

Jive/JML

Generating Proof Obligations

From JML Specifications

Ghislain Fourny
gfourny@student.ethz.ch

Swiss Federal Institute of Technology Zurich
Software Component Technology Group

Semester Project
March 2005

Supervisors:
Professor: Prof. Dr. Peter Müller
Assistant: Ádám Darvas

Table of Contents

I. INTRODUCTION 5

1. BEHAVIORAL INTERFACE SPECIFICATION 6
2. INTRODUCTION TO JIVE 7
3. RELATED WORK IN PROGRAM CORRECTNESS 8

II. JML BACKGROUND 9

1. JML BASICS 9
2. JML SPECIFICATION : GRAMMAR 10
2.1. SPECIFICATION CLAUSES 10
2.2. SPECIFICATION CASES 12
2.3. HEAVYWEIGHT VS LIGHTWEIGHT SPECIFICATION CASES 12
2.4. METHOD SPECIFICATION 14
2.5. OTHER JML FEATURES 14
2.6. JML KEYWORDS 14
3. JML 5.0 CLASSES: IMPLEMENTATION OF THE SPECIFICATION 15
3.1. THE (INTERNAL) OUTPUT OF THE JML CHECKER 15
3.2. METHOD SPECIFICATION 16
3.3. HEAVYWEIGHT AND LIGHTWEIGHT SPECIFICATION CASES 16
3.4. GENERAL SPECIFICATION CASES 17
3.5. SPECIFICATION CLAUSES, NESTED SPECIFICATION CASES 18

III. PROOF OBLIGATION GENERATOR 21

1. PROOF GENERATIONS INTERFACE 21
1.1. FORMULAS AND TERMS 21
1.2. TRIPLES 22
1.3. LOGICAL VARIABLE REGISTRIES 22
1.4. EXPRESSION TRANSFORMER 22
1.5. EXPRESSION TRANSFORMER OLD HASH MAP 23
1.6. PROOF OBLIGATION ACCUMULATOR 23
2. PROOFOBLIGATION GENERATOR 26
2.1. OVERVIEW - ARCHITECTURE 26
2.2. METHODS IN THE POG 27
2.3. EXTERN LOOP 27
2.4. NO SPECIFICATION 28
2.5. SPECIFICATION 28
2.6. INVARIANT GENERATION 44
2.7. VARIABLE DECLARATION 44
2.8. LOGICAL VARIABLES AND PROGRAM VARIABLES 48
2.9. NESTED SPECIFICATIONS 49

3. OUTPUT INTERFACE 50
3.1. PASSING TYPES TO THE PROOF OBLIGATION GENERATOR 50
3.2. LAUNCHING AND GETTING THE OUTPUT 50
3.3. ITERATOR ON PROOF OBLIGATIONS 50
3.4. A PROOF OBLIGATION 50
3.5. A TRIPLE 50
3.6. ITERATORS ON LOGICAL VARIABLES 51
3.7. CODE SAMPLE 51

IV. TESTS 52

1. BASIC: PURE, NON_NULL , HELPERS AND CONSTRUCTORS 52
2. PRIVACY CHECKING 53
3. BEHAVIOR SPECIFICATIONS 54
4. OLD EXPRESSIONS 55
5. FORALL EXPRESSIONS 56
6. NESTED SPECIFICATIONS 56
7. A “ REAL ” EXAMPLE 58
7.1. INTMATHOPS 58
7.2. VISUALIZATION 59

V. CONCLUSION 62

1. WHAT THE CURRENT IMPLEMENTATION COVERS 62
2. FURTHER WORK 63

VI. ANNEX: KATJA INTERFACE 64

1. TERMS 64
2. TYPES 65
3. FORMULAS 66

VII. BIBLIOGRAPHY 67

Abstract

The new version on Jive takes JML-annotated Java programs as input. After an
introduction to Jive and details about the JML specification and implementation,
this paper describes the internal implementation of the Proof Obligation Generator
in Jive’s front-end, as well as its external (input and output) interfaces. We then
give some examples of code we performed tests against.

If you would like a quick start, you are advised to jump directly to part III, paragraph
3.7.

I. Introduction

1. Behavioral interface specification
The first generations of information systems were relatively small, so that one
could write and debug programs while having a high control of the situation.
Should one find a flaw, one would just try to correct it and test again.

Over the past few decades, computer got used everywhere, including where bugs
could have severe consequences, either because human lives are at stake, or for
financial reasons. Not only does this mean that the final version of a system should
have no bugs, but also that one does not even have the opportunity to test and
debug. You cannot (yet) send a robot on mars for each intermediate version of each
module of each programmer. The first version should be final, and tests can only be
simulated.

The software used in control towers for flight navigation is still written in old
languages like Fortran or Cobol: who would like to take the responsibility to convert
this in a safer, more modern and efficient language like Java or C++, possibly
introducing flaws? And even if we keep these respectable languages, only statistics
protect us: if only a limited number of bugs occurred in the last thirty years, one
hopes it will remain stable in the future.

Programs are so large, that no human being can have a sufficiently clear overview
of it to be able to say: this will work the way we want it to. Computers? Merely
knowing whether a program will terminate instead of looping, or whether a given
line of code will ever be used, has been proved undecidable!

Though, there still remains a solution: cooperation between programmers and
computers. Programmers subdivide their work in modules and annotate each
method or variable in their language. If each method exactly does what it should,
the whole program should work as intended.

Hence if a computer could process each method and show that it behaves
according to its annotation, the program would be proven correct, and the only
program to be proven “by hand” would be this unique prover. This requires that the
computer understands our language, which we know to have its flaws and
ambiguities. Hence, and this is the basic idea of Jive at its beginning, the
programmer could write annotations in a formal, machine-checkable language,
unambiguously.

Annotations could be contracts between the implementer of the method and its
caller. If a certain precondition holds, which the caller has to make sure and the
implementer can assume, then the implementer’s job is to make sure a certain
postcondition will hold after termination of the method, which the caller then can
assume.

2. Introduction to Jive
In this part, we explain shortly the architecture of Jive. More information can be
found in [5].

Jive stands for Java Interactive Verification Environment. The programmer
annotates his programs and these annotations are processed by Jive. This leads to
safer software for at least two reasons:
- Because the programmer using such annotations has to think about correctness
of his programs.
- Because these annotations are then converted to proof obligations by Jive, which
are sent to a theorem prover.

Jive is bound to the Java language. This can be considered a drawback, since it
would have to be re-implemented, should one want to reuse it in another (not
Java-like) language. But it also is a great advantage, since it knows Java in depth.

In its first version, Jive relied on first-order logic for this is the standard as an input
to theorem provers. Programmers were also required to enter their annotations in
first-order logic, so that the computer could interpret preconditions and
postconditions. This means that lots of developers would have to learn a new,
abstract, syntax, and a way of thinking which does not correspond to the way they
program.

Hence, a compromise has to be found, and this compromise is JML. JML is a
behavioral interface specification language developed by Gary Leavens and his
group at the Iowa State University. The expressive power of JML is potentially at
least the same as first-order logic, however its syntax is pretty close to that of Java.
JML also allows one to specify invariants.

The second version of Jive will take JML-annotated Java programs as input. The
front end (proof obligations and invariants generation) is handled by the Software
Component Technology group, and the backend (proving) by the University of
Kaiserslautern. The aim of the project, and the topic of this article, is to describe the
part of the front end which converts JML specifications into proof obligations in
first-order logic, the Proof Obligation Generator.

3. Related work in program correctness
If Jive is able to prove a specification true, it does not give much assistance to the
user should the proof fail.

In the state-of-the-art, it is possible to generate counter-examples showing that
the specification does not hold in the case of model checking. Work is in progress to
do the same in theorem proving.

Research is also been carried out in how to detect common programming errors,
such as null pointers, illegal array accesses. One example of such a tool is ESC
(Extended Static Checker). It is above the decidability ceiling, so that the approach
is neither sound nor complete. But it can be of good help to programmers in the
debugging stage. It is explained in [8].

Another topic of research is about type universes. Each type is associated with
three “modifiers”: peer, rep and read-only, which organize instances of classes in
universes. Each universe is owned by one object, which is the only one outside the
universe which has write access rights on elements in this universe. Element in a
universe have also mutual write access rights. This provides a framework for a
better encapsulation for groups of cooperating objects [9].

II. JML Background

1. JML Basics
The Java Modeling Language is a behavioral interface specification language.
Behavioral, because it describes rigorously the way a method behaves, in terms of
contract between the user and the programmer. Interface, for it describes - just like
Java, actually completing it - what methods give access to a given object and how
they are to be used (signatures).

The notion of contract is described in depth in [1]. Basically, it is as if the user and
the programmer took the following agreement:

- the user has to make sure the precondition holds before calling the method.
He then can be sure that the postconditions hold, whether the method
successfully returns or throws an exception.

- The programmer of the method can assume that the preconditions hold,
and is then required to make sure the postconditions will hold at the end of
the call both in case of failure and of success.

A more detailed insight in JML can be found in the article written by their designers
[2].

2. JML Specification: grammar
In this section, we get familiar with the concepts of JML according to its grammar
(see paragraph 19.6, [5]), and give the underlying semantics. We give these
concepts bottom-up; they are summed up on the following picture.

A sequence of specification clauses builds a specification case. Specification cases
are independent from one another, and their sequence builds a method
specification. It is not our goal in this part to repeat the JML documentation (the
reader can find it in [2], part 9), we rather wish to focus on how we interpret the
grammar to implement the proof obligation generator.

2.1. Specification clauses
We first consider the atomic JML elements: specification clauses. Each of them
gives a particular contribution in building a specification case.

2.1.1. Header
In the header, specification clauses indicate preconditions. Such a clause begins
with the keyword requires .

If there is no such clause, and as described in the JML documentation, nothing is
promised to the implementor: the precondition is true. This means that whatever
the context in which the method is called, the postconditions should hold after the
call.

requires...
requires...
ensures...
signals...

Method specification

Specification
cases
(“Contracts”)

Header

Body

Specificatio
n clauses

r equires...
r equires...

assignable ...
ensures ...

ensures ...

2.1.2. Body
Body specification clauses specify the behavior of the method provided that the
user respected the preconditions in the header.

The behavior of a method can be described with the following clauses:

• assignable clauses, along with the only variables the method can assign
to. If there are several assignable clauses, we group all of the variables. We
will however not strictly respect the JML documentation, in that we actually
check whether the method modifies the variables or not, i.e. whether the
value of the variables are the same in the prestate and in the poststate. It
remains possible for the program to assign to these variables and restore
their prestate values, without being detected by Jive (this is a different
semantics than that of JML)

• ensures clauses, along with the postconditions. If there is no such clause,
as described in the JML documentation, the postcondition is true, i.e. no
particular condition has to hold after the execution of the method.

• signals clauses, followed by a type of exception and an exceptional
postcondition the poststate has to satisfy, should an exception of this type
or of a subtype be thrown. If there is no such clause, there is no particular
constraint when an exception is thrown.

• diverges , when, working-space-clause , duration , which we do not
support.

For each keyword in the body, clauses are in conjunction: if several of the same kind
appear, we will group them with the boolean operator AND.

