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Abstract 

 
 
The new version on Jive takes JML-annotated Java programs as input. After an 
introduction to Jive and details about the JML specification and implementation, 
this paper describes the internal implementation of the Proof Obligation Generator 
in Jive’s front-end, as well as its external (input and output) interfaces. We then 
give some examples of code we performed tests against. 
 
 
If you would like a quick start, you are advised to jump directly to part III, paragraph 
3.7. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



I. Introduction 

1. Behavioral interface specification 
The first generations of information systems were relatively small, so that one 
could write and debug programs while having a high control of the situation. 
Should one find a flaw, one would just try to correct it and test again. 
 
Over the past few decades, computer got used everywhere, including where bugs 
could have severe consequences, either because human lives are at stake, or for 
financial reasons. Not only does this mean that the final version of a system should 
have no bugs, but also that one does not even have the opportunity to test and 
debug. You cannot (yet) send a robot on mars for each intermediate version of each 
module of each programmer. The first version should be final, and tests can only be 
simulated. 
 
The software used in control towers for flight navigation is still written in old 
languages like Fortran or Cobol: who would like to take the responsibility to convert 
this in a safer, more modern and efficient language like Java or C++, possibly 
introducing flaws? And even if we keep these respectable languages, only statistics 
protect us: if only a limited number of bugs occurred in the last thirty years, one 
hopes it will remain stable in the future. 
 
Programs are so large, that no human being can have a sufficiently clear overview 
of it to be able to say: this will work the way we want it to. Computers? Merely 
knowing whether a program will terminate instead of looping, or whether a given 
line of code will ever be used, has been proved undecidable! 
 
Though, there still remains a solution: cooperation between programmers and 
computers. Programmers subdivide their work in modules and annotate each 
method or variable in their language. If each method exactly does what it should, 
the whole program should work as intended. 
 
Hence if a computer could process each method and show that it behaves 
according to its annotation, the program would be proven correct, and the only 
program to be proven “by hand” would be this unique prover. This requires that the 
computer understands our language, which we know to have its flaws and 
ambiguities. Hence, and this is the basic idea of Jive at its beginning, the 
programmer could write annotations in a formal, machine-checkable language, 
unambiguously. 
 
Annotations could be contracts between the implementer of the method and its 
caller. If a certain precondition holds, which the caller has to make sure and the 
implementer can assume, then the implementer’s job is to make sure a certain 
postcondition will hold after termination of the method, which the caller then can 
assume. 



2. Introduction to Jive 
In this part, we explain shortly the architecture of Jive. More information can be 
found in [5]. 
 
Jive stands for Java Interactive Verification Environment. The programmer 
annotates his programs and these annotations are processed by Jive. This leads to 
safer software for at least two reasons:  
- Because the programmer using such annotations has to think about correctness 
of his programs. 
- Because these annotations are then converted to proof obligations by Jive, which 
are sent to a theorem prover. 
 
Jive is bound to the Java language. This can be considered a drawback, since it 
would have to be re-implemented, should one want to reuse it in another (not 
Java-like) language. But it also is a great advantage, since it knows Java in depth. 
 
In its first version, Jive relied on first-order logic for this is the standard as an input 
to theorem provers. Programmers were also required to enter their annotations in 
first-order logic, so that the computer could interpret preconditions and 
postconditions. This means that lots of developers would have to learn a new, 
abstract, syntax, and a way of thinking which does not correspond to the way they 
program. 
 
Hence, a compromise has to be found, and this compromise is JML. JML is a 
behavioral interface specification language developed by Gary Leavens and his 
group at the Iowa State University. The expressive power of JML is potentially at 
least the same as first-order logic, however its syntax is pretty close to that of Java. 
JML also allows one to specify invariants. 
 
The second version of Jive will take JML-annotated Java programs as input. The 
front end (proof obligations and invariants generation) is handled by the Software 
Component Technology group, and the backend (proving) by the University of 
Kaiserslautern. The aim of the project, and the topic of this article, is to describe the 
part of the front end which converts JML specifications into proof obligations in 
first-order logic, the Proof Obligation Generator. 



3. Related work in program correctness 
If Jive is able to prove a specification true, it does not give much assistance to the 
user should the proof fail. 
 
In the state-of-the-art, it is possible to generate counter-examples showing that 
the specification does not hold in the case of model checking. Work is in progress to 
do the same in theorem proving. 
 
Research is also been carried out in how to detect common programming errors, 
such as null pointers, illegal array accesses. One example of such a tool is ESC 
(Extended Static Checker). It is above the decidability ceiling, so that the approach 
is neither sound nor complete. But it can be of good help to programmers in the 
debugging stage. It is explained in [8]. 
 
Another topic of research is about type universes. Each type is associated with 
three “modifiers”: peer, rep and read-only, which organize instances of classes in 
universes. Each universe is owned by one object, which is the only one outside the 
universe which has write access rights on elements in this universe. Element in a 
universe have also mutual write access rights. This provides a framework for a 
better encapsulation for groups of cooperating objects [9]. 



II. JML Background 

1. JML Basics 
The Java Modeling Language is a behavioral interface specification language. 
Behavioral, because it describes rigorously the way a method behaves, in terms of 
contract between the user and the programmer. Interface, for it describes - just like 
Java, actually completing it - what methods give access to a given object and how 
they are to be used (signatures). 
 
The notion of contract is described in depth in [1]. Basically, it is as if the user and 
the programmer took the following agreement: 

- the user has to make sure the precondition holds before calling the method. 
He then can be sure that the postconditions hold, whether the method 
successfully returns or throws an exception. 

- The programmer of the method can assume that the preconditions hold, 
and is then required to make sure the postconditions will hold at the end of 
the call both in case of failure and of success. 

 
A more detailed insight in JML can be found in the article written by their designers  
[2]. 



2. JML Specification: grammar 
In this section, we get familiar with the concepts of JML according to its grammar 
(see paragraph 19.6, [5]), and give the underlying semantics. We give these 
concepts bottom-up; they are summed up on the following picture. 
 

A sequence of specification clauses builds a specification case. Specification cases 
are independent from one another, and their sequence builds a method 
specification. It is not our goal in this part to repeat the JML documentation (the 
reader can find it in [2], part 9), we rather wish to focus on how we interpret the 
grammar to implement the proof obligation generator. 

2.1. Specification clauses 
We first consider the atomic JML elements: specification clauses. Each of them 
gives a particular contribution in building a specification case. 

2.1.1. Header 
In the header, specification clauses indicate preconditions. Such a clause begins 
with the keyword requires . 
 
If there is no such clause, and as described in the JML documentation, nothing is 
promised to the implementor: the precondition is true. This means that whatever 
the context in which the method is called, the postconditions should hold after the 
call. 

 

requires... 
requires... 
ensures... 
signals... 
 

Method specification 

Specification 
cases 
(“Contracts”) 

Header 

Body 

Specificatio
n clauses 

r equires...  
r equires...  

assignable ...  
ensures ...  

ensures ...  



2.1.2. Body 
Body specification clauses specify the behavior of the method provided that the 
user respected the preconditions in the header. 
 
The behavior of a method can be described with the following clauses: 

• assignable  clauses, along with the only variables the method can assign 
to. If there are several assignable clauses, we group all of the variables. We 
will however not strictly respect the JML documentation, in that we actually 
check whether the method modifies the variables or not, i.e. whether the 
value of the variables are the same in the prestate and in the poststate. It 
remains possible for the program to assign to these variables and restore 
their prestate values, without being detected by Jive (this is a different 
semantics than that of JML) 

• ensures  clauses, along with the postconditions. If there is no such clause, 
as described in the JML documentation, the postcondition is true, i.e. no 
particular condition has to hold after the execution of the method. 

• signals  clauses, followed by a type of exception and an exceptional 
postcondition the poststate has to satisfy, should an exception of this type 
or of a subtype be thrown. If there is no such clause, there is no particular 
constraint when an exception is thrown. 

• diverges , when, working-space-clause , duration , which we do not 
support. 

 
For each keyword in the body, clauses are in conjunction: if several of the same kind 
appear, we will group them with the boolean operator AND. 

2.1.3. Nested specification cases 
Sometimes, several specification share common preconditions. In this case, it is 
possible to nest them. 
In this case, the body is not a sequence of clauses, but a collection of nested 
specification cases: 
 
header 
{|  
 Specification 1; 
also 
 Specification 2; 
               … 
|} 
 
Where specification1, 2…  also contain a header and a body (possibly empty). Nested 
specifications should be of the same sort that the external one: if it is heavyweight 
and normal behavior, all of them are implicitely heavyweight and normal behavior 
as well. 
 
Higher level of nesting is allowed. 



If desugared, as explained in [3], the above specification is equivalent to: 
 

header 
Specification 1; 

also 
header 
Specification 2; 

               … 
 

2.2. Specification cases 
A specification case is a contract between the caller and the implementer (see 
introduction and [1]). We can reformulate our definition of the contract in terms of 
JML: If the caller makes the preconditions (requires) true, he can then assume that 
the postconditions (ensures, signals, assignable) are true after the call. The 
implementer can assume the precondition, has to make the postcondition true, in 
case of normal termination (ensures) but also when an exception is thrown 
(signals), and has to ensure that no location which should not be assigned has  
been assigned. 
 
Any specification case consists of a header (possibly empty) and a body (possibly 
empty).  
Now, there are three types of specification cases: 

• Exceptional specification case: there can be no ensures clause since an 
exception has to be thrown as soon as the precondition holds. 

• Normal specification case: there can be no signal cause since no exception 
can be thrown when the precondition holds. 

• Generic specification case: no particular constraint, the method can 
terminate normally or throw an exception. 

The nature of a specification case is specified by the behavior in which it is 
enclosed, as explained in the next subsection. 

2.3. Heavyweight Vs lightweight specification cases 
There are four ways to present specification cases. 

• Heavyweight: a behavior specification which is a complete specification 
case of any kind (normal, exceptional, generic). It is put in a sort of “shell” 
with extra information about this kind and the privacy. 

• Lightweight (incomplete): a generic specification case, possibly incomplete. 
• Model program which we do not handle. 
• Code contracts which we do not handle. 

 
We now focus on behavior specifications and lightweight specification cases. Then 
we explain how they can all be “desugared” to a heavyweight behavior 
specification and how this will affect our work. 



2.3.1. Heavyweight specification cases 
The easiest specification cases to handle are heavyweight specification cases. For 
them indeed, the JML convention (see [2]) completely defines the behavior of the 
method. 
 
There are three sorts of heavyweight specification cases: 

• Behavior, which is actually a generic specification case introduced by the 
keyword behavior . 

• Normal behavior, which is a normal specification case introduced by the 
keyword normal_behavior  

• Exceptional behavior, which is an exceptional specification case introduced 
by the keyword exceptional_behavior . 

 
A heavyweight specification case begins with a privacy keyword which gives 
information about whom the specification is intended for. 
 
This privacy statement is followed by one of the following keywords: behavior , 
normal_behavior , exceptional_behavior , depending on the type of 
heavyweight specification case, and eventually by the specification case header 
and body. 

2.3.2. Lightweight 
In a lightweight specification case, there is neither a privacy statement nor a 
behavioral keyword. It is merely a generic specification case. 
 
Since it is not a behavior specification, we neither know whether the method 
throws any exception, nor how to interpret missing statements. JML considers 
them as not specified and let implementations adapt this to their needs, although 
it recommends some possible interpretations. We explain in the following 
paragraph which one we took. 

