be invoked in one particular join state is
not intuitive and is a result of how our actor services are currently defined.
Suppose we did not have this restriction, then we would have to be able to
differentiate in the response pattern of the actor service, if each of the trigger
messages is invoked in the corresponding join state or not. Currently, the
only way to talk about the trigger states is using old expressions in where-
clauses, which are not expressive enough to make this differentiation due to
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the restriction imposed on old expressions with multiple trigger messages (see
Section 5.1). We leave such an extension for future work.

Next, we explain the main rule for proving a local actor service

a.m(x1)× ...× a.m(xk) e.m′(⇀ei) where A

for all actors a of some actor type under these restrictions. We will generalize
to arbitrary response patterns later. We illustrate the different techniques
also by showing what one would have to do to prove the master’s local actor
service (5.4). Suppose m is associated with ρ and it is always sent in join state
s. We first need to prove that m is a valid message handler as described in
Section 5.2.3. This shows that the join progresses each time message handler
m is invoked using the join invariant InvJ

ρ,s(n). However, this does not show
how the actor’s local state progresses with respect to the arguments provided
by the different m messages.

In the example given in Figure 14 the master adds the value provided in
each subres message to its result field. Since the subres messages may arrive
in any order, we cannot precisely express what value result will have, if all we
know is that one message has been joined (but we do not know which one).
Therefore the join invariant cannot be easily used to track this information.

The main observation is the following. Each time a message handler is
invoked that is used for the join, the local state tracking the computation
performed by the join (which we refer to as the join computation state) is
updated by some transforming effect dependent on the message handler’s
arguments. If we can capture this effect and we can show that it does not
matter in which order the effect is applied with respect to the arguments
of all the received messages, then we can express the final join computation
state by applying this effect repeatedly to the different arguments in any
order.

In our example the join computation state is given by the result field and
the transforming effect is just the addition of the argument to this field. It
does not matter in which order this effect is applied to the arguments since
addition is associative and commutative. Repeatedly applying this effect
to the arguments in any order will yield the sum of the arguments. More
generally, let f be a binary function that captures the transforming effect.
Assume the current values stored in the join computation state are given
by ⇀vj, then f(⇀xi,⇀vj) gives the updated values once the join message handler
has been invoked, where ⇀xi are the arguments provided for this particular
message (in our example f(x, v) = x+ v). In particular, if the messages that
are received for a particular join have arguments ⇀xk,⇀xk−1, ...⇀x1 (in the order
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received) then the final values of the join computation state is given by

f(x1, f(x2, ...., f(xk,⇀v0)))

where ⇀v0 are the initial values when the join starts. We say that f is order-
independent if the following holds

∀⇀xi,⇀x′i,⇀vj. f(⇀xi, f(⇀x′i,⇀vj)) = f(⇀x′i, f(⇀xi,⇀vj))

If f is order-independent, then one can show that the final values computed
at the end of the join will be the same independent of the order in which
the messages arrive (because order-independence essentially permits moving
any of the arguments ⇀xi in the final expression to any other position). Hence
the final value is given by the same expression as for the fixed order given
before. Another common way of writing down this expression is using folds.
We have that the final value is given by foldr(f ; ⇀v0; (⇀x1, ...,⇀xj)) where

foldr(f ; ⇀v0; (⇀x1, ...,⇀xj)) = f(x1, f(x2, ...., f(xk,⇀v0)))

We have now introduced the most important tools and can move on to
the actual rule for proving the local actor service. One must pick one-state
expressions ⇀ej which make up the join computation state (this is the state that
is required to track the computation of the join). We require the following

∀n.(1 < n ≤Mρ,s)⇒ InvJ
ρ,s(n) |=frm ⇀ej

which states that ⇀ej must be framed by the join invariant for all feasible n.
This is required to ensure that these expressions remain stable between invo-
cations of message handler m. Next, one must pick one-state expressions⇀einit

j

which evaluate to the initial values of ⇀ej right when the join has started. We
require that ⇀einit

j is immutable during the session once the join starts. This
means that all the subexpressions in ⇀einit

j are either framed by immutabil-
ity predicates in the join invariant InvJ

ρ,s(Mρ,s) or mention the corresponding
session identifier. The reason why mentioning the session identifier is permit-
ted is that the session identifier stays the same during the complete session.
We can ensure that those are the initial values by enforcing

InvJ
ρ,s(Mρ,m) |= ⇀ej =⇀einit

j

For the master, we have ⇀ej := this.result (which is framed by the join invari-
ant) and⇀einit

j := 0 . We have that this.result = 0 when no messages have been
joined yet. Furthermore, one must pick a binary function f that captures

109



the transforming effect and is order-independent. For the master we pick the
addition function.