2.1.3. Nested specification cases
Sometimes, several specification share common preconditions. In this case, it is
possible to nest them.
In this case, the body is not a sequence of clauses, but a collection of nested
specification cases:

header
{|
 Specification 1;
also
 Specification 2;
 …
|}

Where specification1, 2… also contain a header and a body (possibly empty). Nested
specifications should be of the same sort that the external one: if it is heavyweight
and normal behavior, all of them are implicitely heavyweight and normal behavior
as well.

Higher level of nesting is allowed.

If desugared, as explained in [3], the above specification is equivalent to:

header
Specification 1;

also
header
Specification 2;

 …

2.2. Specification cases
A specification case is a contract between the caller and the implementer (see
introduction and [1]). We can reformulate our definition of the contract in terms of
JML: If the caller makes the preconditions (requires) true, he can then assume that
the postconditions (ensures, signals, assignable) are true after the call. The
implementer can assume the precondition, has to make the postcondition true, in
case of normal termination (ensures) but also when an exception is thrown
(signals), and has to ensure that no location which should not be assigned has
been assigned.

Any specification case consists of a header (possibly empty) and a body (possibly
empty).
Now, there are three types of specification cases:

• Exceptional specification case: there can be no ensures clause since an
exception has to be thrown as soon as the precondition holds.

• Normal specification case: there can be no signal cause since no exception
can be thrown when the precondition holds.

• Generic specification case: no particular constraint, the method can
terminate normally or throw an exception.

The nature of a specification case is specified by the behavior in which it is
enclosed, as explained in the next subsection.

2.3. Heavyweight Vs lightweight specification cases
There are four ways to present specification cases.

• Heavyweight: a behavior specification which is a complete specification
case of any kind (normal, exceptional, generic). It is put in a sort of “shell”
with extra information about this kind and the privacy.

• Lightweight (incomplete): a generic specification case, possibly incomplete.
• Model program which we do not handle.
• Code contracts which we do not handle.

We now focus on behavior specifications and lightweight specification cases. Then
we explain how they can all be “desugared” to a heavyweight behavior
specification and how this will affect our work.

2.3.1. Heavyweight specification cases
The easiest specification cases to handle are heavyweight specification cases. For
them indeed, the JML convention (see [2]) completely defines the behavior of the
method.

There are three sorts of heavyweight specification cases:

• Behavior, which is actually a generic specification case introduced by the
keyword behavior .

• Normal behavior, which is a normal specification case introduced by the
keyword normal_behavior

• Exceptional behavior, which is an exceptional specification case introduced
by the keyword exceptional_behavior .

A heavyweight specification case begins with a privacy keyword which gives
information about whom the specification is intended for.

This privacy statement is followed by one of the following keywords: behavior ,
normal_behavior , exceptional_behavior , depending on the type of
heavyweight specification case, and eventually by the specification case header
and body.

2.3.2. Lightweight
In a lightweight specification case, there is neither a privacy statement nor a
behavioral keyword. It is merely a generic specification case.

Since it is not a behavior specification, we neither know whether the method
throws any exception, nor how to interpret missing statements. JML considers
them as not specified and let implementations adapt this to their needs, although
it recommends some possible interpretations. We explain in the following
paragraph which one we took.

2.3.3. Desugaring lightweight

or generic specification cases
As far as we are concerned and as described in [4], we will always consider the
absence of any keyword requires, ensures, signals clause to mean that
the associated condition is true(whatever the exception for the signals
clause). This implies that if there is no requires clause, the implementation has to
deal with loose preconditions to satisfy the postconditions, and that on the other
hand if there is no ensures or signal clause, the degree of freedom in the behavior is
high and the caller cannot assume anything on the result.

As specified in [1], the privacy of a lightweight specification is always that of the
method.

2.4. Method specification
There can of course be several different contracts, such that a method specification
can consist of several specification cases.

Basically, a method specification is composed, in this order, of:

• a sequence of specification cases separated with also (heavyweight or
lightweight, described in the last paragraphs)

• implies_that followed by a sequence of specification cases
(which should be logically implied by their predecessors)

• for_example followed by a sequence of example specification cases
(which should also be implied by their predecessors)

where any part can be omitted. We actually do not support implies_that and
for_example.

In case of overriding, the specification extends this of the overridden method and
has to be prefixed with also . This means that the specification of the overridden
method still has to hold and that the current one extends it. Given that the logic of
Jive handles these verifications, the generated proof will not contain this super-
specification.

2.5. Other JML Features
We also support the following features, which we actually “desugar” and convert
to former clauses:

- pure : a pure method is a method which cannot modify any variable. This is
equivalent to an assignable \nothing clause.
- non_null : for a parameter x it is equivalent to requires x != null and for
a method result, to ensures \result != null

2.6. JML keywords
JML formulas may contain following keywords:

• \old(expression): in a postcondition, this means that we refer to the value of
the expression in the prestate.

• \result: in a postcondition, this is to involve the return value of the method.
• \forall, \exists: in any JML formula, allow universal or existential

quantification
• helper: a method modifier which means that, as a helper, it may break

invariants of the class.

3. JML 5.0 Classes: Implementation of the specifica tion
In this section, we explain how the grammar above is implemented in the JML
source code and introduce the interface used in the proof obligation generator. The
reader interested in the source code should then be able to understand it without
getting the JML source code. It could also help a programmer willing to make use of
the JML output.

Elements of the abstract syntax tree of the specifications built by the JML parser
are in the package org.jmlspecs.checker. It actually completes the AST’s interface of
Multijava (which extends the syntax of Java).

3.1. The (internal) output of the JML Checker
We start with a hash map containing the set of all parsed classes (types), the key of
which is a String with the corresponding name.

Hence, an iteration on the keys gives access to each of the types that the Proof
Obligation generator has to process. Each such type is an instance of
JmlTypeDeclaration.

Interface of JmlTypeDeclaration
ArrayList methods();
JmlDataGroupeMemberMap getDataGroupMap();

For each type, an iteration on the list of the methods returned by method() gives
access to each of them, as instances of JmlMethodDeclaration.

Interface of JmlMethodDeclaration
String ident();
int modifiers();
boolean isPublic();
boolean isPrivate();
boolean isConstructor();
boolean isHelper();
boolean hasSpecification()
JFormalParameters[] parameters();

JmlMethodSpecification
JmlMemberDeclaration

JmlMethodDeclaration

JmlNode

JmlTypeDeclaration

JmlMethodSpecification methodSpecification();

The modifiers of the method are handled as follows :
Utils.hasFlag(method.modifiers(), ACC_PROPERTY) returns true if :

- the method is public when PROPERTY=PUBLIC
- the method is private when PROPERTY=PRIVATE
- the method is protected when PROPERTY=PROTECTED
- the method is pure when PROPERTY=PURE
- the method returns a non-null value when PROPERTY=NON_NULL

and false otherwise.

Interface of JmlFormalParameters (which extends JFormalParameters)
boolean isNonNull();
String ident();
CType getType();

To know whether parameters should be non-null, we call parameters(), cast each
element of the array to JmlFormalParameter and call isNonNull().
For each method, besides its properties, we then access its specification.

3.2. Method specification

Interface of JmlMethodSpecification
boolean hasSpecCases();
JmlSpecCase[] specCases();

Then, after a test, we can access each specification case of the method.

3.3. Heavyweight and lightweight specification cases
A cast test on each element in the array of the method specification determines
whether we have a heavyweight or a lightweight specification case.
If it is heavyweight, it is an instance of JmlHeavyweightSpec, and more particularly
one of the three following subclasses:

JmlMethodSpecification

JmlSpecification

JmlExtendingSpecification

JmlNode

JmlSpecCase

Interface of JmlHeavyweightSpec:
int privacy();
JmlGeneralSpecCase specCase();

The method specCase() then removes the shell and returns the associated
specification case (general in the name is not to be mistaken with generic, which is
a particular case of specification case).

If the cast fails, this element is already a general specification case and a simple
cast is enough to access it.

3.4. General specification cases
Without the shell, lightweight or heavyweight specification cases are all instances
of JmlGeneralSpecCase, and in particularly of one of four subclasses:

We can then work with a variable, the static type of which is JmlGeneralSpecCase,
since they all provide the same interface.

Interface of JmlGeneralSpecCase
boolean hasSpecHeader()
boolean hasSpecBody()

JmlSpecCase

JmlGeneralSpecCase

JmlGenericSpecCase

JmlNormalSpecCase JmlExceptionalSpecCase

JmlAbruptSpecCase

JmlSpecCase

JmlHeavyweightSpec

JmlNormalBehaviorSpec

JmlExceptionalBehaviorSpec JmlBehaviorSpec

JmlGeneralSpecCase

JmlRequiresClause[] specHeader()
JmlSpecBody specBody()

When necessary, a simple instanceof test determines if we have a normal or
exceptional behavior.

3.5. Specification clauses, nested specification cases

3.5.1. Body
If the header is already an array of require clauses, accessing the body is somehow
more intricate. JmlSpecBody gives access either to the body clauses, or to nested
specification cases which all share the header.

Interface of JmlSpecBody
boolean isSpecClauses()
JmlSpecBodyClause[] specClauses()
boolean isSpecCases()
JmlGeneralSpecCase[] specCases()

In any case, the interface allows us to determine in which case we are, and get
either the body clauses or the nested specification cases. In the latter case, we
already know the interface of them (see former paragraph).

3.5.2. Clauses (header and body)
All body clauses (assignable, signals, ensures) are instances of JmlSpecBodyClause.
Curiously, and likely because of the similarity in implementation, requires clauses
also are instances of this class.

JmlNode

JmlSpecBody

JmlGenericSpecBody

JmlNormalSpecBody
JmlExceptionalSpecBody

JmlAbruptSpecBody

3.5.3. Assignable clauses – assignable field set

With the assignable clause, we can access the set of all locations declared
assignable.

Interface of JmlAssignableClause
JmlAssignableFieldSet getAssignableFieldSet();

This set provides additional facilities, and handles special cases like universal set or
empty set. An iterator allows accessing its elements, which are instances of class
JmlSourceField.

Interface of JmlAssignableFieldSet
JmlAssignableFieldSet();
boolean addAll(JmlAssignableFieldSet();
boolean isUniversalSet();
boolean isEmpty();
Iterator iterator();

A datagroup map is associated with each type. It gives information, when a given
variable is allowed to be modified, about which other variables may be modified as
well (the members of its so-called datagroup).

Interface of JmlDataGroupMemberMap
Iterator keyGroupIterator();
JmlAssignableFieldSet getMembers(JmlSourceField);

3.5.4. Other clauses (predicates)
Interface of JmlPredicateOrNotSpecified
boolean isNotSpecified();
JmlPredicate predOrNot();

For each requires, ensures or signals clause, we can get the associated predicate
(after testing whether it is specified). Without entering in further details, invoking

JmlNode JmlSpecBodyClause

JmlAssignableClause

JmlPredicateOrNotSpecified

JmlRequiresClause
JmlEnsuresClause

JmlSignalsClause

the series of methods predOrNot().specExpression().expression() on such a clause
gives the expression.

For signals clauses, we still need some more information about the type of
exception handled in the condition, and the bound variable representing the
exception in the condition.

Interface of JmlSignalsClause
String ident();
CType() type();

III. Proof obligation generator
In this part, we introduce the interface that the proof obligation generator uses to
create proof obligations, then explain how the proof obligation generator has been
implemented.