2.3.3. Desugaring lightweight 

or generic specification cases 
As far as we are concerned and as described in [4], we will always consider the 
absence of any keyword  requires,  ensures, signals  clause to mean that 
the associated condition is true( whatever the exception for the signals 
clause). This implies that if there is no requires clause, the implementation has to 
deal with loose preconditions to satisfy the postconditions, and that on the other 
hand if there is no ensures or signal clause, the degree of freedom in the behavior is 
high and the caller cannot assume anything on the result. 
 
As specified in [1], the privacy of a lightweight specification is always that of the 
method. 



2.4. Method specification 
There can of course be several different contracts, such that a method specification 
can consist of several specification cases. 
 
Basically, a method specification is composed, in this order, of: 
 

• a sequence of specification cases separated with also  (heavyweight or 
lightweight, described in the last paragraphs) 

• implies_that  followed by a sequence of specification cases 
(which should be logically implied by their predecessors) 

• for_example  followed by a sequence of example specification cases 
(which should also be implied by their predecessors) 

 
where any part can be omitted. We actually do not support implies_that and 
for_example. 
 
In case of overriding, the specification extends this of the overridden method and 
has to be prefixed with also . This means that the specification of the overridden 
method still has to hold and that the current one extends it. Given that the logic of 
Jive handles these verifications, the generated proof will not contain this super-
specification. 

2.5. Other JML Features 
We also support the following features, which we actually “desugar” and convert 
to former clauses: 
 
- pure : a pure method is a method which cannot modify any variable. This is 
equivalent to an assignable \nothing  clause. 
- non_null : for a parameter x it is equivalent to requires x != null  and for 
a method result, to ensures \result != null  

2.6. JML keywords 
JML formulas may contain following keywords: 

• \old(expression): in a postcondition, this means that we refer to the value of 
the expression in the prestate. 

• \result: in a postcondition, this is to involve the return value of the method. 
• \forall, \exists: in any JML formula, allow universal or existential 

quantification 
• helper: a method modifier which means that, as a helper, it may break 

invariants of the class. 



3. JML 5.0 Classes: Implementation of the specifica tion 
In this section, we explain how the grammar above is implemented in the JML 
source code and introduce the interface used in the proof obligation generator. The 
reader interested in the source code should then be able to understand it without 
getting the JML source code. It could also help a programmer willing to make use of 
the JML output. 
 
Elements of the abstract syntax tree of the specifications built by the JML parser 
are in the package org.jmlspecs.checker. It actually completes the AST’s interface of 
Multijava (which extends the syntax of Java). 

3.1. The (internal) output of the JML Checker 
We start with a hash map containing the set of all parsed classes (types), the key of 
which is a String with the corresponding name. 
 
Hence, an iteration on the keys gives access to each of the types that the Proof 
Obligation generator has to process. Each such type is an instance of 
JmlTypeDeclaration. 

 
Interface of JmlTypeDeclaration 
ArrayList methods(); 
JmlDataGroupeMemberMap getDataGroupMap(); 
 
For each type, an iteration on the list of the methods returned by method() gives 
access to each of them, as instances of JmlMethodDeclaration. 
 
Interface of JmlMethodDeclaration 
String ident(); 
int modifiers(); 
boolean isPublic(); 
boolean isPrivate(); 
boolean isConstructor(); 
boolean isHelper(); 
boolean hasSpecification() 
JFormalParameters[] parameters(); 

JmlMethodSpecification 
JmlMemberDeclaration 
 

JmlMethodDeclaration 

JmlNode 

JmlTypeDeclaration 



JmlMethodSpecification methodSpecification(); 
 
The modifiers of the method are handled as follows : 
Utils.hasFlag(method.modifiers(), ACC_PROPERTY)  returns true if : 

- the method is public when PROPERTY=PUBLIC 
- the method is private when PROPERTY=PRIVATE 
- the method is protected when PROPERTY=PROTECTED 
- the method is pure when PROPERTY=PURE 
- the method returns a non-null value when PROPERTY=NON_NULL 

and false otherwise. 
 
Interface of JmlFormalParameters (which extends JFormalParameters) 
boolean isNonNull(); 
String ident(); 
CType getType(); 
 
To know whether parameters should be non-null, we call parameters(), cast each 
element of the array to JmlFormalParameter and call isNonNull(). 
For each method, besides its properties, we then access its specification. 

3.2. Method specification 

 
Interface of JmlMethodSpecification 
boolean hasSpecCases(); 
JmlSpecCase[] specCases(); 
 
Then, after a test, we can access each specification case of the method. 

3.3. Heavyweight and lightweight specification cases 
A cast test on each element in the array of the method specification determines 
whether we have a heavyweight or a lightweight specification case. 
If it is heavyweight, it is an instance of JmlHeavyweightSpec, and more particularly 
one of the three following subclasses: 
 

JmlMethodSpecification 

JmlSpecification 
 

JmlExtendingSpecification 

JmlNode 

JmlSpecCase 



 
Interface of JmlHeavyweightSpec: 
int privacy(); 
JmlGeneralSpecCase specCase(); 
 
The method specCase() then removes the shell and returns the associated 
specification case (general in the name is not to be mistaken with generic, which is 
a particular case of specification case). 
 
If the cast fails, this element is already a general specification case and a simple 
cast is enough to access it. 

3.4. General specification cases 
Without the shell, lightweight or heavyweight specification cases are all instances 
of JmlGeneralSpecCase, and in particularly of one of four subclasses: 
 

 
We can then work with a variable, the static type of which is JmlGeneralSpecCase, 
since they all provide the same interface.  
 
Interface of JmlGeneralSpecCase 
boolean hasSpecHeader() 
boolean hasSpecBody() 

JmlSpecCase 

JmlGeneralSpecCase 

JmlGenericSpecCase 

JmlNormalSpecCase JmlExceptionalSpecCase 

JmlAbruptSpecCase 

JmlSpecCase 

JmlHeavyweightSpec 
 

JmlNormalBehaviorSpec 

JmlExceptionalBehaviorSpec JmlBehaviorSpec 

JmlGeneralSpecCase 



JmlRequiresClause[] specHeader() 
JmlSpecBody specBody() 
 
When necessary, a simple instanceof test determines if we have a normal or 
exceptional behavior. 

3.5. Specification clauses, nested specification cases 

3.5.1. Body 
If the header is already an array of require clauses, accessing the body is somehow 
more intricate. JmlSpecBody gives access either to the body clauses, or to nested 
specification cases which all share the header. 

 
Interface of JmlSpecBody 
boolean isSpecClauses() 
JmlSpecBodyClause[] specClauses() 
boolean isSpecCases() 
JmlGeneralSpecCase[] specCases() 
 
In any case, the interface allows us to determine in which case we are, and get 
either the body clauses or the nested specification cases. In the latter case, we 
already know the interface of them (see former paragraph). 

3.5.2. Clauses (header and body) 
All body clauses (assignable, signals, ensures) are instances of JmlSpecBodyClause. 
Curiously, and likely because of the similarity in implementation, requires clauses 
also are instances of this class. 

JmlNode 

JmlSpecBody 

JmlGenericSpecBody 

JmlNormalSpecBody 
JmlExceptionalSpecBody 

JmlAbruptSpecBody 



 

3.5.3. Assignable clauses – assignable field set 
 
With the assignable clause, we can access the set of all locations declared 
assignable. 
 
Interface of JmlAssignableClause 
JmlAssignableFieldSet getAssignableFieldSet(); 
 
This set provides additional facilities, and handles special cases like universal set or 
empty set. An iterator allows accessing its elements, which are instances of class 
JmlSourceField. 
 
Interface of JmlAssignableFieldSet 
JmlAssignableFieldSet(); 
boolean addAll(JmlAssignableFieldSet(); 
boolean isUniversalSet(); 
boolean isEmpty(); 
Iterator iterator(); 
 
A datagroup map is associated with each type. It gives information, when a given 
variable is allowed to be modified, about which other variables may be modified as 
well (the members of its so-called datagroup). 
 
Interface of JmlDataGroupMemberMap 
Iterator keyGroupIterator(); 
JmlAssignableFieldSet getMembers(JmlSourceField); 
 

3.5.4. Other clauses (predicates) 
Interface of JmlPredicateOrNotSpecified 
boolean isNotSpecified(); 
JmlPredicate predOrNot(); 
 
For each requires, ensures or signals clause, we can get the associated predicate 
(after testing whether it is specified). Without entering in further details, invoking 

JmlNode JmlSpecBodyClause 

JmlAssignableClause 

JmlPredicateOrNotSpecified 

JmlRequiresClause 
JmlEnsuresClause 

JmlSignalsClause 



the series of methods predOrNot().specExpression().expression() on such a clause 
gives the expression. 
  
For signals clauses, we still need some more information about the type of 
exception handled in the condition, and the bound variable representing the 
exception in the condition. 
 
Interface of JmlSignalsClause 
String ident(); 
CType() type(); 

 



III. Proof obligation generator 
In this part, we introduce the interface that the proof obligation generator uses to 
create proof obligations, then explain how the proof obligation generator has been 
implemented.  

1. Proof generations Interface 
 

 
 
The Proof Obligation Generator is interfaced with: 

- The AST, in the JML format (which also relies on MultiJava), which is 
the input. 

- The formulas and terms it has to generate as output (Interface 
generated by Katja) 

- The expression transformer, which is another module. Its aim is to 
convert JML formulas to Katja formulas. We slightly modified it so 
that it supports access to \old expressions (see paragraph 2.5.5.4) 

- The Triple interface, which implements a Hoare triple 
- The Logical Variable Registry, which contains logical variables created 

by the Proof Obligation Generator. We implemented it. 
- The Proof Obligation Accumulator, which is the assistant of the Proof 

Obligation Generator and helps it create Proof Obligations. We 
implemented it as well. 

1.1. Formulas and terms 
Classes for generating formulas and terms were automatically generated by Katja. 
Terms are general logical expression associated with types (Boolean, object, 
location, store, …). 



Preconditions and postconditions in Hoare triples are all formulas (a statement 
that can be true or false) and formulas can be built with terms just like in 
mathematics. 
 
A detailed interface of Formulas and Terms is given in the annex. 

1.2. Triples 
A triple is nothing but a triplet composed of: 
- a precondition (of type Formula) 
- a reference to a method (of type MethodRef) 
- a postcondition (of type Formula) 
 
It is the implementation of a contract. 
We create it straight-forward with the constructor: 
Triple(Formula, MethodRef, Formula) 

1.3. Logical variable registries 
Together with a triple, we need to include a table containing all of the logical 
variables created in order to: 

- refer to /old references in the postcondition 
- save the store 
- refer to the assignable field set 
- refer to free variables 

 
We store each of these tables as an instance of LogicalVarRegistry, which behaves 
like a hashmap associating a String key (the name of the variable) to a (katja) Type 
(merely its type, expressed the Katja way). 
 
The constructor is the default constructor LogicalVarRegistry() and the method 
put(String, Type) adds new elements. 

1.4. Expression transformer 
In this paper, we focus about the structure of JML behavioral specifications and 
how it is mapped into Hoare Triples. Translating expressions found in pre- and 
postconditions constitutes a project in itself and is performed in another class, 
ExpressionTransformer. 
This class basically implements the σ  function mentioned in [4, section 3]. The 
corresponding method takes a JML expression (which is always an instance of a 
certain class JExpression) and returns a formula. 
 
Actually, the expression transformer’s interface contains two methods 
transformTerm and transformFormula, the both of which take an instance of 
JExpression as argument and return a term or a formula, depending on the call. If 
the expression corresponds to a boolean, calling transformFormula “wraps” the 
result in a formula using the IsTrue class, as explained in 1. This simplifies the code 
in the caller. 



