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1 Introduction

Enforcing a sequentially consistent memory model on modern hardware is ex-
pensive in terms of performance. As a result, various programming languages
define weak-memory models which provide weaker guarantees than sequen-
tially consistent models. This enables compilers to generate more efficient
code for the underlying hardware.

Reasoning about weak-memory programs is challenging and therefore
there is a need to develop weak-memory logics which can be used to prove
such programs correct. FSL++ [9] is one such weak-memory logic for the C11
weak-memory model, which is the memory model defined in the 2011 C++
Standard [1]. A subset of the logic has been encoded in Viper [11, 14], a veri-
fication infrastructure developed by the Chair of Programming Methodology
at ETH Zurich.

An important feature of FSL++ is ghost state, which is auxiliary state
that is not part of the actual program and is only used for verification pur-
poses. Ghost state is specified using a set of ghost locations. The set of
resources which can be carried by a particular ghost location must form a
partial commutative monoid (PCM). Using ghost state and choosing a fit-
ting PCM for each ghost location is essential for the verification of non-trivial
programs.

In this project we explore FSL++ by applying it to real-world examples.
For these real-world examples we provide proofs using known PCMs. Fur-
thermore, we propose a novel PCM which allows for more direct proofs. We
also introduce an extension to FSL++, which makes the logic more expres-
sive.

This report is structured as follows. Section 2 introduces FSL++ as
well as other background material for the remaining sections. In Section 3
we present the real-world examples that we consider throughout the report
along with FSL++ proofs using known PCMs. In Section 4 we propose an
extension to FSL++ which can be applied to the presented examples. We
introduce a novel PCM in Section 5 and in Section 6 we provide more direct
proofs for the real-world examples compared to Section 3 using this PCM.
Finally, we conclude and provide ideas for future work in Section 7.

2 Background

In this section we present FSL++. We also introduce basic concepts in
separation logic and discuss common permission structures.
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2.1 Separation logic and fractional permissions

Separation logic. Separation logic [12] is a permission-based program logic
which extends Hoare logic [10]. It enables simple reasoning about properties
of heap-based programs by only considering those heap locations which are
relevant for the properties to be proved.

The formalization of separation logic relies on the notion of partial heaps.
A partial heap is characterized by a partial function which maps pairs of ref-
erences and fields (i.e. heap locations) to their corresponding values in the
heap. Two states σ1, σ2 are called compatible in separation logic if the do-
mains of their heaps are disjoint (i.e. the domains of their corresponding
partial functions are disjoint) and they agree on the values of all local vari-
ables. For compatible states σ1 and σ2 we can define the union of σ1 and σ2
to be the state with the same local variables as σ1 and σ2 and whose heap is
the (disjoint) union of the heaps of σ1 and σ2.

One of the main connectives introduced by separation logic is the sepa-
rating conjunction ∗. A state σ satisfies A ∗ B (for assertions A,B) iff σ is
the union of compatible states σ1 and σ2 where σ1 satisfies A and σ2 satisfies
B.

An important assertion in separation logic is the points-to assertion x.f 7→
v where x.f denotes some heap location and v is some value. A state σ sat-
isfies x.f 7→ v if the domain of the partial function σh representing σ’s heap
only contains x.f and σh(x.f) = v. To access or write to a heap location
x.f the assertion x.f 7→ v must be guaranteed (for any value v). If x.f 7→ v
holds in some context then this can be interpreted as that context owning
the heap location x.f . The assertion emp holds in a state σ iff the domain
of the heap in σ is empty.

Fractional permissions. Fractional permissions [6] generalize the points-
to assertion by annotating each such assertion with a fractional value q ∈
Q ∩ [0, 1] and introduce the following equivalence:

x.f
q17→ v ∗ x.f q27→ v ⇔

{
x.f

q1+q27→ v if q1 + q2 ≤ 1
false otherwise

The generalized points-to assertion x.f
q7→ v for q < 1 can be interpreted

as representing partial ownership of the heap location v. If q = 1 then
it can be interpreted as full ownership. To read a location x.f it suffices to
guarantee x.f

q7→ v for any q ∈ Q∩(0, 1] and to write to a location x.f the full

ownership x.f
17→ v is required. Note that the separating conjunction must

be adjusted to allow for these modified points-to assertions by associating
a permission amount with each heap location in a state. This adjustment
enables compatible states to have access to common heap locations as long
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as the corresponding permission values do not add up to more than 1 and
the common heap locations map to the same values.

2.2 Abstract predicates

Abstract predicates [13] can be used to express recursive specifications which
potentially represent an unbounded number of heap locations and also allow
abstracting over concrete assertions. For example, ownership to a linked list
could be expressed using the abstract predicate list(h) where h is the reference
to the head of the list. list(h) provides ownership to all heap locations of the
list elements. One possible way to give a definition of list(h) is the following:

list(h) ≡ ∃v. h.data 17→ v ∗ h.next 17→ ∗ h.next 6= null⇒ list(h.next)

where h.data holds the value of the element at h and h.next points to the
next element (or null if it is the last element in the list).

Just as with the points-to assertions we can generalize abstract predicates
by annotating them with a fraction Q≥0. For an abstract predicate p(x) we
write p(x)q to annotate p(x) with fraction q. We illustrate the meaning by

example. If the above definition of list(h) is used then list(h)
1
2 is equivalent

to:

∃v. h.data
1
27→ v ∗ h.next

1
27→ ∗ h.next 6= null⇒ list(h.next)

1
2

All fractions which are part of the points-to assertions and abstract predicates
in the definition of the predicate are multiplied by the fraction associated with
the predicate itself1. This enables one to specify that multiple threads have
reader access to the list (by giving, for example, one thread list(h)

1
2 and the

other thread list(h)
1
2 ) while keeping all the advantages of abstract predicates.

The following equivalence holds for abstract predicate instances p(h):

p(h)q1 ∗ p(h)q2 ⇔
{
p(h)q1+q2 if p(h)q1+q2 is defined
false otherwise

2.3 FSL++

FSL++ [9] is a program logic for reasoning about memory accesses in the C11
memory model. It is an extension of fenced separation logic [8] (FSL), which

1Contrary to the points-to assertion the fraction q associated with an abstract predicate
can be greater than 1. This is still consistent in cases where multiplying q with all the
fractions associated with points-to assertions and abstract predicates in the definition does
not yield points-to assertions associated with fractions that are greater than 1.
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Memory Operation rel acq rel acq rlx

Write x x
Read x x
Update x x x x

Table 1: For each memory operation the valid access types are marked for atomic
locations.

itself extends relaxed separation logic [16] (RSL). It is unsound with respect
to the original C11 memory model but it is sound with respect to a slightly
stronger model (details are given in [9]). In this section we present the main
parts of FSL++ which are required to understand the following sections.
Note that we differentiate between statements and expressions while in [9]
only expressions are used.

In the C11 memory model memory locations are classified either as non-
atomic or as atomic. Data races are not permitted on non-atomic locations,
but they are permitted on atomic locations. The C11 model provides dif-
ferent access types for memory operations on atomic locations (we consider
writes, reads and updates). The access types are release (rel), acquire (acq),
release-acquired (rel acq) and relaxed (rlx). The different access types pro-
vide different guarantees. Table 1 shows which access types can be used for
which memory operations.

2.3.1 Non-atomic locations

The rules for non-atomic locations in FSL++ are similar to those for standard
heap accesses in concurrent separation logic. Let l be a non-atomic location.

Non-atomic allocations

{emp}l := alloc(){Uninit(l)}

The Uninit(l) predicate represents ownership of a non-atomic location that
has not been initialized yet.

Non-atomic write
Writing to a non-atomic location either requires the full permission to loca-
tion l (which implies that l has already been initialized) or ownership of l via
the Uninit(l) predicate. The rule is given by

{l 17→ ∨ Uninit(l)}[l]na := v{l 17→ v}
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Non-atomic read
To read from a non-atomic location l partial permission to l is required.

{l k7→ v ∧ k > 0}x := [l]na{x = v ∧ l k7→ v ∧ k > 0}

The rules for non-atomic writes and reads ensure data race freedom.

2.3.2 Atomic locations

FSL++ reasons about atomic locations using location invariants. A location
invariant Q is a function from values to assertions. For each atomic location
a location invariant must be picked and all the memory operations on a
particular atomic location are verified in FSL++ with respect to the selected
invariant. Suppose location invariantQ is selected for atomic location l. This
roughly means that whenever l holds value v then Q(v) holds at location l,
i.e. the location in a sense owns the resources described by Q(v), as long as
no thread has acquired ownership of Q(v) from the location. As a result, Q
specifies the resources that must be given up for each value that is written
and the resources that are acquired for each value that is read (as long as
those resources were not already acquired by a different read).

Release writes
For a release write of value v to location l FSL++ requires that Q(v) is given
up, where Q is the location invariant associated with l. This is reflected by
the following rule:

{Rel(l,Q) ∗ Q(v)}[l]rel := v{Init(l)}

The intuition for the predicate Rel(l,Q) is that the logic needs to ensure that
the correct location invariant is used for l (namely the one that was picked
initially). Since the location invariant is fixed for each location, Rel(l,Q) is
duplicable, i.e. it holds that

Rel(l,Q)⇔ Rel(l,Q) ∗ Rel(l,Q)

Init(l) asserts that l is initialized.

Relaxed writes
Relaxed writes provide fewer guarantees than release writes in the C11 model.
In particular, just giving up Q(v) for a relaxed write of v is not enough to
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preserve the meaning of the location invariant in FSL++. Instead, once Q(v)
is held, a release fence instruction must be executed which transforms Q(v)
to4Q(v), where4 is a modality introduced in FSL++. This transformation
is reflected by the following rule:

{P}fencerel{4P}

For the relaxed write 4Q(v) must be given up:

{Rel(l,Q) ∗ 4Q(v)}[l]rlx := v{Init(l)}

Hence one can informally state that the release fence instruction gives strong
enough guarantees such that the resources, which were held right before the
fence, can be transferred to the location.

Acquire reads
After an acquire read of value v in FSL++ the resources Q(v) are acquired,
as long as the same thread did not already acquire those resources. FSL++
ensures that for each write there is at most one read which acquires the
resources provided by that write. We do not give the FSL++ rules for
acquire reads since they do not show up in the following sections.

Relaxed reads
After a relaxed read of value v the resources 5Q(v) are acquired, as long as
the same thread did not already acquire those resources. 5 is a modality
introduced by FSL++ and the intuition for it is that a relaxed read does not
provide enough guarantees for the thread to directly use the resources that
are acquired. Instead, the resources acquired must be first transformed using
an acquire fence instruction which is reflected by the following rule:

{5P}fenceacq{P}

FSL++ ensures that for each (release or relaxed) write there is at most
one (acquire or relaxed) read which acquires the resources provided by that
write. It is possible that one thread acquires one part of Q(v) by a (release or
relaxed) read and another thread acquires another disjoint part of Q(v) by a
(release or relaxed) read, where both read actions read the value v from the
same write (details are given in [9]). We do not provide the rule for relaxed
reads since they do not show up in the following sections.

Updates
Update actions are performed using specific read-modify-write operations.

10



x 6∈ FV (P )
Q(v) |= A ∗ T
P ∗ T |= Q(v′)
P ∗ Q(v) |= ϕ

P ′ ≡
{
P if τ ∈ {rel, rel acq}
4P otherwise

A′ ≡
{
A if τ ∈ {acq, rel acq}
5A otherwise

pure(ϕ)

{
Init(l) ∗ Rel(l,Q) ∗
RMWAcq(l,Q) ∗ P ′

}
x := CASτ (l, v, v

′)




x = v ?
A′ ∧ ϕ :
Init(l) ∗ Rel(l,Q) ∗
RMWAcq(l,Q) ∗ P ′




Figure 1: CAS−basic rule

One particular read-modify-write operation is the compare-and-swap (CAS)
operation. Execution of x := CAS(l, v, v′) reads from location l, if the value
read is given by v then v′ is written to l (in this case we call the CAS
successful) and otherwise nothing is written (in this case we call the CAS
failed). The value that was read is stored into x. The whole CAS operation
is atomic.

One possible rule for the CAS in FSL++ is given in Figure 1. We
call this rule CAS−basic. It is almost identical to the CAS rule given
in [15]. The main difference is that in the presented rule the predicates
Init(l),Rel(l,Q),RMWAcq(l,Q) are only retained if the CAS has failed while
in [15] the predicates are also retained if the CAS is successful2. This is not
a big difference since these predicates are duplicable. The reason we present
the rule like this is that the CAS rules provided in the original FSL++ paper
given in [9] also follow this convention. Our presented rule has been proved
sound [7]. The presentation of this rule is almost the same as in [14] (the
ϕ part was added). The presented CAS rule summarizes all four possible
access types.

Let us consider the rel acq access type to understand the CAS rule bet-
ter. The precondition of the conclusion includes the RMWAcq(l,Q) predicate
and the already seen Rel(l,Q) and Init(l,Q) predicates. Additionally, the pre-
condition includes an assertion P which is the part of the local state which
the thread gives up for the CAS operation. We sometimes use U(l,Q) where

U(l,Q) := Init(l,Q) ∗ Rel(l,Q) ∗ RMWAcq(l,Q)

2In [15] only a single predicate U(l,Q) is used but this is conceptually the same as the
three predicates that we use.
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x 6∈ FV (P )
Q(v) |= ∃z.A(z) ∗ T (z)
∀z.P ∗ T (z) |= Q(v′) ∧ ϕ(z)
∀z.pure(ϕ(z))

P ′ ≡
{
P if τ ∈ {rel, rel acq}
4P otherwise

∀z.A′(z) ≡

 A(z) if τ ∈
{

acq,
rel acq

}
5A(z) otherwise

{
Init(l) ∗ Rel(l,Q) ∗
RMWAcq(l,Q) ∗ P ′

}
x := CASτ (l, v, v

′)




x = v ?
∃z.A′(z) ∧ ϕ(z) :
Init(l) ∗ Rel(l,Q) ∗
RMWAcq(l,Q) ∗ P ′




Figure 2: CAS−param rule

for readability reasons. U(l,Q) is duplicable, i.e. it holds that

U(l,Q)⇔ U(l,Q) ∗ U(l,Q)

The postcondition of the conclusion guarantees A if the CAS operation is
successful and otherwise no permission is transferred and P is retained.

Let us now consider the premise. In a successful CAS operation the value
v is read and the value v′ is written. To make sure the location invariant
holds after v′ is written Q(v′) must be guaranteed. This must be achieved
by using parts of Q(v) (since v is read) and P (since it is given up by the
thread performing the CAS). In particular, the premise requires to extract
a part T of Q(v) which is used to establish Q(v′). The remaining part A of
Q(v) is given to the thread.

Finally, any pure assertion ϕ may be learnt by the thread performing the
CAS operation by considering P ∗ Q(v) in a successful CAS operation. An
assertion is pure if it is independent of the heap.

For the rlx access type both A and P appear under modalities in the
conclusion (it can be roughly interpreted as a relaxed read combined with
a relaxed write). For the acq access type only P appears under a modality
(it can be roughly interpreted as an acquire read combined with a relaxed
write) and for the rel access type only A appears under a modality (it can
be roughly interpreted as a relaxed read combined with a release write).

A different CAS rule which is taken from [9] is given in Figure 2. We call
this the CAS−param rule. It is more flexible compared to the CAS−basic rule.
Instead of splitting Q(v) into assertions A and T , Q(v) is split into A(z) and
T (z) for some value z, where A and T are functions from values to asser-
tions. Furthermore, ϕ is a function from values to pure assertions. This rule
allows for easier proofs in certain cases as we will see in later sections.
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Q(v) ∗ P ⇒ false
τ ∈ {rlx, rel, acq, rel acq}{

Init(l) ∗ Rel(l,Q) ∗
RMWAcq(l,Q) ∗ P

}
x := CASτ (l, v, v

′)

{
(x 6= v) ∧ Init(l) ∗ Rel(l,Q) ∗
RMWAcq(l,Q) ∗ P

}

Figure 3: FSL++ CAS−⊥ rule which directly can be used to show that the CAS
will not be successful.

∀t.


{U(l,Q) ∗ Psend(t)}
z := CASτ (l, t, t+ v){

(z = t ∧R(t))∨
(z 6= t ∧ U(l,Q) ∗ Psend(t))

}
 ∀t.(P ⇔ Psend(t) ∗ Pkeep(t))

τ ∈ {rlx, rel, acq, rel acq}
{x, z} ∩ FV (P ) = ∅{

U(l,Q) ∗ P
}
x := fetch and addτ (l, v)

{
R(x) ∗ Pkeep(x)

}
Figure 4: FSL++ fetch-and-add rule. U(l,Q) stands for Init(l) ∗ Rel(l,Q) ∗
RMWAcq(l,Q).

If a thread owns resources that are incompatible with Q(v) then there
definitely cannot be a successful CAS where v is read. This is captured by
the CAS−⊥ rule in Figure 3.

Note that in FSL++ acquire reads and relaxed reads cannot acquire re-
sources from a location invariant governing an atomic location that supports
updates. The intuition behind this is that if there are only updates and writes
which can transfer resources then automatically every read in a successful up-
date operation reads from a write for which the corresponding resources have
not been acquired yet. This justifies whyQ(v) can always be used when value
v is read in a successful CAS.

From the CAS rule a fetch-and-add rule can be derived (since the fetch-
and-add operation can be implemented using the CAS operation3). It is
given in Figure 4. The main difference between a fetch-and-add and the
CAS operation is that the fetch-and-add operation is always successful (and
it only allows incrementing the value at the atomic location but that can be
adjusted).

Note that in the premise of the fetch-and-add rule, a CAS triple must be

3In practice the fetch-and-add operation is implemented more efficiently than by using
the CAS operation naively, but this has no impact on how one reasons about the fetch-
and-add since the effect of the fetch-and-add remains the same.
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verified for every possible read value t. There may be cases where a value
t cannot be read: in such cases one often can verify the CAS triple directly
using the CAS−⊥ rule.

We also note that in some of the presented inference rules certain symbols
are interpreted as actual values even though they should be interpreted as
program expressions. Interpreting the symbols as values made the presen-
tation easier. For example, the conclusion of the CAS−basic rule is given
by

{
Init(l) ∗ Rel(l,Q) ∗
RMWAcq(l,Q) ∗ P ′

}
x := CASτ (l, v, v

′)




x = v ?
A′ ∧ ϕ :
Init(l) ∗ Rel(l,Q) ∗
RMWAcq(l,Q) ∗ P ′




where we interpret v and v′ as values. In practice v and v′ are program
expressions that have the type defined by the atomic location l. We assume
a generalization of the rules where the CAS takes program expressions as
arguments which are evaluated in the program state right before the CAS is
executed. For the other rules we assume an analogous generalization.

Allocation of atomic locations
The rule for the allocation of atomics for which update instructions can be
applied to is given by

{emp}l := alloc(){l.Rel(l,Q) ∗ RMWAcq(l,Q)}

2.3.3 Ghost locations

FSL++ supports ghost state. Ghost state is state that can be used to reason
about a program, but which is not part of the actual program state. It is
often used to keep track of facts that cannot be expressed using just program
state. In FSL++ ghost state is accessed through ghost locations (analogous
to memory locations) which carry ghost resources (analogous to memory
locations that are associated with permission values). The assertion γ : g
states that the ghost location γ carries the ghost resource g. Ghost resources
on a single location have to form a partial commutative monoid (PCM). See
Appendix A for the definition of partial commutative monoids.

Ghost state can be introduced at any point, as is reflected by the following
rule:

{P}C{Q}
{P}C{Q ∗ ∃γ. γ : g }
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Let γ be a ghost location with ghost resources that form a partial com-
mutative monoid with composition operation ⊕. The following holds:

γ : g1 ∗ γ : g2 ⇔

{
γ : g1 ⊕ g2 if g1 ⊕ g2 is defined

false otherwise

Ghost state has the important property that there is no difference between
ghost state with and without the modalities 4, 5:

γ : g ⇔4 γ : g ⇔5 γ : g

A more detailed explanation of the modalities than the one in Section 2.3.2
is given in [9].

2.4 Permission structures

Permission structures are structures that can be used to reason about owner-
ship of non-atomic locations. For example, the fractional permission model
introduced in Section 2.1 corresponds to a particular permission structure.

Generally, permission structures4 are algebraic structures of the form
(S,⊕, µ,1), where (S,⊕) forms a partial commutative monoid with neutral
element µ (empty permission) and 1 ∈ S \ {µ} is a maximal element (full
permission) which means that 1⊕ s is undefined for every s ∈ S \ {µ}.

In the following we present three known permission structures. In later
sections in FSL++ proofs some ghost locations will carry ghost resources
(see Section 2.3.3) that form a PCM corresponding to one of these permission
structures (since permission structures form a PCM, we can do this).