1. Proof generations Interface

The Proof Obligation Generator is interfaced with:

- The AST, in the JML format (which also relies on MultiJava), which is
the input.

- The formulas and terms it has to generate as output (Interface
generated by Katja)

- The expression transformer, which is another module. Its aim is to
convert JML formulas to Katja formulas. We slightly modified it so
that it supports access to \old expressions (see paragraph 2.5.5.4)

- The Triple interface, which implements a Hoare triple
- The Logical Variable Registry, which contains logical variables created

by the Proof Obligation Generator. We implemented it.
- The Proof Obligation Accumulator, which is the assistant of the Proof

Obligation Generator and helps it create Proof Obligations. We
implemented it as well.

1.1. Formulas and terms
Classes for generating formulas and terms were automatically generated by Katja.
Terms are general logical expression associated with types (Boolean, object,
location, store, …).

Preconditions and postconditions in Hoare triples are all formulas (a statement
that can be true or false) and formulas can be built with terms just like in
mathematics.

A detailed interface of Formulas and Terms is given in the annex.

1.2. Triples
A triple is nothing but a triplet composed of:
- a precondition (of type Formula)
- a reference to a method (of type MethodRef)
- a postcondition (of type Formula)

It is the implementation of a contract.
We create it straight-forward with the constructor:
Triple(Formula, MethodRef, Formula)

1.3. Logical variable registries
Together with a triple, we need to include a table containing all of the logical
variables created in order to:

- refer to /old references in the postcondition
- save the store
- refer to the assignable field set
- refer to free variables

We store each of these tables as an instance of LogicalVarRegistry, which behaves
like a hashmap associating a String key (the name of the variable) to a (katja) Type
(merely its type, expressed the Katja way).

The constructor is the default constructor LogicalVarRegistry() and the method
put(String, Type) adds new elements.

1.4. Expression transformer
In this paper, we focus about the structure of JML behavioral specifications and
how it is mapped into Hoare Triples. Translating expressions found in pre- and
postconditions constitutes a project in itself and is performed in another class,
ExpressionTransformer.
This class basically implements the σ function mentioned in [4, section 3]. The
corresponding method takes a JML expression (which is always an instance of a
certain class JExpression) and returns a formula.

Actually, the expression transformer’s interface contains two methods
transformTerm and transformFormula, the both of which take an instance of
JExpression as argument and return a term or a formula, depending on the call. If
the expression corresponds to a boolean, calling transformFormula “wraps” the
result in a formula using the IsTrue class, as explained in 1. This simplifies the code
in the caller.

To complement the expression transformer and allow substituting in formulas, we
also have a method jive.ContainerInterface.Util.substitute() which takes as
argument a formula (already converted to first-order logic), the variable to replace
and the expression to replace this variable for.

1.5. Expression transformer old hash map
It is possible that a JML expression in a postcondition contains a special keyword
\old. It means that we want to access, from the poststate, a value in the prestate.
In this case, translating the expression to a Formula is not enough! We need to
have access to the value of the expression in brackets BEFORE the call. To make this
process easier, the expression transformer has been modified such that, when an
\old expression is met:

- it is replaced with a new logical variable.
- this logical variable is added to a hashmap together with the abstract

syntax tree of the expression in brackets and its type.

An interface then provides access to this information after calling the expression
transformer:

 public static void emptyOldHashSet();
 empties the hash set before an expression transformer call.
 public static boolean hasOldHashSet();
 tests whether the hast set contains an element after the call.
 public static Iterator getIteratorOnOldHashSet();
 gets an iterator to obtain these elements, if any.

And:
 public static void setInPostCond();
 public static void setInPreCond();

which tell the expression transformer whether one is in a pre- or postcond (this is
for proper handling of parameters, see paragraph 2.5.5.5)

Precise explanations about \old expression are given later in this paper.

1.6. Proof obligation Accumulator
The class ProofObligationAccumulator is designed so as to assist the class
ProofObligationGenerator in building proof obligations. It stores all of the
generated proof obligations, and provides a transaction-like interface to generate a
new one and store it as well.

Only once in the generation process, an instance of this class - which will
eventually contain all of the obligations - is created by the Proof Obligation
Generator with the default constructor. It is then empty.

1.6.1. Life cycle of the Proof Obligation Accumulator
A new triple for a given method is created by newPO(MethodRef). The argument is
a reference to the current method.

Then, it can be modified by:

• adding a new precondition with appendToPreCond(Formula), which
conjuncts the formula with the existing precondition (or creates it if there
was none). The new precondition is then (former precondition) AND (new
formula).

• adding a new postcondition with appendToPostCond(Formula), which
conjuncts the formula with the existing postcondition (or creates it if there
was none). The new postcondition is then (former postcondition) AND (new
formula).

• Registering a new variable in the logical variable registry, with
registerVarInSymbolTable(String, Type), which returns the corresponding
logical variable of type LogicalVar.

• Setting/unsetting flags about assignable locations, with
setAssignableEverything(), setAssignableNothing(). These flags are not
stored, but allow communication between parts of the generator handling
assignable clauses.

Eventually, it is commited with commit().

1.6.2. Utility methods
Besides, utility methods help further during the Proof Obligations generation:

• getTypeOf(String) returns the type of an already registered logical variable
for the current Proof Obligation.

• appendToCond(Formula, Formula) (which is static!) computes the
conjunction of two formulas (semantically: adds the second one to the first
one) and returns it.

• isEverythingAssignable(), isNothingAssignable() gives the values of the flags
previously set (or not) for the current Proof Obligation.

1.6.3. Handling nested specifications
Nested specifications, in a way, “break” the normal life cycle of the generation of
proof obligations.

In the normal life cycle, the proof obligation generator creates a new proof
obligation p, reads a specification, modifies p, and eventually commits p. Then it
can generate another proof obligation and so on.

However, imagine that, after creating a new proof obligation p, after reading the
header of a specification and after modifying p accordingly, it does not find a body,
but nested specification cases. It cannot simply read the first one, complete p and

commit it! When processing further nested specification cases, everything in the
common header would be lost...

The Proof Obligation Accumulator provides tools to solve this problem: a stack
allows one to push an incomplete proof obligation at any time (pushPO()), like a
snapshot of the situation, and to pop it (popPO()), when one is done with it.

To allow this functionality, the semantics of newPO() has to modified in the
following way: if the stack is empty, the behavior does not change; if the stack is
not empty, the call to newPO() has a different effect: the newly generated PO is not
empty, but is a copy (conditions and declared logical variables) of the PO on top of
the stack. It can then be completed, and normally commited.

2. ProofObligationGenerator

2.1. Overview - Architecture

Generate Pos for a specification case

Generate Pos when no specification case

Pure
method

Generate
Postconditions

Compute
Method
reference

Generate
postcondition

Non-null
result

Save old
variables

Generate Pos for a type

Not pure
(Assignable
clauses)

Signals

Ensures

Non-null
parameters

Generate Pos for a method

or

Execute

Adds Invariants Assignable

or

Non-null
result

Non-null
parameters

Downward
Closure

Variable
Declarations

Handle body
specification

Body Clauses

Nested
Specifications

Generate
Preconditions

Forall

Old

Requires

Behavior

Save Store

Save
assignable set

Invariants
Pure

The graphics sums up how the different parts of the Proof Obligation Generator
interact with one another, and it can be used as support for the rest of this part, in
which we explain each of these functionalities in details.

2.2. Methods in the Proof Obligation Generator
In the next parts, we describe the implementation and how all of these methods
work together. The intent of this overview is not to simply list the source code - the
version here, given as a support to the implementation issues, is actually very
simplified, comments and display commands were removed - and the reader
wanting to have a deeper insight might want to read the actual code.

If you wish to make use of the proof obligation generator, you do not need to know
these details and you might rather want to refer to paragraph 3.

The names of all of the methods in this architecture have been chosen so that
reading the code gives a semantical - rather than technical - overview, just like you
would read a book. The “technical” code is left to helper methods.

2.3. External loop
There is only one instance (singleton) of the class ProofObligationGenerator, which
you get by calling the static method getSingleton(). The forest of abstract syntax
trees generated by the JML checker is then passed to the method
setTopLevelTypes() of this instance. The initiation of the process is nothing but a
series of iterations, from types to specifications.

- The execute() method performs an iteration on this forest, calling
generatePOsForType() for each of the trees - one for each type. This is the only
public method (together with method setTopLevelTypes()) in the interface of the
ProofObligationGenerator instance. It returns the Proof Obligation Accumulator
containing all proofs.

- generatePOsForType() then calls generatePOsForMethod() for each method
defined in the type.

- generatePOsForMethod() checks whether the method contains a specification or
not, and calls either generatePOForNoSpecCase() or iterates over the specification
cases and calls for each of them generatePOForSpecCase(). It eventually checks
purity and generates a unique and additional proof obligation if the method is
pure.

Not that if a method is pure, we assume it never modifies a location, i.e. it is
associated with a “require true” precondition (possibly conjoined to the invariant in
the triple), whatever the preconditions of the specification. This is a discussed issue
because there exists an opposite alternative (reusing preconditions from the
specification).

Furthermore, should one want to specify that no location is to be modified under
certain conditions, this is handled by \assignable nothing.

2.4. No specification
If the method has no specification, i.e. generatePOsForNoSpecCase() was called,
we:
- generate the invariants (by calling generatePrePostInvariant(), which analyses

whether to add them or not)
- generate preconditions for non-null results or parameters (which the method

could have…)

2.5. Specification
If the method has a specification, we handle each specification case.

private void generatePOForNoSpecCase(JmlTypeDeclaration type,
 Jm lMethodDeclaration method) {
 POs.newPO(MethodRef.getMethodRef(type, method));
 generatePrePostCondInvariant(method);
 generatePreCondNonNullParameters(type, method);
 generatePostCondNonNullResult(method);
 POs.commit();
}

Private ProofObligationAccumulator POs;

ProofObligationAccumulator execute() {
 POs = new ProofObligationAccumulator();
 ExpressionTransformer.setJMLMode(true);
 Iterator iter = topLevelTypes.keySet().iterator ();
 while (iter.hasNext()) {
 String st = (String) iter.next();
 generatePOsForType((JmlTypeDeclaration) topLevelTypes.get(st));
 }
 return POs;
}

private void generatePOsForType(JmlTypeDeclaration type) {
 Iterator iter = type.methods().iterator();
 while (iter.hasNext())
 generatePOsForMethod(type, (JmlMethodDeclaration) iter.next());
}

private void generatePOsForMethod(JmlTypeDeclaration type,
 JmlMethodDe claration method) {
 if (method.hasSpecification()
 && method.methodSpecification().has SpecCases()) {
 JmlSpecCase[] specs = method.methodSpecificatio n().specCases();
 for (int i = 0; i < specs.length; i++)
 generatePOForSpecCase(type, method, specs[i]);
 }
 else
 generatePOForNoSpecCase(type, method);
 generatePOForPureMethod(type, method) ;

If it is not supported (model program, code contract), a runtime exception is
thrown. Else, whatever the case, we extract the general spec case with header and
body.

One first computes a reference to the method, and handle variable declarations
followed by standard preconditions (requires, …). Then depending on the type of
body (whether it is nested, or consists of clauses), we call the corresponding
method.