At the beginning of message handler m one may assume InvJ
ρ,s(n) for some

n (as in Section 5.2.3). Suppose ⇀ej evaluates to values ⇀vj at the beginning of
the message handler with arguments ⇀xi. Hence ⇀vj are the current values of
the join computation state. If n > 1 (i.e. it is not last message to be joined),
one must show at the end of the message handler that the join computation
holds the updated values as prescribed by the transforming effect function
f . So, one must show

f(⇀xi,⇀vj) = ⇀ej

at the end of the message handler. In our example one must show ri + v =
this.result at the end, where v is the value of this.result at the beginning and
ri is the argument. This holds in the example, since this.result is incremented
by ri.

If n = 1 (it is the last message to be joined), one must show that the
expected response is sent. This can be done using the existing machin-
ery provided by the original actor services logic (at least for single response
messages, we describe how to do this for multiple response messages in Sec-
tion 5.3.3). Since we know that all the other messages have been joined, we
may assume that applying the transforming effect to the join computation
state will yield the final value. Hence we may assume at the beginning of the
message handler

f(⇀xi,⇀vj) = foldr(f ;⇀vinit
j ; (⇀x1, ...,⇀xk))

where (⇀x1, ...,⇀xk) are the formal arguments of all the message handlers in the
trigger. ⇀einit

j evaluates to⇀vinit
j (i.e. the initial values since ⇀einit

j is guaranteed
to be immutable during the session).

In our example one may assume r1 + v = r1 + r2 (where r1, r2 are the
arguments of two subres messages, v is the value of this.result at the begin-
ning; ⇀vinit

j drops out since it is given by 0). Since one sends a sol message
with value r1 + v, one can show that the message will contain the sum of the
arguments. We conclude that the actor service (5.4) can be derived.

We note that in local actor services we can prove where-clauses the same
as in the original logic. If the response is sent in a particular message handler
(i.e. if the join has finished), then one must show that the where-clause relates
the response state with the state at the beginning of the message handler.
One may only refer to the corresponding session identifier in old expressions,
which is guaranteed to evaluate to the same value in each of the trigger states.
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5.3.2 Different trigger message handlers in local services

We have only shown how to deal with local actor services, where all the
trigger message handlers are the same. Generalizing this to multiple trigger
message handlers is possible. The main challenge is that the different trigger
message handlers can have different effects on the join computation state.
They might even have effects on disjoint parts of the state. In such situations
it does not make sense to have a single session predicate that can be used
to send any of the trigger messages involved in the join, since one requires a
way to control how often which effect is applied. One could generalize this
by having different types of session predicates during the join, each of which
could only be used for one sort of message handler.

One then would require separate functions describing the different effects
and one would have to define order-independence between functions, which is
straightforward. The final result would then be computed as the composition
of the different folds.

5.3.3 Proving local services with multiple responses

We saw in Section 5.3.1 how to prove local actor services with multiple trig-
gers and a single response message. Extending this to arbitrary response
patterns is straightforward. The original logic provides a way to show that
a single response message is sent among some set of alternatives. One can
generalize this by first having to select a complete response and then show-
ing that all the response messages in the selected complete response are sent,
which can be done analogously to the single response message case in the
original logic.

5.4 A more precise local actor service for the master
We outlined in Section 5.3.1 how to derive local actor service (5.4) which
describes the master’s join behaviour but it is not precise enough, since it
does not specify to which client it sends the solution. Instead, we can derive
analogously the following local actor service that specifies the client

M.subres(r1)×M.subres(r2) (SMR,M) ∃C. C.sol(r1 + r2)
where C = ϕSMR(M, old(ιSMR(M)),QA, query(c,n), c)

(5.5)

The where-clause is permitted, since old(ιSMR(M)) is the only old expression
and the actor service is associated with the corresponding session.

In actor service (5.5) the client to whom the solution is sent is specified
as the client that was received over the query message in the same session in
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session state QA. This can be achieved using environment expressions (see
Section 4.4).

5.5 General composition
In Section 5.3 we showed how to prove local actor services with multiple
triggers and multiple response messages. In this section we show how one can
compose such actor services. We do this by presenting formal composition
rules and by showing how to apply them in the example given in Figure 14.
First, we introduce semantic judgements from the original actor services logic,
which we require for the rules. Next, we present the two different composition
rules in our setting.

5.5.1 Semantic judgements

In the semantics of the original actor services logic [20] the semantic judge-
ment for one-state assertions (it does not mention old) has the form Λ,Σ, σ |=
a, where

• Λ is an actor service environment holding the assumed local actor ser-
vices (which hold in every program state).