Fractional permission structure. The fractional permission structure
directly corresponds to fractional permissions as introduced in Section 2.1.
It is given by the algebraic structure (Q ∩ [0, 1],⊕, 0, 1) where ⊕ is defined
as:

q1 ⊕ q2 :=

{
q1 + q2 if q1 + q2 ≤ 1
undefined otherwise

Counting permission structure. The counting permission structure
was first introduced in [5]. It is a permission structure that defines a source
permission that counts how many access permissions were given away. It
can be described by the algebraic structure (N× {+,−},⊕, 0+, 0−). We use

4The presentation of the formal definition is taken from [9].
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the notation a+ (i.e. a−) for an element (a,+) ∈ N×{+,−} (i.e. (a,−)). ⊕
is defined as:

a+ ⊕ b+ := (a+ b)+

a− ⊕ b− := undefined

a+ ⊕ b− := b− ⊕ a+ :=

{
(b− a)− if b− a ≥ 0
undefined otherwise

a− is the source permission and there can only be one such permission. As
a sidenote: in [5] this structure is introduced without a neutral element (i.e.
0+ is not an element of the set), which is fine in their context since they only
require the structure to be a partial commutative semigroup.

SFC permission structure. In [5] a structure combining the fractional
and counting permission structure is introduced. The only difference to the
counting permission structure is that the set is Q≥0 × {+,−} instead of
N×{+,−}. ⊕ is defined the same (as with the counting permission structure
this structure is presented as a partial commutative semigroup in [5]). We
call this structure the simple fractional-counting permission structure and we
refer to is as the SFC permission structure.

Encoding counting permissions using fractional permissions. In-
stead of using the counting permission structure in the proofs we will encode
the counting permission structure using the fractional permission structure
since the main permission structure that we use corresponds to the fractional
permission structure (see Section 2.1).

This can be done by introducing a fraction ε ∈ Q∩(0, 1) that is indivisible
and small enough to work in all contexts, i.e. ε in the fractional permission
structure models 1+ in the counting permission model and a− is modelled
by 1− a · ε (which is guaranteed to be greater than 0 since ε is chosen small
enough). It is not clear how one would formally model ε such that it works
in all contexts and we do not elaborate on this since all the proofs should
work by just directly using the counting permission structure.

3 Main examples

In this section we introduce the three examples that we revisit in later sec-
tions. The first two examples are from the Facebook Folly library5 and we
present FSL++ proofs for both examples. To the best of our knowledge,
these are the first FSL++ proofs for these examples. The third example is
from the Rust standard library and we present the proof given in [9].

5The library is open source and can be found at https://github.com/facebook/

folly.
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bool try_lock_shared () {

v0 := fetch and addacq(bits, 4) //RMW1

if(lsb(v0) == 1) {

v1 := fetch and addrel(bits,−4) //RMW2

res := false

} else {

res := true

}

return res

}

void unlock_shared () {

x := fetch and addrel(bits,−4)
}

bool try_lock () {

v := CASrel acq(bits, 0, 1)
return (v == 0)

}

void unlock(bool getRead) {

x := fetch and andrel(bits,∼1)
}

void unlock_and_lock_shared () {

x := fetch and addacq(bits, 4) //RMW1

unlock(true)

}

Figure 5: Pseudocode for the functions in RWSpin

3.1 Folly reader-writer spinlock

The Folly reader-writer spinlock [3] (we will refer to it as RWSpin) is a
reader-writer lock which uses a single integer atomic location bits. It allows
multiple readers to have access to the lock simultaneously while there is no
writer and it allows a single writer to have access to the lock while there are
no readers.

3.1.1 Implementation

The implementation of the most interesting functions in RWSpin is given
in Figure 5. The idea behind the implementation is as follows. The least
significant bit of bits is 1 if and only if there is a writer. If there are r
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readers then the value of bits is at least 4 · r (but not necessarily exactly
equal to 4 · r).

The implementation we consider is a slightly simplified one; in the origi-
nal implementation there is also the notion of an upgradeable bit (the second
least significant bit, which is why increments of 4 are used instead of incre-
ments of 2) which enables a thread that wants the writer lock to block more
threads from getting a reader lock. Generalizing the proofs to include this
notion and verifying functions which involve the upgradeable bit should not
be hard.

In try lock shared the thread attempts to get a reader lock. This is
achieved by first incrementing bits by 4 atomically and then checking if
the value updated had 0 as least significant bit (i.e. there was no writer).
If this is the case the thread gets the reader lock and otherwise the thread
decrements bits by 4 to undo the former action.

In unlock shared a reader lock is unlocked by decrementing bits by 4.
In try lock a thread attempts to get a writer lock by setting the least

significant bit to 1 if there is no writer and there are no readers.
In unlock a writer lock is unlocked by updating the value read v by v&∼1

where ∼ denotes bitwise complement (i.e. by setting the least significant bit
to 0). Note that in the original implementation the value is set to v&∼3
since the upgradeable bit is also taken into account.

The boolean parameter getRead in the unlock function is a ghost pa-
rameter, i.e. it does not affect the implementation but we use it for the
specification. We interpret it as follows in the specification, which we pro-
vide later. If unlock(false) is called then the caller just wants to give up
the writer lock. If unlock(true) is called then the caller wants to give up
the writer lock and additionally wants to get a reader lock. In the latter case
the specification will require the caller to provide additional resources which
makes it possible to extract a reader lock using the same unlock code as in
the former case.

In unlock and lock shared a writer thread first increments by 4, which
conceptually reserves a reader lock. Then the thread unlocks the writer lock
and gets a reader lock (since the writer incremented by 4 before unlocking).

3.1.2 Resource

RWSpin can be used as a lock for any kind of data structure. In our spec-
ification we use an abstract predicate (see Section 2.2) resource(bits) to
represent the permission to the data structure that is guarded by the reader-
writer lock implemented using the atomic integer location bits. We make
the assumption that the full permission (i.e. the permission needed by a
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writer) is given by resource(bits)1. For a reader, partial permission is suffi-
cient, hence resource(bits)q for any q ∈ (0, 1] is fine. We do not make the
assumption that resource(bits)q

′ ⇒ false if q′ > 1 (note that this does not
hold in general for abstract predicates, see the abstract predicates section for
more details). There are cases where this assumption would be justified and
in such cases the verification would be slightly easier.

3.1.3 Location invariant

The location invariant that we use for the FSL++ proofs for the integer
atomic location bits is given by:

Q(v) := let n =
⌊v

4

⌋
, w = lsb(v) in

∃nr ∈ N. v ≥ 0 ∧ nr ≤ n ∧ (w = 1⇒ nr = 0) ∧
resource(bits)(w=1 ? 0 : 1−nr·ε) ∗

α : 1− w ∗ β : 1− nr · ε ∗ γ : 1− (n− nr) · ε

where α,β,γ are ghost locations which are governed by the fractional per-
mission structure introduced in Section 2.4. The meaning of the ε fraction is
also explained in Section 2.4 (we are modelling counting permissions using
fractional permissions: see the corresponding section for more details). The
permission to the data structure guarded by the reader-writer lock, as ex-
plained before, is inside the resource(bits) abstract predicate. lsb(v) returns
the least significant bit of v, if it is 1 then there is a writer and otherwise
not.

The idea of the location invariant is as follows. As explained before, in the
try lock shared function a thread tries to get a reader lock by incrementing
by 4 and the thread gets the reader lock iff at the time of the update there
was no writer. These are the only increments by 4 that are performed. If the
value at the location is given by v the number of increments by 4 (for which no
corresponding decrement by 4 was executed) is given by

⌊
v
4

⌋
which we define

to be n (since the only other operations are decrements by 4 or toggling
the least significant bit). Some of these increments by 4 were performed by
threads that now have a reader lock: we call these threads the real readers
(they have read access to the resource). The rest of these increments by 4
were performed by threads that do not have a reader lock (and have not
decremented by 4 yet): we call these threads the fake readers (they do not
have any access to the resource).

Note that it is possible for real readers and fake readers to coexist at the
same time. For example, while a fake reader has not decremented by 4 yet
the writer may unlock the lock and another thread may become a real reader.
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The number of real readers is given by the existentially quantified variable
nr and the number of fake readers is given by n − nr. If there is a writer
(w = 1) then we know that there cannot be a real reader, hence nr = 0.
Furthermore, if there is a writer then the writer has the full permission to
the resource, hence there is no permission to resource(bits) in the location
invariant. If there is no writer then we make sure that each real reader gets
ε permission to resource(bits), which means there is 1− nr · ε permission to
resource(bits) in the location invariant. So ε allows us to explicitly count
how much permission we have given away.

The α ghost location is required to make sure that when the writer unlocks
it can be verified that the value read before updating must have 1 as its
least significant bit (we will see this in detail later, but the main reason
is that resource(bits)q is not necessarily inconsistent if q > 1). The β,γ
ghost locations are used to make sure that when decrementing by 4 it can be
verified that the value read is at least 4, and to track the real/fake readers.

3.1.4 Specification

The specification of the methods is given by:

{U(bits,Q)}bool try lock shared()

y.
(y ?
Rβ(bits) :
emp)


{U(bits,Q) ∗Rβ(bits)}void unlock shared(){emp}

{U(bits,Q)}bool try lock(){y.(y ? Wα(bits) : U(bits,Q))}
U(bits,Q) ∗
Wα(bits) ∗
(getRead ?
γ : ε : emp)

void unlock(bool getRead)


(getRead ?
Rβ(bits) :
emp)


{U(bits,Q) ∗Wα(bits)}void unlock and lock shared() {Rβ(bits)}

where

Wα(bits) ≡ resource(bits)1 ∗ α : 1

Rβ(bits) ≡ resource(bits)ε ∗ β : ε

Note that in the specification of, for example, unlock shared we do not
retain the permission to U(bits,Q). But this is not an issue since U(bits,Q)
is duplicable, so a caller of lock can still retain permission to it. Also in some
cases when U(bits,Q) is needed after a fetch-and-add operation we do not
explicitly mention it in the proof for the same reason.
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{U(bits,Q)}
v0 := fetch and addacq(bits, 4) // first RMW{

(lsb(v0) = 0 ? Rβ(bits) : U(bits,Q) ∗ γ : ε )
}

if(lsb(v0) == 1) {{
U(bits,Q) ∗ γ : ε

}
v1 := fetch and addrel(bits,−4) // second RMW

{emp}
res := false

} else {

{Rβ(bits)}
res := true

}

{(res ? Rβ(bits) : emp)}
return res

Figure 6: Proof outline for the try lock shared function

In all the proofs we assume that the value read in the fetch-and-add
operations is non-negative. The cases where the value read is negative are
trivial since Q(t) ⇒ false for t < 0, hence the CAS−⊥ rule can be used to
prove the premise of the fetch-and-add rule (i.e. such a value can never be
read).

3.1.5 Proof of function try lock shared

We show the proof for the function try lock shared. There are two fetch-
and-add operations that must be considered. The proof outline is given in
Figure 6.

First RMW. We first verify the first fetch-and-add operation. We need
to show

{U(bits,Q)} v0 := fetch and addacq(bits, 4)


(lsb(v0) = 0 ?
Rβ(bits) :
U(bits,Q) ∗ γ : ε )


using the fetch-and-add rule in Figure 4. We have P ≡ emp, hence

Psend(t) := emp

Pkeep(t) := emp

Clearly P ⇔ Psend(t) ∗ Pkeep(t) holds for any t. For the premise of the fetch-
and-add rule we still need to verify the CAS triple for all possible values t
that are read. We do this with the CAS−basic rule given in Figure 1. Let t
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be the value read. First suppose lsb(t) = 1 (i.e. there is a writer). We then
have

Q(t)⇔ let n =

⌊
t

4

⌋
in t ≥ 0 ∧ α : 0 ∗ β : 1 ∗ γ : 1− n · ε

Choose

T := let n =

⌊
t

4

⌋
in t ≥ 0 ∧ α : 0 ∗ β : 1 ∗ γ : 1− (n+ 1) · ε

A := γ : ε

Then we have Q(t)⇔ A ∗ T (A is the permission that is given to the thread
while T stays in the location invariant). Note that

T ⇒ let n =

⌊
t+ 4

4

⌋
in t+ 4 ≥ 0 ∧ α : 0 ∗ β : 1 ∗ γ : 1− n · ε

⇒ Q(t+ 4)

Hence we can establish the location invariant for t+4 (we used lsb(t) = lsb(t+
4)). The thread gets γ : ε . Note that we still need to retain U(bits,Q),

which we can do using the frame rule and using the fact that U(bits,Q)⇔
U(bits,Q) ∗ U(bits,Q). We show this here and in the remaining proofs we
assume that this is no issue. The following derivation is correct:

{U(bits,Q)} x := CASacq(bits, t, t− 4)

{
(x = t ?
γ : ε : U(bits,Q))

}
{

U(bits,Q) ∗
U(bits,Q)

}
x := CASacq(bits, t, t− 4)


U(bits,Q) ∗
(x = t ?
γ : ε : U(bits,Q))


{U(bits,Q)} x := CASacq(bits, t, t− 4)


(x = t ?
U(bits,Q) ∗ γ : ε :

U(bits,Q))


This concludes the proof for t where lsb(t) = 1. Next, suppose lsb(t) = 0 (i.e.
there is no writer). We then have

Q(t)⇒let n =

⌊
t

4

⌋
in

∃n′r ∈ N. t ≥ 0 ∧ n′r ≤ n ∧ resource(bits)1−n
′
r·ε ∗

α : 1 ∗ β : 1− n′r · ε ∗ γ : 1− (n− n′r) · ε
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Choose

T := let n =

⌊
t

4

⌋
in

∃n′r ∈ N. t ≥ 0 ∧ n′r ≤ n ∧ resource(bits)1−(n
′
r+1)·ε ∗

α : 1 ∗ β : 1− (n′r + 1) · ε ∗ γ : 1− (n− n′r) · ε

A := resource(bits)ε ∗ β : ε

Note that

T ⇒let n =

⌊
t+ 4

4

⌋
in

∃n′r ∈ N. t ≥ 0 ∧ n′r + 1 ≤ n ∧ resource(bits)1−(n
′
r+1)·ε ∗

α : 1 ∗ β : 1− (n′r + 1) · ε ∗ γ : 1− (n− (n′r + 1)) · ε

⇒choosing nr:=n′r+1 Q(t+ 4)

Additionally we have that A is exactly the permission that we want (permis-
sion for a reader lock) and since the fetch-and-add is of access type acq we
get A directly. This concludes the proof for the first fetch-and-add operation.

Second RMW. Next, we verify the second fetch-and-add operation. We
need to show{

U(bits,Q) ∗ γ : ε
}
v1 := fetch and addrel(bits,−4) {emp}

We have P := γ : ε . We choose

Psend(t) := γ : ε

Pkeep(t) := emp

Clearly P ⇔ Psend(t) ∗ Pkeep(t) holds for any t. We still need to show the
CAS triple in the premise of the fetch-and-add rule for all values t that are
read.

Assume t < 4: we show that such a value cannot be read. We have
Q(t)⇒ γ : 1 ∗ true. Hence Psend(t) ∗Q(t)⇒ false, therefore we may use the
CAS−⊥ rule to verify the CAS triple.

Next, assume t ≥ 4. We prove the CAS triple in this case using the
standard CAS−basic rule. Choose

T := Q(t)

A := emp
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Then clearly Q(t)⇔ A ∗ T . We have

Psend(t) ∗ T ⇒ let n =

⌊
t

4

⌋
, w = lsb(t) in

∃nr ∈ N. t− 4 ≥ 0 ∧ nr ≤ n ∧ (w = 1⇒ nr = 0) ∧
resource(bits)(w=1 ? 0 : 1−nr·ε) ∗ α : 1− w ∗

β : 1− nr · ε ∗ γ : 1− (n− nr − 1) · ε

⇒ let n =

⌊
t− 4

4

⌋
, w = lsb(t) in

∃nr ∈ N. t− 4 ≥ 0 ∧ nr ≤ n ∧ (w = 1⇒ nr = 0) ∧
resource(bits)(w=1 ? 0 : 1−nr·ε) ∗ α : 1− w ∗

β : 1− nr · ε ∗ γ : 1− (n− nr) · ε

⇒ Q(t− 4)

Note that t − 4 ≥ 0 holds by assumption. This concludes the proof of
the second fetch-and-add operation. Note that since we only transfer ghost
resources, the modalities in the fetch-and-add rule do not matter, hence it
would even be possible to verify this fetch-and-add operation using just the
rlx access mode (instead of the rel access mode). Such a change could
potentially lead to a gain in performance.

3.1.6 Proof of function unlock shared

We show the proof for the function unlock shared. We need to show

{U(bits,Q) ∗Rβ(bits)}x := fetch and addrel(bits, 4){emp}

using the fetch-and-add rule. We have P ≡ resource(bits)ε ∗ β : ε . We
choose

Psend(t) := resource(bits)ε ∗ β : ε

Pkeep(t) := emp

Clearly P ⇔ Psend(t) ∗ Pkeep(t) holds for every t. We still need to show the
CAS triple in the premise of the fetch-and-add rule for every value t that is
read.

Let t be the value that is read. Consider first the case
⌊
t
4

⌋
= 0. We have

Q(t) ⇒ β : 1 ∗ true, hence Psend(t) ∗ Q(t) ⇒ false, which means such a t
cannot be read and the CAS triple can be shown using the CAS−⊥ rule.
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Next, assume lsb(t) = 1 (i.e. there is a writer); we also show that such a
value cannot be read (since we have real read permission). For such values t

it holds that Q(t)⇒ β : 1 ∗ true, hence Psend(t) ∗Q(t)⇒ false and therefore
we can prove the CAS triple using the CAS−⊥ rule.

Next, assume
⌊
t
4

⌋
> 0 and lsb(t) = 0. Choose T := Q(t) and A := emp.

We show the CAS triple using the CAS−basic rule. We have

T ⇒ let n =

⌊
t

4

⌋
in ∃n′r ∈ N. t− 4 ≥ 0 ∧ n′r ≤ n ∧ resource(bits)1−n

′
r·ε ∗

α : 1 ∗ β : 1− n′r · ε ∗ γ : 1− (n− n′r) · ε

Note that t− 4 ≥ 0 since we assume
⌊
t
4

⌋
> 0. Hence

Psend(t) ∗ T ⇒let n =

⌊
t

4

⌋
in

∃n′r ∈ N. t− 4 ≥ 0 ∧ n′r − 1 ≤ n− 1 ∧
resource(bits)1−(n

′
r−1)·ε ∗

α : 1 ∗ β : 1− (n′r − 1) · ε ∗ γ : 1− (n− n′r) · ε

⇒let n =

⌊
t− 4

4

⌋
in

∃n′r ∈ N. t− 4 ≥ 0 ∧ n′r − 1 ≤ n ∧
resource(bits)1−(n

′
r−1)·ε ∗

α : 1 ∗ β : 1− (n′r − 1) · ε ∗ γ : 1− (n− (n′r − 1)) · ε

⇒choosing nr:=n′r−1Q(t− 4)

Note that since the fetch-and-add operation is of access type rel we can
directly transfer the permission resource(bits)ε to the location invariant
(i.e. we need not worry about any modalities). This concludes the proof
of unlock shared.

3.1.7 Proof of function try lock

We show the proof for the function try lock. We need to show

{U(bits,Q)} v := CASrel acq(bits, 0, 1)


 v = 0 ?

resource(bits)1 ∗ α : 1 :
U(bits,Q)


using the CAS−basic rule. We have

Q(0)⇔resource(bits)1 ∗ α : 1 ∗ β : 1 ∗ γ : 1
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We choose

T := α : 0 ∗ β : 1 ∗ γ : 1

A := resource(bits)1 ∗ α : 1

and Q(0) ⇔ A ∗ T holds. Furthermore, T ⇔ Q(1) holds and A is exactly
the permission needed for the writer lock. Since the CAS has access type
rel acq we need not worry about modalities with A. Actually it suffices to
have access type acq since no permission is given up by the thread. Such a
change could potentially lead to a gain in performance. This concludes the
proof.

3.1.8 Proof of function unlock

We show the proof for the function unlock. Note that we have only presented
a rule for fetch-and-add operations in Figure 4, but the rule can be adjusted
in a straight forward fashion to support fetch and andrel(bits,∼1). Instead
of t + v in the premise we just use clearlsb(t), which maps t to the integer
where the least significant bit is set to 0. We refer to this adjusted rule as
the fetch-and-clear rule.

Case 1: getRead does not hold. We first consider the case where
getRead does not hold. In this case we need to show{

Wα(bits)
}
fetch and andrel(bits,∼1)

{
emp

}
using the fetch-and-clear rule. Hence we have P ≡ resource(bits)1 ∗ α : 1 .
We choose

Psend(t) := resource(bits)1 ∗ α : 1

Pkeep(t) := emp

i.e. we choose to give everything away independent of the value that we read
before writing the new value. Clearly P ⇔ Psend(t) ∗ Pkeep(t) holds for every
t.

Since there is a writer the least significant bit of the value that we read
during the update must be 1. We still need to verify this. Let t be the value
that we read. Suppose lsb(t) = 0, then we have Q(t)⇒ α : 1 ∗ true. Hence

Q(t) ∗ Psend(t) ⇒ false (since α : 1 ∗ α : 1 ⇒ false). Therefore using the
CAS−⊥ rule we can show the CAS triple in the premise of the fetch-and-
clear rule for such t (since reading that t is not possible, which is what we
just proved).
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Let t be the value that is read and now suppose lsb(t) = 1. We will now
use the CAS−basic rule to verify the premise of the fetch-and-clear rule for
such t. Observe that in this case

Q(t)⇔ let n =

⌊
t

4

⌋
in t ≥ 0 ∧ α : 0 ∗ β : 1 ∗ γ : 1− n · ε

Since we do not want to acquire any permissions, we choose A := emp
and T := Q(t) in the premise of the CAS rule. We have

Psend(t) ∗ T ⇒
let n =

⌊
clearlsb(t)

4

⌋
in

clearlsb(t) ≥ 0 ∧ resource(bits)1 ∗ α : 1 ∗
β : 1 ∗ γ : 1− n · ε

⇒choosing nr:=0 Q(clearlsb(t))

Hence for these t the premise of the fetch-and-clear rule also holds. This
concludes the proof.