In the upcoming paragraphs, we describe all of these parts, except variable
declarations and nested specification cases, which are explained later.

2.5.1. Method reference
Calling a special method (MethodRef.getMethodRef()) with type and method as
argument gives a (unique) reference to the current method.

The reference is bound either dynamically (type:method()) if the method is public
or protected, or statically (type@method()) if it is private or static.

However, if the privacy of a specification cannot be more visible than this of the
method, it is possible that, for instance, the method be public (hence dynamically
bound) but the specification private! In this case, we need a method reference
which is statically bound and have to generate it manually. To this aim, we replace

private void generatePOForSpecCase(JmlTypeDeclaration type,
 JmlMethodDeclaration method, JmlSpecCas e specCase) {
 if (specCase instanceof JmlModelProgram)
 throw new RuntimeException("Model Programs not supported!");
 else if (specCase instanceof JmlCodeContract)
 throw new RuntimeException("Code Contract not s upported!");

 JmlGeneralSpecCase generalSpecCase;
 int privacy;
 if (specCase instanceof JmlGeneralSpecCase) {
 privacy = method.modifiers();
 generalSpecCase = (JmlGenericSpecCase) specCase ;
 } else {
 privacy = ((JmlHeavyweightSpec) specCase).priva cy();
 generalSpecCase = ((JmlHeavyweightSpec) specCas e).specCase();
 }

 POs.newPO(getMethodRef(type, method, privacy));
 generatePreCondSpecVarDecls(generalSpecCase);
 generatePreConditions(type, method, generalSpecCase);

 if (generalSpecCase.hasSpecBody()
 && generalSpecCase.specBody().isSpe cCases())
 generatePOsForNestedSpecCases(type, method, generalSpecCase);
 else
 generatePOsForBodyClauses(type, method, generalSpecCase);
}

getMethodRef() by our version, in the same class. If the method is abstract and the
specification private, we throw an exception.
Note that if the specification case is lightweight, the privacy of it is considered the
same as that of the method.

2.5.2. Headers
In all cases, we process the header of the specification case, if it exists. We handle
requires clauses, and methods with non-null parameters (if nested, which is
tackled later in this paper, we do not do it again since it was already done at level 0
of nesting).

First of all, we need to tell the expression transformer that we are in a precondition
(because of handling of parameters - for more explanations, see 2.5.5.5)

2.5.2.1 Requires clauses
To handle requires clauses, we merely iterate on them, convert expressions with
the expression transformer and append the result to the already generated
preconditions.

As explained in [4], in case of multiple preconditions
requires P1 ;
requires P2 ;
…
requires Pn ;

we conjoin them. Hence, the generated precondition is:

() () ()nPPP σσσ ∧∧∧ ...21

private void generatePreConditions(JmlTypeDeclaration type,
 JmlMethodDeclaration method, JmlGenera lSpecCase specCase) {
 ExpressionTransformer.setInPreCond();
 if(specCase.hasSpecHeader())
 generatePreCondRequires(specCase);
 if(!POs.isNested())
 generatePreCondNonNullParameters(type, method);
}

private MethodRef getMethodRef(JmlTypeDeclaration type,
 JmlMethodDeclaration method, int p rivacy) {
 MethodRef result = null;
 MethodRef mr = (MethodRef.getMethodRef(type, meth od));
 if (Utils.hasFlag(privacy, ACC_PRIVATE))
 if(mr instanceof ConcreteVirtualMethod)
 result = Main.currentSession().getUnique(new Implementation(type, method));
 else if (mr instanceof AbstractVirtualMethod)
 throw new RuntimeException("Private specifica tion for an abstract method");
 return result == null ? MethodRef.getMethodRef(ty pe, method) : result;
}

where σ is the conversion to a first-order logic formula performed by the
Expression Transformer.

This precondition will itself be conjoined to the existing precondition of the current
Hoare Triple in the Proof Obligation Accumulator.

2.5.2.2 Non-null parameters

We simply iterate on the arguments of the method, and add a precondition if it is
flagged as non-null.

If we find a non-null argument, say:

public void method(/*@ non_null @*/ type a) ;

Then we conjoin the following precondition as explained in [4], paragraph 4.4:

a ≠ null

in which a is passed as a ProgVar instance. For more explanations about differences
between program variables and logical variables, you could refer to paragraph 2.8.

2.5.3. Body clauses
When there is no nesting, i.e. the body is simply a sequence of clauses, we process
in the following order to analyze clauses:

• We first add invariants (see paragraph 2.6)

private void generatePreCondNonNullParameters(JmlTypeDeclaration type,
 JmlMethodDeclaration method) {
 JFormalParameter[] parameters = method.parameters ();
 for (int i = 0; i < parameters.length; i++) {
 if (((JmlFormalParameter) parameters[i]).isNonN ull()) {
 Type t = CompRef.getKatjaType(parameters[i].g etType());
 POs.appendToPreCond(new IsTrue(new BinOpTermT erm(
 new ProgVar(parameters[i] .ident(), t),
 JNotEq.INSTANCE, new Null (t), JBoolean.INSTANCE)));
 }
 }
}

private void generatePreCondRequires(JmlGeneralSpecCase specCase) {
 JmlRequiresClause[] preconds = specCase.specHeade r();
 for (int k = 0; k < preconds.length; k++) {
 if (preconds[k].isNotSpecified())
 continue;
 JExpression requires = (JExpression) preconds[k].predOrNot()
 .specExpre ssion().expression();
 Formula tRequires = ExpressionTransformer
 .transf ormFormula(requires);
 POs.appendToPreCond(tRequires);
 }
}

• Then we handle assignable locations (whether pure method or assignable
clause) (paragraph 2.5.4)

• And we finally generate standard postconditions (requires, signals, non-null
result, …) (paragraph 2.5.5)

2.5.4. Assignable locations
Processing of assignable locations depends on the purity of the method. If it is
pure, this is handled by a separate Proof Obligation and we leave this step for later.
If it is not the case, we refer to assignable expressions:

• we generate a precondition building the set M of assignable locations (if it is
not trivial), which we conjoin to the precondition of the current Hoare triple.

• and then generate the postcondition which makes sure that locations in this
set are not modified.

Note that the specification of JML indicates that the semantics of an assignable
location is that it should never be assigned anything, even if one restores the
former value before the method returns. However, as explained in [4], paragraph
4.2, Jive will only check that the location was not modified, i.e. that the location has
the same content before and after the call.

2.5.4.1 Not pure methods

If the method is not pure, we look at the assignable clauses the specification
contains. We collect all of them, and compute the downward closure (as defined
and explained later in this paragraph). If there is none, as said in [4] paragraph 4.2,
we consider that all locations are assignable.

private void generatePrePostCondAssignmentsForSpecCase(
 JmlTypeDeclaration type, JmlMethodDeclaration met hod,
 JmlGeneralSpecCase specCase) {

 if (!Utils.hasFlag(method.modifiers(), ACC_PURE)) {
 generatePreCondAssignableNotPure(type, method, specCase);
 generatePostCondAssignable();
 }
}

private void generatePOsForBodyClauses(JmlTypeDeclaration type,
 JmlMethodDeclaration method, JmlGeneralSpecCase s pecCase) {
 generatePrePostCondInvariant(method);
 generatePrePostCondAssignmentsForSpecCase(type, method, specCase);
 generatePostCondForSpecCase(type, method, specCase);
 POs.commit();
}

Note that all such locations are instance fields of the class, since JML does not
support dynamic dependencies yet (it produces an error if a field of another object
is passed).

We then set the flags in the Proof Obligation Accumulator if no location or all
locations are assignable, and save the list of them in a precondition otherwise. This
optimization, if a flag is set, enables us to skip the precondition and build a simpler
postcondition.

In JML, the user can make use of so-called model fields, which are additional fields
that are not part of the implementation, but make the specification easier and
solve such problems like:

• assigning new locations when subclassing and overriding, i.e. fields of the
subclass

• Keeping private fields… private and expressing specifications on a more
abstract level.

A model field m is associated to a data group, the locations in which are also
implicitely assignable, should m appear in an \assignable clause. Hence, when
subclassing, new fields are added to an existing data group and are hence
assignable by corresponding methods.
Private fields are added in data groups of the corresponding model fields. If the
implementation changes, one does not need to change model fields (which appear
in the interface), but just data groups.

private void generatePreCondAssignableNotPure(JmlTypeDeclaration type,
 JmlMethodDeclaration method, JmlGeneral SpecCase specCase) {
 boolean foundAssignableLocations = false;
 JmlAssignableFieldSet assignable = new JmlAssigna bleFieldSet();
 if (specCase.hasSpecBody() && specCase.specBody() .isSpecClauses()) {
 JmlSpecBodyClause[] specBodyClauses = specCase. specBody().specClauses();
 for (int i = 0; i < specBodyClauses.length; i++) {
 if (!(specBodyClauses[i] instanceof JmlAssign ableClause))
 continue;
 foundAssignableLocations = true;
 assignable.addAll(((JmlAssignableClause) spec BodyClauses[i])
 .getAssignableFieldSet());
 }
 }
 if (foundAssignableLocations) {
 if (assignable.isUniversalSet()) {
 POs.setAssignableEverything();
 return;
 } else if (assignable.isEmpty()) {
 POs.setAssignableNothing();
 return;
 } else
 generateDownwardClosure(type, method, assignable);
 } else {
 POs.setAssignableEverything();
 return;
 }
 if (!POs.isEverythingAssignable() && !POs.isNothi ngAssignable())
 generatePreCondAssignable(termListFromAssignableFieldSet(type, assignable));
}

This is transitive, i.e. if x is in y’s data group and y is in z’s data group, then if z
appears in a \assignable clause, y but also indirectly x are assignable.

To compute the downward closure, we first get the hashmap from the type, which
contains all of the necessary information about data groups for this type. Then, we
add all elements of all data groups of locations in our bag and repeat the operation
until no more remains to add.

After collecting and computing the downward closure, we still need to convert our
set to first-order logic to generate the precondition.

Since dynamic dependencies are not yet supported but JML, we know that all
locations corresponding to fields in the instance, i.e. a name n will actually refer to
this.n.

This is what we do in the following method.

private void generateDownwardClosure(JmlTypeDeclaration type ,
 JmlMethodDeclaration method, JmlAssignableFieldSe t assignable) {
 JmlDataGroupMemberMap dataGroupMap = type.getData GroupMap();
 JmlAssignableFieldSet toAdd = null;
 while (toAdd == null) {
 toAdd = new JmlAssignableFieldSet();
 for (Iterator i = assignable.iterator(); i.hasN ext();) {
 JmlSourceField field = (JmlSourceField) i.nex t();
 JmlSourceField correspondingField = null;
 Iterator j = dataGroupMap.keyGroupIterator();
 while (correspondingField == null && j.hasNex t()) {
 JmlSourceField candidateField = (JmlSourceF ield) j.next();
 if (field.toString().equals(candidateField. toString()))
 correspondingField = candidateField;
 }
 if(correspondingField)
 toAdd.addAll((JmlAssignableFieldSet)
 dataGroupMap.getMe mbers(correspondingField));
 else
 `toAdd.add(field);
 }
 if (toAdd.size() != assignable.size()) {
 assignable.addAll(toAdd);
 toAdd = null;
 }
 }
}

2.5.4.2 Saving assignable locations
Once we have the TermList of all assignable locations, we can save it in a
precondition. The following method has been called above if the set M is not trivial.
As always with LogicalVars, we register it in the Symbol Table before we build the
precondition and conjoin it to the precondition of the current Hoare triple.