To complement the expression transformer and allow substituting in formulas, we 
also have a method jive.ContainerInterface.Util.substitute() which takes as 
argument a formula (already converted to first-order logic), the variable to replace 
and the expression to replace this variable for. 

1.5. Expression transformer old hash map 
It is possible that a JML expression in a postcondition contains a special keyword 
\old. It means that we want to access, from the poststate, a value in the prestate. 
In this case, translating the expression to a Formula is not enough! We need to 
have access to the value of the expression in brackets BEFORE the call. To make this 
process easier, the expression transformer has been modified such that, when an 
\old expression is met: 

- it is replaced with a new logical variable. 
- this logical variable is added to a hashmap together with the abstract 

syntax tree of the expression in brackets and its type. 
 
An interface then provides access to this information after calling the expression 
transformer: 
 
    public static void emptyOldHashSet(); 
 empties the hash set before an expression transformer call. 
    public static boolean hasOldHashSet(); 
 tests whether the hast set contains an element after the call. 
    public static Iterator getIteratorOnOldHashSet( ); 
 gets an iterator to obtain these elements, if any. 
 
And: 
    public static void setInPostCond(); 
    public static void setInPreCond(); 
 
which tell the expression transformer whether one is in a pre- or postcond (this is 
for proper handling of parameters, see paragraph 2.5.5.5) 
 
Precise explanations about \old expression are given later in this paper. 

1.6. Proof obligation Accumulator 
The class ProofObligationAccumulator is designed so as to assist the class 
ProofObligationGenerator in building proof obligations. It stores all of the 
generated proof obligations, and provides a transaction-like interface to generate a 
new one and store it as well. 
 
Only once in the generation process, an instance of this class - which will 
eventually contain all of the obligations - is created by the Proof Obligation 
Generator with the default constructor. It is then empty. 



1.6.1. Life cycle of the Proof Obligation Accumulator 
A new triple for a given method is created by newPO(MethodRef). The argument is 
a reference to the current method. 
 
Then, it can be modified by: 

• adding a new precondition with appendToPreCond(Formula), which 
conjuncts the formula with the existing precondition (or creates it if there 
was none). The new precondition is then (former precondition) AND (new 
formula). 

• adding a new postcondition with appendToPostCond(Formula), which 
conjuncts the formula with the existing postcondition (or creates it if there 
was none). The new postcondition is then (former postcondition) AND (new 
formula). 

• Registering a new variable in the logical variable registry, with 
registerVarInSymbolTable(String, Type), which returns the corresponding 
logical variable of type LogicalVar. 

• Setting/unsetting flags about assignable locations, with 
setAssignableEverything(), setAssignableNothing(). These flags are not 
stored, but allow communication between parts of the generator handling 
assignable clauses. 

 
Eventually, it is commited with commit(). 

1.6.2. Utility methods 
Besides, utility methods help further during the Proof Obligations generation: 

• getTypeOf(String) returns the type of an already registered logical variable 
for the current Proof Obligation. 

• appendToCond(Formula, Formula) (which is static!) computes the 
conjunction of two formulas (semantically: adds the second one to the first 
one) and returns it. 

• isEverythingAssignable(), isNothingAssignable() gives the values of the flags 
previously set (or not) for the current Proof Obligation. 

1.6.3. Handling nested specifications 
Nested specifications, in a way, “break” the normal life cycle of the generation of 
proof obligations. 
 
In the normal life cycle, the proof obligation generator creates a new proof 
obligation p, reads a specification, modifies p, and eventually commits p. Then it 
can generate another proof obligation and so on. 
 
However, imagine that, after creating a new proof obligation p, after reading the 
header of a specification and after modifying p accordingly, it does not find a body, 
but nested specification cases. It cannot simply read the first one, complete p and 



commit it! When processing further nested specification cases, everything in the 
common header would be lost... 
 
The Proof Obligation Accumulator provides tools to solve this problem: a stack 
allows one to push an incomplete proof obligation at any time (pushPO() ), like a 
snapshot of the situation, and to pop it  (popPO() ), when one is done with it. 
 
To allow this functionality, the semantics of newPO() has to modified in the 
following way: if the stack is empty, the behavior does not change; if the stack is 
not empty, the call to newPO() has a different effect: the newly generated PO is not 
empty, but is a copy (conditions and declared logical variables) of the PO on top of 
the stack. It can then be completed, and normally commited. 
 



2. ProofObligationGenerator 

2.1. Overview - Architecture 
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The graphics sums up how the different parts of the Proof Obligation Generator 
interact with one another, and it can be used as support for the rest of this part, in 
which we explain each of these functionalities in details. 

2.2. Methods in the Proof Obligation Generator 
In the next parts, we describe the implementation and how all of these methods 
work together. The intent of this overview is not to simply list the source code - the 
version here, given as a support to the implementation issues, is actually very 
simplified, comments and display commands were removed - and the reader 
wanting to have a deeper insight might want to read the actual code. 
 
If you wish to make use of the proof obligation generator, you do not need to know 
these details and you might rather want to refer to paragraph 3. 
 
The names of all of the methods in this architecture have been chosen so that 
reading the code gives a semantical - rather than technical - overview, just like you 
would read a book. The “technical” code is left to helper methods. 
 

2.3. External loop 
There is only one instance (singleton) of the class ProofObligationGenerator, which 
you get by calling the static method getSingleton(). The forest of abstract syntax 
trees generated by the JML checker is then passed to the method 
setTopLevelTypes() of this instance. The initiation of the process is nothing but a 
series of iterations, from types to specifications.  
 
- The execute() method performs an iteration on this forest, calling 
generatePOsForType() for each of the trees - one for each type. This is the only 
public method (together with method setTopLevelTypes()) in the interface of the 
ProofObligationGenerator instance. It returns the Proof Obligation Accumulator 
containing all proofs. 
 
- generatePOsForType() then calls generatePOsForMethod() for each method 
defined in the type. 
 
- generatePOsForMethod() checks whether the method contains a specification or 
not, and calls either generatePOForNoSpecCase() or iterates over the specification 
cases and calls for each of them generatePOForSpecCase(). It eventually checks 
purity and generates a unique and additional proof obligation if the method is 
pure. 
 
Not that if a method is pure, we assume it never modifies a location, i.e. it is 
associated with a “require true” precondition (possibly conjoined to the invariant in 
the triple), whatever the preconditions of the specification. This is a discussed issue 
because there exists an opposite alternative (reusing preconditions from the 
specification). 



 
Furthermore, should one want to specify that no location is to be modified under 
certain conditions, this is handled by \assignable nothing. 

 
 
 

2.4. No specification 
If the method has no specification, i.e. generatePOsForNoSpecCase() was called, 
we: 
- generate the invariants (by calling generatePrePostInvariant(), which analyses 

whether to add them or not) 
- generate preconditions for non-null results or parameters (which the method 

could have…)  
 

 

2.5. Specification 
If the method has a specification, we handle each specification case. 
 

private void generatePOForNoSpecCase(JmlTypeDeclaration type,  
                                                 Jm lMethodDeclaration method) { 
  POs.newPO(MethodRef.getMethodRef(type, method)); 
    generatePrePostCondInvariant(method); 
    generatePreCondNonNullParameters(type, method); 
    generatePostCondNonNullResult(method); 
  POs.commit(); 
} 

Private ProofObligationAccumulator POs; 
 
ProofObligationAccumulator execute() { 
  POs = new ProofObligationAccumulator(); 
  ExpressionTransformer.setJMLMode(true); 
    Iterator iter = topLevelTypes.keySet().iterator (); 
    while (iter.hasNext()) { 
      String st = (String) iter.next(); 
      generatePOsForType((JmlTypeDeclaration) topLevelTypes.get(st)); 
    } 
  return POs; 
} 
 
private void generatePOsForType(JmlTypeDeclaration type) { 
  Iterator iter = type.methods().iterator(); 
  while (iter.hasNext()) 
    generatePOsForMethod(type, (JmlMethodDeclaration) iter.next()); 
} 
 
private void generatePOsForMethod(JmlTypeDeclaration type, 
                                        JmlMethodDe claration method) { 
  if (method.hasSpecification() 
                && method.methodSpecification().has SpecCases()) { 
    JmlSpecCase[] specs = method.methodSpecificatio n().specCases(); 
    for (int i = 0; i < specs.length; i++) 
           generatePOForSpecCase(type, method, specs[i]); 
  } 
  else 
    generatePOForNoSpecCase(type, method); 
  generatePOForPureMethod(type, method) ;  



If it is not supported (model program, code contract), a runtime exception is 
thrown. Else, whatever the case, we extract the general spec case with header and 
body. 
 
One first computes a reference to the method, and handle variable declarations 
followed by standard preconditions (requires, …). Then depending on the type of 
body (whether it is nested, or consists of clauses), we call the corresponding 
method. 
 
In the upcoming paragraphs, we describe all of these parts, except variable 
declarations and nested specification cases, which are explained later. 
 

 

2.5.1. Method reference 
Calling a special method (MethodRef.getMethodRef()) with type and method as 
argument gives a (unique) reference to the current method. 
 
The reference is bound either dynamically (type:method()) if the method is public 
or protected, or statically (type@method()) if it is private or static. 
 
However, if the privacy of a specification cannot be more visible than this of the 
method, it is possible that, for instance, the method be public (hence dynamically 
bound) but the specification private! In this case, we need a method reference 
which is statically bound and have to generate it manually. To this aim, we replace 

private void generatePOForSpecCase(JmlTypeDeclaration type, 
            JmlMethodDeclaration method, JmlSpecCas e specCase) { 
  if (specCase instanceof JmlModelProgram) 
    throw new RuntimeException("Model Programs not supported!"); 
  else if (specCase instanceof JmlCodeContract) 
    throw new RuntimeException("Code Contract not s upported!"); 
 
  JmlGeneralSpecCase generalSpecCase; 
  int privacy; 
  if (specCase instanceof JmlGeneralSpecCase) { 
    privacy = method.modifiers(); 
    generalSpecCase = (JmlGenericSpecCase) specCase ; 
  } else { 
    privacy = ((JmlHeavyweightSpec) specCase).priva cy(); 
    generalSpecCase = ((JmlHeavyweightSpec) specCas e).specCase(); 
  } 
 
  POs.newPO( getMethodRef(type, method, privacy)); 
  generatePreCondSpecVarDecls(generalSpecCase); 
  generatePreConditions(type, method, generalSpecCase); 
 
  if (generalSpecCase.hasSpecBody() 
                && generalSpecCase.specBody().isSpe cCases()) 
    generatePOsForNestedSpecCases(type, method, generalSpecCase); 
  else 
    generatePOsForBodyClauses(type, method, generalSpecCase); 
}  



getMethodRef() by our version, in the same class. If the method is abstract and the 
specification private, we throw an exception. 
Note that if the specification case is lightweight, the privacy of it is considered the 
same as that of the method. 
 

 
 

2.5.2. Headers 
In all cases, we process the header of the specification case, if it exists. We handle 
requires clauses, and methods with non-null parameters (if nested, which is 
tackled later in this paper, we do not do it again since it was already done at level 0 
of nesting). 
 
First of all, we need to tell the expression transformer that we are in a precondition 
(because of handling of parameters - for more explanations, see 2.5.5.5) 
 

 

2.5.2.1 Requires clauses 
To handle requires clauses, we merely iterate on them, convert expressions with 
the expression transformer and append the result to the already generated 
preconditions. 
 