Case 2: getRead holds. In this case we need to show{
Wα(bits) ∗ γ : ε

}
fetch and andrel(bits,∼1)

{
Rβ(bits)

}
The main difference to the first case is that we retain part of the ownership
to the resource and we exchange γ : ε for β : ε .

We need to prove the premise of the fetch-and-clear rule (i.e. the rule in
Figure 4 updated as in the previous case). We have

P ≡ resource(bits)1 ∗ α : 1 ∗ γ : ε

We choose

Psend(t) := (

⌊
t

4

⌋
= 0 ? P : resource(bits)1−ε ∗ α : 1 ∗ γ : ε )

Pkeep(t) := (

⌊
t

4

⌋
= 0 ? emp : resource(bits)ε)

Since γ : ε is part of P it must hold that the value stored at the atomic

location is at least 4. Setting Psend(t) to P if
⌊
t
4

⌋
= 0 allows verifying this

as we will see next. Furthermore, since in this case a reader lock must be
acquired, we retain permission to the data structure guarded by the lock by
setting Pkeep(t) to resource(bits)ε if

⌊
t
4

⌋
6= 0. Clearly P ⇔ Psend(t) ∗Pkeep(t)

holds for every t.
Let t be the value that was read. We first prove the premise of the

CAS triple in the fetch-and-clear rule if
⌊
t
4

⌋
= 0. Such t cannot be read
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since intuitively γ : ε is held outside the invariant. Hence we show the

premise again using the CAS−⊥ rule. Suppose
⌊
t
4

⌋
= 0. We then have

Psend(t)⇒ γ : ε ∗ true and Q(t)⇒ γ : 1 ∗ true, hence Psend(t)∗Q(t)⇒ false.
Therefore for such t the premise of the fetch-and-and rule is proved using the
CAS−⊥ rule. Note that this proof is only possible since γ : ε is in the
precondition of the unlock method.

Next, assume
⌊
t
4

⌋
> 0. We have

Psend(t)⇔ resource(bits)1−ε ∗ α : 1 ∗ γ : ε

In the case when lsb(t) = 0 we can show analogously to the case when
getRead does not hold that the CAS triple holds using the CAS−⊥ rule.

So we now assume
⌊
t
4

⌋
> 0 and lsb(t) = 1. We prove the CAS triple using

the CAS−basic rule. We have

Q(t)⇔ let n =

⌊
t

4

⌋
in t ≥ 0 ∧ n ≥ 1 ∧ α : 0 ∗ β : 1 ∗ γ : 1− n · ε

Note that n ≥ 1 holds since we assumed
⌊
t
4

⌋
> 0. We choose

T := let n =

⌊
t

4

⌋
in t ≥ 0 ∧ n ≥ 1 ∧ α : 0 ∗ β : 1− ε ∗ γ : 1− n · ε

A := β : ε

The reason for this choice is that we need to extract β : ε to finally get the
reader permission and we need not extract anything related to the predi-
cate resource(bits) since we chose Pkeep(t) ⇔ resource(bits)ε in this case.
Q(t)⇔ A ∗ T holds. Furthermore, we have

Psend(t) ∗ T ⇒let n =

⌊
t

4

⌋
in

t ≥ 0 ∧ 1 ≤ n ∧ resource(bits)1−ε ∗ α : 1 ∗

β : 1− ε ∗ γ : 1− (n− 1) · ε

⇒choosing nr:=1 let n =

⌊
clearlsb(t)

4

⌋
in

∃nr ∈ N. clearlsb(t) ≥ 0 ∧ nr ≤ n ∧ resource(bits)1−nr·ε ∗

α : 1 ∗ β : 1− nr · ε ∗ γ : 1− (n− nr) · ε

⇒ Q(clearlsb(t))
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void unlock_and_lock_shared () {

{U(bits,Q) ∗Wα(bits)}
x := fetch and addacq(bits, 4) //RMW1{
U(bits,Q) ∗Wα(bits) ∗ γ : ε

}
unlock(true)

{Rβ(bits)}
}

Figure 7: Proof outline for function unlock and lock shared

which concludes the proof of the premise of the fetch-and-and rule. Finally we
have Pkeep(t)∗A⇔ resource(bits)ε∗ β : ε which is exactly the postcondition
of the unlock function in this case. This concludes the case when getRead

holds.

3.1.9 Proof of function unlock and lock shared

The proof outline for the function unlock and lock shared is given in Fig-
ure 7. The first fetch-and-add operation can be verified analogously to the
first fetch-and-add operation in the proof of the function try lock shared

(see Section 3.1.5) in the case when fake read permission is obtained. The
rest of the proof relies on the specification of unlock.

3.1.10 Using only a single ghost location for the readers

In the location invariant that we introduce in Section 3.1.3 for the proofs we
use two separate ghost locations for the real and fake readers. A question
that arises is if it is possible to use a single ghost location for both types of
readers. For example, one could consider the following location invariant:

Q(v) :=let n =
⌊v

4

⌋
, w = lsb(v) in

∃nr ∈ N. v ≥ 0 ∧ nr ≤ n ∧ (w = 1⇒ nr = 0) ∧
resource(bits)(w=1 ? 0 : 1−nr·ε) ∗ α : 1− w ∗ δ : 1− n · ε

where α, δ are ghost locations governed by the fractional permission structure
and δ tracks both types of readers. We have as real reader permission

resource(bits)ε ∗ δ : ε

It turns out that all the functions except unlock shared can be verified using
this location invariant with respect to the (adjusted) specification given in
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Section 3.1.4. The issue with unlock shared is that given the real reader
permission it is not possible to prove that there is no writer.

To see this, assume that there is a writer, i.e. a value t is read with
lsb(t) = 1. We then have Q(t)⇔ let n =

⌊
t
4

⌋
in t ≥ 0∧ α : 0 ∗ δ : 1− n · ε .

It does not hold that Q(t)∗resource(bits)ε∗ δ : ε ⇒ false hence it cannot be
shown that such t cannot be read using the CAS−⊥ rule. This means that in
the proof outline of unlock shared there are cases where the reader retains
resource(bits)ε (which in reality of course cannot happen). Therefore at the
end of the method we do not get emp6. So we cannot satisfy the specification
in a precise manner.

We do not know if there is a location invariant, where each ghost location
is governed by the fractional permission structure, that uses fewer ghost loca-
tions than the location invariant we use for all the proofs. In a later section
we introduce a permission structure with which it is possible to express a
location invariant using a single ghost location for both types of readers.

3.2 Folly barrier

The Folly barrier example [4] (we will refer to it as Barrier) gives a weak-
memory implementation of a barrier. Barriers are used to synchronize a set
of threads. The actual implementation uses arrays and other data structures,
but we consider a simplified version that does not use any special data struc-
tures. Our version focuses on the part which deals with the different roles
threads take when entering the barrier.

We provide two FSL++ proofs (with two different location invariants).
The first proof uses a more complicated location invariant but does not need
the CAS−param rule while the second proof uses a simpler location invariant
but needs the CAS−param rule.

3.2.1 Implementation

The implementation of Barrier that we consider is given in Figure 8. It
consists of a single function wait. The barrier implementation uses a single
32-bit atomic integer location VRC (short for value-and-reader-count). The
16 most significant bits of VRC encode the number of threads that have called
wait (we call this the value count) and the 16 least significant bits of VRC

encode the number of threads that have called wait and for which wait has
not yet returned (we call this the reader count). Hence the reader count is
always at most as big as the value count.

6Real permission cannot be leaked in classical separation logic, i.e. resource(bits)ε =⇒
emp does not hold in general.
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wait() {

(r1, v1) := fetch and addacq(VRC, (1, 1)) // first RMW

if(v1+1 == n) {

// update signal data structure

}

(r2, v2) := fetch and addrel acq(VRC, (−1, 0)) // second RMW

if((r2, v2) == (1,n)) {

// deallocate signal data structure

}

}

Figure 8: Implementation of function in wait in Barrier

Instead of regarding VRC directly as an integer we represent the value as a
tuple (r, v) where r is the reader count and v is the value count. This makes
the presentation cleaner.

The idea of the implementation is as follows. There are n threads that
are supposed to use the barrier (n is initialized in the actual implementation
when the barrier is allocated; we do not deal with the allocation part here).
We assume n ≥ 1.

When a thread calls wait, the value and reader count are first incremented
(since it has entered wait and wait has not yet returned); this corresponds
to adding (1, 1) in our representation. If the thread is the nth thread to enter
wait (i.e. the last thread) then the thread updates a specific data structure
associated with the barrier. We call this data structure the signal data struc-
ture, since updating it signals to all the threads that every thread has entered
the barrier. We do not care about how the data structure represented. It
must be ensured that at most one thread updates the signal data structure
at any time. Hence the thread performing the update conceptually needs to
get a token that represents the full permission to access the data structure.

Before wait returns, the thread (regardless of whether it is the last thread
or not) decrements the reader count (this corresponds to adding (−1, 0) in
our representation). If the thread is the nth thread to leave wait then the
thread deallocates the signal data structure, i.e. conceptually it again needs
access to the same token as before.

Note that it is possible for the thread which updates the signal data
structure (after the first fetch-and-add operation) to be different from the
thread which deallocates the signal data structure (after the second fetch-
and-add operation).
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In the actual implementation once the signal data structure is updated,
a new signal data structure is allocated and a new epoch starts (the old sig-
nal data structure still needs to be deallocated as described above), i.e. the
barrier can be reused. We do not model this allocation and hence our imple-
mentation only models a single epoch. Effectively, we make the assumption
that the barrier is used only once.

3.2.2 Token to signal data structure

We use a heap location tok.val as the token which is to be used for the
signal data structure, i.e. the full permission to tok.val (tok.val

17→ ) models

ownership of the signal data structure. So if in a thread’s state tok.val
17→

holds then no other thread has access to the signal data structure at that
time. It would be more general to use an abstract predicate as we did for
RWSpin (see Section 3.1) but this would require additional ghost locations
in the location invariant which would make the presentation harder.

3.2.3 Specification

The specification that we verify for wait itself is simple:

{U(VRC,Q)} wait() {true}

Note that the postcondition is true and not emp. The main reason is that in
our proofs we do not make sure that wait is called at most n times, since
there does not seem to be a simple way to do so. As a result the thread
that updates the signal data structure may retain the permission to the data
structure in our proofs even when the whole code has been executed (this
scenario cannot occur if at most n threads enter the thread).

3.2.4 Location invariant A

Location invariant A for the atomic location VRC in Barrier is given by:

Q(r, v) := ∃w ∈ {0, 1}. 0 ≤ r ∧ r ≤ v ∧ (v < n⇒ w = 0) ∧ α : 1− r · ε ∗
([(r, v) 6= (0, n) ∧ (v ≤ n)] ? tok.val

1−w7→ : emp) ∗

([(r, v) 6= (0, n) ∧ (v ≤ n)] ? β : 1− (r − w) · ε : emp) ∗

γ : 1− (v > n ? (v − n) · ε : 0)

where r is the reader count and v is the value count and α, β, γ are ghost
locations which are governed by the fractional permission structure. We use
ε to model counting permissions (see Section 2.4).
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The idea is as follows. We have no easy way to ensure that only n threads
will call wait. So our specification allows more than n threads to call wait
but once that happens there are no functional guarantees (data race freedom
is still guaranteed). As long as at most n threads call wait our specification
works as expected.

We can say that the barrier has “finished its task” once either the value
of VRC is (0, n) (i.e. n threads have entered and left the barrier) or more than
n threads have entered the barrier (i.e. v > n which should not happen in
practice). So the condition

[(r, v) 6= (0, n) ∧ (v ≤ n)]

is true iff the barrier has not yet finished its task (assuming 0 ≤ r ≤ v).
The existentially quantified variable w has actual value 1 if the nth thread

has entered wait and has not yet left wait. Recall that the nth thread needs
the token to set the promises; hence if w = 1 then the token is definitely not
in the location invariant.

Note that w ≤ r is implied by the location invariant as long as the barrier

has not finished its task, since then if w > r thenQ(r, v)⇒ β : 1 + (w − r) · ε ∗
true and since (w − r) > 0 we would have Q(r, v)⇒ false.

The ghost location α tracks all the threads that have entered but not
yet left wait. The ghost location β tracks the first n− 1 threads that enter
wait. Ghost location γ tracks the threads that enter wait after n threads
have already entered wait (i.e. those threads which should not occur); we
track them so we can verify our specification without additional assumptions.

3.2.5 Proof outline (A)

The proof outline for wait with respect to the specification in Section 3.2.3
using location invariant A7 is given in Figure 9. We make the assumption in
our proofs that we never read reader or value counts that are negative. This
assumption is fine since Q(r, v) ⇒ false if r < 0 or v < 0, so we would be
able to deal with that case using the CAS−⊥ rule (see Figure 3).

Note that we use true in cases where we do not really care what the per-
missions are. We are mainly interested that the permission for the signal
data structure (i.e. the token) is received at the correct time. So we need to
ensure that the thread updating the data structure and the thread deallocat-
ing the data structure get hold of the token when they perform these actions.
We also do not explicitly carry along U(VRC,Q) even though it is needed for
the fetch-and-add operations to make the proof outline less cluttered (but

7see Section 3.2.4 for the definition of location invariant A

33



{U(VRC,Q)}
//we omit U(VRC,Q) in the following ,

//it can be duplicated hence it is available at each step

(r1, v1) := fetch and addacq(VRC, (1, 1)) // first RMW{
α : ε ∗

[
v1 + 1 = n ? tok.val

17→ :
(
v1 + 1 < n ? β : ε : γ : ε ∗ true

)]}
if(v1+1 == n) {{

tok.val
17→ ∗ α : ε

}
//set values of promises{
tok.val

17→ ∗ α : ε
}

}{
α : ε ∗

[
v1 + 1 = n ? tok.val

17→ :
(
v1 + 1 < n ? β : ε : γ : ε ∗ true

)]}
(r2, v2) := fetch and addrel acq(VRC, (−1, 0)) // second RMW{

((r2, v2) = (1, n) ? tok.val
17→ ∗ β : 1 : true)

}
if((r2, v2) == (1,n)) {{

tok.val
17→ ∗ β : 1

}
// deallocate promises

{true}
}

{true}

Figure 9: Proof outline for wait in Barrier
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since U(VRC,Q) is duplicable we may assume it is always there when we need
it).

3.2.6 Proof of first RMW (A)

We verify the first read-modify-write operation given in the proof outline in
Figure 9 with respect to location invariant A. We have to show

{U(VRC,Q)}
(r1, v1) := fetch and addacq(VRC, (1, 1)){
α : ε ∗[
v1 + 1 = n ? tok.val

17→ :
(
v1 + 1 < n ? β : ε : γ : ε ∗ true

)] }
using the fetch-and-add rule in Figure 4. We have P ≡ emp and hence
Psend(t) := Pkeep(t) := emp. We now show the CAS triple in the premise of
the fetch-and-add rule for all possible values (r, v) using the CAS−basic rule.

Assume we read an arbitrary value (r, v) (we assume r, v ≥ 0 since as
explained in Section 3.2.5 other values cannot be read). We will make a case
distinction on (r, v). In all cases we implicitly use the observation that if
[(r, v) 6= (0, n)∧(v ≤ n)] does not hold then [(r+1, v+1) 6= (0, n)∧(v+1 ≤ n)]
does not hold either. This means that if the permissions guarded by this
condition in the location invariant are not there because the condition is
false then after the first fetch-and-add operation we need not guarantee these
permissions.

Case v + 1 < n. Then we have

Q(r, v)⇔0 ≤ r ∧ r ≤ v ∧ α : 1− r · ε ∗ tok.val 17→ ∗
β : 1− r · ε ∗ γ : 1

We choose

T := (0 ≤ r) ∧ (r + 1 ≤ v + 1) ∧ α : 1− (r + 1) · ε ∗ tok.val 17→ ∗

β : 1− (r + 1) · ε ∗ γ : 1

A := α : ε ∗ β : ε

It holds that Q(r, v) ⇔ A ∗ T and T ⇒ Q(r + 1, v + 1). Since additionally
A is exactly the permission we want in this case and the fetch-and-add is of
access type acq, this case is verified.

Case v + 1 = n. In this case we have

Q(r, v)⇔0 ≤ r ∧ r ≤ v ∧ α : 1− r · ε ∗ tok.val 17→ ∗
β : 1− r · ε ∗ γ : 1
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We choose

T := (0 ≤ r) ∧ (r + 1 ≤ v + 1) ∧ α : 1− (r + 1) · ε ∗

β : 1− r · ε ∗ γ : 1

A := tok.val
17→ ∗ α : ε

since we need to get permission to the token. We have Q(r, v) ⇔ A ∗ T .
Furthermore, it holds that

T ⇒choosing w:=1

∃w ∈ {0, 1}. (0 ≤ r + 1) ∧ (r + 1 ≤ v + 1) ∧
α : 1− (r + 1) · ε ∗

([(r, v) 6= (0, n) ∧ (v ≤ n)] ? tok.val
1−w7→ : emp) ∗

([(r, v) 6= (0, n) ∧ (v ≤ n)] ? β : 1− (r + 1− w) · ε) : emp) ∗
γ : 1− (v + 1 > n ? (v + 1− n) · ε : 0)

⇒ Q(r + 1, v + 1)

Finally, since the fetch-and-add is of access type acq we need not worry about
any modalities when acquiring the permission to the token which concludes
this case.

Case v + 1 > n. This is the case that should not happen if the barrier
is used as intended, but we still guarantee that there are no data races if
this scenario occurs. We consider two subcases v = n and v > n. In both
subcases we use the observation that [(r+ 1, v + 1) 6= (0, n)∧ (v + 1 ≤ n)] is
false, i.e. the permissions in the location invariant that are guarded by this
condition need not be guaranteed after the update.

If v > n we have

Q(r, v)⇔ 0 ≤ r ∧ r ≤ v ∧ α : 1− r · ε ∗ γ : 1− (v − n) · ε

We choose

T := (0 ≤ r) ∧ (r ≤ v) ∧ α : 1− (r + 1) · ε ∗ γ : 1− ((v + 1)− n) · ε

A := α : ε ∗ γ : ε

We have Q(r, v) ⇒ A ∗ T . It holds that T ⇒ Q(r + 1, v + 1) and A is the
permission we want in this case (additionally the fetch-and-add is of access
type acq), so this subcase is verified.
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Next, if v = n we have

Q(r, v)⇔∃w ∈ {0, 1}. 0 ≤ r ∧ r ≤ v ∧ α : 1− r · ε ∗
([(r, v) 6= (0, n) ∧ (v ≤ n)] ? tok.val

1−w7→ : emp) ∗

([(r, v) 6= (0, n) ∧ (v ≤ n)] ? β : 1− (r − w) · ε) : emp) ∗

γ : 1

We choose

T := 0 ≤ r ∧ r ≤ v ∧ α : 1− (r + 1) · ε ∗ γ : 1− ε

A := α : ε ∗ γ : ε ∗ true

We have Q(r, v)⇒ A∗T . The permissions that are guarded by the condition
[(r, v) 6= (0, n) ∧ (v ≤ n)] are included in A (they are implicitly inside the
true assertion of A; A is of the form Aleft ∗ true for some assertion Aleft).
Furthermore, T ⇒ Q(r + 1, v + 1) and A is exactly the permission we want
in this case (additionally the fetch-and-add is of access type acq), so this
subcase is verified.

3.2.7 Proof of second RMW (A)

We verify the second read-modify-write operation given in the proof outline
in Figure 9 with respect to location invariant A. We have to show{

U(VRC,Q) ∗ α : ε ∗[
v1 + 1 = n ? tok.val

17→ :
(
v1 + 1 < n ? β : ε : γ : ε ∗ true

)] }
(r2, v2) := fetch and addrel acq(VRC, (−1, 0)){

((r2, v2) = (1, n) ? tok.val
17→ ∗ β : 1 : true)

}
We have

P ≡ α : ε ∗

[
v1 + 1 = n ? tok.val

17→
:
(
v1 + 1 < n ? β : ε : γ : ε ∗ true

) ]
Instead of writing down Psend(r, v) and Pkeep(r, v) for general (r, v) we will give
the definitions in the different (disjoint) subcases for the sake of presentation.
We make a case distinction on the value (r, v) that is read.

Case 1: r = 0. We show this case cannot occur by verifying the CAS
triple using the CAS−⊥ rule. Define in this case

Psend(r, v) := P

Pkeep(r, v) := emp
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We have Q(0, v) ⇒ α : 1 ∗ true and Psend(r, v) ⇒ α : ε ∗ true. Hence
Psend(r, v) ∗ Q(0, v) ⇒ false which means we can use the CAS−⊥ rule to
show the CAS triple.