• Σ is a heap-state that consists of a heap as well as a set of exclusive
and immutable permissions.

• σ maps variables to values.

• a is a one-state assertion.

The interpretation of the semantic judgement is that if one assumes the actor
services in Λ, then the assertion a holds in the program state with the heap
and permissions specified by Σ and the variable mapping given by σ.

The semantic judgement for two-state assertions has the form Λ,Σ1,Σ2, σ |=
A where Σ1,Σ2 are heap-states and A is a two-state assertion. The interpre-
tation of this semantic judgement is analogous to the one-state version. old
expressions in A are evaluated in Σ1, while other expressions are evaluated
in Σ2. Furthermore, the judgement Σ, σ |=immut e for a one-state expression
e states that e is immutable in the corresponding state.

5.5.2 Basic composition

The first composition rule is almost identical to the composition rule in the
original actor services logic. We motivate the rule using our example in
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Figure 14. It is straightforward to derive the following local actor service for
the master which expresses the fork behaviour

M.queryA(C, n) ∃Wa,Wb.

(Wa.computeA(M,n) where old(ιSMR(M)) = ιSMR(M))×
(Wb.computeB(M,n) where old(ιSMR(M)) = ιSMR(M))

(5.6)

The composition rule permits composing single response messages the same
way as in the original actor services logic. So we can evolve the computeA
response message independently from the computeB response message. This
is fine, because the response states of the different response messages need not
be related in any way. We can derive the local actor service (5.2) describing
the reaction of WorkerA to the computeA message. We compose the computeA
branch in (5.6) with (5.2) to get

M.queryA(C, n) ∃Wb.

(M.subres(f(n)) where old(ιSMR(M)) = ιSMR(M))×
(Wb.computeB(M,n) where old(ιSMR(M)) = ιSMR(M))

(5.7)

This composition step is completely analogous to the original composition,
the only difference is that we had to pick which response message to compose.
The formal rule describing such compositions is given by13

Λ,Σ, σ |= T  S {{(e.m(⇀ei) where A)} ∪ c} ∪R
(Λ,Σ, σ).futureEntails(A, e.m(⇀ei) R′)
(Λ,Σ, σ).futureCombines(A,R′, R′′)

Λ,Σ, σ |= T  S (map (∪ c) R′′) ∪R

c ranges over complete responses (i.e. sets of response messages) and R,R′, R′′
over response patterns (i.e. sets of complete responses). (map (∪ c) R′′) de-
notes the response pattern where the response messages specified by c are
added to all the complete responses in R′′.

The composition requires that one can show that right before the re-
sponse message (this state is related to the trigger state using A) is sent, it
is guaranteed that the actor service describing the reaction to the response
holds. This is done using (Λ,Σ, σ).futureEntails(A1, A2) which checks entail-
ment between assertions A1 and A2 in all pairs of future heap states Σ1,Σ2
(where Σ ≺ Σ1 ≺ Σ2). The final premise

(Λ,Σ, σ).futureCombines(A,R′, R′′)
13We omit explicit treatment of existential variables for the sake of presentation.
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is required to make sure that the newly introduced where-clauses in the
resulting actor service relate the correct trigger and response states. The
ideas are the following

1. A describes the relation between the heap state Σ1 when T occurs14

and the response state Σ2 when e.m(⇀ei) is sent. Since all expressions
in A evaluated in the response state are framed by the precondition of
m (or are immutable), we may assume that the expressions evaluate to
the same values in the state Σ′2 when e.m(⇀ei) is received. Hence A also
describes the relation between Σ1 and Σ′2.

2. Every where clause in R′ describes the relation between the state Σ′2
when e.m(⇀ei) is received and the state Σ3 when the corresponding re-
sponse is sent.

3. R′′ has the same response pattern as R′, except for the where-clauses.
Under the assumptions of the first two points one must make sure
that each where-clause in A describes the relation between Σ1 (when
T occurs) and Σ3 (when the response is sent)

The futureCombines relation makes sure that R′′ satisfies the condition given
the assumptions on A and R′. Its precise definition is given in [20].