2.5.4.3 Checking they were not modified

The last step is to conjoin a postcondition which makes sure no location was
modified, except the one mentioned (directly or indirectly) in the specification.

• If we have a non-trivial set (no flag set in the Proof Obligation Accumulator),
we conjoin:

()() () ()()locSlocSlocobjaliveMlocLocationloc =⇒∧∉∀ $,.:
• If nothing is assignable (corresponding flag set in the Proof Obligation

Accumulator), we conjoin:

()() () ()()locSlocSlocobjaliveLocationloc =⇒∀ $,.:
• If everything is assignable (corresponding flag set in the Proof Obligation

Accumulator), we do not need to check anything.

private void generatePreCondAssignable(TermList assignable TermList) {
 SetTerm assignableLocations = new SetTerm(assigna bleTermList, SetType.INSTANCE);
 LogicalVar M = POs.registerVarInSymbolTable("M", SetType.INSTANCE);
 POs.appendToPreCond(new IsTrue(new BinOpTermTerm(M, JEq.INSTANCE,
 assignableLocations, JBoolean.INS TANCE)));
}

private TermList termListFromAssignableFieldSet(JmlTypeDeclaration type,
 JmlAssignableFieldSet assignable) {
 TermList assignableTermList = null;
 for (Iterator i = assignable.iterator(); i.hasNex t();) {
 JmlSourceField field = (JmlSourceField) i.next();
 Type this_type =
 ExpressionTransformer.getJiveType(type.getCCl ass().getType());
 Term location =
 new FuncAppl(
 PredefinedTerms.LOC,
 new TermList(
 new This(this_type)
).appBack(
 new Field(
 field.getIdent(),
 (ClassOrInterfaceType) this_type,
 ExpressionTransformer.getJiveType(fiel d.getType())
)
),
 PredefinedTerms.location_T
);

 if (assignableTermList == null)
 assignableTermList = new TermList(location);
 else
 assignableTermList = assignableTermList.appBa ck(location);
 }
 return assignableTermList;
}

private void generatePostCondAssignable() {
 LogicalVar M = new LogicalVar("M", SetType.INSTAN CE);
 LogicalVar S = new LogicalVar("S", Store.INSTANCE);
 LogicalVar loc = new LogicalVar("loc", locationTy pe);

 Term loc_dollar =
 new FuncAppl(
 PredefinedTerms.LOOKUP,
 new TermList(new Dollar(Store.INSTANCE)).appB ack(loc),
 PredefinedTerms.value_T
);

 Term loc_S =
 new FuncAppl(
 PredefinedTerms.LOOKUP,
 new TermList(S).appBack(loc),
 PredefinedTerms.value_T
);

 if (POs.isNothingAssignable()) {
 generatePreCondSaveStore();
 POs.appendToPostCond(
 new BindingFormula(Forall.INSTANCE, new Bindi ngList(new Binding(loc)),
 new BinaryFormula(
 new IsTrue(
 new FuncAppl(
 PredefinedTerms.ALIVE,
 new TermList(
 new FuncAppl(PredefinedTerms.obj, new Ter mList(loc),
 Predefined Terms.objectType)
).appBack(PredefinedTerms.DOLLAR),
 JBoolean.INSTANCE
)
),
 FImplies.INSTANCE,
 PredefinedTerms.eq(loc_dollar,loc_S)
)
)
);
 } else if (!POs.isEverythingAssignable()) {
 generatePreCondSaveStore();
 POs.appendToPostCond(
 new BindingFormula(Forall.INSTANCE, new Bindi ngList(new Binding(loc)),
 new BinaryFormula(
 new BinaryFormula(
 new FNot(
 new IsTrue(
 new BinOpTermTerm(loc,Element.INSTA NCE,M,JBoolean.INSTANCE)
)
),
 FAnd.INSTANCE,
 new IsTrue(
 new FuncAppl(
 PredefinedTerms.ALIVE,
 new TermList(
 new FuncAppl(PredefinedTerms.obj,
 new TermList(loc),Pre definedTerms.objectType)
).appBack(PredefinedTerms.DOLLAR),
 JBoolean.INSTANCE
)
)
),
 FImplies.INSTANCE,
 PredefinedTerms.eq(loc_dollar,loc_S)
)
)
);
 }
}

generatePreCondSaveStore() simply generates a logical var S in which the store is
saved.

2.5.4.4 Pure methods

If the method is pure, no location should be assigned. The following method is
called after processing each method, and checks purity:

If the method is pure, we call the following method:

We simply set the corresponding flag in the Proof Obligation Accumulator so that
the adequate postcondition be then generated (see last line of code).

There is however an exception to this rule: if one has a constructor, it should be
allowed that it assigns any field in the instance.

private void generatePreCondSaveStore() {
 display("Saving store", 3);
 LogicalVar S = POs.registerVarInSymbolTable("S", Store.INSTANCE);
 POs.appendToPreCond(new IsTrue(new BinOpTermTerm(
 new Dollar(Store.INSTANCE),
 JEq.INSTANCE,
 S, JBoolean.INSTANCE)));
}

private void generatePOForPureMethod(JmlTypeDeclaration type,
 JmlMethodDeclaration method) {
 if (Utils.hasFlag(method.modifiers(), ACC_PURE)) {
 POs.newPO(MethodRef. getMethodRef(type, method));
 generatePreCondAssignablePure(type, method);
 generatePostCondAssignable();
 POs.commit();
 }
}

private void generatePreCondAssignablePure(JmlTypeDeclaration type,
 JmlMethodDeclaration method) {
 if (method.isConstructor()) {
 JFieldDeclarationType[] jfd = type.fields();
 TermList assignableTermList = null;
 for (int i = 0; i < jfd.length; i++) {
 JClassFieldExpression generatedThisField = ne w JClassFieldExpression(
 null, new JThisExpression(null,type.getCCla ss()), jfd[i].ident());
 if (assignableTermList == null)
 assignableTermList = new TermList(Expressio nTransformer
 .transformLocation(gene ratedThisField));
 else
 assignableTermList = assignableTermList
 .appBack(ExpressionTransformer.transformL ocation(generatedThisField));
 }
 generatePreCondAssignable(assignableTermList);
 } else
 POs.setAssignableNothing();
}

If such is the case, we iterate on the fields of the class, which we all put in our bag
(a TermList) and generate the precondition saving the set just like non-pure
methods.
In both cases, we then generate postconditions as for non-pure methods as well.

2.5.5. Postconditions
Postconditions are found in ensures clauses and signal clauses. We also handle
non-null results and \old expressions, as well as normal and exceptional behaviors.

This is done in the following order:

• We determine normal or exceptional behavior if such is the case.
• We process normal postconditions (\ensures clauses)
• We process exceptional postconditions (\signals clauses)
• Should Logical Variables (for accessing prestate values in the poststate)

have been used in the last two steps, they are in the “old hast set”. We
register them and save the prestate value of the corresponding expression
thanks to a special precondition.

• We test for non-null result

First of all, we need to empty the “old hash set” and to tell the expression
transformer that we are in a postcondition (for proper handling of parameters –
see 2.5.5.5)

2.5.5.1 Normal or exceptional behavior

In case of normal or exceptional behavior, one appends a postcondition meaning
that the method has to return a value, or that the method has to throw an
exception.

- In case of a normal behavior, no exception may be thrown. As specified in [4]
paragraph 4.2, we conjoin the following formula to the postcondition of the
current Triple in the Proof Obligation Accumulator:
 χ ≠ Exc

private void generatePostCondForSpecCase(JmlTypeDeclaration type,
 JmlMethodDeclaration method, JmlGeneralSpecCase s pecCase) {

 ExpressionTransformer.emptyOldHashSet();
 ExpressionTransformer.setInPostCond();
 generatePostCondBehavior(specCase);
 generatePostCondEnsures(specCase.specBody().specClauses());
 generatePostCondSignals(specCase.specBody().specClauses());
 generatePreCondSaveOld();

 generatePostCondNonNullResult(method);
}

In case of a normal behavior, the method cannot return without throwing an
exception. As specified in [4] paragraph 4.2, we conjoin the following formula to
the postcondition of the current Triple in the Proof Obligation Accumulator:
 χ ≠ Normal

2.5.5.2 Normal postconditions

As explained in [4], in case of multiple normal postconditions
ensures Q1 ;
ensures Q2 ;
…
ensures Qn ;

we conjoin them. Hence, the generated normal postcondition is:

() () ()nQQQ σσσ ∧∧∧ ...21 where σ is the conversion to a first-order logic formula
performed by the Expression Transformer.

Since it is a normal postcondition, the following formula is conjoined to the
postcondition of the current triple:

() () ()nQQQNormal σσσχ ∧∧∧⇒= ...21

If the specification is a normal behavior, an (implemented) optimization removes
the implication since the left hand side always holds.

private void generatePostCondBehavior(JmlGeneralSpecCase specCase) {
 if (specCase instanceof JmlNormalSpecCase)
 POs.appendToPostCond(new IsTrue(new BinOpTermTe rm(
 new Chi(Status.INSTANCE),
 JNotEq.INSTANCE,
 new Exc(Status.INSTANCE), JBoolean.INSTANCE)));
 return;
 else if (specCase instanceof JmlExceptionalSpecCa se)
 POs.appendToPostCond(new IsTrue(new BinOpTermTe rm(
 new Chi(Status.INSTANCE),
 JNotEq.INSTANCE,
 new Normal(Status.INSTANCE), JBoolean.INSTANC E)));
}

2.5.5.3 Exceptional postconditions
Processing signals clauses is slightly more intricate: before building a conjunction
of all of them, one has to take the type and name of each exception mentioned in a
clause.
With the following clause:
signals (E e) R;

The generated exceptional postcondition is:

() []()eExcVREExcVtypeof /σ⇒p
where σ is the conversion to a first-order logic formula performed by the
Expression Transformer.

This means that, if the exception thrown is a direct or indirect instance of E, the
condition R holds, where e (the bound variable) designs the actual value of the
exception thrown.

As explained in [4], in case of multiple exceptional postconditions
signals (E1 e1) R1 ;
signals (E2 e2) R2 ;

…
signals (En en) Rn ;

we conjoin them.

And as we did for normal postconditions, we add a prefix expressing that it is an
exceptional postcondition, so that the following formula is conjoined to the
postcondition of the current triple:

private void generatePostCondEnsures(JmlSpecBodyClause[] specBodyClauses) {
 Formula normal = null;
 for (int l = 0; l < specBodyClauses.length; l++)
 if (specBodyClauses[l] instanceof JmlEnsuresCla use) {
 JExpression jExp = ((JmlPredicateOrNotSpecifi ed) specBodyClauses[l])
 .predOrNot().specExpression().expression();
 Formula t = ExpressionTransformer.transformFo rmula(jExp);
 normal = ProofObligationHashMap.appendToCond(normal, t);
 }

 if (normal != null)
 if(specCase instanceof JmlNormalSpecCase)
 POs.appendToPostCond(normal);
 else
 POs.appendToPostCond(new BinaryFormula(new Is True(
 new BinOpTermTerm(
 new Chi(Status.INSTANCE),
 JEq.INSTANCE,
 New Normal(Status.INSTANCE),
 JBoolean.INSTANCE)),
 FImplies.INSTANCE,
 normal));
}

() ()[]

() ()[]

() ()[]nnn eExcVREExcVtypeof

eExcVREExcVtypeof

eExcVREExcVtypeofExc

/

...