Case 2: (r, v) 6= (1, n) and r > 0 and v ≤ n. We verify this case using
the CAS−basic rule. Define in this case

Psend(r, v) := P

Pkeep(r, v) := emp

We have

Q(r, v)⇔∃w ∈ {0, 1}. 0 ≤ r ∧ r ≤ v ∧ (v < n⇒ w = 0) ∧ α : 1− r · ε ∗

tok.val
1−w7→ ∗ β : 1− (r − w) · ε) ∗ γ : 1

where we used that [(r, v) 6= (0, n) ∧ (v ≤ n)] holds in this case. Choose
T := Q(r, v) and A := emp. We need to show that Psend(r, v)∗T ⇒ Q(r−1, v)
holds. Since Psend(r, v) depends on the value (r1, v1) read in the first read-
modify write operation it is cumbersome to show this implication directly
covering all cases at once. Therefore we make a case distinction on (r1, v1)
and show that in each case Psend(r, v) ∗ T ⇒ Q(r − 1, v).

If v1 + 1 = n then we have Psend(r, v)⇔ α : ε ∗ tok.val 17→ , hence

Psend(r, v) ∗ T ⇒ (0 ≤ r − 1) ∧ (r − 1 ≤ v) ∧ α : 1− (r − 1) · ε ∗

tok.val
17→ ∗ β : 1− (r − 1) · ε) ∗ γ : 1

⇒choosing w:=0 Q(r − 1, v)

where used that tok.val
17→ ∗tok.val 17→ ⇒ false, hence we can conclude that

the existential w must have value 1 in Q(r, v) when considering Psend(r, v) ∗
Q(r, v). Furthermore, we use the fact that in this case [(r−1, v) 6= (0, n)∧(v ≤
n)] holds.

If v1 + 1 < n then we have Psend(r, v)⇔ α : ε ∗ β : ε , hence

Psend(r, v) ∗ T ⇒ ∃w ∈ {0, 1}. 0 ≤ r ∧ r ≤ v ∧ (v < n⇒ w = 0) ∧

α : 1− (r − 1) · ε ∗ tok.val 1−w7→ ∗

β : 1− ((r − 1)− w) · ε) ∗ γ : 1

⇒ Q(r − 1, v)

Finally, if v1 + 1 > n then we have Psend(r, v) ⇔ α : ε ∗ γ : ε ∗ true.
Conceptually, this cannot occur since the value count never becomes smaller.
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This fact is captured, since we have T ⇒ γ : 1 ∗ true, hence Psend(r, v)∗T ⇒
false, therefore Psend(r, v) ∗ T ⇒ Q(r − 1, v) holds trivially.

Case 3: (r, v) = (1, n). This is the most interesting case because here
we need to make sure that we get access to the token after the fetch-and-add
operation. We define

Psend(1, n) := α : ε ∗
[
v1 + 1 = n ? emp :

(
v1 + 1 < n ? emp : γ : ε

)]
Pkeep(1, n) :=

[
v1 + 1 = n ? tok.val

17→ :
(
v1 + 1 < n ? β : ε : true

)]
We have

Q(1, n)⇔∃w ∈ {0, 1}. α : 1− ε ∗ tok.val 1−w7→ ∗

β : 1− (1− w) · ε ∗ γ : 1

where we used that [(r, v) 6= (0, n)∧ (v ≤ n)] holds in this case. Another way
to write this is using a disjunction (w = 0 or w = 1):

Q(1, n)⇔ α : 1− ε ∗
[(
tok.val

17→ ∗ β : 1− ε
)
∨ β : 1

]
∗ γ : 1

Choose

T := α : 1− ε ∗ γ : 1

A :=
(
tok.val

17→ ∗ β : 1− ε
)
∨ β : 1

It holds that Q(1, n) ⇔ A ∗ T . We need to prove Psend(1, n) ∗ T ⇒ Q(0, n).
Note that

Q(0, n)⇔ α : 1 ∗ γ : 1

If v1 +1 = n or v1 +1 < n then Psend(1, n) = α : ε and therefore Psend(1, n)∗
T ⇒ Q(0, n).

In the remaining case Psend(1, n)⇒ α : ε ∗ γ : ε , hence Psend(1, n)∗T ⇒
false and therefore Psend(1, n) ∗ T ⇒ Q(0, n) trivially.

So we have shown that we can establish the location invariant after the
update. We still need to show that

Pkeep(1, n) ∗ A⇒ tok.val
17→ ∗ β : 1

If v1 + 1 = n then Pkeep(1, n) ⇔ tok.val
17→ and we can conclude that

Pkeep(1, n) ∗ A⇒ tok.val
17→ ∗ β : 1 where we used

tok.val
17→ ∗ (tok.val

17→ ∗ β : 1− ε )⇒ false

39



If v1 + 1 < n then Pkeep(1, n)⇔ β : ε and we can conclude that Pkeep(1, n) ∗
A⇒ tok.val

17→ ∗ β : 1 where we used

β : ε ∗ β : 1 ⇒ false

The remaining case v1 + 1 > n is slightly special. As argued before this case
cannot occur. We can learn this fact by observing that

Psend(1, n) ∗ Q(1, t)⇒ v1 + 1 ≤ n

since

Psend(1, n)⇒ (v1 + 1 > n ? α : ε ∗ γ : ε : true)

Q(1, n)⇒ γ : 1 ∗ true

v1 + 1 ≤ n is a pure assertion and hence we can instantiate ϕ in the basic
CAS rule with it. Therefore we can learn this assertion in the postcondition
of the CAS rule, which means in the case v1 + 1 > n we can conclude that
Pkeep(1, n)∗A⇒ tok.val

17→ ∗ β : 1 holds trivially. This concludes the proof
for case 3.

Case 4: r > 0 and v > n. We define

Psend(r, v) := α : ε

Pkeep(r, v) :=

[
v1 + 1 = n ? tok.val

17→
:
(
v1 + 1 < n ? β : ε : γ : ε ∗ true

) ]

We have

Q(r, v) = 0 ≤ r ∧ r ≤ v ∧ α : 1− r · ε ∗ γ : 1− (v − n) · ε

where we used that [(r, v) 6= (0, n) ∧ (v ≤ n)] does not hold. Choose T :=
Q(r, v) and A := emp. We have

Psend(r, v) ∗ T ⇒
0 ≤ r − 1 ∧ r − 1 ≤ v ∧ α : 1− (r − 1) · ε ∗
γ : 1− (v − n) · ε

⇒ Q(r − 1, v)

which concludes the proof for this case.
We have shown the fetch-and-add triple in all cases; this concludes the

proof for the second read-modify-write operation.
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3.2.8 Location invariant B

Location invariant B for the second proof is given by

Q(r, v) := ∃w ∈ {0, 1}. (0 ≤ r) ∧ (r ≤ v) ∧ (v < n⇒ w = 0) ∧
([(r, v) 6= (0, n) ∧ (v ≤ n)] ? tok.val

1−w7→ : emp) ∗

δ : 1− (r − w) · ε ∗ λ : 1− w

where δ and λ are ghost locations governed by the fractional permission
structure and where ε is used to model the counting permission structure
(see Section 2.4).

Note that this location invariant only has two ghost locations compared to
the three ghost locations in location invariant A. It also has, in our opinion,
an easier explanation. As we will see in the following sections the proof using
this location invariant needs the CAS−param rule.

The idea of this location invariant is as follows. As in the location in-
variant A the existential w has actual value 1 if the nth thread has entered
the wait function but has not yet left it yet. In that case there is no per-
mission to the token tok.val in the location invariant. The permission to
tok.val is also not in the location invariant if the barrier has finished its task,
i.e. if [(r, v) 6= (0, n) ∧ (v ≤ n)] holds (see Section 3.2.4 for a more detailed
explanation).

Note that w ≤ r is guaranteed by the location invariant in all cases. The
ghost location δ tracks all the readers except the nth thread that entered
wait, since in the proofs we make sure that the ith reader (i 6= n) gets δ : ε
after the read-modify-write operation. The ghost location λ tracks the nth
thread that entered wait.

3.2.9 Proof outline (B)

The specification that we prove with respect to location invariant B is the
same as in Section 3.2.3. The proof outline is given in Figure 10. As in
Section 3.2.5 we do not consider cases where (r, v) is read and r < 0 or
v < 0 since these cases cannot occur, which can be directly seen from the
location invariant. We also do not carry around U(VRC,Q) explicitly since it
is duplicable and available in the precondition of wait.
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{U(VRC ,Q)}

//we omit U(VRC ,Q) in the following:

//it can be duplicated hence it is available at each step

(r1, v1) := fetch and addacq(VRC, (1, 1)) // first RMW{[
v1 + 1 = n ? tok.val

17→ ∗ λ : 1 :
(
v1 + 1 < n ? δ : ε : δ : ε ∗ true

)]}
if(v1+1 == n) {{

tok.val
17→ ∗ λ : 1

}
//set values of promises{
tok.val

17→ ∗ λ : 1
}

}{[
v1 + 1 = n ? tok.val

17→ ∗ λ : 1 :
(
v1 + 1 < n ? δ : ε : δ : ε ∗ true

)]}
(r2, v2) := fetch and addrel acq(VRC, (−1, 0)) // second RMW{

((r2, v2) = (1, n) ? tok.val
17→ : true)

}
if((r2, v2) == (1,n)) {{

tok.val
17→
}

// deallocate promises

{true}
}

{true}

Figure 10: Proof outline for wait in Barrier using location invariant B.
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3.2.10 Proof of first RMW (B)

We verify the first read-modify-write operation given in the proof outline in
Figure 10 using location invariant B (Section 3.2.8). We have to show

{U(VRC,Q)}
(r1, v1) := fetch and addacq(VRC, (1, 1)){[
v1 + 1 = n ?

tok.val
17→ ∗ λ : 1 :

(
v1 + 1 < n ? δ : ε : δ : ε ∗ true

) ]}

using the fetch-and-add rule in Figure 4. We have P ≡ emp and hence
Psend(t) := Pkeep(t) := emp. We now show the CAS triple in the premise of
the fetch-and-add rule for all possible values (r, v) using the CAS−basic rule.
Assume we read an arbitrary value (r, v). We make a case distinction on
(r, v).

Case v + 1 < n. We have

Q(r, v)⇔(0 ≤ r) ∧ (r ≤ v) ∧ tok.val 17→ ∗ δ : 1− r · ε ∗ λ : 1

We choose

T := (0 ≤ r) ∧ (r ≤ v) ∧ tok.val 17→ ∗ δ : 1− (r + 1) · ε ∗ λ : 1

A := δ : ε

and it holds that Q(r, v)⇔ A ∗ T . We have

T ⇒ (0 ≤ r + 1) ∧ (r + 1 ≤ v + 1) ∧ tok.val 17→ ∗ δ : 1− (r + 1) · ε ∗ λ : 1

⇒ Q(r + 1, v + 1)

Furthermore, A is exactly the permission needed in this case and since A only
consists of ghost state we need not worry about modalities. This concludes
this case.

Case v + 1 = n. We have

Q(r, v)⇔(0 ≤ r) ∧ (r ≤ v) ∧ tok.val 17→ ∗ δ : 1− r · ε ∗ λ : 1

We choose

T := (0 ≤ r) ∧ (r ≤ v) ∧ δ : 1− r · ε
A := tok.val

17→ ∗ λ : 1
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and it holds that Q(r, v)⇔ A ∗ T . We have

T ⇒choosing w:=1

∃w ∈ {0, 1}. (0 ≤ r + 1) ∧ (r + 1 ≤ v + 1) ∧
(v + 1 < n⇒ w = 0) ∗ tok.val 1−w7→ ∗
δ : 1− ((r + 1)− w) · ε ∗ λ : 1− w

⇒ Q(r + 1, v + 1)

Furthermore, A is exactly the permission needed in this case and since the
fetch-and-add operation is of type acq we get A directly. This concludes this
case.

Case v + 1 > n. We have

Q(r, v)⇔∃w ∈ {0, 1}. (0 ≤ r) ∧ (r ≤ v) ∧
([(r, v) 6= (0, n) ∧ (v ≤ n)] ? tok.val

1−w7→ : emp) ∗

δ : 1− (r − w) · ε ∗ λ : 1− w

and we choose

T := ∃w ∈ {0, 1}. (0 ≤ r) ∧ (r ≤ v) ∧

δ : 1− ((r + 1)− w) · ε ∗ λ : 1− w

A := δ : ε ∗ true

where it holds that Q(r, v)⇒ A ∗ T . Note that if v = n then the permission
potentially guarded by [(r, v) 6= (0, n) ∧ (v ≤ n)] is absorbed by true in A.
We have

T ⇒
∃w ∈ {0, 1}. (0 ≤ r + 1) ∧ (r + 1 ≤ v + 1) ∧
δ : 1− ((r + 1)− w) · ε ∗ λ : 1− w

⇒ Q(r + 1, v + 1)

Here we use that [(r + 1, v + 1) 6= (0, n) ∧ (v + 1 ≤ n)] does not hold.
Furthermore, A is exactly the permission we want and and since the fetch-
and-add operation is of type acq we get A directly. This concludes this
case.
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3.2.11 Proof of second RMW (B)

We verify the second read-modify-write operation given in the proof outline
in Figure 9 using location invariant B. We have to show{

U(VRC,Q) ∗

[
v1 + 1 = n ? tok.val

17→ ∗ λ : 1

:
(
v1 + 1 < n ? δ : ε : δ : ε ∗ true

) ]}
(r2, v2) := fetch and addrel acq(VRC, (−1, 0)){

((r2, v2) = (1, n) ? tok.val
17→ : true)

}
We have

P ≡

[
v1 + 1 = n ? tok.val

17→ ∗ λ : 1

:
(
v1 + 1 < n ? δ : ε : δ : ε ∗ true

) ]
Instead of writing down Psend(r, v) and Pkeep(r, v) for general (r, v) we will give
the definitions in the different (disjoint) subcases for the sake of presentation.
We make a case distinction on the value (r, v) that is read to verify the CAS
triple in the premise of the fetch-and-add rule.

Case 1: r = 0. We show that (0, v) cannot be read by verifying the CAS
triple using the CAS−⊥ rule. Define in this case

Psend(0, v) := P

Pkeep(0, v) := emp

We have

Psend(0, v)⇒ (v1 + 1 = n ? tok.val
17→ ∗ λ : 1 : δ : ε ∗ true)

and

Q(0, v)⇒ δ : 1 ∗ λ : 1

where we used that the existential w in the location invariant must have
actual value 0 if r = 0 since otherwise the location invariant is inconsistent.
Hence Psend(0, v)∗Q(0, v)⇒ false and therefore we can prove the CAS triple
using the CAS−⊥ rule. This concludes the case r = 0.

Case 2: (r, v) = (1, n). We verify this case using the CAS−param rule.
This is the only case where we use the CAS−param rule using location in-
variant B. Define in this case

Psend(1, n) :=
[
v1 + 1 = n ? λ : 1 :

(
v1 + 1 < n ? δ : ε : δ : ε

)]
Pkeep(1, n) :=

[
v1 + 1 = n ? tok.val

17→ : (v1 + 1 < n ? emp : true)
]
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It holds that P ⇔ Psend(1, n) ∗ Pkeep(1, n). We have

Q(1, n)⇔∃w ∈ {0, 1}. tok.val 1−w7→ ∗ δ : 1− (1− w) · ε ∗ λ : 1− w

⇔∃w ∈ {0, 1}.
(w = 1 ?

δ : 1 ∗ λ : 0 : tok.val
17→ ∗ δ : 1− ε ∗ λ : 1 )

Define

T (z) := (z = 1 ? δ : 1 ∗ λ : 0 : δ : 1− ε ∗ λ : 1 ∧ (z = 0))

A(z) := (z = 1 ? emp : tok.val
17→ )

It holds that Q(1, n)⇒ ∃z.A(z)∗T (z) (the existential z corresponds directly
to the existential w in the location invariant). We need to show that

∀z.(Psend(1, n) ∗ T (z)⇒ Q(0, n) ∧ ϕ(z))

holds, where we define

ϕ(z) := (v1 + 1 = n ? z = 1 : z = 0)

Note that ϕ(z) is pure for every z.
Since Psend(r, v) depends on the value (r1, v1) read in the first read-modify

write operation, it is cumbersome to show this implication directly covering
all cases at once. Therefore we make a case distinction on (r1, v1) and show
that in each case ∀z.(Psend(1, n) ∗ T (z)⇒ Q(0, n) ∧ ϕ(z)) holds.

First, assume v1 + 1 = n. We have

Psend(1, n) := λ : 1

ϕ(z) := (z = 1)

Let z be arbitrary. We have

Psend(1, n) ∗ T (z)⇒ (z = 1 ? δ : 1 ∗ λ : 1

: (z = 0) ∧ δ : 1− ε ∗ λ : 1 ∗ λ : 1 )

⇒ (z = 1 ? Q(0, n) : false)

⇒ (z = 1 ? Q(0, n) ∧ (z = 1) : Q(0, n) ∧ (z = 1))

which concludes the subcase v1 + 1 = n.
Next, assume v1 + 1 6= n. We have

Psend(1, n) := δ : ε

ϕ(z) := (z = 0)
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Let z be arbitrary. We have

Psend(1, n) ∗ T (z)⇒ (z = 1 ? δ : 1 ∗ λ : 0 ∗ δ : ε

: (z = 0) ∧ δ : 1− ε ∗ λ : 1 ∗ δ : ε )

⇒ (z = 1 ? false : Q(0, n) ∧ (z = 0))

⇒ (z = 1 ? Q(0, n) ∧ (z = 0) : Q(0, n) ∧ (z = 0))

which concludes the subcase v1 + 1 6= n.
So we have now proved in all cases that we can reestablish the location

invariant. We still need to prove

Pkeep(1, n) ∗ (∃z.A(z) ∧ ϕ(z))⇒ tok.val
17→

We again consider different subcases (dependent on v1). First, assume
v1 + 1 = n. Then we have ϕ(z) ≡ (z = 1) and therefore A(z) ≡ emp. Since

Pkeep(1, n) ≡ tok.val
17→ in this case we are done.

Next, assume v1 + 1 < n. Then we have ϕ(z) ≡ (z = 0) and therefore

A(z) ≡ tok.val
17→ . Since additionally Pkeep(1, n) ≡ emp in this case, we are

done.
Finally, assume v1 + 1 > n. Then we have ϕ(z) ≡ (z = 0) and therefore

A(z) ≡ tok.val
17→ . But we have Pkeep(1, n) ≡ true. So we can only show

tok.val
17→ ∗ true which is not exactly what the specification demands.

We can fix this though. If one looks closely then the permission absorbed
in true (this absorption occurs right after the first fetch-and-add) is

([(r1, v1) 6= (0, n) ∧ (v1 ≤ n)] ? tok.val
:7→ emp)

So the actual permission we have after the second fetch-and-add operation
in this case is given by

tok.val
17→ ∗ ([(r1, v1) 6= (0, n) ∗ (v1 ≤ n)] ? tok.val

17→ : emp)

which implies tok.val
17→ (since tok.val

17→ ∗ tok.val 17→ ⇒ false). So the
conclusion is that if we adjust the proof outline to carry along all the per-
mission explicitly (without using true) then we can satisfy the specification.
This concludes this case.

Case 3: r > 0, v ≤ n and (r, v) 6= (1, n). In this case we verify the
CAS-triple using the CAS−basic rule. Choose

Psend(r, v) := (v1 + 1 ≤ n ? P : δ : ε )

Pkeep(r, v) := (v1 + 1 ≤ n ? emp : true)
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It holds that P ⇔ Psend(r, v) ∗ Pkeep(r, v). We have

Q(r, v)⇔∃w ∈ {0, 1}. (0 ≤ r) ∧ (r ≤ v) ∧ (v < n⇒ w = 0) ∧

tok.val
1−w7→ ∗ δ : 1− (r − w) · ε ∗ λ : 1− w

where we used that [(r, v) 6= (0, n) ∧ (v ≤ n)] holds. Choose

T := Q(r, v)

A := emp

We need to show Psend(r, v) ∗ T ⇒ Q(r − 1, v). We do this by considering
different subcases dependent on v1. We use that [(r−1, v) 6= (0, n)∧ (v ≤ n)]
holds.

First, assume v1 + 1 = n. Hence Psend(r, v) ≡ tok.val
17→ ∗ λ : 1 . We

have

Psend(r, v) ∗ T ⇒
(0 ≤ r − 1) ∧ (r − 1 ≤ v) ∧ (v < n⇒ w = 0) ∧
tok.val

17→ ∗ δ : 1− (r − 1) · ε ∗ λ : 1

⇒choosing w:=0 Q(r − 1, v)

where we used that the existentially quantified variable w in T must be 1.
This concludes this case.

Next, assume v1 + 1 6= n. Hence Psend(r, v) ≡ δ : ε . We have

Psend(r, v) ∗ T ⇒
∃w ∈ {0, 1}. (0 ≤ r − 1) ∧ (r − 1 ≤ v) ∧ (v < n⇒ w = 0) ∧
tok.val

1−w7→ ∗ δ : 1− ((r − 1)− w) · ε ∗ λ : 1− w

⇒ Q(r − 1, v)

This concludes case 3.
Case 4: r > 0, v > n. In this case we verify the CAS-triple using the

CAS−basic rule. We use that [(r, v) 6= (0, n) ∧ (v ≤ n)] and [(r − 1, v) 6=
(0, n) ∧ (v ≤ n)] both do not hold.