As explained in [4], in case of multiple preconditions 
requires P1 ; 
requires P2 ; 
… 
requires Pn ; 
 
we conjoin them. Hence, the generated precondition is: 

( ) ( ) ( )nPPP σσσ ∧∧∧ ...21   

private void generatePreConditions(JmlTypeDeclaration type, 
             JmlMethodDeclaration method, JmlGenera lSpecCase specCase) { 
  ExpressionTransformer.setInPreCond(); 
  if(specCase.hasSpecHeader()) 
    generatePreCondRequires(specCase); 
  if(!POs.isNested()) 
    generatePreCondNonNullParameters(type, method); 
} 

private MethodRef getMethodRef(JmlTypeDeclaration type, 
                 JmlMethodDeclaration method, int p rivacy) { 
  MethodRef result = null; 
  MethodRef mr = (MethodRef.getMethodRef(type, meth od)); 
  if (Utils.hasFlag(privacy, ACC_PRIVATE)) 
    if(mr instanceof ConcreteVirtualMethod) 
      result = Main.currentSession().getUnique(new Implementation(type, method)); 
    else if (mr instanceof AbstractVirtualMethod) 
      throw new RuntimeException("Private specifica tion for an abstract method"); 
  return result == null ? MethodRef.getMethodRef(ty pe, method) : result; 
} 



where  σ is the conversion to a first-order logic  formula performed by the 
Expression Transformer. 
 
This precondition will itself be conjoined to the existing precondition of the current 
Hoare Triple in the Proof Obligation Accumulator. 

 
 

2.5.2.2 Non-null parameters 

We simply iterate on the arguments of the method, and add a precondition if it is 
flagged as non-null. 
 
If we find a non-null argument, say: 
 

public void method(/*@ non_null @*/ type a) ; 
 
Then we conjoin the following precondition as explained in [4], paragraph 4.4: 
 

a ≠ null 
 
in which a is passed as a ProgVar instance. For more explanations about differences 
between program variables and logical variables, you could refer to paragraph 2.8. 
 

 

2.5.3. Body clauses 
When there is no nesting, i.e. the body is simply a sequence of clauses, we process 
in the following order to analyze clauses: 

• We first add invariants (see paragraph 2.6) 

private void generatePreCondNonNullParameters(JmlTypeDeclaration type,  
                JmlMethodDeclaration method) { 
  JFormalParameter[] parameters = method.parameters (); 
  for (int i = 0; i < parameters.length; i++) { 
    if (((JmlFormalParameter) parameters[i]).isNonN ull()) { 
      Type t = CompRef.getKatjaType(parameters[i].g etType()); 
      POs.appendToPreCond(new IsTrue(new BinOpTermT erm( 
                          new ProgVar(parameters[i] .ident(), t), 
                          JNotEq.INSTANCE, new Null (t), JBoolean.INSTANCE))); 
    } 
  } 
}  

 
private void generatePreCondRequires(JmlGeneralSpecCase specCase) { 
  JmlRequiresClause[] preconds = specCase.specHeade r(); 
  for (int k = 0; k < preconds.length; k++) { 
    if (preconds[k].isNotSpecified()) 
      continue; 
    JExpression requires = (JExpression) preconds[k ].predOrNot() 
                                         .specExpre ssion().expression(); 
    Formula tRequires = ExpressionTransformer 
                                            .transf ormFormula(requires); 
    POs.appendToPreCond(tRequires); 
  } 
} 
 



• Then we handle assignable locations (whether pure method or assignable 
clause)  (paragraph 2.5.4) 

• And we finally generate standard postconditions (requires, signals, non-null 
result, …) (paragraph 2.5.5) 

 

 
 

2.5.4. Assignable locations 
Processing of assignable locations depends on the purity of the method. If it is 
pure,  this is handled by a separate Proof Obligation and we leave this step for later. 
If it is not the case, we refer to assignable expressions: 
 

• we generate a precondition building the set M of assignable locations (if it is 
not trivial), which we conjoin to the precondition of the current Hoare triple. 

• and then generate the postcondition which makes sure that locations in this 
set are not modified. 

 
Note that the specification of JML indicates that the semantics of an assignable 
location is that it should never be assigned anything, even if one restores the 
former value before the method returns. However, as explained in [4], paragraph 
4.2, Jive will only check that the location was not modified, i.e. that the location has 
the same content before and after the call. 
 
 

 

2.5.4.1 Not pure methods 

If the method is not pure, we look at the assignable clauses the specification 
contains. We collect all of them, and compute the downward closure (as defined 
and explained later in this paragraph). If there is none, as said in [4] paragraph 4.2, 
we consider that all locations are assignable. 
 

private void generatePrePostCondAssignmentsForSpecCase( 
  JmlTypeDeclaration type, JmlMethodDeclaration met hod, 
  JmlGeneralSpecCase specCase) { 
    
  if (!Utils.hasFlag(method.modifiers(), ACC_PURE))  { 
    generatePreCondAssignableNotPure(type, method, specCase); 
    generatePostCondAssignable(); 
  } 
} 

private void generatePOsForBodyClauses(JmlTypeDeclaration type, 
  JmlMethodDeclaration method, JmlGeneralSpecCase s pecCase) { 
  generatePrePostCondInvariant(method); 
  generatePrePostCondAssignmentsForSpecCase(type, method, specCase); 
  generatePostCondForSpecCase(type, method, specCase); 
  POs.commit(); 
}     



Note that all such locations are instance fields of the class, since JML does not 
support dynamic dependencies yet (it produces an error if a field of another object 
is passed). 
 
We then set the flags in the Proof Obligation Accumulator if no location or all 
locations are assignable, and save the list of them in a precondition otherwise. This 
optimization, if a flag is set, enables us to skip the precondition and build a simpler 
postcondition. 
 

 
 
In JML, the user can make use of so-called model fields, which are additional fields 
that are not part of the implementation, but make the specification easier and 
solve such problems like: 

• assigning new locations when subclassing and overriding, i.e. fields of the 
subclass 

• Keeping private fields… private and expressing specifications on a more 
abstract level. 

 
A model field m is associated to a data group, the locations in which are also 
implicitely assignable, should m appear in an \assignable clause. Hence, when 
subclassing, new fields are added to an existing data group and are hence 
assignable by corresponding methods. 
Private fields are added in data groups of the corresponding model fields. If the 
implementation changes, one does not need to change model fields (which appear 
in the interface), but just data groups. 

private void generatePreCondAssignableNotPure(JmlTypeDeclaration type,  
            JmlMethodDeclaration method, JmlGeneral SpecCase specCase) { 
  boolean foundAssignableLocations = false; 
  JmlAssignableFieldSet assignable = new JmlAssigna bleFieldSet(); 
  if (specCase.hasSpecBody() && specCase.specBody() .isSpecClauses()) { 
    JmlSpecBodyClause[] specBodyClauses = specCase. specBody().specClauses(); 
    for (int i = 0; i < specBodyClauses.length; i++ ) { 
      if (!(specBodyClauses[i] instanceof JmlAssign ableClause)) 
        continue; 
      foundAssignableLocations = true; 
      assignable.addAll(((JmlAssignableClause) spec BodyClauses[i]) 
               .getAssignableFieldSet()); 
    } 
  } 
  if (foundAssignableLocations) { 
    if (assignable.isUniversalSet()) { 
      POs.setAssignableEverything(); 
      return; 
    } else if (assignable.isEmpty()) { 
      POs.setAssignableNothing(); 
      return; 
    } else 
      generateDownwardClosure(type, method, assignable); 
  } else { 
    POs.setAssignableEverything(); 
    return; 
  } 
  if (!POs.isEverythingAssignable() && !POs.isNothi ngAssignable()) 
    generatePreCondAssignable(termListFromAssignableFieldSet(type, assignable));  
} 



 
This is transitive, i.e. if x is in y’s data group and y is in z’s data group, then if z 
appears in a \assignable clause, y but also indirectly x are assignable. 
 
To compute the downward closure, we first get the hashmap from the type, which 
contains all of the necessary information about data groups for this type. Then, we 
add all elements of all data groups of locations in our bag and repeat the operation 
until no more remains to add. 
 

 
 
After collecting and computing the downward closure, we still need to convert our 
set to first-order logic to generate the precondition. 
 
Since dynamic dependencies are not yet supported but JML, we know that all 
locations corresponding to fields in the instance, i.e. a name n will actually refer to 
this.n. 
 
This is what we do in the following method. 
 

private void generateDownwardClosure(JmlTypeDeclaration type ,  
  JmlMethodDeclaration method, JmlAssignableFieldSe t assignable) { 
  JmlDataGroupMemberMap dataGroupMap = type.getData GroupMap(); 
  JmlAssignableFieldSet toAdd = null; 
  while (toAdd == null) { 
    toAdd = new JmlAssignableFieldSet(); 
    for (Iterator i = assignable.iterator(); i.hasN ext();) { 
      JmlSourceField field = (JmlSourceField) i.nex t(); 
      JmlSourceField correspondingField = null; 
      Iterator j = dataGroupMap.keyGroupIterator();  
      while (correspondingField == null && j.hasNex t()) { 
        JmlSourceField candidateField = (JmlSourceF ield) j.next(); 
        if (field.toString().equals(candidateField. toString())) 
          correspondingField = candidateField; 
      } 
      if(correspondingField) 
        toAdd.addAll((JmlAssignableFieldSet) 
                                 dataGroupMap.getMe mbers(correspondingField)); 
      else 
        `toAdd.add(field); 
    } 
    if (toAdd.size() != assignable.size()) { 
      assignable.addAll(toAdd); 
      toAdd = null; 
    } 
  } 
} 



 

2.5.4.2 Saving assignable locations 
Once we have the TermList of all assignable locations, we can save it in a 
precondition. The following method has been called above if the set M is not trivial. 
As always with LogicalVars, we register it in the Symbol Table before we build the 
precondition and conjoin it to the precondition of the current Hoare triple. 
 

 

2.5.4.3 Checking they were not modified 

The last step is to conjoin a postcondition which makes sure no location was 
modified, except the one mentioned (directly or indirectly) in the specification. 