We can analogously compose the other branch in (5.7) with the local
actor service (5.3) to get

M.queryA(C, n) 
(M.subres(f(n)) where old(ιSMR(M)) = ιSMR(M))×
(M.subres(g(n)) where old(ιSMR(M)) = ιSMR(M))

(5.8)

Now both branches have evolved. We have shown that once the master
gets a queryA message, then eventually it will receive the two partial results.
We can now apply the rewrite rule introduced in Section 4.5 to rewrite the
M.subres(f(n)) branch. Again the rule is the same, except that we need to

14If T specifies multiple trigger messages, then A can only talk about the session identi-
fier in the trigger states. In this case one can think of Σ1 as the state when the last trigger
message is received. In this case R′′ can also only talk about the session identifier in the
trigger states.
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pick a response message15. We get

M.queryA(C, n)  M.subres(f(n)) where
old(ιSMR(M)) = ιSMR(M)) ∗
C = ϕSMR(M, old(ιSMR(M)),QA, query(c,n), c)

×
(
M.subres(g(n)) where old(ιSMR(M)) = ιSMR(M)

)
(5.9)

5.5.3 Join composition

In the previous section we only composed single response messages, which
is analogous to the composition in the original actor services logic. Now,
we introduce the second composition rule, which allows the composition of
multiple response messages with multiple trigger messages simultaneously,
which is fundamentally different to the composition in the original actor
services logic. The rule is given by (the session association in the conclusion
can be removed if T ′ = ∅)

Λ,Σ, σ |= e.m(⇀ei) 
{{

(e1.m(⇀ei1) where A1), ...,
(ek.m(⇀eik) where Ak)

}
∪ c
}
∪R

∀j ∈ {1, 2, ..., k}.

(Λ,Σ, σ).futureEntails

 Aj,( {
e1.m(⇀ei1), ...,
ek.m(⇀eik)

}
∪ T ′

)
 (ρ,ea) R′




Σ, σ |=immut ea
X,⇀Xi, Z 6∈ dom(σ) σ′ = σ[X 7→ TeUΣ,σ][⇀Xi 7→ T⇀eiUΣ,σ][Z 7→ TeaUΣ,σ]
∀Σ′. Σ′, σ′ |= pre(m,X,⇀Xi)⇒ Σ′, σ′ |= ρ(Z)
∀j ∈ {1, 2, ..., k}. (Λ,Σ, σ).futureEntails(Aj, old(ιρ(ea)) = ιρ(ea))
∀j ∈ {1, 2, ..., k}. (Λ,Σ, σ).futureSimmut((ρ, ea), Aj, A′j)
(Λ,Σ, σ).futureCombines(A′1 ∗ A′2 ∗ · · · ∗ A′k, R′, R′′)
T ′ 6= ∅ ⇒ (R = ∅ ∧ c = ∅)

Λ,Σ, σ |= ({e.m(⇀ei)} ∪ T ′) (ρ,ea) (map (∪c) R′′) ∪R

The rule enables the composition of two actor services. The first actor service
(we refer to this actor service as the fork actor service) has a single trigger
e.m(⇀ei) and multiple response messages e1.m(⇀ei1),...,ek.m(⇀eik) which are all
part of the same complete response. The second actor service (we refer to

15The rule can only be applied if we have a single trigger message, because one cannot
refer to arbitrary old expression with multiple triggers. Furthermore, one must guarantee
that the generated environment expression is well-defined (i.e. the session state referred
to cannot be a join state, see Section 5.2.4).

115



this actor service as the join actor service) has multiple trigger messages of
which a subset must match the response messages of the fork actor service.

Let us analyze the premises of the rule. One must first show that the fork
actor service holds in the current state. Next, one must show that the join
actor service holds before the response messages, which we want to compose,
are sent. This is ensured by checking that the join actor service holds in each
response state using the premise

∀j ∈ {1, 2, ..., k}.

(Λ,Σ, σ).futureEntails
(
Aj,(
{e1.m(⇀ei1), ..., ek.m(⇀eik)} ∪ T ′

)
 (ρ,ea) R′

)

The intuition for this premise is that since the response messages may be sent
in any order we show that independent of which response message is sent first,
we can ensure that the join actor service will hold16. If one has shown this,
then one knows that the join actor service is associated with sessions (ρ, ea)
where ea is an expression that evaluates to an actor. To ensure that we can
talk about this actor in the fork actor service, we require that in the current
state ea is immutable, guaranteeing that ea evaluates to the same actor as
the join actor service specifies.

At this point even though we know that the response messages sent in
the fork are all different and match a subset of the trigger messages in the
join actor service, we do not have enough information to use the guarantees
provided by the join actor service. The join actor service only guarantees
the response if the trigger messages are received during the same session
associated with (ρ, ea). To show that they are received during the same
session, one needs to prove that in each response state one can show that the
session identifier when the response is sent is the same as when the trigger of
the fork actor service is received. This ensures that in all the response states
when the response messages are sent, the session identifier is the same.

Furthermore, to make sure one can even talk about the session identifier in
the trigger message, we require that its precondition holds the corresponding
session predicate. Since the precondition of the join actor service must require
the corresponding session predicate that it is associated with, we can conclude
that we can talk about the session identifier in the response messages of the
fork actor service. Furthermore, this also means that the session cannot
progress between the sending of the response messages and their reception.