Choose

Psend(r, v) :=

 (v1 + 1 = n ?

λ : 1 :

(v1 + 1 < n ? δ : ε : δ : ε ))


Pkeep(r, v) :=

 (v1 + 1 = n ?

tok.val
17→ :

(v1 + 1 < n ? emp : true))


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It holds that P ⇔ Psend(r, v) ∗ Pkeep(r, v). We have

Q(r, v)⇔∃w ∈ {0, 1}. (0 ≤ r) ∧ (r ≤ v) ∧ δ : 1− (r − w) · ε ∗ λ : 1− w

Choose

T := Q(r, v)

A := emp

If v1 + 1 = n then we have Psend(r, v)⇔ λ : 1 , hence

Psend(r, v) ∗ T ⇒ (0 ≤ r − 1) ∧ (r − 1 ≤ v) ∧ δ : 1− (r − 1) · ε ∗ λ : 1

⇒choosing w:=0 Q(r − 1, v)

where we used that the existentially quantified variable w in T must be 1. If
v1 + 1 6= n then we have Psend(r, v)⇔ δ : ε , hence

Psend(r, v) ∗ T ⇒
∃w ∈ {0, 1}. (0 ≤ r − 1) ∧ (r − 1 ≤ v) ∧
δ : 1− ((r − 1)− w) · ε ∗ λ : 1− w

⇒ Q(r − 1, v)

This concludes the proof for case 4.

3.3 Rust atomic reference counter

The Rust atomic reference counter [2] (we will refer to it as ARC ) allows
managing multiple threads which have read access to some shared data.
The implementation makes sure that the shared data is deallocated once
no thread has access to it. We present the FSL++ proof given in [9] for the
ARC example.

3.3.1 Implementation

The implementation for the ARC example is given in Figure 11 and is taken
directly from [9].

new(v) allocates an atomic reference counter where the data guarded by
the counter is stored at the non-atomic location a.data which is initialized
to v. The atomic location a.count is initialized to 1 and counts the number
of references to a.data. Conceptually, new(v) returns an ARC resource
which can be used to access a.data, i.e. one ARC resource held by a thread
symbolizes one reference to a.data.
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ref new(v) {

a := alloc ()

[a.data]na := v
[a.count]rlx := 1
return a

}

T read(a) {

return [a.data]na
}

void clone(a) {

x := fetch and addrlx(a.count, 1)
}

void drop(a) {

y := fetch and addrel(a.count,−1)
if(y == 1) {

fenceacq
free(a)

}

}

Figure 11: Implementation for ARC example. T is the type of a.data.
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clone increments a.count by 1 and conceptually creates another ARC
resource. This is only called by a function that already has one ARC resource.
A thread which calls clone may give one ARC resource to another thread
while keeping one ARC resource to itself.

Function read is used to read a.data. This is only called by threads that
have access to an ARC resource.

drop is called once a thread does not need its ARC resource any more,
hence a.count is decremented by 1. If it turns out that after decrementing
a.count by 1 the value at a.count is 0 then no thread should have an ARC
resource and no thread should ever get an ARC resource in the future (this
is what we will prove). So the memory associated with the atomic reference
counter can be deallocated (which is done using the free(a) instruction).

3.3.2 Location invariant

The location invariant for the atomic location a.count (which is taken from [9])
is given by:

Qa,v(c) := if c = 0 then γ : 0− ∗ δ : 0−

else ∃f ∈ Q ∩ [0, 1].
a.data

f7→ v ∗ γ : (c− 1 + f)− ∗
δ : (1− f)−

where γ and δ are ghost locations which are governed by the SFC permis-
sion structure introduced in Section 2.4. Recall that in the SFC permission
structure the set of elements is given by Q × {+,−}. An element a− is a
source permission (i.e. it can only appear once per ghost location) while an
element a+ is an access permission and it can appear multiple times. In the
location invariant we only have source permissions because it can be used to
track the access permissions held by the threads.

We note that in [9] the partial commutative monoid governing the ghost
locations is presented differently than the SFC permission structure intro-
duced in [5]. We observed that these two structures are equivalent.

The idea of the location invariant is as follows. Every time a thread
calls drop it gives up its share of the permission to a.data. The existen-
tially quantified variable f counts how much permission to a.data has been
dropped in total. Hence when the atomic reference counter is allocated (i.e.
c = 1) then the existentially quantified variable f has actual value 0 since
drop has never been called.

If the value of the counter is c > 0 then there are c references to a.data.
The ghost location γ inside the location invariant is used to count these. We
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have γ : (c− 1 + f)− . The reason the value of the ghost resource in γ is

not only dependent on the number of references c but also on the amount of
permission f dropped to a.data is mainly due to the scenario when the last
thread holding permission to a.data calls drop.

When the last thread calls drop the value of the counter goes from 1 to
0. To be able to deallocate the counter the thread needs the full permission
to a.data. We need to somehow be able to verify that the permission that
the thread has together with the permission that is in the invariant equals
the full permission. Including the f in the γ resource facilitates this (as we
will see later).

The δ ghost location is used to be able to verify that a thread that has
access to one reference of a.data cannot read the value 0 from the counter.
Also it is used for the scenario when the last thread calls drop. Note how
in the γ ghost location f appears in a positive form while in the δ ghost
location f appears in a negative form. This “correlation” between γ and δ
is important for the verification of the drop method, as we will see.

If c = 0 then no thread should hold any access permission to γ or δ, this

is guaranteed by γ : 0− ∗ δ : 0− .

3.3.3 Specification

The specification (taken from [9]) is given by

{emp}new(v) {a.ARCγ,δ(a, v)}
{ARCγ,δ(a, v)}read(a) {ARCγ,δ(a, v)}
{ARCγ,δ(a, v)}clone(a) {ARCγ,δ(a, v) ∗ ARCγ,δ(a, v)}
{ARCγ,δ(a, v)}drop(a) {emp}

where the ARC predicate ARCγ,δ(a, v) is defined as:

ARCγ,δ(a, v) :=U(a.count,Qa,v) ∗

∃q ∈ Q ∩ (0, 1]. a.data
q7→ v ∗ γ : (1− q)+ ∗ δ : q+

Note that the fraction q appears in negative form in the γ ghost location
and in positive form in the δ ghost location. This is exactly the opposite
situation compared to the existentially quantified variable f in the location
invariant. This is important for the verification of the drop method.

We now give the proofs from [9] for the clone and drop methods since
they are the main reason for the setup of the location invariant. The proofs
for the new and read methods are fairly straight-forward and can be looked
up in [9].
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3.3.4 Proof of function clone

We provide the proof for clone (taken from [9]). We need to show

{ARCγ,δ(a, v)} x := fetch and addrlx(a.count, 1)

{
ARCγ,δ(a, v) ∗
ARCγ,δ(a, v)

}
using the fetch-and-add rule. Note that the fetch-and-add has access type
rlx and there is no fence instruction inside clone. Hence the only way to
get two ARC predicates from a single one is by transferring ghost state.

We have

P ≡ ∃q ∈ (0, 1]. a.data
q7→ v ∗ γ : (1− q)+ ∗ δ : q+

and we choose

Psend(t) := (t = 0 ? P : emp)

Pkeep(t) := (t = 0 ? emp : P )

Clearly P ⇔ Psend(t)∗Pkeep(t) holds for all t. We still need to prove the CAS
triple in the premise of the fetch-and-add rule for every read value t.

Assume t = 0. We show that we cannot read this value (intuitively, since

we have a reference to a.data). We have Q(0) ⇔ γ : 0− ∗ δ : 0− and

Psend(0)⇒ δ : q+ ∗ true for some q > 0. Since 0−⊕ q+ is undefined for q > 0

we conclude Psend(0) ∗ Q(0)⇒ false. Therefore we can use the CAS−⊥ rule
to prove the CAS triple, which shows 0 cannot be read.

Next, assume t > 0. In this case we show the CAS triple using the
CAS−basic rule. We have

Q(t)⇔ ∃f ∈ Q ∩ [0, 1]. a.data
f7→ v ∗ γ : (t− 1 + f)− ∗ δ : (1− f)−

⇔ ∃f ∈ Q ∩ [0, 1]. a.data
f7→ v ∗ γ : ((t+ 1)− 1 + f)− ∗ γ : 1+ ∗

δ : (1− f)−

⇔ Q(t+ 1) ∗ γ : 1+

where we used that

(t− 1 + f)− = ((t+ 1)− 1 + f − 1)− = ((t+ 1)− 1 + f)− ⊕ 1+

So we can choose T := Q(t + 1) and A := γ : 1+ . This verifies the CAS

triple where the thread receives γ : 1+ (since it is ghost state we need not

worry about modalities).
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{ARCγ,δ(a, v)}
y := fetch and addrel(a.count,−1,){

(y = 1 ? a.data
q7→ v ∗ 5a.data 1−q7→ v : emp)

}
for some q

if(y == 1) {{
a.data

q7→ v ∗ 5a.data 1−q7→ v
}

fenceacq{
a.data

17→ v
}

free(a)

{emp}
}

{emp}

Figure 12: Proof outline for function drop in ARC.

After the fetch-and-add the thread has resources (note that Pkeep(t)⇔ P
for t > 0).

Pkeep(t) ∗ A⇔

∃q ∈ Q ∩ (0, 1]. a.data
q7→ v ∗ γ : (1− q)+ ∗ δ : q+ ∗ γ : 1+ ⇔

∃q ∈ Q ∩ (0, 1]. a.data
q7→ v ∗ γ : (2− q)+ ∗ δ : q+ ⇔

∃q ∈ Q ∩ (0, 1]. a.data
q
27→ v ∗ γ : (1− q

2
)+ ∗ δ : q

2
+ ∗

a.data
q
27→ v ∗ γ : (1− q

2
)+ ∗ δ : q

2
+ ⇒choosing q′:= q

2
,q′′:= q

2

∃q′ ∈ Q ∩ (0, 1]. a.data
q′7→ v ∗ γ : (1− q′)+ ∗ δ : q′+ ∗

∃q′′ ∈ Q ∩ (0, 1]. a.data
q′′7→ v ∗ γ : (1− q′′)+ ∗ δ : q+

If we also carry along U(a.count,Qa,v) (which is in the precondition and is
duplicable) then we can show that

Pkeep(t) ∗ A⇒ ARCγ,δ(a, v) ∗ ARCγ,δ(a, v)

This concludes the proof for clone.

3.3.5 Proof of function drop

We provide the proof for drop (taken from [9]). The proof outline for drop

is given in Figure 12. The only interesting part in the proof outline is the
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fetch-and-add, which we verify now. We have

P ≡ a.data
q7→ v ∗ γ : (1− q)+ ∗ δ : q+

for some q ∈ (0, 1]. We choose

Psend(t) := (t = 1 ? γ : (1− q)+ ∗ δ : q+ : P )

Pkeep(t) := (t = 1 ? a.data
q7→ v : emp)

It holds that P ⇔ Psend(t) ∗ Pkeep(t). We still need to prove the CAS triple
in the premise of the fetch-and-add rule. Analogously to the proof for clone
we can show that t = 0 is never read.

Assume t > 1 is read. In this case we want to give away all our permission
and extract nothing from the location invariant. We prove the CAS triple in
the premise of the fetch-and-add rule using the CAS−basic rule. We have

Q(t)⇔ ∃f ′ ∈ Q ∩ [0, 1]. a.data
f ′7→ v ∗ γ : (t− 1 + f ′)− ∗ δ : (1− f ′)−

We choose T := Q(t) and A := emp. We have Psend(t) ≡ P . Furthermore:

Psend(t) ∗ Q(t)⇒ ∃f ′ ∈ Q ∩ [0, 1]. a.data
f ′+q7→ v ∗

γ : ((t− 1)− 1 + (f ′ + q))− ∗ δ : (1− (f ′ + q))−

⇒choosing f :=f ′+q Q(t− 1)

which concludes the proof for t > 1 (note that since the fetch-and-add is of
access type rel we can give away the permission to a.data).

Next, assume t = 1 is read. In this case we want to extract all the
permission to a.data from the location invariant and give away all the ghost
permission. We use the CAS−param rule given in Figure 2 to verify the CAS
triple in the premise of the fetch-and-add rule. We have

Psend(1) := γ : (1− q)+ ∗ δ : q+

Pkeep(1) := a.data
q7→ v

We choose

T (z) := γ : z− ∗ δ : (1− z)−

A(z) = a.data
z7→ v

We have Q(1)⇒ ∃z.A(z) ∗ T (z). Note that for all z

γ : (1− q)+ ∗ γ : z− ⇒ z + q ≥ 1

δ : q+ ∗ δ : (1− z)− ⇒ z + q ≤ 1
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Let z be arbitrary, hence we have

Psend(1) ∗ T (z)⇒ γ : (z − (1− q))− ∗ δ : ((1− z)− q)− ∧ (z + q = 1)

⇒ Q(0) ∧ (z + q = 1)

and also (z + q = 1) is pure, so we can use (z + q = 1) as ϕ(z) in the
CAS−param rule, i.e. we may learn this fact once the CAS operation is
finished.

Furthermore, because the access type of the fetch-and-add is rel the
thread gets

∃z.5A(z) ∧ (z + q = 1)

which implies

5A(1− q)
Hence after the fetch-and-add operation the thread is left with

Pkeep(1) ∗ 5A(1− q)⇔ a.data
q7→ v ∗ 5a.data 1−q7→ v

which after the fence acquire instruction results in the full permission to
a.data. This concludes the proof of the fetch-and-add in the drop function.

4 Extension of Location Invariants

In this section we consider an extension of FSL++ location invariants, which
is targeted towards read-modify-write operations. First, we motivate the ex-
tension by using the main examples introduced in Section 3, we then provide
a formal definition and finally we apply the extension to the main examples.

4.1 Motivation

In all three examples considered in Section 3 the corresponding location in-
variants contain existential quantifiers. The main reason for the existential
quantifiers in all of these examples is that there is a value that cannot, in
general, be expressed precisely in terms of the value stored at the atomic lo-
cation governed by the location invariant. For example, consider the location
invariant for the RWSpin example (Section 3.1):

Q(v) := let n =
⌊v

4

⌋
, w = lsb(v) in

∃nr ∈ N. v ≥ 0 ∧ nr ≤ n ∧ (w = 1⇒ nr = 0) ∧
resource(bits)(w=1 ? 0 : 1−nr·ε) ∗

α : 1− w ∗ β : 1− nr · ε ∗ γ : 1− (n− nr) · ε
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Recall that if the least significant bit (w) is 1 then there is no writer and
otherwise there is a writer. A thread that wants to acquire a reader lock
increments the atomic location by 4 and if the value that was incremented
indicated that there was no writer (w = 0) then the thread has acquired a
reader lock and otherwise not. If the reader lock was not acquired then the
thread decrements the atomic location by 4.

The issue is that by just looking at the value v stored at the atomic loca-
tion, the number of threads that have acquired a reader lock (“real readers”)
cannot be expressed if there is no writer, since there can simultaneously be
threads that have incremented by 4 with a reader lock and threads that have
incremented by 4 without a reader lock (before decrementing by 4).

This is the reason why in the location invariant the number of real readers
is expressed using the existentially quantified variable nr. In the proof for
RWSpin the functions are verified using the idea that nr gives the number
of real readers and it is ensured that for each operation performed nr’s value
stays consistent with this idea. The question is now, given that nr is not
uniquely defined by the value at the atomic location, whether the location
invariant allows for nr to have different meanings.

To answer this question consider the specification for the first operation
needed to acquire a reader lock:

{U(bits,Q)}x := fetch and addacq(bits, 4)


(lsb(x) = 0 ?

resource(bits)ε ∗ β : ε :

γ : ε )


This reflects the explanation given above. If right before the increment by
4 there was no writer, then the thread gets some permission to the resource
after the update, hence nr inside the location invariant is incremented by 1,
which is consistent with our idea since the number of real readers increases
by 1.

It turns out that the following specification can also be verified using the
same location invariant

{U(bits,Q)}x := fetch and addacq(bits, 4)
{
γ : ε

}
So the thread does not get any permission to the resource even if there was no
writer when the update occurred. In this case nr did not change and hence
nr does not count the number of real readers. So the location invariant
allows nr to have a different meaning than what was originally intended. Of
course using this second proof, the function to acquire a reader lock cannot
be verified any more, because no permission to resource(bits) is acquired.
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So the location invariant allows for local proofs that do not work in the grand
scheme. This can be seen as a form of non-determinism, in the sense that the
specification and accompanying proof that is used to verify the fetch-and-add
operation is not determined by the specific update.

We observe in this example that we know when nr should be incremented
by 1 and when it should not be incremented by 1. The problem is that the
existential quantifier does not precisely express this conceptual understand-
ing.

We therefore propose extending the location invariant with a transition
function which defines how such existentials should change after read-modify-
write operations dependent on the values read, written and potentially more.
In the example above this transition function would state that if the atomic
location with value v, where lsb(v) = 0, is updated to v + 4 then nr should
be incremented by 1. If v, where lsb(v) = 1, is updated to a value v+ 4 then
nr should not change.

4.2 Formal definition

We generalize the location invariant governing an atomic location aloc to have
the following type:

G : Values× S −→ Assertions

where Values is the type of values that can be stored at aloc and S is a type
which can be chosen for different location invariants. We call such a location
invariant a generalized location invariant.

Suppose location aloc is governed by such a generalized location invariant
G. One way to think about the generalized location invariant is that if
location aloc holds value v then G(v, r) holds for some r of type S at aloc, i.e.
the location in a sense owns the resources described by G(v, r). We call r the
witness of aloc with respect to G. This description holds as long as acquire
reads and relaxed reads of this location cannot acquire any resources from
the location invariant (see also the discussion about location invariants in
Section 2.3.2). The value of the witness need not be determined uniquely by
the value of v.

This generalization allows making location invariants in standard FSL++,
which contain existential quantifiers, more precise. For example, in RWSpin
the original location invariant is of the form Q(v) = ∃nr.P(v, nr) where P
has type

P : Values× N −→ Assertions
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As explained previously, the idea is that nr gives the number of real readers
but the location invariant Q can be used in ways where this is not the case.
P can be utilized as a generalized location invariant for RWSpin, where
we choose the type S to be N. The second argument of P is a possible
witness for the existentially quantified variable nr in Q. The generalized
location invariant makes this witness explicit and this enables specifying how
nr should evolve, as we will see shortly. This makes it possible to force that
nr gives the number of real readers, which is what makes the generalized
location invariant more precise than the original location invariant in this
case.

We now introduce transition functions which allow specifying how the
witness should evolve. Suppose a read-modify-write operation is executed on
the atomic location in RWSpin where the value at the time of the update is
v and the witness is given by nr (i.e. P(v, nr) holds right before the read-
modify-write operation has begun executing and hence the number of real
readers is given by nr). Ideally, the transition function for the generalized
location invariant P should take the value v, the witness nr, the updated
value v′ as arguments and output the number of real readers n′r once the
read-modify-write operation has finished executing (i.e. P(v′, n′r) holds after
the operation). This would make the transition deterministic and would
prohibit proofs from giving nr a different meaning other than the number
of real readers after the CAS has finished executing. Hence the proof of
the fetch-and-add operation in Section 4.1 which ultimately leads to the
method not being verified would not be possible using the correct transition
function. Unfortunately it is not always possible to decide how nr should
evolve by just looking at these three parameters, as we will see later on. It
turns out that one more parameter is needed, namely an assertion describing
the (partial) state of the thread executing the read-modify-write operation.
While this makes it possible to define a proper transition function in all of
our examples, it does not get rid of the non-determinism with respect to the
proof choice in cases where the transition function depends on the state of
the thread, as we will see.

Formally, a transition function tG which extends a generalized location
invariant G is a partial function which must have the following type:

tG : Values× S × Values× Assertions ↪→ S

Suppose aloc is governed by G. Further, assume that aloc holds the value v0
and the witness of aloc with respect to G is r0. Then for a read-modify-write
operation that updates the value to v1 the assertion G(v1, tG(v0, r0, v1, P ))
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x 6∈ FV (P )

P ⇔ Pkeep ∗ Psend

∀r.


defined(tG(v, r, v

′, P ))
G(v, r)⇒ A(r) ∗ T (r)

Psend ∗ T (r)⇒ G(v′, tG(v, r, v
′, P )) ∧ ϕ(r)

pure(ϕ(r))


{U(l,G) ∗ P}x := CASrel acq(aloc, v, v

′)

{
(x = v ∧ Pkeep ∗ ∃r.A(r) ∧ ϕ(r))
∨(x 6= v ∧ U(l,G) ∗ P )

}

Figure 13: CAS rule for location invariants extended with transition functions

must be guaranteed (i.e. the witness of aloc changes from r0 to tG(v0, r0, v1, P )).
The parameter P describes part of the state of the thread executing the read-
modify-write operation. This idea is reflected by an adjusted proof rule for
CAS operations given in Figure 13. There may be many possible witnesses
for each value that is read. As a result, in the CAS rule the split into the
part that is extracted from the location invariant and the part that is kept
in the location invariant must be verified for every witness. These two parts
may be chosen separately for each witness. This is one difference to the
CAS−basic rule given in Figure 1 and is an aspect that is similar to the
CAS−param rule given in Figure 2. It must be guaranteed that for every
possible witness the transition function is defined. In the conclusion of the
rule after the CAS has executed it is in general not known what the witness
was, i.e. the exact resources A(r) which are acquired may not be known. In
practice A(r) is either not dependent on r or ϕ(r) gives enough information
about r to be able to deduce what the acquired resources are.