• If we have a non-trivial set (no flag set in the Proof Obligation Accumulator), 
we conjoin: 

( )( ) ( ) ( )( )locSlocSlocobjaliveMlocLocationloc =⇒∧∉∀ $,.:  
• If nothing is assignable (corresponding flag set in the Proof Obligation 

Accumulator), we conjoin: 

( )( ) ( ) ( )( )locSlocSlocobjaliveLocationloc =⇒∀ $,.:  
• If everything is assignable (corresponding flag set in the Proof Obligation 

Accumulator), we do not need to check anything. 

private void generatePreCondAssignable(TermList assignable TermList) {  
  SetTerm assignableLocations = new SetTerm(assigna bleTermList, SetType.INSTANCE); 
  LogicalVar M = POs.registerVarInSymbolTable("M", SetType.INSTANCE); 
  POs.appendToPreCond(new IsTrue(new BinOpTermTerm( M, JEq.INSTANCE, 
                  assignableLocations, JBoolean.INS TANCE))); 
} 

private TermList termListFromAssignableFieldSet(JmlTypeDeclaration type, 
    JmlAssignableFieldSet assignable) { 
  TermList assignableTermList = null; 
  for (Iterator i = assignable.iterator(); i.hasNex t();) { 
    JmlSourceField field = (JmlSourceField) i.next( ); 
    Type this_type = 
      ExpressionTransformer.getJiveType(type.getCCl ass().getType()); 
     Term location =   
       new FuncAppl( 
         PredefinedTerms.LOC,  
         new TermList( 
           new This(this_type) 
   ).appBack( 
           new Field( 
             field.getIdent(), 
             (ClassOrInterfaceType) this_type, 
             ExpressionTransformer.getJiveType(fiel d.getType()) 
         ) 
       ),  
       PredefinedTerms.location_T 
     ); 
 
    if (assignableTermList == null) 
      assignableTermList = new TermList(location); 
    else 
      assignableTermList = assignableTermList.appBa ck(location); 
  } 
  return assignableTermList; 
} 



 

private void generatePostCondAssignable() { 
  LogicalVar M = new LogicalVar("M", SetType.INSTAN CE); 
  LogicalVar S = new LogicalVar("S", Store.INSTANCE ); 
  LogicalVar loc = new LogicalVar("loc", locationTy pe); 
 
  Term loc_dollar = 
    new FuncAppl( 
      PredefinedTerms.LOOKUP, 
      new TermList(new Dollar(Store.INSTANCE)).appB ack(loc), 
      PredefinedTerms.value_T 
    ); 
 
  Term loc_S = 
    new FuncAppl( 
      PredefinedTerms.LOOKUP, 
      new TermList(S).appBack(loc), 
      PredefinedTerms.value_T 
    ); 
     
  if (POs.isNothingAssignable()) { 
    generatePreCondSaveStore(); 
    POs.appendToPostCond( 
      new BindingFormula(Forall.INSTANCE, new Bindi ngList(new Binding(loc)), 
        new BinaryFormula( 
    new IsTrue( 
      new FuncAppl( 
        PredefinedTerms.ALIVE, 
              new TermList( 
          new FuncAppl(PredefinedTerms.obj, new Ter mList(loc), 
                                         Predefined Terms.objectType) 
              ).appBack(PredefinedTerms.DOLLAR), 
        JBoolean.INSTANCE 
      ) 
    ), 
    FImplies.INSTANCE, 
          PredefinedTerms.eq(loc_dollar,loc_S) 
        ) 
      ) 
    ); 
  } else if (!POs.isEverythingAssignable()) { 
    generatePreCondSaveStore(); 
    POs.appendToPostCond( 
      new BindingFormula(Forall.INSTANCE, new Bindi ngList(new Binding(loc)), 
        new BinaryFormula( 
          new BinaryFormula( 
            new FNot( 
              new IsTrue( 
                new BinOpTermTerm(loc,Element.INSTA NCE,M,JBoolean.INSTANCE) 
              ) 
            ), 
            FAnd.INSTANCE, 
            new IsTrue( 
              new FuncAppl( 
                PredefinedTerms.ALIVE, 
                new TermList( 
                  new FuncAppl(PredefinedTerms.obj,  
                              new TermList(loc),Pre definedTerms.objectType) 
                ).appBack(PredefinedTerms.DOLLAR), 
                JBoolean.INSTANCE 
              ) 
            ) 
          ), 
          FImplies.INSTANCE, 
          PredefinedTerms.eq(loc_dollar,loc_S) 
        ) 
      ) 
    ); 
  } 
} 



generatePreCondSaveStore() simply generates a logical var S in which the store is 
saved. 
 

 

2.5.4.4 Pure methods 

If the method is pure, no location should be assigned. The following method is 
called after processing each method, and checks purity: 
 

 
 
If the method is pure, we call the following method: 
 

 
 
We simply set the corresponding flag in the Proof Obligation Accumulator so that 
the adequate postcondition be then generated (see last line of code). 
 
There is however an exception to this rule: if one has a constructor, it should be 
allowed that it assigns any field in the instance. 

private void generatePreCondSaveStore() { 
  display("Saving store", 3); 
  LogicalVar S = POs.registerVarInSymbolTable("S", Store.INSTANCE); 
  POs.appendToPreCond(new IsTrue(new BinOpTermTerm(  
    new Dollar(Store.INSTANCE), 
    JEq.INSTANCE, 
    S, JBoolean.INSTANCE))); 
} 

private void generatePOForPureMethod(JmlTypeDeclaration type,  
            JmlMethodDeclaration method) { 
  if (Utils.hasFlag(method.modifiers(), ACC_PURE)) { 
    POs.newPO(MethodRef. getMethodRef(type, method)); 
      generatePreCondAssignablePure(type, method); 
      generatePostCondAssignable(); 
    POs.commit(); 
  } 
} 

private void generatePreCondAssignablePure(JmlTypeDeclaration type,  
  JmlMethodDeclaration method) { 
  if (method.isConstructor()) { 
    JFieldDeclarationType[] jfd = type.fields(); 
    TermList assignableTermList = null; 
    for (int i = 0; i < jfd.length; i++) { 
      JClassFieldExpression generatedThisField = ne w JClassFieldExpression( 
        null, new JThisExpression(null,type.getCCla ss()), jfd[i].ident()); 
      if (assignableTermList == null) 
        assignableTermList = new TermList(Expressio nTransformer 
                            .transformLocation(gene ratedThisField)); 
      else 
        assignableTermList = assignableTermList 
          .appBack(ExpressionTransformer.transformL ocation(generatedThisField)); 
    } 
    generatePreCondAssignable(assignableTermList); 
  } else 
    POs.setAssignableNothing(); 
}  



If such is the case, we iterate on the fields of the class, which we all put in our bag 
(a TermList) and generate the precondition saving the set just like non-pure 
methods. 
In both cases, we then generate postconditions as for non-pure methods as well. 

2.5.5. Postconditions 
Postconditions are found in ensures clauses and signal clauses. We also handle 
non-null results and \old expressions, as well as normal and exceptional behaviors. 
 
This is done in the following order: 

• We determine normal or exceptional behavior if such is the case. 
• We process normal postconditions (\ensures clauses) 
• We process exceptional postconditions (\signals clauses) 
• Should Logical Variables (for accessing prestate values in the poststate) 

have been used in the last two steps, they are in the “old hast set”. We 
register them and save the prestate value of the corresponding expression 
thanks to a special precondition. 

• We test for non-null result 
 
First of all, we need to empty the “old hash set” and to tell the expression 
transformer that we are in a postcondition (for proper handling of parameters – 
see 2.5.5.5) 
 

 

2.5.5.1 Normal or exceptional behavior 

 
In case of normal or exceptional behavior, one appends a postcondition meaning 
that the method has to return a value, or that the method has to throw an 
exception. 
 
- In case of a normal behavior, no exception may be thrown. As specified in [4] 
paragraph 4.2, we conjoin the following formula to the postcondition of the 
current Triple in the Proof Obligation Accumulator: 
     χ ≠ Exc 
 
 

private void generatePostCondForSpecCase(JmlTypeDeclaration type,  
  JmlMethodDeclaration method, JmlGeneralSpecCase s pecCase) { 
 
  ExpressionTransformer.emptyOldHashSet(); 
  ExpressionTransformer.setInPostCond(); 
  generatePostCondBehavior(specCase); 
  generatePostCondEnsures(specCase.specBody().specClauses()); 
  generatePostCondSignals(specCase.specBody().specClauses()); 
  generatePreCondSaveOld(); 
 
  generatePostCondNonNullResult(method); 
}  



In case of a normal behavior, the method cannot return without throwing an 
exception. As specified in [4] paragraph 4.2, we conjoin the following formula to 
the postcondition of the current Triple in the Proof Obligation Accumulator: 
     χ ≠ Normal 
 

 

2.5.5.2 Normal postconditions 

As explained in [4], in case of multiple normal postconditions 
ensures Q1 ; 
ensures Q2 ; 
… 
ensures Qn ; 
 
we conjoin them. Hence, the generated normal postcondition is: 

( ) ( ) ( )nQQQ σσσ ∧∧∧ ...21  where  σ is the conversion to a first-order logic  formula 
performed by the Expression Transformer. 
 
Since it is a normal postcondition, the following formula is conjoined to the 
postcondition of the current triple: 

( ) ( ) ( )nQQQNormal σσσχ ∧∧∧⇒= ...21  

 
If the specification is a normal behavior, an (implemented) optimization removes 
the implication since the left hand side always holds. 
 

private void generatePostCondBehavior(JmlGeneralSpecCase specCase) {  
  if (specCase instanceof JmlNormalSpecCase) 
    POs.appendToPostCond(new IsTrue(new BinOpTermTe rm( 
      new Chi(Status.INSTANCE), 
      JNotEq.INSTANCE, 
      new Exc(Status.INSTANCE), JBoolean.INSTANCE)) ); 
            return; 
  else if (specCase instanceof JmlExceptionalSpecCa se) 
    POs.appendToPostCond(new IsTrue(new BinOpTermTe rm( 
      new Chi(Status.INSTANCE), 
      JNotEq.INSTANCE, 
      new Normal(Status.INSTANCE), JBoolean.INSTANC E))); 
} 



 

2.5.5.3 Exceptional postconditions 
Processing signals clauses is slightly more intricate: before building a conjunction 
of all of them, one has to take the type and name of each exception mentioned in a 
clause. 
With the following clause: 
signals (E e) R; 
 
The generated exceptional postcondition is: 

( ) [ ]( )eExcVREExcVtypeof /σ⇒p  
where  σ is the conversion to a first-order logic  formula performed by the 
Expression Transformer. 
 
This means that, if the exception thrown is a direct or indirect instance of E, the 
condition R holds, where e (the bound variable) designs the actual value of the 
exception thrown. 
 
As explained in [4], in case of multiple exceptional postconditions 
signals (E1 e1) R1 ; 
signals (E2 e2) R2 ; 

… 
signals (En en) Rn ; 
 
we conjoin them.  
 
And as we did for normal postconditions, we add a prefix expressing that it is an 
exceptional postcondition, so that the following formula is conjoined to the 
postcondition of the current triple: 

private void generatePostCondEnsures(JmlSpecBodyClause[] specBodyClauses) { 
  Formula normal = null; 
  for (int l = 0; l < specBodyClauses.length; l++) 
    if (specBodyClauses[l] instanceof JmlEnsuresCla use) { 
      JExpression jExp = ((JmlPredicateOrNotSpecifi ed) specBodyClauses[l]) 
                       .predOrNot().specExpression( ).expression(); 
      Formula t = ExpressionTransformer.transformFo rmula(jExp); 
      normal = ProofObligationHashMap.appendToCond( normal, t); 
    } 
 
  if (normal != null) 
    if(specCase instanceof JmlNormalSpecCase) 
      POs.appendToPostCond(normal); 
    else 
      POs.appendToPostCond(new BinaryFormula(new Is True( 
        new BinOpTermTerm( 
          new Chi(Status.INSTANCE), 
          JEq.INSTANCE, 
          New Normal(Status.INSTANCE), 
          JBoolean.INSTANCE)), 
        FImplies.INSTANCE, 
        normal)); 
} 
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During the substitution, a field exceptionBound contains the name of the variable 
being substituted, so that it be not considered a program var and erroneously 
“saved” (cf 2.8): The method isLogical() also compares its argument with this field. 
 
Finally, if the specification is an exceptional behavior, an optimization removes the 
implication since the left hand side always holds. 
 