16We use here that in the original logic to derive an actor service in every future state
with respect to current state Σ, one must show that all heap-dependent expressions that
appear in the trigger and response of the actor service are immutable in Σ. This ensures
that in each response state we are talking about the same join actor service.
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Hence it is guaranteed that all the response messages are received in the same
session.

Next, we must make sure that in the composed actor service the where-
clauses are adjusted appropriately. The intuition for this premise (which
involves the futureCombines relation) can be explained as follows. Let Σ1
be the state when the trigger message e.m(⇀ei) is received. Let Σ2 be the
state when the final fork response message is sent. Take any where-clause
Ai describing the relation between Σ1 and the response state when the cor-
responding fork response message is sent. Now let A′i be an assertion that is
entailed by Ai and which only includes old expressions, one-state expressions
which are immutable or which are given by ιρ(ea). A′i relates Σ1 and Σ2,
because the immutable expressions still have the same value at Σ2 and we
know that the session identifier when all response messages are sent is the
same. Also, old expressions are always is evaluated in Σ1.

Now take any where-clause AJ in the response pattern of the join actor
service. Let Σ3 be the state when the corresponding response message is
sent. We know that Σ3 is in the future of Σ2 since the response message
in the join actor service is only sent after the last fork response message
has been received. We know that the only old expression AJ can refer to is
old(ιρ(ea)), which we know evaluates to the session identifier when the trigger
messages are received. Since the trigger messages hold the corresponding
session predicates, we know that when the last response message is received
by the join actor service the session identifier is the same as when it was sent
(i.e. the same as in Σ2). Furthermore, since Σ3 is in the future of Σ2 we know
that any expression immutable at Σ2 must also be immutable at Σ3 when
the response message is sent. We conclude that AJ relates Σ2 and Σ3.

Hence we may transform all where-clauses Ai in the fork actor service to
A′i (only holding immutable expressions and the session identifier expression,
this relation between Ai and A′i is guaranteed by the futureSimmut relation)
and use all these facts together to relate Σ1 and Σ2. Using the futureCombines
relation we can then ensure that each where-clause in the resulting response
pattern R′′ relates the state when the trigger message e.m(⇀ei) is received (Σ1)
and when the join response message is sent (Σ3). This exactly what we want
if T ′ = ∅.

If T ′ 6= ∅ then the resulting actor service has multiple triggers. This means
that each where-clause in R′′ can only refer to old expression old(ιρ(ea))
and hence the only facts that were carried into these where-clauses about
Σ1 involve the session identifier and no other expression evaluated in Σ1.
However, since the session identifier is the same in Σ1 and Σ2, these facts
are guaranteed to hold in Σ2 as well. We conclude that the where-clauses
in R′′ in this case still relates the state when the last response message is
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received (this state may be at a different point now, since some of the trigger
messages have changed) and when the join response message is sent.

Finally, premise T ′ 6= ∅ ⇒ (R = ∅ ∧ c = ∅) ensures that if the resulting
actor service has multiple triggers, then all the responses in the response
patterns are guaranteed to occur after all the trigger messages have been
received. If the resulting actor service has a single trigger, then this is guar-
anteed directly.

Using this rule we can compose the actor service (5.9) with the master’s
join behaviour expressed using local actor service (5.5)

M.queryA(C, n) C.sol(f(n) + g(n))

which is what we wanted to derive. Let us make sure that the premises
of the rule are satisfied. The join actor service in this case is a local actor
service and since all the parameters in the corresponding fork actor service
are universally quantified, we can show the correct join actor service in ev-
ery future state17. The actor ea specified in the session association is the
master M that is universally quantified, so we can show immutability of
this expression. We can show in both response messages in the fork ac-
tor service that the session identifier does not change. We can use the fact
C = ϕSMR(M, ιSMR(M),QA, query(c,n), c) in one of the fork responses since
C,M are universally quantified and other than those expressions it only refers
to the session identifier expression ιSMR(M).

5.5.4 Actor services with multiple different triggers

Until now we only derived local actor services with multiple triggers which
always have the same trigger message multiple times (at least with our restric-
tion). Using the introduced composition rule, we can derive actor services
which have different trigger messages. For example, we may compose the re-
action of WorkerA given by actor service (5.2) with an instantiation of actor
service (5.5) describing the master’s join behaviour to get

W.compute(M,a)×M.subres(r2) (SMR,M) ∃C. C.sol(f(a) + r2)
where C = ϕSMR(M, old(ιSMR(M)),QA, query(c,n), c)

(5.10)

We have now derived an actor service which has different trigger messages.
We could continue this approach by composing the other worker’s behaviour
as well and then composing the resulting actor service with the initial fork

17In the actual derivation one must explicitly deal with the quantified variables. We do
not show this here and refer to [20] for details.
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local actor service (5.6) of the master. This would result in the actor service
describing the main response property, but where the derivation followed a
different order compared to the derivation shown in Section 5.5.3.