/

/

222

111

σ

σ
σχ

⇒∧
∧

⇒∧
⇒⇒=

p

p

p

During the substitution, a field exceptionBound contains the name of the variable
being substituted, so that it be not considered a program var and erroneously
“saved” (cf 2.8): The method isLogical() also compares its argument with this field.

Finally, if the specification is an exceptional behavior, an optimization removes the
implication since the left hand side always holds.

2.5.5.4 Accessing prestate values in the poststate
Ensures and signals clauses might contain \old expressions or formal parameters,
which both should refer to values before the call. To that aim, we had to slightly
modify the expression transformer.

private void generatePostCondSignals(JmlSpecBodyClause[] specBodyClauses) {
 Formula exc = null;
 for (int l = 0; l < specBodyClauses.length; l++)
 if (specBodyClauses[l] instanceof JmlSignalsCla use) {
 JExpression jExp = ((JmlPredicateOrNotSpecifi ed) specBodyClauses[l])
 .predOrNot().specExpression ().expression();
 CType exceptionType = ((JmlSignalsClause) spe cBodyClauses[l]).type();
 String exceptionIdent = ((JmlSignalsClause) s pecBodyClauses[l]).ident();
 exceptionBound = exceptionIdent;
 Formula t = new BinaryFormula(
 new IsTrue(new BinOpTermType(
 new ExcV(objectType),
 InstanceOf.INSTANCE,
 CompRef.getKatjaType(exceptionType),JBool ean.INSTANCE)),
 FImplies.INSTANCE,
 jive.ContainerInterface.Util.substitute(
 ExpressionTransformer.transformFormula(jE xp),
 new ExcV(PredefinedTerms.objectType),
 new LogicalVar(
 exceptionIdent, ExpressionTransformer. getJiveType(exceptionType)
)
);
 exceptionBound = null;
 exc = ProofObligationHashMap.appendToCond(exc , t);
 }

if (exc != null)
 if(specCase instanceof JmlExceptionalSpecCase)
 POs.appendToPostCond(exc);
 else
 POs.appendToPostCond(new BinaryFormula(
 new IsTrue(
 new BinOpTermTerm(
 new Chi(Status.INSTANCE),
 JEq.INSTANCE,
 new Exc(Status.INSTANCE), JBoolean.INSTAN CE)),
 FImplies.INSTANCE,

In that case, the expression transformer transforms the corresponding expression
to first order logic, but does not put it back in the returned tree. Instead, it creates a
new logical variable associated to the converted expression (and its type) in the so
called “old hast set”. It is thus this new logical variable which occurs in the returned
tree.

For instance, if we have:

ensures expr1 op1 \old(expr)

a new logical variable (with an auto generated unique name), say !x0, is generated,
the expression transformer fills the old hast set:

Name Type Tree
!x0 (the type of expr) σ(expr)

And the returned first-order formula is actually (we only give a feeling):
 σ(expr1) σ(op1) !x0

Hence, one has to complete the work of the expression transformer by generating
special preconditions which saves prestate values in those logical variables.

This is done by a special method generatePreCondSaveOld() it checks whether the
expression transformer found expressions referring to the prestate, and processes
them.

The saving precondition is conjoined by the following method. In our example, it
conjoins:
!x0=σ(expr)
to the precondition of the current triple.

private void generatePreCondSaveOld() {
 if (ExpressionTransformer.hasOldHashSet()) {
 Iterator oldsIterator = ExpressionTransformer.g etOldIterator();
 while (oldsIterator.hasNext()) {
 ExpressionTransformerOldHashSet.LogicalVarEnt ry l =
 (ExpressionTransformerOldHashSet.LogicalV arEntry) oldsIterator.next();
 generatePreCondSaveOld(l.getName(), l.getAST());
 }
 }
}

private void generatePreCondSaveOld(String name, Term ast) {
 display("Saving old variable "+name);
 LogicalVar F = POs.registerVarInSymbolTable(name, ast.type());
 POs.appendToPreCond(new IsTrue(new BinOpTermTerm(F, JEq.INSTANCE, ast,
 JBoolean.INSTANCE)));
}

2.5.5.5 Formal parameters in postconditions

According to the JML specification, formal parameters in postconditions still
implicitely refer to their value in the prestate! Modifications of their values are
implementation details and are irrelevant in specifications.

Hence, a new flag in the Expression Transformer tells whether we are in a
precondition or in a postcondition. It is set by the Proof Obligation Generator
accordingly. When the expression transformer finds a formal parameter
\ensures … param …
 it treats it as if it were in a \old expression:
\ensures … \old(param) …

2.5.5.6 Non-null result

Postconditions are found in ensures and signals clauses, but also in the keyword
non-null in front of the method declaration. The latter can actually be desugared
to:

ensures \result!=0
which is handled by a dedicated method generatePostCondNonNullResult().

2.6. Invariant generation
The invariant generation is always called, with or without specification. This is
performed by another module parallel to the Proof Obligation generation and we
do not tackle the invariant generation in itself.

However, we need to add a special formula INV($) to certain preconditions and
postconditions. The method INV() contains the invariants for all of the classes in
the program (which have to hold in any visible state, even the invariant of a class A
after calling a method in another class B). It takes the current store as argument,
which is $. You will find further explanations in [4].

As explained in the latter article, we only add invariants in the precondition if the
method is neither a helper, nor a constructor, and we only add them in the
postcondition if the method is not a helper.

2.7. Variable declaration
It is possible in JML to declare variables. There are two types of them:

• old variable
• forall variables

private void generatePrePostCondInvariant(JmlMethodDeclaration method) {
 if (method.isConstructor()) {
 POs.appendToPostCond(invdollar);
 } else if (!method.isHelper()) {
 POs.appendToPreCond(invdollar);
 POs.appendToPostCond(invdollar);
 }
 }

private void generatePostCondNonNullResult(JmlMethodDeclaration method) {
 if (Utils.hasFlag(method.modifiers(), ACC_NON_NUL L))
 POs.appendToPostCond(new IsTrue(new BinOpTermTe rm(
 new ResV(objectType),
 JNotEq.INSTANCE,
 new Null(NullType.INSTANCE), JBoolean.INSTANC E)));
 }
}

The following method, called just before processing preconditions, iterates over
them and dispatches handling to two methods generatePreCondSaveOld() and
generatePreCondForAll().

2.7.1. Old declared variables
In postconditions, the user can use \old() expressions to access prestate values. The
Proof Obligation Generator then automatically generates a logical variable to store
this value.

It is possible that the user decides to choose the name of this variable by himself
and declares it in the specification:

/*@ public normal_behavior
 @ old int var = expr;
 @ requires …
 @ ensures …var…
 @*/

This will allow him, for instance, to write shorter or clearer code.
In which case any occurrence of var in a postcondition is equivalent to \old(expr).
Hence, we use the very same method to conjoin the precondition, but neither need
to choose a new name, nor to replace it with the variable (it is already there!).

private void generatePreCondSpecVarDecls(JmlGeneralSpecCase generalSpecCase) {
 JmlSpecVarDecl[] vars = generalSpecCase.specVarDe cls();
 if (vars != null)
 for (int i = 0; i < vars.length; i++) {
 if (vars[i] instanceof JmlLetVarDecl) {
 JmlLetVarDecl jlvd = (JmlLetVarDecl) vars[i];
 JVariableDefinition[] jvd = jlvd.specVariab leDeclarators();
 for (int j = 0; j < jvd.length; j++) {
 Term ast = ExpressionTransformer.transfor mTerm(jvd[i].expr());
 String name = jvd[i].ident();
 generatePreCondSaveOld(name, ast);
 }
 }
 if (vars[i] instanceof JmlForAllVarDecl) {
 JmlForAllVarDecl jfavd = (JmlForAllVarDecl) vars[i];
 JVariableDefinition[] jvd = jfavd.quantifie dVarDecls();
 for (int j = 0; j < jvd.length; j++) {
 String name = jvd[i].ident();
 Type typ = CompRef.getKatjaType(jvd[i].ge tType());
 generatePreCondForAll(name, typ);
 }
 }
 }
}

2.7.2. Forall declared variables
Forall declared variables are straightforward to implement, and that is probably the
reason why it is not so simple.

Forall declared variables are not documented a lot in JML, and we assume they
have the following meaning.

With the following code.

/*@ public normal_behavior
 @ forall int var;
 @ requires …var…
 @ ensures …var…
 @*/

The contract described by the specification contains a bound variable, and is
equivalent to a set of contracts Ci:

/*@ public normal_behavior
 @ requires …i…
 @ ensures …i …
 @*/

all of which hold between the programmer and the client. Or, more intuitively, that
the contract Ci holds whatever the value of i you may choose.

In terms of desugaring, we could (only theoretically!) desugar

/*@ public normal_behavior
 @ forall int var;
 @ requires …var…
 @ ensures …var…
 @*/

to

/*@ public normal_behavior
 @ requires …MIN_INT…
 @ ensures …MIN_INT …
 @ also

private void generatePreCondSaveOld(String name, Term ast) {
 LogicalVar F = POs.registerVarInSymbolTable(name, ast.type());
 POs.appendToPreCond(new IsTrue(new BinOpTermTerm(
 F,
 JEq.INSTANCE,
 ast, JBoolean.INSTANCE)));
}

 @ public normal_behavior
 @ requires …MIN_INT+1…
 @ ensures …MIN_INT+1 …
 @ also
 @ …
 @ also
 @ public normal_behavior
 @ requires …0…
 @ ensures …0…
 @ also
 @ public normal_behavior
 @ requires …1…
 @ ensures …1…
 @ also
 @ …
 @ also
 @ public normal_behavior
 @ requires …MAX_INT…
 @ ensures …MAX_INT…
 @*/

In terms of theorem proving, we have to prove

For all i:

if Pi holds before the method call, then Qi holds after the method call.

Let us make the following assumption on the theorem prover:
if our theorem prover receives as input a formula to prove which contains a free
variable,

F(i)
Then it will consider it true if and only if it holds for all i, i.e. it can make no
assumption on i!

For example,
 i=j ⇒ i+1=j+1
is considered true, because logically equivalent to:
 ∀i, j ∈N, (i=j ⇒ i+1=j+1)

Note: (for readers knowing the theorem prover currently used, Isabelle): In Isabelle,
free variables correspond to arbitrary values, introduced by the sign ∧, and the
above assumption is actually rule allI (cf [7], page 91).

Hence, if we only register this declared variable and do not bind it, the theorem
prover cannot make any assumption about it and will act as if there were an
implicit “forall var” in front of the triple.

If this assumption should not be respected by the theorem prover, we can just
iterate on logical variables in the symbol table and add manually these universal
quantifications to the Hoare triple, just before the formula be proven.

2.8. Logical variables and program variables

2.8.1. Variable handling in JML Vs in first-order logic
During the transformation process, we meet impedance mismatches between JML
and first-order logic, because of different handling of the variables.