There is an issue with the CAS rule in Figure 13. The transition func-
tion requires the assertion in the precondition of the CAS statement as an
argument. The problem is that a user of the logic may decide which part
of the precondition to plug in due to the frame rule in separation logic. For
example, the following is valid (assuming x does not occur in R):

{A}x := CASrel acq(aloc, v, v
′) {B}

{A ∗R}x := CASrel acq(aloc, v, v
′) {B ∗R}

As a result, depending on which parts of the precondition are framed away
the transition function might return a different result. Therefore there still
is non-determinism present in terms of the specification/proof chosen for a
CAS and hence there can still be proofs that work locally but not globally.
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Cases where the transition functions are independent of the precondition are
deterministic, as the situation described in Section 4.1.

We note that this choice that the user of the logic may make, is essential
for the logic to work for the CAS rules presented in Section 2.3.2, since in
those rules all of the resources in the precondition are lost to the location
invariant. But in this new CAS rule there is the choice of retaining part of
the resources in the precondition, so here framing would not be necessary.

Even if framing were never applied for the CAS there is still
non-determinism present due to the nature of the fetch-and-add rule (see
Figure 4). Recall that in the fetch-and-add rule it must be specified which
resources should be used for the CAS and which resources should be retained.
This case could be avoided by changing the fetch-and-add rule to always use
all the resources for the CAS and hence letting the CAS rule decide which
resources should be retained.

It would be interesting to investigate if it is possible to extend the logic
to ensure that no resources are framed away in such situations. This would
make it possible to always use the full state belonging to a thread executing
the CAS for the transition function, which would lead to a deterministic
situation.

4.3 Extending the location invariant of RWSpin

We define the generalized location invariant of RWSpin to be:

GRWSpin(v, nr) := let n =
⌊v

4

⌋
, w = lsb(v) in

v ≥ 0 ∧ nr ≤ n ∧ (w = 1⇒ nr = 0) ∧
resource(bits)(w=1 ? 0 : 1−nr·ε) ∗

α : 1− w ∗ β : 1− nr · ε ∗ γ : 1− (n− nr) · ε

where nr ∈ N. This is exactly the same as the location invariant given in
Section 3.1.3 except that we have removed the existential quantifier.

We extend this location invariant with the transition function tGRWSpin
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where

tGRWSpin
(v, nr, v

′, P ) =



nr + 1 if v′ = v + 4, lsb(v) = 0

nr if v′ = v + 4, lsb(v) = 1

nr − 1 if v′ = v − 4, P 6|= γ : ε

nr if v′ = v − 4, P |= γ : ε

0 if v = 0, v′ = 1

nr if v′ = clearlsb(v), lsb(v) = 1, P 6|= γ : ε

nr + 1 if v′ = clearlsb(v), lsb(v) = 1, P |= γ : ε

undefined otherwise

The two cases where v′ = v + 4 correspond to the cases we discussed when
motivating transition functions.

Note when v′ = v−4 then the transition function decides on the result by
looking at P . The interesting scenario in this case is when a thread has access
to permission resource(bits)ε ∗ β : ε and γ : ε (i.e. the thread incremented
twice by 4 and has not decremented by 4 yet, once the thread got the real
reader permission resource(bits)ε ∗ β : ε , and once the thread did not get

real reader permission, i.e. the thread got γ : ε ). So now when such a
thread decrements by 4 then it is possible to either give up the real reader
permission or γ : ε . In this transition function we would like to enforce that
γ : ε is given up in this case to make sure that a thread can remain a real

reader as long as possible.
A similar situation exists for v′ = clearlsb(v) and lsb(v) = 1 where the

transition function again decides based on P . In this case the scenario occurs
in RWSpin. The case where the thread does not hold permission to γ : ε
corresponds to the normal writer unlock and the case where the thread holds
permission to γ : ε corresponds to the writer unlock that is executed when
the function unlock and lock shared is executed. There we want that the
γ : ε permission is exchanged for β : ε permission i.e. the number of real

readers increases by 1.
These two cases which depend on P still contain ambiguities with respect

to the proof chosen as explained in Section 4.2.
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4.4 Extending the location invariant of Barrier

We define the generalized location invariant of Barrier to be:

GBarrier((r, v), w) := (0 ≤ r) ∧ (r ≤ v) ∧ (v < n⇒ w = 0) ∧
([(r, v) 6= (0, n) ∧ (v ≤ n)] ? tok.val

1−w7→ : emp) ∗

δ : 1− (r − w) · ε ∗ λ : 1− w

where w ∈ {0, 1}. This is exactly the same as the location invariant given in
Section 3.2.8 except that we have removed the existential quantifier.

We extend this location invariant with the transition function tGBarrier

where

tGBarrier
((r, v), w, (r′, v′), P ) =



0
if (r′, v′) = (r + 1, v + 1)

and v + 1 < n

1
if (r′, v′) = (r + 1, v + 1)

and v + 1 = n

w
if (r′, v′) = (r + 1, v + 1)

and v + 1 > n

w if (r′, v′) = (r − 1, v), P |= δ : ε

0 if (r′, v′) = (r − 1, v), P 6|= δ : ε

undefined otherwise

The cases where (r′, v′) = (r + 1, v + 1) correspond to the first read-modify-
write operation in the function wait. In the original invariant it is possible
to keep w = 0 in all these cases, even though this does not work out to
verify the whole function. Using the transition function we can resolve this
ambiguity (without inspecting P ).

The remaining cases correspond to the second read-modify-write opera-
tion. Using the transition function we try to resolve the ambiguity when a
thread holds δ : ε ∗ λ : 1 (even though this scenario does not occur in the
original function). As discussed in Section 4.2 this does not entirely resolve
the ambiguity.

4.5 Extending the location invariant of ARC

We define the generalized location invariant of ARC to be:

GARC(c, f) := if c = 0 then γ : 0− ∗ δ : 0−

else a.data
f7→ v ∗ γ : (c− 1 + f)− ∗ δ : (1− f)−
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where f ∈ Q∩ [0, 1]. This is exactly the same as the location invariant given
in Section 3.3.2 except that we have removed the existential quantifier.

We extend this location invariant with the transition function tGARC
where

tGARC
(c, f, c′, P ) :=



f if c′ = c+ 1

f + q if
c′ = c− 1, c′ > 0 and

P |= δ : q+ for some q

0 if c′ = c− 1, c′ = 0

undefined otherwise

The case c′ = c+1 corresponds to the clone function. In the original location
invariant given in Section 3.3.2 it is possible to change f when incrementing
by 1 which then leads to the postcondition of clone not being verified. This
is possible since one can extract(

5a.data f7→ v
)
∗ γ : (1− f)+ ∗ δ : f+

from the original location invariant while still making sure that the location
invariant holds for c + 1 (we omit the proof). f ∈ [0, 1] corresponds to the
permission amount to a.data held by the location invariant right before the
update, so we can extract all of it (it is guarded by a modality due to the
rlx access type). Therefore the witness for the existential quantifier after
the update is 0 in this case. If f > 0 then it is not possible to construct two
ARC resources and therefore the postcondition of clone cannot be verified.

Using the generalized location invariant extended with the presented tran-
sition function resolves this ambiguity without inspecting P .

The two cases where c′ = c− 1 both correspond to the drop function.

4.6 Summary

Generalized location invariants along with transition functions allow for more
expressive location invariants which make certain specification and proof
choices for CAS operations deterministic. This determinism ensures that
always the correct proof is picked (in the respective cases). As a result, gen-
eralized location invariants are helpful for tools such as Viper which automate
the FSL++ CAS rule and where there is no backtracking mechanism which
explores different proofs.

In cases where the transition function depends on the precondition of the
CAS triple there still is non-determinism with respect to the proof choice.
It seems as if being able to talk about all the resources that a thread owns
would be useful in this case. Such a notion does not exist in separation logic
since it does not fit with the notion of framing and breaks modularity.
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5 The EFC permission structure

In this section we introduce a permission structure which combines the
fractional and counting permission structures in a different way than the
SFC permission structure given in Section 2.4.

5.1 Motivation

In the ARC example (see Section 3.3) there is a single atomic location which
counts the number of references that exist to the non-atomic location a.data.
In the proof which we presented (and which was taken from [9]) the ownership
of such a reference was modelled using an ARC resource (which can be defined
in terms of permission to a.data and permission to certain ghost locations).

The clone method conceptually gets an additional reference to a.data

by incrementing the counter at the atomic location, i.e. in the formal spec-
ification an additional ARC resource is generated. The drop method con-
ceptually destroys a reference to a.data by decrementing the counter at the
atomic location, i.e. in the formal specification an ARC resource is given up.
Additionally, if a thread gives up the last available reference to a.data then
it deallocates the memory associated with a.data. Hence in the proof this
thread needs to get hold of the full permission to a.data.

To be able to verify these two methods the proof uses the following loca-
tion invariant for the atomic location (it is given in Section 3.3.2):

Qa,v(c) := if c = 0 then γ : 0− ∗ δ : 0−

else ∃f ∈ Q ∩ [0, 1].
a.data

f7→ v ∗ γ : (c− 1 + f)− ∗
δ : (1− f)−

where γ and δ are ghost locations which are governed by the SFC permis-
sion structure introduced in Section 2.4. This location invariant does two
important things:

1. Track the number of ARC resources that are held by the threads

2. Track the total amount of permission to a.data held by the ARC re-
sources

If the value at the atomic location is c then c ARC resources are held by
the threads, the location invariant tries to capture this using the assertion

γ : (c− 1 + f)− (recall that a− is a source permission, i.e. there can only

ever be one such permission and it is used to distribute and collect access
permissions which are of the form b+, where a, b ∈ Q≥0).
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At first glance it might seem unclear why to be able to assert that there
are c ARC resources one must use (c− 1 + f)−, since this value is dependent
on f . The main reason is that when c = 1 then one needs this value to be
f− to then be able to verify that the last thread gets the full permission to
a.data.

1 − f is the total amount of permission to a.data held by those c ARC
resources collectively (where f is the existentially quantified variable in the
location invariant). This is captured inside the location invariant partially

by the assertion a.data
f7→ v, i.e. all the permission that is not in the c

ARC resources is held in the location invariant. Also note that the assertion
δ : (1− f)− holds inside the location invariant.

One question that may arise here is that why one needs δ : (1− f)−

if one can assert a.data
f7→ v. One reason is again the c = 1 case. The

interplay of (1− f)− being associated with δ and f− being associated with γ
along with the ghost permissions inside the ARC resource is used to deduce
that the last thread gets the full permission to a.data.

This setup using the SFC permission structure is very clever, but we
aim to answer the question if there is a permission structure which allows to
express the above two aspects in a more direct manner.

Suppose there exists a permission structure that like the SFC permis-
sion structure has two types of permissions: a source permission and an
access permission. There can only be one source permission, which is used
to distribute and collect multiple access permissions. In general the source
permission appears inside the location invariant to summarize what access
permissions have been given away to the threads that have interacted with
the atomic location.

Further assume that in this permission structure an access permission
consists of some number of entities which are associated with a permission
value. The source permission counts how many entities have been given
away as well as the total sum of the permission values that are associated
with these entities. Then we could express the above two aspects using a
single ghost location with the source permission ghost resource (c, 1 − f)−

in the location invariant (if c > 0), where c is the number of entities that
have been given away (i.e. ARC resources in our case) and 1− f is the total
sum of the permission values associated with these entities8. A single ARC
resource held by a thread would then be represented by the access permission
(1, q)+ where q ∈ Q>0 and permission a.data

q7→ . Conceptually, the first

8We will see later that one can define the permission structure in a way such that this
ghost location also suffices for the case when the last thread calls drop.
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component of such an access permission states that it only holds one ARC
resource and the second component states the amount of permission it holds
to the memory location a.data. This would lead to a location invariant that
expresses the situation in a more direct manner than the original location
invariant and is hence easier to explain.

Such a permission structure can be seen as a combination of the counting
permission structure and the fractional permission structure. The counting
permission structure has a notion of entities since there is a resource that is
not splittable (1+) and the fractional permission structure allows a resource to
always be splittable (as long as some positive permission amount is associated
with it) which is needed if one wants the source permission to be able to give
away entities associated with arbitrary fractional permission amounts. Note
that the source permission in the SFC permission structure can only count
how much permission was given away and does not have a concept of entities,
hence it is slightly less expressive than the proposed concept.

Next, we show that such a permission structure exists. In a later section
we will then reprove the ARC example using this permission structure. Addi-
tionally we will see that there are also location invariants for the RWSpin and
Barrier examples using this permission structure which use fewer ghost lo-
cations than in the proofs presented in Section 3.

5.2 Formalization of the EFC permission structure

In this section we formally define the permission structure proposed in the
previous section. We call the permission structure the entity fractional-
counting permission structure and we will refer to it as the EFC permission
structure.

The EFC permission structure9 is given by the following algebraic struc-
ture(

(N>0 ×Q>0 × {−,+}) ∪ {(a, 0)+, (a, 0)−|a ∈ N},⊕, (0, 0)+, (0, 0)−
)

where the partial binary operation ⊕ is defined as

(c, d)+ ⊕ (a, b)− := (a, b)− ⊕ (c, d)+ :=


(a− c, b− d)−

if a− c ≥ 0 and
b− d ≥ 0 and(
a− c = 0⇒
b− d = 0

)
undefined otherwise

(a, b)+ ⊕ (c, d)+ := (a+ c, b+ d)
(a, b)− ⊕ (c, d)− := undefined

9We write (a, b,+) as (a, b)+ and (a, b,−) as (a, b)−.
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Claim: The above algebraic structure is a permission structure.

Proof. Define S := (N>0×Q>0×{−,+})∪{(a, 0)+, (a, 0)−|a ∈ N} to be the
set of elements in the algebraic structure.

We first show that (S,⊕) forms a partial commutative monoid with neu-
tral element (0, 0)+ (see Appendix A for the definition of a partial commu-
tative monoid). For elements (a, b)+ ∈ S and (a, b)− ∈ S where a, b are
arbitrary it holds that

(a, b)+ ⊕ (0, 0)+ = (a+ 0, b+ 0)+ = (a, b)+ = (0 + a, 0 + b)+ = (0, 0)+ ⊕ (a, b)+

(a, b)− ⊕ (0, 0)+ = (a− 0, b− 0)− = (a, b)− = (0, 0)+ ⊕ (a, b)−

hence (0, 0)+ is a neutral element.
Commutativity follows more or less directly from the definition of ⊕ and

the commutativity of +.
For associativity we need to show (x⊕ y)⊕ z ∼= x⊕ (y ⊕ z) for arbitrary

x, y, z ∈ S. We call an element in the structure positive if it is of the form
(a, b)+ and negative if it is of the form (a, b)−. If x, y, z are all positive then
both sides are defined and they evaluate to the same value. If at least two of
x, y, z are negative then both sides are undefined. Suppose just one of x, y, z
is negative. We need to consider three cases. In the following we assume that
a, b, c, d, e, f are arbitrary and that (a, b)+, (a, b)−, (c, d)+, (c, d)−, (e, f)+, (e, f)−

are elements in S.
Assume y is negative. We need to show

((a, b)+ ⊕ (c, d)−)⊕ (e, f)+ ∼= (a, b)+ ⊕ ((c, d)− ⊕ (e, f)+)

We first show that that the left hand side is defined iff the right hand side is
defined.

Assume ((a, b)+ ⊕ (c, d)−) ⊕ (e, f)+ is defined. Hence c − a − e ≥ 0,
d− b− f ≥ 0 and c− a− e = 0⇒ d− b− f = 0 holds. Therefore c− e ≥ 0,
d − f ≥ 0. Furthermore, if c − e = 0 then a = 0 (since c − a − e ≥ 0) then
b = 0 (since (0, x)+ ∈ S iff x = 0) and hence d − f = 0 (since c − a − e =
0⇒ d− b− f = 0). We conclude that (c, d)− ⊕ (e, f)+ is defined. Therefore
(a, b)+ ⊕ ((c, d)− ⊕ (e, f)+) is defined (follows directly from the definedness
of the left hand side).

Next, assume (a, b)+⊕ ((c, d)−⊕ (e, f)+) is defined. Hence c− a− e ≥ 0,
d − b − f ≥ 0 and c − a − e = 0 ⇒ d − b − f = 0 holds. Therefore
c− a ≥ 0, d− b ≥ 0. Furthermore, if c− a = 0 then e = 0, hence f = 0 and
therefore d− b = 0. We conclude that (a, b)+ ⊕ (c, d)− is defined. Therefore
((a, b)+ ⊕ (c, d)−) ⊕ (e, f)+ is defined (follows directly from the definedness
of the right hand side).
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If both sides are defined then they evaluate to the same value, which is
given by (c− a− e, d− b− f)−.

Next, assume x is negative. We need to show

((a, b)− ⊕ (c, d)+)⊕ (e, f)+ ∼= (a, b)− ⊕ ((c, d)+ ⊕ (e, f)+)

If both sides are defined then they evaluate to the same value, which is
given by (a− c− e, b− d− f)−. We show that the left hand side is defined
iff the right hand side is defined.

Suppose ((a, b)− ⊕ (c, d)+) ⊕ (e, f)+ is defined. Hence a − c − e ≥ 0,
b− d− f ≥ 0 and a− c− e = 0 ⇒ b− d− f = 0. This directly shows that
(a, b)− ⊕ ((c, d)+ ⊕ (e, f)+) is defined.

Suppose (a, b)− ⊕ ((c, d)+ ⊕ (e, f)+) is defined. Hence a − c − e ≥ 0,
b − d − f ≥ 0 and a − c − e = 0 ⇒ b − d − f = 0. Therefore a − c ≥ 0
and b − f ≥ 0. Furthermore, if a − c = 0 then e = 0, hence a − c − e =
0 and therefore b − d − f = 0. Also since e = 0 we conclude f = 0,
therefore b− d = 0. We conclude that (a, b)− ⊕ (c, d)+ is defined and hence
((a, b)− ⊕ (c, d)+) ⊕ (e, f)+ is defined (follows directly from the definedness
of the right hand side).

Next, assume z is negative. We need to show

((a, b)+ ⊕ (c, d)+)⊕ (e, f)− ∼= (a, b)+ ⊕ ((c, d)+ ⊕ (e, f)−)

using the commutativity property, this is equivalent to showing

(e, f)− ⊕ ((c, d)+ ⊕ (a, b)+) ∼= ((e, f)− ⊕ (c, d)+)⊕ (a, b)+

but we showed this already in the case when x is negative. Hence associativity
holds in all cases.

We have shown that (S,⊕) forms a partial commutative monoid with
neutral element (0, 0)+.

Next we show that (0, 0)− is a maximal element with respect to S and
neutral element (0, 0)+. We have for (a, b)+ ∈ S where a, b are arbitrary and
(a, b)+ 6= (0, 0)+ that

(0, 0)− ⊕ (a, b)+ = (0− a, 0− b)+ =a>0 or b>0 undefined

Furthermore, (0, 0)− ⊕ (c, d)− = undefined holds for arbitrary (c, d)− ∈ S.
Hence (0, 0)− is a maximal element with respect to S. This concludes the
proof.
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5.3 Understanding the EFC permission structure

We relate the formal definition of the EFC permission structure to the mo-
tivation. A source permission in the permission structure is given by (c, s)−.
c is the number of entities that have been given away (the entity count) and
s is the sum of the permission amounts associated with these entities (the
entity permission sum), where c ∈ N and s ∈ Q≥0. There can only be one
source permission (like in the counting and SFC permission structures).

Furthermore, we have that if c = 0 then s = 0. The motivation for this
is that if no entities have been given away then the entity permission sum
must be 0. We do not have that if s = 0 then c = 0 even though this would
also be a possibility. The reason we do not enforce this condition is that it
turns out to be useful to be able to give away entities that are associated
with a permission amount of 0 (see the next section to see where this helps).
Hence this means that it is possible for the entity permission sum to be 0
even though entities have been given away.

We call (n, p)+ ∈ S an access permission; there can be multiple access
permissions. n denotes the number of entities that are held in this access
permission and p denotes the total permission associated with these n enti-
ties. Here again n ∈ N and p ∈ Q≥0. We also have that n = 0 ⇒ p = 0, so
only zero permission amount can be associated with 0 entities (otherwise we
cannot guarantee the source permission property that if c = 0 then s = 0).

The full permission is given by (0, 0)−, i.e. a source permission, where no
entities have been given away. The empty permission is given by (0, 0)+, i.e.
an access permission, where no entity is contained.

6 Using the EFC permission structure

In this section we prove the examples which were already proved in Section 3
using different location invariants. In particular, all the location invariants
in this section make use of the EFC permission structure introduced in Sec-
tion 5. Due to the expressiveness of this permission structure it is possible
to use fewer ghost locations in the location invariants without making the
reasoning about the proofs harder.

6.1 Folly reader-writer spinlock

RWSpin was introduced and proved in Section 3.1. In this section we give a
different proof using the EFC permission structure.
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6.1.1 Location invariant

The location invariant using the EFC permission structure for the integer
atomic location bits is given by:

QEFC(v) := let n =
⌊v

4

⌋
, w = lsb(v) in

∃s ∈ Q ∩ [0, 1). v ≥ 0 ∧ (w = 1⇒ s = 0) ∧
resource(bits)(w=1 ? 0 : 1−s) ∗

α : 1− w ∗ λ : (n, s)−

where α is a ghost location governed by the fractional permission structure
and λ is a ghost location governed by the EFC permission structure.