 
 

2.5.5.4 Accessing prestate values in the poststate 
Ensures and signals clauses might contain \old expressions or formal parameters, 
which both should refer to values before the call. To that aim, we had to slightly 
modify the expression transformer. 
 

private void generatePostCondSignals(JmlSpecBodyClause[] specBodyClauses) {  
  Formula exc = null; 
  for (int l = 0; l < specBodyClauses.length; l++) 
    if (specBodyClauses[l] instanceof JmlSignalsCla use) { 
      JExpression jExp = ((JmlPredicateOrNotSpecifi ed) specBodyClauses[l]) 
                        .predOrNot().specExpression ().expression(); 
      CType exceptionType = ((JmlSignalsClause) spe cBodyClauses[l]).type(); 
      String exceptionIdent = ((JmlSignalsClause) s pecBodyClauses[l]).ident(); 
      exceptionBound = exceptionIdent; 
      Formula t = new BinaryFormula( 
        new IsTrue(new BinOpTermType( 
          new ExcV(objectType), 
          InstanceOf.INSTANCE, 
          CompRef.getKatjaType(exceptionType),JBool ean.INSTANCE)),  
        FImplies.INSTANCE, 
        jive.ContainerInterface.Util.substitute( 
          ExpressionTransformer.transformFormula(jE xp), 
          new ExcV(PredefinedTerms.objectType), 
          new LogicalVar( 
             exceptionIdent, ExpressionTransformer. getJiveType(exceptionType) 
        ) 
      ); 
      exceptionBound = null; 
      exc = ProofObligationHashMap.appendToCond(exc , t); 
    } 
 
if (exc != null) 
  if(specCase instanceof JmlExceptionalSpecCase) 
    POs.appendToPostCond(exc); 
  else 
    POs.appendToPostCond(new BinaryFormula( 
      new IsTrue( 
        new BinOpTermTerm( 
          new Chi(Status.INSTANCE), 
          JEq.INSTANCE, 
          new Exc(Status.INSTANCE), JBoolean.INSTAN CE)), 
      FImplies.INSTANCE,  



In that case, the expression transformer transforms the corresponding expression 
to first order logic, but does not put it back in the returned tree. Instead, it creates a 
new logical variable associated to the converted expression (and its type) in the so 
called “old hast set”. It is thus this new logical variable which occurs in the returned 
tree. 
 
For instance, if we have: 
 
ensures  expr1 op1 \old(expr) 

 
a new logical variable (with an auto generated unique name), say !x0, is generated, 
the expression transformer fills the old hast set: 
 
 
Name Type Tree 
!x0 (the type of expr) σ(expr)  
 
And the returned first-order formula is actually (we only give a feeling): 
       σ(expr1) σ(op1) !x0 
 
Hence, one has to complete the work of the expression transformer by generating 
special preconditions which saves prestate values in those logical variables. 
 
This is done by a special method generatePreCondSaveOld()  it checks whether the 
expression transformer found expressions referring to the prestate, and processes 
them. 
 

 
 
The saving precondition is conjoined by the following method. In our example, it 
conjoins:  
!x0=σ(expr) 
to the precondition of the current triple. 
 

 

private void generatePreCondSaveOld() {  
  if (ExpressionTransformer.hasOldHashSet()) { 
    Iterator oldsIterator = ExpressionTransformer.g etOldIterator(); 
    while (oldsIterator.hasNext()) { 
      ExpressionTransformerOldHashSet.LogicalVarEnt ry l = 
          (ExpressionTransformerOldHashSet.LogicalV arEntry) oldsIterator.next(); 
      generatePreCondSaveOld(l.getName(), l.getAST( )); 
    } 
  } 
} 

private void generatePreCondSaveOld(String name, Term ast) {  
  display("Saving old variable "+name); 
  LogicalVar F = POs.registerVarInSymbolTable(name,  ast.type()); 
  POs.appendToPreCond(new IsTrue(new BinOpTermTerm( F, JEq.INSTANCE, ast, 
    JBoolean.INSTANCE))); 
} 



2.5.5.5 Formal parameters in postconditions 

According to the JML specification, formal parameters in postconditions still 
implicitely refer to their value in the prestate! Modifications of their values are 
implementation details and are irrelevant in specifications. 
 
Hence, a new flag in the Expression Transformer tells whether we are in a 
precondition or in a postcondition. It is set by the Proof Obligation Generator 
accordingly. When the expression transformer finds a formal parameter 
\ensures … param … 
 it treats it as if it were in a \old expression: 
\ensures … \old(param) … 



2.5.5.6 Non-null result 
 
Postconditions are found in ensures and signals clauses, but also in the keyword 
non-null in front of the method declaration. The latter can actually be desugared 
to: 

ensures \result!=0 
which is handled by a dedicated method generatePostCondNonNullResult(). 
 

 

2.6. Invariant generation 
The invariant generation is always called, with or without specification. This is 
performed by another module parallel to the Proof Obligation generation and we 
do not tackle the invariant generation in itself. 
 
However, we need to add a special formula INV($) to certain preconditions and 
postconditions. The method INV() contains the invariants for all of the classes in 
the program (which have to hold in any visible state, even the invariant of a class A 
after calling a method in another class B). It takes the current store as argument, 
which is $. You will find further explanations in [4]. 
 
As explained in the latter article, we only add invariants in the precondition if the 
method is neither a helper, nor a constructor, and we only add them in the 
postcondition if the method is not a helper. 
 

     

2.7. Variable declaration 
It is possible in JML to declare variables. There are two types of them: 

• old variable 
• forall variables 

 

private void generatePrePostCondInvariant(JmlMethodDeclaration method) { 
        if (method.isConstructor()) { 
            POs.appendToPostCond(invdollar); 
        } else if (!method.isHelper()) { 
            POs.appendToPreCond(invdollar); 
            POs.appendToPostCond(invdollar); 
        } 
    } 

private void generatePostCondNonNullResult(JmlMethodDeclaration method) { 
  if (Utils.hasFlag(method.modifiers(), ACC_NON_NUL L)) 
    POs.appendToPostCond(new IsTrue(new BinOpTermTe rm( 
      new ResV(objectType), 
      JNotEq.INSTANCE, 
      new Null(NullType.INSTANCE), JBoolean.INSTANC E))); 
  } 
} 
 



The following method, called just before processing preconditions, iterates over 
them and dispatches handling to two methods generatePreCondSaveOld() and 
generatePreCondForAll(). 
 

 
 

2.7.1. Old declared variables 
In postconditions, the user can use \old() expressions to access prestate values. The 
Proof Obligation Generator then automatically generates a logical variable to store 
this value. 
 
It is possible that the user decides to choose the name of this variable by himself 
and declares it in the specification: 
 
/*@ public normal_behavior 
    @ old int var = expr; 
    @ requires … 
    @ ensures …var… 
    @*/ 
 
This will allow him, for instance, to write shorter or clearer code. 
In which case any occurrence of var in a postcondition is equivalent to \old(expr). 
Hence, we use the very same method to conjoin the precondition, but neither need 
to choose a new name, nor to replace it with the variable (it is already there!). 
 

private void generatePreCondSpecVarDecls(JmlGeneralSpecCase generalSpecCase) { 
  JmlSpecVarDecl[] vars = generalSpecCase.specVarDe cls(); 
  if (vars != null) 
    for (int i = 0; i < vars.length; i++) { 
      if (vars[i] instanceof JmlLetVarDecl) { 
        JmlLetVarDecl jlvd = (JmlLetVarDecl) vars[i ]; 
        JVariableDefinition[] jvd = jlvd.specVariab leDeclarators(); 
        for (int j = 0; j < jvd.length; j++) { 
          Term ast = ExpressionTransformer.transfor mTerm(jvd[i].expr()); 
          String name = jvd[i].ident(); 
          generatePreCondSaveOld(name, ast); 
        } 
      } 
      if (vars[i] instanceof JmlForAllVarDecl) { 
        JmlForAllVarDecl jfavd = (JmlForAllVarDecl)  vars[i]; 
        JVariableDefinition[] jvd = jfavd.quantifie dVarDecls(); 
        for (int j = 0; j < jvd.length; j++) { 
          String name = jvd[i].ident(); 
          Type typ = CompRef.getKatjaType(jvd[i].ge tType()); 
          generatePreCondForAll(name, typ); 
      } 
    } 
  } 
} 



 

2.7.2. Forall declared variables 
Forall declared variables are straightforward to implement, and that is probably the 
reason why it is not so simple. 
 
Forall declared variables are not documented a lot in JML, and we assume they 
have the following meaning. 
 
With the following code. 
 
/*@ public normal_behavior 
    @ forall int var; 
    @ requires …var… 
    @ ensures …var… 
    @*/ 
 
The contract described by the specification contains a bound variable, and is 
equivalent to a set of contracts Ci: 
 
/*@ public normal_behavior 
    @ requires …i… 
    @ ensures …i … 
    @*/ 
 
all of which hold between the programmer and the client. Or, more intuitively, that 
the contract Ci holds whatever the value of i you may choose. 
 
In terms of desugaring, we could (only theoretically!) desugar 
 
/*@ public normal_behavior 
    @ forall int var; 
    @ requires …var… 
    @ ensures …var… 
    @*/ 
 
to  
 
/*@ public normal_behavior 
    @ requires …MIN_INT… 
    @ ensures …MIN_INT … 
    @ also 

private void generatePreCondSaveOld(String name, Term ast) { 
  LogicalVar F = POs.registerVarInSymbolTable(name,  ast.type()); 
  POs.appendToPreCond(new IsTrue(new BinOpTermTerm(  
    F, 
    JEq.INSTANCE, 
    ast, JBoolean.INSTANCE))); 
} 



    @ public normal_behavior 
    @ requires …MIN_INT+1… 
    @ ensures …MIN_INT+1 … 
    @ also 
    @ … 
    @ also 
    @ public normal_behavior 
    @ requires …0… 
    @ ensures …0… 
    @ also 
    @ public normal_behavior 
    @ requires …1… 
    @ ensures …1… 
    @ also 
    @ … 
    @ also 
    @ public normal_behavior 
    @ requires …MAX_INT… 
    @ ensures …MAX_INT… 
    @*/ 
 
In terms of theorem proving, we have to prove 
 
For all i: 

if Pi holds before the method call, then Qi holds after the method call. 
 
Let us make the following assumption on the theorem prover: 
if our theorem prover receives as input a formula to prove which contains a free 
variable,  

F(i) 
Then it will consider it true if and only if it holds for all i, i.e. it can make no 
assumption on i! 
 
For example, 
 i=j  ⇒ i+1=j+1 
is considered true, because logically equivalent to: 
 ∀i, j ∈N, (i=j  ⇒ i+1=j+1) 
 
Note: (for readers knowing the theorem prover currently used, Isabelle): In Isabelle, 
free variables correspond to arbitrary values, introduced by the sign ∧, and the 
above assumption is actually rule allI (cf [7], page 91). 
 
Hence, if we only register this declared variable and do not bind it, the theorem 
prover cannot make any assumption about it and will act as if there were an 
implicit “forall var” in front of the triple. 
 



 
 
If this assumption should not be respected by the theorem prover, we can just 
iterate on logical variables in the symbol table and add manually these universal 
quantifications to the Hoare triple, just before the formula be proven. 

2.8. Logical variables and program variables 

2.8.1. Variable handling in JML  Vs in first-order logic 
During the transformation process, we meet impedance mismatches between JML 
and first-order logic, because of different handling of the variables. 
 
In JML, variables can be: 

- any declared variable 
- formal parameters 
- fields 

 
In our first-order logic, logical variables refer to: 

- the store S (generated by the POG) 
- the set of assignable locations M (generated by the POG) 
- variables used to save prestate values that we want to access in a 

postcondition and generated by the POG 
- any declared variable (old or forall) (variable already existing in JML) 

 
whereas program variables refer to: 

- formal parameters  (already existing in JML) 
 
In the version of first-order logic used in Jive, Fields are always considered being 
“looked up” at corresponding locations in the heap, so that they are not treated as 
variables in formulas. 