In JML, variables can be:

- any declared variable
- formal parameters
- fields

In our first-order logic, logical variables refer to:

- the store S (generated by the POG)
- the set of assignable locations M (generated by the POG)
- variables used to save prestate values that we want to access in a

postcondition and generated by the POG
- any declared variable (old or forall) (variable already existing in JML)

whereas program variables refer to:

- formal parameters (already existing in JML)

In the version of first-order logic used in Jive, Fields are always considered being
“looked up” at corresponding locations in the heap, so that they are not treated as
variables in formulas.

2.8.2. The impedance mismatch and how it is solved
If the JML parser differentiates fields from other variables, it unfortunately does not
differentiate in its tree:

- declared variables
- from formal parameters

Both are local variable expressions!

Hence, one needs to help the expression transformer to differentiate between then
and decide whether we have:

- a formal parameter (transformed to a program variable)
- a JML declared variable (transformed to a logical variable)

private void generatePreCondForAll(String name, Type type) {
 LogicalVar F = POs.registerVarInSymbolTable(name, type);
}

To that aim, the Proof Obligation Generator provides a static method isLogical(),
which the Expression Transformer can use when in doubt. This functions actually
looks up in the symbol table of the proof obligation being built, also checks the
exception name if we are building an exceptional postcondition, and checks
variables used in (forall …) expressions (currently not added in the symbol table).

Furthermore, we said formerly that the Expression Transformer has to detect
formal parameters. Since we have no local variables to methods here, it is
straightforward that any “Local Variable Expression” that is not considered logical
by the Proof Obligation Generator is a formal parameter and can be treated as
explained in 2.5.5.5

2.8.3. What about name colliding?
Obviously, it is not advisable to the user to use a forall or old variable with the same
name as fields, but if this should happen (for example, in case of private fields one
does not know), Jive handles it the following way.

If a variable in a specification is bound to a forall or old declaration, it “hides” any
field which would have the same name, which is the intuitive behavior one expects
and actually, already the behavior of JML. To access such a field, one would have to
use this.name so that there is no lack of functionality.

Let us mention that any colliding within a specification is not allowed by JML (it
fails with a message), so that no renaming is needed.

2.9. Nested specifications
If we do not have clauses, but nested specification, we use the stack functionality
of the Proof Obligations Accumulator. All new proof obligations in the future will
actually start with the one we pushed on the stack, until we pop it.
Since we have a stack, this allows any level of nesting. We use a variable offset for
other methods to know whether we are in a nested specification or in the root one.

private void generatePOsForNestedSpecCases(JmlTypeDeclaration type,
 JmlMethodDeclaration method, JmlGeneralSpecCase s pecCase) {
 POs.pushPO();
 offset++;
 for (int i = 0; i < specCase.specBody().specCases ().length; i++)
 generatePOForSpecCase(type, method, specCase.sp ecBody().specCases()[i]);
 offset--;
 POs.popPO();
}

3. Output interface

If you would like to retrieve the triples and logical var tables from the proof
obligation generator without knowing the implementation details, this subsection
is for you.

3.1. Passing types to the Proof Obligation Generator
There is a unique instance of the Proof Obligation Generator, which you can get
with the static method getSingleton();

Then the static method setTopLevelTypes() allows to pass the abstract syntax tree
of the JML-annotated program (which is the output of the JML parser…).

3.2. Launching and getting the Output
The Proof Obligation Generator method execute() returns an instance of
ProofObligationAccumulator. This object contains all of the generated proof
obligations.

The package jive.ContainerInterface.HoareFrontend contains all necessary tools to
make use of it.

3.3. Iterator on Proof Obligations
Calling the method iterator() on the object – instance of
ProofObligationAccumulator - we got from the generator gives us an iterator on
proof obligations. It has the basics features you can expect from a forward iterator,
that is:
- a method next() which returns the next Proof Obligation, which is an instance of
class ProofObligation
- a method hasNext() which precises if there is any remaining proof obligation.

3.4. A Proof Obligation
All Proof Obligations are instances of ProofObligation. A proof obligation consists
of:

- a triple, i.e. a precondition, a method reference and a postcondition.
This is an instance of the class Triple.

- a table with all registered logical variables (the store in the prestate,
the set of assignable locations, expressions in the prestate, …)

3.5. A Triple
These triples are the very class we saw in the input interface, if you have read it. We
called the constructor of the triple with a precondition, a method reference and a
postcondition.

To get these data back, the interface is straightforward:

- getPre() returns the precondition (a Formula)
- getCompRef() returns the method reference
- getPost returns the postcondition (a Formula)

3.6. Iterators on logical variables
For each Proof Obligation, getting all of the registered logical variables is
performed with an iterator with an interface very similar to the iterator on proof
obligations:

- calling next() returns the next logical variable
- calling hasNext() precises whether there remains any logical variable

to be processed.

This iterator, like that on proof obligations, is obtained with the method
logicalVarIterator() of the current proof obligation.

3.7. Code sample

The following code prints out all of the generated proof obligations.

//The Proof Obligation Generator is the unique inst ance of its class
ProofObligationGenerator pog = ProofObligationGener ator.getSingleton();

//We first parse the annotated code with the JML Ch ecker
topLevelTypes = Main.currentSession().topLevelTypes ();

//We pass them to the Proof Obligation Generator
pog.setTopLevelTypes(topLevelTypes);

//and execute the generation, we get the accumulato r as output.
ProofObligationAccumulator poAccumulator = pog.exec ute();

//Then we can iterate on Proof Obligation
ProofObligationIterator poIterator = poAccumulator. iterator();
while(poIterator.hasNext())

ProofObligation po = poIterator.next();

//We can access pre- and postconditions, and the me thod reference
System.out.println(po.getTriple().getPre());
System.out.println(po.getTriple().getCompRef());
System.out.println(po.getTriple().getPost());

//And then iterate on logical variables for this Pr oof Obligation
LogicalVarIterator lvi = po.logicalVarIterator();

 while(lvi.hasNext())
LogicalVar lv = lvi.next();
System.out.println(lvi);

}

}

Note that actually, in a proof obligation, toString() is overridden and prints
everything including logical variables, which allows shorter code inside the main
loop in this case.

IV. Tests
The testing part is performed with JUnit. In this part, we give some examples of
test code together with what we expect.

1. Basic: pure, non_null, helpers and constructors
So that tests be as orthogonal as possible, we first test sugar keywords and
whether invariants are correctly handled, without specifications.

package jive.PC.FrontEnd.testfiles;
public class NoSpec {
 private int i, j;

public /*@pure@*/ NoSpec() {} Pure constructor

What is expected: invariant only in postcondition, with a trivial precondition.
Additional proof obligation for purity, with fields as i and j as only assignable
locations.

public NoSpec(int a) {} Constructor

What is expected: invariant only in postcondition, trivial precondition.

 private /*@helper@*/ NoSpec(long a) {} Helper constructor

What is expected: trivial pre- and postconditions.

public void nothing() {} Method

What is expected: invariants in pre- and postconditions.

private /*@helper@*/ void helper() {} Helper method

What is expected: trivial pre- and postconditions.

public /*@pure@*/ void pure() {} Pure method

What is expected: a PO with invariants in pre- and postcondition, an additional PO
for purity (nothing is assignable).

public /*@non_null@*/ Object Non-null result

nonNullResult() {
return new Object();

}

What is expected: invariant in precondition, result is non-null (and invariant) in
postcondition.

Non-null parameter

public void nonNullParameter(/*@non_null@*/ Object a)
{}

What is expected: parameter is non-null (and invariant) in postcondition, invariant
in post-condition.

}

2. Privacy checking
We know check that specification binding occurs as we wish (with trivial
specifications)

package jive.PC.FrontEnd.testfiles;

public class PrivacyChecking {
 /*@private behavior
 @requires true;
 @ensures true;
 @*/
 private void private_private() {
 }

What is expected: specification is statically bound
 (jive.PC.FrontEnd.testfiles.PrivacyChecking@private_private() as method reference)

 /*@public behavior
 @requires true;
 @ensures true;
 @*/
 public void public_public() {
 }

What is expected: specification is dynamically bound like the method
(jive.PC.FrontEnd.testfiles.PrivacyChecking:public_public() as method reference)

 /*@private behavior
 @requires true;
 @ensures true;
 @*/
 public void public_private() {
 }

What is expected: specification is NOT dynamically bound like the method, but
statically bound (jive.PC.FrontEnd.testfiles.PrivacyChecking@public_private() as

method reference). This is the case when a call to the MethodRef method is not
enough and we need to generate the reference by ourselves.

}

3. Behavior specifications
Now, we check the behavior keywords. Again for orthogonality reasons, we allowed
all locations to be assigned (This is the default setting if nothing was said about
this, but since they are heavyweight specificaitons, skipping the assignable
assertion would generate a warning…)

package jive.PC.FrontEnd.testfiles;

public class Behaviors {

 public int i, j;

 /*@
 @ public behavior
 @ requires i!=0;
 @ ensures j>1;
 @ assignable \everything;
 @*/
 public void behavior() {
 }

What is expected: invariants in both pre- and postconditions, the precondition i!=0,
normal and exceptional postconditions as implications (χ=Normal ⇒… ,and also if
there had been an exceptional postcondition, χ=Exc⇒…).

 /*@
 @ public normal_behavior
 @ requires i!=0;
 @ ensures j>1;
 @ assignable \everything;
 @*/
 public void normal_behavior() {

 }

What is expected: invariants in pre- and postconditions, the precondition i!=0,
χ=Normal as postcondition, normal postconditions with no implication (χ=Normal
⇒… would be useless, this is an optimization).

 /*@
 @ public exceptional_behavior
 @ requires true;
 @ signals (Exception e) j>1;
 @ signals (RuntimeException e) j>3;
 @ assignable \everything;

 @*/
 public void exceptional_behavior() {

 }

What is expected: invariants in pre- and postcondition, χ=Exc as postcondition,
exceptional postconditions conjoined with with no general implication (χ=Exc ⇒…
would be useless, this is an optimization) but with type implications (typeof(ExcV)
<: RuntimeException ⇒ j>3 for example).

}

4. Old expressions

We know test \old expressions, and use of old variable declarations.

package jive.PC.FrontEnd.testfiles;

public class OldExpression {
 public int i;
 public B x;
 /*@requires true;
 @ensures \old(i)==i+1;
 @ensures \old(this.i+2)==i+1;
 @ensures \old(x.f)==i+2*\old(x.f);
 */
 public void old() {
 }

What is expected: invariants in pre- and postconditions, three normal
postconditions conjoined with χ=Normal implication, logical variables !x0, !x1 and
!x2 created and registered, to save I, this.i+2 and x.f in the prestate, same logical
variable for the two identical expressions x.f, \old replaced with these logical
variables.

 /*@old int oldi = i;
 @requires true;
 @ensures oldi==i+1;
 */
 public void oldVarDecl() {}

What is expected: invariants in pre- and postcondition, normal postconditions
conjoined with χ=Normal implication, a logical variable with user-defined name
oldi registered, and a precondition to store i into this logical variable in the
prestate.