The idea of the location invariant is that the existentially quantified vari-
able s expresses the amount of permission that was given away to real readers,
hence it must be less than 1 (otherwise at some point no more real readers
can be supported). If there is a writer in the system then s must be 0 (since
there cannot be any real readers if there is a writer).

λ is used to track the real and fake readers. Each real and fake reader
gets one λ entity, hence the entity count of λ is given by n. Furthermore, in
the proof we make sure that the permission associated with the entity given
to a fake reader is given by 0 and the permission associated with the entity
given to a real reader is some positive value (not necessarily ε). Hence the
entity sum of λ is given by the sum of permissions held by real readers which
is equal to s. This example illustrates why allowing entities to be associated
with permission value 0 is useful.

Note that in the original location invariant given in Section 3.1.3 we
needed two ghost locations to track the real and fake readers; here we only
need one. Also here we allow readers to potentially have different permission
amounts to the resource and not just ε permission. We could adjust the
location invariant to only allow for ε permission amounts to the resource.
This choice is not significant since if we enforced ε permission amounts then
there would still be an existentially quantified variable (for the number of
real readers) and the proof would be analogous.

The α ghost location has the same meaning as in the original location
invariant. It is needed to ensure that if a thread has a writer lock then it
must hold that lsb(v) = 1 where v is the value at the atomic location.

6.1.2 Specification

The specification of the functions is very similar to the specification in Sec-
tion 3.1.4. It mainly differs in the fact that it suffices for a reader to have
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arbitrary, positive permission amount to the resource. The specification is
given by:

{U(bits,Q)}bool try lock shared(){y.(y ? REFC
λ (bits) : emp)}{

U(bits,Q) ∗
REFC
λ (bits)

}
void unlock shared(){emp}

{U(bits,Q)}bool try lock(){y.(y ? WEFC
α (bits) : U(bits,Q))}

U(bits,Q) ∗
WEFC
α (bits) ∗

(getRead ?

λ : (1, 0)+ :

emp)

void unlock(bool getRead)

{
(getRead ?
REFC
λ (bits) : emp)

}

{
U(bits,Q) ∗
WEFC
α (bits)

}
void unlock and lock shared()

{
REFC
λ (bits)

}
where

WEFC
α (bits) ≡ resource(bits)1 ∗ α : 1

REFC
λ (bits) ≡ ∃q ∈ (0, 1]. resource(bits)q ∗ λ : (1, q)+

We make the same assumptions in the proofs regarding U(bits,QEFC) and
reading negative values as in Section 3.1.4.

6.1.3 Proof of function try lock shared

The proof outline is given in Figure 14.
First RMW. We first prove the first fetch-and-add operation. We need

to show

{U(bits,Q)} v0 := fetch and addacq(bits, 4)


(lsb(v0) = 0 ?
REFC
λ (bits) :

U(bits,Q) ∗
λ : (1, 0)+

)


using the fetch-and-add rule. We have P ≡ emp and hence we choose
Psend(t) := Pkeep(t) := emp. We verify the CAS triple in the premise of
the fetch-and-add rule for every possible value t that could be read using the
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{U(bits,QEFC)}
v0 := fetch and addacq(bits, 4) // first RMW{
lsb(v0) = 0 ? REFC

λ (bits) : U(bits,QEFC) ∗ λ : (1, 0)+
}

if(lsb(v0) == 1) {{
U(bits,QEFC) ∗ λ : (1, 0)+

}
v1 := fetch and addrel(bits,−4) // second RMW

{emp}
res := false

} else {

{REFC
λ }

res := true

}

{(res ? Rλ(bits) : emp)}
return res

Figure 14: Proof outline for the try lock shared function with respect to the new
location invariant

CAS−basic rule. Suppose lsb(t) = 0. We then have

QEFC(t)⇔let n =

⌊
t

4

⌋
in

∃s ∈ Q ∩ [0, 1). t ≥ 0 ∧ resource(bits)1−s ∗

α : 1 ∗ λ : (n, s)−

Choose

T := let n =

⌊
t

4

⌋
in

∃s′ ∈ Q ∩ [0, 1). t ≥ 0 ∧ resource(bits)1−s
′ ∗

α : 1 ∗ λ : (n+ 1, s′)−

A := ∃q ∈ Q ∩ (0, 1]. resource(bits)q ∗ λ : (1, q)+

It holds that QEFC(t)⇒ A ∗ T ; this can be seen by observing

∃s ∈ Q ∩ [0, 1). t ≥ 0 ∧ resource(bits)1−s ∗ λ : (n, s)− ⇔

∃s ∈ Q ∩ [0, 1).∃q ∈ Q ∩ (0, 1]. (q < 1− s) ∧ (t ≥ 0) ∧ resource(bits)1−s−q ∗

resource(bits)q ∗ λ : (n+ 1, s+ q)− ∗ λ : (1, q)+

Furthermore, we have T ⇒ Q(t+4). Since A⇔ REFC
λ and the fetch-and-add

operation has access type acq, the case lsb(t) = 0 has been proved. Next,
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suppose lsb(t) = 1. In this case we have

QEFC(t)⇔let n =

⌊
t

4

⌋
in t ≥ 0 ∧ α : 0 ∗ λ : (n, 0)−

We choose

T := let n =

⌊
t

4

⌋
in t ≥ 0 ∧ α : 0 ∗ λ : (n+ 1, 0)−

A := λ : (1, 0)+

It holds that QEFC(t)⇒ A ∗ T and T ⇒ QEFC(t+ 4). Furthermore, since A
is exactly the permission we need to receive in this case and it only contains
ghost permissions, the case lsb(t) = 1 has been proved (we still need to
retain U(bits,QEFC), but we can get hold of this analogously to the proof
in Section 3.1.5).

Second RMW. For the second fetch-and-add operation we need to show{
U(bits,QEFC) ∗ λ : (1, 0)+

}
v1 := fetch and addrel(bits,−4) {emp}

using the fetch-and-add rule. We have P ≡ λ : (1, 0)+ and we choose

Psend(t) := λ : (1, 0)+

Pkeep(t) := emp

Clearly P ⇔ Pkeep(t) ∗ Psend(t). We verify the CAS triple for the possible
values that could be read in the premise of the fetch-and-add rule. Let t be
the value that is read.

First, we show that t < 4 is not possible by verifying the CAS triple using

the CAS−⊥ rule. If t < 4 we have QEFC(t) ⇒ λ : (0, 0)− ∗ true (note we

use here that (0, x)− is only an element of the EFC permission structure if
x = 0). Hence Psend(t) ∗ QEFC ⇒ false since (0, 0)− ⊕ (1, 0)+ is undefined.
Therefore we can show the CAS triple using the CAS−⊥ rule.

Next, assume t ≥ 4. In this case we prove the CAS triple using the
CAS−basic rule. Choose

T := QEFC(t)

A := emp
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We have

Psend(t) ∗ T ⇒let n =

⌊
t

4

⌋
, w = lsb(v) in

∃s ∈ Q ∩ [0, 1). (t− 4) ≥ 0 ∧ (w = 1⇒ s = 0) ∧
resource(bits)(w=1 ? 0 : 1−s) ∗

α : 1− w ∗ λ : (n− 1, s)−

⇒QEFC(t− 4)

Since we only transfer ghost permission, this concludes the proof. Note that
the proof would also work for access type rlx instead of rel as already
observed in Section 3.1.7.

6.1.4 Proof of function unlock shared

We need to show

{U(bits,Q) ∗REFC
λ (bits)}x := fetch and addrel(bits, 4){emp}

using the fetch-and-add rule. We have P ≡ resource(bits)ε ∗ λ : (1, q)+ for

some q ∈ (0, 1]. We choose

Psend(t) := P

Pkeep(t) := emp

We verify the CAS triple in the premise of the fetch-and-add rule for every
value t that could be read.

Suppose t < 4. We have QEFC(t)⇒ λ : (0, 0)− ∗ true (here we used that

if (0, x)− is in the EFC permission structure then x = 0). Hence Psend(t) ∗
QEFC(t) ⇒ false since (0, 0)− ⊕ (1, q) is undefined for any q. Hence we can
use the CAS−⊥ rule to verify the CAS triple which shows that t < 4 cannot
be read.

Next, assume lsb(t) = 1 and t ≥ 4. We have QEFC(t)⇒ λ : (n, 0)− ∗ true

where n =
⌊
t
4

⌋
. Psend(t) ∗QEFC(t)⇒ false since (n, 0)−⊕ (1, q)+ is undefined

for q > 0 and n ≥ 1 (n ≥ 1 follows from t ≥ 4). Hence we can use the
CAS−⊥ rule to verify the CAS triple which shows that lsb(t) = 1 cannot be
read.

Next, assume t ≥ 4 and lsb(t) = 0. We have

QEFC(t)⇔let n =

⌊
t

4

⌋
in

∃s ∈ Q ∩ [0, 1). t ≥ 0 ∧ resource(bits)1−s ∗ α : 1 ∗ λ : (n, s)−
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We choose

T := QEFC(t)

A := emp

We have

Psend(t) ∗ T ⇒let n =

⌊
t

4

⌋
in

∃s ∈ Q ∩ [0, 1). t− 4 ≥ 0 ∧ resource(bits)1−(s−q) ∗

α : 1 ∗ λ : (n− 1, s− q)−

⇒QEFC(t− 4)

where we used that s−q ≥ 0 (since otherwise λ : (n, s)− ∗ λ : (1, q)+ would

be undefined) and s − q < 1 (since s < 1). Because the fetch-and-add has
access type rel this concludes the proof.

6.1.5 Proof of function try lock

We show the proof for the function try lock. We need to show

{
U(bits,QEFC)

}
v := CASrel acq(bits, 0, 1)


 v = 0 ?

resource(bits)1 ∗ α : 1 :
U(bits,Q)


We use the CAS−basic rule. We have P ≡ emp, hence Psend(t) := Pkeep(t) :=
emp. It holds that

QEFC(0)⇔resource(bits)1 ∗ α : 1 ∗ λ : (0, 0)−

where we used that (0, x)− is in the EFC permission structure iff x = 0.
Choose

T := α : 0 ∗ λ : (0, 0)−

A := resource(bits)1 ∗ α : 1

We have T ⇒ QEFC(1). Furthermore, since A ⇔ WEFC
α and the CAS has

access type rel acq, this concludes the proof. Actually it suffices to have
access type acq since no permission is given up by the thread as was also
observed in Section 3.1.7.
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6.1.6 Proof of function unlock

We adjust the fetch-and-add rule as in Section 3.1.8 to be able to verify the
fetch and andrel(bits,∼1) operation.

Case 1: getRead does not hold. We need to show{
WEFC
α (bits)

}
fetch and andrel(bits,∼1)

{
emp

}
The proof is completely analogous to the proof in Section 3.1.8, so we do not
show it.

Case 2: getRead holds. We need to show{
WEFC
α (bits) ∗ λ : (1, 0)+

}
fetch and andrel(bits,∼1)

{
Rλ(bits)

}
We have P ≡ resource(bits)1 ∗ α : 1 ∗ λ : (1, 0)+ . Choose

Psend(t) := resource(bits)
1
2 ∗ α : 1 ∗ λ : (1, 0)+

Pkeep(t) := resource(bits)
1
2

We show the CAS triple in the premise of the fetch-and-add rule for all values
that could be read using the CAS−basic rule. Let t be the value that is read.

Suppose lsb(t) = 0. In this case QEFC ⇒ α : 1 ∗ true and hence P ∗
QEFC ⇒ false. Therefore the CAS triple can be shown using the CAS−⊥ rule
which means such a value cannot be read.

Next, suppose t < 4. In this case QEFC ⇒ λ : (0, 0)− ∗ true. Hence P ∗
QEFC ⇒ false. Therefore the CAS triple can be shown using the CAS−⊥ rule
which means such a value cannot be read.

Finally, suppose lsb(t) = 1 and t ≥ 4. In this case we have

QEFC(t)⇔let n =

⌊
t

4

⌋
in t ≥ 0 ∧ α : 0 ∗ λ : (n, 0)−

Choose

T :=let n =

⌊
t

4

⌋
in t ≥ 0 ∧ α : 0 ∗ λ : (n+ 1, 1

2
)−

A := λ : (1, 1
2
)+

We have

Psend(t) ∗ T ⇒let n =

⌊
t

4

⌋
in

t ≥ 0 ∧ resource(bits)
1
2 ∗ α : 1 ∗ λ : (n, 1

2
)−

⇒QEFC(clearlsb(t))
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Since the fetch-and-add is of access type rel, we can release resources into
the location invariant without any modalities and A only consists of ghost
state, so we are fine. Furthermore, it holds that

Pkeep(t) ∗ A⇒ REFC
λ

which concludes the proof.

6.1.7 Proof of function unlock and lock shared

The proof for unlock and lock shared consists of essentially the proof of the
first fetch-and-add operation in try lock shared where there is a writer, i.e.

where λ : (1, 0)+ is obtained and the remaining part relies on the specifica-

tion of unlock.

6.2 Folly barrier

Barrier was introduced and proved in Section 3.2. In this Section we give a
different proof using the EFC permission structure.

6.2.1 Specification

We verify the same specification as in Section 3.2.3 for the function wait.

6.2.2 Location invariant

The location invariant using the EFC permission structure for the atomic
location VRC is given by:

QEFC(r, v) := ∃s ∈ {0, 1}. 0 ≤ r ∧ r ≤ v ∧ (v < n⇒ s = 0) ∧ η : (r, s)− ∗

([(r, v) 6= (0, n) ∧ (v ≤ n)] ? tok.val
1−s7→ : emp)

which is similar to the location invariant given in Section 3.2.8. η is a ghost
location governed by the EFC permission structure.

The idea of the location invariant is as follows. The ghost location η
tracks all the threads that enter wait (note: here we only need one ghost
location to do this compared to two ghost locations in the location invariant
given by Section 3.2.8). For each thread that has entered and has not yet
left wait one entity of η is given, hence the entity count is given by r. In
general the permission amount associated with such an entity is 0. But the
nth thread that enters wait gets an entity with permission value 1 along
with the token after executing the first fetch-and-add operation. Hence the
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entity sum is always either 0 or 1 and is given by the existentially quantified
variable s. Right after the nth thread has executed the first fetch-and-add
operation the entity sum s is 1. This is another example where associating
zero permission value with an entity is useful. As explained in Section 3.2.4,
if [(r, v) 6= (0, n) ∧ (v ≤ n)] does not hold then the barrier has finished its
task and the token need not be tracked any more.

6.2.3 Proof outline

The proof outline for wait with respect to QEFC is given by Figure 15.

6.2.4 Proof of first RMW

We give the proof for the first fetch-and-add operation. We have to show

{U(VRC, Q)}
(r1, v1) := fetch and addacq(VRC, (1, 1))
 v1 + 1 = n ? tok.val

17→ ∗ η : (1, 1)+ :(
v1 + 1 < n ? η : (1, 0)+ : η : (1, 0)+ ∗ true

) 
using the fetch-and-add rule. We have P ≡ emp, hence Psend(t) := Pkeep(t) :=
emp. We show the CAS triple in the fetch-and-add rule for every value that
could be read using the CAS−basic rule. Let (r, v) be the value read (we
assume that r, v ≥ 0 since negative values cannot be read anyway, as can be
seen directly from the invariant).

Case v + 1 < n. We have

QEFC(r, v) := 0 ≤ r ∧ r ≤ v ∧ η : (r, 0)− ∗ tok.val 17→

Choose

T := 0 ≤ r ∧ r ≤ v ∧ η : (r + 1, 0)− ∗ tok.val 17→

A := η : (1, 0)+

It holds that QEFC(r, v)⇔ A ∗ T and T ⇒ QEFC(r+ 1, v+ 1). Furthermore,
since A only consists of ghost state and is exactly the permission that is
needed, we have shown this case.

Case v + 1 = n. We have

QEFC(r, v) := 0 ≤ r ∧ r ≤ v ∧ η : (r, 0)− ∗ tok.val 17→
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{U(VRC,Q)}
//we omit U(VRC,Q) in the following ,

//it can be duplicated hence it is available at each step

(r1, v1) := fetch and addacq(VRC, (1, 1)) // first RMW
 v1 + 1 = n ? tok.val

17→ ∗ η : (1, 1)+

:
(
v1 + 1 < n ? η : (1, 0)+ : η : (1, 0)+ ∗ true

) 
if(v1+1 == n) {{

tok.val
17→ ∗ η : (1, 1)+

}
//set values of promises{
tok.val

17→ ∗ η : (1, 1)+
}

}
 v1 + 1 = n ? tok.val

17→ ∗ η : (1, 1)+

:
(
v1 + 1 < n ? η : (1, 0)+ : η : (1, 0)+ ∗ true

) 
(r2, v2) := fetch and addrel acq(VRC, (−1, 0)) // second RMW{

((r2, v2) = (1, n) ? tok.val
17→ : true)

}
if((r2, v2) == (1,n)) {{

tok.val
17→
}

// deallocate promises

{true}
}

{true}

Figure 15: Proof outline for wait in Barrier using the location invariant with the
EFC permission structure.
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Choose

T := 0 ≤ r ∧ r ≤ v ∧ η : (r + 1, 1)−

A := η : (1, 1)+ ∗ tok.val 17→

It holds that QEFC(r, v)⇔ A ∗ T and

T ⇒choosing s:=1

∃s ∈ {0, 1}. 0 ≤ r + 1 ∧ r + 1 ≤ v + 1 ∧
(v + 1 < n⇒ s = 0) ∧ η : (r + 1, s)− ∗ tok.val 1−s7→

⇒ QEFC(r + 1, v + 1)

where we used that [(r + 1, v + 1) 6= (0, n) ∧ (v + 1 ≤ n)] holds. Since
additionally the fetch-and-add has access type acq , we need not worry about
modalities for the permission extracted from the invariant. This concludes
the case v + 1 = n.

Case v + 1 > n. We have

∃s ∈ {0, 1}. 0 ≤ r ∧ r ≤ v ∧ η : (r, s)− ∗

([(r, v) 6= (0, n) ∧ (v ≤ n)] ? tok.val
1−s7→ : emp)

Choose

T := ∃s ∈ {0, 1}. 0 ≤ r ∧ r ≤ v ∧ η : (r + 1, s)−

A := η : (1, 0)+ ∗ true,

It holds that QEFC(r, v)⇒ A∗T . Note that true absorbs the permission that
is potentially guarded by the condition [(r, v) 6= (0, n) ∧ (v ≤ n)]. Further-
more, since v + 1 > n the condition [(r + 1, v + 1) 6= (0, n) ∧ (v + 1 ≤ n)]
does not hold, therefore we conclude that T ⇒ QEFC(r+ 1, v+ 1). Since the
fetch-and-add has access type acq we need not worry about any modalities
for the permission extracted from the location invariant. This concludes the
case v + 1 > n.

6.2.5 Proof of second RMW

We give the proof for the second fetch-and-add operation. We have to showU(QEFC(r, v)) ∗

 v1 + 1 = n ? tok.val
17→ ∗ η : (1, 1)+ :(

v1 + 1 < n ? η : (1, 0)+ : η : (1, 0)+ ∗ true
) 

(r2, v2) := fetch and addrel acq(VRC, (−1, 0)){
((r2, v2) = (1, n) ? tok.val

17→ : true)
}
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using the fetch-and-add rule. We have

P ≡

 v1 + 1 = n ? tok.val
17→ ∗ η : (1, 1)+ :(

v1 + 1 < n ? η : (1, 0)+ : η : (1, 0)+ ∗ true
) 

Instead of writing down Psend(r, v) and Pkeep(r, v) for general (r, v) we will give
the definitions in the different (disjoint) subcases for the sake of presentation.
We make a case distinction on the value (r, v) that is read to verify the CAS
triple in the premise of the fetch-and-add rule.

Case 1: r = 0. We show that (0, v) cannot be read by verifying the CAS
triple using the CAS−⊥ rule. In this case define

Psend(0, v) := P

Pkeep(0, v) := emp

Hence

Psend(0, v)⇒ (v1 + 1 = n ? tok.val
17→ ∗ η : (1, 1)+ : η : (1, 0)+ ∗ true)

and we have

QEFC(0, v)⇒ η : (0, 0)− ∗ true

where we used that (0, x)− is an element in the EFC permission structure iff
x = 0. We conclude that

Psend(0, v) ∗ QEFC(0, v)⇒ false

where we use that (0, 0)− ⊕ (1, x)+ is undefined for any x. Therefore we can
use the CAS−⊥ rule to verify the CAS triple. This concludes this case.