5.6 Concluding remarks
We extended actor services to support multiple triggers and multiple re-
sponses, allowing to describe the different parts of a fork-join behaviour
separately and to then compose these behaviours modularly. The notion
of a session introduced in Section 4 was vital for this extension. However,
as we have pointed out, there are several restrictions that we impose. One
important restriction that we did not cover is the following. If we compose
multiple response messages simultaneously of an actor service T  R with
another actor service, then we require that T only contains a single trigger
message. The main reason is that the only way for us to show that the dif-
ferent response messages are associated with the same session is by relating
them to the trigger state. This is only possible in general if there is only
one such trigger state. It would be interesting to investigate if there is a
way to ensure more directly that multiple branches are associated with the
same session. Furthermore, making the old expressions in actor services with
multiple triggers less restrictive could be helpful as well.

Another important extension of the current approach would be to permit
join multiplicities that are unbounded. The main challenge is that one needs
a way to keep track of this value somehow and in the composition one needs
to show that the number of messages forked matches this value.
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6 Related work

6.1 Session types
The general notion of a session as motivated in Section 4 is well-known. In
process calculi channels can be used as ports between two communication
partners (using the two channel endpoints) over which data is sent. Channel
endpoints themselves can be passed as data over other channels (channel
delegation, i.e. the communication partners are not fixed). In this context
a session is defined as the interaction that occurs over the channel from the
creation of the channel until its disposal. Binary session types [11] to describe
the sequence of events of such a session from the point of view of one channel
endpoint are introduced by Honda et al.. The two binary session types for
the two endpoints of the same channel are dual to each other. A type system
is used to ensure that a channel endpoint is used according to its session
type.

One can interpret protocol descriptions (see Section 4.2.1) in our setting
as some kind of session type, however there are many differences. Protocol
descriptions do not specify in which state the session must start or finish.
Also one may move to any session state that comes later in the ordering
instead of just the next states in the ordering. Furthermore, protocol de-
scriptions are decoupled from the actual events. This association between
session states and message handlers is done independently. Also one does
not have two independent endpoints. Protocol descriptions only describe the
type of the session for the actor controlling the session. It is not possible for
an actor to send one message followed directly by another message for the
same session without the receiving actor reacting (this is a direct consequence
of no message ordering being assumed, see Section 2.2.1).

The duality defined for interaction permissions (see Section 4.8) is anal-
ogous to the duality of two channel endpoints. In fact one can think of the
two companion permissions a bit like two channel endpoints. Send event
permissions correspond to output capabilities and receive event assertions
correspond to input capabilities. One major difference is that progression of
a interaction permission is fundamentally different from progressing channel,
since one must provide permissions or show that an assertion holds. The
permission that is given up to progress one interaction permission, can be
obtained by the companion interaction permission. However, no data is sent
between the interaction permissions. In some sense the permission that is
transferred over interaction permissions is similar to the data sent over chan-
nels. Furthermore, creation of an interaction permission is different as well,
since it requires an explicit handshake between two actors agreeing on some
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interaction over a request.
Honda et al. [12] extend the notion of binary session types to multiparty

session types to describe interactions involving more than two parties, where
parties communicate over asynchronous messages (with more ordering guar-
antees than in our setting). A multiparty session type (or global type) can be
projected to a local type to obtain the point of view of a single participant in
the interaction.

A fundamental difference of our work compared to multiparty session
types is that we are interested in proving response properties, while in the
session types work one is interested in showing that a program behaves ac-
cording to a global protocol. Nevertheless, there are connections to our work.

In our setting having a global type for the whole program is infeasible,
since this requires knowing the complete program and hence does not facil-
itate modularity. While transferring permissions by progressing interaction
permissions is similar to sending data over channels in the binary session
type work, the interaction that an interaction permission specifies in a re-
quest clause is a bit like a projected local type describing the interaction
from the point of view of the actor making the request. One difference is
that such a requested interaction may only describe part of the projected
type with respect to the complete global type. Furthermore, we never check
if an actor follows the complete interaction specified in the request, we only
make sure that if the corresponding interaction permission is progressed, then
the interaction can continue to the next step as described.