}

5. Forall expressions
package jive.PC.FrontEnd.testfiles;

public class ForAllExpression {
 public int i;

 /*@public behavior
 @forall int a;
 @requires a!=0;
 @ensures \result!=a;
 */
 public int forall() {
 return 0;
 }

What is expected: invariants in pre- and postconditions, normal postcondition
conjoined with χ=Normal implication, logical variable a registered (with the same
name).

 public boolean a;
 /*@public behavior
 @forall int i;
 @requires i!=0;
 @ensures \result!=i;
 */
 public int forallFieldCollide() {
 return 0;
 }
}

What is expected: The same as above, and variable I inside the specification
interpreted as bound logical variable and NOT as field (this is already done at the
JML level).

6. Nested specifications
package jive.PC.FrontEnd.testfiles;

public class NestedSpec {

 /*@public behavior
 @old int i = 2;
 @requires i!=0;
 @{|
 @ requires true;
 @ assignable \nothing;
 @ ensures \result!=i;
 @ also

 @ old int j = 1;
 @ requires i!=0 && (\forall int l;true;tr ue) &&

 (\forall int l;true;true);
 @ assignable \nothing;
 @ ensures \result!=i;
 @ |}
 */
 public int oneLevel() {
 return 0;
 }

What is expected: Two proof obligations, one with the common i!=0 precondition
with the first nested specification, the second with that same precondition and the
second nested specification. Variable i is also declared in the header, and is hence
used by the two proof obligations as well.

 /*@public normal_behavior
 @forall int i;
 @requires i!=0;
 @{|
 @ requires true;
 @ assignable \nothing;
 @ ensures \result!=i;
 @ also
 @ old int j = 1;
 @ requires i!=0;
 @ assignable \nothing;
 @ ensures \result!=i;
 @ |}
 */
 public int oneLevelNormal() {
 return 0;
 }

What is expected: Two proof obligations as above, both normal.

 /*@public exceptional_behavior
 @forall int i;
 @requires i!=0;
 @{|
 @ requires true;
 @ assignable \nothing;
 @ also
 @ old int j = 1;
 @ requires i!=0;
 @ assignable \nothing;
 @ |}
 */
 public int oneLevelExceptional() {
 return 0;
 }

What is expected: Two proof obligations as above, both exceptional.

 /*@public normal_behavior
 @forall int i;
 @requires i!=0;
 @{|
 @ requires true;
 @ ensures \result!=i;
 @ also
 @ {|
 @ requires true;
 @ ensures \result!=i;
 @ assignable \nothing;
 @ also
 @ {|
 @ requires true;
 @ ensures \result!=i;
 @ assignable \nothing;
 @ also
 @ forall int k;
 @ requires i!=0;
 @ ensures \result!=i+i;
 @ assignable \nothing;
 @ |}
 @ |}
 @ |}
 */
 public int moreLevelsNormal() {
 return 0;
 }

What is expected: Four proof obligations, with respect to the way they are nested
(this is to show that nesting specification is possible and work properly)

}

7. A “real” example

7.1. IntMathOps
We chose to take the following one from [2]:

package jive.PC.FrontEnd.testfiles;

public class IntMathOps {
 /*@ public normal_behavior
 requires y >= 0;
 assignable \nothing;
 ensures 0 <= \result
 && \result * \result <= y
 && y < ((\result+1) * (\result+1));
 @*/
 public static int isqrt(int y) {
 return (int) Math.sqrt(y);
 }
}

7.2. Visualization
The Proof Obligation Generator comes along with a Proof Obligation Visualizer
which offers a graphical view on the tree and the structure of proof obligations.

We present below views of the precondition and postcondition in the Hoare triple.

In this proof obligation, the following logical variables are registered:

- S (the store)
- !x0 (the value of y in the prestate)

The Precondition

The Invariant

Saving the store

Saving the value
of parameter y in
the prestate

The three normal
postconditions

Normal behavior
(cannot throw
any exception)

No location can be
modified.

Invariant

V. Conclusion

1. What the current implementation covers

The following features are supported:

• appending invariants with respect to constructors and helpers
• adaptative binding with privacy of specifications and methods, i.e. it makes

sure that a private specification is bound statically.
• preconditions (requires), even when multiple
• postconditions (normal: ensures, exceptional: signals), even when multiple
• assignable clauses (including saving the store in a logical variable S),

handled “the modifies way”. An optimization prevents unused generation of
S.

• computing the downward closure and “saving” it in a logical variable M
• optimization for \assignable nothing, \assignable everything
• defaults for behavior and lightweight specification when clauses are

omitted
• desugaring of normal and exceptional behavior, and optimization of

corresponding postconditions (removing the implication)
• pure methods with additional proof obligation
• non-null parameters and results
• \old expressions, \forall and \exists expressions (for the latter, without

registration in the logical variable table of proof obligations). They appear in
pre- and/or postconditions (\old only in postconditions).

• Old and forall variable declarations (unlike the above ones, they appear
before a JML specification header)

• Nested specifications (any level)
• Handling of special keywords, even when no specification is given
• Everything which is supported by the expression transformer that does not

require further assistance of the Proof Obligation Generator

2. Further work

There is still an issue when the user uses a \forall (or an \exists) within a pre- or
postcondition (not to be mistaken with global forall declarations). In this case, it is
not decided yet whether to register the corresponding variable or not. The current
implementation does consider a \forall variable logical, but without officially
registering them. It is possible that this should be changed in the future, if that
should be needed by the team at Kaiserslautern.

In that case, a difficulty is that the same name could be used several times (in two
different succeeding – not nested - \forall), and we should rename them so as to
avoid collisions in the logical variable registry.

Model fields still need a little patch to be properly handled (not as concrete
locations). They are marked with TODOs in the code.

VI. Annex: Katja Interface
Since this interface changes and adapts to the needs, one might find useful, for
possible debugging purposes, to find included the interface for Katja terms and
formulas which was in use when this paper was written.

1. Terms

package jive.ContainerInterface.Term

Term = Constant
 | Variable
 | FunctionApplication
 | UnaryOpTerm
 | BinaryOpTerm
 | ConditionalTerm
 | Field (String name, ClassOrInterfaceType dt ype, Type type)
 | SetTerm (TermList elems, Type type)

TermList * Term

Constant = True (Type type)
 | False (Type type)
 | ByteLiteral (Byte value, Type type)
 | ShortLiteral (Short value, Type type)
 | IntegerLiteral (Integer value, Type typ e)
 | LongLiteral (Long value, Type type)
 | Null (Type type)
 | Normal(Type type)
 | Break(Type type)
 | Exc(Type type)
 | Ret(Type type)
 | DeclaredConst (String theory, String na me, Type type)

Variable = ProgVar (String name, Type type)
 | LogicalVar (String name, Type type)
 | Dollar (Type type)
 | Chi (Type type)
 | This (Type type)
 | ResV (Type type)
 | ExcV (Type type)

FunctionApplication = FuncAppl (DeclaredConst func , TermList args, Type type)
 | Tuple (TermList entries, Typ e type)

UnaryOpTerm (UnaryOp op, Term t, Type type)

BinaryOpTerm = BinOpTermTerm (Term term1, BinaryOp op, Term term2, Type type)
 | BinOpTermType (Term term1, BinaryOpT op, Type term2, Type type)
 | BinOpTypeType (Type term1, BinaryOpT T op, Type term2, Type type)

ConditionalTerm (Term condition, Term thenExpr, Te rm elseExpr, Type type)

UnaryOp = JNot() // Java boolean negation !
 | JBitCompl() // bit complement
 | JUPlus() // unary plus +
 | JUMinus() // unary minus -

BinaryOp = JLogicalAnd() // strict AND &
 | JLogicalOr() // strict OR |
 | JConditionalAnd() // lazy AND &&

 | JConditionalOr() // lazy OR ||

 | JEq // reference equality ==
 | JNotEq // reference inequality !=
 | JLess() // comparison <
 | JLessEq() // comparison <=
 | Element() // subset relation \in

 | JLShift() // left shift <<
 | JRShift() // right shift >>
 | JURShift() // unsigned right shift > >>
 | JPlus() // math operator +
 | JMinus() // math operator -
 | JTimes() // math operator *
 | JDiv() // math operator /
 | JMod() // math operator %
 | JBitAnd() // bitwise AND &
 | JBitOr() // bitwise OR |
 | JBitXOr() // bitwise XOR ^

BinaryOpT = InstanceOf() // JML instanceof operato r

BinaryOpTT = Subtype() // JML: <:
 | ProperSubtype() // JML: <<:
 | JEq() // reference equality ==
 | JNotEq() // reference inequality ! =

2. Types
Type = Store ()
 | Status ()
 | ArrayBaseType
 | NullType ()
 | FunctionType (Type dtype, Type rtype) // _ -> _
 | TupleType // _ * _
 | SetType ()
 | JMLObjectSet ()
 | JMLValueSet ()

ArrayBaseType = ReferenceType
 | PrimitiveType
 | ProverType (String theory, String t ype)

ReferenceType = ClassOrInterfaceType
 | ArrayType (ArrayBaseType type)

ClassOrInterfaceType = ClassType
 | InterfaceType (String name, StringList pkg)

ClassType = ConcreteClassType (String name, String List pkg)
 | AbstractClassType (String name, String List pkg)

StringList * String

PrimitiveType = JBoolean()
 | JByte()
 | JShort()
 | JInt()
 | JLong()

TupleType * Type

3. Formulas

package jive.ContainerInterface.Formula

import term.katja

Formula = IsTrue
 | FNot
 | BindingFormula
 | BinaryFormula

FormulaList * Formula

IsTrue(Term t) // here the transition Term -> F ormula takes place
FNot (Formula formula)

BindingFormula (BindingOp op,
 BindingList bindingList,
 Formula formula)

BindingList * Binding
Binding (LogicalVar lv)

BindingOp = Forall()
 | Exists()

BinaryFormula (Formula left, FormulaOp op, Formula right)

FormulaOp = FAnd() // /\ logical and
 | FOr() // \/ logical or
 | FImplies() // logical implication = =>
 | FIff() // logical equivalence < ==>
 | FNotIff() // logical inequivalence <=!=>

VII. Bibliography

[1] G.T. Leavens, Y. Cheon, Design by Contract with JML. Last revised October 2004.

[2] G. Leavens, A. Baker and C. Ruby. Preliminary design of JML: a notation for
detailed design. Technical report, Iowa State University, last revised June 2004.

[3] A. D. Raghavan, G.T. Leavens. Desugaring JML method specifications. Technical
Report 00-03d, Iowa State University, Department of Computer Science, July 2003.

[4] A. Darvas, P. Mueller, Semantics of JML Specifications in Jive. Technical Report,
Software Component Technology Group, ETH Zurich.

[5] G.T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, J. Kiniry. JML Reference
Manual. Last revised January 2005.

[6] J. Meyer, A. Poetzsch-Heffter. An Architecture for Interactive Program Provers.
Fernuniversität Hagen, Germany.

[7] Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel. Isabelle/HOL, a proof
assistant for first-order logic. April 20th , 2004, Springer-Verlag.

[8] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, Raymie Stata. Extended Static Checking for Java. Compaq Systems Research
Center, Palo Alto. PLDI’02, June 2002, Berlin Germany.

[9] Peter Müller, Arnd Poetzsch-Heffter. Universes: a type system for Alias and
Dependency control. Fernuniversität Hagen, Germany.