Case 2: (r, v) = (1, n). In this case we show the CAS triple using the
CAS−param rule. Define in this case

Psend(1, n) :=

 v1 + 1 = n ? η : (1, 1)+ :(
v1 + 1 < n ? η : (1, 0)+ : η : (1, 0)+

) 
Pkeep(1, n) :=

[
v1 + 1 = n ? tok.val

17→ :
(v1 + 1 < n ? emp : true)

]
It holds that P ⇔ Psend(1, n) ∗ Pkeep(1, n). We have

QEFC(1, n)⇒∃s ∈ {0, 1}. η : (1, s)− ∗ tok.val 1−s7→

⇒∃s. (s = 1 ? η : (1, 1)− : η : (1, 0)− ∗ tok.val 17→ ∧ (s = 0))
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Choose

T (z) := (z = 1 ? η : (1, 1)− : η : (1, 0)− ∧ (s = 0))

A(z) := (z = 1 ? emp : tok.val
17→ )

It holds that QEFC(1, n)⇒ ∃z.A(z) ∗ T (z). We show

∀z.(Psend(1, n) ∗ T (z)⇒ QEFC(0, n) ∧ ϕ(z))

where ϕ(z) must be pure. We choose

ϕ(z) := (v1 + 1 = n ? z = 1 : z = 0)

Clearly the chosen ϕ(z) is pure for every z.
Let z be arbitrary. We make a case distinction on v1. If v1 + 1 = n we

have

Psend(1, n)⇔ η : (1, 1)+

Hence

Psend(1, n) ∗ T (z)⇒
(z = 1 ?

η : (1, 1)+ ∗ η : (1, 1)− :

(z = 0) ∧ η : (1, 1)+ ∗ η : (1, 0)− )

⇒(z = 1 ? η : (0, 0)− : false)

⇒ η : (0, 0)− ∧ (z = 1)

⇒QEFC(0, n) ∧ ϕ(z)

where we used that (1, 1)+ ⊕ (1, 0)− is undefined.
If v1 + 1 6= n we have

Psend(1, n)⇔ η : (1, 0)+

Hence

Psend(1, n) ∗ T (z)⇒
(z = 1 ?

η : (1, 0)+ ∗ η : (1, 1)− :

η : (1, 0)+ ∗ η : (1, 0)− ∧ (z = 0))

⇒(z = 1 ? false : (z = 0) ∧ η : (0, 0)− )

⇒ η : (0, 0)− ∧ (z = 0)

⇒QEFC(0, n) ∧ ϕ(z)
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where we used that (1, 0)+ ⊕ (1, 1)− is undefined. So we have shown

Psend(1, n) ∗ T (z)⇒ QEFC(0, n) ∧ ϕ(z)

for arbitrary z. We still need to prove that

Pkeep(1, n) ∗ ∃z. A(z) ∧ ϕ(z)⇒ tok.val
17→

If v1 + 1 = n then we have ϕ(z) = (z = 1), therefore ∃z. A(z) ∧ ϕ(z)⇒ emp

and Pkeep(1, n)⇔ tok.val
17→ . We conclude that in the case v1 + 1 = n the

statement holds.
If v1 + 1 < n then we have ϕ(z) = (z = 0), therefore ∃z. A(z) ∧ ϕ(z) ⇒

tok.val
17→ and Pkeep(1, n)⇔ emp. We conclude that in the case v1 + 1 < n

the statement holds.
If v1 + 1 > n then we have ϕ(z) = (z = 0), therefore ∃z. A(z) ∧ ϕ(z) ⇒

tok.val
17→ and Pkeep(1, n)⇔ true. So in this case we can show Pkeep(1, n) ∗

∃z. A(z) ∧ ϕ(z)⇒ tok.val
17→ ∗ true. As can be seen from the proof for the

first fetch-and-add, the true potentially absorbed tok.val
17→ and nothing

else. Hence we can show that true can be replaced by emp (using a more
precise specification for the first fetch-and-add). Therefore the statement
also holds in the case v1 + 1 > n.

Case 3: r > 0, v ≤ n and (r, v) 6= (1, n). In this case we show the
CAS triple using the CAS−basic rule. In the proof we use that [(r, v) 6=
(0, n) ∧ (v ≤ n)] and [(r − 1, v) 6= (0, n) ∧ (v ≤ n)] both hold.

We define in this case

Psend(r, v) := (v1 + 1 ≤ n ? P : η : (1, 0)+ )

Pkeep(r, v) := (v1 + 1 ≤ n ? emp : true)

It holds that P ⇔ Psend(r, v) ∗ Pkeep(r, v). We have

QEFC(r, v)⇔∃s ∈ {0, 1}. 0 ≤ r ∧ r ≤ v ∧ (v < n⇒ s = 0) ∧

η : (r, s)− ∗ tok.val 1−s7→

Choose

T := QEFC(r, v)

A := emp

If v1 + 1 = n, then we have Psend(r, v)⇔ tok.val
17→ ∗ η : (1, 1)+ , hence

Psend(r, v) ∗ T ⇒0 ≤ r − 1 ∧ r − 1 ≤ v ∧ (v < n⇒ s = 0) ∧

η : (r − 1, 0)− ∗ tok.val 17→

⇒choosing s:=0 QEFC(r − 1, v)
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where we used that the existentially quantified variable s in T must be 1 in
this case otherwise Psend(r, v) ∗ T ⇒ false.

If v1 + 1 6= n, then we have Psend(r, v)⇔ η : (1, 0)+ , hence

Psend(r, v) ∗ T ⇒∃s ∈ {0, 1}. 0 ≤ r − 1 ∧ r − 1 ≤ v ∧ (v < n⇒ s = 0) ∧

η : (r − 1, s)− ∗ tok.val 1−s7→

⇒QEFC(r, v)

This concludes the proof for case 3.
Case 4: r > 0, v > n. In this case define

Psend(r, v) := (v1 + 1 = n ? η : (1, 1)+ : η : (1, 0)+ )

Pkeep(r, v) := (v1 + 1 = n ? tok.val
17→ : (v1 + 1 < n ? emp : true))

it holds that P ⇔ Psend(r, v) ∗ Pkeep(r, v). We have

QEFC(r, v)⇔ ∃s ∈ {0, 1}. 0 ≤ r ∧ r ≤ v ∧ η : (r, s)−

Choose

T := QEFC(r, v)

A := emp

If v1 + 1 = n then Psend(r, v)⇔ η : (1, 1)+ , hence

Psend(r, v) ∗ T ⇒ 0 ≤ r − 1 ∧ r − 1 ≤ v ∧ η : (r − 1, 0)−

⇒choosing s:=0 QEFC(r − 1, v)

where we used that the existentially quantified variable s in T must be 1
otherwise Psend(r, v) ∗ T ⇒ false.

If v1 + 1 6= n then Psend(r, v)⇔ η : (1, 0)+ , hence

Psend(r, v) ∗ T ⇒∃s ∈ {0, 1}. 0 ≤ r − 1 ∧ r − 1 ≤ v ∧ η : (r − 1, s)−

⇒QEFC(r − 1, v)

This concludes the proof for case 4.

6.3 Rust atomic reference counter

ARC was introduced and proved in Section 3.3. In this section we give a
different proof using the EFC permission structure.
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6.3.1 Location invariant

The location invariant using the EFC permission structure for the atomic
location a.count is given by:

QEFC
a,v (c) := if c = 0 then ω : (0, 0)−

else ∃f ∈ Q ∩ [0, 1]. a.data
f7→ v ∗ ω : (c, 1− f)−

where ω is a ghost location governed by the EFC permission structure. The
idea of the location invariant is that if c > 0 then there are c ARC resources
held by threads which in total account for 1− f permission to a.data (f is
an existentially quantified variable). Furthermore, the remaining permission
to a.data is in the location invariant.

By using the EFC permission structure we can express this simply by

asserting ω : (c, 1− f)− inside the location invariant for c > 0. If c = 0

then all the entities should be have been collected. We can express this by

asserting ω : (0, 0)− . This, in our opinion, is more direct than the location

invariant in Section 3.3.2. We reduced the number of ghost locations from
two to one. While the ghost location we use has more components, it makes
it easier to express the complete situation. In particular, we do not need any
correlations between ghost locations as is the case for the location invariant
in Section 3.3.2.

6.3.2 Specification

We prove the same specification as in Section 3.3.3 except that we define the
ARC resource using ARCEFC

ω (a, v):

ARCEFC
ω (a, v) :=

U(a.count,QEFC
a,v ) ∗

∃q ∈ Q ∩ (0, 1]. a.data
q7→ v ∗ ω : (1, q)+

We only need one ghost location here that consists of one entity with the
same permission amount as is held to a.data.

6.3.3 Proof of function new

The proof outline for the function new is given in Figure 16. In the proof
we use that ghost state can be introduced at any time, hence we introduce

full permission ω : (0, 0)− . Furthermore, we use that ghost state is agnostic

towards modalities and that

emp⇔4emp

emp⇔ a.data
07→ v
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ref new(v) {

{emp}
a = alloc ();{
RMWAcq(a.count,QEFC

a,v) ∗ Rel(a.count,QEFC
a,v) ∗ a.data 17→ ∗ ω : (0, 0)−

}
[a.data]na := v;{
RMWAcq(a.count,QEFC

a,v) ∗ Rel(a.count,QEFC
a,v) ∗ a.data 17→ v ∗ ω : (0, 0)−

}
{

RMWAcq(a.count,QEFC
a,v) ∗ Rel(a.count,QEFC

a,v) ∗
a.data

17→ v ∗ a.data 07→ v ∗ ω : (1, 1)− ∗ ω : (1, 1)+

}
{

RMWAcq(a.count,QEFC
a,v) ∗ Rel(a.count,QEFC

a,v) ∗
a.data

17→ v ∗ ω : (1, 1)+ ∗ 4
(
a.data

07→ v ∗ ω : (1, 1)−
) }

[a.count]rlx := 1{
U(a.count,QEFC

a,v) ∗ a.data 17→ v ∗ ω : (1, 1)+
}

{
ARCEFC

ω (a, v)
}

return a;

}

Figure 16: Proof outline for function new with respect to the new location invariant

which is needed to be able to perform the relaxed write where we also use
that

a.data
07→ v ∗ ω : (1, 1)− ⇒choosing f :=0

∃f ∈ Q ∩ [0, 1]. a.data
f7→ v ∗ ω : (1, 1− f)− ⇒

QEFC
a,v (1)

Finally, we use that

a.data
17→ v ∗ ω : (1, 1)+ ⇒choosing q:=1

∃q ∈ Q ∩ (0, 1]. a.data
q7→ v ∗ ω : (1, q)+

6.3.4 Proof of function clone

We need to show{
ARCEFC

ω (a, v)
}
x := fetch and addrlx(a.count, 1)

{
ARCEFC

ω (a, v) ∗
ARCEFC

ω (a, v)

}
using the fetch-and-add rule. We have

P ≡ ∃q ∈ Q ∩ (0, 1]. a.data
q7→ v ∗ ω : (1, q)+
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and we choose

Psend(t) := (t = 0 ? P : emp)

Pkeep(t) := (t = 0 ? emp : P )

Clearly it holds that P ⇔ Psend(t)∗Pkeep(t) for every t. We need to verify the
CAS triple in the premise of the fetch-and-add rule for every possible value t
that can be read. First, we show that t = 0 cannot be read by verifying the
CAS triple using the CAS−⊥ rule.

Suppose t = 0. We have

Psend(0)⇔ ∃q ∈ Q ∩ (0, 1]. a.data
q7→ v ∗ ω : (1, q)+

Furthermore, we have

QEFC
a,v (0)⇔ ω : (0, 0)−

hence Psend(0) ∗ QEFC
a,v (0)⇒ false because (0, 0)− ⊕ (1, q)+ is undefined since

0 − 1 < 0. Therefore we can use the CAS−⊥ rule to conclude that t = 0
cannot be read.

Next, suppose t > 0. We have

Psend(0)⇔ emp

QEFC
a,v (t)⇔ ∃f ∈ Q ∩ [0, 1]. a.data

f7→ v ∗ ω : (t, 1− f)−

⇔ ∃f ∈ Q ∩ [0, 1]. a.data
f7→ v ∗ ω : (t+ 1, 1− f)− ∗ ω : (1, 0)+

We choose

T := ∃f ∈ Q ∩ [0, 1]. a.data
f7→ v ∗ ω : (t+ 1, 1− f)−

A := ω : (1, 0)+

and it holds that QEFC
a,v (t) ⇒ A ∗ T . Furthermore, it holds that T ⇒

QEFC
a,v (t + 1). This concludes the proof of the CAS triple (where we used

the CAS−basic rule). It remains to be shown that Pkeep(t) ∗ A is enough to
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satisfy the postcondition of clone. We have

Pkeep(t) ∗ A⇒ ∃q ∈ Q ∩ (0, 1]. a.data
q7→ v ∗ ω : (1, q)+ ∗ ω : (1, 0)+

⇔ ∃q ∈ Q ∩ (0, 1]. a.data
q7→ v ∗ ω : (2, q)+

⇔ ∃q ∈ Q ∩ (0, 1]. a.data
q
27→ v ∗ ω : (1, q

2
)+ ∗

a.data
q
27→ v ∗ ω : (1, q

2
)+

⇒choosing q′:= q
2
,q′′:= q

2
∃q′ ∈ Q ∩ (0, 1]. a.data

q′7→ v ∗ ω : (1, q′)+ ∗

∃q′′ ∈ Q ∩ (0, 1]. a.data
q′′7→ v ∗ ω : (1, q′′)+

If we also carry along U(a.count,QEFC
a,v ) (which is in the precondition and is

duplicable) then we can show that

Pkeep(t) ∗ A⇒ ARCEFC
ω (a, v) ∗ ARCEFC

ω (a, v)

Since only ghost state is transferred we need not worry about any modalities.
This concludes the proof.

This proof shows one good use of allowing elements of the form (x, 0)+ for
some x in the EFC permission structure. If we did not allow such elements
where we associate 0 permission amount with a positive number of entities

then we would have to give ω : (1, q)+ to the location invariant and get back

ω : (2, q)+ .

6.3.5 Proof of function drop

The proof outline for drop with respect to location invariantQEFC
a,v is the same

as the proof outline given with respect to the location invariant without the
EFC permission structure given in Figure 12 except that the adjusted ARC
predicate ARCEFC

ω (a, v) is used. The proof of the fetch-and-add operation is
different and we show it now. We have

P ≡ a.data
q7→ v ∗ ω : (1, q)+

for some q ∈ (0, 1]. We choose

Psend(t) := (t = 1 ? ω : (1, q)+ : P )

Pkeep(t) := (t = 1 ? a.data
q7→ v : emp)
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It holds that P ⇔ Psend(t) ∗ Pkeep(t) for all t. We need to prove the CAS
triple in the premise of the fetch-and-add rule for every possible value t that
could be read.

We can show that t = 0 cannot be read by verifying the CAS triple using
the CAS−⊥ rule analogously to the proof for the clone function.

Suppose t > 1. We prove the CAS triple using the CAS−basic rule. We
have

Psend(t)⇔ P

Pkeep(t)⇔ emp

QEFC
a,v (t)⇔ ∃f ′ ∈ Q ∩ [0, 1]. a.data

f ′7→ v ∗ ω : (t, 1− f ′)−

We choose

T := QEFC
a,v (t)

A := emp

It holds that

Psend(t) ∗ T ⇒ ∃f ′ ∈ Q ∩ [0, 1]. a.data
f ′+q7→ v ∗ ω : (t− 1, 1− (f ′ + q))−

⇒choosing f :=f ′+q QEFC
a,v (t− 1)

and since the fetch-and-add has access type rel this proves the CAS triple.
Furthermore, since in this case the thread needs to end up with emp, this
case is proved.

Next, suppose t = 1. In this case we want the thread to end up with the
full permission to a.data. We prove the CAS triple using the CAS−param rule.
We have

Psend(1)⇔ ω : (1, q)+

Pkeep(1)⇔ a.data
q7→ v

QEFC
a,v (1)⇔ ∃f ∈ Q ∩ [0, 1]. a.data

f7→ v ∗ ω : (1, 1− f)−

Choose

T (z) := ω : (1, 1− z)−

A(z) := a.data
z7→ v
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It holds that QEFC
a,v (1)⇒ ∃z.A(z) ∗ T (z). Let z be arbitrary. We have that

Psend(1) ∗ T (z)⇒ ω : (1, q)+ ∗ ω : (1, 1− z)−

⇒ ω : (0, 1− (z + q))− ∧ (z + q = 1)

⇒ ω : (0, 0)− ∧ (z + q = 1)

⇒ QEFC
a,v (0) ∧ (z + q = 1)

where we used that (a0, b0)
− ⊕ (a0, b1)

+ is defined iff b0 − b1 = 0 (i.e. in
our case b0 = 1 − z, b1 = q and b0 − b1 = 1 − (z + q)). This is essentially
the property that if the entity count is 0 then the entity sum must be 0 (as
argued in Section 5 the converse does not hold in general).

Since additionally z+ q = 1 is pure for every z we can instantiate ϕ(z) in
the CAS−param rule with z+q = 1. Because only ghost state is given to the
location invariant we need not worry about modalities for those resources, but
since the access type of the fetch-and-add is rel we must take modalities into
account when extracting permission to a.data from the location invariant.
The thread gets

∃z.5A(z) ∧ (z + q = 1)

which implies

5A(1− q)

hence after the fetch-and-add operation the thread is left with

Pkeep(1) ∗ 5A(1− q)⇔ a.data
q7→ v ∗ 5a.data 1−q7→ v

which after the fence acquire instruction results in the full permission to
a.data. This concludes the proof of the fetch-and-add in the drop function.

6.4 An alternative expression of the EFC permission
structure

Another way to express location invariants involving the EFC permission
structure for some ghost location γ would be to introduce global predicates
count(γ) and sum(γ), where count(γ) gives the number of entities to γ that
have been given away and sum(γ) gives the sum of the permission values as-
sociated with those entities. One could then introduce proof rules to the logic
to be able to directly work with these predicates. Of course one would have
to make sure that the global predicates cannot be held by multiple threads
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(similar to the source permission) and that they always remain consistent.
This would make the source permission (c, s)− (where c, s ∈ Q≥0) obsolete.

For example, the presented location invariant using the EFC permission
structure for ARC is given by

QEFC
a,v (c) :=if c = 0 then ω : (0, 0)−

else ∃f ∈ Q ∩ [0, 1]. a.data
f7→ v ∗ ω : (c, 1− f)−

Using the global predicates this could be replaced by

QEFC
a,v (c) :=if c = 0 then count(ω) = 0 ∗ sum(ω) = 0

else count(ω) = c ∗ a.data 1−sum(ω)7→ v

One difference is that there is no need for an existentially quantified variable
for the permission value associated with the sum of the entities given away,
since we can express it using the sum predicate. These two location invariants
express the same thing. The predicate version explains more directly what
is going on. Re-expressing the EFC permission structure using the sum and
count might enable thinking of an intuitive way for tweaking the permission
structure such that the proofs can be made even more direct.

7 Conclusion and future work

In this section we conclude about what was achieved and sketch areas where
the work could be continued.

7.1 Conclusion

We provided the first recorded proofs of correctness for simplified versions
of the Folly reader-writer spinlock and the Folly barrier examples. In the
presented proofs we noticed that the utilized location invariants are not as
precise as we would like them to be. As a result, we introduced general-
ized location invariants along with transition functions which allow for more
expressive location invariants. While this extension solved certain issues,
there are still issues that remain in cases where the transition functions may
depend on the state of the thread executing the CAS operation.

In [9] a FSL++ proof for the Rust ARC example is provided which
uses a known permission structure for the ghost locations. We presented a
slightly modified permission structure, the entity fractional counting permis-
sion structure, which can be used to express a more direct location invariant
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for the Rust ARC example. It also enabled the reduction of the number of
ghost locations for the other examples.

7.2 Future work

There is no soundness proof for the CAS rule using the generalized location
invariants and transition functions presented in Section 4. Finalizing this
area is important to be able to use this logic extension reliably in proofs.

As discussed, the transition functions in their current form do not get
rid of all of the issues. One reason is that assertions can be framed away in
separation logic. To have a more complete solution it seems useful to be able
to talk about the complete set of resources held by the thread executing a
read-modify-write operation. It would be interesting to investigate if such a
notion is even possible without losing many of the advantages, such as mod-
ularity, inherent in separation logic. Alternatively, one could try to develop
other extensions which deal with the presented issues in a more complete
manner.

The EFC permission structure provides a nice way to express location
invariants for the considered examples. Our proofs seem to justify that sup-
porting this structure in a tool which encodes FSL++, such as Viper [11],
would be useful. One challenge with encoding the EFC permission structure
is automation. If one uses a location invariant with a ghost location governed
by the EFC permission structure, then for a CAS one needs to figure out
which entities must be transferred. It would be nice if a user of the encod-
ing would have to only provide very few additional annotations to make this
work.

While the EFC permission structure gives advantages, there may be a
similar but different permission structure which simplifies the proofs even
more. Investigation in this direction might be promising as well.
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A Partial commutative monoid

Let (S,⊕) be an algebraic structure, where S is a set and ⊕ is a partial
binary operation on S. Then (S,⊕) is a partial commutative monoid iff the
following properties hold:

1. For all x, y, z ∈ S it holds that (x⊕ y)⊕ z ∼= x⊕ (y⊕ z) (associativity)

2. There exists an element η ∈ S such that for all x ∈ S it holds that
x⊕ η = η ⊕ x = x (neutral element)

3. For all x, y ∈ S it holds that x⊕ y ∼= y ⊕ x (commutativity)

where t1 ∼= t2, for expressions t1 and t2, holds iff t1 and t2 are defined and
have the same value or they are both undefined.
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