In some sense we try to derive response properties about larger parts of
the program using just the projected types. Lange and Tuosto [13] develop
an approach to synthesise local types to construct the global type which is
similar in terms of the idea (going from local to more global). The synthesised
global types, however, cannot be synthesised further, making it unsuitable
for our work. Nevertheless, it would be interesting to see if one could use
such a synthesis to describe global types that just summarize part of the actor
program and which one could compose further to get more global types. This
could be useful in the examples discussed in Section 4.11.

6.2 Actors and session types
There have been different works that have incorporated session types to rea-
son about actor programs. In [14] Mostrous and Vasconcelos introduce ses-
sion types for a subset of Erlang. Their type system can be used to show
that two actors communicate according to some binary protocol. As in the
session types work this goal is different from ours.

They support parallel sessions using correlation sets, which permits an
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actor to have multiple sessions of the same protocol type simultaneously.
Furthermore, they permit multiple session initialization messages to be sent
simultaneously (which we do not). However, their type system only makes
guarantees once such an initialization message is received (hence they cannot
provide liveness guarantees).

In our setting a session is described in terms of a single actor and during
this session the actor can communicate with many different actors (not just
a single one). Hence they do not support programs such as the one presented
in Section 4.7. They do not support delegation of the session. In our setting
we can support delegation, since one can give up the send permission to
another actor that then sends the actual message associated with the send
permission.

Neykova and Yoshida propose multiparty session actors [15]. This is a
generalization of multiparty session types to the actor setting. A given global
type is checked to be followed by the program at runtime. Fowler [9] builds
on this work by providing an implementation for Erlang and makes other
extensions. One difference to our work (apart from their goal being about
the conformance to a global type) is that it relies on runtime verification. In
their setting they do not require actors to know the identities of the actors
they are sending messages to. Instead, the actors can use the name of the
role of the receiving actor in the protocol and the runtime system makes
sure the message goes to the right actor. This is fundamentally different
to the assumptions in our work. As in the multiparty session types work,
the projected local types of the actors have some connection to interactions
requested by actors in request clauses in our setting.

6.3 Mailbox calculus
De’Liguoro and Padovani [8] propose the mailbox calculus and a correspond-
ing type system to reason about actor programs. One of the main ideas is to
make the mailbox that an actor can contain a first order citizen in the calcu-
lus, which means one can pass around mailboxes, which our actor language
does not support. Their type system types mailboxes. A mailbox can either
be typed using an input capability type or an output capability type. An input
capability type describes what messages one must expect next and an output
capability describes what messages must be sent to the mailbox next. So if
one owns a mailbox that is typed using an output capability that states one
must send message m1 next, then sending message m2 to this mailbox will
not type check. There can only be one input capability in the system at any
given point, but there can be multiple output capabilities.

The output capabilities are similar to our session predicates (or send
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event permissions), since they represent permission to send a message. One
difference is that we do not support giving out multiple session predicates
(except in the fork-join case). However, using interaction permissions we
setup a single interaction that ensures that upon receiving different messages
an actor can receive different send event permissions with respect to the
same actor reference that is part of the same session. To the best of our
knowledge, such a signal that indicates at which point one gets an output
capability cannot be done in the mailbox type system. One needs to get hold
of another reference to the same actor which has another type, which in our
setting is similar to specifying all the different session predicates that must
be transferred over messages in the corresponding preconditions, which as
we saw in Section 4.7 exposes implementation details.

6.4 Other related work
Conversation types [6] describe conversations in a multiparty setting (there
are some similarities to multiparty session types). It permits a participant
to delegate part of the conversation to another entity, while keeping another
part of the conversation to itself. This has some similarities to our setting.
We enable an actor controlling a session to request multiple interactions
with other actors that gain access to different parts of the session during
different points, while the actor controlling the session takes part in each
of the interactions. Conversation types are less restrictive than in our case,
however, they require a global view of the conversation, which is not modular.

In [17] Padovani et al. reason about liveness at the protocol level. This
is different from out setting, since their approach is not compositional and
they do not directly verify the code.

There is some high-level similarity between interaction permissions in our
setting and escrows in the GPS program logic [21] for weak-memory programs
introduced by Turon et al.. Escrows are used as a way to transfer exclusive
permission between entities indirectly. This is precisely what interactions
permissions are used for as well, since we use them to transfer send event
permissions between entities indirectly. One difference is that escrows are
assertions that are duplicable (they are not permissions), while interaction
permissions cannot be duplicated. Furthermore, there is no analogous notion
of progression of an escrow.
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7 Conclusion
We have extended the actor services logic [20] developed by Summers and
Müller with a notion of sessions. This enables the modular verification of
response properties in actor programs where actors change their behaviour
according to a protocol. Our technique is particularly effective in topologies
such as the ones described in Section 4.12. Using a notion of session owner-
ship we can ensure that messages sent to actors will be accepted and do not
lead to failures. A fundamental challenge is writing modular specifications
to enable the transfer of such ownership to the right actors. We tackle this
challenge using interaction permissions, which specify at what points in an
interaction one can get hold of ownership of which parts in a session. Fur-
thermore, we incorporated initial support for modular fork-join reasoning in
actors as part of our session extension.