2.8.2. The impedance mismatch and how it is solved 
If the JML parser differentiates fields from other variables, it unfortunately does not 
differentiate in its tree: 

- declared variables 
- from formal parameters 

Both are local variable expressions! 
 
Hence, one needs to help the expression transformer to differentiate between then 
and decide whether we have: 

- a formal parameter (transformed to a program variable) 
- a JML declared variable (transformed to a logical variable) 

 

private void generatePreCondForAll(String name, Type type) { 
  LogicalVar F = POs.registerVarInSymbolTable(name,  type); 
} 



To that aim, the Proof Obligation Generator provides a static method isLogical(), 
which the Expression Transformer can use when in doubt. This functions actually 
looks up in the symbol table of the proof obligation being built, also checks the 
exception name if we are building an exceptional postcondition, and checks 
variables used in (forall …) expressions (currently not added in the symbol table). 
 
Furthermore, we said formerly that the Expression Transformer has to detect 
formal parameters. Since we have no local variables to methods here, it is 
straightforward that any “Local Variable Expression” that is not considered logical 
by the Proof Obligation Generator is a formal parameter and can be treated as 
explained in 2.5.5.5 

2.8.3. What about name colliding? 
Obviously, it is not advisable to the user to use a forall or old variable with the same 
name as fields, but if this should happen (for example, in case of private fields one 
does not know), Jive handles it the following way. 
 
If a variable in a specification is bound to a forall or old declaration, it “hides” any 
field which would have the same name, which is the intuitive behavior one expects 
and actually, already the behavior of JML. To access such a field, one would have to 
use this.name so that there is no lack of functionality. 
 
Let us mention that any colliding within a specification is not allowed by JML (it 
fails with a message), so that no renaming is needed. 
 

2.9. Nested specifications 
If we do not have clauses, but nested specification, we use the stack functionality 
of the Proof Obligations Accumulator. All new proof obligations in the future will 
actually start with the one we pushed on the stack, until we pop it. 
Since we have a stack, this allows any level of nesting. We use a variable offset for 
other methods to know whether we are in a nested specification or in the root one. 
 

 
 

private void generatePOsForNestedSpecCases(JmlTypeDeclaration type, 
  JmlMethodDeclaration method, JmlGeneralSpecCase s pecCase) { 
  POs.pushPO(); 
  offset++; 
  for (int i = 0; i < specCase.specBody().specCases ().length; i++) 
    generatePOForSpecCase(type, method, specCase.sp ecBody().specCases()[i]); 
  offset--; 
  POs.popPO(); 
}  



3. Output interface 
 
If you would like to retrieve the triples and logical var tables from the proof 
obligation generator without knowing the implementation details, this subsection 
is for you. 

3.1. Passing types to the Proof Obligation Generator 
There is a unique instance of the Proof Obligation Generator, which you can get 
with the static method getSingleton(); 
 
Then the static method setTopLevelTypes() allows to pass the abstract syntax tree 
of the JML-annotated program (which is the output of the JML parser…). 

3.2. Launching and getting the Output 
The Proof Obligation Generator method execute() returns an instance of 
ProofObligationAccumulator. This object contains all of the generated proof 
obligations. 
 
The package jive.ContainerInterface.HoareFrontend contains all necessary tools to 
make use of it. 

3.3. Iterator on Proof Obligations 
Calling the method iterator() on the object – instance of 
ProofObligationAccumulator - we got from the generator gives us an iterator on 
proof obligations. It has the basics features you can expect from a forward iterator, 
that is: 
- a method next() which returns the next Proof Obligation, which is an instance of 
class ProofObligation 
- a method hasNext()  which precises if there is any remaining proof obligation. 
 

3.4. A Proof Obligation 
All Proof Obligations are instances of ProofObligation. A proof obligation consists 
of: 

- a triple, i.e. a precondition, a method reference and a postcondition. 
This is an instance of the class Triple. 

- a table with all registered logical variables (the store in the prestate, 
the set of assignable locations, expressions in the prestate, …) 

3.5. A Triple 
These triples are the very class we saw in the input interface, if you have read it. We 
called the constructor of the triple with a precondition, a method reference and a 
postcondition. 
 
To get these data back, the interface is straightforward: 



- getPre() returns the precondition (a Formula) 
- getCompRef() returns the method reference 
- getPost returns the postcondition (a Formula) 

 

3.6. Iterators on logical variables 
For each Proof Obligation, getting all of the registered logical variables is 
performed with an iterator with an interface very similar to the iterator on proof 
obligations: 

- calling next() returns the next logical variable 
- calling hasNext() precises whether there remains any logical variable 

to be processed. 
 
This iterator, like that on proof obligations, is obtained with the method 
logicalVarIterator() of the current proof obligation. 

3.7. Code sample 
 
The following code prints out all of the generated proof obligations. 
 
//The Proof Obligation Generator is the unique inst ance of its class 
ProofObligationGenerator pog = ProofObligationGener ator.getSingleton(); 
 
//We first parse the annotated code with the JML Ch ecker 
topLevelTypes = Main.currentSession().topLevelTypes (); 
 
//We pass them to the Proof Obligation Generator 
pog.setTopLevelTypes(topLevelTypes); 
 
//and execute the generation, we get the accumulato r as output. 
ProofObligationAccumulator poAccumulator = pog.exec ute(); 
 
//Then we can iterate on Proof Obligation 
ProofObligationIterator poIterator = poAccumulator. iterator(); 
while(poIterator.hasNext()) 

ProofObligation po = poIterator.next(); 
 
//We can access pre- and postconditions, and the me thod reference 
System.out.println(po.getTriple().getPre()); 
System.out.println(po.getTriple().getCompRef()); 
System.out.println(po.getTriple().getPost()); 
 
//And then iterate on logical variables for this Pr oof Obligation 
LogicalVarIterator lvi = po.logicalVarIterator(); 

     while(lvi.hasNext()) 
LogicalVar lv = lvi.next(); 
System.out.println(lvi); 

} 
 

} 
 
Note that actually, in a proof obligation, toString() is overridden and prints 
everything including logical variables, which allows shorter code inside the main 
loop in this case. 



IV. Tests 
The testing part is performed with JUnit. In this part, we give some examples of 
test code together with what we expect. 
 
 

1. Basic: pure, non_null, helpers and constructors 
So that tests be as orthogonal as possible, we first test sugar keywords and 
whether invariants are correctly handled, without specifications. 
 
package jive.PC.FrontEnd.testfiles; 
public class NoSpec { 
    private int i, j; 
 

public /*@pure@*/ NoSpec() {}    Pure constructor 
 
What is expected: invariant only in postcondition, with a trivial precondition. 
Additional proof obligation for purity, with fields as i and j as only assignable 
locations. 
 

public NoSpec(int a) {}     Constructor 
 
What is expected: invariant only in postcondition, trivial precondition. 
 
 private /*@helper@*/ NoSpec(long a) {}  Helper constructor 
 
What is expected: trivial pre- and postconditions. 
 

public void nothing() {}     Method 
 

What is expected: invariants in pre- and postconditions. 
 
private /*@helper@*/ void helper() {}  Helper method 
 

What is expected: trivial pre- and postconditions. 
 
public /*@pure@*/ void pure() {}   Pure method 

 
What is expected: a PO with invariants in pre- and postcondition, an additional PO 
for purity (nothing is assignable). 

 
public /*@non_null@*/ Object   Non-null result 

nonNullResult() { 
return new Object(); 

} 
 



What is expected: invariant in precondition, result is non-null (and invariant) in 
postcondition. 

 
Non-null parameter 

public void nonNullParameter(/*@non_null@*/ Object a) 
{} 
 

What is expected: parameter is non-null (and invariant) in postcondition, invariant 
in post-condition. 
       
} 

2. Privacy checking 
We know check that specification binding occurs as we wish (with trivial 
specifications) 
 
package jive.PC.FrontEnd.testfiles; 
 
public class PrivacyChecking { 
 /*@private behavior 
  @requires true; 
  @ensures true; 
  @*/ 
 private void private_private() { 
 } 
 
What is expected: specification is statically bound 
 (jive.PC.FrontEnd.testfiles.PrivacyChecking@private_private() as method reference) 
 
 /*@public behavior 
  @requires true; 
  @ensures true; 
  @*/ 
 public void public_public() { 
 } 
 
What is expected: specification is dynamically bound like the method 
(jive.PC.FrontEnd.testfiles.PrivacyChecking:public_public() as method reference) 
 
 /*@private behavior 
  @requires true; 
  @ensures true; 
  @*/ 
 public void public_private() { 
 } 
 
What is expected: specification is NOT dynamically bound like the method, but 
statically bound (jive.PC.FrontEnd.testfiles.PrivacyChecking@public_private() as 



method reference). This is the case when a call to the MethodRef method is not 
enough and we need to generate the reference by ourselves. 
 
} 

3. Behavior specifications 
Now, we check the behavior keywords. Again for orthogonality reasons, we allowed 
all locations to be assigned (This is the default setting if nothing was said about 
this, but since they are heavyweight specificaitons, skipping the assignable 
assertion would generate a warning…) 
 
package jive.PC.FrontEnd.testfiles; 
 
public class Behaviors { 
 
    public int i, j; 
     
    /*@ 
     @ public behavior 
     @ requires i!=0; 
     @ ensures j>1; 
     @ assignable \everything; 
     @*/ 
    public void behavior() { 
    } 
 
What is expected: invariants in both pre- and postconditions, the precondition i!=0, 
normal and exceptional postconditions as implications (χ=Normal ⇒… ,and also if 
there had been an exceptional postcondition, χ=Exc⇒…). 
 
    /*@ 
    @ public normal_behavior 
    @ requires i!=0; 
    @ ensures j>1; 
    @ assignable \everything; 
    @*/ 
    public void normal_behavior() { 
         
    } 
 
What is expected: invariants in pre- and postconditions, the precondition i!=0, 
χ=Normal as postcondition, normal postconditions with no implication (χ=Normal 
⇒…  would be useless, this is an optimization). 
 
    /*@ 
    @ public exceptional_behavior 
    @ requires true; 
    @ signals (Exception e) j>1; 
    @ signals (RuntimeException e) j>3; 
    @ assignable \everything; 



    @*/ 
    public void exceptional_behavior() { 
         
    } 
 
What is expected: invariants in pre- and postcondition, χ=Exc as postcondition, 
exceptional postconditions conjoined with with no general implication (χ=Exc ⇒…  
would be useless, this is an optimization) but with type implications (typeof(ExcV) 
<: RuntimeException ⇒ j>3 for example). 
 
} 
 

4. Old expressions 
 
We know test \old expressions, and use of old variable declarations. 
 
package jive.PC.FrontEnd.testfiles; 
 
public class OldExpression { 
    public int i; 
    public B x; 
    /*@requires true; 
    @ensures \old(i)==i+1; 
    @ensures \old(this.i+2)==i+1; 
    @ensures \old(x.f)==i+2*\old(x.f); 
   */ 
  public void old() { 
  } 
 
What is expected: invariants in pre- and postconditions, three normal 
postconditions conjoined with χ=Normal implication, logical variables !x0, !x1 and 
!x2 created and registered, to save I, this.i+2 and x.f in the prestate, same logical 
variable for the two identical expressions x.f, \old replaced with these logical 
variables. 
 
 
  /*@old int oldi = i; 
    @requires true; 
    @ensures oldi==i+1; 
   */ 
  public void oldVarDecl() {} 
 
What is expected: invariants in pre- and postcondition, normal postconditions 
conjoined with χ=Normal implication, a logical variable with user-defined name 
oldi registered, and a precondition to store i into this logical variable in the 
prestate. 
 