In the original actor services logic it is sometimes necessary to reason
about actors using immutability to achieve modularity. If one enforces such
immutability, then one cannot deallocate the affected heap locations and
cannot reuse the actors holding the heap locations. Our extension of the
logic lifts this limitation for actor programs such as the ones described in
Section 4.12.

As we discussed in Section 4.11, our approach cannot deal yet with certain
topologies. However, in the same section we provide an argument that our
approach can be potentially extended in a natural way to deal with such
topologies.

7.1 Future work
Formalization. The current approach must still be formalized and proved
sound. We introduced the rules to progress interaction permissions informally
and gave an argument why this progression is sound. However, one needs
to define a formal model for interaction permissions describing its precise
semantics to formally reason about soundness.

The initial extension to sessions in Section 4 only makes small changes to
the derivation of non-local actor services. The main change is with respect
to how local actor services are proved. Therefore a soundness proof for this
initial part should be able to reuse large parts of the original soundness proof
for the derivation of non-local actor services.

However, the extension described in Section 5 makes fundamental changes
to the actor services structure and the resulting semantics. A soundness
proof for this extension might require non-trivial extensions of the original
soundness proof for the derivation of non-local actor services.
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Branching and recursion. Currently, interaction permissions only sup-
port basic interactions. A natural extension would be to support branching.
This could be achieved by adding internal and external choice to interaction
permissions (similar to session types). For example, if interaction permission
(send(E1) . R1) &(send(E2) . R2) is held (internal choice), then one could
choose to progress (send(E1) . R1) (and hence obtain permission send(E1))
or (send(E2) . R2) (and hence obtain permission send(E2)).

Dually, if interaction permission (rcv(E1) . R1)⊕(rcv(E2) . R2) is held
(external choice), then if rcv(E1) holds, one could progress (rcv(E1) . R1)
and otherwise if rcv(E2) holds, one could progress (rcv(E2) . R2). One
would have to make sure that the companion permissions are always in-sync
by enforcing conditions on the session events used.

Another extension would be to permit recursive behaviour. Such an ex-
tension is more challenging, because one would need a way to distinguish in
which iteration of the recursion one is, to be able to generalize the protocol
invariant accordingly.

Dealing with more general topologies. In Section 4.11 we showed
that it might be possible to extend the rules to progress interaction permis-
sions to deal with more general topologies. For such an extension having a
formal model for interaction permissions is even more important, due to the
complexity of the reasoning involved. In Section 4.11 we also hint at other
possible extensions which are required to reason about response properties
in such topologies.

Session initialization messages. In the current approach one requires
partial session ownership whenever one wants to send a message associated
with any kind of session. This is too restrictive for some programs. There
are actors which always accept the first message of a session (session initial-
ization message). If at the time of reception the actor’s session is running,
it chooses to deal with the message later. Once the session has finished, the
actor then processes one of the next session initialization message received
earlier. This can be achieved using selective receive or related approaches
(see Section 2.2.3).

An idea to support this would be to mark such session initialization mes-
sages explicitly and to accept these messages always. One might need to
extend the ActorPL language to then have a way of deferring actions on
messages if the session is running. Furthermore to get liveness guarantees
when sending session initialization messages, one would have to show that
if such a message is received and the session is not running, then it is guar-
anteed that the session starts and will eventually finish, at which point the
actor will again deal with such messages. One challenge is that two different
sessions may send session initialization messages to each other. In such cases
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one can have deadlocks and hence to guarantee sound reasoning, one must
have some kind of well-foundedness argument.

Fork-join extensions. Extending the current fork-join approach to deal
with an unbounded number of trigger messages and an unbounded number
of response messages is required to deal with practical programs. Making
the current rules for the composition of actor services with multiple trigger
and response messages less restrictive would be important to capture more
properties. Furthermore, generalizing the rules other than composition of
actor services in the original logic to the more general case is another possible
extension.

Parallel sessions. In Figure 4 the manager only deals with one client at
a time. However, it would be possible for the manager to deal with multiple
clients at the same time if one uses identifiers explicit in the program to
distinguish the different sessions that a manager has with the different clients.
It would be interesting to extend the current approach to handle such parallel
sessions.
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