} 



5. Forall expressions 
package jive.PC.FrontEnd.testfiles; 
 
public class ForAllExpression { 
    public int i; 
     
    /*@public behavior 
    @forall int a; 
    @requires a!=0; 
    @ensures \result!=a; 
   */ 
    public int forall() { 
        return 0; 
    } 
 
What is expected: invariants in pre- and postconditions, normal postcondition 
conjoined with χ=Normal implication, logical variable a registered (with the same 
name). 
 
 
    public boolean a; 
    /*@public behavior 
    @forall int i; 
    @requires i!=0; 
    @ensures \result!=i; 
   */ 
    public int forallFieldCollide() { 
        return 0; 
    } 
} 
 
What is expected: The same as above, and variable I inside the specification 
interpreted as bound logical variable and NOT as field (this is already done at the 
JML level). 

6. Nested specifications 
package jive.PC.FrontEnd.testfiles; 
 
public class NestedSpec { 
     
 
 
    /*@public behavior 
    @old int i = 2; 
    @requires i!=0; 
    @{| 
    @   requires true; 
    @   assignable \nothing; 
    @   ensures \result!=i; 
    @ also 



    @   old int j = 1; 
    @       requires i!=0 && (\forall int l;true;tr ue) && 

 (\forall int l;true;true); 
    @   assignable \nothing; 
    @       ensures \result!=i; 
    @ |} 
    */ 
    public int oneLevel() { 
        return 0; 
    } 
 
What is expected: Two proof obligations, one with the common i!=0 precondition 
with the first nested specification, the second with that same precondition and the 
second nested specification. Variable i is also declared in the header, and is hence 
used by the two proof obligations as well. 
 
    /*@public normal_behavior 
    @forall int i; 
    @requires i!=0; 
    @{| 
    @   requires true; 
    @   assignable \nothing; 
    @   ensures \result!=i; 
    @ also 
    @   old int j = 1; 
    @       requires i!=0; 
    @   assignable \nothing; 
    @       ensures \result!=i; 
    @ |} 
    */ 
    public int oneLevelNormal() { 
        return 0; 
    } 
 
What is expected: Two proof obligations as above, both normal. 
 
 
    /*@public exceptional_behavior 
    @forall int i; 
    @requires i!=0; 
    @{| 
    @   requires true; 
    @   assignable \nothing; 
    @ also 
    @   old int j = 1; 
    @       requires i!=0; 
    @   assignable \nothing; 
    @ |} 
    */ 
    public int oneLevelExceptional() { 
        return 0; 
    } 
 



What is expected: Two proof obligations as above, both exceptional. 
 
    /*@public normal_behavior 
    @forall int i; 
    @requires i!=0; 
    @{| 
    @   requires true; 
    @   ensures \result!=i; 
    @ also 
    @     {| 
    @     requires true; 
    @    ensures \result!=i; 
    @     assignable \nothing; 
    @    also 
    @       {| 
    @        requires true; 
    @        ensures \result!=i; 
    @         assignable \nothing; 
    @      also 
    @        forall int k; 
    @         requires i!=0; 
    @        ensures \result!=i+i; 
    @         assignable \nothing; 
    @       |} 
    @     |} 
    @ |} 
    */ 
    public int moreLevelsNormal() { 
        return 0; 
    } 
 
What is expected: Four proof obligations, with respect to the way they are nested 
(this is to show that nesting specification is possible and work properly) 
 
} 

7. A “real” example 

7.1. IntMathOps 
We chose to take the following one from [2]: 
 



package jive.PC.FrontEnd.testfiles; 
 
public class IntMathOps { 
    /*@ public normal_behavior 
       requires y >= 0; 
       assignable \nothing; 
       ensures 0 <= \result 
           && \result * \result <= y 
           && y < ((\result+1) * (\result+1));  
      @*/ 
    public static int isqrt(int y) { 
        return (int) Math.sqrt(y); 
    } 
} 
 
 

7.2. Visualization 
The Proof Obligation Generator comes along with a Proof Obligation Visualizer 
which offers a graphical view on the tree and the structure of proof obligations. 
 
We present below views of the precondition and postcondition in the Hoare triple. 
 
In this proof obligation, the following logical variables are registered: 

- S (the store) 
- !x0 (the value of y in the prestate) 



 

The Precondition 

The Invariant 

Saving the store 

Saving the value 
of parameter y in 
the prestate 



 

The three normal 
postconditions 

Normal behavior 
(cannot throw 
any exception) 

No location can be 
modified. 

Invariant 



V. Conclusion 

1. What the current implementation covers 
 
The following features are supported: 

 
• appending invariants with respect to constructors and helpers 
• adaptative binding with privacy of specifications and methods, i.e. it makes 

sure that a private specification is bound statically. 
• preconditions (requires), even when multiple 
• postconditions (normal: ensures, exceptional: signals), even when multiple 
• assignable clauses (including saving the store in a logical variable S), 

handled “the modifies way”. An optimization prevents unused generation of 
S. 

• computing the downward closure and “saving” it in a logical variable M 
• optimization for \assignable nothing, \assignable everything 
• defaults for behavior and lightweight specification when clauses are 

omitted 
• desugaring of normal and exceptional behavior, and optimization of 

corresponding postconditions (removing the implication) 
• pure methods with additional proof obligation 
• non-null parameters and results 
• \old expressions, \forall and \exists expressions (for the latter, without 

registration in the logical variable table of proof obligations). They appear in 
pre- and/or postconditions (\old only in postconditions). 

• Old and forall variable declarations (unlike the above ones, they appear 
before a JML specification header) 

• Nested specifications (any level) 
• Handling of special keywords, even when no specification is given 
• Everything which is supported by the expression transformer that does not 

require further assistance of the Proof Obligation Generator 



2. Further work 
 
There is still an issue when the user uses a \forall (or an \exists) within a pre- or 
postcondition (not to be mistaken with global forall declarations). In this case, it is 
not decided yet whether to register the corresponding variable or not. The current 
implementation does consider a \forall variable logical, but without officially 
registering them. It is possible that this should be changed in the future, if that 
should be needed by the team at Kaiserslautern. 
 
In that case, a difficulty is that the same name could be used several times (in two 
different succeeding – not nested - \forall), and we should rename them so as to 
avoid collisions in the logical variable registry. 
 
Model fields still need a little patch to be properly handled (not as concrete 
locations). They are marked with TODOs in the code. 
 
 



 

VI. Annex: Katja Interface 
Since this interface changes and adapts to the needs, one might find useful, for 
possible debugging purposes, to find included the interface for Katja terms and 
formulas which was in use when this paper was written. 

1. Terms 
 
package jive.ContainerInterface.Term 
 
Term = Constant 
     | Variable 
     | FunctionApplication 
     | UnaryOpTerm 
     | BinaryOpTerm 
     | ConditionalTerm 
     | Field ( String name, ClassOrInterfaceType dt ype, Type type ) 
     | SetTerm (TermList elems, Type type) 
 
 
TermList * Term 
 
Constant = True ( Type type ) 
         | False ( Type type ) 
         | ByteLiteral    ( Byte value, Type type )  
         | ShortLiteral   ( Short value, Type type ) 
         | IntegerLiteral ( Integer value, Type typ e )          
         | LongLiteral    ( Long value, Type type )  
         | Null ( Type type ) 
         | Normal( Type type ) 
         | Break( Type type ) 
         | Exc( Type type ) 
         | Ret( Type type ) 
         | DeclaredConst ( String theory, String na me, Type type ) 
 
Variable = ProgVar    ( String name, Type type ) 
         | LogicalVar ( String name, Type type ) 
         | Dollar ( Type type ) 
         | Chi  ( Type type ) 
         | This ( Type type ) 
         | ResV ( Type type ) 
         | ExcV ( Type type ) 
 
 
FunctionApplication = FuncAppl ( DeclaredConst func , TermList args, Type type ) 
                    | Tuple ( TermList entries, Typ e type ) 
 
 
UnaryOpTerm (UnaryOp op, Term t, Type type) 
 
BinaryOpTerm = BinOpTermTerm (Term term1, BinaryOp   op, Term term2, Type type) 
             | BinOpTermType (Term term1, BinaryOpT   op, Type term2, Type type) 
             | BinOpTypeType (Type term1, BinaryOpT T op, Type term2, Type type) 
 
ConditionalTerm ( Term condition, Term thenExpr, Te rm elseExpr, Type type ) 
 
 
UnaryOp = JNot()         // Java boolean negation !  
        | JBitCompl()    // bit complement  
        | JUPlus()       // unary plus + 
        | JUMinus()      // unary minus - 
 
BinaryOp = JLogicalAnd()     // strict AND & 
         | JLogicalOr()      // strict OR | 
         | JConditionalAnd() // lazy AND && 



         | JConditionalOr()  // lazy OR || 
 
         | JEq          // reference equality == 
         | JNotEq       // reference inequality != 
         | JLess()      // comparison < 
         | JLessEq()    // comparison <= 
         | Element()    // subset relation \in 
 
         | JLShift()      // left shift << 
         | JRShift()      // right shift >> 
         | JURShift()     // unsigned right shift > >> 
         | JPlus()         // math operator + 
         | JMinus()        // math operator - 
         | JTimes()        // math operator * 
         | JDiv()          // math operator / 
         | JMod()          // math operator % 
         | JBitAnd()        // bitwise AND & 
         | JBitOr()         // bitwise OR | 
         | JBitXOr()        // bitwise XOR ^ 
 
BinaryOpT = InstanceOf()  // JML instanceof operato r 
 
BinaryOpTT = Subtype()       // JML: <: 
           | ProperSubtype() // JML: <<: 
           | JEq()        // reference equality == 
           | JNotEq()     // reference inequality ! = 
          

2. Types 
Type = Store  () 
     | Status () 
     | ArrayBaseType 
     | NullType () 
     | FunctionType ( Type dtype, Type rtype )  // _ -> _ 
     | TupleType                                // _ *  _ 
     | SetType () 
     | JMLObjectSet () 
     | JMLValueSet  () 
 
ArrayBaseType = ReferenceType 
              | PrimitiveType 
              | ProverType (String theory, String t ype) 
 
ReferenceType = ClassOrInterfaceType 
              | ArrayType ( ArrayBaseType type ) 
 
ClassOrInterfaceType = ClassType 
                     | InterfaceType ( String name,  StringList pkg ) 
                             
ClassType = ConcreteClassType ( String name, String List pkg ) 
          | AbstractClassType ( String name, String List pkg ) 
           
StringList * String 
 
PrimitiveType = JBoolean() 
              | JByte() 
              | JShort() 
              | JInt() 
              | JLong() 
 
TupleType * Type 
 



3. Formulas 
 
package jive.ContainerInterface.Formula 
 
import term.katja 
 
Formula = IsTrue 
        | FNot 
        | BindingFormula 
        | BinaryFormula 
         
FormulaList * Formula         
         
IsTrue( Term t )   // here the transition Term -> F ormula takes place 
FNot ( Formula formula ) 
 
BindingFormula ( BindingOp op,  
                 BindingList bindingList, 
                 Formula formula )          
 
BindingList * Binding 
Binding (LogicalVar lv) 
                   
BindingOp = Forall() 
          | Exists() 
 
BinaryFormula ( Formula left, FormulaOp op, Formula  right ) 
 
FormulaOp =  FAnd()        // /\ logical and 
           | FOr()         // \/ logical or 
           | FImplies()    // logical implication = => 
           | FIff()        // logical equivalence < ==> 
           | FNotIff()     // logical inequivalence  <=!=>         
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